1 | //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements extra semantic analysis beyond what is enforced |
10 | // by the C type system. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "clang/AST/APValue.h" |
15 | #include "clang/AST/ASTContext.h" |
16 | #include "clang/AST/Attr.h" |
17 | #include "clang/AST/AttrIterator.h" |
18 | #include "clang/AST/CharUnits.h" |
19 | #include "clang/AST/Decl.h" |
20 | #include "clang/AST/DeclBase.h" |
21 | #include "clang/AST/DeclCXX.h" |
22 | #include "clang/AST/DeclObjC.h" |
23 | #include "clang/AST/DeclarationName.h" |
24 | #include "clang/AST/EvaluatedExprVisitor.h" |
25 | #include "clang/AST/Expr.h" |
26 | #include "clang/AST/ExprCXX.h" |
27 | #include "clang/AST/ExprObjC.h" |
28 | #include "clang/AST/ExprOpenMP.h" |
29 | #include "clang/AST/FormatString.h" |
30 | #include "clang/AST/IgnoreExpr.h" |
31 | #include "clang/AST/NSAPI.h" |
32 | #include "clang/AST/NonTrivialTypeVisitor.h" |
33 | #include "clang/AST/OperationKinds.h" |
34 | #include "clang/AST/RecordLayout.h" |
35 | #include "clang/AST/Stmt.h" |
36 | #include "clang/AST/TemplateBase.h" |
37 | #include "clang/AST/Type.h" |
38 | #include "clang/AST/TypeLoc.h" |
39 | #include "clang/AST/UnresolvedSet.h" |
40 | #include "clang/Basic/AddressSpaces.h" |
41 | #include "clang/Basic/CharInfo.h" |
42 | #include "clang/Basic/Diagnostic.h" |
43 | #include "clang/Basic/IdentifierTable.h" |
44 | #include "clang/Basic/LLVM.h" |
45 | #include "clang/Basic/LangOptions.h" |
46 | #include "clang/Basic/OpenCLOptions.h" |
47 | #include "clang/Basic/OperatorKinds.h" |
48 | #include "clang/Basic/PartialDiagnostic.h" |
49 | #include "clang/Basic/SourceLocation.h" |
50 | #include "clang/Basic/SourceManager.h" |
51 | #include "clang/Basic/Specifiers.h" |
52 | #include "clang/Basic/SyncScope.h" |
53 | #include "clang/Basic/TargetBuiltins.h" |
54 | #include "clang/Basic/TargetCXXABI.h" |
55 | #include "clang/Basic/TargetInfo.h" |
56 | #include "clang/Basic/TypeTraits.h" |
57 | #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. |
58 | #include "clang/Sema/Initialization.h" |
59 | #include "clang/Sema/Lookup.h" |
60 | #include "clang/Sema/Ownership.h" |
61 | #include "clang/Sema/Scope.h" |
62 | #include "clang/Sema/ScopeInfo.h" |
63 | #include "clang/Sema/Sema.h" |
64 | #include "clang/Sema/SemaAMDGPU.h" |
65 | #include "clang/Sema/SemaARM.h" |
66 | #include "clang/Sema/SemaBPF.h" |
67 | #include "clang/Sema/SemaHLSL.h" |
68 | #include "clang/Sema/SemaHexagon.h" |
69 | #include "clang/Sema/SemaInternal.h" |
70 | #include "clang/Sema/SemaLoongArch.h" |
71 | #include "clang/Sema/SemaMIPS.h" |
72 | #include "clang/Sema/SemaNVPTX.h" |
73 | #include "clang/Sema/SemaObjC.h" |
74 | #include "clang/Sema/SemaOpenCL.h" |
75 | #include "clang/Sema/SemaPPC.h" |
76 | #include "clang/Sema/SemaRISCV.h" |
77 | #include "clang/Sema/SemaSystemZ.h" |
78 | #include "clang/Sema/SemaWasm.h" |
79 | #include "clang/Sema/SemaX86.h" |
80 | #include "llvm/ADT/APFloat.h" |
81 | #include "llvm/ADT/APInt.h" |
82 | #include "llvm/ADT/APSInt.h" |
83 | #include "llvm/ADT/ArrayRef.h" |
84 | #include "llvm/ADT/DenseMap.h" |
85 | #include "llvm/ADT/FoldingSet.h" |
86 | #include "llvm/ADT/STLExtras.h" |
87 | #include "llvm/ADT/SmallBitVector.h" |
88 | #include "llvm/ADT/SmallPtrSet.h" |
89 | #include "llvm/ADT/SmallString.h" |
90 | #include "llvm/ADT/SmallVector.h" |
91 | #include "llvm/ADT/StringExtras.h" |
92 | #include "llvm/ADT/StringRef.h" |
93 | #include "llvm/ADT/StringSet.h" |
94 | #include "llvm/ADT/StringSwitch.h" |
95 | #include "llvm/Support/AtomicOrdering.h" |
96 | #include "llvm/Support/Casting.h" |
97 | #include "llvm/Support/Compiler.h" |
98 | #include "llvm/Support/ConvertUTF.h" |
99 | #include "llvm/Support/ErrorHandling.h" |
100 | #include "llvm/Support/Format.h" |
101 | #include "llvm/Support/Locale.h" |
102 | #include "llvm/Support/MathExtras.h" |
103 | #include "llvm/Support/SaveAndRestore.h" |
104 | #include "llvm/Support/raw_ostream.h" |
105 | #include "llvm/TargetParser/RISCVTargetParser.h" |
106 | #include "llvm/TargetParser/Triple.h" |
107 | #include <algorithm> |
108 | #include <bitset> |
109 | #include <cassert> |
110 | #include <cctype> |
111 | #include <cstddef> |
112 | #include <cstdint> |
113 | #include <functional> |
114 | #include <limits> |
115 | #include <optional> |
116 | #include <string> |
117 | #include <tuple> |
118 | #include <utility> |
119 | |
120 | using namespace clang; |
121 | using namespace sema; |
122 | |
123 | SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, |
124 | unsigned ByteNo) const { |
125 | return SL->getLocationOfByte(ByteNo, SM: getSourceManager(), Features: LangOpts, |
126 | Target: Context.getTargetInfo()); |
127 | } |
128 | |
129 | static constexpr unsigned short combineFAPK(Sema::FormatArgumentPassingKind A, |
130 | Sema::FormatArgumentPassingKind B) { |
131 | return (A << 8) | B; |
132 | } |
133 | |
134 | bool Sema::checkArgCountAtLeast(CallExpr *Call, unsigned MinArgCount) { |
135 | unsigned ArgCount = Call->getNumArgs(); |
136 | if (ArgCount >= MinArgCount) |
137 | return false; |
138 | |
139 | return Diag(Loc: Call->getEndLoc(), DiagID: diag::err_typecheck_call_too_few_args) |
140 | << 0 /*function call*/ << MinArgCount << ArgCount |
141 | << /*is non object*/ 0 << Call->getSourceRange(); |
142 | } |
143 | |
144 | bool Sema::checkArgCountAtMost(CallExpr *Call, unsigned MaxArgCount) { |
145 | unsigned ArgCount = Call->getNumArgs(); |
146 | if (ArgCount <= MaxArgCount) |
147 | return false; |
148 | return Diag(Loc: Call->getEndLoc(), DiagID: diag::err_typecheck_call_too_many_args_at_most) |
149 | << 0 /*function call*/ << MaxArgCount << ArgCount |
150 | << /*is non object*/ 0 << Call->getSourceRange(); |
151 | } |
152 | |
153 | bool Sema::checkArgCountRange(CallExpr *Call, unsigned MinArgCount, |
154 | unsigned MaxArgCount) { |
155 | return checkArgCountAtLeast(Call, MinArgCount) || |
156 | checkArgCountAtMost(Call, MaxArgCount); |
157 | } |
158 | |
159 | bool Sema::checkArgCount(CallExpr *Call, unsigned DesiredArgCount) { |
160 | unsigned ArgCount = Call->getNumArgs(); |
161 | if (ArgCount == DesiredArgCount) |
162 | return false; |
163 | |
164 | if (checkArgCountAtLeast(Call, MinArgCount: DesiredArgCount)) |
165 | return true; |
166 | assert(ArgCount > DesiredArgCount && "should have diagnosed this" ); |
167 | |
168 | // Highlight all the excess arguments. |
169 | SourceRange Range(Call->getArg(Arg: DesiredArgCount)->getBeginLoc(), |
170 | Call->getArg(Arg: ArgCount - 1)->getEndLoc()); |
171 | |
172 | return Diag(Loc: Range.getBegin(), DiagID: diag::err_typecheck_call_too_many_args) |
173 | << 0 /*function call*/ << DesiredArgCount << ArgCount |
174 | << /*is non object*/ 0 << Call->getArg(Arg: 1)->getSourceRange(); |
175 | } |
176 | |
177 | static bool checkBuiltinVerboseTrap(CallExpr *Call, Sema &S) { |
178 | bool HasError = false; |
179 | |
180 | for (unsigned I = 0; I < Call->getNumArgs(); ++I) { |
181 | Expr *Arg = Call->getArg(Arg: I); |
182 | |
183 | if (Arg->isValueDependent()) |
184 | continue; |
185 | |
186 | std::optional<std::string> ArgString = Arg->tryEvaluateString(Ctx&: S.Context); |
187 | int DiagMsgKind = -1; |
188 | // Arguments must be pointers to constant strings and cannot use '$'. |
189 | if (!ArgString.has_value()) |
190 | DiagMsgKind = 0; |
191 | else if (ArgString->find(c: '$') != std::string::npos) |
192 | DiagMsgKind = 1; |
193 | |
194 | if (DiagMsgKind >= 0) { |
195 | S.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_builtin_verbose_trap_arg) |
196 | << DiagMsgKind << Arg->getSourceRange(); |
197 | HasError = true; |
198 | } |
199 | } |
200 | |
201 | return !HasError; |
202 | } |
203 | |
204 | static bool convertArgumentToType(Sema &S, Expr *&Value, QualType Ty) { |
205 | if (Value->isTypeDependent()) |
206 | return false; |
207 | |
208 | InitializedEntity Entity = |
209 | InitializedEntity::InitializeParameter(Context&: S.Context, Type: Ty, Consumed: false); |
210 | ExprResult Result = |
211 | S.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Value); |
212 | if (Result.isInvalid()) |
213 | return true; |
214 | Value = Result.get(); |
215 | return false; |
216 | } |
217 | |
218 | /// Check that the first argument to __builtin_annotation is an integer |
219 | /// and the second argument is a non-wide string literal. |
220 | static bool BuiltinAnnotation(Sema &S, CallExpr *TheCall) { |
221 | if (S.checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
222 | return true; |
223 | |
224 | // First argument should be an integer. |
225 | Expr *ValArg = TheCall->getArg(Arg: 0); |
226 | QualType Ty = ValArg->getType(); |
227 | if (!Ty->isIntegerType()) { |
228 | S.Diag(Loc: ValArg->getBeginLoc(), DiagID: diag::err_builtin_annotation_first_arg) |
229 | << ValArg->getSourceRange(); |
230 | return true; |
231 | } |
232 | |
233 | // Second argument should be a constant string. |
234 | Expr *StrArg = TheCall->getArg(Arg: 1)->IgnoreParenCasts(); |
235 | StringLiteral *Literal = dyn_cast<StringLiteral>(Val: StrArg); |
236 | if (!Literal || !Literal->isOrdinary()) { |
237 | S.Diag(Loc: StrArg->getBeginLoc(), DiagID: diag::err_builtin_annotation_second_arg) |
238 | << StrArg->getSourceRange(); |
239 | return true; |
240 | } |
241 | |
242 | TheCall->setType(Ty); |
243 | return false; |
244 | } |
245 | |
246 | static bool BuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) { |
247 | // We need at least one argument. |
248 | if (TheCall->getNumArgs() < 1) { |
249 | S.Diag(Loc: TheCall->getEndLoc(), DiagID: diag::err_typecheck_call_too_few_args_at_least) |
250 | << 0 << 1 << TheCall->getNumArgs() << /*is non object*/ 0 |
251 | << TheCall->getCallee()->getSourceRange(); |
252 | return true; |
253 | } |
254 | |
255 | // All arguments should be wide string literals. |
256 | for (Expr *Arg : TheCall->arguments()) { |
257 | auto *Literal = dyn_cast<StringLiteral>(Val: Arg->IgnoreParenCasts()); |
258 | if (!Literal || !Literal->isWide()) { |
259 | S.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_msvc_annotation_wide_str) |
260 | << Arg->getSourceRange(); |
261 | return true; |
262 | } |
263 | } |
264 | |
265 | return false; |
266 | } |
267 | |
268 | /// Check that the argument to __builtin_addressof is a glvalue, and set the |
269 | /// result type to the corresponding pointer type. |
270 | static bool BuiltinAddressof(Sema &S, CallExpr *TheCall) { |
271 | if (S.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
272 | return true; |
273 | |
274 | ExprResult Arg(TheCall->getArg(Arg: 0)); |
275 | QualType ResultType = S.CheckAddressOfOperand(Operand&: Arg, OpLoc: TheCall->getBeginLoc()); |
276 | if (ResultType.isNull()) |
277 | return true; |
278 | |
279 | TheCall->setArg(Arg: 0, ArgExpr: Arg.get()); |
280 | TheCall->setType(ResultType); |
281 | return false; |
282 | } |
283 | |
284 | /// Check that the argument to __builtin_function_start is a function. |
285 | static bool BuiltinFunctionStart(Sema &S, CallExpr *TheCall) { |
286 | if (S.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
287 | return true; |
288 | |
289 | ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(E: TheCall->getArg(Arg: 0)); |
290 | if (Arg.isInvalid()) |
291 | return true; |
292 | |
293 | TheCall->setArg(Arg: 0, ArgExpr: Arg.get()); |
294 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>( |
295 | Val: Arg.get()->getAsBuiltinConstantDeclRef(Context: S.getASTContext())); |
296 | |
297 | if (!FD) { |
298 | S.Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_function_start_invalid_type) |
299 | << TheCall->getSourceRange(); |
300 | return true; |
301 | } |
302 | |
303 | return !S.checkAddressOfFunctionIsAvailable(Function: FD, /*Complain=*/true, |
304 | Loc: TheCall->getBeginLoc()); |
305 | } |
306 | |
307 | /// Check the number of arguments and set the result type to |
308 | /// the argument type. |
309 | static bool BuiltinPreserveAI(Sema &S, CallExpr *TheCall) { |
310 | if (S.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
311 | return true; |
312 | |
313 | TheCall->setType(TheCall->getArg(Arg: 0)->getType()); |
314 | return false; |
315 | } |
316 | |
317 | /// Check that the value argument for __builtin_is_aligned(value, alignment) and |
318 | /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer |
319 | /// type (but not a function pointer) and that the alignment is a power-of-two. |
320 | static bool BuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) { |
321 | if (S.checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
322 | return true; |
323 | |
324 | clang::Expr *Source = TheCall->getArg(Arg: 0); |
325 | bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned; |
326 | |
327 | auto IsValidIntegerType = [](QualType Ty) { |
328 | return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType(); |
329 | }; |
330 | QualType SrcTy = Source->getType(); |
331 | // We should also be able to use it with arrays (but not functions!). |
332 | if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) { |
333 | SrcTy = S.Context.getDecayedType(T: SrcTy); |
334 | } |
335 | if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) || |
336 | SrcTy->isFunctionPointerType()) { |
337 | // FIXME: this is not quite the right error message since we don't allow |
338 | // floating point types, or member pointers. |
339 | S.Diag(Loc: Source->getExprLoc(), DiagID: diag::err_typecheck_expect_scalar_operand) |
340 | << SrcTy; |
341 | return true; |
342 | } |
343 | |
344 | clang::Expr *AlignOp = TheCall->getArg(Arg: 1); |
345 | if (!IsValidIntegerType(AlignOp->getType())) { |
346 | S.Diag(Loc: AlignOp->getExprLoc(), DiagID: diag::err_typecheck_expect_int) |
347 | << AlignOp->getType(); |
348 | return true; |
349 | } |
350 | Expr::EvalResult AlignResult; |
351 | unsigned MaxAlignmentBits = S.Context.getIntWidth(T: SrcTy) - 1; |
352 | // We can't check validity of alignment if it is value dependent. |
353 | if (!AlignOp->isValueDependent() && |
354 | AlignOp->EvaluateAsInt(Result&: AlignResult, Ctx: S.Context, |
355 | AllowSideEffects: Expr::SE_AllowSideEffects)) { |
356 | llvm::APSInt AlignValue = AlignResult.Val.getInt(); |
357 | llvm::APSInt MaxValue( |
358 | llvm::APInt::getOneBitSet(numBits: MaxAlignmentBits + 1, BitNo: MaxAlignmentBits)); |
359 | if (AlignValue < 1) { |
360 | S.Diag(Loc: AlignOp->getExprLoc(), DiagID: diag::err_alignment_too_small) << 1; |
361 | return true; |
362 | } |
363 | if (llvm::APSInt::compareValues(I1: AlignValue, I2: MaxValue) > 0) { |
364 | S.Diag(Loc: AlignOp->getExprLoc(), DiagID: diag::err_alignment_too_big) |
365 | << toString(I: MaxValue, Radix: 10); |
366 | return true; |
367 | } |
368 | if (!AlignValue.isPowerOf2()) { |
369 | S.Diag(Loc: AlignOp->getExprLoc(), DiagID: diag::err_alignment_not_power_of_two); |
370 | return true; |
371 | } |
372 | if (AlignValue == 1) { |
373 | S.Diag(Loc: AlignOp->getExprLoc(), DiagID: diag::warn_alignment_builtin_useless) |
374 | << IsBooleanAlignBuiltin; |
375 | } |
376 | } |
377 | |
378 | ExprResult SrcArg = S.PerformCopyInitialization( |
379 | Entity: InitializedEntity::InitializeParameter(Context&: S.Context, Type: SrcTy, Consumed: false), |
380 | EqualLoc: SourceLocation(), Init: Source); |
381 | if (SrcArg.isInvalid()) |
382 | return true; |
383 | TheCall->setArg(Arg: 0, ArgExpr: SrcArg.get()); |
384 | ExprResult AlignArg = |
385 | S.PerformCopyInitialization(Entity: InitializedEntity::InitializeParameter( |
386 | Context&: S.Context, Type: AlignOp->getType(), Consumed: false), |
387 | EqualLoc: SourceLocation(), Init: AlignOp); |
388 | if (AlignArg.isInvalid()) |
389 | return true; |
390 | TheCall->setArg(Arg: 1, ArgExpr: AlignArg.get()); |
391 | // For align_up/align_down, the return type is the same as the (potentially |
392 | // decayed) argument type including qualifiers. For is_aligned(), the result |
393 | // is always bool. |
394 | TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy); |
395 | return false; |
396 | } |
397 | |
398 | static bool BuiltinOverflow(Sema &S, CallExpr *TheCall, unsigned BuiltinID) { |
399 | if (S.checkArgCount(Call: TheCall, DesiredArgCount: 3)) |
400 | return true; |
401 | |
402 | std::pair<unsigned, const char *> Builtins[] = { |
403 | { Builtin::BI__builtin_add_overflow, "ckd_add" }, |
404 | { Builtin::BI__builtin_sub_overflow, "ckd_sub" }, |
405 | { Builtin::BI__builtin_mul_overflow, "ckd_mul" }, |
406 | }; |
407 | |
408 | bool CkdOperation = llvm::any_of(Range&: Builtins, P: [&](const std::pair<unsigned, |
409 | const char *> &P) { |
410 | return BuiltinID == P.first && TheCall->getExprLoc().isMacroID() && |
411 | Lexer::getImmediateMacroName(Loc: TheCall->getExprLoc(), |
412 | SM: S.getSourceManager(), LangOpts: S.getLangOpts()) == P.second; |
413 | }); |
414 | |
415 | auto ValidCkdIntType = [](QualType QT) { |
416 | // A valid checked integer type is an integer type other than a plain char, |
417 | // bool, a bit-precise type, or an enumeration type. |
418 | if (const auto *BT = QT.getCanonicalType()->getAs<BuiltinType>()) |
419 | return (BT->getKind() >= BuiltinType::Short && |
420 | BT->getKind() <= BuiltinType::Int128) || ( |
421 | BT->getKind() >= BuiltinType::UShort && |
422 | BT->getKind() <= BuiltinType::UInt128) || |
423 | BT->getKind() == BuiltinType::UChar || |
424 | BT->getKind() == BuiltinType::SChar; |
425 | return false; |
426 | }; |
427 | |
428 | // First two arguments should be integers. |
429 | for (unsigned I = 0; I < 2; ++I) { |
430 | ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(E: TheCall->getArg(Arg: I)); |
431 | if (Arg.isInvalid()) return true; |
432 | TheCall->setArg(Arg: I, ArgExpr: Arg.get()); |
433 | |
434 | QualType Ty = Arg.get()->getType(); |
435 | bool IsValid = CkdOperation ? ValidCkdIntType(Ty) : Ty->isIntegerType(); |
436 | if (!IsValid) { |
437 | S.Diag(Loc: Arg.get()->getBeginLoc(), DiagID: diag::err_overflow_builtin_must_be_int) |
438 | << CkdOperation << Ty << Arg.get()->getSourceRange(); |
439 | return true; |
440 | } |
441 | } |
442 | |
443 | // Third argument should be a pointer to a non-const integer. |
444 | // IRGen correctly handles volatile, restrict, and address spaces, and |
445 | // the other qualifiers aren't possible. |
446 | { |
447 | ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(E: TheCall->getArg(Arg: 2)); |
448 | if (Arg.isInvalid()) return true; |
449 | TheCall->setArg(Arg: 2, ArgExpr: Arg.get()); |
450 | |
451 | QualType Ty = Arg.get()->getType(); |
452 | const auto *PtrTy = Ty->getAs<PointerType>(); |
453 | if (!PtrTy || |
454 | !PtrTy->getPointeeType()->isIntegerType() || |
455 | (!ValidCkdIntType(PtrTy->getPointeeType()) && CkdOperation) || |
456 | PtrTy->getPointeeType().isConstQualified()) { |
457 | S.Diag(Loc: Arg.get()->getBeginLoc(), |
458 | DiagID: diag::err_overflow_builtin_must_be_ptr_int) |
459 | << CkdOperation << Ty << Arg.get()->getSourceRange(); |
460 | return true; |
461 | } |
462 | } |
463 | |
464 | // Disallow signed bit-precise integer args larger than 128 bits to mul |
465 | // function until we improve backend support. |
466 | if (BuiltinID == Builtin::BI__builtin_mul_overflow) { |
467 | for (unsigned I = 0; I < 3; ++I) { |
468 | const auto Arg = TheCall->getArg(Arg: I); |
469 | // Third argument will be a pointer. |
470 | auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType(); |
471 | if (Ty->isBitIntType() && Ty->isSignedIntegerType() && |
472 | S.getASTContext().getIntWidth(T: Ty) > 128) |
473 | return S.Diag(Loc: Arg->getBeginLoc(), |
474 | DiagID: diag::err_overflow_builtin_bit_int_max_size) |
475 | << 128; |
476 | } |
477 | } |
478 | |
479 | return false; |
480 | } |
481 | |
482 | namespace { |
483 | struct BuiltinDumpStructGenerator { |
484 | Sema &S; |
485 | CallExpr *TheCall; |
486 | SourceLocation Loc = TheCall->getBeginLoc(); |
487 | SmallVector<Expr *, 32> Actions; |
488 | DiagnosticErrorTrap ErrorTracker; |
489 | PrintingPolicy Policy; |
490 | |
491 | BuiltinDumpStructGenerator(Sema &S, CallExpr *TheCall) |
492 | : S(S), TheCall(TheCall), ErrorTracker(S.getDiagnostics()), |
493 | Policy(S.Context.getPrintingPolicy()) { |
494 | Policy.AnonymousTagLocations = false; |
495 | } |
496 | |
497 | Expr *makeOpaqueValueExpr(Expr *Inner) { |
498 | auto *OVE = new (S.Context) |
499 | OpaqueValueExpr(Loc, Inner->getType(), Inner->getValueKind(), |
500 | Inner->getObjectKind(), Inner); |
501 | Actions.push_back(Elt: OVE); |
502 | return OVE; |
503 | } |
504 | |
505 | Expr *getStringLiteral(llvm::StringRef Str) { |
506 | Expr *Lit = S.Context.getPredefinedStringLiteralFromCache(Key: Str); |
507 | // Wrap the literal in parentheses to attach a source location. |
508 | return new (S.Context) ParenExpr(Loc, Loc, Lit); |
509 | } |
510 | |
511 | bool callPrintFunction(llvm::StringRef Format, |
512 | llvm::ArrayRef<Expr *> Exprs = {}) { |
513 | SmallVector<Expr *, 8> Args; |
514 | assert(TheCall->getNumArgs() >= 2); |
515 | Args.reserve(N: (TheCall->getNumArgs() - 2) + /*Format*/ 1 + Exprs.size()); |
516 | Args.assign(in_start: TheCall->arg_begin() + 2, in_end: TheCall->arg_end()); |
517 | Args.push_back(Elt: getStringLiteral(Str: Format)); |
518 | Args.insert(I: Args.end(), From: Exprs.begin(), To: Exprs.end()); |
519 | |
520 | // Register a note to explain why we're performing the call. |
521 | Sema::CodeSynthesisContext Ctx; |
522 | Ctx.Kind = Sema::CodeSynthesisContext::BuildingBuiltinDumpStructCall; |
523 | Ctx.PointOfInstantiation = Loc; |
524 | Ctx.CallArgs = Args.data(); |
525 | Ctx.NumCallArgs = Args.size(); |
526 | S.pushCodeSynthesisContext(Ctx); |
527 | |
528 | ExprResult RealCall = |
529 | S.BuildCallExpr(/*Scope=*/S: nullptr, Fn: TheCall->getArg(Arg: 1), |
530 | LParenLoc: TheCall->getBeginLoc(), ArgExprs: Args, RParenLoc: TheCall->getRParenLoc()); |
531 | |
532 | S.popCodeSynthesisContext(); |
533 | if (!RealCall.isInvalid()) |
534 | Actions.push_back(Elt: RealCall.get()); |
535 | // Bail out if we've hit any errors, even if we managed to build the |
536 | // call. We don't want to produce more than one error. |
537 | return RealCall.isInvalid() || ErrorTracker.hasErrorOccurred(); |
538 | } |
539 | |
540 | Expr *getIndentString(unsigned Depth) { |
541 | if (!Depth) |
542 | return nullptr; |
543 | |
544 | llvm::SmallString<32> Indent; |
545 | Indent.resize(N: Depth * Policy.Indentation, NV: ' '); |
546 | return getStringLiteral(Str: Indent); |
547 | } |
548 | |
549 | Expr *getTypeString(QualType T) { |
550 | return getStringLiteral(Str: T.getAsString(Policy)); |
551 | } |
552 | |
553 | bool appendFormatSpecifier(QualType T, llvm::SmallVectorImpl<char> &Str) { |
554 | llvm::raw_svector_ostream OS(Str); |
555 | |
556 | // Format 'bool', 'char', 'signed char', 'unsigned char' as numbers, rather |
557 | // than trying to print a single character. |
558 | if (auto *BT = T->getAs<BuiltinType>()) { |
559 | switch (BT->getKind()) { |
560 | case BuiltinType::Bool: |
561 | OS << "%d" ; |
562 | return true; |
563 | case BuiltinType::Char_U: |
564 | case BuiltinType::UChar: |
565 | OS << "%hhu" ; |
566 | return true; |
567 | case BuiltinType::Char_S: |
568 | case BuiltinType::SChar: |
569 | OS << "%hhd" ; |
570 | return true; |
571 | default: |
572 | break; |
573 | } |
574 | } |
575 | |
576 | analyze_printf::PrintfSpecifier Specifier; |
577 | if (Specifier.fixType(QT: T, LangOpt: S.getLangOpts(), Ctx&: S.Context, /*IsObjCLiteral=*/false)) { |
578 | // We were able to guess how to format this. |
579 | if (Specifier.getConversionSpecifier().getKind() == |
580 | analyze_printf::PrintfConversionSpecifier::sArg) { |
581 | // Wrap double-quotes around a '%s' specifier and limit its maximum |
582 | // length. Ideally we'd also somehow escape special characters in the |
583 | // contents but printf doesn't support that. |
584 | // FIXME: '%s' formatting is not safe in general. |
585 | OS << '"'; |
586 | Specifier.setPrecision(analyze_printf::OptionalAmount(32u)); |
587 | Specifier.toString(os&: OS); |
588 | OS << '"'; |
589 | // FIXME: It would be nice to include a '...' if the string doesn't fit |
590 | // in the length limit. |
591 | } else { |
592 | Specifier.toString(os&: OS); |
593 | } |
594 | return true; |
595 | } |
596 | |
597 | if (T->isPointerType()) { |
598 | // Format all pointers with '%p'. |
599 | OS << "%p" ; |
600 | return true; |
601 | } |
602 | |
603 | return false; |
604 | } |
605 | |
606 | bool dumpUnnamedRecord(const RecordDecl *RD, Expr *E, unsigned Depth) { |
607 | Expr *IndentLit = getIndentString(Depth); |
608 | Expr *TypeLit = getTypeString(T: S.Context.getRecordType(Decl: RD)); |
609 | if (IndentLit ? callPrintFunction(Format: "%s%s" , Exprs: {IndentLit, TypeLit}) |
610 | : callPrintFunction(Format: "%s" , Exprs: {TypeLit})) |
611 | return true; |
612 | |
613 | return dumpRecordValue(RD, E, RecordIndent: IndentLit, Depth); |
614 | } |
615 | |
616 | // Dump a record value. E should be a pointer or lvalue referring to an RD. |
617 | bool dumpRecordValue(const RecordDecl *RD, Expr *E, Expr *RecordIndent, |
618 | unsigned Depth) { |
619 | // FIXME: Decide what to do if RD is a union. At least we should probably |
620 | // turn off printing `const char*` members with `%s`, because that is very |
621 | // likely to crash if that's not the active member. Whatever we decide, we |
622 | // should document it. |
623 | |
624 | // Build an OpaqueValueExpr so we can refer to E more than once without |
625 | // triggering re-evaluation. |
626 | Expr *RecordArg = makeOpaqueValueExpr(Inner: E); |
627 | bool RecordArgIsPtr = RecordArg->getType()->isPointerType(); |
628 | |
629 | if (callPrintFunction(Format: " {\n" )) |
630 | return true; |
631 | |
632 | // Dump each base class, regardless of whether they're aggregates. |
633 | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
634 | for (const auto &Base : CXXRD->bases()) { |
635 | QualType BaseType = |
636 | RecordArgIsPtr ? S.Context.getPointerType(T: Base.getType()) |
637 | : S.Context.getLValueReferenceType(T: Base.getType()); |
638 | ExprResult BasePtr = S.BuildCStyleCastExpr( |
639 | LParenLoc: Loc, Ty: S.Context.getTrivialTypeSourceInfo(T: BaseType, Loc), RParenLoc: Loc, |
640 | Op: RecordArg); |
641 | if (BasePtr.isInvalid() || |
642 | dumpUnnamedRecord(RD: Base.getType()->getAsRecordDecl(), E: BasePtr.get(), |
643 | Depth: Depth + 1)) |
644 | return true; |
645 | } |
646 | } |
647 | |
648 | Expr *FieldIndentArg = getIndentString(Depth: Depth + 1); |
649 | |
650 | // Dump each field. |
651 | for (auto *D : RD->decls()) { |
652 | auto *IFD = dyn_cast<IndirectFieldDecl>(Val: D); |
653 | auto *FD = IFD ? IFD->getAnonField() : dyn_cast<FieldDecl>(Val: D); |
654 | if (!FD || FD->isUnnamedBitField() || FD->isAnonymousStructOrUnion()) |
655 | continue; |
656 | |
657 | llvm::SmallString<20> Format = llvm::StringRef("%s%s %s " ); |
658 | llvm::SmallVector<Expr *, 5> Args = {FieldIndentArg, |
659 | getTypeString(T: FD->getType()), |
660 | getStringLiteral(Str: FD->getName())}; |
661 | |
662 | if (FD->isBitField()) { |
663 | Format += ": %zu " ; |
664 | QualType SizeT = S.Context.getSizeType(); |
665 | llvm::APInt BitWidth(S.Context.getIntWidth(T: SizeT), |
666 | FD->getBitWidthValue(Ctx: S.Context)); |
667 | Args.push_back(Elt: IntegerLiteral::Create(C: S.Context, V: BitWidth, type: SizeT, l: Loc)); |
668 | } |
669 | |
670 | Format += "=" ; |
671 | |
672 | ExprResult Field = |
673 | IFD ? S.BuildAnonymousStructUnionMemberReference( |
674 | SS: CXXScopeSpec(), nameLoc: Loc, indirectField: IFD, |
675 | FoundDecl: DeclAccessPair::make(D: IFD, AS: AS_public), baseObjectExpr: RecordArg, opLoc: Loc) |
676 | : S.BuildFieldReferenceExpr( |
677 | BaseExpr: RecordArg, IsArrow: RecordArgIsPtr, OpLoc: Loc, SS: CXXScopeSpec(), Field: FD, |
678 | FoundDecl: DeclAccessPair::make(D: FD, AS: AS_public), |
679 | MemberNameInfo: DeclarationNameInfo(FD->getDeclName(), Loc)); |
680 | if (Field.isInvalid()) |
681 | return true; |
682 | |
683 | auto *InnerRD = FD->getType()->getAsRecordDecl(); |
684 | auto *InnerCXXRD = dyn_cast_or_null<CXXRecordDecl>(Val: InnerRD); |
685 | if (InnerRD && (!InnerCXXRD || InnerCXXRD->isAggregate())) { |
686 | // Recursively print the values of members of aggregate record type. |
687 | if (callPrintFunction(Format, Exprs: Args) || |
688 | dumpRecordValue(RD: InnerRD, E: Field.get(), RecordIndent: FieldIndentArg, Depth: Depth + 1)) |
689 | return true; |
690 | } else { |
691 | Format += " " ; |
692 | if (appendFormatSpecifier(T: FD->getType(), Str&: Format)) { |
693 | // We know how to print this field. |
694 | Args.push_back(Elt: Field.get()); |
695 | } else { |
696 | // We don't know how to print this field. Print out its address |
697 | // with a format specifier that a smart tool will be able to |
698 | // recognize and treat specially. |
699 | Format += "*%p" ; |
700 | ExprResult FieldAddr = |
701 | S.BuildUnaryOp(S: nullptr, OpLoc: Loc, Opc: UO_AddrOf, Input: Field.get()); |
702 | if (FieldAddr.isInvalid()) |
703 | return true; |
704 | Args.push_back(Elt: FieldAddr.get()); |
705 | } |
706 | Format += "\n" ; |
707 | if (callPrintFunction(Format, Exprs: Args)) |
708 | return true; |
709 | } |
710 | } |
711 | |
712 | return RecordIndent ? callPrintFunction(Format: "%s}\n" , Exprs: RecordIndent) |
713 | : callPrintFunction(Format: "}\n" ); |
714 | } |
715 | |
716 | Expr *buildWrapper() { |
717 | auto *Wrapper = PseudoObjectExpr::Create(Context: S.Context, syntactic: TheCall, semantic: Actions, |
718 | resultIndex: PseudoObjectExpr::NoResult); |
719 | TheCall->setType(Wrapper->getType()); |
720 | TheCall->setValueKind(Wrapper->getValueKind()); |
721 | return Wrapper; |
722 | } |
723 | }; |
724 | } // namespace |
725 | |
726 | static ExprResult BuiltinDumpStruct(Sema &S, CallExpr *TheCall) { |
727 | if (S.checkArgCountAtLeast(Call: TheCall, MinArgCount: 2)) |
728 | return ExprError(); |
729 | |
730 | ExprResult PtrArgResult = S.DefaultLvalueConversion(E: TheCall->getArg(Arg: 0)); |
731 | if (PtrArgResult.isInvalid()) |
732 | return ExprError(); |
733 | TheCall->setArg(Arg: 0, ArgExpr: PtrArgResult.get()); |
734 | |
735 | // First argument should be a pointer to a struct. |
736 | QualType PtrArgType = PtrArgResult.get()->getType(); |
737 | if (!PtrArgType->isPointerType() || |
738 | !PtrArgType->getPointeeType()->isRecordType()) { |
739 | S.Diag(Loc: PtrArgResult.get()->getBeginLoc(), |
740 | DiagID: diag::err_expected_struct_pointer_argument) |
741 | << 1 << TheCall->getDirectCallee() << PtrArgType; |
742 | return ExprError(); |
743 | } |
744 | QualType Pointee = PtrArgType->getPointeeType(); |
745 | const RecordDecl *RD = Pointee->getAsRecordDecl(); |
746 | // Try to instantiate the class template as appropriate; otherwise, access to |
747 | // its data() may lead to a crash. |
748 | if (S.RequireCompleteType(Loc: PtrArgResult.get()->getBeginLoc(), T: Pointee, |
749 | DiagID: diag::err_incomplete_type)) |
750 | return ExprError(); |
751 | // Second argument is a callable, but we can't fully validate it until we try |
752 | // calling it. |
753 | QualType FnArgType = TheCall->getArg(Arg: 1)->getType(); |
754 | if (!FnArgType->isFunctionType() && !FnArgType->isFunctionPointerType() && |
755 | !FnArgType->isBlockPointerType() && |
756 | !(S.getLangOpts().CPlusPlus && FnArgType->isRecordType())) { |
757 | auto *BT = FnArgType->getAs<BuiltinType>(); |
758 | switch (BT ? BT->getKind() : BuiltinType::Void) { |
759 | case BuiltinType::Dependent: |
760 | case BuiltinType::Overload: |
761 | case BuiltinType::BoundMember: |
762 | case BuiltinType::PseudoObject: |
763 | case BuiltinType::UnknownAny: |
764 | case BuiltinType::BuiltinFn: |
765 | // This might be a callable. |
766 | break; |
767 | |
768 | default: |
769 | S.Diag(Loc: TheCall->getArg(Arg: 1)->getBeginLoc(), |
770 | DiagID: diag::err_expected_callable_argument) |
771 | << 2 << TheCall->getDirectCallee() << FnArgType; |
772 | return ExprError(); |
773 | } |
774 | } |
775 | |
776 | BuiltinDumpStructGenerator Generator(S, TheCall); |
777 | |
778 | // Wrap parentheses around the given pointer. This is not necessary for |
779 | // correct code generation, but it means that when we pretty-print the call |
780 | // arguments in our diagnostics we will produce '(&s)->n' instead of the |
781 | // incorrect '&s->n'. |
782 | Expr *PtrArg = PtrArgResult.get(); |
783 | PtrArg = new (S.Context) |
784 | ParenExpr(PtrArg->getBeginLoc(), |
785 | S.getLocForEndOfToken(Loc: PtrArg->getEndLoc()), PtrArg); |
786 | if (Generator.dumpUnnamedRecord(RD, E: PtrArg, Depth: 0)) |
787 | return ExprError(); |
788 | |
789 | return Generator.buildWrapper(); |
790 | } |
791 | |
792 | static bool BuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) { |
793 | if (S.checkArgCount(Call: BuiltinCall, DesiredArgCount: 2)) |
794 | return true; |
795 | |
796 | SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc(); |
797 | Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts(); |
798 | Expr *Call = BuiltinCall->getArg(Arg: 0); |
799 | Expr *Chain = BuiltinCall->getArg(Arg: 1); |
800 | |
801 | if (Call->getStmtClass() != Stmt::CallExprClass) { |
802 | S.Diag(Loc: BuiltinLoc, DiagID: diag::err_first_argument_to_cwsc_not_call) |
803 | << Call->getSourceRange(); |
804 | return true; |
805 | } |
806 | |
807 | auto CE = cast<CallExpr>(Val: Call); |
808 | if (CE->getCallee()->getType()->isBlockPointerType()) { |
809 | S.Diag(Loc: BuiltinLoc, DiagID: diag::err_first_argument_to_cwsc_block_call) |
810 | << Call->getSourceRange(); |
811 | return true; |
812 | } |
813 | |
814 | const Decl *TargetDecl = CE->getCalleeDecl(); |
815 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: TargetDecl)) |
816 | if (FD->getBuiltinID()) { |
817 | S.Diag(Loc: BuiltinLoc, DiagID: diag::err_first_argument_to_cwsc_builtin_call) |
818 | << Call->getSourceRange(); |
819 | return true; |
820 | } |
821 | |
822 | if (isa<CXXPseudoDestructorExpr>(Val: CE->getCallee()->IgnoreParens())) { |
823 | S.Diag(Loc: BuiltinLoc, DiagID: diag::err_first_argument_to_cwsc_pdtor_call) |
824 | << Call->getSourceRange(); |
825 | return true; |
826 | } |
827 | |
828 | ExprResult ChainResult = S.UsualUnaryConversions(E: Chain); |
829 | if (ChainResult.isInvalid()) |
830 | return true; |
831 | if (!ChainResult.get()->getType()->isPointerType()) { |
832 | S.Diag(Loc: BuiltinLoc, DiagID: diag::err_second_argument_to_cwsc_not_pointer) |
833 | << Chain->getSourceRange(); |
834 | return true; |
835 | } |
836 | |
837 | QualType ReturnTy = CE->getCallReturnType(Ctx: S.Context); |
838 | QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() }; |
839 | QualType BuiltinTy = S.Context.getFunctionType( |
840 | ResultTy: ReturnTy, Args: ArgTys, EPI: FunctionProtoType::ExtProtoInfo()); |
841 | QualType BuiltinPtrTy = S.Context.getPointerType(T: BuiltinTy); |
842 | |
843 | Builtin = |
844 | S.ImpCastExprToType(E: Builtin, Type: BuiltinPtrTy, CK: CK_BuiltinFnToFnPtr).get(); |
845 | |
846 | BuiltinCall->setType(CE->getType()); |
847 | BuiltinCall->setValueKind(CE->getValueKind()); |
848 | BuiltinCall->setObjectKind(CE->getObjectKind()); |
849 | BuiltinCall->setCallee(Builtin); |
850 | BuiltinCall->setArg(Arg: 1, ArgExpr: ChainResult.get()); |
851 | |
852 | return false; |
853 | } |
854 | |
855 | namespace { |
856 | |
857 | class ScanfDiagnosticFormatHandler |
858 | : public analyze_format_string::FormatStringHandler { |
859 | // Accepts the argument index (relative to the first destination index) of the |
860 | // argument whose size we want. |
861 | using ComputeSizeFunction = |
862 | llvm::function_ref<std::optional<llvm::APSInt>(unsigned)>; |
863 | |
864 | // Accepts the argument index (relative to the first destination index), the |
865 | // destination size, and the source size). |
866 | using DiagnoseFunction = |
867 | llvm::function_ref<void(unsigned, unsigned, unsigned)>; |
868 | |
869 | ComputeSizeFunction ComputeSizeArgument; |
870 | DiagnoseFunction Diagnose; |
871 | |
872 | public: |
873 | ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument, |
874 | DiagnoseFunction Diagnose) |
875 | : ComputeSizeArgument(ComputeSizeArgument), Diagnose(Diagnose) {} |
876 | |
877 | bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, |
878 | const char *StartSpecifier, |
879 | unsigned specifierLen) override { |
880 | if (!FS.consumesDataArgument()) |
881 | return true; |
882 | |
883 | unsigned NulByte = 0; |
884 | switch ((FS.getConversionSpecifier().getKind())) { |
885 | default: |
886 | return true; |
887 | case analyze_format_string::ConversionSpecifier::sArg: |
888 | case analyze_format_string::ConversionSpecifier::ScanListArg: |
889 | NulByte = 1; |
890 | break; |
891 | case analyze_format_string::ConversionSpecifier::cArg: |
892 | break; |
893 | } |
894 | |
895 | analyze_format_string::OptionalAmount FW = FS.getFieldWidth(); |
896 | if (FW.getHowSpecified() != |
897 | analyze_format_string::OptionalAmount::HowSpecified::Constant) |
898 | return true; |
899 | |
900 | unsigned SourceSize = FW.getConstantAmount() + NulByte; |
901 | |
902 | std::optional<llvm::APSInt> DestSizeAPS = |
903 | ComputeSizeArgument(FS.getArgIndex()); |
904 | if (!DestSizeAPS) |
905 | return true; |
906 | |
907 | unsigned DestSize = DestSizeAPS->getZExtValue(); |
908 | |
909 | if (DestSize < SourceSize) |
910 | Diagnose(FS.getArgIndex(), DestSize, SourceSize); |
911 | |
912 | return true; |
913 | } |
914 | }; |
915 | |
916 | class EstimateSizeFormatHandler |
917 | : public analyze_format_string::FormatStringHandler { |
918 | size_t Size; |
919 | /// Whether the format string contains Linux kernel's format specifier |
920 | /// extension. |
921 | bool IsKernelCompatible = true; |
922 | |
923 | public: |
924 | EstimateSizeFormatHandler(StringRef Format) |
925 | : Size(std::min(a: Format.find(C: 0), b: Format.size()) + |
926 | 1 /* null byte always written by sprintf */) {} |
927 | |
928 | bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, |
929 | const char *, unsigned SpecifierLen, |
930 | const TargetInfo &) override { |
931 | |
932 | const size_t FieldWidth = computeFieldWidth(FS); |
933 | const size_t Precision = computePrecision(FS); |
934 | |
935 | // The actual format. |
936 | switch (FS.getConversionSpecifier().getKind()) { |
937 | // Just a char. |
938 | case analyze_format_string::ConversionSpecifier::cArg: |
939 | case analyze_format_string::ConversionSpecifier::CArg: |
940 | Size += std::max(a: FieldWidth, b: (size_t)1); |
941 | break; |
942 | // Just an integer. |
943 | case analyze_format_string::ConversionSpecifier::dArg: |
944 | case analyze_format_string::ConversionSpecifier::DArg: |
945 | case analyze_format_string::ConversionSpecifier::iArg: |
946 | case analyze_format_string::ConversionSpecifier::oArg: |
947 | case analyze_format_string::ConversionSpecifier::OArg: |
948 | case analyze_format_string::ConversionSpecifier::uArg: |
949 | case analyze_format_string::ConversionSpecifier::UArg: |
950 | case analyze_format_string::ConversionSpecifier::xArg: |
951 | case analyze_format_string::ConversionSpecifier::XArg: |
952 | Size += std::max(a: FieldWidth, b: Precision); |
953 | break; |
954 | |
955 | // %g style conversion switches between %f or %e style dynamically. |
956 | // %g removes trailing zeros, and does not print decimal point if there are |
957 | // no digits that follow it. Thus %g can print a single digit. |
958 | // FIXME: If it is alternative form: |
959 | // For g and G conversions, trailing zeros are not removed from the result. |
960 | case analyze_format_string::ConversionSpecifier::gArg: |
961 | case analyze_format_string::ConversionSpecifier::GArg: |
962 | Size += 1; |
963 | break; |
964 | |
965 | // Floating point number in the form '[+]ddd.ddd'. |
966 | case analyze_format_string::ConversionSpecifier::fArg: |
967 | case analyze_format_string::ConversionSpecifier::FArg: |
968 | Size += std::max(a: FieldWidth, b: 1 /* integer part */ + |
969 | (Precision ? 1 + Precision |
970 | : 0) /* period + decimal */); |
971 | break; |
972 | |
973 | // Floating point number in the form '[-]d.ddde[+-]dd'. |
974 | case analyze_format_string::ConversionSpecifier::eArg: |
975 | case analyze_format_string::ConversionSpecifier::EArg: |
976 | Size += |
977 | std::max(a: FieldWidth, |
978 | b: 1 /* integer part */ + |
979 | (Precision ? 1 + Precision : 0) /* period + decimal */ + |
980 | 1 /* e or E letter */ + 2 /* exponent */); |
981 | break; |
982 | |
983 | // Floating point number in the form '[-]0xh.hhhhp±dd'. |
984 | case analyze_format_string::ConversionSpecifier::aArg: |
985 | case analyze_format_string::ConversionSpecifier::AArg: |
986 | Size += |
987 | std::max(a: FieldWidth, |
988 | b: 2 /* 0x */ + 1 /* integer part */ + |
989 | (Precision ? 1 + Precision : 0) /* period + decimal */ + |
990 | 1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */); |
991 | break; |
992 | |
993 | // Just a string. |
994 | case analyze_format_string::ConversionSpecifier::sArg: |
995 | case analyze_format_string::ConversionSpecifier::SArg: |
996 | Size += FieldWidth; |
997 | break; |
998 | |
999 | // Just a pointer in the form '0xddd'. |
1000 | case analyze_format_string::ConversionSpecifier::pArg: |
1001 | // Linux kernel has its own extesion for `%p` specifier. |
1002 | // Kernel Document: |
1003 | // https://docs.kernel.org/core-api/printk-formats.html#pointer-types |
1004 | IsKernelCompatible = false; |
1005 | Size += std::max(a: FieldWidth, b: 2 /* leading 0x */ + Precision); |
1006 | break; |
1007 | |
1008 | // A plain percent. |
1009 | case analyze_format_string::ConversionSpecifier::PercentArg: |
1010 | Size += 1; |
1011 | break; |
1012 | |
1013 | default: |
1014 | break; |
1015 | } |
1016 | |
1017 | Size += FS.hasPlusPrefix() || FS.hasSpacePrefix(); |
1018 | |
1019 | if (FS.hasAlternativeForm()) { |
1020 | switch (FS.getConversionSpecifier().getKind()) { |
1021 | // For o conversion, it increases the precision, if and only if necessary, |
1022 | // to force the first digit of the result to be a zero |
1023 | // (if the value and precision are both 0, a single 0 is printed) |
1024 | case analyze_format_string::ConversionSpecifier::oArg: |
1025 | // For b conversion, a nonzero result has 0b prefixed to it. |
1026 | case analyze_format_string::ConversionSpecifier::bArg: |
1027 | // For x (or X) conversion, a nonzero result has 0x (or 0X) prefixed to |
1028 | // it. |
1029 | case analyze_format_string::ConversionSpecifier::xArg: |
1030 | case analyze_format_string::ConversionSpecifier::XArg: |
1031 | // Note: even when the prefix is added, if |
1032 | // (prefix_width <= FieldWidth - formatted_length) holds, |
1033 | // the prefix does not increase the format |
1034 | // size. e.g.(("%#3x", 0xf) is "0xf") |
1035 | |
1036 | // If the result is zero, o, b, x, X adds nothing. |
1037 | break; |
1038 | // For a, A, e, E, f, F, g, and G conversions, |
1039 | // the result of converting a floating-point number always contains a |
1040 | // decimal-point |
1041 | case analyze_format_string::ConversionSpecifier::aArg: |
1042 | case analyze_format_string::ConversionSpecifier::AArg: |
1043 | case analyze_format_string::ConversionSpecifier::eArg: |
1044 | case analyze_format_string::ConversionSpecifier::EArg: |
1045 | case analyze_format_string::ConversionSpecifier::fArg: |
1046 | case analyze_format_string::ConversionSpecifier::FArg: |
1047 | case analyze_format_string::ConversionSpecifier::gArg: |
1048 | case analyze_format_string::ConversionSpecifier::GArg: |
1049 | Size += (Precision ? 0 : 1); |
1050 | break; |
1051 | // For other conversions, the behavior is undefined. |
1052 | default: |
1053 | break; |
1054 | } |
1055 | } |
1056 | assert(SpecifierLen <= Size && "no underflow" ); |
1057 | Size -= SpecifierLen; |
1058 | return true; |
1059 | } |
1060 | |
1061 | size_t getSizeLowerBound() const { return Size; } |
1062 | bool isKernelCompatible() const { return IsKernelCompatible; } |
1063 | |
1064 | private: |
1065 | static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) { |
1066 | const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth(); |
1067 | size_t FieldWidth = 0; |
1068 | if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant) |
1069 | FieldWidth = FW.getConstantAmount(); |
1070 | return FieldWidth; |
1071 | } |
1072 | |
1073 | static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) { |
1074 | const analyze_format_string::OptionalAmount &FW = FS.getPrecision(); |
1075 | size_t Precision = 0; |
1076 | |
1077 | // See man 3 printf for default precision value based on the specifier. |
1078 | switch (FW.getHowSpecified()) { |
1079 | case analyze_format_string::OptionalAmount::NotSpecified: |
1080 | switch (FS.getConversionSpecifier().getKind()) { |
1081 | default: |
1082 | break; |
1083 | case analyze_format_string::ConversionSpecifier::dArg: // %d |
1084 | case analyze_format_string::ConversionSpecifier::DArg: // %D |
1085 | case analyze_format_string::ConversionSpecifier::iArg: // %i |
1086 | Precision = 1; |
1087 | break; |
1088 | case analyze_format_string::ConversionSpecifier::oArg: // %d |
1089 | case analyze_format_string::ConversionSpecifier::OArg: // %D |
1090 | case analyze_format_string::ConversionSpecifier::uArg: // %d |
1091 | case analyze_format_string::ConversionSpecifier::UArg: // %D |
1092 | case analyze_format_string::ConversionSpecifier::xArg: // %d |
1093 | case analyze_format_string::ConversionSpecifier::XArg: // %D |
1094 | Precision = 1; |
1095 | break; |
1096 | case analyze_format_string::ConversionSpecifier::fArg: // %f |
1097 | case analyze_format_string::ConversionSpecifier::FArg: // %F |
1098 | case analyze_format_string::ConversionSpecifier::eArg: // %e |
1099 | case analyze_format_string::ConversionSpecifier::EArg: // %E |
1100 | case analyze_format_string::ConversionSpecifier::gArg: // %g |
1101 | case analyze_format_string::ConversionSpecifier::GArg: // %G |
1102 | Precision = 6; |
1103 | break; |
1104 | case analyze_format_string::ConversionSpecifier::pArg: // %d |
1105 | Precision = 1; |
1106 | break; |
1107 | } |
1108 | break; |
1109 | case analyze_format_string::OptionalAmount::Constant: |
1110 | Precision = FW.getConstantAmount(); |
1111 | break; |
1112 | default: |
1113 | break; |
1114 | } |
1115 | return Precision; |
1116 | } |
1117 | }; |
1118 | |
1119 | } // namespace |
1120 | |
1121 | static bool ProcessFormatStringLiteral(const Expr *FormatExpr, |
1122 | StringRef &FormatStrRef, size_t &StrLen, |
1123 | ASTContext &Context) { |
1124 | if (const auto *Format = dyn_cast<StringLiteral>(Val: FormatExpr); |
1125 | Format && (Format->isOrdinary() || Format->isUTF8())) { |
1126 | FormatStrRef = Format->getString(); |
1127 | const ConstantArrayType *T = |
1128 | Context.getAsConstantArrayType(T: Format->getType()); |
1129 | assert(T && "String literal not of constant array type!" ); |
1130 | size_t TypeSize = T->getZExtSize(); |
1131 | // In case there's a null byte somewhere. |
1132 | StrLen = std::min(a: std::max(a: TypeSize, b: size_t(1)) - 1, b: FormatStrRef.find(C: 0)); |
1133 | return true; |
1134 | } |
1135 | return false; |
1136 | } |
1137 | |
1138 | void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, |
1139 | CallExpr *TheCall) { |
1140 | if (TheCall->isValueDependent() || TheCall->isTypeDependent() || |
1141 | isConstantEvaluatedContext()) |
1142 | return; |
1143 | |
1144 | bool UseDABAttr = false; |
1145 | const FunctionDecl *UseDecl = FD; |
1146 | |
1147 | const auto *DABAttr = FD->getAttr<DiagnoseAsBuiltinAttr>(); |
1148 | if (DABAttr) { |
1149 | UseDecl = DABAttr->getFunction(); |
1150 | assert(UseDecl && "Missing FunctionDecl in DiagnoseAsBuiltin attribute!" ); |
1151 | UseDABAttr = true; |
1152 | } |
1153 | |
1154 | unsigned BuiltinID = UseDecl->getBuiltinID(/*ConsiderWrappers=*/ConsiderWrapperFunctions: true); |
1155 | |
1156 | if (!BuiltinID) |
1157 | return; |
1158 | |
1159 | const TargetInfo &TI = getASTContext().getTargetInfo(); |
1160 | unsigned SizeTypeWidth = TI.getTypeWidth(T: TI.getSizeType()); |
1161 | |
1162 | auto TranslateIndex = [&](unsigned Index) -> std::optional<unsigned> { |
1163 | // If we refer to a diagnose_as_builtin attribute, we need to change the |
1164 | // argument index to refer to the arguments of the called function. Unless |
1165 | // the index is out of bounds, which presumably means it's a variadic |
1166 | // function. |
1167 | if (!UseDABAttr) |
1168 | return Index; |
1169 | unsigned DABIndices = DABAttr->argIndices_size(); |
1170 | unsigned NewIndex = Index < DABIndices |
1171 | ? DABAttr->argIndices_begin()[Index] |
1172 | : Index - DABIndices + FD->getNumParams(); |
1173 | if (NewIndex >= TheCall->getNumArgs()) |
1174 | return std::nullopt; |
1175 | return NewIndex; |
1176 | }; |
1177 | |
1178 | auto ComputeExplicitObjectSizeArgument = |
1179 | [&](unsigned Index) -> std::optional<llvm::APSInt> { |
1180 | std::optional<unsigned> IndexOptional = TranslateIndex(Index); |
1181 | if (!IndexOptional) |
1182 | return std::nullopt; |
1183 | unsigned NewIndex = *IndexOptional; |
1184 | Expr::EvalResult Result; |
1185 | Expr *SizeArg = TheCall->getArg(Arg: NewIndex); |
1186 | if (!SizeArg->EvaluateAsInt(Result, Ctx: getASTContext())) |
1187 | return std::nullopt; |
1188 | llvm::APSInt Integer = Result.Val.getInt(); |
1189 | Integer.setIsUnsigned(true); |
1190 | return Integer; |
1191 | }; |
1192 | |
1193 | auto ComputeSizeArgument = |
1194 | [&](unsigned Index) -> std::optional<llvm::APSInt> { |
1195 | // If the parameter has a pass_object_size attribute, then we should use its |
1196 | // (potentially) more strict checking mode. Otherwise, conservatively assume |
1197 | // type 0. |
1198 | int BOSType = 0; |
1199 | // This check can fail for variadic functions. |
1200 | if (Index < FD->getNumParams()) { |
1201 | if (const auto *POS = |
1202 | FD->getParamDecl(i: Index)->getAttr<PassObjectSizeAttr>()) |
1203 | BOSType = POS->getType(); |
1204 | } |
1205 | |
1206 | std::optional<unsigned> IndexOptional = TranslateIndex(Index); |
1207 | if (!IndexOptional) |
1208 | return std::nullopt; |
1209 | unsigned NewIndex = *IndexOptional; |
1210 | |
1211 | if (NewIndex >= TheCall->getNumArgs()) |
1212 | return std::nullopt; |
1213 | |
1214 | const Expr *ObjArg = TheCall->getArg(Arg: NewIndex); |
1215 | uint64_t Result; |
1216 | if (!ObjArg->tryEvaluateObjectSize(Result, Ctx&: getASTContext(), Type: BOSType)) |
1217 | return std::nullopt; |
1218 | |
1219 | // Get the object size in the target's size_t width. |
1220 | return llvm::APSInt::getUnsigned(X: Result).extOrTrunc(width: SizeTypeWidth); |
1221 | }; |
1222 | |
1223 | auto ComputeStrLenArgument = |
1224 | [&](unsigned Index) -> std::optional<llvm::APSInt> { |
1225 | std::optional<unsigned> IndexOptional = TranslateIndex(Index); |
1226 | if (!IndexOptional) |
1227 | return std::nullopt; |
1228 | unsigned NewIndex = *IndexOptional; |
1229 | |
1230 | const Expr *ObjArg = TheCall->getArg(Arg: NewIndex); |
1231 | uint64_t Result; |
1232 | if (!ObjArg->tryEvaluateStrLen(Result, Ctx&: getASTContext())) |
1233 | return std::nullopt; |
1234 | // Add 1 for null byte. |
1235 | return llvm::APSInt::getUnsigned(X: Result + 1).extOrTrunc(width: SizeTypeWidth); |
1236 | }; |
1237 | |
1238 | std::optional<llvm::APSInt> SourceSize; |
1239 | std::optional<llvm::APSInt> DestinationSize; |
1240 | unsigned DiagID = 0; |
1241 | bool IsChkVariant = false; |
1242 | |
1243 | auto GetFunctionName = [&]() { |
1244 | StringRef FunctionName = getASTContext().BuiltinInfo.getName(ID: BuiltinID); |
1245 | // Skim off the details of whichever builtin was called to produce a better |
1246 | // diagnostic, as it's unlikely that the user wrote the __builtin |
1247 | // explicitly. |
1248 | if (IsChkVariant) { |
1249 | FunctionName = FunctionName.drop_front(N: std::strlen(s: "__builtin___" )); |
1250 | FunctionName = FunctionName.drop_back(N: std::strlen(s: "_chk" )); |
1251 | } else { |
1252 | FunctionName.consume_front(Prefix: "__builtin_" ); |
1253 | } |
1254 | return FunctionName; |
1255 | }; |
1256 | |
1257 | switch (BuiltinID) { |
1258 | default: |
1259 | return; |
1260 | case Builtin::BI__builtin_strcpy: |
1261 | case Builtin::BIstrcpy: { |
1262 | DiagID = diag::warn_fortify_strlen_overflow; |
1263 | SourceSize = ComputeStrLenArgument(1); |
1264 | DestinationSize = ComputeSizeArgument(0); |
1265 | break; |
1266 | } |
1267 | |
1268 | case Builtin::BI__builtin___strcpy_chk: { |
1269 | DiagID = diag::warn_fortify_strlen_overflow; |
1270 | SourceSize = ComputeStrLenArgument(1); |
1271 | DestinationSize = ComputeExplicitObjectSizeArgument(2); |
1272 | IsChkVariant = true; |
1273 | break; |
1274 | } |
1275 | |
1276 | case Builtin::BIscanf: |
1277 | case Builtin::BIfscanf: |
1278 | case Builtin::BIsscanf: { |
1279 | unsigned FormatIndex = 1; |
1280 | unsigned DataIndex = 2; |
1281 | if (BuiltinID == Builtin::BIscanf) { |
1282 | FormatIndex = 0; |
1283 | DataIndex = 1; |
1284 | } |
1285 | |
1286 | const auto *FormatExpr = |
1287 | TheCall->getArg(Arg: FormatIndex)->IgnoreParenImpCasts(); |
1288 | |
1289 | StringRef FormatStrRef; |
1290 | size_t StrLen; |
1291 | if (!ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) |
1292 | return; |
1293 | |
1294 | auto Diagnose = [&](unsigned ArgIndex, unsigned DestSize, |
1295 | unsigned SourceSize) { |
1296 | DiagID = diag::warn_fortify_scanf_overflow; |
1297 | unsigned Index = ArgIndex + DataIndex; |
1298 | StringRef FunctionName = GetFunctionName(); |
1299 | DiagRuntimeBehavior(Loc: TheCall->getArg(Arg: Index)->getBeginLoc(), Statement: TheCall, |
1300 | PD: PDiag(DiagID) << FunctionName << (Index + 1) |
1301 | << DestSize << SourceSize); |
1302 | }; |
1303 | |
1304 | auto ShiftedComputeSizeArgument = [&](unsigned Index) { |
1305 | return ComputeSizeArgument(Index + DataIndex); |
1306 | }; |
1307 | ScanfDiagnosticFormatHandler H(ShiftedComputeSizeArgument, Diagnose); |
1308 | const char *FormatBytes = FormatStrRef.data(); |
1309 | analyze_format_string::ParseScanfString(H, beg: FormatBytes, |
1310 | end: FormatBytes + StrLen, LO: getLangOpts(), |
1311 | Target: Context.getTargetInfo()); |
1312 | |
1313 | // Unlike the other cases, in this one we have already issued the diagnostic |
1314 | // here, so no need to continue (because unlike the other cases, here the |
1315 | // diagnostic refers to the argument number). |
1316 | return; |
1317 | } |
1318 | |
1319 | case Builtin::BIsprintf: |
1320 | case Builtin::BI__builtin___sprintf_chk: { |
1321 | size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3; |
1322 | auto *FormatExpr = TheCall->getArg(Arg: FormatIndex)->IgnoreParenImpCasts(); |
1323 | |
1324 | StringRef FormatStrRef; |
1325 | size_t StrLen; |
1326 | if (ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) { |
1327 | EstimateSizeFormatHandler H(FormatStrRef); |
1328 | const char *FormatBytes = FormatStrRef.data(); |
1329 | if (!analyze_format_string::ParsePrintfString( |
1330 | H, beg: FormatBytes, end: FormatBytes + StrLen, LO: getLangOpts(), |
1331 | Target: Context.getTargetInfo(), isFreeBSDKPrintf: false)) { |
1332 | DiagID = H.isKernelCompatible() |
1333 | ? diag::warn_format_overflow |
1334 | : diag::warn_format_overflow_non_kprintf; |
1335 | SourceSize = llvm::APSInt::getUnsigned(X: H.getSizeLowerBound()) |
1336 | .extOrTrunc(width: SizeTypeWidth); |
1337 | if (BuiltinID == Builtin::BI__builtin___sprintf_chk) { |
1338 | DestinationSize = ComputeExplicitObjectSizeArgument(2); |
1339 | IsChkVariant = true; |
1340 | } else { |
1341 | DestinationSize = ComputeSizeArgument(0); |
1342 | } |
1343 | break; |
1344 | } |
1345 | } |
1346 | return; |
1347 | } |
1348 | case Builtin::BI__builtin___memcpy_chk: |
1349 | case Builtin::BI__builtin___memmove_chk: |
1350 | case Builtin::BI__builtin___memset_chk: |
1351 | case Builtin::BI__builtin___strlcat_chk: |
1352 | case Builtin::BI__builtin___strlcpy_chk: |
1353 | case Builtin::BI__builtin___strncat_chk: |
1354 | case Builtin::BI__builtin___strncpy_chk: |
1355 | case Builtin::BI__builtin___stpncpy_chk: |
1356 | case Builtin::BI__builtin___memccpy_chk: |
1357 | case Builtin::BI__builtin___mempcpy_chk: { |
1358 | DiagID = diag::warn_builtin_chk_overflow; |
1359 | SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2); |
1360 | DestinationSize = |
1361 | ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); |
1362 | IsChkVariant = true; |
1363 | break; |
1364 | } |
1365 | |
1366 | case Builtin::BI__builtin___snprintf_chk: |
1367 | case Builtin::BI__builtin___vsnprintf_chk: { |
1368 | DiagID = diag::warn_builtin_chk_overflow; |
1369 | SourceSize = ComputeExplicitObjectSizeArgument(1); |
1370 | DestinationSize = ComputeExplicitObjectSizeArgument(3); |
1371 | IsChkVariant = true; |
1372 | break; |
1373 | } |
1374 | |
1375 | case Builtin::BIstrncat: |
1376 | case Builtin::BI__builtin_strncat: |
1377 | case Builtin::BIstrncpy: |
1378 | case Builtin::BI__builtin_strncpy: |
1379 | case Builtin::BIstpncpy: |
1380 | case Builtin::BI__builtin_stpncpy: { |
1381 | // Whether these functions overflow depends on the runtime strlen of the |
1382 | // string, not just the buffer size, so emitting the "always overflow" |
1383 | // diagnostic isn't quite right. We should still diagnose passing a buffer |
1384 | // size larger than the destination buffer though; this is a runtime abort |
1385 | // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise. |
1386 | DiagID = diag::warn_fortify_source_size_mismatch; |
1387 | SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); |
1388 | DestinationSize = ComputeSizeArgument(0); |
1389 | break; |
1390 | } |
1391 | |
1392 | case Builtin::BImemcpy: |
1393 | case Builtin::BI__builtin_memcpy: |
1394 | case Builtin::BImemmove: |
1395 | case Builtin::BI__builtin_memmove: |
1396 | case Builtin::BImemset: |
1397 | case Builtin::BI__builtin_memset: |
1398 | case Builtin::BImempcpy: |
1399 | case Builtin::BI__builtin_mempcpy: { |
1400 | DiagID = diag::warn_fortify_source_overflow; |
1401 | SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1); |
1402 | DestinationSize = ComputeSizeArgument(0); |
1403 | break; |
1404 | } |
1405 | case Builtin::BIsnprintf: |
1406 | case Builtin::BI__builtin_snprintf: |
1407 | case Builtin::BIvsnprintf: |
1408 | case Builtin::BI__builtin_vsnprintf: { |
1409 | DiagID = diag::warn_fortify_source_size_mismatch; |
1410 | SourceSize = ComputeExplicitObjectSizeArgument(1); |
1411 | const auto *FormatExpr = TheCall->getArg(Arg: 2)->IgnoreParenImpCasts(); |
1412 | StringRef FormatStrRef; |
1413 | size_t StrLen; |
1414 | if (SourceSize && |
1415 | ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) { |
1416 | EstimateSizeFormatHandler H(FormatStrRef); |
1417 | const char *FormatBytes = FormatStrRef.data(); |
1418 | if (!analyze_format_string::ParsePrintfString( |
1419 | H, beg: FormatBytes, end: FormatBytes + StrLen, LO: getLangOpts(), |
1420 | Target: Context.getTargetInfo(), /*isFreeBSDKPrintf=*/false)) { |
1421 | llvm::APSInt FormatSize = |
1422 | llvm::APSInt::getUnsigned(X: H.getSizeLowerBound()) |
1423 | .extOrTrunc(width: SizeTypeWidth); |
1424 | if (FormatSize > *SourceSize && *SourceSize != 0) { |
1425 | unsigned TruncationDiagID = |
1426 | H.isKernelCompatible() ? diag::warn_format_truncation |
1427 | : diag::warn_format_truncation_non_kprintf; |
1428 | SmallString<16> SpecifiedSizeStr; |
1429 | SmallString<16> FormatSizeStr; |
1430 | SourceSize->toString(Str&: SpecifiedSizeStr, /*Radix=*/10); |
1431 | FormatSize.toString(Str&: FormatSizeStr, /*Radix=*/10); |
1432 | DiagRuntimeBehavior(Loc: TheCall->getBeginLoc(), Statement: TheCall, |
1433 | PD: PDiag(DiagID: TruncationDiagID) |
1434 | << GetFunctionName() << SpecifiedSizeStr |
1435 | << FormatSizeStr); |
1436 | } |
1437 | } |
1438 | } |
1439 | DestinationSize = ComputeSizeArgument(0); |
1440 | } |
1441 | } |
1442 | |
1443 | if (!SourceSize || !DestinationSize || |
1444 | llvm::APSInt::compareValues(I1: *SourceSize, I2: *DestinationSize) <= 0) |
1445 | return; |
1446 | |
1447 | StringRef FunctionName = GetFunctionName(); |
1448 | |
1449 | SmallString<16> DestinationStr; |
1450 | SmallString<16> SourceStr; |
1451 | DestinationSize->toString(Str&: DestinationStr, /*Radix=*/10); |
1452 | SourceSize->toString(Str&: SourceStr, /*Radix=*/10); |
1453 | DiagRuntimeBehavior(Loc: TheCall->getBeginLoc(), Statement: TheCall, |
1454 | PD: PDiag(DiagID) |
1455 | << FunctionName << DestinationStr << SourceStr); |
1456 | } |
1457 | |
1458 | static bool BuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall, |
1459 | Scope::ScopeFlags NeededScopeFlags, |
1460 | unsigned DiagID) { |
1461 | // Scopes aren't available during instantiation. Fortunately, builtin |
1462 | // functions cannot be template args so they cannot be formed through template |
1463 | // instantiation. Therefore checking once during the parse is sufficient. |
1464 | if (SemaRef.inTemplateInstantiation()) |
1465 | return false; |
1466 | |
1467 | Scope *S = SemaRef.getCurScope(); |
1468 | while (S && !S->isSEHExceptScope()) |
1469 | S = S->getParent(); |
1470 | if (!S || !(S->getFlags() & NeededScopeFlags)) { |
1471 | auto *DRE = cast<DeclRefExpr>(Val: TheCall->getCallee()->IgnoreParenCasts()); |
1472 | SemaRef.Diag(Loc: TheCall->getExprLoc(), DiagID) |
1473 | << DRE->getDecl()->getIdentifier(); |
1474 | return true; |
1475 | } |
1476 | |
1477 | return false; |
1478 | } |
1479 | |
1480 | namespace { |
1481 | enum PointerAuthOpKind { |
1482 | PAO_Strip, |
1483 | PAO_Sign, |
1484 | PAO_Auth, |
1485 | PAO_SignGeneric, |
1486 | PAO_Discriminator, |
1487 | PAO_BlendPointer, |
1488 | PAO_BlendInteger |
1489 | }; |
1490 | } |
1491 | |
1492 | bool Sema::checkPointerAuthEnabled(SourceLocation Loc, SourceRange Range) { |
1493 | if (getLangOpts().PointerAuthIntrinsics) |
1494 | return false; |
1495 | |
1496 | Diag(Loc, DiagID: diag::err_ptrauth_disabled) << Range; |
1497 | return true; |
1498 | } |
1499 | |
1500 | static bool checkPointerAuthEnabled(Sema &S, Expr *E) { |
1501 | return S.checkPointerAuthEnabled(Loc: E->getExprLoc(), Range: E->getSourceRange()); |
1502 | } |
1503 | |
1504 | static bool checkPointerAuthKey(Sema &S, Expr *&Arg) { |
1505 | // Convert it to type 'int'. |
1506 | if (convertArgumentToType(S, Value&: Arg, Ty: S.Context.IntTy)) |
1507 | return true; |
1508 | |
1509 | // Value-dependent expressions are okay; wait for template instantiation. |
1510 | if (Arg->isValueDependent()) |
1511 | return false; |
1512 | |
1513 | unsigned KeyValue; |
1514 | return S.checkConstantPointerAuthKey(keyExpr: Arg, key&: KeyValue); |
1515 | } |
1516 | |
1517 | bool Sema::checkConstantPointerAuthKey(Expr *Arg, unsigned &Result) { |
1518 | // Attempt to constant-evaluate the expression. |
1519 | std::optional<llvm::APSInt> KeyValue = Arg->getIntegerConstantExpr(Ctx: Context); |
1520 | if (!KeyValue) { |
1521 | Diag(Loc: Arg->getExprLoc(), DiagID: diag::err_expr_not_ice) |
1522 | << 0 << Arg->getSourceRange(); |
1523 | return true; |
1524 | } |
1525 | |
1526 | // Ask the target to validate the key parameter. |
1527 | if (!Context.getTargetInfo().validatePointerAuthKey(value: *KeyValue)) { |
1528 | llvm::SmallString<32> Value; |
1529 | { |
1530 | llvm::raw_svector_ostream Str(Value); |
1531 | Str << *KeyValue; |
1532 | } |
1533 | |
1534 | Diag(Loc: Arg->getExprLoc(), DiagID: diag::err_ptrauth_invalid_key) |
1535 | << Value << Arg->getSourceRange(); |
1536 | return true; |
1537 | } |
1538 | |
1539 | Result = KeyValue->getZExtValue(); |
1540 | return false; |
1541 | } |
1542 | |
1543 | static std::pair<const ValueDecl *, CharUnits> |
1544 | findConstantBaseAndOffset(Sema &S, Expr *E) { |
1545 | // Must evaluate as a pointer. |
1546 | Expr::EvalResult Result; |
1547 | if (!E->EvaluateAsRValue(Result, Ctx: S.Context) || !Result.Val.isLValue()) |
1548 | return {nullptr, CharUnits()}; |
1549 | |
1550 | const auto *BaseDecl = |
1551 | Result.Val.getLValueBase().dyn_cast<const ValueDecl *>(); |
1552 | if (!BaseDecl) |
1553 | return {nullptr, CharUnits()}; |
1554 | |
1555 | return {BaseDecl, Result.Val.getLValueOffset()}; |
1556 | } |
1557 | |
1558 | static bool checkPointerAuthValue(Sema &S, Expr *&Arg, PointerAuthOpKind OpKind, |
1559 | bool RequireConstant = false) { |
1560 | if (Arg->hasPlaceholderType()) { |
1561 | ExprResult R = S.CheckPlaceholderExpr(E: Arg); |
1562 | if (R.isInvalid()) |
1563 | return true; |
1564 | Arg = R.get(); |
1565 | } |
1566 | |
1567 | auto AllowsPointer = [](PointerAuthOpKind OpKind) { |
1568 | return OpKind != PAO_BlendInteger; |
1569 | }; |
1570 | auto AllowsInteger = [](PointerAuthOpKind OpKind) { |
1571 | return OpKind == PAO_Discriminator || OpKind == PAO_BlendInteger || |
1572 | OpKind == PAO_SignGeneric; |
1573 | }; |
1574 | |
1575 | // Require the value to have the right range of type. |
1576 | QualType ExpectedTy; |
1577 | if (AllowsPointer(OpKind) && Arg->getType()->isPointerType()) { |
1578 | ExpectedTy = Arg->getType().getUnqualifiedType(); |
1579 | } else if (AllowsPointer(OpKind) && Arg->getType()->isNullPtrType()) { |
1580 | ExpectedTy = S.Context.VoidPtrTy; |
1581 | } else if (AllowsInteger(OpKind) && |
1582 | Arg->getType()->isIntegralOrUnscopedEnumerationType()) { |
1583 | ExpectedTy = S.Context.getUIntPtrType(); |
1584 | |
1585 | } else { |
1586 | // Diagnose the failures. |
1587 | S.Diag(Loc: Arg->getExprLoc(), DiagID: diag::err_ptrauth_value_bad_type) |
1588 | << unsigned(OpKind == PAO_Discriminator ? 1 |
1589 | : OpKind == PAO_BlendPointer ? 2 |
1590 | : OpKind == PAO_BlendInteger ? 3 |
1591 | : 0) |
1592 | << unsigned(AllowsInteger(OpKind) ? (AllowsPointer(OpKind) ? 2 : 1) : 0) |
1593 | << Arg->getType() << Arg->getSourceRange(); |
1594 | return true; |
1595 | } |
1596 | |
1597 | // Convert to that type. This should just be an lvalue-to-rvalue |
1598 | // conversion. |
1599 | if (convertArgumentToType(S, Value&: Arg, Ty: ExpectedTy)) |
1600 | return true; |
1601 | |
1602 | if (!RequireConstant) { |
1603 | // Warn about null pointers for non-generic sign and auth operations. |
1604 | if ((OpKind == PAO_Sign || OpKind == PAO_Auth) && |
1605 | Arg->isNullPointerConstant(Ctx&: S.Context, NPC: Expr::NPC_ValueDependentIsNull)) { |
1606 | S.Diag(Loc: Arg->getExprLoc(), DiagID: OpKind == PAO_Sign |
1607 | ? diag::warn_ptrauth_sign_null_pointer |
1608 | : diag::warn_ptrauth_auth_null_pointer) |
1609 | << Arg->getSourceRange(); |
1610 | } |
1611 | |
1612 | return false; |
1613 | } |
1614 | |
1615 | // Perform special checking on the arguments to ptrauth_sign_constant. |
1616 | |
1617 | // The main argument. |
1618 | if (OpKind == PAO_Sign) { |
1619 | // Require the value we're signing to have a special form. |
1620 | auto [BaseDecl, Offset] = findConstantBaseAndOffset(S, E: Arg); |
1621 | bool Invalid; |
1622 | |
1623 | // Must be rooted in a declaration reference. |
1624 | if (!BaseDecl) |
1625 | Invalid = true; |
1626 | |
1627 | // If it's a function declaration, we can't have an offset. |
1628 | else if (isa<FunctionDecl>(Val: BaseDecl)) |
1629 | Invalid = !Offset.isZero(); |
1630 | |
1631 | // Otherwise we're fine. |
1632 | else |
1633 | Invalid = false; |
1634 | |
1635 | if (Invalid) |
1636 | S.Diag(Loc: Arg->getExprLoc(), DiagID: diag::err_ptrauth_bad_constant_pointer); |
1637 | return Invalid; |
1638 | } |
1639 | |
1640 | // The discriminator argument. |
1641 | assert(OpKind == PAO_Discriminator); |
1642 | |
1643 | // Must be a pointer or integer or blend thereof. |
1644 | Expr *Pointer = nullptr; |
1645 | Expr *Integer = nullptr; |
1646 | if (auto *Call = dyn_cast<CallExpr>(Val: Arg->IgnoreParens())) { |
1647 | if (Call->getBuiltinCallee() == |
1648 | Builtin::BI__builtin_ptrauth_blend_discriminator) { |
1649 | Pointer = Call->getArg(Arg: 0); |
1650 | Integer = Call->getArg(Arg: 1); |
1651 | } |
1652 | } |
1653 | if (!Pointer && !Integer) { |
1654 | if (Arg->getType()->isPointerType()) |
1655 | Pointer = Arg; |
1656 | else |
1657 | Integer = Arg; |
1658 | } |
1659 | |
1660 | // Check the pointer. |
1661 | bool Invalid = false; |
1662 | if (Pointer) { |
1663 | assert(Pointer->getType()->isPointerType()); |
1664 | |
1665 | // TODO: if we're initializing a global, check that the address is |
1666 | // somehow related to what we're initializing. This probably will |
1667 | // never really be feasible and we'll have to catch it at link-time. |
1668 | auto [BaseDecl, Offset] = findConstantBaseAndOffset(S, E: Pointer); |
1669 | if (!BaseDecl || !isa<VarDecl>(Val: BaseDecl)) |
1670 | Invalid = true; |
1671 | } |
1672 | |
1673 | // Check the integer. |
1674 | if (Integer) { |
1675 | assert(Integer->getType()->isIntegerType()); |
1676 | if (!Integer->isEvaluatable(Ctx: S.Context)) |
1677 | Invalid = true; |
1678 | } |
1679 | |
1680 | if (Invalid) |
1681 | S.Diag(Loc: Arg->getExprLoc(), DiagID: diag::err_ptrauth_bad_constant_discriminator); |
1682 | return Invalid; |
1683 | } |
1684 | |
1685 | static ExprResult PointerAuthStrip(Sema &S, CallExpr *Call) { |
1686 | if (S.checkArgCount(Call, DesiredArgCount: 2)) |
1687 | return ExprError(); |
1688 | if (checkPointerAuthEnabled(S, E: Call)) |
1689 | return ExprError(); |
1690 | if (checkPointerAuthValue(S, Arg&: Call->getArgs()[0], OpKind: PAO_Strip) || |
1691 | checkPointerAuthKey(S, Arg&: Call->getArgs()[1])) |
1692 | return ExprError(); |
1693 | |
1694 | Call->setType(Call->getArgs()[0]->getType()); |
1695 | return Call; |
1696 | } |
1697 | |
1698 | static ExprResult PointerAuthBlendDiscriminator(Sema &S, CallExpr *Call) { |
1699 | if (S.checkArgCount(Call, DesiredArgCount: 2)) |
1700 | return ExprError(); |
1701 | if (checkPointerAuthEnabled(S, E: Call)) |
1702 | return ExprError(); |
1703 | if (checkPointerAuthValue(S, Arg&: Call->getArgs()[0], OpKind: PAO_BlendPointer) || |
1704 | checkPointerAuthValue(S, Arg&: Call->getArgs()[1], OpKind: PAO_BlendInteger)) |
1705 | return ExprError(); |
1706 | |
1707 | Call->setType(S.Context.getUIntPtrType()); |
1708 | return Call; |
1709 | } |
1710 | |
1711 | static ExprResult PointerAuthSignGenericData(Sema &S, CallExpr *Call) { |
1712 | if (S.checkArgCount(Call, DesiredArgCount: 2)) |
1713 | return ExprError(); |
1714 | if (checkPointerAuthEnabled(S, E: Call)) |
1715 | return ExprError(); |
1716 | if (checkPointerAuthValue(S, Arg&: Call->getArgs()[0], OpKind: PAO_SignGeneric) || |
1717 | checkPointerAuthValue(S, Arg&: Call->getArgs()[1], OpKind: PAO_Discriminator)) |
1718 | return ExprError(); |
1719 | |
1720 | Call->setType(S.Context.getUIntPtrType()); |
1721 | return Call; |
1722 | } |
1723 | |
1724 | static ExprResult PointerAuthSignOrAuth(Sema &S, CallExpr *Call, |
1725 | PointerAuthOpKind OpKind, |
1726 | bool RequireConstant) { |
1727 | if (S.checkArgCount(Call, DesiredArgCount: 3)) |
1728 | return ExprError(); |
1729 | if (checkPointerAuthEnabled(S, E: Call)) |
1730 | return ExprError(); |
1731 | if (checkPointerAuthValue(S, Arg&: Call->getArgs()[0], OpKind, RequireConstant) || |
1732 | checkPointerAuthKey(S, Arg&: Call->getArgs()[1]) || |
1733 | checkPointerAuthValue(S, Arg&: Call->getArgs()[2], OpKind: PAO_Discriminator, |
1734 | RequireConstant)) |
1735 | return ExprError(); |
1736 | |
1737 | Call->setType(Call->getArgs()[0]->getType()); |
1738 | return Call; |
1739 | } |
1740 | |
1741 | static ExprResult PointerAuthAuthAndResign(Sema &S, CallExpr *Call) { |
1742 | if (S.checkArgCount(Call, DesiredArgCount: 5)) |
1743 | return ExprError(); |
1744 | if (checkPointerAuthEnabled(S, E: Call)) |
1745 | return ExprError(); |
1746 | if (checkPointerAuthValue(S, Arg&: Call->getArgs()[0], OpKind: PAO_Auth) || |
1747 | checkPointerAuthKey(S, Arg&: Call->getArgs()[1]) || |
1748 | checkPointerAuthValue(S, Arg&: Call->getArgs()[2], OpKind: PAO_Discriminator) || |
1749 | checkPointerAuthKey(S, Arg&: Call->getArgs()[3]) || |
1750 | checkPointerAuthValue(S, Arg&: Call->getArgs()[4], OpKind: PAO_Discriminator)) |
1751 | return ExprError(); |
1752 | |
1753 | Call->setType(Call->getArgs()[0]->getType()); |
1754 | return Call; |
1755 | } |
1756 | |
1757 | static ExprResult PointerAuthStringDiscriminator(Sema &S, CallExpr *Call) { |
1758 | if (checkPointerAuthEnabled(S, E: Call)) |
1759 | return ExprError(); |
1760 | |
1761 | // We've already performed normal call type-checking. |
1762 | const Expr *Arg = Call->getArg(Arg: 0)->IgnoreParenImpCasts(); |
1763 | |
1764 | // Operand must be an ordinary or UTF-8 string literal. |
1765 | const auto *Literal = dyn_cast<StringLiteral>(Val: Arg); |
1766 | if (!Literal || Literal->getCharByteWidth() != 1) { |
1767 | S.Diag(Loc: Arg->getExprLoc(), DiagID: diag::err_ptrauth_string_not_literal) |
1768 | << (Literal ? 1 : 0) << Arg->getSourceRange(); |
1769 | return ExprError(); |
1770 | } |
1771 | |
1772 | return Call; |
1773 | } |
1774 | |
1775 | static ExprResult BuiltinLaunder(Sema &S, CallExpr *TheCall) { |
1776 | if (S.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
1777 | return ExprError(); |
1778 | |
1779 | // Compute __builtin_launder's parameter type from the argument. |
1780 | // The parameter type is: |
1781 | // * The type of the argument if it's not an array or function type, |
1782 | // Otherwise, |
1783 | // * The decayed argument type. |
1784 | QualType ParamTy = [&]() { |
1785 | QualType ArgTy = TheCall->getArg(Arg: 0)->getType(); |
1786 | if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe()) |
1787 | return S.Context.getPointerType(T: Ty->getElementType()); |
1788 | if (ArgTy->isFunctionType()) { |
1789 | return S.Context.getPointerType(T: ArgTy); |
1790 | } |
1791 | return ArgTy; |
1792 | }(); |
1793 | |
1794 | TheCall->setType(ParamTy); |
1795 | |
1796 | auto DiagSelect = [&]() -> std::optional<unsigned> { |
1797 | if (!ParamTy->isPointerType()) |
1798 | return 0; |
1799 | if (ParamTy->isFunctionPointerType()) |
1800 | return 1; |
1801 | if (ParamTy->isVoidPointerType()) |
1802 | return 2; |
1803 | return std::optional<unsigned>{}; |
1804 | }(); |
1805 | if (DiagSelect) { |
1806 | S.Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_launder_invalid_arg) |
1807 | << *DiagSelect << TheCall->getSourceRange(); |
1808 | return ExprError(); |
1809 | } |
1810 | |
1811 | // We either have an incomplete class type, or we have a class template |
1812 | // whose instantiation has not been forced. Example: |
1813 | // |
1814 | // template <class T> struct Foo { T value; }; |
1815 | // Foo<int> *p = nullptr; |
1816 | // auto *d = __builtin_launder(p); |
1817 | if (S.RequireCompleteType(Loc: TheCall->getBeginLoc(), T: ParamTy->getPointeeType(), |
1818 | DiagID: diag::err_incomplete_type)) |
1819 | return ExprError(); |
1820 | |
1821 | assert(ParamTy->getPointeeType()->isObjectType() && |
1822 | "Unhandled non-object pointer case" ); |
1823 | |
1824 | InitializedEntity Entity = |
1825 | InitializedEntity::InitializeParameter(Context&: S.Context, Type: ParamTy, Consumed: false); |
1826 | ExprResult Arg = |
1827 | S.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: TheCall->getArg(Arg: 0)); |
1828 | if (Arg.isInvalid()) |
1829 | return ExprError(); |
1830 | TheCall->setArg(Arg: 0, ArgExpr: Arg.get()); |
1831 | |
1832 | return TheCall; |
1833 | } |
1834 | |
1835 | // Emit an error and return true if the current object format type is in the |
1836 | // list of unsupported types. |
1837 | static bool CheckBuiltinTargetNotInUnsupported( |
1838 | Sema &S, unsigned BuiltinID, CallExpr *TheCall, |
1839 | ArrayRef<llvm::Triple::ObjectFormatType> UnsupportedObjectFormatTypes) { |
1840 | llvm::Triple::ObjectFormatType CurObjFormat = |
1841 | S.getASTContext().getTargetInfo().getTriple().getObjectFormat(); |
1842 | if (llvm::is_contained(Range&: UnsupportedObjectFormatTypes, Element: CurObjFormat)) { |
1843 | S.Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_target_unsupported) |
1844 | << TheCall->getSourceRange(); |
1845 | return true; |
1846 | } |
1847 | return false; |
1848 | } |
1849 | |
1850 | // Emit an error and return true if the current architecture is not in the list |
1851 | // of supported architectures. |
1852 | static bool |
1853 | CheckBuiltinTargetInSupported(Sema &S, unsigned BuiltinID, CallExpr *TheCall, |
1854 | ArrayRef<llvm::Triple::ArchType> SupportedArchs) { |
1855 | llvm::Triple::ArchType CurArch = |
1856 | S.getASTContext().getTargetInfo().getTriple().getArch(); |
1857 | if (llvm::is_contained(Range&: SupportedArchs, Element: CurArch)) |
1858 | return false; |
1859 | S.Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_target_unsupported) |
1860 | << TheCall->getSourceRange(); |
1861 | return true; |
1862 | } |
1863 | |
1864 | static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr, |
1865 | SourceLocation CallSiteLoc); |
1866 | |
1867 | bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, |
1868 | CallExpr *TheCall) { |
1869 | switch (TI.getTriple().getArch()) { |
1870 | default: |
1871 | // Some builtins don't require additional checking, so just consider these |
1872 | // acceptable. |
1873 | return false; |
1874 | case llvm::Triple::arm: |
1875 | case llvm::Triple::armeb: |
1876 | case llvm::Triple::thumb: |
1877 | case llvm::Triple::thumbeb: |
1878 | return ARM().CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall); |
1879 | case llvm::Triple::aarch64: |
1880 | case llvm::Triple::aarch64_32: |
1881 | case llvm::Triple::aarch64_be: |
1882 | return ARM().CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall); |
1883 | case llvm::Triple::bpfeb: |
1884 | case llvm::Triple::bpfel: |
1885 | return BPF().CheckBPFBuiltinFunctionCall(BuiltinID, TheCall); |
1886 | case llvm::Triple::hexagon: |
1887 | return Hexagon().CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall); |
1888 | case llvm::Triple::mips: |
1889 | case llvm::Triple::mipsel: |
1890 | case llvm::Triple::mips64: |
1891 | case llvm::Triple::mips64el: |
1892 | return MIPS().CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall); |
1893 | case llvm::Triple::systemz: |
1894 | return SystemZ().CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall); |
1895 | case llvm::Triple::x86: |
1896 | case llvm::Triple::x86_64: |
1897 | return X86().CheckBuiltinFunctionCall(TI, BuiltinID, TheCall); |
1898 | case llvm::Triple::ppc: |
1899 | case llvm::Triple::ppcle: |
1900 | case llvm::Triple::ppc64: |
1901 | case llvm::Triple::ppc64le: |
1902 | return PPC().CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall); |
1903 | case llvm::Triple::amdgcn: |
1904 | return AMDGPU().CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall); |
1905 | case llvm::Triple::riscv32: |
1906 | case llvm::Triple::riscv64: |
1907 | return RISCV().CheckBuiltinFunctionCall(TI, BuiltinID, TheCall); |
1908 | case llvm::Triple::loongarch32: |
1909 | case llvm::Triple::loongarch64: |
1910 | return LoongArch().CheckLoongArchBuiltinFunctionCall(TI, BuiltinID, |
1911 | TheCall); |
1912 | case llvm::Triple::wasm32: |
1913 | case llvm::Triple::wasm64: |
1914 | return Wasm().CheckWebAssemblyBuiltinFunctionCall(TI, BuiltinID, TheCall); |
1915 | case llvm::Triple::nvptx: |
1916 | case llvm::Triple::nvptx64: |
1917 | return NVPTX().CheckNVPTXBuiltinFunctionCall(TI, BuiltinID, TheCall); |
1918 | } |
1919 | } |
1920 | |
1921 | // Check if \p Ty is a valid type for the elementwise math builtins. If it is |
1922 | // not a valid type, emit an error message and return true. Otherwise return |
1923 | // false. |
1924 | static bool checkMathBuiltinElementType(Sema &S, SourceLocation Loc, |
1925 | QualType ArgTy, int ArgIndex) { |
1926 | if (!ArgTy->getAs<VectorType>() && |
1927 | !ConstantMatrixType::isValidElementType(T: ArgTy)) { |
1928 | return S.Diag(Loc, DiagID: diag::err_builtin_invalid_arg_type) |
1929 | << ArgIndex << /* vector, integer or float ty*/ 0 << ArgTy; |
1930 | } |
1931 | |
1932 | return false; |
1933 | } |
1934 | |
1935 | static bool checkFPMathBuiltinElementType(Sema &S, SourceLocation Loc, |
1936 | QualType ArgTy, int ArgIndex) { |
1937 | QualType EltTy = ArgTy; |
1938 | if (auto *VecTy = EltTy->getAs<VectorType>()) |
1939 | EltTy = VecTy->getElementType(); |
1940 | |
1941 | if (!EltTy->isRealFloatingType()) { |
1942 | return S.Diag(Loc, DiagID: diag::err_builtin_invalid_arg_type) |
1943 | << ArgIndex << /* vector or float ty*/ 5 << ArgTy; |
1944 | } |
1945 | |
1946 | return false; |
1947 | } |
1948 | |
1949 | /// BuiltinCpu{Supports|Is} - Handle __builtin_cpu_{supports|is}(char *). |
1950 | /// This checks that the target supports the builtin and that the string |
1951 | /// argument is constant and valid. |
1952 | static bool BuiltinCpu(Sema &S, const TargetInfo &TI, CallExpr *TheCall, |
1953 | const TargetInfo *AuxTI, unsigned BuiltinID) { |
1954 | assert((BuiltinID == Builtin::BI__builtin_cpu_supports || |
1955 | BuiltinID == Builtin::BI__builtin_cpu_is) && |
1956 | "Expecting __builtin_cpu_..." ); |
1957 | |
1958 | bool IsCPUSupports = BuiltinID == Builtin::BI__builtin_cpu_supports; |
1959 | const TargetInfo *TheTI = &TI; |
1960 | auto SupportsBI = [=](const TargetInfo *TInfo) { |
1961 | return TInfo && ((IsCPUSupports && TInfo->supportsCpuSupports()) || |
1962 | (!IsCPUSupports && TInfo->supportsCpuIs())); |
1963 | }; |
1964 | if (!SupportsBI(&TI) && SupportsBI(AuxTI)) |
1965 | TheTI = AuxTI; |
1966 | |
1967 | if ((!IsCPUSupports && !TheTI->supportsCpuIs()) || |
1968 | (IsCPUSupports && !TheTI->supportsCpuSupports())) |
1969 | return S.Diag(Loc: TheCall->getBeginLoc(), |
1970 | DiagID: TI.getTriple().isOSAIX() |
1971 | ? diag::err_builtin_aix_os_unsupported |
1972 | : diag::err_builtin_target_unsupported) |
1973 | << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); |
1974 | |
1975 | Expr *Arg = TheCall->getArg(Arg: 0)->IgnoreParenImpCasts(); |
1976 | // Check if the argument is a string literal. |
1977 | if (!isa<StringLiteral>(Val: Arg)) |
1978 | return S.Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_expr_not_string_literal) |
1979 | << Arg->getSourceRange(); |
1980 | |
1981 | // Check the contents of the string. |
1982 | StringRef Feature = cast<StringLiteral>(Val: Arg)->getString(); |
1983 | if (IsCPUSupports && !TheTI->validateCpuSupports(Name: Feature)) { |
1984 | S.Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::warn_invalid_cpu_supports) |
1985 | << Arg->getSourceRange(); |
1986 | return false; |
1987 | } |
1988 | if (!IsCPUSupports && !TheTI->validateCpuIs(Name: Feature)) |
1989 | return S.Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_invalid_cpu_is) |
1990 | << Arg->getSourceRange(); |
1991 | return false; |
1992 | } |
1993 | |
1994 | /// Checks that __builtin_popcountg was called with a single argument, which is |
1995 | /// an unsigned integer. |
1996 | static bool BuiltinPopcountg(Sema &S, CallExpr *TheCall) { |
1997 | if (S.checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
1998 | return true; |
1999 | |
2000 | ExprResult ArgRes = S.DefaultLvalueConversion(E: TheCall->getArg(Arg: 0)); |
2001 | if (ArgRes.isInvalid()) |
2002 | return true; |
2003 | |
2004 | Expr *Arg = ArgRes.get(); |
2005 | TheCall->setArg(Arg: 0, ArgExpr: Arg); |
2006 | |
2007 | QualType ArgTy = Arg->getType(); |
2008 | |
2009 | if (!ArgTy->isUnsignedIntegerType()) { |
2010 | S.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
2011 | << 1 << /*unsigned integer ty*/ 7 << ArgTy; |
2012 | return true; |
2013 | } |
2014 | return false; |
2015 | } |
2016 | |
2017 | /// Checks that __builtin_{clzg,ctzg} was called with a first argument, which is |
2018 | /// an unsigned integer, and an optional second argument, which is promoted to |
2019 | /// an 'int'. |
2020 | static bool BuiltinCountZeroBitsGeneric(Sema &S, CallExpr *TheCall) { |
2021 | if (S.checkArgCountRange(Call: TheCall, MinArgCount: 1, MaxArgCount: 2)) |
2022 | return true; |
2023 | |
2024 | ExprResult Arg0Res = S.DefaultLvalueConversion(E: TheCall->getArg(Arg: 0)); |
2025 | if (Arg0Res.isInvalid()) |
2026 | return true; |
2027 | |
2028 | Expr *Arg0 = Arg0Res.get(); |
2029 | TheCall->setArg(Arg: 0, ArgExpr: Arg0); |
2030 | |
2031 | QualType Arg0Ty = Arg0->getType(); |
2032 | |
2033 | if (!Arg0Ty->isUnsignedIntegerType()) { |
2034 | S.Diag(Loc: Arg0->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
2035 | << 1 << /*unsigned integer ty*/ 7 << Arg0Ty; |
2036 | return true; |
2037 | } |
2038 | |
2039 | if (TheCall->getNumArgs() > 1) { |
2040 | ExprResult Arg1Res = S.UsualUnaryConversions(E: TheCall->getArg(Arg: 1)); |
2041 | if (Arg1Res.isInvalid()) |
2042 | return true; |
2043 | |
2044 | Expr *Arg1 = Arg1Res.get(); |
2045 | TheCall->setArg(Arg: 1, ArgExpr: Arg1); |
2046 | |
2047 | QualType Arg1Ty = Arg1->getType(); |
2048 | |
2049 | if (!Arg1Ty->isSpecificBuiltinType(K: BuiltinType::Int)) { |
2050 | S.Diag(Loc: Arg1->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
2051 | << 2 << /*'int' ty*/ 8 << Arg1Ty; |
2052 | return true; |
2053 | } |
2054 | } |
2055 | |
2056 | return false; |
2057 | } |
2058 | |
2059 | ExprResult |
2060 | Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, |
2061 | CallExpr *TheCall) { |
2062 | ExprResult TheCallResult(TheCall); |
2063 | |
2064 | // Find out if any arguments are required to be integer constant expressions. |
2065 | unsigned ICEArguments = 0; |
2066 | ASTContext::GetBuiltinTypeError Error; |
2067 | Context.GetBuiltinType(ID: BuiltinID, Error, IntegerConstantArgs: &ICEArguments); |
2068 | if (Error != ASTContext::GE_None) |
2069 | ICEArguments = 0; // Don't diagnose previously diagnosed errors. |
2070 | |
2071 | // If any arguments are required to be ICE's, check and diagnose. |
2072 | for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) { |
2073 | // Skip arguments not required to be ICE's. |
2074 | if ((ICEArguments & (1 << ArgNo)) == 0) continue; |
2075 | |
2076 | llvm::APSInt Result; |
2077 | // If we don't have enough arguments, continue so we can issue better |
2078 | // diagnostic in checkArgCount(...) |
2079 | if (ArgNo < TheCall->getNumArgs() && |
2080 | BuiltinConstantArg(TheCall, ArgNum: ArgNo, Result)) |
2081 | return true; |
2082 | ICEArguments &= ~(1 << ArgNo); |
2083 | } |
2084 | |
2085 | FPOptions FPO; |
2086 | switch (BuiltinID) { |
2087 | case Builtin::BI__builtin_cpu_supports: |
2088 | case Builtin::BI__builtin_cpu_is: |
2089 | if (BuiltinCpu(S&: *this, TI: Context.getTargetInfo(), TheCall, |
2090 | AuxTI: Context.getAuxTargetInfo(), BuiltinID)) |
2091 | return ExprError(); |
2092 | break; |
2093 | case Builtin::BI__builtin_cpu_init: |
2094 | if (!Context.getTargetInfo().supportsCpuInit()) { |
2095 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_target_unsupported) |
2096 | << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); |
2097 | return ExprError(); |
2098 | } |
2099 | break; |
2100 | case Builtin::BI__builtin___CFStringMakeConstantString: |
2101 | // CFStringMakeConstantString is currently not implemented for GOFF (i.e., |
2102 | // on z/OS) and for XCOFF (i.e., on AIX). Emit unsupported |
2103 | if (CheckBuiltinTargetNotInUnsupported( |
2104 | S&: *this, BuiltinID, TheCall, |
2105 | UnsupportedObjectFormatTypes: {llvm::Triple::GOFF, llvm::Triple::XCOFF})) |
2106 | return ExprError(); |
2107 | assert(TheCall->getNumArgs() == 1 && |
2108 | "Wrong # arguments to builtin CFStringMakeConstantString" ); |
2109 | if (ObjC().CheckObjCString(Arg: TheCall->getArg(Arg: 0))) |
2110 | return ExprError(); |
2111 | break; |
2112 | case Builtin::BI__builtin_ms_va_start: |
2113 | case Builtin::BI__builtin_stdarg_start: |
2114 | case Builtin::BI__builtin_va_start: |
2115 | if (BuiltinVAStart(BuiltinID, TheCall)) |
2116 | return ExprError(); |
2117 | break; |
2118 | case Builtin::BI__va_start: { |
2119 | switch (Context.getTargetInfo().getTriple().getArch()) { |
2120 | case llvm::Triple::aarch64: |
2121 | case llvm::Triple::arm: |
2122 | case llvm::Triple::thumb: |
2123 | if (BuiltinVAStartARMMicrosoft(Call: TheCall)) |
2124 | return ExprError(); |
2125 | break; |
2126 | default: |
2127 | if (BuiltinVAStart(BuiltinID, TheCall)) |
2128 | return ExprError(); |
2129 | break; |
2130 | } |
2131 | break; |
2132 | } |
2133 | |
2134 | // The acquire, release, and no fence variants are ARM and AArch64 only. |
2135 | case Builtin::BI_interlockedbittestandset_acq: |
2136 | case Builtin::BI_interlockedbittestandset_rel: |
2137 | case Builtin::BI_interlockedbittestandset_nf: |
2138 | case Builtin::BI_interlockedbittestandreset_acq: |
2139 | case Builtin::BI_interlockedbittestandreset_rel: |
2140 | case Builtin::BI_interlockedbittestandreset_nf: |
2141 | if (CheckBuiltinTargetInSupported( |
2142 | S&: *this, BuiltinID, TheCall, |
2143 | SupportedArchs: {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64})) |
2144 | return ExprError(); |
2145 | break; |
2146 | |
2147 | // The 64-bit bittest variants are x64, ARM, and AArch64 only. |
2148 | case Builtin::BI_bittest64: |
2149 | case Builtin::BI_bittestandcomplement64: |
2150 | case Builtin::BI_bittestandreset64: |
2151 | case Builtin::BI_bittestandset64: |
2152 | case Builtin::BI_interlockedbittestandreset64: |
2153 | case Builtin::BI_interlockedbittestandset64: |
2154 | if (CheckBuiltinTargetInSupported( |
2155 | S&: *this, BuiltinID, TheCall, |
2156 | SupportedArchs: {llvm::Triple::x86_64, llvm::Triple::arm, llvm::Triple::thumb, |
2157 | llvm::Triple::aarch64, llvm::Triple::amdgcn})) |
2158 | return ExprError(); |
2159 | break; |
2160 | |
2161 | case Builtin::BI__builtin_set_flt_rounds: |
2162 | if (CheckBuiltinTargetInSupported( |
2163 | S&: *this, BuiltinID, TheCall, |
2164 | SupportedArchs: {llvm::Triple::x86, llvm::Triple::x86_64, llvm::Triple::arm, |
2165 | llvm::Triple::thumb, llvm::Triple::aarch64, llvm::Triple::amdgcn})) |
2166 | return ExprError(); |
2167 | break; |
2168 | |
2169 | case Builtin::BI__builtin_isgreater: |
2170 | case Builtin::BI__builtin_isgreaterequal: |
2171 | case Builtin::BI__builtin_isless: |
2172 | case Builtin::BI__builtin_islessequal: |
2173 | case Builtin::BI__builtin_islessgreater: |
2174 | case Builtin::BI__builtin_isunordered: |
2175 | if (BuiltinUnorderedCompare(TheCall, BuiltinID)) |
2176 | return ExprError(); |
2177 | break; |
2178 | case Builtin::BI__builtin_fpclassify: |
2179 | if (BuiltinFPClassification(TheCall, NumArgs: 6, BuiltinID)) |
2180 | return ExprError(); |
2181 | break; |
2182 | case Builtin::BI__builtin_isfpclass: |
2183 | if (BuiltinFPClassification(TheCall, NumArgs: 2, BuiltinID)) |
2184 | return ExprError(); |
2185 | break; |
2186 | case Builtin::BI__builtin_isfinite: |
2187 | case Builtin::BI__builtin_isinf: |
2188 | case Builtin::BI__builtin_isinf_sign: |
2189 | case Builtin::BI__builtin_isnan: |
2190 | case Builtin::BI__builtin_issignaling: |
2191 | case Builtin::BI__builtin_isnormal: |
2192 | case Builtin::BI__builtin_issubnormal: |
2193 | case Builtin::BI__builtin_iszero: |
2194 | case Builtin::BI__builtin_signbit: |
2195 | case Builtin::BI__builtin_signbitf: |
2196 | case Builtin::BI__builtin_signbitl: |
2197 | if (BuiltinFPClassification(TheCall, NumArgs: 1, BuiltinID)) |
2198 | return ExprError(); |
2199 | break; |
2200 | case Builtin::BI__builtin_shufflevector: |
2201 | return BuiltinShuffleVector(TheCall); |
2202 | // TheCall will be freed by the smart pointer here, but that's fine, since |
2203 | // BuiltinShuffleVector guts it, but then doesn't release it. |
2204 | case Builtin::BI__builtin_prefetch: |
2205 | if (BuiltinPrefetch(TheCall)) |
2206 | return ExprError(); |
2207 | break; |
2208 | case Builtin::BI__builtin_alloca_with_align: |
2209 | case Builtin::BI__builtin_alloca_with_align_uninitialized: |
2210 | if (BuiltinAllocaWithAlign(TheCall)) |
2211 | return ExprError(); |
2212 | [[fallthrough]]; |
2213 | case Builtin::BI__builtin_alloca: |
2214 | case Builtin::BI__builtin_alloca_uninitialized: |
2215 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::warn_alloca) |
2216 | << TheCall->getDirectCallee(); |
2217 | break; |
2218 | case Builtin::BI__arithmetic_fence: |
2219 | if (BuiltinArithmeticFence(TheCall)) |
2220 | return ExprError(); |
2221 | break; |
2222 | case Builtin::BI__assume: |
2223 | case Builtin::BI__builtin_assume: |
2224 | if (BuiltinAssume(TheCall)) |
2225 | return ExprError(); |
2226 | break; |
2227 | case Builtin::BI__builtin_assume_aligned: |
2228 | if (BuiltinAssumeAligned(TheCall)) |
2229 | return ExprError(); |
2230 | break; |
2231 | case Builtin::BI__builtin_dynamic_object_size: |
2232 | case Builtin::BI__builtin_object_size: |
2233 | if (BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: 3)) |
2234 | return ExprError(); |
2235 | break; |
2236 | case Builtin::BI__builtin_longjmp: |
2237 | if (BuiltinLongjmp(TheCall)) |
2238 | return ExprError(); |
2239 | break; |
2240 | case Builtin::BI__builtin_setjmp: |
2241 | if (BuiltinSetjmp(TheCall)) |
2242 | return ExprError(); |
2243 | break; |
2244 | case Builtin::BI__builtin_classify_type: |
2245 | if (checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
2246 | return true; |
2247 | TheCall->setType(Context.IntTy); |
2248 | break; |
2249 | case Builtin::BI__builtin_complex: |
2250 | if (BuiltinComplex(TheCall)) |
2251 | return ExprError(); |
2252 | break; |
2253 | case Builtin::BI__builtin_constant_p: { |
2254 | if (checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
2255 | return true; |
2256 | ExprResult Arg = DefaultFunctionArrayLvalueConversion(E: TheCall->getArg(Arg: 0)); |
2257 | if (Arg.isInvalid()) return true; |
2258 | TheCall->setArg(Arg: 0, ArgExpr: Arg.get()); |
2259 | TheCall->setType(Context.IntTy); |
2260 | break; |
2261 | } |
2262 | case Builtin::BI__builtin_launder: |
2263 | return BuiltinLaunder(S&: *this, TheCall); |
2264 | case Builtin::BI__sync_fetch_and_add: |
2265 | case Builtin::BI__sync_fetch_and_add_1: |
2266 | case Builtin::BI__sync_fetch_and_add_2: |
2267 | case Builtin::BI__sync_fetch_and_add_4: |
2268 | case Builtin::BI__sync_fetch_and_add_8: |
2269 | case Builtin::BI__sync_fetch_and_add_16: |
2270 | case Builtin::BI__sync_fetch_and_sub: |
2271 | case Builtin::BI__sync_fetch_and_sub_1: |
2272 | case Builtin::BI__sync_fetch_and_sub_2: |
2273 | case Builtin::BI__sync_fetch_and_sub_4: |
2274 | case Builtin::BI__sync_fetch_and_sub_8: |
2275 | case Builtin::BI__sync_fetch_and_sub_16: |
2276 | case Builtin::BI__sync_fetch_and_or: |
2277 | case Builtin::BI__sync_fetch_and_or_1: |
2278 | case Builtin::BI__sync_fetch_and_or_2: |
2279 | case Builtin::BI__sync_fetch_and_or_4: |
2280 | case Builtin::BI__sync_fetch_and_or_8: |
2281 | case Builtin::BI__sync_fetch_and_or_16: |
2282 | case Builtin::BI__sync_fetch_and_and: |
2283 | case Builtin::BI__sync_fetch_and_and_1: |
2284 | case Builtin::BI__sync_fetch_and_and_2: |
2285 | case Builtin::BI__sync_fetch_and_and_4: |
2286 | case Builtin::BI__sync_fetch_and_and_8: |
2287 | case Builtin::BI__sync_fetch_and_and_16: |
2288 | case Builtin::BI__sync_fetch_and_xor: |
2289 | case Builtin::BI__sync_fetch_and_xor_1: |
2290 | case Builtin::BI__sync_fetch_and_xor_2: |
2291 | case Builtin::BI__sync_fetch_and_xor_4: |
2292 | case Builtin::BI__sync_fetch_and_xor_8: |
2293 | case Builtin::BI__sync_fetch_and_xor_16: |
2294 | case Builtin::BI__sync_fetch_and_nand: |
2295 | case Builtin::BI__sync_fetch_and_nand_1: |
2296 | case Builtin::BI__sync_fetch_and_nand_2: |
2297 | case Builtin::BI__sync_fetch_and_nand_4: |
2298 | case Builtin::BI__sync_fetch_and_nand_8: |
2299 | case Builtin::BI__sync_fetch_and_nand_16: |
2300 | case Builtin::BI__sync_add_and_fetch: |
2301 | case Builtin::BI__sync_add_and_fetch_1: |
2302 | case Builtin::BI__sync_add_and_fetch_2: |
2303 | case Builtin::BI__sync_add_and_fetch_4: |
2304 | case Builtin::BI__sync_add_and_fetch_8: |
2305 | case Builtin::BI__sync_add_and_fetch_16: |
2306 | case Builtin::BI__sync_sub_and_fetch: |
2307 | case Builtin::BI__sync_sub_and_fetch_1: |
2308 | case Builtin::BI__sync_sub_and_fetch_2: |
2309 | case Builtin::BI__sync_sub_and_fetch_4: |
2310 | case Builtin::BI__sync_sub_and_fetch_8: |
2311 | case Builtin::BI__sync_sub_and_fetch_16: |
2312 | case Builtin::BI__sync_and_and_fetch: |
2313 | case Builtin::BI__sync_and_and_fetch_1: |
2314 | case Builtin::BI__sync_and_and_fetch_2: |
2315 | case Builtin::BI__sync_and_and_fetch_4: |
2316 | case Builtin::BI__sync_and_and_fetch_8: |
2317 | case Builtin::BI__sync_and_and_fetch_16: |
2318 | case Builtin::BI__sync_or_and_fetch: |
2319 | case Builtin::BI__sync_or_and_fetch_1: |
2320 | case Builtin::BI__sync_or_and_fetch_2: |
2321 | case Builtin::BI__sync_or_and_fetch_4: |
2322 | case Builtin::BI__sync_or_and_fetch_8: |
2323 | case Builtin::BI__sync_or_and_fetch_16: |
2324 | case Builtin::BI__sync_xor_and_fetch: |
2325 | case Builtin::BI__sync_xor_and_fetch_1: |
2326 | case Builtin::BI__sync_xor_and_fetch_2: |
2327 | case Builtin::BI__sync_xor_and_fetch_4: |
2328 | case Builtin::BI__sync_xor_and_fetch_8: |
2329 | case Builtin::BI__sync_xor_and_fetch_16: |
2330 | case Builtin::BI__sync_nand_and_fetch: |
2331 | case Builtin::BI__sync_nand_and_fetch_1: |
2332 | case Builtin::BI__sync_nand_and_fetch_2: |
2333 | case Builtin::BI__sync_nand_and_fetch_4: |
2334 | case Builtin::BI__sync_nand_and_fetch_8: |
2335 | case Builtin::BI__sync_nand_and_fetch_16: |
2336 | case Builtin::BI__sync_val_compare_and_swap: |
2337 | case Builtin::BI__sync_val_compare_and_swap_1: |
2338 | case Builtin::BI__sync_val_compare_and_swap_2: |
2339 | case Builtin::BI__sync_val_compare_and_swap_4: |
2340 | case Builtin::BI__sync_val_compare_and_swap_8: |
2341 | case Builtin::BI__sync_val_compare_and_swap_16: |
2342 | case Builtin::BI__sync_bool_compare_and_swap: |
2343 | case Builtin::BI__sync_bool_compare_and_swap_1: |
2344 | case Builtin::BI__sync_bool_compare_and_swap_2: |
2345 | case Builtin::BI__sync_bool_compare_and_swap_4: |
2346 | case Builtin::BI__sync_bool_compare_and_swap_8: |
2347 | case Builtin::BI__sync_bool_compare_and_swap_16: |
2348 | case Builtin::BI__sync_lock_test_and_set: |
2349 | case Builtin::BI__sync_lock_test_and_set_1: |
2350 | case Builtin::BI__sync_lock_test_and_set_2: |
2351 | case Builtin::BI__sync_lock_test_and_set_4: |
2352 | case Builtin::BI__sync_lock_test_and_set_8: |
2353 | case Builtin::BI__sync_lock_test_and_set_16: |
2354 | case Builtin::BI__sync_lock_release: |
2355 | case Builtin::BI__sync_lock_release_1: |
2356 | case Builtin::BI__sync_lock_release_2: |
2357 | case Builtin::BI__sync_lock_release_4: |
2358 | case Builtin::BI__sync_lock_release_8: |
2359 | case Builtin::BI__sync_lock_release_16: |
2360 | case Builtin::BI__sync_swap: |
2361 | case Builtin::BI__sync_swap_1: |
2362 | case Builtin::BI__sync_swap_2: |
2363 | case Builtin::BI__sync_swap_4: |
2364 | case Builtin::BI__sync_swap_8: |
2365 | case Builtin::BI__sync_swap_16: |
2366 | return BuiltinAtomicOverloaded(TheCallResult); |
2367 | case Builtin::BI__sync_synchronize: |
2368 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::warn_atomic_implicit_seq_cst) |
2369 | << TheCall->getCallee()->getSourceRange(); |
2370 | break; |
2371 | case Builtin::BI__builtin_nontemporal_load: |
2372 | case Builtin::BI__builtin_nontemporal_store: |
2373 | return BuiltinNontemporalOverloaded(TheCallResult); |
2374 | case Builtin::BI__builtin_memcpy_inline: { |
2375 | clang::Expr *SizeOp = TheCall->getArg(Arg: 2); |
2376 | // We warn about copying to or from `nullptr` pointers when `size` is |
2377 | // greater than 0. When `size` is value dependent we cannot evaluate its |
2378 | // value so we bail out. |
2379 | if (SizeOp->isValueDependent()) |
2380 | break; |
2381 | if (!SizeOp->EvaluateKnownConstInt(Ctx: Context).isZero()) { |
2382 | CheckNonNullArgument(S&: *this, ArgExpr: TheCall->getArg(Arg: 0), CallSiteLoc: TheCall->getExprLoc()); |
2383 | CheckNonNullArgument(S&: *this, ArgExpr: TheCall->getArg(Arg: 1), CallSiteLoc: TheCall->getExprLoc()); |
2384 | } |
2385 | break; |
2386 | } |
2387 | case Builtin::BI__builtin_memset_inline: { |
2388 | clang::Expr *SizeOp = TheCall->getArg(Arg: 2); |
2389 | // We warn about filling to `nullptr` pointers when `size` is greater than |
2390 | // 0. When `size` is value dependent we cannot evaluate its value so we bail |
2391 | // out. |
2392 | if (SizeOp->isValueDependent()) |
2393 | break; |
2394 | if (!SizeOp->EvaluateKnownConstInt(Ctx: Context).isZero()) |
2395 | CheckNonNullArgument(S&: *this, ArgExpr: TheCall->getArg(Arg: 0), CallSiteLoc: TheCall->getExprLoc()); |
2396 | break; |
2397 | } |
2398 | #define BUILTIN(ID, TYPE, ATTRS) |
2399 | #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \ |
2400 | case Builtin::BI##ID: \ |
2401 | return AtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID); |
2402 | #include "clang/Basic/Builtins.inc" |
2403 | case Builtin::BI__annotation: |
2404 | if (BuiltinMSVCAnnotation(S&: *this, TheCall)) |
2405 | return ExprError(); |
2406 | break; |
2407 | case Builtin::BI__builtin_annotation: |
2408 | if (BuiltinAnnotation(S&: *this, TheCall)) |
2409 | return ExprError(); |
2410 | break; |
2411 | case Builtin::BI__builtin_addressof: |
2412 | if (BuiltinAddressof(S&: *this, TheCall)) |
2413 | return ExprError(); |
2414 | break; |
2415 | case Builtin::BI__builtin_function_start: |
2416 | if (BuiltinFunctionStart(S&: *this, TheCall)) |
2417 | return ExprError(); |
2418 | break; |
2419 | case Builtin::BI__builtin_is_aligned: |
2420 | case Builtin::BI__builtin_align_up: |
2421 | case Builtin::BI__builtin_align_down: |
2422 | if (BuiltinAlignment(S&: *this, TheCall, ID: BuiltinID)) |
2423 | return ExprError(); |
2424 | break; |
2425 | case Builtin::BI__builtin_add_overflow: |
2426 | case Builtin::BI__builtin_sub_overflow: |
2427 | case Builtin::BI__builtin_mul_overflow: |
2428 | if (BuiltinOverflow(S&: *this, TheCall, BuiltinID)) |
2429 | return ExprError(); |
2430 | break; |
2431 | case Builtin::BI__builtin_operator_new: |
2432 | case Builtin::BI__builtin_operator_delete: { |
2433 | bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete; |
2434 | ExprResult Res = |
2435 | BuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete); |
2436 | if (Res.isInvalid()) |
2437 | CorrectDelayedTyposInExpr(E: TheCallResult.get()); |
2438 | return Res; |
2439 | } |
2440 | case Builtin::BI__builtin_dump_struct: |
2441 | return BuiltinDumpStruct(S&: *this, TheCall); |
2442 | case Builtin::BI__builtin_expect_with_probability: { |
2443 | // We first want to ensure we are called with 3 arguments |
2444 | if (checkArgCount(Call: TheCall, DesiredArgCount: 3)) |
2445 | return ExprError(); |
2446 | // then check probability is constant float in range [0.0, 1.0] |
2447 | const Expr *ProbArg = TheCall->getArg(Arg: 2); |
2448 | SmallVector<PartialDiagnosticAt, 8> Notes; |
2449 | Expr::EvalResult Eval; |
2450 | Eval.Diag = &Notes; |
2451 | if ((!ProbArg->EvaluateAsConstantExpr(Result&: Eval, Ctx: Context)) || |
2452 | !Eval.Val.isFloat()) { |
2453 | Diag(Loc: ProbArg->getBeginLoc(), DiagID: diag::err_probability_not_constant_float) |
2454 | << ProbArg->getSourceRange(); |
2455 | for (const PartialDiagnosticAt &PDiag : Notes) |
2456 | Diag(Loc: PDiag.first, PD: PDiag.second); |
2457 | return ExprError(); |
2458 | } |
2459 | llvm::APFloat Probability = Eval.Val.getFloat(); |
2460 | bool LoseInfo = false; |
2461 | Probability.convert(ToSemantics: llvm::APFloat::IEEEdouble(), |
2462 | RM: llvm::RoundingMode::Dynamic, losesInfo: &LoseInfo); |
2463 | if (!(Probability >= llvm::APFloat(0.0) && |
2464 | Probability <= llvm::APFloat(1.0))) { |
2465 | Diag(Loc: ProbArg->getBeginLoc(), DiagID: diag::err_probability_out_of_range) |
2466 | << ProbArg->getSourceRange(); |
2467 | return ExprError(); |
2468 | } |
2469 | break; |
2470 | } |
2471 | case Builtin::BI__builtin_preserve_access_index: |
2472 | if (BuiltinPreserveAI(S&: *this, TheCall)) |
2473 | return ExprError(); |
2474 | break; |
2475 | case Builtin::BI__builtin_call_with_static_chain: |
2476 | if (BuiltinCallWithStaticChain(S&: *this, BuiltinCall: TheCall)) |
2477 | return ExprError(); |
2478 | break; |
2479 | case Builtin::BI__exception_code: |
2480 | case Builtin::BI_exception_code: |
2481 | if (BuiltinSEHScopeCheck(SemaRef&: *this, TheCall, NeededScopeFlags: Scope::SEHExceptScope, |
2482 | DiagID: diag::err_seh___except_block)) |
2483 | return ExprError(); |
2484 | break; |
2485 | case Builtin::BI__exception_info: |
2486 | case Builtin::BI_exception_info: |
2487 | if (BuiltinSEHScopeCheck(SemaRef&: *this, TheCall, NeededScopeFlags: Scope::SEHFilterScope, |
2488 | DiagID: diag::err_seh___except_filter)) |
2489 | return ExprError(); |
2490 | break; |
2491 | case Builtin::BI__GetExceptionInfo: |
2492 | if (checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
2493 | return ExprError(); |
2494 | |
2495 | if (CheckCXXThrowOperand( |
2496 | ThrowLoc: TheCall->getBeginLoc(), |
2497 | ThrowTy: Context.getExceptionObjectType(T: FDecl->getParamDecl(i: 0)->getType()), |
2498 | E: TheCall)) |
2499 | return ExprError(); |
2500 | |
2501 | TheCall->setType(Context.VoidPtrTy); |
2502 | break; |
2503 | case Builtin::BIaddressof: |
2504 | case Builtin::BI__addressof: |
2505 | case Builtin::BIforward: |
2506 | case Builtin::BIforward_like: |
2507 | case Builtin::BImove: |
2508 | case Builtin::BImove_if_noexcept: |
2509 | case Builtin::BIas_const: { |
2510 | // These are all expected to be of the form |
2511 | // T &/&&/* f(U &/&&) |
2512 | // where T and U only differ in qualification. |
2513 | if (checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
2514 | return ExprError(); |
2515 | QualType Param = FDecl->getParamDecl(i: 0)->getType(); |
2516 | QualType Result = FDecl->getReturnType(); |
2517 | bool ReturnsPointer = BuiltinID == Builtin::BIaddressof || |
2518 | BuiltinID == Builtin::BI__addressof; |
2519 | if (!(Param->isReferenceType() && |
2520 | (ReturnsPointer ? Result->isAnyPointerType() |
2521 | : Result->isReferenceType()) && |
2522 | Context.hasSameUnqualifiedType(T1: Param->getPointeeType(), |
2523 | T2: Result->getPointeeType()))) { |
2524 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_move_forward_unsupported) |
2525 | << FDecl; |
2526 | return ExprError(); |
2527 | } |
2528 | break; |
2529 | } |
2530 | case Builtin::BI__builtin_ptrauth_strip: |
2531 | return PointerAuthStrip(S&: *this, Call: TheCall); |
2532 | case Builtin::BI__builtin_ptrauth_blend_discriminator: |
2533 | return PointerAuthBlendDiscriminator(S&: *this, Call: TheCall); |
2534 | case Builtin::BI__builtin_ptrauth_sign_constant: |
2535 | return PointerAuthSignOrAuth(S&: *this, Call: TheCall, OpKind: PAO_Sign, |
2536 | /*RequireConstant=*/true); |
2537 | case Builtin::BI__builtin_ptrauth_sign_unauthenticated: |
2538 | return PointerAuthSignOrAuth(S&: *this, Call: TheCall, OpKind: PAO_Sign, |
2539 | /*RequireConstant=*/false); |
2540 | case Builtin::BI__builtin_ptrauth_auth: |
2541 | return PointerAuthSignOrAuth(S&: *this, Call: TheCall, OpKind: PAO_Auth, |
2542 | /*RequireConstant=*/false); |
2543 | case Builtin::BI__builtin_ptrauth_sign_generic_data: |
2544 | return PointerAuthSignGenericData(S&: *this, Call: TheCall); |
2545 | case Builtin::BI__builtin_ptrauth_auth_and_resign: |
2546 | return PointerAuthAuthAndResign(S&: *this, Call: TheCall); |
2547 | case Builtin::BI__builtin_ptrauth_string_discriminator: |
2548 | return PointerAuthStringDiscriminator(S&: *this, Call: TheCall); |
2549 | // OpenCL v2.0, s6.13.16 - Pipe functions |
2550 | case Builtin::BIread_pipe: |
2551 | case Builtin::BIwrite_pipe: |
2552 | // Since those two functions are declared with var args, we need a semantic |
2553 | // check for the argument. |
2554 | if (OpenCL().checkBuiltinRWPipe(Call: TheCall)) |
2555 | return ExprError(); |
2556 | break; |
2557 | case Builtin::BIreserve_read_pipe: |
2558 | case Builtin::BIreserve_write_pipe: |
2559 | case Builtin::BIwork_group_reserve_read_pipe: |
2560 | case Builtin::BIwork_group_reserve_write_pipe: |
2561 | if (OpenCL().checkBuiltinReserveRWPipe(Call: TheCall)) |
2562 | return ExprError(); |
2563 | break; |
2564 | case Builtin::BIsub_group_reserve_read_pipe: |
2565 | case Builtin::BIsub_group_reserve_write_pipe: |
2566 | if (OpenCL().checkSubgroupExt(Call: TheCall) || |
2567 | OpenCL().checkBuiltinReserveRWPipe(Call: TheCall)) |
2568 | return ExprError(); |
2569 | break; |
2570 | case Builtin::BIcommit_read_pipe: |
2571 | case Builtin::BIcommit_write_pipe: |
2572 | case Builtin::BIwork_group_commit_read_pipe: |
2573 | case Builtin::BIwork_group_commit_write_pipe: |
2574 | if (OpenCL().checkBuiltinCommitRWPipe(Call: TheCall)) |
2575 | return ExprError(); |
2576 | break; |
2577 | case Builtin::BIsub_group_commit_read_pipe: |
2578 | case Builtin::BIsub_group_commit_write_pipe: |
2579 | if (OpenCL().checkSubgroupExt(Call: TheCall) || |
2580 | OpenCL().checkBuiltinCommitRWPipe(Call: TheCall)) |
2581 | return ExprError(); |
2582 | break; |
2583 | case Builtin::BIget_pipe_num_packets: |
2584 | case Builtin::BIget_pipe_max_packets: |
2585 | if (OpenCL().checkBuiltinPipePackets(Call: TheCall)) |
2586 | return ExprError(); |
2587 | break; |
2588 | case Builtin::BIto_global: |
2589 | case Builtin::BIto_local: |
2590 | case Builtin::BIto_private: |
2591 | if (OpenCL().checkBuiltinToAddr(BuiltinID, Call: TheCall)) |
2592 | return ExprError(); |
2593 | break; |
2594 | // OpenCL v2.0, s6.13.17 - Enqueue kernel functions. |
2595 | case Builtin::BIenqueue_kernel: |
2596 | if (OpenCL().checkBuiltinEnqueueKernel(TheCall)) |
2597 | return ExprError(); |
2598 | break; |
2599 | case Builtin::BIget_kernel_work_group_size: |
2600 | case Builtin::BIget_kernel_preferred_work_group_size_multiple: |
2601 | if (OpenCL().checkBuiltinKernelWorkGroupSize(TheCall)) |
2602 | return ExprError(); |
2603 | break; |
2604 | case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: |
2605 | case Builtin::BIget_kernel_sub_group_count_for_ndrange: |
2606 | if (OpenCL().checkBuiltinNDRangeAndBlock(TheCall)) |
2607 | return ExprError(); |
2608 | break; |
2609 | case Builtin::BI__builtin_os_log_format: |
2610 | Cleanup.setExprNeedsCleanups(true); |
2611 | [[fallthrough]]; |
2612 | case Builtin::BI__builtin_os_log_format_buffer_size: |
2613 | if (BuiltinOSLogFormat(TheCall)) |
2614 | return ExprError(); |
2615 | break; |
2616 | case Builtin::BI__builtin_frame_address: |
2617 | case Builtin::BI__builtin_return_address: { |
2618 | if (BuiltinConstantArgRange(TheCall, ArgNum: 0, Low: 0, High: 0xFFFF)) |
2619 | return ExprError(); |
2620 | |
2621 | // -Wframe-address warning if non-zero passed to builtin |
2622 | // return/frame address. |
2623 | Expr::EvalResult Result; |
2624 | if (!TheCall->getArg(Arg: 0)->isValueDependent() && |
2625 | TheCall->getArg(Arg: 0)->EvaluateAsInt(Result, Ctx: getASTContext()) && |
2626 | Result.Val.getInt() != 0) |
2627 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::warn_frame_address) |
2628 | << ((BuiltinID == Builtin::BI__builtin_return_address) |
2629 | ? "__builtin_return_address" |
2630 | : "__builtin_frame_address" ) |
2631 | << TheCall->getSourceRange(); |
2632 | break; |
2633 | } |
2634 | |
2635 | case Builtin::BI__builtin_nondeterministic_value: { |
2636 | if (BuiltinNonDeterministicValue(TheCall)) |
2637 | return ExprError(); |
2638 | break; |
2639 | } |
2640 | |
2641 | // __builtin_elementwise_abs restricts the element type to signed integers or |
2642 | // floating point types only. |
2643 | case Builtin::BI__builtin_elementwise_abs: { |
2644 | if (PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
2645 | return ExprError(); |
2646 | |
2647 | QualType ArgTy = TheCall->getArg(Arg: 0)->getType(); |
2648 | QualType EltTy = ArgTy; |
2649 | |
2650 | if (auto *VecTy = EltTy->getAs<VectorType>()) |
2651 | EltTy = VecTy->getElementType(); |
2652 | if (EltTy->isUnsignedIntegerType()) { |
2653 | Diag(Loc: TheCall->getArg(Arg: 0)->getBeginLoc(), |
2654 | DiagID: diag::err_builtin_invalid_arg_type) |
2655 | << 1 << /* signed integer or float ty*/ 3 << ArgTy; |
2656 | return ExprError(); |
2657 | } |
2658 | break; |
2659 | } |
2660 | |
2661 | // These builtins restrict the element type to floating point |
2662 | // types only. |
2663 | case Builtin::BI__builtin_elementwise_acos: |
2664 | case Builtin::BI__builtin_elementwise_asin: |
2665 | case Builtin::BI__builtin_elementwise_atan: |
2666 | case Builtin::BI__builtin_elementwise_ceil: |
2667 | case Builtin::BI__builtin_elementwise_cos: |
2668 | case Builtin::BI__builtin_elementwise_cosh: |
2669 | case Builtin::BI__builtin_elementwise_exp: |
2670 | case Builtin::BI__builtin_elementwise_exp2: |
2671 | case Builtin::BI__builtin_elementwise_floor: |
2672 | case Builtin::BI__builtin_elementwise_log: |
2673 | case Builtin::BI__builtin_elementwise_log2: |
2674 | case Builtin::BI__builtin_elementwise_log10: |
2675 | case Builtin::BI__builtin_elementwise_roundeven: |
2676 | case Builtin::BI__builtin_elementwise_round: |
2677 | case Builtin::BI__builtin_elementwise_rint: |
2678 | case Builtin::BI__builtin_elementwise_nearbyint: |
2679 | case Builtin::BI__builtin_elementwise_sin: |
2680 | case Builtin::BI__builtin_elementwise_sinh: |
2681 | case Builtin::BI__builtin_elementwise_sqrt: |
2682 | case Builtin::BI__builtin_elementwise_tan: |
2683 | case Builtin::BI__builtin_elementwise_tanh: |
2684 | case Builtin::BI__builtin_elementwise_trunc: |
2685 | case Builtin::BI__builtin_elementwise_canonicalize: { |
2686 | if (PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
2687 | return ExprError(); |
2688 | |
2689 | QualType ArgTy = TheCall->getArg(Arg: 0)->getType(); |
2690 | if (checkFPMathBuiltinElementType(S&: *this, Loc: TheCall->getArg(Arg: 0)->getBeginLoc(), |
2691 | ArgTy, ArgIndex: 1)) |
2692 | return ExprError(); |
2693 | break; |
2694 | } |
2695 | case Builtin::BI__builtin_elementwise_fma: { |
2696 | if (BuiltinElementwiseTernaryMath(TheCall)) |
2697 | return ExprError(); |
2698 | break; |
2699 | } |
2700 | |
2701 | // These builtins restrict the element type to floating point |
2702 | // types only, and take in two arguments. |
2703 | case Builtin::BI__builtin_elementwise_pow: { |
2704 | if (BuiltinElementwiseMath(TheCall)) |
2705 | return ExprError(); |
2706 | |
2707 | QualType ArgTy = TheCall->getArg(Arg: 0)->getType(); |
2708 | if (checkFPMathBuiltinElementType(S&: *this, Loc: TheCall->getArg(Arg: 0)->getBeginLoc(), |
2709 | ArgTy, ArgIndex: 1) || |
2710 | checkFPMathBuiltinElementType(S&: *this, Loc: TheCall->getArg(Arg: 1)->getBeginLoc(), |
2711 | ArgTy, ArgIndex: 2)) |
2712 | return ExprError(); |
2713 | break; |
2714 | } |
2715 | |
2716 | // These builtins restrict the element type to integer |
2717 | // types only. |
2718 | case Builtin::BI__builtin_elementwise_add_sat: |
2719 | case Builtin::BI__builtin_elementwise_sub_sat: { |
2720 | if (BuiltinElementwiseMath(TheCall)) |
2721 | return ExprError(); |
2722 | |
2723 | const Expr *Arg = TheCall->getArg(Arg: 0); |
2724 | QualType ArgTy = Arg->getType(); |
2725 | QualType EltTy = ArgTy; |
2726 | |
2727 | if (auto *VecTy = EltTy->getAs<VectorType>()) |
2728 | EltTy = VecTy->getElementType(); |
2729 | |
2730 | if (!EltTy->isIntegerType()) { |
2731 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
2732 | << 1 << /* integer ty */ 6 << ArgTy; |
2733 | return ExprError(); |
2734 | } |
2735 | break; |
2736 | } |
2737 | |
2738 | case Builtin::BI__builtin_elementwise_min: |
2739 | case Builtin::BI__builtin_elementwise_max: |
2740 | if (BuiltinElementwiseMath(TheCall)) |
2741 | return ExprError(); |
2742 | break; |
2743 | |
2744 | case Builtin::BI__builtin_elementwise_bitreverse: { |
2745 | if (PrepareBuiltinElementwiseMathOneArgCall(TheCall)) |
2746 | return ExprError(); |
2747 | |
2748 | const Expr *Arg = TheCall->getArg(Arg: 0); |
2749 | QualType ArgTy = Arg->getType(); |
2750 | QualType EltTy = ArgTy; |
2751 | |
2752 | if (auto *VecTy = EltTy->getAs<VectorType>()) |
2753 | EltTy = VecTy->getElementType(); |
2754 | |
2755 | if (!EltTy->isIntegerType()) { |
2756 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
2757 | << 1 << /* integer ty */ 6 << ArgTy; |
2758 | return ExprError(); |
2759 | } |
2760 | break; |
2761 | } |
2762 | |
2763 | case Builtin::BI__builtin_elementwise_copysign: { |
2764 | if (checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
2765 | return ExprError(); |
2766 | |
2767 | ExprResult Magnitude = UsualUnaryConversions(E: TheCall->getArg(Arg: 0)); |
2768 | ExprResult Sign = UsualUnaryConversions(E: TheCall->getArg(Arg: 1)); |
2769 | if (Magnitude.isInvalid() || Sign.isInvalid()) |
2770 | return ExprError(); |
2771 | |
2772 | QualType MagnitudeTy = Magnitude.get()->getType(); |
2773 | QualType SignTy = Sign.get()->getType(); |
2774 | if (checkFPMathBuiltinElementType(S&: *this, Loc: TheCall->getArg(Arg: 0)->getBeginLoc(), |
2775 | ArgTy: MagnitudeTy, ArgIndex: 1) || |
2776 | checkFPMathBuiltinElementType(S&: *this, Loc: TheCall->getArg(Arg: 1)->getBeginLoc(), |
2777 | ArgTy: SignTy, ArgIndex: 2)) { |
2778 | return ExprError(); |
2779 | } |
2780 | |
2781 | if (MagnitudeTy.getCanonicalType() != SignTy.getCanonicalType()) { |
2782 | return Diag(Loc: Sign.get()->getBeginLoc(), |
2783 | DiagID: diag::err_typecheck_call_different_arg_types) |
2784 | << MagnitudeTy << SignTy; |
2785 | } |
2786 | |
2787 | TheCall->setArg(Arg: 0, ArgExpr: Magnitude.get()); |
2788 | TheCall->setArg(Arg: 1, ArgExpr: Sign.get()); |
2789 | TheCall->setType(Magnitude.get()->getType()); |
2790 | break; |
2791 | } |
2792 | case Builtin::BI__builtin_reduce_max: |
2793 | case Builtin::BI__builtin_reduce_min: { |
2794 | if (PrepareBuiltinReduceMathOneArgCall(TheCall)) |
2795 | return ExprError(); |
2796 | |
2797 | const Expr *Arg = TheCall->getArg(Arg: 0); |
2798 | const auto *TyA = Arg->getType()->getAs<VectorType>(); |
2799 | |
2800 | QualType ElTy; |
2801 | if (TyA) |
2802 | ElTy = TyA->getElementType(); |
2803 | else if (Arg->getType()->isSizelessVectorType()) |
2804 | ElTy = Arg->getType()->getSizelessVectorEltType(Ctx: Context); |
2805 | |
2806 | if (ElTy.isNull()) { |
2807 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
2808 | << 1 << /* vector ty*/ 4 << Arg->getType(); |
2809 | return ExprError(); |
2810 | } |
2811 | |
2812 | TheCall->setType(ElTy); |
2813 | break; |
2814 | } |
2815 | |
2816 | // These builtins support vectors of integers only. |
2817 | // TODO: ADD/MUL should support floating-point types. |
2818 | case Builtin::BI__builtin_reduce_add: |
2819 | case Builtin::BI__builtin_reduce_mul: |
2820 | case Builtin::BI__builtin_reduce_xor: |
2821 | case Builtin::BI__builtin_reduce_or: |
2822 | case Builtin::BI__builtin_reduce_and: { |
2823 | if (PrepareBuiltinReduceMathOneArgCall(TheCall)) |
2824 | return ExprError(); |
2825 | |
2826 | const Expr *Arg = TheCall->getArg(Arg: 0); |
2827 | const auto *TyA = Arg->getType()->getAs<VectorType>(); |
2828 | |
2829 | QualType ElTy; |
2830 | if (TyA) |
2831 | ElTy = TyA->getElementType(); |
2832 | else if (Arg->getType()->isSizelessVectorType()) |
2833 | ElTy = Arg->getType()->getSizelessVectorEltType(Ctx: Context); |
2834 | |
2835 | if (ElTy.isNull() || !ElTy->isIntegerType()) { |
2836 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
2837 | << 1 << /* vector of integers */ 6 << Arg->getType(); |
2838 | return ExprError(); |
2839 | } |
2840 | |
2841 | TheCall->setType(ElTy); |
2842 | break; |
2843 | } |
2844 | |
2845 | case Builtin::BI__builtin_matrix_transpose: |
2846 | return BuiltinMatrixTranspose(TheCall, CallResult: TheCallResult); |
2847 | |
2848 | case Builtin::BI__builtin_matrix_column_major_load: |
2849 | return BuiltinMatrixColumnMajorLoad(TheCall, CallResult: TheCallResult); |
2850 | |
2851 | case Builtin::BI__builtin_matrix_column_major_store: |
2852 | return BuiltinMatrixColumnMajorStore(TheCall, CallResult: TheCallResult); |
2853 | |
2854 | case Builtin::BI__builtin_verbose_trap: |
2855 | if (!checkBuiltinVerboseTrap(Call: TheCall, S&: *this)) |
2856 | return ExprError(); |
2857 | break; |
2858 | |
2859 | case Builtin::BI__builtin_get_device_side_mangled_name: { |
2860 | auto Check = [](CallExpr *TheCall) { |
2861 | if (TheCall->getNumArgs() != 1) |
2862 | return false; |
2863 | auto *DRE = dyn_cast<DeclRefExpr>(Val: TheCall->getArg(Arg: 0)->IgnoreImpCasts()); |
2864 | if (!DRE) |
2865 | return false; |
2866 | auto *D = DRE->getDecl(); |
2867 | if (!isa<FunctionDecl>(Val: D) && !isa<VarDecl>(Val: D)) |
2868 | return false; |
2869 | return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() || |
2870 | D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>(); |
2871 | }; |
2872 | if (!Check(TheCall)) { |
2873 | Diag(Loc: TheCall->getBeginLoc(), |
2874 | DiagID: diag::err_hip_invalid_args_builtin_mangled_name); |
2875 | return ExprError(); |
2876 | } |
2877 | break; |
2878 | } |
2879 | case Builtin::BI__builtin_popcountg: |
2880 | if (BuiltinPopcountg(S&: *this, TheCall)) |
2881 | return ExprError(); |
2882 | break; |
2883 | case Builtin::BI__builtin_clzg: |
2884 | case Builtin::BI__builtin_ctzg: |
2885 | if (BuiltinCountZeroBitsGeneric(S&: *this, TheCall)) |
2886 | return ExprError(); |
2887 | break; |
2888 | |
2889 | case Builtin::BI__builtin_allow_runtime_check: { |
2890 | Expr *Arg = TheCall->getArg(Arg: 0); |
2891 | // Check if the argument is a string literal. |
2892 | if (!isa<StringLiteral>(Val: Arg->IgnoreParenImpCasts())) { |
2893 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_expr_not_string_literal) |
2894 | << Arg->getSourceRange(); |
2895 | return ExprError(); |
2896 | } |
2897 | break; |
2898 | } |
2899 | } |
2900 | |
2901 | if (getLangOpts().HLSL && HLSL().CheckBuiltinFunctionCall(BuiltinID, TheCall)) |
2902 | return ExprError(); |
2903 | |
2904 | // Since the target specific builtins for each arch overlap, only check those |
2905 | // of the arch we are compiling for. |
2906 | if (Context.BuiltinInfo.isTSBuiltin(ID: BuiltinID)) { |
2907 | if (Context.BuiltinInfo.isAuxBuiltinID(ID: BuiltinID)) { |
2908 | assert(Context.getAuxTargetInfo() && |
2909 | "Aux Target Builtin, but not an aux target?" ); |
2910 | |
2911 | if (CheckTSBuiltinFunctionCall( |
2912 | TI: *Context.getAuxTargetInfo(), |
2913 | BuiltinID: Context.BuiltinInfo.getAuxBuiltinID(ID: BuiltinID), TheCall)) |
2914 | return ExprError(); |
2915 | } else { |
2916 | if (CheckTSBuiltinFunctionCall(TI: Context.getTargetInfo(), BuiltinID, |
2917 | TheCall)) |
2918 | return ExprError(); |
2919 | } |
2920 | } |
2921 | |
2922 | return TheCallResult; |
2923 | } |
2924 | |
2925 | bool Sema::ValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) { |
2926 | llvm::APSInt Result; |
2927 | // We can't check the value of a dependent argument. |
2928 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
2929 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
2930 | return false; |
2931 | |
2932 | // Check constant-ness first. |
2933 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
2934 | return true; |
2935 | |
2936 | // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s. |
2937 | if (Result.isShiftedMask() || (~Result).isShiftedMask()) |
2938 | return false; |
2939 | |
2940 | return Diag(Loc: TheCall->getBeginLoc(), |
2941 | DiagID: diag::err_argument_not_contiguous_bit_field) |
2942 | << ArgNum << Arg->getSourceRange(); |
2943 | } |
2944 | |
2945 | bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, |
2946 | bool IsVariadic, FormatStringInfo *FSI) { |
2947 | if (Format->getFirstArg() == 0) |
2948 | FSI->ArgPassingKind = FAPK_VAList; |
2949 | else if (IsVariadic) |
2950 | FSI->ArgPassingKind = FAPK_Variadic; |
2951 | else |
2952 | FSI->ArgPassingKind = FAPK_Fixed; |
2953 | FSI->FormatIdx = Format->getFormatIdx() - 1; |
2954 | FSI->FirstDataArg = |
2955 | FSI->ArgPassingKind == FAPK_VAList ? 0 : Format->getFirstArg() - 1; |
2956 | |
2957 | // The way the format attribute works in GCC, the implicit this argument |
2958 | // of member functions is counted. However, it doesn't appear in our own |
2959 | // lists, so decrement format_idx in that case. |
2960 | if (IsCXXMember) { |
2961 | if(FSI->FormatIdx == 0) |
2962 | return false; |
2963 | --FSI->FormatIdx; |
2964 | if (FSI->FirstDataArg != 0) |
2965 | --FSI->FirstDataArg; |
2966 | } |
2967 | return true; |
2968 | } |
2969 | |
2970 | /// Checks if a the given expression evaluates to null. |
2971 | /// |
2972 | /// Returns true if the value evaluates to null. |
2973 | static bool CheckNonNullExpr(Sema &S, const Expr *Expr) { |
2974 | // Treat (smart) pointers constructed from nullptr as null, whether we can |
2975 | // const-evaluate them or not. |
2976 | // This must happen first: the smart pointer expr might have _Nonnull type! |
2977 | if (isa<CXXNullPtrLiteralExpr>( |
2978 | Val: IgnoreExprNodes(E: Expr, Fns&: IgnoreImplicitAsWrittenSingleStep, |
2979 | Fns&: IgnoreElidableImplicitConstructorSingleStep))) |
2980 | return true; |
2981 | |
2982 | // If the expression has non-null type, it doesn't evaluate to null. |
2983 | if (auto nullability = Expr->IgnoreImplicit()->getType()->getNullability()) { |
2984 | if (*nullability == NullabilityKind::NonNull) |
2985 | return false; |
2986 | } |
2987 | |
2988 | // As a special case, transparent unions initialized with zero are |
2989 | // considered null for the purposes of the nonnull attribute. |
2990 | if (const RecordType *UT = Expr->getType()->getAsUnionType(); |
2991 | UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) { |
2992 | if (const auto *CLE = dyn_cast<CompoundLiteralExpr>(Val: Expr)) |
2993 | if (const auto *ILE = dyn_cast<InitListExpr>(Val: CLE->getInitializer())) |
2994 | Expr = ILE->getInit(Init: 0); |
2995 | } |
2996 | |
2997 | bool Result; |
2998 | return (!Expr->isValueDependent() && |
2999 | Expr->EvaluateAsBooleanCondition(Result, Ctx: S.Context) && |
3000 | !Result); |
3001 | } |
3002 | |
3003 | static void CheckNonNullArgument(Sema &S, |
3004 | const Expr *ArgExpr, |
3005 | SourceLocation CallSiteLoc) { |
3006 | if (CheckNonNullExpr(S, Expr: ArgExpr)) |
3007 | S.DiagRuntimeBehavior(Loc: CallSiteLoc, Statement: ArgExpr, |
3008 | PD: S.PDiag(DiagID: diag::warn_null_arg) |
3009 | << ArgExpr->getSourceRange()); |
3010 | } |
3011 | |
3012 | /// Determine whether the given type has a non-null nullability annotation. |
3013 | static bool isNonNullType(QualType type) { |
3014 | if (auto nullability = type->getNullability()) |
3015 | return *nullability == NullabilityKind::NonNull; |
3016 | |
3017 | return false; |
3018 | } |
3019 | |
3020 | static void CheckNonNullArguments(Sema &S, |
3021 | const NamedDecl *FDecl, |
3022 | const FunctionProtoType *Proto, |
3023 | ArrayRef<const Expr *> Args, |
3024 | SourceLocation CallSiteLoc) { |
3025 | assert((FDecl || Proto) && "Need a function declaration or prototype" ); |
3026 | |
3027 | // Already checked by constant evaluator. |
3028 | if (S.isConstantEvaluatedContext()) |
3029 | return; |
3030 | // Check the attributes attached to the method/function itself. |
3031 | llvm::SmallBitVector NonNullArgs; |
3032 | if (FDecl) { |
3033 | // Handle the nonnull attribute on the function/method declaration itself. |
3034 | for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) { |
3035 | if (!NonNull->args_size()) { |
3036 | // Easy case: all pointer arguments are nonnull. |
3037 | for (const auto *Arg : Args) |
3038 | if (S.isValidPointerAttrType(T: Arg->getType())) |
3039 | CheckNonNullArgument(S, ArgExpr: Arg, CallSiteLoc); |
3040 | return; |
3041 | } |
3042 | |
3043 | for (const ParamIdx &Idx : NonNull->args()) { |
3044 | unsigned IdxAST = Idx.getASTIndex(); |
3045 | if (IdxAST >= Args.size()) |
3046 | continue; |
3047 | if (NonNullArgs.empty()) |
3048 | NonNullArgs.resize(N: Args.size()); |
3049 | NonNullArgs.set(IdxAST); |
3050 | } |
3051 | } |
3052 | } |
3053 | |
3054 | if (FDecl && (isa<FunctionDecl>(Val: FDecl) || isa<ObjCMethodDecl>(Val: FDecl))) { |
3055 | // Handle the nonnull attribute on the parameters of the |
3056 | // function/method. |
3057 | ArrayRef<ParmVarDecl*> parms; |
3058 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: FDecl)) |
3059 | parms = FD->parameters(); |
3060 | else |
3061 | parms = cast<ObjCMethodDecl>(Val: FDecl)->parameters(); |
3062 | |
3063 | unsigned ParamIndex = 0; |
3064 | for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end(); |
3065 | I != E; ++I, ++ParamIndex) { |
3066 | const ParmVarDecl *PVD = *I; |
3067 | if (PVD->hasAttr<NonNullAttr>() || isNonNullType(type: PVD->getType())) { |
3068 | if (NonNullArgs.empty()) |
3069 | NonNullArgs.resize(N: Args.size()); |
3070 | |
3071 | NonNullArgs.set(ParamIndex); |
3072 | } |
3073 | } |
3074 | } else { |
3075 | // If we have a non-function, non-method declaration but no |
3076 | // function prototype, try to dig out the function prototype. |
3077 | if (!Proto) { |
3078 | if (const ValueDecl *VD = dyn_cast<ValueDecl>(Val: FDecl)) { |
3079 | QualType type = VD->getType().getNonReferenceType(); |
3080 | if (auto pointerType = type->getAs<PointerType>()) |
3081 | type = pointerType->getPointeeType(); |
3082 | else if (auto blockType = type->getAs<BlockPointerType>()) |
3083 | type = blockType->getPointeeType(); |
3084 | // FIXME: data member pointers? |
3085 | |
3086 | // Dig out the function prototype, if there is one. |
3087 | Proto = type->getAs<FunctionProtoType>(); |
3088 | } |
3089 | } |
3090 | |
3091 | // Fill in non-null argument information from the nullability |
3092 | // information on the parameter types (if we have them). |
3093 | if (Proto) { |
3094 | unsigned Index = 0; |
3095 | for (auto paramType : Proto->getParamTypes()) { |
3096 | if (isNonNullType(type: paramType)) { |
3097 | if (NonNullArgs.empty()) |
3098 | NonNullArgs.resize(N: Args.size()); |
3099 | |
3100 | NonNullArgs.set(Index); |
3101 | } |
3102 | |
3103 | ++Index; |
3104 | } |
3105 | } |
3106 | } |
3107 | |
3108 | // Check for non-null arguments. |
3109 | for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size(); |
3110 | ArgIndex != ArgIndexEnd; ++ArgIndex) { |
3111 | if (NonNullArgs[ArgIndex]) |
3112 | CheckNonNullArgument(S, ArgExpr: Args[ArgIndex], CallSiteLoc: Args[ArgIndex]->getExprLoc()); |
3113 | } |
3114 | } |
3115 | |
3116 | void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl, |
3117 | StringRef ParamName, QualType ArgTy, |
3118 | QualType ParamTy) { |
3119 | |
3120 | // If a function accepts a pointer or reference type |
3121 | if (!ParamTy->isPointerType() && !ParamTy->isReferenceType()) |
3122 | return; |
3123 | |
3124 | // If the parameter is a pointer type, get the pointee type for the |
3125 | // argument too. If the parameter is a reference type, don't try to get |
3126 | // the pointee type for the argument. |
3127 | if (ParamTy->isPointerType()) |
3128 | ArgTy = ArgTy->getPointeeType(); |
3129 | |
3130 | // Remove reference or pointer |
3131 | ParamTy = ParamTy->getPointeeType(); |
3132 | |
3133 | // Find expected alignment, and the actual alignment of the passed object. |
3134 | // getTypeAlignInChars requires complete types |
3135 | if (ArgTy.isNull() || ParamTy->isDependentType() || |
3136 | ParamTy->isIncompleteType() || ArgTy->isIncompleteType() || |
3137 | ParamTy->isUndeducedType() || ArgTy->isUndeducedType()) |
3138 | return; |
3139 | |
3140 | CharUnits ParamAlign = Context.getTypeAlignInChars(T: ParamTy); |
3141 | CharUnits ArgAlign = Context.getTypeAlignInChars(T: ArgTy); |
3142 | |
3143 | // If the argument is less aligned than the parameter, there is a |
3144 | // potential alignment issue. |
3145 | if (ArgAlign < ParamAlign) |
3146 | Diag(Loc, DiagID: diag::warn_param_mismatched_alignment) |
3147 | << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity() |
3148 | << ParamName << (FDecl != nullptr) << FDecl; |
3149 | } |
3150 | |
3151 | void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, |
3152 | const Expr *ThisArg, ArrayRef<const Expr *> Args, |
3153 | bool IsMemberFunction, SourceLocation Loc, |
3154 | SourceRange Range, VariadicCallType CallType) { |
3155 | // FIXME: We should check as much as we can in the template definition. |
3156 | if (CurContext->isDependentContext()) |
3157 | return; |
3158 | |
3159 | // Printf and scanf checking. |
3160 | llvm::SmallBitVector CheckedVarArgs; |
3161 | if (FDecl) { |
3162 | for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { |
3163 | // Only create vector if there are format attributes. |
3164 | CheckedVarArgs.resize(N: Args.size()); |
3165 | |
3166 | CheckFormatArguments(Format: I, Args, IsCXXMember: IsMemberFunction, CallType, Loc, Range, |
3167 | CheckedVarArgs); |
3168 | } |
3169 | } |
3170 | |
3171 | // Refuse POD arguments that weren't caught by the format string |
3172 | // checks above. |
3173 | auto *FD = dyn_cast_or_null<FunctionDecl>(Val: FDecl); |
3174 | if (CallType != VariadicDoesNotApply && |
3175 | (!FD || FD->getBuiltinID() != Builtin::BI__noop)) { |
3176 | unsigned NumParams = Proto ? Proto->getNumParams() |
3177 | : isa_and_nonnull<FunctionDecl>(Val: FDecl) |
3178 | ? cast<FunctionDecl>(Val: FDecl)->getNumParams() |
3179 | : isa_and_nonnull<ObjCMethodDecl>(Val: FDecl) |
3180 | ? cast<ObjCMethodDecl>(Val: FDecl)->param_size() |
3181 | : 0; |
3182 | |
3183 | for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) { |
3184 | // Args[ArgIdx] can be null in malformed code. |
3185 | if (const Expr *Arg = Args[ArgIdx]) { |
3186 | if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx]) |
3187 | checkVariadicArgument(E: Arg, CT: CallType); |
3188 | } |
3189 | } |
3190 | } |
3191 | |
3192 | if (FDecl || Proto) { |
3193 | CheckNonNullArguments(S&: *this, FDecl, Proto, Args, CallSiteLoc: Loc); |
3194 | |
3195 | // Type safety checking. |
3196 | if (FDecl) { |
3197 | for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>()) |
3198 | CheckArgumentWithTypeTag(Attr: I, ExprArgs: Args, CallSiteLoc: Loc); |
3199 | } |
3200 | } |
3201 | |
3202 | // Check that passed arguments match the alignment of original arguments. |
3203 | // Try to get the missing prototype from the declaration. |
3204 | if (!Proto && FDecl) { |
3205 | const auto *FT = FDecl->getFunctionType(); |
3206 | if (isa_and_nonnull<FunctionProtoType>(Val: FT)) |
3207 | Proto = cast<FunctionProtoType>(Val: FDecl->getFunctionType()); |
3208 | } |
3209 | if (Proto) { |
3210 | // For variadic functions, we may have more args than parameters. |
3211 | // For some K&R functions, we may have less args than parameters. |
3212 | const auto N = std::min<unsigned>(a: Proto->getNumParams(), b: Args.size()); |
3213 | bool IsScalableRet = Proto->getReturnType()->isSizelessVectorType(); |
3214 | bool IsScalableArg = false; |
3215 | for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) { |
3216 | // Args[ArgIdx] can be null in malformed code. |
3217 | if (const Expr *Arg = Args[ArgIdx]) { |
3218 | if (Arg->containsErrors()) |
3219 | continue; |
3220 | |
3221 | if (Context.getTargetInfo().getTriple().isOSAIX() && FDecl && Arg && |
3222 | FDecl->hasLinkage() && |
3223 | FDecl->getFormalLinkage() != Linkage::Internal && |
3224 | CallType == VariadicDoesNotApply) |
3225 | PPC().checkAIXMemberAlignment(Loc: (Arg->getExprLoc()), Arg); |
3226 | |
3227 | QualType ParamTy = Proto->getParamType(i: ArgIdx); |
3228 | if (ParamTy->isSizelessVectorType()) |
3229 | IsScalableArg = true; |
3230 | QualType ArgTy = Arg->getType(); |
3231 | CheckArgAlignment(Loc: Arg->getExprLoc(), FDecl, ParamName: std::to_string(val: ArgIdx + 1), |
3232 | ArgTy, ParamTy); |
3233 | } |
3234 | } |
3235 | |
3236 | // If the callee has an AArch64 SME attribute to indicate that it is an |
3237 | // __arm_streaming function, then the caller requires SME to be available. |
3238 | FunctionProtoType::ExtProtoInfo ExtInfo = Proto->getExtProtoInfo(); |
3239 | if (ExtInfo.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask) { |
3240 | if (auto *CallerFD = dyn_cast<FunctionDecl>(Val: CurContext)) { |
3241 | llvm::StringMap<bool> CallerFeatureMap; |
3242 | Context.getFunctionFeatureMap(FeatureMap&: CallerFeatureMap, CallerFD); |
3243 | if (!CallerFeatureMap.contains(Key: "sme" )) |
3244 | Diag(Loc, DiagID: diag::err_sme_call_in_non_sme_target); |
3245 | } else if (!Context.getTargetInfo().hasFeature(Feature: "sme" )) { |
3246 | Diag(Loc, DiagID: diag::err_sme_call_in_non_sme_target); |
3247 | } |
3248 | } |
3249 | |
3250 | // If the call requires a streaming-mode change and has scalable vector |
3251 | // arguments or return values, then warn the user that the streaming and |
3252 | // non-streaming vector lengths may be different. |
3253 | const auto *CallerFD = dyn_cast<FunctionDecl>(Val: CurContext); |
3254 | if (CallerFD && (!FD || !FD->getBuiltinID()) && |
3255 | (IsScalableArg || IsScalableRet)) { |
3256 | bool IsCalleeStreaming = |
3257 | ExtInfo.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask; |
3258 | bool IsCalleeStreamingCompatible = |
3259 | ExtInfo.AArch64SMEAttributes & |
3260 | FunctionType::SME_PStateSMCompatibleMask; |
3261 | SemaARM::ArmStreamingType CallerFnType = getArmStreamingFnType(FD: CallerFD); |
3262 | if (!IsCalleeStreamingCompatible && |
3263 | (CallerFnType == SemaARM::ArmStreamingCompatible || |
3264 | ((CallerFnType == SemaARM::ArmStreaming) ^ IsCalleeStreaming))) { |
3265 | if (IsScalableArg) |
3266 | Diag(Loc, DiagID: diag::warn_sme_streaming_pass_return_vl_to_non_streaming) |
3267 | << /*IsArg=*/true; |
3268 | if (IsScalableRet) |
3269 | Diag(Loc, DiagID: diag::warn_sme_streaming_pass_return_vl_to_non_streaming) |
3270 | << /*IsArg=*/false; |
3271 | } |
3272 | } |
3273 | |
3274 | FunctionType::ArmStateValue CalleeArmZAState = |
3275 | FunctionType::getArmZAState(AttrBits: ExtInfo.AArch64SMEAttributes); |
3276 | FunctionType::ArmStateValue CalleeArmZT0State = |
3277 | FunctionType::getArmZT0State(AttrBits: ExtInfo.AArch64SMEAttributes); |
3278 | if (CalleeArmZAState != FunctionType::ARM_None || |
3279 | CalleeArmZT0State != FunctionType::ARM_None) { |
3280 | bool CallerHasZAState = false; |
3281 | bool CallerHasZT0State = false; |
3282 | if (CallerFD) { |
3283 | auto *Attr = CallerFD->getAttr<ArmNewAttr>(); |
3284 | if (Attr && Attr->isNewZA()) |
3285 | CallerHasZAState = true; |
3286 | if (Attr && Attr->isNewZT0()) |
3287 | CallerHasZT0State = true; |
3288 | if (const auto *FPT = CallerFD->getType()->getAs<FunctionProtoType>()) { |
3289 | CallerHasZAState |= |
3290 | FunctionType::getArmZAState( |
3291 | AttrBits: FPT->getExtProtoInfo().AArch64SMEAttributes) != |
3292 | FunctionType::ARM_None; |
3293 | CallerHasZT0State |= |
3294 | FunctionType::getArmZT0State( |
3295 | AttrBits: FPT->getExtProtoInfo().AArch64SMEAttributes) != |
3296 | FunctionType::ARM_None; |
3297 | } |
3298 | } |
3299 | |
3300 | if (CalleeArmZAState != FunctionType::ARM_None && !CallerHasZAState) |
3301 | Diag(Loc, DiagID: diag::err_sme_za_call_no_za_state); |
3302 | |
3303 | if (CalleeArmZT0State != FunctionType::ARM_None && !CallerHasZT0State) |
3304 | Diag(Loc, DiagID: diag::err_sme_zt0_call_no_zt0_state); |
3305 | |
3306 | if (CallerHasZAState && CalleeArmZAState == FunctionType::ARM_None && |
3307 | CalleeArmZT0State != FunctionType::ARM_None) { |
3308 | Diag(Loc, DiagID: diag::err_sme_unimplemented_za_save_restore); |
3309 | Diag(Loc, DiagID: diag::note_sme_use_preserves_za); |
3310 | } |
3311 | } |
3312 | } |
3313 | |
3314 | if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) { |
3315 | auto *AA = FDecl->getAttr<AllocAlignAttr>(); |
3316 | const Expr *Arg = Args[AA->getParamIndex().getASTIndex()]; |
3317 | if (!Arg->isValueDependent()) { |
3318 | Expr::EvalResult Align; |
3319 | if (Arg->EvaluateAsInt(Result&: Align, Ctx: Context)) { |
3320 | const llvm::APSInt &I = Align.Val.getInt(); |
3321 | if (!I.isPowerOf2()) |
3322 | Diag(Loc: Arg->getExprLoc(), DiagID: diag::warn_alignment_not_power_of_two) |
3323 | << Arg->getSourceRange(); |
3324 | |
3325 | if (I > Sema::MaximumAlignment) |
3326 | Diag(Loc: Arg->getExprLoc(), DiagID: diag::warn_assume_aligned_too_great) |
3327 | << Arg->getSourceRange() << Sema::MaximumAlignment; |
3328 | } |
3329 | } |
3330 | } |
3331 | |
3332 | if (FD) |
3333 | diagnoseArgDependentDiagnoseIfAttrs(Function: FD, ThisArg, Args, Loc); |
3334 | } |
3335 | |
3336 | void Sema::CheckConstrainedAuto(const AutoType *AutoT, SourceLocation Loc) { |
3337 | if (ConceptDecl *Decl = AutoT->getTypeConstraintConcept()) { |
3338 | DiagnoseUseOfDecl(D: Decl, Locs: Loc); |
3339 | } |
3340 | } |
3341 | |
3342 | void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType, |
3343 | ArrayRef<const Expr *> Args, |
3344 | const FunctionProtoType *Proto, |
3345 | SourceLocation Loc) { |
3346 | VariadicCallType CallType = |
3347 | Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; |
3348 | |
3349 | auto *Ctor = cast<CXXConstructorDecl>(Val: FDecl); |
3350 | CheckArgAlignment( |
3351 | Loc, FDecl, ParamName: "'this'" , ArgTy: Context.getPointerType(T: ThisType), |
3352 | ParamTy: Context.getPointerType(T: Ctor->getFunctionObjectParameterType())); |
3353 | |
3354 | checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true, |
3355 | Loc, Range: SourceRange(), CallType); |
3356 | } |
3357 | |
3358 | bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, |
3359 | const FunctionProtoType *Proto) { |
3360 | bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(Val: TheCall) && |
3361 | isa<CXXMethodDecl>(Val: FDecl); |
3362 | bool IsMemberFunction = isa<CXXMemberCallExpr>(Val: TheCall) || |
3363 | IsMemberOperatorCall; |
3364 | VariadicCallType CallType = getVariadicCallType(FDecl, Proto, |
3365 | Fn: TheCall->getCallee()); |
3366 | Expr** Args = TheCall->getArgs(); |
3367 | unsigned NumArgs = TheCall->getNumArgs(); |
3368 | |
3369 | Expr *ImplicitThis = nullptr; |
3370 | if (IsMemberOperatorCall && !FDecl->hasCXXExplicitFunctionObjectParameter()) { |
3371 | // If this is a call to a member operator, hide the first |
3372 | // argument from checkCall. |
3373 | // FIXME: Our choice of AST representation here is less than ideal. |
3374 | ImplicitThis = Args[0]; |
3375 | ++Args; |
3376 | --NumArgs; |
3377 | } else if (IsMemberFunction && !FDecl->isStatic() && |
3378 | !FDecl->hasCXXExplicitFunctionObjectParameter()) |
3379 | ImplicitThis = |
3380 | cast<CXXMemberCallExpr>(Val: TheCall)->getImplicitObjectArgument(); |
3381 | |
3382 | if (ImplicitThis) { |
3383 | // ImplicitThis may or may not be a pointer, depending on whether . or -> is |
3384 | // used. |
3385 | QualType ThisType = ImplicitThis->getType(); |
3386 | if (!ThisType->isPointerType()) { |
3387 | assert(!ThisType->isReferenceType()); |
3388 | ThisType = Context.getPointerType(T: ThisType); |
3389 | } |
3390 | |
3391 | QualType ThisTypeFromDecl = Context.getPointerType( |
3392 | T: cast<CXXMethodDecl>(Val: FDecl)->getFunctionObjectParameterType()); |
3393 | |
3394 | CheckArgAlignment(Loc: TheCall->getRParenLoc(), FDecl, ParamName: "'this'" , ArgTy: ThisType, |
3395 | ParamTy: ThisTypeFromDecl); |
3396 | } |
3397 | |
3398 | checkCall(FDecl, Proto, ThisArg: ImplicitThis, Args: llvm::ArrayRef(Args, NumArgs), |
3399 | IsMemberFunction, Loc: TheCall->getRParenLoc(), |
3400 | Range: TheCall->getCallee()->getSourceRange(), CallType); |
3401 | |
3402 | IdentifierInfo *FnInfo = FDecl->getIdentifier(); |
3403 | // None of the checks below are needed for functions that don't have |
3404 | // simple names (e.g., C++ conversion functions). |
3405 | if (!FnInfo) |
3406 | return false; |
3407 | |
3408 | // Enforce TCB except for builtin calls, which are always allowed. |
3409 | if (FDecl->getBuiltinID() == 0) |
3410 | CheckTCBEnforcement(CallExprLoc: TheCall->getExprLoc(), Callee: FDecl); |
3411 | |
3412 | CheckAbsoluteValueFunction(Call: TheCall, FDecl); |
3413 | CheckMaxUnsignedZero(Call: TheCall, FDecl); |
3414 | CheckInfNaNFunction(Call: TheCall, FDecl); |
3415 | |
3416 | if (getLangOpts().ObjC) |
3417 | ObjC().DiagnoseCStringFormatDirectiveInCFAPI(FDecl, Args, NumArgs); |
3418 | |
3419 | unsigned CMId = FDecl->getMemoryFunctionKind(); |
3420 | |
3421 | // Handle memory setting and copying functions. |
3422 | switch (CMId) { |
3423 | case 0: |
3424 | return false; |
3425 | case Builtin::BIstrlcpy: // fallthrough |
3426 | case Builtin::BIstrlcat: |
3427 | CheckStrlcpycatArguments(Call: TheCall, FnName: FnInfo); |
3428 | break; |
3429 | case Builtin::BIstrncat: |
3430 | CheckStrncatArguments(Call: TheCall, FnName: FnInfo); |
3431 | break; |
3432 | case Builtin::BIfree: |
3433 | CheckFreeArguments(E: TheCall); |
3434 | break; |
3435 | default: |
3436 | CheckMemaccessArguments(Call: TheCall, BId: CMId, FnName: FnInfo); |
3437 | } |
3438 | |
3439 | return false; |
3440 | } |
3441 | |
3442 | bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, |
3443 | const FunctionProtoType *Proto) { |
3444 | QualType Ty; |
3445 | if (const auto *V = dyn_cast<VarDecl>(Val: NDecl)) |
3446 | Ty = V->getType().getNonReferenceType(); |
3447 | else if (const auto *F = dyn_cast<FieldDecl>(Val: NDecl)) |
3448 | Ty = F->getType().getNonReferenceType(); |
3449 | else |
3450 | return false; |
3451 | |
3452 | if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() && |
3453 | !Ty->isFunctionProtoType()) |
3454 | return false; |
3455 | |
3456 | VariadicCallType CallType; |
3457 | if (!Proto || !Proto->isVariadic()) { |
3458 | CallType = VariadicDoesNotApply; |
3459 | } else if (Ty->isBlockPointerType()) { |
3460 | CallType = VariadicBlock; |
3461 | } else { // Ty->isFunctionPointerType() |
3462 | CallType = VariadicFunction; |
3463 | } |
3464 | |
3465 | checkCall(FDecl: NDecl, Proto, /*ThisArg=*/nullptr, |
3466 | Args: llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), |
3467 | /*IsMemberFunction=*/false, Loc: TheCall->getRParenLoc(), |
3468 | Range: TheCall->getCallee()->getSourceRange(), CallType); |
3469 | |
3470 | return false; |
3471 | } |
3472 | |
3473 | bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) { |
3474 | VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto, |
3475 | Fn: TheCall->getCallee()); |
3476 | checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr, |
3477 | Args: llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), |
3478 | /*IsMemberFunction=*/false, Loc: TheCall->getRParenLoc(), |
3479 | Range: TheCall->getCallee()->getSourceRange(), CallType); |
3480 | |
3481 | return false; |
3482 | } |
3483 | |
3484 | static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) { |
3485 | if (!llvm::isValidAtomicOrderingCABI(I: Ordering)) |
3486 | return false; |
3487 | |
3488 | auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering; |
3489 | switch (Op) { |
3490 | case AtomicExpr::AO__c11_atomic_init: |
3491 | case AtomicExpr::AO__opencl_atomic_init: |
3492 | llvm_unreachable("There is no ordering argument for an init" ); |
3493 | |
3494 | case AtomicExpr::AO__c11_atomic_load: |
3495 | case AtomicExpr::AO__opencl_atomic_load: |
3496 | case AtomicExpr::AO__hip_atomic_load: |
3497 | case AtomicExpr::AO__atomic_load_n: |
3498 | case AtomicExpr::AO__atomic_load: |
3499 | case AtomicExpr::AO__scoped_atomic_load_n: |
3500 | case AtomicExpr::AO__scoped_atomic_load: |
3501 | return OrderingCABI != llvm::AtomicOrderingCABI::release && |
3502 | OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; |
3503 | |
3504 | case AtomicExpr::AO__c11_atomic_store: |
3505 | case AtomicExpr::AO__opencl_atomic_store: |
3506 | case AtomicExpr::AO__hip_atomic_store: |
3507 | case AtomicExpr::AO__atomic_store: |
3508 | case AtomicExpr::AO__atomic_store_n: |
3509 | case AtomicExpr::AO__scoped_atomic_store: |
3510 | case AtomicExpr::AO__scoped_atomic_store_n: |
3511 | return OrderingCABI != llvm::AtomicOrderingCABI::consume && |
3512 | OrderingCABI != llvm::AtomicOrderingCABI::acquire && |
3513 | OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; |
3514 | |
3515 | default: |
3516 | return true; |
3517 | } |
3518 | } |
3519 | |
3520 | ExprResult Sema::AtomicOpsOverloaded(ExprResult TheCallResult, |
3521 | AtomicExpr::AtomicOp Op) { |
3522 | CallExpr *TheCall = cast<CallExpr>(Val: TheCallResult.get()); |
3523 | DeclRefExpr *DRE =cast<DeclRefExpr>(Val: TheCall->getCallee()->IgnoreParenCasts()); |
3524 | MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()}; |
3525 | return BuildAtomicExpr(CallRange: {TheCall->getBeginLoc(), TheCall->getEndLoc()}, |
3526 | ExprRange: DRE->getSourceRange(), RParenLoc: TheCall->getRParenLoc(), Args, |
3527 | Op); |
3528 | } |
3529 | |
3530 | ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange, |
3531 | SourceLocation RParenLoc, MultiExprArg Args, |
3532 | AtomicExpr::AtomicOp Op, |
3533 | AtomicArgumentOrder ArgOrder) { |
3534 | // All the non-OpenCL operations take one of the following forms. |
3535 | // The OpenCL operations take the __c11 forms with one extra argument for |
3536 | // synchronization scope. |
3537 | enum { |
3538 | // C __c11_atomic_init(A *, C) |
3539 | Init, |
3540 | |
3541 | // C __c11_atomic_load(A *, int) |
3542 | Load, |
3543 | |
3544 | // void __atomic_load(A *, CP, int) |
3545 | LoadCopy, |
3546 | |
3547 | // void __atomic_store(A *, CP, int) |
3548 | Copy, |
3549 | |
3550 | // C __c11_atomic_add(A *, M, int) |
3551 | Arithmetic, |
3552 | |
3553 | // C __atomic_exchange_n(A *, CP, int) |
3554 | Xchg, |
3555 | |
3556 | // void __atomic_exchange(A *, C *, CP, int) |
3557 | GNUXchg, |
3558 | |
3559 | // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int) |
3560 | C11CmpXchg, |
3561 | |
3562 | // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int) |
3563 | GNUCmpXchg |
3564 | } Form = Init; |
3565 | |
3566 | const unsigned NumForm = GNUCmpXchg + 1; |
3567 | const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 }; |
3568 | const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 }; |
3569 | // where: |
3570 | // C is an appropriate type, |
3571 | // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins, |
3572 | // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise, |
3573 | // M is C if C is an integer, and ptrdiff_t if C is a pointer, and |
3574 | // the int parameters are for orderings. |
3575 | |
3576 | static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm |
3577 | && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm, |
3578 | "need to update code for modified forms" ); |
3579 | static_assert(AtomicExpr::AO__atomic_add_fetch == 0 && |
3580 | AtomicExpr::AO__atomic_xor_fetch + 1 == |
3581 | AtomicExpr::AO__c11_atomic_compare_exchange_strong, |
3582 | "need to update code for modified C11 atomics" ); |
3583 | bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_compare_exchange_strong && |
3584 | Op <= AtomicExpr::AO__opencl_atomic_store; |
3585 | bool IsHIP = Op >= AtomicExpr::AO__hip_atomic_compare_exchange_strong && |
3586 | Op <= AtomicExpr::AO__hip_atomic_store; |
3587 | bool IsScoped = Op >= AtomicExpr::AO__scoped_atomic_add_fetch && |
3588 | Op <= AtomicExpr::AO__scoped_atomic_xor_fetch; |
3589 | bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_compare_exchange_strong && |
3590 | Op <= AtomicExpr::AO__c11_atomic_store) || |
3591 | IsOpenCL; |
3592 | bool IsN = Op == AtomicExpr::AO__atomic_load_n || |
3593 | Op == AtomicExpr::AO__atomic_store_n || |
3594 | Op == AtomicExpr::AO__atomic_exchange_n || |
3595 | Op == AtomicExpr::AO__atomic_compare_exchange_n || |
3596 | Op == AtomicExpr::AO__scoped_atomic_load_n || |
3597 | Op == AtomicExpr::AO__scoped_atomic_store_n || |
3598 | Op == AtomicExpr::AO__scoped_atomic_exchange_n || |
3599 | Op == AtomicExpr::AO__scoped_atomic_compare_exchange_n; |
3600 | // Bit mask for extra allowed value types other than integers for atomic |
3601 | // arithmetic operations. Add/sub allow pointer and floating point. Min/max |
3602 | // allow floating point. |
3603 | enum { |
3604 | AOEVT_None = 0, |
3605 | AOEVT_Pointer = 1, |
3606 | AOEVT_FP = 2, |
3607 | }; |
3608 | unsigned ArithAllows = AOEVT_None; |
3609 | |
3610 | switch (Op) { |
3611 | case AtomicExpr::AO__c11_atomic_init: |
3612 | case AtomicExpr::AO__opencl_atomic_init: |
3613 | Form = Init; |
3614 | break; |
3615 | |
3616 | case AtomicExpr::AO__c11_atomic_load: |
3617 | case AtomicExpr::AO__opencl_atomic_load: |
3618 | case AtomicExpr::AO__hip_atomic_load: |
3619 | case AtomicExpr::AO__atomic_load_n: |
3620 | case AtomicExpr::AO__scoped_atomic_load_n: |
3621 | Form = Load; |
3622 | break; |
3623 | |
3624 | case AtomicExpr::AO__atomic_load: |
3625 | case AtomicExpr::AO__scoped_atomic_load: |
3626 | Form = LoadCopy; |
3627 | break; |
3628 | |
3629 | case AtomicExpr::AO__c11_atomic_store: |
3630 | case AtomicExpr::AO__opencl_atomic_store: |
3631 | case AtomicExpr::AO__hip_atomic_store: |
3632 | case AtomicExpr::AO__atomic_store: |
3633 | case AtomicExpr::AO__atomic_store_n: |
3634 | case AtomicExpr::AO__scoped_atomic_store: |
3635 | case AtomicExpr::AO__scoped_atomic_store_n: |
3636 | Form = Copy; |
3637 | break; |
3638 | case AtomicExpr::AO__atomic_fetch_add: |
3639 | case AtomicExpr::AO__atomic_fetch_sub: |
3640 | case AtomicExpr::AO__atomic_add_fetch: |
3641 | case AtomicExpr::AO__atomic_sub_fetch: |
3642 | case AtomicExpr::AO__scoped_atomic_fetch_add: |
3643 | case AtomicExpr::AO__scoped_atomic_fetch_sub: |
3644 | case AtomicExpr::AO__scoped_atomic_add_fetch: |
3645 | case AtomicExpr::AO__scoped_atomic_sub_fetch: |
3646 | case AtomicExpr::AO__c11_atomic_fetch_add: |
3647 | case AtomicExpr::AO__c11_atomic_fetch_sub: |
3648 | case AtomicExpr::AO__opencl_atomic_fetch_add: |
3649 | case AtomicExpr::AO__opencl_atomic_fetch_sub: |
3650 | case AtomicExpr::AO__hip_atomic_fetch_add: |
3651 | case AtomicExpr::AO__hip_atomic_fetch_sub: |
3652 | ArithAllows = AOEVT_Pointer | AOEVT_FP; |
3653 | Form = Arithmetic; |
3654 | break; |
3655 | case AtomicExpr::AO__atomic_fetch_max: |
3656 | case AtomicExpr::AO__atomic_fetch_min: |
3657 | case AtomicExpr::AO__atomic_max_fetch: |
3658 | case AtomicExpr::AO__atomic_min_fetch: |
3659 | case AtomicExpr::AO__scoped_atomic_fetch_max: |
3660 | case AtomicExpr::AO__scoped_atomic_fetch_min: |
3661 | case AtomicExpr::AO__scoped_atomic_max_fetch: |
3662 | case AtomicExpr::AO__scoped_atomic_min_fetch: |
3663 | case AtomicExpr::AO__c11_atomic_fetch_max: |
3664 | case AtomicExpr::AO__c11_atomic_fetch_min: |
3665 | case AtomicExpr::AO__opencl_atomic_fetch_max: |
3666 | case AtomicExpr::AO__opencl_atomic_fetch_min: |
3667 | case AtomicExpr::AO__hip_atomic_fetch_max: |
3668 | case AtomicExpr::AO__hip_atomic_fetch_min: |
3669 | ArithAllows = AOEVT_FP; |
3670 | Form = Arithmetic; |
3671 | break; |
3672 | case AtomicExpr::AO__c11_atomic_fetch_and: |
3673 | case AtomicExpr::AO__c11_atomic_fetch_or: |
3674 | case AtomicExpr::AO__c11_atomic_fetch_xor: |
3675 | case AtomicExpr::AO__hip_atomic_fetch_and: |
3676 | case AtomicExpr::AO__hip_atomic_fetch_or: |
3677 | case AtomicExpr::AO__hip_atomic_fetch_xor: |
3678 | case AtomicExpr::AO__c11_atomic_fetch_nand: |
3679 | case AtomicExpr::AO__opencl_atomic_fetch_and: |
3680 | case AtomicExpr::AO__opencl_atomic_fetch_or: |
3681 | case AtomicExpr::AO__opencl_atomic_fetch_xor: |
3682 | case AtomicExpr::AO__atomic_fetch_and: |
3683 | case AtomicExpr::AO__atomic_fetch_or: |
3684 | case AtomicExpr::AO__atomic_fetch_xor: |
3685 | case AtomicExpr::AO__atomic_fetch_nand: |
3686 | case AtomicExpr::AO__atomic_and_fetch: |
3687 | case AtomicExpr::AO__atomic_or_fetch: |
3688 | case AtomicExpr::AO__atomic_xor_fetch: |
3689 | case AtomicExpr::AO__atomic_nand_fetch: |
3690 | case AtomicExpr::AO__scoped_atomic_fetch_and: |
3691 | case AtomicExpr::AO__scoped_atomic_fetch_or: |
3692 | case AtomicExpr::AO__scoped_atomic_fetch_xor: |
3693 | case AtomicExpr::AO__scoped_atomic_fetch_nand: |
3694 | case AtomicExpr::AO__scoped_atomic_and_fetch: |
3695 | case AtomicExpr::AO__scoped_atomic_or_fetch: |
3696 | case AtomicExpr::AO__scoped_atomic_xor_fetch: |
3697 | case AtomicExpr::AO__scoped_atomic_nand_fetch: |
3698 | Form = Arithmetic; |
3699 | break; |
3700 | |
3701 | case AtomicExpr::AO__c11_atomic_exchange: |
3702 | case AtomicExpr::AO__hip_atomic_exchange: |
3703 | case AtomicExpr::AO__opencl_atomic_exchange: |
3704 | case AtomicExpr::AO__atomic_exchange_n: |
3705 | case AtomicExpr::AO__scoped_atomic_exchange_n: |
3706 | Form = Xchg; |
3707 | break; |
3708 | |
3709 | case AtomicExpr::AO__atomic_exchange: |
3710 | case AtomicExpr::AO__scoped_atomic_exchange: |
3711 | Form = GNUXchg; |
3712 | break; |
3713 | |
3714 | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: |
3715 | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: |
3716 | case AtomicExpr::AO__hip_atomic_compare_exchange_strong: |
3717 | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: |
3718 | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: |
3719 | case AtomicExpr::AO__hip_atomic_compare_exchange_weak: |
3720 | Form = C11CmpXchg; |
3721 | break; |
3722 | |
3723 | case AtomicExpr::AO__atomic_compare_exchange: |
3724 | case AtomicExpr::AO__atomic_compare_exchange_n: |
3725 | case AtomicExpr::AO__scoped_atomic_compare_exchange: |
3726 | case AtomicExpr::AO__scoped_atomic_compare_exchange_n: |
3727 | Form = GNUCmpXchg; |
3728 | break; |
3729 | } |
3730 | |
3731 | unsigned AdjustedNumArgs = NumArgs[Form]; |
3732 | if ((IsOpenCL || IsHIP || IsScoped) && |
3733 | Op != AtomicExpr::AO__opencl_atomic_init) |
3734 | ++AdjustedNumArgs; |
3735 | // Check we have the right number of arguments. |
3736 | if (Args.size() < AdjustedNumArgs) { |
3737 | Diag(Loc: CallRange.getEnd(), DiagID: diag::err_typecheck_call_too_few_args) |
3738 | << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) |
3739 | << /*is non object*/ 0 << ExprRange; |
3740 | return ExprError(); |
3741 | } else if (Args.size() > AdjustedNumArgs) { |
3742 | Diag(Loc: Args[AdjustedNumArgs]->getBeginLoc(), |
3743 | DiagID: diag::err_typecheck_call_too_many_args) |
3744 | << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) |
3745 | << /*is non object*/ 0 << ExprRange; |
3746 | return ExprError(); |
3747 | } |
3748 | |
3749 | // Inspect the first argument of the atomic operation. |
3750 | Expr *Ptr = Args[0]; |
3751 | ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(E: Ptr); |
3752 | if (ConvertedPtr.isInvalid()) |
3753 | return ExprError(); |
3754 | |
3755 | Ptr = ConvertedPtr.get(); |
3756 | const PointerType *pointerType = Ptr->getType()->getAs<PointerType>(); |
3757 | if (!pointerType) { |
3758 | Diag(Loc: ExprRange.getBegin(), DiagID: diag::err_atomic_builtin_must_be_pointer) |
3759 | << Ptr->getType() << 0 << Ptr->getSourceRange(); |
3760 | return ExprError(); |
3761 | } |
3762 | |
3763 | // For a __c11 builtin, this should be a pointer to an _Atomic type. |
3764 | QualType AtomTy = pointerType->getPointeeType(); // 'A' |
3765 | QualType ValType = AtomTy; // 'C' |
3766 | if (IsC11) { |
3767 | if (!AtomTy->isAtomicType()) { |
3768 | Diag(Loc: ExprRange.getBegin(), DiagID: diag::err_atomic_op_needs_atomic) |
3769 | << Ptr->getType() << Ptr->getSourceRange(); |
3770 | return ExprError(); |
3771 | } |
3772 | if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) || |
3773 | AtomTy.getAddressSpace() == LangAS::opencl_constant) { |
3774 | Diag(Loc: ExprRange.getBegin(), DiagID: diag::err_atomic_op_needs_non_const_atomic) |
3775 | << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType() |
3776 | << Ptr->getSourceRange(); |
3777 | return ExprError(); |
3778 | } |
3779 | ValType = AtomTy->castAs<AtomicType>()->getValueType(); |
3780 | } else if (Form != Load && Form != LoadCopy) { |
3781 | if (ValType.isConstQualified()) { |
3782 | Diag(Loc: ExprRange.getBegin(), DiagID: diag::err_atomic_op_needs_non_const_pointer) |
3783 | << Ptr->getType() << Ptr->getSourceRange(); |
3784 | return ExprError(); |
3785 | } |
3786 | } |
3787 | |
3788 | // Pointer to object of size zero is not allowed. |
3789 | if (RequireCompleteType(Loc: Ptr->getBeginLoc(), T: AtomTy, |
3790 | DiagID: diag::err_incomplete_type)) |
3791 | return ExprError(); |
3792 | if (Context.getTypeInfoInChars(T: AtomTy).Width.isZero()) { |
3793 | Diag(Loc: ExprRange.getBegin(), DiagID: diag::err_atomic_builtin_must_be_pointer) |
3794 | << Ptr->getType() << 1 << Ptr->getSourceRange(); |
3795 | return ExprError(); |
3796 | } |
3797 | |
3798 | // For an arithmetic operation, the implied arithmetic must be well-formed. |
3799 | if (Form == Arithmetic) { |
3800 | // GCC does not enforce these rules for GNU atomics, but we do to help catch |
3801 | // trivial type errors. |
3802 | auto IsAllowedValueType = [&](QualType ValType, |
3803 | unsigned AllowedType) -> bool { |
3804 | if (ValType->isIntegerType()) |
3805 | return true; |
3806 | if (ValType->isPointerType()) |
3807 | return AllowedType & AOEVT_Pointer; |
3808 | if (!(ValType->isFloatingType() && (AllowedType & AOEVT_FP))) |
3809 | return false; |
3810 | // LLVM Parser does not allow atomicrmw with x86_fp80 type. |
3811 | if (ValType->isSpecificBuiltinType(K: BuiltinType::LongDouble) && |
3812 | &Context.getTargetInfo().getLongDoubleFormat() == |
3813 | &llvm::APFloat::x87DoubleExtended()) |
3814 | return false; |
3815 | return true; |
3816 | }; |
3817 | if (!IsAllowedValueType(ValType, ArithAllows)) { |
3818 | auto DID = ArithAllows & AOEVT_FP |
3819 | ? (ArithAllows & AOEVT_Pointer |
3820 | ? diag::err_atomic_op_needs_atomic_int_ptr_or_fp |
3821 | : diag::err_atomic_op_needs_atomic_int_or_fp) |
3822 | : diag::err_atomic_op_needs_atomic_int; |
3823 | Diag(Loc: ExprRange.getBegin(), DiagID: DID) |
3824 | << IsC11 << Ptr->getType() << Ptr->getSourceRange(); |
3825 | return ExprError(); |
3826 | } |
3827 | if (IsC11 && ValType->isPointerType() && |
3828 | RequireCompleteType(Loc: Ptr->getBeginLoc(), T: ValType->getPointeeType(), |
3829 | DiagID: diag::err_incomplete_type)) { |
3830 | return ExprError(); |
3831 | } |
3832 | } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) { |
3833 | // For __atomic_*_n operations, the value type must be a scalar integral or |
3834 | // pointer type which is 1, 2, 4, 8 or 16 bytes in length. |
3835 | Diag(Loc: ExprRange.getBegin(), DiagID: diag::err_atomic_op_needs_atomic_int_or_ptr) |
3836 | << IsC11 << Ptr->getType() << Ptr->getSourceRange(); |
3837 | return ExprError(); |
3838 | } |
3839 | |
3840 | if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) && |
3841 | !AtomTy->isScalarType()) { |
3842 | // For GNU atomics, require a trivially-copyable type. This is not part of |
3843 | // the GNU atomics specification but we enforce it for consistency with |
3844 | // other atomics which generally all require a trivially-copyable type. This |
3845 | // is because atomics just copy bits. |
3846 | Diag(Loc: ExprRange.getBegin(), DiagID: diag::err_atomic_op_needs_trivial_copy) |
3847 | << Ptr->getType() << Ptr->getSourceRange(); |
3848 | return ExprError(); |
3849 | } |
3850 | |
3851 | switch (ValType.getObjCLifetime()) { |
3852 | case Qualifiers::OCL_None: |
3853 | case Qualifiers::OCL_ExplicitNone: |
3854 | // okay |
3855 | break; |
3856 | |
3857 | case Qualifiers::OCL_Weak: |
3858 | case Qualifiers::OCL_Strong: |
3859 | case Qualifiers::OCL_Autoreleasing: |
3860 | // FIXME: Can this happen? By this point, ValType should be known |
3861 | // to be trivially copyable. |
3862 | Diag(Loc: ExprRange.getBegin(), DiagID: diag::err_arc_atomic_ownership) |
3863 | << ValType << Ptr->getSourceRange(); |
3864 | return ExprError(); |
3865 | } |
3866 | |
3867 | // All atomic operations have an overload which takes a pointer to a volatile |
3868 | // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself |
3869 | // into the result or the other operands. Similarly atomic_load takes a |
3870 | // pointer to a const 'A'. |
3871 | ValType.removeLocalVolatile(); |
3872 | ValType.removeLocalConst(); |
3873 | QualType ResultType = ValType; |
3874 | if (Form == Copy || Form == LoadCopy || Form == GNUXchg || |
3875 | Form == Init) |
3876 | ResultType = Context.VoidTy; |
3877 | else if (Form == C11CmpXchg || Form == GNUCmpXchg) |
3878 | ResultType = Context.BoolTy; |
3879 | |
3880 | // The type of a parameter passed 'by value'. In the GNU atomics, such |
3881 | // arguments are actually passed as pointers. |
3882 | QualType ByValType = ValType; // 'CP' |
3883 | bool IsPassedByAddress = false; |
3884 | if (!IsC11 && !IsHIP && !IsN) { |
3885 | ByValType = Ptr->getType(); |
3886 | IsPassedByAddress = true; |
3887 | } |
3888 | |
3889 | SmallVector<Expr *, 5> APIOrderedArgs; |
3890 | if (ArgOrder == Sema::AtomicArgumentOrder::AST) { |
3891 | APIOrderedArgs.push_back(Elt: Args[0]); |
3892 | switch (Form) { |
3893 | case Init: |
3894 | case Load: |
3895 | APIOrderedArgs.push_back(Elt: Args[1]); // Val1/Order |
3896 | break; |
3897 | case LoadCopy: |
3898 | case Copy: |
3899 | case Arithmetic: |
3900 | case Xchg: |
3901 | APIOrderedArgs.push_back(Elt: Args[2]); // Val1 |
3902 | APIOrderedArgs.push_back(Elt: Args[1]); // Order |
3903 | break; |
3904 | case GNUXchg: |
3905 | APIOrderedArgs.push_back(Elt: Args[2]); // Val1 |
3906 | APIOrderedArgs.push_back(Elt: Args[3]); // Val2 |
3907 | APIOrderedArgs.push_back(Elt: Args[1]); // Order |
3908 | break; |
3909 | case C11CmpXchg: |
3910 | APIOrderedArgs.push_back(Elt: Args[2]); // Val1 |
3911 | APIOrderedArgs.push_back(Elt: Args[4]); // Val2 |
3912 | APIOrderedArgs.push_back(Elt: Args[1]); // Order |
3913 | APIOrderedArgs.push_back(Elt: Args[3]); // OrderFail |
3914 | break; |
3915 | case GNUCmpXchg: |
3916 | APIOrderedArgs.push_back(Elt: Args[2]); // Val1 |
3917 | APIOrderedArgs.push_back(Elt: Args[4]); // Val2 |
3918 | APIOrderedArgs.push_back(Elt: Args[5]); // Weak |
3919 | APIOrderedArgs.push_back(Elt: Args[1]); // Order |
3920 | APIOrderedArgs.push_back(Elt: Args[3]); // OrderFail |
3921 | break; |
3922 | } |
3923 | } else |
3924 | APIOrderedArgs.append(in_start: Args.begin(), in_end: Args.end()); |
3925 | |
3926 | // The first argument's non-CV pointer type is used to deduce the type of |
3927 | // subsequent arguments, except for: |
3928 | // - weak flag (always converted to bool) |
3929 | // - memory order (always converted to int) |
3930 | // - scope (always converted to int) |
3931 | for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) { |
3932 | QualType Ty; |
3933 | if (i < NumVals[Form] + 1) { |
3934 | switch (i) { |
3935 | case 0: |
3936 | // The first argument is always a pointer. It has a fixed type. |
3937 | // It is always dereferenced, a nullptr is undefined. |
3938 | CheckNonNullArgument(S&: *this, ArgExpr: APIOrderedArgs[i], CallSiteLoc: ExprRange.getBegin()); |
3939 | // Nothing else to do: we already know all we want about this pointer. |
3940 | continue; |
3941 | case 1: |
3942 | // The second argument is the non-atomic operand. For arithmetic, this |
3943 | // is always passed by value, and for a compare_exchange it is always |
3944 | // passed by address. For the rest, GNU uses by-address and C11 uses |
3945 | // by-value. |
3946 | assert(Form != Load); |
3947 | if (Form == Arithmetic && ValType->isPointerType()) |
3948 | Ty = Context.getPointerDiffType(); |
3949 | else if (Form == Init || Form == Arithmetic) |
3950 | Ty = ValType; |
3951 | else if (Form == Copy || Form == Xchg) { |
3952 | if (IsPassedByAddress) { |
3953 | // The value pointer is always dereferenced, a nullptr is undefined. |
3954 | CheckNonNullArgument(S&: *this, ArgExpr: APIOrderedArgs[i], |
3955 | CallSiteLoc: ExprRange.getBegin()); |
3956 | } |
3957 | Ty = ByValType; |
3958 | } else { |
3959 | Expr *ValArg = APIOrderedArgs[i]; |
3960 | // The value pointer is always dereferenced, a nullptr is undefined. |
3961 | CheckNonNullArgument(S&: *this, ArgExpr: ValArg, CallSiteLoc: ExprRange.getBegin()); |
3962 | LangAS AS = LangAS::Default; |
3963 | // Keep address space of non-atomic pointer type. |
3964 | if (const PointerType *PtrTy = |
3965 | ValArg->getType()->getAs<PointerType>()) { |
3966 | AS = PtrTy->getPointeeType().getAddressSpace(); |
3967 | } |
3968 | Ty = Context.getPointerType( |
3969 | T: Context.getAddrSpaceQualType(T: ValType.getUnqualifiedType(), AddressSpace: AS)); |
3970 | } |
3971 | break; |
3972 | case 2: |
3973 | // The third argument to compare_exchange / GNU exchange is the desired |
3974 | // value, either by-value (for the C11 and *_n variant) or as a pointer. |
3975 | if (IsPassedByAddress) |
3976 | CheckNonNullArgument(S&: *this, ArgExpr: APIOrderedArgs[i], CallSiteLoc: ExprRange.getBegin()); |
3977 | Ty = ByValType; |
3978 | break; |
3979 | case 3: |
3980 | // The fourth argument to GNU compare_exchange is a 'weak' flag. |
3981 | Ty = Context.BoolTy; |
3982 | break; |
3983 | } |
3984 | } else { |
3985 | // The order(s) and scope are always converted to int. |
3986 | Ty = Context.IntTy; |
3987 | } |
3988 | |
3989 | InitializedEntity Entity = |
3990 | InitializedEntity::InitializeParameter(Context, Type: Ty, Consumed: false); |
3991 | ExprResult Arg = APIOrderedArgs[i]; |
3992 | Arg = PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Arg); |
3993 | if (Arg.isInvalid()) |
3994 | return true; |
3995 | APIOrderedArgs[i] = Arg.get(); |
3996 | } |
3997 | |
3998 | // Permute the arguments into a 'consistent' order. |
3999 | SmallVector<Expr*, 5> SubExprs; |
4000 | SubExprs.push_back(Elt: Ptr); |
4001 | switch (Form) { |
4002 | case Init: |
4003 | // Note, AtomicExpr::getVal1() has a special case for this atomic. |
4004 | SubExprs.push_back(Elt: APIOrderedArgs[1]); // Val1 |
4005 | break; |
4006 | case Load: |
4007 | SubExprs.push_back(Elt: APIOrderedArgs[1]); // Order |
4008 | break; |
4009 | case LoadCopy: |
4010 | case Copy: |
4011 | case Arithmetic: |
4012 | case Xchg: |
4013 | SubExprs.push_back(Elt: APIOrderedArgs[2]); // Order |
4014 | SubExprs.push_back(Elt: APIOrderedArgs[1]); // Val1 |
4015 | break; |
4016 | case GNUXchg: |
4017 | // Note, AtomicExpr::getVal2() has a special case for this atomic. |
4018 | SubExprs.push_back(Elt: APIOrderedArgs[3]); // Order |
4019 | SubExprs.push_back(Elt: APIOrderedArgs[1]); // Val1 |
4020 | SubExprs.push_back(Elt: APIOrderedArgs[2]); // Val2 |
4021 | break; |
4022 | case C11CmpXchg: |
4023 | SubExprs.push_back(Elt: APIOrderedArgs[3]); // Order |
4024 | SubExprs.push_back(Elt: APIOrderedArgs[1]); // Val1 |
4025 | SubExprs.push_back(Elt: APIOrderedArgs[4]); // OrderFail |
4026 | SubExprs.push_back(Elt: APIOrderedArgs[2]); // Val2 |
4027 | break; |
4028 | case GNUCmpXchg: |
4029 | SubExprs.push_back(Elt: APIOrderedArgs[4]); // Order |
4030 | SubExprs.push_back(Elt: APIOrderedArgs[1]); // Val1 |
4031 | SubExprs.push_back(Elt: APIOrderedArgs[5]); // OrderFail |
4032 | SubExprs.push_back(Elt: APIOrderedArgs[2]); // Val2 |
4033 | SubExprs.push_back(Elt: APIOrderedArgs[3]); // Weak |
4034 | break; |
4035 | } |
4036 | |
4037 | // If the memory orders are constants, check they are valid. |
4038 | if (SubExprs.size() >= 2 && Form != Init) { |
4039 | std::optional<llvm::APSInt> Success = |
4040 | SubExprs[1]->getIntegerConstantExpr(Ctx: Context); |
4041 | if (Success && !isValidOrderingForOp(Ordering: Success->getSExtValue(), Op)) { |
4042 | Diag(Loc: SubExprs[1]->getBeginLoc(), |
4043 | DiagID: diag::warn_atomic_op_has_invalid_memory_order) |
4044 | << /*success=*/(Form == C11CmpXchg || Form == GNUCmpXchg) |
4045 | << SubExprs[1]->getSourceRange(); |
4046 | } |
4047 | if (SubExprs.size() >= 5) { |
4048 | if (std::optional<llvm::APSInt> Failure = |
4049 | SubExprs[3]->getIntegerConstantExpr(Ctx: Context)) { |
4050 | if (!llvm::is_contained( |
4051 | Set: {llvm::AtomicOrderingCABI::relaxed, |
4052 | llvm::AtomicOrderingCABI::consume, |
4053 | llvm::AtomicOrderingCABI::acquire, |
4054 | llvm::AtomicOrderingCABI::seq_cst}, |
4055 | Element: (llvm::AtomicOrderingCABI)Failure->getSExtValue())) { |
4056 | Diag(Loc: SubExprs[3]->getBeginLoc(), |
4057 | DiagID: diag::warn_atomic_op_has_invalid_memory_order) |
4058 | << /*failure=*/2 << SubExprs[3]->getSourceRange(); |
4059 | } |
4060 | } |
4061 | } |
4062 | } |
4063 | |
4064 | if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) { |
4065 | auto *Scope = Args[Args.size() - 1]; |
4066 | if (std::optional<llvm::APSInt> Result = |
4067 | Scope->getIntegerConstantExpr(Ctx: Context)) { |
4068 | if (!ScopeModel->isValid(S: Result->getZExtValue())) |
4069 | Diag(Loc: Scope->getBeginLoc(), DiagID: diag::err_atomic_op_has_invalid_synch_scope) |
4070 | << Scope->getSourceRange(); |
4071 | } |
4072 | SubExprs.push_back(Elt: Scope); |
4073 | } |
4074 | |
4075 | AtomicExpr *AE = new (Context) |
4076 | AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc); |
4077 | |
4078 | if ((Op == AtomicExpr::AO__c11_atomic_load || |
4079 | Op == AtomicExpr::AO__c11_atomic_store || |
4080 | Op == AtomicExpr::AO__opencl_atomic_load || |
4081 | Op == AtomicExpr::AO__hip_atomic_load || |
4082 | Op == AtomicExpr::AO__opencl_atomic_store || |
4083 | Op == AtomicExpr::AO__hip_atomic_store) && |
4084 | Context.AtomicUsesUnsupportedLibcall(E: AE)) |
4085 | Diag(Loc: AE->getBeginLoc(), DiagID: diag::err_atomic_load_store_uses_lib) |
4086 | << ((Op == AtomicExpr::AO__c11_atomic_load || |
4087 | Op == AtomicExpr::AO__opencl_atomic_load || |
4088 | Op == AtomicExpr::AO__hip_atomic_load) |
4089 | ? 0 |
4090 | : 1); |
4091 | |
4092 | if (ValType->isBitIntType()) { |
4093 | Diag(Loc: Ptr->getExprLoc(), DiagID: diag::err_atomic_builtin_bit_int_prohibit); |
4094 | return ExprError(); |
4095 | } |
4096 | |
4097 | return AE; |
4098 | } |
4099 | |
4100 | /// checkBuiltinArgument - Given a call to a builtin function, perform |
4101 | /// normal type-checking on the given argument, updating the call in |
4102 | /// place. This is useful when a builtin function requires custom |
4103 | /// type-checking for some of its arguments but not necessarily all of |
4104 | /// them. |
4105 | /// |
4106 | /// Returns true on error. |
4107 | static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) { |
4108 | FunctionDecl *Fn = E->getDirectCallee(); |
4109 | assert(Fn && "builtin call without direct callee!" ); |
4110 | |
4111 | ParmVarDecl *Param = Fn->getParamDecl(i: ArgIndex); |
4112 | InitializedEntity Entity = |
4113 | InitializedEntity::InitializeParameter(Context&: S.Context, Parm: Param); |
4114 | |
4115 | ExprResult Arg = E->getArg(Arg: ArgIndex); |
4116 | Arg = S.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Arg); |
4117 | if (Arg.isInvalid()) |
4118 | return true; |
4119 | |
4120 | E->setArg(Arg: ArgIndex, ArgExpr: Arg.get()); |
4121 | return false; |
4122 | } |
4123 | |
4124 | ExprResult Sema::BuiltinAtomicOverloaded(ExprResult TheCallResult) { |
4125 | CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get()); |
4126 | Expr *Callee = TheCall->getCallee(); |
4127 | DeclRefExpr *DRE = cast<DeclRefExpr>(Val: Callee->IgnoreParenCasts()); |
4128 | FunctionDecl *FDecl = cast<FunctionDecl>(Val: DRE->getDecl()); |
4129 | |
4130 | // Ensure that we have at least one argument to do type inference from. |
4131 | if (TheCall->getNumArgs() < 1) { |
4132 | Diag(Loc: TheCall->getEndLoc(), DiagID: diag::err_typecheck_call_too_few_args_at_least) |
4133 | << 0 << 1 << TheCall->getNumArgs() << /*is non object*/ 0 |
4134 | << Callee->getSourceRange(); |
4135 | return ExprError(); |
4136 | } |
4137 | |
4138 | // Inspect the first argument of the atomic builtin. This should always be |
4139 | // a pointer type, whose element is an integral scalar or pointer type. |
4140 | // Because it is a pointer type, we don't have to worry about any implicit |
4141 | // casts here. |
4142 | // FIXME: We don't allow floating point scalars as input. |
4143 | Expr *FirstArg = TheCall->getArg(Arg: 0); |
4144 | ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(E: FirstArg); |
4145 | if (FirstArgResult.isInvalid()) |
4146 | return ExprError(); |
4147 | FirstArg = FirstArgResult.get(); |
4148 | TheCall->setArg(Arg: 0, ArgExpr: FirstArg); |
4149 | |
4150 | const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>(); |
4151 | if (!pointerType) { |
4152 | Diag(Loc: DRE->getBeginLoc(), DiagID: diag::err_atomic_builtin_must_be_pointer) |
4153 | << FirstArg->getType() << 0 << FirstArg->getSourceRange(); |
4154 | return ExprError(); |
4155 | } |
4156 | |
4157 | QualType ValType = pointerType->getPointeeType(); |
4158 | if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && |
4159 | !ValType->isBlockPointerType()) { |
4160 | Diag(Loc: DRE->getBeginLoc(), DiagID: diag::err_atomic_builtin_must_be_pointer_intptr) |
4161 | << FirstArg->getType() << 0 << FirstArg->getSourceRange(); |
4162 | return ExprError(); |
4163 | } |
4164 | |
4165 | if (ValType.isConstQualified()) { |
4166 | Diag(Loc: DRE->getBeginLoc(), DiagID: diag::err_atomic_builtin_cannot_be_const) |
4167 | << FirstArg->getType() << FirstArg->getSourceRange(); |
4168 | return ExprError(); |
4169 | } |
4170 | |
4171 | switch (ValType.getObjCLifetime()) { |
4172 | case Qualifiers::OCL_None: |
4173 | case Qualifiers::OCL_ExplicitNone: |
4174 | // okay |
4175 | break; |
4176 | |
4177 | case Qualifiers::OCL_Weak: |
4178 | case Qualifiers::OCL_Strong: |
4179 | case Qualifiers::OCL_Autoreleasing: |
4180 | Diag(Loc: DRE->getBeginLoc(), DiagID: diag::err_arc_atomic_ownership) |
4181 | << ValType << FirstArg->getSourceRange(); |
4182 | return ExprError(); |
4183 | } |
4184 | |
4185 | // Strip any qualifiers off ValType. |
4186 | ValType = ValType.getUnqualifiedType(); |
4187 | |
4188 | // The majority of builtins return a value, but a few have special return |
4189 | // types, so allow them to override appropriately below. |
4190 | QualType ResultType = ValType; |
4191 | |
4192 | // We need to figure out which concrete builtin this maps onto. For example, |
4193 | // __sync_fetch_and_add with a 2 byte object turns into |
4194 | // __sync_fetch_and_add_2. |
4195 | #define BUILTIN_ROW(x) \ |
4196 | { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ |
4197 | Builtin::BI##x##_8, Builtin::BI##x##_16 } |
4198 | |
4199 | static const unsigned BuiltinIndices[][5] = { |
4200 | BUILTIN_ROW(__sync_fetch_and_add), |
4201 | BUILTIN_ROW(__sync_fetch_and_sub), |
4202 | BUILTIN_ROW(__sync_fetch_and_or), |
4203 | BUILTIN_ROW(__sync_fetch_and_and), |
4204 | BUILTIN_ROW(__sync_fetch_and_xor), |
4205 | BUILTIN_ROW(__sync_fetch_and_nand), |
4206 | |
4207 | BUILTIN_ROW(__sync_add_and_fetch), |
4208 | BUILTIN_ROW(__sync_sub_and_fetch), |
4209 | BUILTIN_ROW(__sync_and_and_fetch), |
4210 | BUILTIN_ROW(__sync_or_and_fetch), |
4211 | BUILTIN_ROW(__sync_xor_and_fetch), |
4212 | BUILTIN_ROW(__sync_nand_and_fetch), |
4213 | |
4214 | BUILTIN_ROW(__sync_val_compare_and_swap), |
4215 | BUILTIN_ROW(__sync_bool_compare_and_swap), |
4216 | BUILTIN_ROW(__sync_lock_test_and_set), |
4217 | BUILTIN_ROW(__sync_lock_release), |
4218 | BUILTIN_ROW(__sync_swap) |
4219 | }; |
4220 | #undef BUILTIN_ROW |
4221 | |
4222 | // Determine the index of the size. |
4223 | unsigned SizeIndex; |
4224 | switch (Context.getTypeSizeInChars(T: ValType).getQuantity()) { |
4225 | case 1: SizeIndex = 0; break; |
4226 | case 2: SizeIndex = 1; break; |
4227 | case 4: SizeIndex = 2; break; |
4228 | case 8: SizeIndex = 3; break; |
4229 | case 16: SizeIndex = 4; break; |
4230 | default: |
4231 | Diag(Loc: DRE->getBeginLoc(), DiagID: diag::err_atomic_builtin_pointer_size) |
4232 | << FirstArg->getType() << FirstArg->getSourceRange(); |
4233 | return ExprError(); |
4234 | } |
4235 | |
4236 | // Each of these builtins has one pointer argument, followed by some number of |
4237 | // values (0, 1 or 2) followed by a potentially empty varags list of stuff |
4238 | // that we ignore. Find out which row of BuiltinIndices to read from as well |
4239 | // as the number of fixed args. |
4240 | unsigned BuiltinID = FDecl->getBuiltinID(); |
4241 | unsigned BuiltinIndex, NumFixed = 1; |
4242 | bool WarnAboutSemanticsChange = false; |
4243 | switch (BuiltinID) { |
4244 | default: llvm_unreachable("Unknown overloaded atomic builtin!" ); |
4245 | case Builtin::BI__sync_fetch_and_add: |
4246 | case Builtin::BI__sync_fetch_and_add_1: |
4247 | case Builtin::BI__sync_fetch_and_add_2: |
4248 | case Builtin::BI__sync_fetch_and_add_4: |
4249 | case Builtin::BI__sync_fetch_and_add_8: |
4250 | case Builtin::BI__sync_fetch_and_add_16: |
4251 | BuiltinIndex = 0; |
4252 | break; |
4253 | |
4254 | case Builtin::BI__sync_fetch_and_sub: |
4255 | case Builtin::BI__sync_fetch_and_sub_1: |
4256 | case Builtin::BI__sync_fetch_and_sub_2: |
4257 | case Builtin::BI__sync_fetch_and_sub_4: |
4258 | case Builtin::BI__sync_fetch_and_sub_8: |
4259 | case Builtin::BI__sync_fetch_and_sub_16: |
4260 | BuiltinIndex = 1; |
4261 | break; |
4262 | |
4263 | case Builtin::BI__sync_fetch_and_or: |
4264 | case Builtin::BI__sync_fetch_and_or_1: |
4265 | case Builtin::BI__sync_fetch_and_or_2: |
4266 | case Builtin::BI__sync_fetch_and_or_4: |
4267 | case Builtin::BI__sync_fetch_and_or_8: |
4268 | case Builtin::BI__sync_fetch_and_or_16: |
4269 | BuiltinIndex = 2; |
4270 | break; |
4271 | |
4272 | case Builtin::BI__sync_fetch_and_and: |
4273 | case Builtin::BI__sync_fetch_and_and_1: |
4274 | case Builtin::BI__sync_fetch_and_and_2: |
4275 | case Builtin::BI__sync_fetch_and_and_4: |
4276 | case Builtin::BI__sync_fetch_and_and_8: |
4277 | case Builtin::BI__sync_fetch_and_and_16: |
4278 | BuiltinIndex = 3; |
4279 | break; |
4280 | |
4281 | case Builtin::BI__sync_fetch_and_xor: |
4282 | case Builtin::BI__sync_fetch_and_xor_1: |
4283 | case Builtin::BI__sync_fetch_and_xor_2: |
4284 | case Builtin::BI__sync_fetch_and_xor_4: |
4285 | case Builtin::BI__sync_fetch_and_xor_8: |
4286 | case Builtin::BI__sync_fetch_and_xor_16: |
4287 | BuiltinIndex = 4; |
4288 | break; |
4289 | |
4290 | case Builtin::BI__sync_fetch_and_nand: |
4291 | case Builtin::BI__sync_fetch_and_nand_1: |
4292 | case Builtin::BI__sync_fetch_and_nand_2: |
4293 | case Builtin::BI__sync_fetch_and_nand_4: |
4294 | case Builtin::BI__sync_fetch_and_nand_8: |
4295 | case Builtin::BI__sync_fetch_and_nand_16: |
4296 | BuiltinIndex = 5; |
4297 | WarnAboutSemanticsChange = true; |
4298 | break; |
4299 | |
4300 | case Builtin::BI__sync_add_and_fetch: |
4301 | case Builtin::BI__sync_add_and_fetch_1: |
4302 | case Builtin::BI__sync_add_and_fetch_2: |
4303 | case Builtin::BI__sync_add_and_fetch_4: |
4304 | case Builtin::BI__sync_add_and_fetch_8: |
4305 | case Builtin::BI__sync_add_and_fetch_16: |
4306 | BuiltinIndex = 6; |
4307 | break; |
4308 | |
4309 | case Builtin::BI__sync_sub_and_fetch: |
4310 | case Builtin::BI__sync_sub_and_fetch_1: |
4311 | case Builtin::BI__sync_sub_and_fetch_2: |
4312 | case Builtin::BI__sync_sub_and_fetch_4: |
4313 | case Builtin::BI__sync_sub_and_fetch_8: |
4314 | case Builtin::BI__sync_sub_and_fetch_16: |
4315 | BuiltinIndex = 7; |
4316 | break; |
4317 | |
4318 | case Builtin::BI__sync_and_and_fetch: |
4319 | case Builtin::BI__sync_and_and_fetch_1: |
4320 | case Builtin::BI__sync_and_and_fetch_2: |
4321 | case Builtin::BI__sync_and_and_fetch_4: |
4322 | case Builtin::BI__sync_and_and_fetch_8: |
4323 | case Builtin::BI__sync_and_and_fetch_16: |
4324 | BuiltinIndex = 8; |
4325 | break; |
4326 | |
4327 | case Builtin::BI__sync_or_and_fetch: |
4328 | case Builtin::BI__sync_or_and_fetch_1: |
4329 | case Builtin::BI__sync_or_and_fetch_2: |
4330 | case Builtin::BI__sync_or_and_fetch_4: |
4331 | case Builtin::BI__sync_or_and_fetch_8: |
4332 | case Builtin::BI__sync_or_and_fetch_16: |
4333 | BuiltinIndex = 9; |
4334 | break; |
4335 | |
4336 | case Builtin::BI__sync_xor_and_fetch: |
4337 | case Builtin::BI__sync_xor_and_fetch_1: |
4338 | case Builtin::BI__sync_xor_and_fetch_2: |
4339 | case Builtin::BI__sync_xor_and_fetch_4: |
4340 | case Builtin::BI__sync_xor_and_fetch_8: |
4341 | case Builtin::BI__sync_xor_and_fetch_16: |
4342 | BuiltinIndex = 10; |
4343 | break; |
4344 | |
4345 | case Builtin::BI__sync_nand_and_fetch: |
4346 | case Builtin::BI__sync_nand_and_fetch_1: |
4347 | case Builtin::BI__sync_nand_and_fetch_2: |
4348 | case Builtin::BI__sync_nand_and_fetch_4: |
4349 | case Builtin::BI__sync_nand_and_fetch_8: |
4350 | case Builtin::BI__sync_nand_and_fetch_16: |
4351 | BuiltinIndex = 11; |
4352 | WarnAboutSemanticsChange = true; |
4353 | break; |
4354 | |
4355 | case Builtin::BI__sync_val_compare_and_swap: |
4356 | case Builtin::BI__sync_val_compare_and_swap_1: |
4357 | case Builtin::BI__sync_val_compare_and_swap_2: |
4358 | case Builtin::BI__sync_val_compare_and_swap_4: |
4359 | case Builtin::BI__sync_val_compare_and_swap_8: |
4360 | case Builtin::BI__sync_val_compare_and_swap_16: |
4361 | BuiltinIndex = 12; |
4362 | NumFixed = 2; |
4363 | break; |
4364 | |
4365 | case Builtin::BI__sync_bool_compare_and_swap: |
4366 | case Builtin::BI__sync_bool_compare_and_swap_1: |
4367 | case Builtin::BI__sync_bool_compare_and_swap_2: |
4368 | case Builtin::BI__sync_bool_compare_and_swap_4: |
4369 | case Builtin::BI__sync_bool_compare_and_swap_8: |
4370 | case Builtin::BI__sync_bool_compare_and_swap_16: |
4371 | BuiltinIndex = 13; |
4372 | NumFixed = 2; |
4373 | ResultType = Context.BoolTy; |
4374 | break; |
4375 | |
4376 | case Builtin::BI__sync_lock_test_and_set: |
4377 | case Builtin::BI__sync_lock_test_and_set_1: |
4378 | case Builtin::BI__sync_lock_test_and_set_2: |
4379 | case Builtin::BI__sync_lock_test_and_set_4: |
4380 | case Builtin::BI__sync_lock_test_and_set_8: |
4381 | case Builtin::BI__sync_lock_test_and_set_16: |
4382 | BuiltinIndex = 14; |
4383 | break; |
4384 | |
4385 | case Builtin::BI__sync_lock_release: |
4386 | case Builtin::BI__sync_lock_release_1: |
4387 | case Builtin::BI__sync_lock_release_2: |
4388 | case Builtin::BI__sync_lock_release_4: |
4389 | case Builtin::BI__sync_lock_release_8: |
4390 | case Builtin::BI__sync_lock_release_16: |
4391 | BuiltinIndex = 15; |
4392 | NumFixed = 0; |
4393 | ResultType = Context.VoidTy; |
4394 | break; |
4395 | |
4396 | case Builtin::BI__sync_swap: |
4397 | case Builtin::BI__sync_swap_1: |
4398 | case Builtin::BI__sync_swap_2: |
4399 | case Builtin::BI__sync_swap_4: |
4400 | case Builtin::BI__sync_swap_8: |
4401 | case Builtin::BI__sync_swap_16: |
4402 | BuiltinIndex = 16; |
4403 | break; |
4404 | } |
4405 | |
4406 | // Now that we know how many fixed arguments we expect, first check that we |
4407 | // have at least that many. |
4408 | if (TheCall->getNumArgs() < 1+NumFixed) { |
4409 | Diag(Loc: TheCall->getEndLoc(), DiagID: diag::err_typecheck_call_too_few_args_at_least) |
4410 | << 0 << 1 + NumFixed << TheCall->getNumArgs() << /*is non object*/ 0 |
4411 | << Callee->getSourceRange(); |
4412 | return ExprError(); |
4413 | } |
4414 | |
4415 | Diag(Loc: TheCall->getEndLoc(), DiagID: diag::warn_atomic_implicit_seq_cst) |
4416 | << Callee->getSourceRange(); |
4417 | |
4418 | if (WarnAboutSemanticsChange) { |
4419 | Diag(Loc: TheCall->getEndLoc(), DiagID: diag::warn_sync_fetch_and_nand_semantics_change) |
4420 | << Callee->getSourceRange(); |
4421 | } |
4422 | |
4423 | // Get the decl for the concrete builtin from this, we can tell what the |
4424 | // concrete integer type we should convert to is. |
4425 | unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; |
4426 | StringRef NewBuiltinName = Context.BuiltinInfo.getName(ID: NewBuiltinID); |
4427 | FunctionDecl *NewBuiltinDecl; |
4428 | if (NewBuiltinID == BuiltinID) |
4429 | NewBuiltinDecl = FDecl; |
4430 | else { |
4431 | // Perform builtin lookup to avoid redeclaring it. |
4432 | DeclarationName DN(&Context.Idents.get(Name: NewBuiltinName)); |
4433 | LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName); |
4434 | LookupName(R&: Res, S: TUScope, /*AllowBuiltinCreation=*/true); |
4435 | assert(Res.getFoundDecl()); |
4436 | NewBuiltinDecl = dyn_cast<FunctionDecl>(Val: Res.getFoundDecl()); |
4437 | if (!NewBuiltinDecl) |
4438 | return ExprError(); |
4439 | } |
4440 | |
4441 | // The first argument --- the pointer --- has a fixed type; we |
4442 | // deduce the types of the rest of the arguments accordingly. Walk |
4443 | // the remaining arguments, converting them to the deduced value type. |
4444 | for (unsigned i = 0; i != NumFixed; ++i) { |
4445 | ExprResult Arg = TheCall->getArg(Arg: i+1); |
4446 | |
4447 | // GCC does an implicit conversion to the pointer or integer ValType. This |
4448 | // can fail in some cases (1i -> int**), check for this error case now. |
4449 | // Initialize the argument. |
4450 | InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, |
4451 | Type: ValType, /*consume*/ Consumed: false); |
4452 | Arg = PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Arg); |
4453 | if (Arg.isInvalid()) |
4454 | return ExprError(); |
4455 | |
4456 | // Okay, we have something that *can* be converted to the right type. Check |
4457 | // to see if there is a potentially weird extension going on here. This can |
4458 | // happen when you do an atomic operation on something like an char* and |
4459 | // pass in 42. The 42 gets converted to char. This is even more strange |
4460 | // for things like 45.123 -> char, etc. |
4461 | // FIXME: Do this check. |
4462 | TheCall->setArg(Arg: i+1, ArgExpr: Arg.get()); |
4463 | } |
4464 | |
4465 | // Create a new DeclRefExpr to refer to the new decl. |
4466 | DeclRefExpr *NewDRE = DeclRefExpr::Create( |
4467 | Context, QualifierLoc: DRE->getQualifierLoc(), TemplateKWLoc: SourceLocation(), D: NewBuiltinDecl, |
4468 | /*enclosing*/ RefersToEnclosingVariableOrCapture: false, NameLoc: DRE->getLocation(), T: Context.BuiltinFnTy, |
4469 | VK: DRE->getValueKind(), FoundD: nullptr, TemplateArgs: nullptr, NOUR: DRE->isNonOdrUse()); |
4470 | |
4471 | // Set the callee in the CallExpr. |
4472 | // FIXME: This loses syntactic information. |
4473 | QualType CalleePtrTy = Context.getPointerType(T: NewBuiltinDecl->getType()); |
4474 | ExprResult PromotedCall = ImpCastExprToType(E: NewDRE, Type: CalleePtrTy, |
4475 | CK: CK_BuiltinFnToFnPtr); |
4476 | TheCall->setCallee(PromotedCall.get()); |
4477 | |
4478 | // Change the result type of the call to match the original value type. This |
4479 | // is arbitrary, but the codegen for these builtins ins design to handle it |
4480 | // gracefully. |
4481 | TheCall->setType(ResultType); |
4482 | |
4483 | // Prohibit problematic uses of bit-precise integer types with atomic |
4484 | // builtins. The arguments would have already been converted to the first |
4485 | // argument's type, so only need to check the first argument. |
4486 | const auto *BitIntValType = ValType->getAs<BitIntType>(); |
4487 | if (BitIntValType && !llvm::isPowerOf2_64(Value: BitIntValType->getNumBits())) { |
4488 | Diag(Loc: FirstArg->getExprLoc(), DiagID: diag::err_atomic_builtin_ext_int_size); |
4489 | return ExprError(); |
4490 | } |
4491 | |
4492 | return TheCallResult; |
4493 | } |
4494 | |
4495 | ExprResult Sema::BuiltinNontemporalOverloaded(ExprResult TheCallResult) { |
4496 | CallExpr *TheCall = (CallExpr *)TheCallResult.get(); |
4497 | DeclRefExpr *DRE = |
4498 | cast<DeclRefExpr>(Val: TheCall->getCallee()->IgnoreParenCasts()); |
4499 | FunctionDecl *FDecl = cast<FunctionDecl>(Val: DRE->getDecl()); |
4500 | unsigned BuiltinID = FDecl->getBuiltinID(); |
4501 | assert((BuiltinID == Builtin::BI__builtin_nontemporal_store || |
4502 | BuiltinID == Builtin::BI__builtin_nontemporal_load) && |
4503 | "Unexpected nontemporal load/store builtin!" ); |
4504 | bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store; |
4505 | unsigned numArgs = isStore ? 2 : 1; |
4506 | |
4507 | // Ensure that we have the proper number of arguments. |
4508 | if (checkArgCount(Call: TheCall, DesiredArgCount: numArgs)) |
4509 | return ExprError(); |
4510 | |
4511 | // Inspect the last argument of the nontemporal builtin. This should always |
4512 | // be a pointer type, from which we imply the type of the memory access. |
4513 | // Because it is a pointer type, we don't have to worry about any implicit |
4514 | // casts here. |
4515 | Expr *PointerArg = TheCall->getArg(Arg: numArgs - 1); |
4516 | ExprResult PointerArgResult = |
4517 | DefaultFunctionArrayLvalueConversion(E: PointerArg); |
4518 | |
4519 | if (PointerArgResult.isInvalid()) |
4520 | return ExprError(); |
4521 | PointerArg = PointerArgResult.get(); |
4522 | TheCall->setArg(Arg: numArgs - 1, ArgExpr: PointerArg); |
4523 | |
4524 | const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); |
4525 | if (!pointerType) { |
4526 | Diag(Loc: DRE->getBeginLoc(), DiagID: diag::err_nontemporal_builtin_must_be_pointer) |
4527 | << PointerArg->getType() << PointerArg->getSourceRange(); |
4528 | return ExprError(); |
4529 | } |
4530 | |
4531 | QualType ValType = pointerType->getPointeeType(); |
4532 | |
4533 | // Strip any qualifiers off ValType. |
4534 | ValType = ValType.getUnqualifiedType(); |
4535 | if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && |
4536 | !ValType->isBlockPointerType() && !ValType->isFloatingType() && |
4537 | !ValType->isVectorType()) { |
4538 | Diag(Loc: DRE->getBeginLoc(), |
4539 | DiagID: diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector) |
4540 | << PointerArg->getType() << PointerArg->getSourceRange(); |
4541 | return ExprError(); |
4542 | } |
4543 | |
4544 | if (!isStore) { |
4545 | TheCall->setType(ValType); |
4546 | return TheCallResult; |
4547 | } |
4548 | |
4549 | ExprResult ValArg = TheCall->getArg(Arg: 0); |
4550 | InitializedEntity Entity = InitializedEntity::InitializeParameter( |
4551 | Context, Type: ValType, /*consume*/ Consumed: false); |
4552 | ValArg = PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: ValArg); |
4553 | if (ValArg.isInvalid()) |
4554 | return ExprError(); |
4555 | |
4556 | TheCall->setArg(Arg: 0, ArgExpr: ValArg.get()); |
4557 | TheCall->setType(Context.VoidTy); |
4558 | return TheCallResult; |
4559 | } |
4560 | |
4561 | /// CheckObjCString - Checks that the format string argument to the os_log() |
4562 | /// and os_trace() functions is correct, and converts it to const char *. |
4563 | ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) { |
4564 | Arg = Arg->IgnoreParenCasts(); |
4565 | auto *Literal = dyn_cast<StringLiteral>(Val: Arg); |
4566 | if (!Literal) { |
4567 | if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Val: Arg)) { |
4568 | Literal = ObjcLiteral->getString(); |
4569 | } |
4570 | } |
4571 | |
4572 | if (!Literal || (!Literal->isOrdinary() && !Literal->isUTF8())) { |
4573 | return ExprError( |
4574 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_os_log_format_not_string_constant) |
4575 | << Arg->getSourceRange()); |
4576 | } |
4577 | |
4578 | ExprResult Result(Literal); |
4579 | QualType ResultTy = Context.getPointerType(T: Context.CharTy.withConst()); |
4580 | InitializedEntity Entity = |
4581 | InitializedEntity::InitializeParameter(Context, Type: ResultTy, Consumed: false); |
4582 | Result = PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Result); |
4583 | return Result; |
4584 | } |
4585 | |
4586 | /// Check that the user is calling the appropriate va_start builtin for the |
4587 | /// target and calling convention. |
4588 | static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) { |
4589 | const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); |
4590 | bool IsX64 = TT.getArch() == llvm::Triple::x86_64; |
4591 | bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 || |
4592 | TT.getArch() == llvm::Triple::aarch64_32); |
4593 | bool IsWindows = TT.isOSWindows(); |
4594 | bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start; |
4595 | if (IsX64 || IsAArch64) { |
4596 | CallingConv CC = CC_C; |
4597 | if (const FunctionDecl *FD = S.getCurFunctionDecl()) |
4598 | CC = FD->getType()->castAs<FunctionType>()->getCallConv(); |
4599 | if (IsMSVAStart) { |
4600 | // Don't allow this in System V ABI functions. |
4601 | if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64)) |
4602 | return S.Diag(Loc: Fn->getBeginLoc(), |
4603 | DiagID: diag::err_ms_va_start_used_in_sysv_function); |
4604 | } else { |
4605 | // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions. |
4606 | // On x64 Windows, don't allow this in System V ABI functions. |
4607 | // (Yes, that means there's no corresponding way to support variadic |
4608 | // System V ABI functions on Windows.) |
4609 | if ((IsWindows && CC == CC_X86_64SysV) || |
4610 | (!IsWindows && CC == CC_Win64)) |
4611 | return S.Diag(Loc: Fn->getBeginLoc(), |
4612 | DiagID: diag::err_va_start_used_in_wrong_abi_function) |
4613 | << !IsWindows; |
4614 | } |
4615 | return false; |
4616 | } |
4617 | |
4618 | if (IsMSVAStart) |
4619 | return S.Diag(Loc: Fn->getBeginLoc(), DiagID: diag::err_builtin_x64_aarch64_only); |
4620 | return false; |
4621 | } |
4622 | |
4623 | static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn, |
4624 | ParmVarDecl **LastParam = nullptr) { |
4625 | // Determine whether the current function, block, or obj-c method is variadic |
4626 | // and get its parameter list. |
4627 | bool IsVariadic = false; |
4628 | ArrayRef<ParmVarDecl *> Params; |
4629 | DeclContext *Caller = S.CurContext; |
4630 | if (auto *Block = dyn_cast<BlockDecl>(Val: Caller)) { |
4631 | IsVariadic = Block->isVariadic(); |
4632 | Params = Block->parameters(); |
4633 | } else if (auto *FD = dyn_cast<FunctionDecl>(Val: Caller)) { |
4634 | IsVariadic = FD->isVariadic(); |
4635 | Params = FD->parameters(); |
4636 | } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Val: Caller)) { |
4637 | IsVariadic = MD->isVariadic(); |
4638 | // FIXME: This isn't correct for methods (results in bogus warning). |
4639 | Params = MD->parameters(); |
4640 | } else if (isa<CapturedDecl>(Val: Caller)) { |
4641 | // We don't support va_start in a CapturedDecl. |
4642 | S.Diag(Loc: Fn->getBeginLoc(), DiagID: diag::err_va_start_captured_stmt); |
4643 | return true; |
4644 | } else { |
4645 | // This must be some other declcontext that parses exprs. |
4646 | S.Diag(Loc: Fn->getBeginLoc(), DiagID: diag::err_va_start_outside_function); |
4647 | return true; |
4648 | } |
4649 | |
4650 | if (!IsVariadic) { |
4651 | S.Diag(Loc: Fn->getBeginLoc(), DiagID: diag::err_va_start_fixed_function); |
4652 | return true; |
4653 | } |
4654 | |
4655 | if (LastParam) |
4656 | *LastParam = Params.empty() ? nullptr : Params.back(); |
4657 | |
4658 | return false; |
4659 | } |
4660 | |
4661 | bool Sema::BuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) { |
4662 | Expr *Fn = TheCall->getCallee(); |
4663 | |
4664 | if (checkVAStartABI(S&: *this, BuiltinID, Fn)) |
4665 | return true; |
4666 | |
4667 | // In C23 mode, va_start only needs one argument. However, the builtin still |
4668 | // requires two arguments (which matches the behavior of the GCC builtin), |
4669 | // <stdarg.h> passes `0` as the second argument in C23 mode. |
4670 | if (checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
4671 | return true; |
4672 | |
4673 | // Type-check the first argument normally. |
4674 | if (checkBuiltinArgument(S&: *this, E: TheCall, ArgIndex: 0)) |
4675 | return true; |
4676 | |
4677 | // Check that the current function is variadic, and get its last parameter. |
4678 | ParmVarDecl *LastParam; |
4679 | if (checkVAStartIsInVariadicFunction(S&: *this, Fn, LastParam: &LastParam)) |
4680 | return true; |
4681 | |
4682 | // Verify that the second argument to the builtin is the last argument of the |
4683 | // current function or method. In C23 mode, if the second argument is an |
4684 | // integer constant expression with value 0, then we don't bother with this |
4685 | // check. |
4686 | bool SecondArgIsLastNamedArgument = false; |
4687 | const Expr *Arg = TheCall->getArg(Arg: 1)->IgnoreParenCasts(); |
4688 | if (std::optional<llvm::APSInt> Val = |
4689 | TheCall->getArg(Arg: 1)->getIntegerConstantExpr(Ctx: Context); |
4690 | Val && LangOpts.C23 && *Val == 0) |
4691 | return false; |
4692 | |
4693 | // These are valid if SecondArgIsLastNamedArgument is false after the next |
4694 | // block. |
4695 | QualType Type; |
4696 | SourceLocation ParamLoc; |
4697 | bool IsCRegister = false; |
4698 | |
4699 | if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Val: Arg)) { |
4700 | if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(Val: DR->getDecl())) { |
4701 | SecondArgIsLastNamedArgument = PV == LastParam; |
4702 | |
4703 | Type = PV->getType(); |
4704 | ParamLoc = PV->getLocation(); |
4705 | IsCRegister = |
4706 | PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus; |
4707 | } |
4708 | } |
4709 | |
4710 | if (!SecondArgIsLastNamedArgument) |
4711 | Diag(Loc: TheCall->getArg(Arg: 1)->getBeginLoc(), |
4712 | DiagID: diag::warn_second_arg_of_va_start_not_last_named_param); |
4713 | else if (IsCRegister || Type->isReferenceType() || |
4714 | Type->isSpecificBuiltinType(K: BuiltinType::Float) || [=] { |
4715 | // Promotable integers are UB, but enumerations need a bit of |
4716 | // extra checking to see what their promotable type actually is. |
4717 | if (!Context.isPromotableIntegerType(T: Type)) |
4718 | return false; |
4719 | if (!Type->isEnumeralType()) |
4720 | return true; |
4721 | const EnumDecl *ED = Type->castAs<EnumType>()->getDecl(); |
4722 | return !(ED && |
4723 | Context.typesAreCompatible(T1: ED->getPromotionType(), T2: Type)); |
4724 | }()) { |
4725 | unsigned Reason = 0; |
4726 | if (Type->isReferenceType()) Reason = 1; |
4727 | else if (IsCRegister) Reason = 2; |
4728 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::warn_va_start_type_is_undefined) << Reason; |
4729 | Diag(Loc: ParamLoc, DiagID: diag::note_parameter_type) << Type; |
4730 | } |
4731 | |
4732 | return false; |
4733 | } |
4734 | |
4735 | bool Sema::BuiltinVAStartARMMicrosoft(CallExpr *Call) { |
4736 | auto IsSuitablyTypedFormatArgument = [this](const Expr *Arg) -> bool { |
4737 | const LangOptions &LO = getLangOpts(); |
4738 | |
4739 | if (LO.CPlusPlus) |
4740 | return Arg->getType() |
4741 | .getCanonicalType() |
4742 | .getTypePtr() |
4743 | ->getPointeeType() |
4744 | .withoutLocalFastQualifiers() == Context.CharTy; |
4745 | |
4746 | // In C, allow aliasing through `char *`, this is required for AArch64 at |
4747 | // least. |
4748 | return true; |
4749 | }; |
4750 | |
4751 | // void __va_start(va_list *ap, const char *named_addr, size_t slot_size, |
4752 | // const char *named_addr); |
4753 | |
4754 | Expr *Func = Call->getCallee(); |
4755 | |
4756 | if (Call->getNumArgs() < 3) |
4757 | return Diag(Loc: Call->getEndLoc(), |
4758 | DiagID: diag::err_typecheck_call_too_few_args_at_least) |
4759 | << 0 /*function call*/ << 3 << Call->getNumArgs() |
4760 | << /*is non object*/ 0; |
4761 | |
4762 | // Type-check the first argument normally. |
4763 | if (checkBuiltinArgument(S&: *this, E: Call, ArgIndex: 0)) |
4764 | return true; |
4765 | |
4766 | // Check that the current function is variadic. |
4767 | if (checkVAStartIsInVariadicFunction(S&: *this, Fn: Func)) |
4768 | return true; |
4769 | |
4770 | // __va_start on Windows does not validate the parameter qualifiers |
4771 | |
4772 | const Expr *Arg1 = Call->getArg(Arg: 1)->IgnoreParens(); |
4773 | const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr(); |
4774 | |
4775 | const Expr *Arg2 = Call->getArg(Arg: 2)->IgnoreParens(); |
4776 | const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr(); |
4777 | |
4778 | const QualType &ConstCharPtrTy = |
4779 | Context.getPointerType(T: Context.CharTy.withConst()); |
4780 | if (!Arg1Ty->isPointerType() || !IsSuitablyTypedFormatArgument(Arg1)) |
4781 | Diag(Loc: Arg1->getBeginLoc(), DiagID: diag::err_typecheck_convert_incompatible) |
4782 | << Arg1->getType() << ConstCharPtrTy << 1 /* different class */ |
4783 | << 0 /* qualifier difference */ |
4784 | << 3 /* parameter mismatch */ |
4785 | << 2 << Arg1->getType() << ConstCharPtrTy; |
4786 | |
4787 | const QualType SizeTy = Context.getSizeType(); |
4788 | if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy) |
4789 | Diag(Loc: Arg2->getBeginLoc(), DiagID: diag::err_typecheck_convert_incompatible) |
4790 | << Arg2->getType() << SizeTy << 1 /* different class */ |
4791 | << 0 /* qualifier difference */ |
4792 | << 3 /* parameter mismatch */ |
4793 | << 3 << Arg2->getType() << SizeTy; |
4794 | |
4795 | return false; |
4796 | } |
4797 | |
4798 | bool Sema::BuiltinUnorderedCompare(CallExpr *TheCall, unsigned BuiltinID) { |
4799 | if (checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
4800 | return true; |
4801 | |
4802 | if (BuiltinID == Builtin::BI__builtin_isunordered && |
4803 | TheCall->getFPFeaturesInEffect(LO: getLangOpts()).getNoHonorNaNs()) |
4804 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::warn_fp_nan_inf_when_disabled) |
4805 | << 1 << 0 << TheCall->getSourceRange(); |
4806 | |
4807 | ExprResult OrigArg0 = TheCall->getArg(Arg: 0); |
4808 | ExprResult OrigArg1 = TheCall->getArg(Arg: 1); |
4809 | |
4810 | // Do standard promotions between the two arguments, returning their common |
4811 | // type. |
4812 | QualType Res = UsualArithmeticConversions( |
4813 | LHS&: OrigArg0, RHS&: OrigArg1, Loc: TheCall->getExprLoc(), ACK: ACK_Comparison); |
4814 | if (OrigArg0.isInvalid() || OrigArg1.isInvalid()) |
4815 | return true; |
4816 | |
4817 | // Make sure any conversions are pushed back into the call; this is |
4818 | // type safe since unordered compare builtins are declared as "_Bool |
4819 | // foo(...)". |
4820 | TheCall->setArg(Arg: 0, ArgExpr: OrigArg0.get()); |
4821 | TheCall->setArg(Arg: 1, ArgExpr: OrigArg1.get()); |
4822 | |
4823 | if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent()) |
4824 | return false; |
4825 | |
4826 | // If the common type isn't a real floating type, then the arguments were |
4827 | // invalid for this operation. |
4828 | if (Res.isNull() || !Res->isRealFloatingType()) |
4829 | return Diag(Loc: OrigArg0.get()->getBeginLoc(), |
4830 | DiagID: diag::err_typecheck_call_invalid_ordered_compare) |
4831 | << OrigArg0.get()->getType() << OrigArg1.get()->getType() |
4832 | << SourceRange(OrigArg0.get()->getBeginLoc(), |
4833 | OrigArg1.get()->getEndLoc()); |
4834 | |
4835 | return false; |
4836 | } |
4837 | |
4838 | bool Sema::BuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs, |
4839 | unsigned BuiltinID) { |
4840 | if (checkArgCount(Call: TheCall, DesiredArgCount: NumArgs)) |
4841 | return true; |
4842 | |
4843 | FPOptions FPO = TheCall->getFPFeaturesInEffect(LO: getLangOpts()); |
4844 | if (FPO.getNoHonorInfs() && (BuiltinID == Builtin::BI__builtin_isfinite || |
4845 | BuiltinID == Builtin::BI__builtin_isinf || |
4846 | BuiltinID == Builtin::BI__builtin_isinf_sign)) |
4847 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::warn_fp_nan_inf_when_disabled) |
4848 | << 0 << 0 << TheCall->getSourceRange(); |
4849 | |
4850 | if (FPO.getNoHonorNaNs() && (BuiltinID == Builtin::BI__builtin_isnan || |
4851 | BuiltinID == Builtin::BI__builtin_isunordered)) |
4852 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::warn_fp_nan_inf_when_disabled) |
4853 | << 1 << 0 << TheCall->getSourceRange(); |
4854 | |
4855 | bool IsFPClass = NumArgs == 2; |
4856 | |
4857 | // Find out position of floating-point argument. |
4858 | unsigned FPArgNo = IsFPClass ? 0 : NumArgs - 1; |
4859 | |
4860 | // We can count on all parameters preceding the floating-point just being int. |
4861 | // Try all of those. |
4862 | for (unsigned i = 0; i < FPArgNo; ++i) { |
4863 | Expr *Arg = TheCall->getArg(Arg: i); |
4864 | |
4865 | if (Arg->isTypeDependent()) |
4866 | return false; |
4867 | |
4868 | ExprResult Res = PerformImplicitConversion(From: Arg, ToType: Context.IntTy, Action: AA_Passing); |
4869 | |
4870 | if (Res.isInvalid()) |
4871 | return true; |
4872 | TheCall->setArg(Arg: i, ArgExpr: Res.get()); |
4873 | } |
4874 | |
4875 | Expr *OrigArg = TheCall->getArg(Arg: FPArgNo); |
4876 | |
4877 | if (OrigArg->isTypeDependent()) |
4878 | return false; |
4879 | |
4880 | // Usual Unary Conversions will convert half to float, which we want for |
4881 | // machines that use fp16 conversion intrinsics. Else, we wnat to leave the |
4882 | // type how it is, but do normal L->Rvalue conversions. |
4883 | if (Context.getTargetInfo().useFP16ConversionIntrinsics()) |
4884 | OrigArg = UsualUnaryConversions(E: OrigArg).get(); |
4885 | else |
4886 | OrigArg = DefaultFunctionArrayLvalueConversion(E: OrigArg).get(); |
4887 | TheCall->setArg(Arg: FPArgNo, ArgExpr: OrigArg); |
4888 | |
4889 | QualType VectorResultTy; |
4890 | QualType ElementTy = OrigArg->getType(); |
4891 | // TODO: When all classification function are implemented with is_fpclass, |
4892 | // vector argument can be supported in all of them. |
4893 | if (ElementTy->isVectorType() && IsFPClass) { |
4894 | VectorResultTy = GetSignedVectorType(V: ElementTy); |
4895 | ElementTy = ElementTy->castAs<VectorType>()->getElementType(); |
4896 | } |
4897 | |
4898 | // This operation requires a non-_Complex floating-point number. |
4899 | if (!ElementTy->isRealFloatingType()) |
4900 | return Diag(Loc: OrigArg->getBeginLoc(), |
4901 | DiagID: diag::err_typecheck_call_invalid_unary_fp) |
4902 | << OrigArg->getType() << OrigArg->getSourceRange(); |
4903 | |
4904 | // __builtin_isfpclass has integer parameter that specify test mask. It is |
4905 | // passed in (...), so it should be analyzed completely here. |
4906 | if (IsFPClass) |
4907 | if (BuiltinConstantArgRange(TheCall, ArgNum: 1, Low: 0, High: llvm::fcAllFlags)) |
4908 | return true; |
4909 | |
4910 | // TODO: enable this code to all classification functions. |
4911 | if (IsFPClass) { |
4912 | QualType ResultTy; |
4913 | if (!VectorResultTy.isNull()) |
4914 | ResultTy = VectorResultTy; |
4915 | else |
4916 | ResultTy = Context.IntTy; |
4917 | TheCall->setType(ResultTy); |
4918 | } |
4919 | |
4920 | return false; |
4921 | } |
4922 | |
4923 | bool Sema::BuiltinComplex(CallExpr *TheCall) { |
4924 | if (checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
4925 | return true; |
4926 | |
4927 | bool Dependent = false; |
4928 | for (unsigned I = 0; I != 2; ++I) { |
4929 | Expr *Arg = TheCall->getArg(Arg: I); |
4930 | QualType T = Arg->getType(); |
4931 | if (T->isDependentType()) { |
4932 | Dependent = true; |
4933 | continue; |
4934 | } |
4935 | |
4936 | // Despite supporting _Complex int, GCC requires a real floating point type |
4937 | // for the operands of __builtin_complex. |
4938 | if (!T->isRealFloatingType()) { |
4939 | return Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_typecheck_call_requires_real_fp) |
4940 | << Arg->getType() << Arg->getSourceRange(); |
4941 | } |
4942 | |
4943 | ExprResult Converted = DefaultLvalueConversion(E: Arg); |
4944 | if (Converted.isInvalid()) |
4945 | return true; |
4946 | TheCall->setArg(Arg: I, ArgExpr: Converted.get()); |
4947 | } |
4948 | |
4949 | if (Dependent) { |
4950 | TheCall->setType(Context.DependentTy); |
4951 | return false; |
4952 | } |
4953 | |
4954 | Expr *Real = TheCall->getArg(Arg: 0); |
4955 | Expr *Imag = TheCall->getArg(Arg: 1); |
4956 | if (!Context.hasSameType(T1: Real->getType(), T2: Imag->getType())) { |
4957 | return Diag(Loc: Real->getBeginLoc(), |
4958 | DiagID: diag::err_typecheck_call_different_arg_types) |
4959 | << Real->getType() << Imag->getType() |
4960 | << Real->getSourceRange() << Imag->getSourceRange(); |
4961 | } |
4962 | |
4963 | // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers; |
4964 | // don't allow this builtin to form those types either. |
4965 | // FIXME: Should we allow these types? |
4966 | if (Real->getType()->isFloat16Type()) |
4967 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_invalid_complex_spec) |
4968 | << "_Float16" ; |
4969 | if (Real->getType()->isHalfType()) |
4970 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_invalid_complex_spec) |
4971 | << "half" ; |
4972 | |
4973 | TheCall->setType(Context.getComplexType(T: Real->getType())); |
4974 | return false; |
4975 | } |
4976 | |
4977 | /// BuiltinShuffleVector - Handle __builtin_shufflevector. |
4978 | // This is declared to take (...), so we have to check everything. |
4979 | ExprResult Sema::BuiltinShuffleVector(CallExpr *TheCall) { |
4980 | if (TheCall->getNumArgs() < 2) |
4981 | return ExprError(Diag(Loc: TheCall->getEndLoc(), |
4982 | DiagID: diag::err_typecheck_call_too_few_args_at_least) |
4983 | << 0 /*function call*/ << 2 << TheCall->getNumArgs() |
4984 | << /*is non object*/ 0 << TheCall->getSourceRange()); |
4985 | |
4986 | // Determine which of the following types of shufflevector we're checking: |
4987 | // 1) unary, vector mask: (lhs, mask) |
4988 | // 2) binary, scalar mask: (lhs, rhs, index, ..., index) |
4989 | QualType resType = TheCall->getArg(Arg: 0)->getType(); |
4990 | unsigned numElements = 0; |
4991 | |
4992 | if (!TheCall->getArg(Arg: 0)->isTypeDependent() && |
4993 | !TheCall->getArg(Arg: 1)->isTypeDependent()) { |
4994 | QualType LHSType = TheCall->getArg(Arg: 0)->getType(); |
4995 | QualType RHSType = TheCall->getArg(Arg: 1)->getType(); |
4996 | |
4997 | if (!LHSType->isVectorType() || !RHSType->isVectorType()) |
4998 | return ExprError( |
4999 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_vec_builtin_non_vector) |
5000 | << TheCall->getDirectCallee() << /*isMorethantwoArgs*/ false |
5001 | << SourceRange(TheCall->getArg(Arg: 0)->getBeginLoc(), |
5002 | TheCall->getArg(Arg: 1)->getEndLoc())); |
5003 | |
5004 | numElements = LHSType->castAs<VectorType>()->getNumElements(); |
5005 | unsigned numResElements = TheCall->getNumArgs() - 2; |
5006 | |
5007 | // Check to see if we have a call with 2 vector arguments, the unary shuffle |
5008 | // with mask. If so, verify that RHS is an integer vector type with the |
5009 | // same number of elts as lhs. |
5010 | if (TheCall->getNumArgs() == 2) { |
5011 | if (!RHSType->hasIntegerRepresentation() || |
5012 | RHSType->castAs<VectorType>()->getNumElements() != numElements) |
5013 | return ExprError(Diag(Loc: TheCall->getBeginLoc(), |
5014 | DiagID: diag::err_vec_builtin_incompatible_vector) |
5015 | << TheCall->getDirectCallee() |
5016 | << /*isMorethantwoArgs*/ false |
5017 | << SourceRange(TheCall->getArg(Arg: 1)->getBeginLoc(), |
5018 | TheCall->getArg(Arg: 1)->getEndLoc())); |
5019 | } else if (!Context.hasSameUnqualifiedType(T1: LHSType, T2: RHSType)) { |
5020 | return ExprError(Diag(Loc: TheCall->getBeginLoc(), |
5021 | DiagID: diag::err_vec_builtin_incompatible_vector) |
5022 | << TheCall->getDirectCallee() |
5023 | << /*isMorethantwoArgs*/ false |
5024 | << SourceRange(TheCall->getArg(Arg: 0)->getBeginLoc(), |
5025 | TheCall->getArg(Arg: 1)->getEndLoc())); |
5026 | } else if (numElements != numResElements) { |
5027 | QualType eltType = LHSType->castAs<VectorType>()->getElementType(); |
5028 | resType = |
5029 | Context.getVectorType(VectorType: eltType, NumElts: numResElements, VecKind: VectorKind::Generic); |
5030 | } |
5031 | } |
5032 | |
5033 | for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { |
5034 | if (TheCall->getArg(Arg: i)->isTypeDependent() || |
5035 | TheCall->getArg(Arg: i)->isValueDependent()) |
5036 | continue; |
5037 | |
5038 | std::optional<llvm::APSInt> Result; |
5039 | if (!(Result = TheCall->getArg(Arg: i)->getIntegerConstantExpr(Ctx: Context))) |
5040 | return ExprError(Diag(Loc: TheCall->getBeginLoc(), |
5041 | DiagID: diag::err_shufflevector_nonconstant_argument) |
5042 | << TheCall->getArg(Arg: i)->getSourceRange()); |
5043 | |
5044 | // Allow -1 which will be translated to undef in the IR. |
5045 | if (Result->isSigned() && Result->isAllOnes()) |
5046 | continue; |
5047 | |
5048 | if (Result->getActiveBits() > 64 || |
5049 | Result->getZExtValue() >= numElements * 2) |
5050 | return ExprError(Diag(Loc: TheCall->getBeginLoc(), |
5051 | DiagID: diag::err_shufflevector_argument_too_large) |
5052 | << TheCall->getArg(Arg: i)->getSourceRange()); |
5053 | } |
5054 | |
5055 | SmallVector<Expr*, 32> exprs; |
5056 | |
5057 | for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { |
5058 | exprs.push_back(Elt: TheCall->getArg(Arg: i)); |
5059 | TheCall->setArg(Arg: i, ArgExpr: nullptr); |
5060 | } |
5061 | |
5062 | return new (Context) ShuffleVectorExpr(Context, exprs, resType, |
5063 | TheCall->getCallee()->getBeginLoc(), |
5064 | TheCall->getRParenLoc()); |
5065 | } |
5066 | |
5067 | ExprResult Sema::ConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, |
5068 | SourceLocation BuiltinLoc, |
5069 | SourceLocation RParenLoc) { |
5070 | ExprValueKind VK = VK_PRValue; |
5071 | ExprObjectKind OK = OK_Ordinary; |
5072 | QualType DstTy = TInfo->getType(); |
5073 | QualType SrcTy = E->getType(); |
5074 | |
5075 | if (!SrcTy->isVectorType() && !SrcTy->isDependentType()) |
5076 | return ExprError(Diag(Loc: BuiltinLoc, |
5077 | DiagID: diag::err_convertvector_non_vector) |
5078 | << E->getSourceRange()); |
5079 | if (!DstTy->isVectorType() && !DstTy->isDependentType()) |
5080 | return ExprError(Diag(Loc: BuiltinLoc, DiagID: diag::err_builtin_non_vector_type) |
5081 | << "second" |
5082 | << "__builtin_convertvector" ); |
5083 | |
5084 | if (!SrcTy->isDependentType() && !DstTy->isDependentType()) { |
5085 | unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements(); |
5086 | unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements(); |
5087 | if (SrcElts != DstElts) |
5088 | return ExprError(Diag(Loc: BuiltinLoc, |
5089 | DiagID: diag::err_convertvector_incompatible_vector) |
5090 | << E->getSourceRange()); |
5091 | } |
5092 | |
5093 | return new (Context) class ConvertVectorExpr(E, TInfo, DstTy, VK, OK, |
5094 | BuiltinLoc, RParenLoc); |
5095 | } |
5096 | |
5097 | bool Sema::BuiltinPrefetch(CallExpr *TheCall) { |
5098 | unsigned NumArgs = TheCall->getNumArgs(); |
5099 | |
5100 | if (NumArgs > 3) |
5101 | return Diag(Loc: TheCall->getEndLoc(), |
5102 | DiagID: diag::err_typecheck_call_too_many_args_at_most) |
5103 | << 0 /*function call*/ << 3 << NumArgs << /*is non object*/ 0 |
5104 | << TheCall->getSourceRange(); |
5105 | |
5106 | // Argument 0 is checked for us and the remaining arguments must be |
5107 | // constant integers. |
5108 | for (unsigned i = 1; i != NumArgs; ++i) |
5109 | if (BuiltinConstantArgRange(TheCall, ArgNum: i, Low: 0, High: i == 1 ? 1 : 3)) |
5110 | return true; |
5111 | |
5112 | return false; |
5113 | } |
5114 | |
5115 | bool Sema::BuiltinArithmeticFence(CallExpr *TheCall) { |
5116 | if (!Context.getTargetInfo().checkArithmeticFenceSupported()) |
5117 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_target_unsupported) |
5118 | << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); |
5119 | if (checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
5120 | return true; |
5121 | Expr *Arg = TheCall->getArg(Arg: 0); |
5122 | if (Arg->isInstantiationDependent()) |
5123 | return false; |
5124 | |
5125 | QualType ArgTy = Arg->getType(); |
5126 | if (!ArgTy->hasFloatingRepresentation()) |
5127 | return Diag(Loc: TheCall->getEndLoc(), DiagID: diag::err_typecheck_expect_flt_or_vector) |
5128 | << ArgTy; |
5129 | if (Arg->isLValue()) { |
5130 | ExprResult FirstArg = DefaultLvalueConversion(E: Arg); |
5131 | TheCall->setArg(Arg: 0, ArgExpr: FirstArg.get()); |
5132 | } |
5133 | TheCall->setType(TheCall->getArg(Arg: 0)->getType()); |
5134 | return false; |
5135 | } |
5136 | |
5137 | bool Sema::BuiltinAssume(CallExpr *TheCall) { |
5138 | Expr *Arg = TheCall->getArg(Arg: 0); |
5139 | if (Arg->isInstantiationDependent()) return false; |
5140 | |
5141 | if (Arg->HasSideEffects(Ctx: Context)) |
5142 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::warn_assume_side_effects) |
5143 | << Arg->getSourceRange() |
5144 | << cast<FunctionDecl>(Val: TheCall->getCalleeDecl())->getIdentifier(); |
5145 | |
5146 | return false; |
5147 | } |
5148 | |
5149 | bool Sema::BuiltinAllocaWithAlign(CallExpr *TheCall) { |
5150 | // The alignment must be a constant integer. |
5151 | Expr *Arg = TheCall->getArg(Arg: 1); |
5152 | |
5153 | // We can't check the value of a dependent argument. |
5154 | if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { |
5155 | if (const auto *UE = |
5156 | dyn_cast<UnaryExprOrTypeTraitExpr>(Val: Arg->IgnoreParenImpCasts())) |
5157 | if (UE->getKind() == UETT_AlignOf || |
5158 | UE->getKind() == UETT_PreferredAlignOf) |
5159 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::warn_alloca_align_alignof) |
5160 | << Arg->getSourceRange(); |
5161 | |
5162 | llvm::APSInt Result = Arg->EvaluateKnownConstInt(Ctx: Context); |
5163 | |
5164 | if (!Result.isPowerOf2()) |
5165 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_alignment_not_power_of_two) |
5166 | << Arg->getSourceRange(); |
5167 | |
5168 | if (Result < Context.getCharWidth()) |
5169 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_alignment_too_small) |
5170 | << (unsigned)Context.getCharWidth() << Arg->getSourceRange(); |
5171 | |
5172 | if (Result > std::numeric_limits<int32_t>::max()) |
5173 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_alignment_too_big) |
5174 | << std::numeric_limits<int32_t>::max() << Arg->getSourceRange(); |
5175 | } |
5176 | |
5177 | return false; |
5178 | } |
5179 | |
5180 | bool Sema::BuiltinAssumeAligned(CallExpr *TheCall) { |
5181 | if (checkArgCountRange(Call: TheCall, MinArgCount: 2, MaxArgCount: 3)) |
5182 | return true; |
5183 | |
5184 | unsigned NumArgs = TheCall->getNumArgs(); |
5185 | Expr *FirstArg = TheCall->getArg(Arg: 0); |
5186 | |
5187 | { |
5188 | ExprResult FirstArgResult = |
5189 | DefaultFunctionArrayLvalueConversion(E: FirstArg); |
5190 | if (checkBuiltinArgument(S&: *this, E: TheCall, ArgIndex: 0)) |
5191 | return true; |
5192 | /// In-place updation of FirstArg by checkBuiltinArgument is ignored. |
5193 | TheCall->setArg(Arg: 0, ArgExpr: FirstArgResult.get()); |
5194 | } |
5195 | |
5196 | // The alignment must be a constant integer. |
5197 | Expr *SecondArg = TheCall->getArg(Arg: 1); |
5198 | |
5199 | // We can't check the value of a dependent argument. |
5200 | if (!SecondArg->isValueDependent()) { |
5201 | llvm::APSInt Result; |
5202 | if (BuiltinConstantArg(TheCall, ArgNum: 1, Result)) |
5203 | return true; |
5204 | |
5205 | if (!Result.isPowerOf2()) |
5206 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_alignment_not_power_of_two) |
5207 | << SecondArg->getSourceRange(); |
5208 | |
5209 | if (Result > Sema::MaximumAlignment) |
5210 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::warn_assume_aligned_too_great) |
5211 | << SecondArg->getSourceRange() << Sema::MaximumAlignment; |
5212 | } |
5213 | |
5214 | if (NumArgs > 2) { |
5215 | Expr *ThirdArg = TheCall->getArg(Arg: 2); |
5216 | if (convertArgumentToType(S&: *this, Value&: ThirdArg, Ty: Context.getSizeType())) |
5217 | return true; |
5218 | TheCall->setArg(Arg: 2, ArgExpr: ThirdArg); |
5219 | } |
5220 | |
5221 | return false; |
5222 | } |
5223 | |
5224 | bool Sema::BuiltinOSLogFormat(CallExpr *TheCall) { |
5225 | unsigned BuiltinID = |
5226 | cast<FunctionDecl>(Val: TheCall->getCalleeDecl())->getBuiltinID(); |
5227 | bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size; |
5228 | |
5229 | unsigned NumArgs = TheCall->getNumArgs(); |
5230 | unsigned NumRequiredArgs = IsSizeCall ? 1 : 2; |
5231 | if (NumArgs < NumRequiredArgs) { |
5232 | return Diag(Loc: TheCall->getEndLoc(), DiagID: diag::err_typecheck_call_too_few_args) |
5233 | << 0 /* function call */ << NumRequiredArgs << NumArgs |
5234 | << /*is non object*/ 0 << TheCall->getSourceRange(); |
5235 | } |
5236 | if (NumArgs >= NumRequiredArgs + 0x100) { |
5237 | return Diag(Loc: TheCall->getEndLoc(), |
5238 | DiagID: diag::err_typecheck_call_too_many_args_at_most) |
5239 | << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs |
5240 | << /*is non object*/ 0 << TheCall->getSourceRange(); |
5241 | } |
5242 | unsigned i = 0; |
5243 | |
5244 | // For formatting call, check buffer arg. |
5245 | if (!IsSizeCall) { |
5246 | ExprResult Arg(TheCall->getArg(Arg: i)); |
5247 | InitializedEntity Entity = InitializedEntity::InitializeParameter( |
5248 | Context, Type: Context.VoidPtrTy, Consumed: false); |
5249 | Arg = PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Arg); |
5250 | if (Arg.isInvalid()) |
5251 | return true; |
5252 | TheCall->setArg(Arg: i, ArgExpr: Arg.get()); |
5253 | i++; |
5254 | } |
5255 | |
5256 | // Check string literal arg. |
5257 | unsigned FormatIdx = i; |
5258 | { |
5259 | ExprResult Arg = CheckOSLogFormatStringArg(Arg: TheCall->getArg(Arg: i)); |
5260 | if (Arg.isInvalid()) |
5261 | return true; |
5262 | TheCall->setArg(Arg: i, ArgExpr: Arg.get()); |
5263 | i++; |
5264 | } |
5265 | |
5266 | // Make sure variadic args are scalar. |
5267 | unsigned FirstDataArg = i; |
5268 | while (i < NumArgs) { |
5269 | ExprResult Arg = DefaultVariadicArgumentPromotion( |
5270 | E: TheCall->getArg(Arg: i), CT: VariadicFunction, FDecl: nullptr); |
5271 | if (Arg.isInvalid()) |
5272 | return true; |
5273 | CharUnits ArgSize = Context.getTypeSizeInChars(T: Arg.get()->getType()); |
5274 | if (ArgSize.getQuantity() >= 0x100) { |
5275 | return Diag(Loc: Arg.get()->getEndLoc(), DiagID: diag::err_os_log_argument_too_big) |
5276 | << i << (int)ArgSize.getQuantity() << 0xff |
5277 | << TheCall->getSourceRange(); |
5278 | } |
5279 | TheCall->setArg(Arg: i, ArgExpr: Arg.get()); |
5280 | i++; |
5281 | } |
5282 | |
5283 | // Check formatting specifiers. NOTE: We're only doing this for the non-size |
5284 | // call to avoid duplicate diagnostics. |
5285 | if (!IsSizeCall) { |
5286 | llvm::SmallBitVector CheckedVarArgs(NumArgs, false); |
5287 | ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs()); |
5288 | bool Success = CheckFormatArguments( |
5289 | Args, FAPK: FAPK_Variadic, format_idx: FormatIdx, firstDataArg: FirstDataArg, Type: FST_OSLog, |
5290 | CallType: VariadicFunction, Loc: TheCall->getBeginLoc(), range: SourceRange(), |
5291 | CheckedVarArgs); |
5292 | if (!Success) |
5293 | return true; |
5294 | } |
5295 | |
5296 | if (IsSizeCall) { |
5297 | TheCall->setType(Context.getSizeType()); |
5298 | } else { |
5299 | TheCall->setType(Context.VoidPtrTy); |
5300 | } |
5301 | return false; |
5302 | } |
5303 | |
5304 | bool Sema::BuiltinConstantArg(CallExpr *TheCall, int ArgNum, |
5305 | llvm::APSInt &Result) { |
5306 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
5307 | DeclRefExpr *DRE =cast<DeclRefExpr>(Val: TheCall->getCallee()->IgnoreParenCasts()); |
5308 | FunctionDecl *FDecl = cast<FunctionDecl>(Val: DRE->getDecl()); |
5309 | |
5310 | if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; |
5311 | |
5312 | std::optional<llvm::APSInt> R; |
5313 | if (!(R = Arg->getIntegerConstantExpr(Ctx: Context))) |
5314 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_constant_integer_arg_type) |
5315 | << FDecl->getDeclName() << Arg->getSourceRange(); |
5316 | Result = *R; |
5317 | return false; |
5318 | } |
5319 | |
5320 | bool Sema::BuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low, |
5321 | int High, bool RangeIsError) { |
5322 | if (isConstantEvaluatedContext()) |
5323 | return false; |
5324 | llvm::APSInt Result; |
5325 | |
5326 | // We can't check the value of a dependent argument. |
5327 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
5328 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
5329 | return false; |
5330 | |
5331 | // Check constant-ness first. |
5332 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
5333 | return true; |
5334 | |
5335 | if (Result.getSExtValue() < Low || Result.getSExtValue() > High) { |
5336 | if (RangeIsError) |
5337 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_argument_invalid_range) |
5338 | << toString(I: Result, Radix: 10) << Low << High << Arg->getSourceRange(); |
5339 | else |
5340 | // Defer the warning until we know if the code will be emitted so that |
5341 | // dead code can ignore this. |
5342 | DiagRuntimeBehavior(Loc: TheCall->getBeginLoc(), Statement: TheCall, |
5343 | PD: PDiag(DiagID: diag::warn_argument_invalid_range) |
5344 | << toString(I: Result, Radix: 10) << Low << High |
5345 | << Arg->getSourceRange()); |
5346 | } |
5347 | |
5348 | return false; |
5349 | } |
5350 | |
5351 | bool Sema::BuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, |
5352 | unsigned Num) { |
5353 | llvm::APSInt Result; |
5354 | |
5355 | // We can't check the value of a dependent argument. |
5356 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
5357 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
5358 | return false; |
5359 | |
5360 | // Check constant-ness first. |
5361 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
5362 | return true; |
5363 | |
5364 | if (Result.getSExtValue() % Num != 0) |
5365 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_argument_not_multiple) |
5366 | << Num << Arg->getSourceRange(); |
5367 | |
5368 | return false; |
5369 | } |
5370 | |
5371 | bool Sema::BuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) { |
5372 | llvm::APSInt Result; |
5373 | |
5374 | // We can't check the value of a dependent argument. |
5375 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
5376 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
5377 | return false; |
5378 | |
5379 | // Check constant-ness first. |
5380 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
5381 | return true; |
5382 | |
5383 | // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if |
5384 | // and only if x is a power of 2. |
5385 | if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0) |
5386 | return false; |
5387 | |
5388 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_argument_not_power_of_2) |
5389 | << Arg->getSourceRange(); |
5390 | } |
5391 | |
5392 | static bool IsShiftedByte(llvm::APSInt Value) { |
5393 | if (Value.isNegative()) |
5394 | return false; |
5395 | |
5396 | // Check if it's a shifted byte, by shifting it down |
5397 | while (true) { |
5398 | // If the value fits in the bottom byte, the check passes. |
5399 | if (Value < 0x100) |
5400 | return true; |
5401 | |
5402 | // Otherwise, if the value has _any_ bits in the bottom byte, the check |
5403 | // fails. |
5404 | if ((Value & 0xFF) != 0) |
5405 | return false; |
5406 | |
5407 | // If the bottom 8 bits are all 0, but something above that is nonzero, |
5408 | // then shifting the value right by 8 bits won't affect whether it's a |
5409 | // shifted byte or not. So do that, and go round again. |
5410 | Value >>= 8; |
5411 | } |
5412 | } |
5413 | |
5414 | bool Sema::BuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum, |
5415 | unsigned ArgBits) { |
5416 | llvm::APSInt Result; |
5417 | |
5418 | // We can't check the value of a dependent argument. |
5419 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
5420 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
5421 | return false; |
5422 | |
5423 | // Check constant-ness first. |
5424 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
5425 | return true; |
5426 | |
5427 | // Truncate to the given size. |
5428 | Result = Result.getLoBits(numBits: ArgBits); |
5429 | Result.setIsUnsigned(true); |
5430 | |
5431 | if (IsShiftedByte(Value: Result)) |
5432 | return false; |
5433 | |
5434 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_argument_not_shifted_byte) |
5435 | << Arg->getSourceRange(); |
5436 | } |
5437 | |
5438 | bool Sema::BuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum, |
5439 | unsigned ArgBits) { |
5440 | llvm::APSInt Result; |
5441 | |
5442 | // We can't check the value of a dependent argument. |
5443 | Expr *Arg = TheCall->getArg(Arg: ArgNum); |
5444 | if (Arg->isTypeDependent() || Arg->isValueDependent()) |
5445 | return false; |
5446 | |
5447 | // Check constant-ness first. |
5448 | if (BuiltinConstantArg(TheCall, ArgNum, Result)) |
5449 | return true; |
5450 | |
5451 | // Truncate to the given size. |
5452 | Result = Result.getLoBits(numBits: ArgBits); |
5453 | Result.setIsUnsigned(true); |
5454 | |
5455 | // Check to see if it's in either of the required forms. |
5456 | if (IsShiftedByte(Value: Result) || |
5457 | (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF)) |
5458 | return false; |
5459 | |
5460 | return Diag(Loc: TheCall->getBeginLoc(), |
5461 | DiagID: diag::err_argument_not_shifted_byte_or_xxff) |
5462 | << Arg->getSourceRange(); |
5463 | } |
5464 | |
5465 | bool Sema::BuiltinLongjmp(CallExpr *TheCall) { |
5466 | if (!Context.getTargetInfo().hasSjLjLowering()) |
5467 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_longjmp_unsupported) |
5468 | << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); |
5469 | |
5470 | Expr *Arg = TheCall->getArg(Arg: 1); |
5471 | llvm::APSInt Result; |
5472 | |
5473 | // TODO: This is less than ideal. Overload this to take a value. |
5474 | if (BuiltinConstantArg(TheCall, ArgNum: 1, Result)) |
5475 | return true; |
5476 | |
5477 | if (Result != 1) |
5478 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_longjmp_invalid_val) |
5479 | << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc()); |
5480 | |
5481 | return false; |
5482 | } |
5483 | |
5484 | bool Sema::BuiltinSetjmp(CallExpr *TheCall) { |
5485 | if (!Context.getTargetInfo().hasSjLjLowering()) |
5486 | return Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_setjmp_unsupported) |
5487 | << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); |
5488 | return false; |
5489 | } |
5490 | |
5491 | namespace { |
5492 | |
5493 | class UncoveredArgHandler { |
5494 | enum { Unknown = -1, AllCovered = -2 }; |
5495 | |
5496 | signed FirstUncoveredArg = Unknown; |
5497 | SmallVector<const Expr *, 4> DiagnosticExprs; |
5498 | |
5499 | public: |
5500 | UncoveredArgHandler() = default; |
5501 | |
5502 | bool hasUncoveredArg() const { |
5503 | return (FirstUncoveredArg >= 0); |
5504 | } |
5505 | |
5506 | unsigned getUncoveredArg() const { |
5507 | assert(hasUncoveredArg() && "no uncovered argument" ); |
5508 | return FirstUncoveredArg; |
5509 | } |
5510 | |
5511 | void setAllCovered() { |
5512 | // A string has been found with all arguments covered, so clear out |
5513 | // the diagnostics. |
5514 | DiagnosticExprs.clear(); |
5515 | FirstUncoveredArg = AllCovered; |
5516 | } |
5517 | |
5518 | void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) { |
5519 | assert(NewFirstUncoveredArg >= 0 && "Outside range" ); |
5520 | |
5521 | // Don't update if a previous string covers all arguments. |
5522 | if (FirstUncoveredArg == AllCovered) |
5523 | return; |
5524 | |
5525 | // UncoveredArgHandler tracks the highest uncovered argument index |
5526 | // and with it all the strings that match this index. |
5527 | if (NewFirstUncoveredArg == FirstUncoveredArg) |
5528 | DiagnosticExprs.push_back(Elt: StrExpr); |
5529 | else if (NewFirstUncoveredArg > FirstUncoveredArg) { |
5530 | DiagnosticExprs.clear(); |
5531 | DiagnosticExprs.push_back(Elt: StrExpr); |
5532 | FirstUncoveredArg = NewFirstUncoveredArg; |
5533 | } |
5534 | } |
5535 | |
5536 | void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr); |
5537 | }; |
5538 | |
5539 | enum StringLiteralCheckType { |
5540 | SLCT_NotALiteral, |
5541 | SLCT_UncheckedLiteral, |
5542 | SLCT_CheckedLiteral |
5543 | }; |
5544 | |
5545 | } // namespace |
5546 | |
5547 | static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend, |
5548 | BinaryOperatorKind BinOpKind, |
5549 | bool AddendIsRight) { |
5550 | unsigned BitWidth = Offset.getBitWidth(); |
5551 | unsigned AddendBitWidth = Addend.getBitWidth(); |
5552 | // There might be negative interim results. |
5553 | if (Addend.isUnsigned()) { |
5554 | Addend = Addend.zext(width: ++AddendBitWidth); |
5555 | Addend.setIsSigned(true); |
5556 | } |
5557 | // Adjust the bit width of the APSInts. |
5558 | if (AddendBitWidth > BitWidth) { |
5559 | Offset = Offset.sext(width: AddendBitWidth); |
5560 | BitWidth = AddendBitWidth; |
5561 | } else if (BitWidth > AddendBitWidth) { |
5562 | Addend = Addend.sext(width: BitWidth); |
5563 | } |
5564 | |
5565 | bool Ov = false; |
5566 | llvm::APSInt ResOffset = Offset; |
5567 | if (BinOpKind == BO_Add) |
5568 | ResOffset = Offset.sadd_ov(RHS: Addend, Overflow&: Ov); |
5569 | else { |
5570 | assert(AddendIsRight && BinOpKind == BO_Sub && |
5571 | "operator must be add or sub with addend on the right" ); |
5572 | ResOffset = Offset.ssub_ov(RHS: Addend, Overflow&: Ov); |
5573 | } |
5574 | |
5575 | // We add an offset to a pointer here so we should support an offset as big as |
5576 | // possible. |
5577 | if (Ov) { |
5578 | assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 && |
5579 | "index (intermediate) result too big" ); |
5580 | Offset = Offset.sext(width: 2 * BitWidth); |
5581 | sumOffsets(Offset, Addend, BinOpKind, AddendIsRight); |
5582 | return; |
5583 | } |
5584 | |
5585 | Offset = ResOffset; |
5586 | } |
5587 | |
5588 | namespace { |
5589 | |
5590 | // This is a wrapper class around StringLiteral to support offsetted string |
5591 | // literals as format strings. It takes the offset into account when returning |
5592 | // the string and its length or the source locations to display notes correctly. |
5593 | class FormatStringLiteral { |
5594 | const StringLiteral *FExpr; |
5595 | int64_t Offset; |
5596 | |
5597 | public: |
5598 | FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0) |
5599 | : FExpr(fexpr), Offset(Offset) {} |
5600 | |
5601 | StringRef getString() const { |
5602 | return FExpr->getString().drop_front(N: Offset); |
5603 | } |
5604 | |
5605 | unsigned getByteLength() const { |
5606 | return FExpr->getByteLength() - getCharByteWidth() * Offset; |
5607 | } |
5608 | |
5609 | unsigned getLength() const { return FExpr->getLength() - Offset; } |
5610 | unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); } |
5611 | |
5612 | StringLiteralKind getKind() const { return FExpr->getKind(); } |
5613 | |
5614 | QualType getType() const { return FExpr->getType(); } |
5615 | |
5616 | bool isAscii() const { return FExpr->isOrdinary(); } |
5617 | bool isWide() const { return FExpr->isWide(); } |
5618 | bool isUTF8() const { return FExpr->isUTF8(); } |
5619 | bool isUTF16() const { return FExpr->isUTF16(); } |
5620 | bool isUTF32() const { return FExpr->isUTF32(); } |
5621 | bool isPascal() const { return FExpr->isPascal(); } |
5622 | |
5623 | SourceLocation getLocationOfByte( |
5624 | unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, |
5625 | const TargetInfo &Target, unsigned *StartToken = nullptr, |
5626 | unsigned *StartTokenByteOffset = nullptr) const { |
5627 | return FExpr->getLocationOfByte(ByteNo: ByteNo + Offset, SM, Features, Target, |
5628 | StartToken, StartTokenByteOffset); |
5629 | } |
5630 | |
5631 | SourceLocation getBeginLoc() const LLVM_READONLY { |
5632 | return FExpr->getBeginLoc().getLocWithOffset(Offset); |
5633 | } |
5634 | |
5635 | SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); } |
5636 | }; |
5637 | |
5638 | } // namespace |
5639 | |
5640 | static void CheckFormatString( |
5641 | Sema &S, const FormatStringLiteral *FExpr, const Expr *OrigFormatExpr, |
5642 | ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK, |
5643 | unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type, |
5644 | bool inFunctionCall, Sema::VariadicCallType CallType, |
5645 | llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg, |
5646 | bool IgnoreStringsWithoutSpecifiers); |
5647 | |
5648 | static const Expr *maybeConstEvalStringLiteral(ASTContext &Context, |
5649 | const Expr *E); |
5650 | |
5651 | // Determine if an expression is a string literal or constant string. |
5652 | // If this function returns false on the arguments to a function expecting a |
5653 | // format string, we will usually need to emit a warning. |
5654 | // True string literals are then checked by CheckFormatString. |
5655 | static StringLiteralCheckType |
5656 | checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args, |
5657 | Sema::FormatArgumentPassingKind APK, unsigned format_idx, |
5658 | unsigned firstDataArg, Sema::FormatStringType Type, |
5659 | Sema::VariadicCallType CallType, bool InFunctionCall, |
5660 | llvm::SmallBitVector &CheckedVarArgs, |
5661 | UncoveredArgHandler &UncoveredArg, llvm::APSInt Offset, |
5662 | bool IgnoreStringsWithoutSpecifiers = false) { |
5663 | if (S.isConstantEvaluatedContext()) |
5664 | return SLCT_NotALiteral; |
5665 | tryAgain: |
5666 | assert(Offset.isSigned() && "invalid offset" ); |
5667 | |
5668 | if (E->isTypeDependent() || E->isValueDependent()) |
5669 | return SLCT_NotALiteral; |
5670 | |
5671 | E = E->IgnoreParenCasts(); |
5672 | |
5673 | if (E->isNullPointerConstant(Ctx&: S.Context, NPC: Expr::NPC_ValueDependentIsNotNull)) |
5674 | // Technically -Wformat-nonliteral does not warn about this case. |
5675 | // The behavior of printf and friends in this case is implementation |
5676 | // dependent. Ideally if the format string cannot be null then |
5677 | // it should have a 'nonnull' attribute in the function prototype. |
5678 | return SLCT_UncheckedLiteral; |
5679 | |
5680 | switch (E->getStmtClass()) { |
5681 | case Stmt::InitListExprClass: |
5682 | // Handle expressions like {"foobar"}. |
5683 | if (const clang::Expr *SLE = maybeConstEvalStringLiteral(Context&: S.Context, E)) { |
5684 | return checkFormatStringExpr(S, E: SLE, Args, APK, format_idx, firstDataArg, |
5685 | Type, CallType, /*InFunctionCall*/ false, |
5686 | CheckedVarArgs, UncoveredArg, Offset, |
5687 | IgnoreStringsWithoutSpecifiers); |
5688 | } |
5689 | return SLCT_NotALiteral; |
5690 | case Stmt::BinaryConditionalOperatorClass: |
5691 | case Stmt::ConditionalOperatorClass: { |
5692 | // The expression is a literal if both sub-expressions were, and it was |
5693 | // completely checked only if both sub-expressions were checked. |
5694 | const AbstractConditionalOperator *C = |
5695 | cast<AbstractConditionalOperator>(Val: E); |
5696 | |
5697 | // Determine whether it is necessary to check both sub-expressions, for |
5698 | // example, because the condition expression is a constant that can be |
5699 | // evaluated at compile time. |
5700 | bool CheckLeft = true, CheckRight = true; |
5701 | |
5702 | bool Cond; |
5703 | if (C->getCond()->EvaluateAsBooleanCondition( |
5704 | Result&: Cond, Ctx: S.getASTContext(), InConstantContext: S.isConstantEvaluatedContext())) { |
5705 | if (Cond) |
5706 | CheckRight = false; |
5707 | else |
5708 | CheckLeft = false; |
5709 | } |
5710 | |
5711 | // We need to maintain the offsets for the right and the left hand side |
5712 | // separately to check if every possible indexed expression is a valid |
5713 | // string literal. They might have different offsets for different string |
5714 | // literals in the end. |
5715 | StringLiteralCheckType Left; |
5716 | if (!CheckLeft) |
5717 | Left = SLCT_UncheckedLiteral; |
5718 | else { |
5719 | Left = checkFormatStringExpr(S, E: C->getTrueExpr(), Args, APK, format_idx, |
5720 | firstDataArg, Type, CallType, InFunctionCall, |
5721 | CheckedVarArgs, UncoveredArg, Offset, |
5722 | IgnoreStringsWithoutSpecifiers); |
5723 | if (Left == SLCT_NotALiteral || !CheckRight) { |
5724 | return Left; |
5725 | } |
5726 | } |
5727 | |
5728 | StringLiteralCheckType Right = checkFormatStringExpr( |
5729 | S, E: C->getFalseExpr(), Args, APK, format_idx, firstDataArg, Type, |
5730 | CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, |
5731 | IgnoreStringsWithoutSpecifiers); |
5732 | |
5733 | return (CheckLeft && Left < Right) ? Left : Right; |
5734 | } |
5735 | |
5736 | case Stmt::ImplicitCastExprClass: |
5737 | E = cast<ImplicitCastExpr>(Val: E)->getSubExpr(); |
5738 | goto tryAgain; |
5739 | |
5740 | case Stmt::OpaqueValueExprClass: |
5741 | if (const Expr *src = cast<OpaqueValueExpr>(Val: E)->getSourceExpr()) { |
5742 | E = src; |
5743 | goto tryAgain; |
5744 | } |
5745 | return SLCT_NotALiteral; |
5746 | |
5747 | case Stmt::PredefinedExprClass: |
5748 | // While __func__, etc., are technically not string literals, they |
5749 | // cannot contain format specifiers and thus are not a security |
5750 | // liability. |
5751 | return SLCT_UncheckedLiteral; |
5752 | |
5753 | case Stmt::DeclRefExprClass: { |
5754 | const DeclRefExpr *DR = cast<DeclRefExpr>(Val: E); |
5755 | |
5756 | // As an exception, do not flag errors for variables binding to |
5757 | // const string literals. |
5758 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: DR->getDecl())) { |
5759 | bool isConstant = false; |
5760 | QualType T = DR->getType(); |
5761 | |
5762 | if (const ArrayType *AT = S.Context.getAsArrayType(T)) { |
5763 | isConstant = AT->getElementType().isConstant(Ctx: S.Context); |
5764 | } else if (const PointerType *PT = T->getAs<PointerType>()) { |
5765 | isConstant = T.isConstant(Ctx: S.Context) && |
5766 | PT->getPointeeType().isConstant(Ctx: S.Context); |
5767 | } else if (T->isObjCObjectPointerType()) { |
5768 | // In ObjC, there is usually no "const ObjectPointer" type, |
5769 | // so don't check if the pointee type is constant. |
5770 | isConstant = T.isConstant(Ctx: S.Context); |
5771 | } |
5772 | |
5773 | if (isConstant) { |
5774 | if (const Expr *Init = VD->getAnyInitializer()) { |
5775 | // Look through initializers like const char c[] = { "foo" } |
5776 | if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Val: Init)) { |
5777 | if (InitList->isStringLiteralInit()) |
5778 | Init = InitList->getInit(Init: 0)->IgnoreParenImpCasts(); |
5779 | } |
5780 | return checkFormatStringExpr( |
5781 | S, E: Init, Args, APK, format_idx, firstDataArg, Type, CallType, |
5782 | /*InFunctionCall*/ false, CheckedVarArgs, UncoveredArg, Offset); |
5783 | } |
5784 | } |
5785 | |
5786 | // When the format argument is an argument of this function, and this |
5787 | // function also has the format attribute, there are several interactions |
5788 | // for which there shouldn't be a warning. For instance, when calling |
5789 | // v*printf from a function that has the printf format attribute, we |
5790 | // should not emit a warning about using `fmt`, even though it's not |
5791 | // constant, because the arguments have already been checked for the |
5792 | // caller of `logmessage`: |
5793 | // |
5794 | // __attribute__((format(printf, 1, 2))) |
5795 | // void logmessage(char const *fmt, ...) { |
5796 | // va_list ap; |
5797 | // va_start(ap, fmt); |
5798 | // vprintf(fmt, ap); /* do not emit a warning about "fmt" */ |
5799 | // ... |
5800 | // } |
5801 | // |
5802 | // Another interaction that we need to support is calling a variadic |
5803 | // format function from a format function that has fixed arguments. For |
5804 | // instance: |
5805 | // |
5806 | // __attribute__((format(printf, 1, 2))) |
5807 | // void logstring(char const *fmt, char const *str) { |
5808 | // printf(fmt, str); /* do not emit a warning about "fmt" */ |
5809 | // } |
5810 | // |
5811 | // Same (and perhaps more relatably) for the variadic template case: |
5812 | // |
5813 | // template<typename... Args> |
5814 | // __attribute__((format(printf, 1, 2))) |
5815 | // void log(const char *fmt, Args&&... args) { |
5816 | // printf(fmt, forward<Args>(args)...); |
5817 | // /* do not emit a warning about "fmt" */ |
5818 | // } |
5819 | // |
5820 | // Due to implementation difficulty, we only check the format, not the |
5821 | // format arguments, in all cases. |
5822 | // |
5823 | if (const auto *PV = dyn_cast<ParmVarDecl>(Val: VD)) { |
5824 | if (const auto *D = dyn_cast<Decl>(Val: PV->getDeclContext())) { |
5825 | for (const auto *PVFormat : D->specific_attrs<FormatAttr>()) { |
5826 | bool IsCXXMember = false; |
5827 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: D)) |
5828 | IsCXXMember = MD->isInstance(); |
5829 | |
5830 | bool IsVariadic = false; |
5831 | if (const FunctionType *FnTy = D->getFunctionType()) |
5832 | IsVariadic = cast<FunctionProtoType>(Val: FnTy)->isVariadic(); |
5833 | else if (const auto *BD = dyn_cast<BlockDecl>(Val: D)) |
5834 | IsVariadic = BD->isVariadic(); |
5835 | else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(Val: D)) |
5836 | IsVariadic = OMD->isVariadic(); |
5837 | |
5838 | Sema::FormatStringInfo CallerFSI; |
5839 | if (Sema::getFormatStringInfo(Format: PVFormat, IsCXXMember, IsVariadic, |
5840 | FSI: &CallerFSI)) { |
5841 | // We also check if the formats are compatible. |
5842 | // We can't pass a 'scanf' string to a 'printf' function. |
5843 | if (PV->getFunctionScopeIndex() == CallerFSI.FormatIdx && |
5844 | Type == S.GetFormatStringType(Format: PVFormat)) { |
5845 | // Lastly, check that argument passing kinds transition in a |
5846 | // way that makes sense: |
5847 | // from a caller with FAPK_VAList, allow FAPK_VAList |
5848 | // from a caller with FAPK_Fixed, allow FAPK_Fixed |
5849 | // from a caller with FAPK_Fixed, allow FAPK_Variadic |
5850 | // from a caller with FAPK_Variadic, allow FAPK_VAList |
5851 | switch (combineFAPK(A: CallerFSI.ArgPassingKind, B: APK)) { |
5852 | case combineFAPK(A: Sema::FAPK_VAList, B: Sema::FAPK_VAList): |
5853 | case combineFAPK(A: Sema::FAPK_Fixed, B: Sema::FAPK_Fixed): |
5854 | case combineFAPK(A: Sema::FAPK_Fixed, B: Sema::FAPK_Variadic): |
5855 | case combineFAPK(A: Sema::FAPK_Variadic, B: Sema::FAPK_VAList): |
5856 | return SLCT_UncheckedLiteral; |
5857 | } |
5858 | } |
5859 | } |
5860 | } |
5861 | } |
5862 | } |
5863 | } |
5864 | |
5865 | return SLCT_NotALiteral; |
5866 | } |
5867 | |
5868 | case Stmt::CallExprClass: |
5869 | case Stmt::CXXMemberCallExprClass: { |
5870 | const CallExpr *CE = cast<CallExpr>(Val: E); |
5871 | if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(Val: CE->getCalleeDecl())) { |
5872 | bool IsFirst = true; |
5873 | StringLiteralCheckType CommonResult; |
5874 | for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) { |
5875 | const Expr *Arg = CE->getArg(Arg: FA->getFormatIdx().getASTIndex()); |
5876 | StringLiteralCheckType Result = checkFormatStringExpr( |
5877 | S, E: Arg, Args, APK, format_idx, firstDataArg, Type, CallType, |
5878 | InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, |
5879 | IgnoreStringsWithoutSpecifiers); |
5880 | if (IsFirst) { |
5881 | CommonResult = Result; |
5882 | IsFirst = false; |
5883 | } |
5884 | } |
5885 | if (!IsFirst) |
5886 | return CommonResult; |
5887 | |
5888 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: ND)) { |
5889 | unsigned BuiltinID = FD->getBuiltinID(); |
5890 | if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || |
5891 | BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) { |
5892 | const Expr *Arg = CE->getArg(Arg: 0); |
5893 | return checkFormatStringExpr( |
5894 | S, E: Arg, Args, APK, format_idx, firstDataArg, Type, CallType, |
5895 | InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, |
5896 | IgnoreStringsWithoutSpecifiers); |
5897 | } |
5898 | } |
5899 | } |
5900 | if (const Expr *SLE = maybeConstEvalStringLiteral(Context&: S.Context, E)) |
5901 | return checkFormatStringExpr(S, E: SLE, Args, APK, format_idx, firstDataArg, |
5902 | Type, CallType, /*InFunctionCall*/ false, |
5903 | CheckedVarArgs, UncoveredArg, Offset, |
5904 | IgnoreStringsWithoutSpecifiers); |
5905 | return SLCT_NotALiteral; |
5906 | } |
5907 | case Stmt::ObjCMessageExprClass: { |
5908 | const auto *ME = cast<ObjCMessageExpr>(Val: E); |
5909 | if (const auto *MD = ME->getMethodDecl()) { |
5910 | if (const auto *FA = MD->getAttr<FormatArgAttr>()) { |
5911 | // As a special case heuristic, if we're using the method -[NSBundle |
5912 | // localizedStringForKey:value:table:], ignore any key strings that lack |
5913 | // format specifiers. The idea is that if the key doesn't have any |
5914 | // format specifiers then its probably just a key to map to the |
5915 | // localized strings. If it does have format specifiers though, then its |
5916 | // likely that the text of the key is the format string in the |
5917 | // programmer's language, and should be checked. |
5918 | const ObjCInterfaceDecl *IFace; |
5919 | if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) && |
5920 | IFace->getIdentifier()->isStr(Str: "NSBundle" ) && |
5921 | MD->getSelector().isKeywordSelector( |
5922 | Names: {"localizedStringForKey" , "value" , "table" })) { |
5923 | IgnoreStringsWithoutSpecifiers = true; |
5924 | } |
5925 | |
5926 | const Expr *Arg = ME->getArg(Arg: FA->getFormatIdx().getASTIndex()); |
5927 | return checkFormatStringExpr( |
5928 | S, E: Arg, Args, APK, format_idx, firstDataArg, Type, CallType, |
5929 | InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, |
5930 | IgnoreStringsWithoutSpecifiers); |
5931 | } |
5932 | } |
5933 | |
5934 | return SLCT_NotALiteral; |
5935 | } |
5936 | case Stmt::ObjCStringLiteralClass: |
5937 | case Stmt::StringLiteralClass: { |
5938 | const StringLiteral *StrE = nullptr; |
5939 | |
5940 | if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(Val: E)) |
5941 | StrE = ObjCFExpr->getString(); |
5942 | else |
5943 | StrE = cast<StringLiteral>(Val: E); |
5944 | |
5945 | if (StrE) { |
5946 | if (Offset.isNegative() || Offset > StrE->getLength()) { |
5947 | // TODO: It would be better to have an explicit warning for out of |
5948 | // bounds literals. |
5949 | return SLCT_NotALiteral; |
5950 | } |
5951 | FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(width: 64).getSExtValue()); |
5952 | CheckFormatString(S, FExpr: &FStr, OrigFormatExpr: E, Args, APK, format_idx, firstDataArg, Type, |
5953 | inFunctionCall: InFunctionCall, CallType, CheckedVarArgs, UncoveredArg, |
5954 | IgnoreStringsWithoutSpecifiers); |
5955 | return SLCT_CheckedLiteral; |
5956 | } |
5957 | |
5958 | return SLCT_NotALiteral; |
5959 | } |
5960 | case Stmt::BinaryOperatorClass: { |
5961 | const BinaryOperator *BinOp = cast<BinaryOperator>(Val: E); |
5962 | |
5963 | // A string literal + an int offset is still a string literal. |
5964 | if (BinOp->isAdditiveOp()) { |
5965 | Expr::EvalResult LResult, RResult; |
5966 | |
5967 | bool LIsInt = BinOp->getLHS()->EvaluateAsInt( |
5968 | Result&: LResult, Ctx: S.Context, AllowSideEffects: Expr::SE_NoSideEffects, |
5969 | InConstantContext: S.isConstantEvaluatedContext()); |
5970 | bool RIsInt = BinOp->getRHS()->EvaluateAsInt( |
5971 | Result&: RResult, Ctx: S.Context, AllowSideEffects: Expr::SE_NoSideEffects, |
5972 | InConstantContext: S.isConstantEvaluatedContext()); |
5973 | |
5974 | if (LIsInt != RIsInt) { |
5975 | BinaryOperatorKind BinOpKind = BinOp->getOpcode(); |
5976 | |
5977 | if (LIsInt) { |
5978 | if (BinOpKind == BO_Add) { |
5979 | sumOffsets(Offset, Addend: LResult.Val.getInt(), BinOpKind, AddendIsRight: RIsInt); |
5980 | E = BinOp->getRHS(); |
5981 | goto tryAgain; |
5982 | } |
5983 | } else { |
5984 | sumOffsets(Offset, Addend: RResult.Val.getInt(), BinOpKind, AddendIsRight: RIsInt); |
5985 | E = BinOp->getLHS(); |
5986 | goto tryAgain; |
5987 | } |
5988 | } |
5989 | } |
5990 | |
5991 | return SLCT_NotALiteral; |
5992 | } |
5993 | case Stmt::UnaryOperatorClass: { |
5994 | const UnaryOperator *UnaOp = cast<UnaryOperator>(Val: E); |
5995 | auto ASE = dyn_cast<ArraySubscriptExpr>(Val: UnaOp->getSubExpr()); |
5996 | if (UnaOp->getOpcode() == UO_AddrOf && ASE) { |
5997 | Expr::EvalResult IndexResult; |
5998 | if (ASE->getRHS()->EvaluateAsInt(Result&: IndexResult, Ctx: S.Context, |
5999 | AllowSideEffects: Expr::SE_NoSideEffects, |
6000 | InConstantContext: S.isConstantEvaluatedContext())) { |
6001 | sumOffsets(Offset, Addend: IndexResult.Val.getInt(), BinOpKind: BO_Add, |
6002 | /*RHS is int*/ AddendIsRight: true); |
6003 | E = ASE->getBase(); |
6004 | goto tryAgain; |
6005 | } |
6006 | } |
6007 | |
6008 | return SLCT_NotALiteral; |
6009 | } |
6010 | |
6011 | default: |
6012 | return SLCT_NotALiteral; |
6013 | } |
6014 | } |
6015 | |
6016 | // If this expression can be evaluated at compile-time, |
6017 | // check if the result is a StringLiteral and return it |
6018 | // otherwise return nullptr |
6019 | static const Expr *maybeConstEvalStringLiteral(ASTContext &Context, |
6020 | const Expr *E) { |
6021 | Expr::EvalResult Result; |
6022 | if (E->EvaluateAsRValue(Result, Ctx: Context) && Result.Val.isLValue()) { |
6023 | const auto *LVE = Result.Val.getLValueBase().dyn_cast<const Expr *>(); |
6024 | if (isa_and_nonnull<StringLiteral>(Val: LVE)) |
6025 | return LVE; |
6026 | } |
6027 | return nullptr; |
6028 | } |
6029 | |
6030 | Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) { |
6031 | return llvm::StringSwitch<FormatStringType>(Format->getType()->getName()) |
6032 | .Case(S: "scanf" , Value: FST_Scanf) |
6033 | .Cases(S0: "printf" , S1: "printf0" , Value: FST_Printf) |
6034 | .Cases(S0: "NSString" , S1: "CFString" , Value: FST_NSString) |
6035 | .Case(S: "strftime" , Value: FST_Strftime) |
6036 | .Case(S: "strfmon" , Value: FST_Strfmon) |
6037 | .Cases(S0: "kprintf" , S1: "cmn_err" , S2: "vcmn_err" , S3: "zcmn_err" , Value: FST_Kprintf) |
6038 | .Case(S: "freebsd_kprintf" , Value: FST_FreeBSDKPrintf) |
6039 | .Case(S: "os_trace" , Value: FST_OSLog) |
6040 | .Case(S: "os_log" , Value: FST_OSLog) |
6041 | .Default(Value: FST_Unknown); |
6042 | } |
6043 | |
6044 | bool Sema::CheckFormatArguments(const FormatAttr *Format, |
6045 | ArrayRef<const Expr *> Args, bool IsCXXMember, |
6046 | VariadicCallType CallType, SourceLocation Loc, |
6047 | SourceRange Range, |
6048 | llvm::SmallBitVector &CheckedVarArgs) { |
6049 | FormatStringInfo FSI; |
6050 | if (getFormatStringInfo(Format, IsCXXMember, IsVariadic: CallType != VariadicDoesNotApply, |
6051 | FSI: &FSI)) |
6052 | return CheckFormatArguments(Args, FAPK: FSI.ArgPassingKind, format_idx: FSI.FormatIdx, |
6053 | firstDataArg: FSI.FirstDataArg, Type: GetFormatStringType(Format), |
6054 | CallType, Loc, range: Range, CheckedVarArgs); |
6055 | return false; |
6056 | } |
6057 | |
6058 | bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args, |
6059 | Sema::FormatArgumentPassingKind APK, |
6060 | unsigned format_idx, unsigned firstDataArg, |
6061 | FormatStringType Type, |
6062 | VariadicCallType CallType, SourceLocation Loc, |
6063 | SourceRange Range, |
6064 | llvm::SmallBitVector &CheckedVarArgs) { |
6065 | // CHECK: printf/scanf-like function is called with no format string. |
6066 | if (format_idx >= Args.size()) { |
6067 | Diag(Loc, DiagID: diag::warn_missing_format_string) << Range; |
6068 | return false; |
6069 | } |
6070 | |
6071 | const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts(); |
6072 | |
6073 | // CHECK: format string is not a string literal. |
6074 | // |
6075 | // Dynamically generated format strings are difficult to |
6076 | // automatically vet at compile time. Requiring that format strings |
6077 | // are string literals: (1) permits the checking of format strings by |
6078 | // the compiler and thereby (2) can practically remove the source of |
6079 | // many format string exploits. |
6080 | |
6081 | // Format string can be either ObjC string (e.g. @"%d") or |
6082 | // C string (e.g. "%d") |
6083 | // ObjC string uses the same format specifiers as C string, so we can use |
6084 | // the same format string checking logic for both ObjC and C strings. |
6085 | UncoveredArgHandler UncoveredArg; |
6086 | StringLiteralCheckType CT = checkFormatStringExpr( |
6087 | S&: *this, E: OrigFormatExpr, Args, APK, format_idx, firstDataArg, Type, |
6088 | CallType, |
6089 | /*IsFunctionCall*/ InFunctionCall: true, CheckedVarArgs, UncoveredArg, |
6090 | /*no string offset*/ Offset: llvm::APSInt(64, false) = 0); |
6091 | |
6092 | // Generate a diagnostic where an uncovered argument is detected. |
6093 | if (UncoveredArg.hasUncoveredArg()) { |
6094 | unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg; |
6095 | assert(ArgIdx < Args.size() && "ArgIdx outside bounds" ); |
6096 | UncoveredArg.Diagnose(S&: *this, /*IsFunctionCall*/true, ArgExpr: Args[ArgIdx]); |
6097 | } |
6098 | |
6099 | if (CT != SLCT_NotALiteral) |
6100 | // Literal format string found, check done! |
6101 | return CT == SLCT_CheckedLiteral; |
6102 | |
6103 | // Strftime is particular as it always uses a single 'time' argument, |
6104 | // so it is safe to pass a non-literal string. |
6105 | if (Type == FST_Strftime) |
6106 | return false; |
6107 | |
6108 | // Do not emit diag when the string param is a macro expansion and the |
6109 | // format is either NSString or CFString. This is a hack to prevent |
6110 | // diag when using the NSLocalizedString and CFCopyLocalizedString macros |
6111 | // which are usually used in place of NS and CF string literals. |
6112 | SourceLocation FormatLoc = Args[format_idx]->getBeginLoc(); |
6113 | if (Type == FST_NSString && SourceMgr.isInSystemMacro(loc: FormatLoc)) |
6114 | return false; |
6115 | |
6116 | // If there are no arguments specified, warn with -Wformat-security, otherwise |
6117 | // warn only with -Wformat-nonliteral. |
6118 | if (Args.size() == firstDataArg) { |
6119 | Diag(Loc: FormatLoc, DiagID: diag::warn_format_nonliteral_noargs) |
6120 | << OrigFormatExpr->getSourceRange(); |
6121 | switch (Type) { |
6122 | default: |
6123 | break; |
6124 | case FST_Kprintf: |
6125 | case FST_FreeBSDKPrintf: |
6126 | case FST_Printf: |
6127 | Diag(Loc: FormatLoc, DiagID: diag::note_format_security_fixit) |
6128 | << FixItHint::CreateInsertion(InsertionLoc: FormatLoc, Code: "\"%s\", " ); |
6129 | break; |
6130 | case FST_NSString: |
6131 | Diag(Loc: FormatLoc, DiagID: diag::note_format_security_fixit) |
6132 | << FixItHint::CreateInsertion(InsertionLoc: FormatLoc, Code: "@\"%@\", " ); |
6133 | break; |
6134 | } |
6135 | } else { |
6136 | Diag(Loc: FormatLoc, DiagID: diag::warn_format_nonliteral) |
6137 | << OrigFormatExpr->getSourceRange(); |
6138 | } |
6139 | return false; |
6140 | } |
6141 | |
6142 | namespace { |
6143 | |
6144 | class CheckFormatHandler : public analyze_format_string::FormatStringHandler { |
6145 | protected: |
6146 | Sema &S; |
6147 | const FormatStringLiteral *FExpr; |
6148 | const Expr *OrigFormatExpr; |
6149 | const Sema::FormatStringType FSType; |
6150 | const unsigned FirstDataArg; |
6151 | const unsigned NumDataArgs; |
6152 | const char *Beg; // Start of format string. |
6153 | const Sema::FormatArgumentPassingKind ArgPassingKind; |
6154 | ArrayRef<const Expr *> Args; |
6155 | unsigned FormatIdx; |
6156 | llvm::SmallBitVector CoveredArgs; |
6157 | bool usesPositionalArgs = false; |
6158 | bool atFirstArg = true; |
6159 | bool inFunctionCall; |
6160 | Sema::VariadicCallType CallType; |
6161 | llvm::SmallBitVector &CheckedVarArgs; |
6162 | UncoveredArgHandler &UncoveredArg; |
6163 | |
6164 | public: |
6165 | CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr, |
6166 | const Expr *origFormatExpr, |
6167 | const Sema::FormatStringType type, unsigned firstDataArg, |
6168 | unsigned numDataArgs, const char *beg, |
6169 | Sema::FormatArgumentPassingKind APK, |
6170 | ArrayRef<const Expr *> Args, unsigned formatIdx, |
6171 | bool inFunctionCall, Sema::VariadicCallType callType, |
6172 | llvm::SmallBitVector &CheckedVarArgs, |
6173 | UncoveredArgHandler &UncoveredArg) |
6174 | : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type), |
6175 | FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg), |
6176 | ArgPassingKind(APK), Args(Args), FormatIdx(formatIdx), |
6177 | inFunctionCall(inFunctionCall), CallType(callType), |
6178 | CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) { |
6179 | CoveredArgs.resize(N: numDataArgs); |
6180 | CoveredArgs.reset(); |
6181 | } |
6182 | |
6183 | void DoneProcessing(); |
6184 | |
6185 | void HandleIncompleteSpecifier(const char *startSpecifier, |
6186 | unsigned specifierLen) override; |
6187 | |
6188 | void HandleInvalidLengthModifier( |
6189 | const analyze_format_string::FormatSpecifier &FS, |
6190 | const analyze_format_string::ConversionSpecifier &CS, |
6191 | const char *startSpecifier, unsigned specifierLen, |
6192 | unsigned DiagID); |
6193 | |
6194 | void HandleNonStandardLengthModifier( |
6195 | const analyze_format_string::FormatSpecifier &FS, |
6196 | const char *startSpecifier, unsigned specifierLen); |
6197 | |
6198 | void HandleNonStandardConversionSpecifier( |
6199 | const analyze_format_string::ConversionSpecifier &CS, |
6200 | const char *startSpecifier, unsigned specifierLen); |
6201 | |
6202 | void HandlePosition(const char *startPos, unsigned posLen) override; |
6203 | |
6204 | void HandleInvalidPosition(const char *startSpecifier, |
6205 | unsigned specifierLen, |
6206 | analyze_format_string::PositionContext p) override; |
6207 | |
6208 | void HandleZeroPosition(const char *startPos, unsigned posLen) override; |
6209 | |
6210 | void HandleNullChar(const char *nullCharacter) override; |
6211 | |
6212 | template <typename Range> |
6213 | static void |
6214 | EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr, |
6215 | const PartialDiagnostic &PDiag, SourceLocation StringLoc, |
6216 | bool IsStringLocation, Range StringRange, |
6217 | ArrayRef<FixItHint> Fixit = std::nullopt); |
6218 | |
6219 | protected: |
6220 | bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, |
6221 | const char *startSpec, |
6222 | unsigned specifierLen, |
6223 | const char *csStart, unsigned csLen); |
6224 | |
6225 | void HandlePositionalNonpositionalArgs(SourceLocation Loc, |
6226 | const char *startSpec, |
6227 | unsigned specifierLen); |
6228 | |
6229 | SourceRange getFormatStringRange(); |
6230 | CharSourceRange getSpecifierRange(const char *startSpecifier, |
6231 | unsigned specifierLen); |
6232 | SourceLocation getLocationOfByte(const char *x); |
6233 | |
6234 | const Expr *getDataArg(unsigned i) const; |
6235 | |
6236 | bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS, |
6237 | const analyze_format_string::ConversionSpecifier &CS, |
6238 | const char *startSpecifier, unsigned specifierLen, |
6239 | unsigned argIndex); |
6240 | |
6241 | template <typename Range> |
6242 | void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc, |
6243 | bool IsStringLocation, Range StringRange, |
6244 | ArrayRef<FixItHint> Fixit = std::nullopt); |
6245 | }; |
6246 | |
6247 | } // namespace |
6248 | |
6249 | SourceRange CheckFormatHandler::getFormatStringRange() { |
6250 | return OrigFormatExpr->getSourceRange(); |
6251 | } |
6252 | |
6253 | CharSourceRange CheckFormatHandler:: |
6254 | getSpecifierRange(const char *startSpecifier, unsigned specifierLen) { |
6255 | SourceLocation Start = getLocationOfByte(x: startSpecifier); |
6256 | SourceLocation End = getLocationOfByte(x: startSpecifier + specifierLen - 1); |
6257 | |
6258 | // Advance the end SourceLocation by one due to half-open ranges. |
6259 | End = End.getLocWithOffset(Offset: 1); |
6260 | |
6261 | return CharSourceRange::getCharRange(B: Start, E: End); |
6262 | } |
6263 | |
6264 | SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) { |
6265 | return FExpr->getLocationOfByte(ByteNo: x - Beg, SM: S.getSourceManager(), |
6266 | Features: S.getLangOpts(), Target: S.Context.getTargetInfo()); |
6267 | } |
6268 | |
6269 | void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier, |
6270 | unsigned specifierLen){ |
6271 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_printf_incomplete_specifier), |
6272 | StringLoc: getLocationOfByte(x: startSpecifier), |
6273 | /*IsStringLocation*/true, |
6274 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
6275 | } |
6276 | |
6277 | void CheckFormatHandler::HandleInvalidLengthModifier( |
6278 | const analyze_format_string::FormatSpecifier &FS, |
6279 | const analyze_format_string::ConversionSpecifier &CS, |
6280 | const char *startSpecifier, unsigned specifierLen, unsigned DiagID) { |
6281 | using namespace analyze_format_string; |
6282 | |
6283 | const LengthModifier &LM = FS.getLengthModifier(); |
6284 | CharSourceRange LMRange = getSpecifierRange(startSpecifier: LM.getStart(), specifierLen: LM.getLength()); |
6285 | |
6286 | // See if we know how to fix this length modifier. |
6287 | std::optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); |
6288 | if (FixedLM) { |
6289 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID) << LM.toString() << CS.toString(), |
6290 | StringLoc: getLocationOfByte(x: LM.getStart()), |
6291 | /*IsStringLocation*/true, |
6292 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
6293 | |
6294 | S.Diag(Loc: getLocationOfByte(x: LM.getStart()), DiagID: diag::note_format_fix_specifier) |
6295 | << FixedLM->toString() |
6296 | << FixItHint::CreateReplacement(RemoveRange: LMRange, Code: FixedLM->toString()); |
6297 | |
6298 | } else { |
6299 | FixItHint Hint; |
6300 | if (DiagID == diag::warn_format_nonsensical_length) |
6301 | Hint = FixItHint::CreateRemoval(RemoveRange: LMRange); |
6302 | |
6303 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID) << LM.toString() << CS.toString(), |
6304 | StringLoc: getLocationOfByte(x: LM.getStart()), |
6305 | /*IsStringLocation*/true, |
6306 | StringRange: getSpecifierRange(startSpecifier, specifierLen), |
6307 | Fixit: Hint); |
6308 | } |
6309 | } |
6310 | |
6311 | void CheckFormatHandler::HandleNonStandardLengthModifier( |
6312 | const analyze_format_string::FormatSpecifier &FS, |
6313 | const char *startSpecifier, unsigned specifierLen) { |
6314 | using namespace analyze_format_string; |
6315 | |
6316 | const LengthModifier &LM = FS.getLengthModifier(); |
6317 | CharSourceRange LMRange = getSpecifierRange(startSpecifier: LM.getStart(), specifierLen: LM.getLength()); |
6318 | |
6319 | // See if we know how to fix this length modifier. |
6320 | std::optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); |
6321 | if (FixedLM) { |
6322 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_non_standard) |
6323 | << LM.toString() << 0, |
6324 | StringLoc: getLocationOfByte(x: LM.getStart()), |
6325 | /*IsStringLocation*/true, |
6326 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
6327 | |
6328 | S.Diag(Loc: getLocationOfByte(x: LM.getStart()), DiagID: diag::note_format_fix_specifier) |
6329 | << FixedLM->toString() |
6330 | << FixItHint::CreateReplacement(RemoveRange: LMRange, Code: FixedLM->toString()); |
6331 | |
6332 | } else { |
6333 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_non_standard) |
6334 | << LM.toString() << 0, |
6335 | StringLoc: getLocationOfByte(x: LM.getStart()), |
6336 | /*IsStringLocation*/true, |
6337 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
6338 | } |
6339 | } |
6340 | |
6341 | void CheckFormatHandler::HandleNonStandardConversionSpecifier( |
6342 | const analyze_format_string::ConversionSpecifier &CS, |
6343 | const char *startSpecifier, unsigned specifierLen) { |
6344 | using namespace analyze_format_string; |
6345 | |
6346 | // See if we know how to fix this conversion specifier. |
6347 | std::optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier(); |
6348 | if (FixedCS) { |
6349 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_non_standard) |
6350 | << CS.toString() << /*conversion specifier*/1, |
6351 | StringLoc: getLocationOfByte(x: CS.getStart()), |
6352 | /*IsStringLocation*/true, |
6353 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
6354 | |
6355 | CharSourceRange CSRange = getSpecifierRange(startSpecifier: CS.getStart(), specifierLen: CS.getLength()); |
6356 | S.Diag(Loc: getLocationOfByte(x: CS.getStart()), DiagID: diag::note_format_fix_specifier) |
6357 | << FixedCS->toString() |
6358 | << FixItHint::CreateReplacement(RemoveRange: CSRange, Code: FixedCS->toString()); |
6359 | } else { |
6360 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_non_standard) |
6361 | << CS.toString() << /*conversion specifier*/1, |
6362 | StringLoc: getLocationOfByte(x: CS.getStart()), |
6363 | /*IsStringLocation*/true, |
6364 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
6365 | } |
6366 | } |
6367 | |
6368 | void CheckFormatHandler::HandlePosition(const char *startPos, |
6369 | unsigned posLen) { |
6370 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_non_standard_positional_arg), |
6371 | StringLoc: getLocationOfByte(x: startPos), |
6372 | /*IsStringLocation*/true, |
6373 | StringRange: getSpecifierRange(startSpecifier: startPos, specifierLen: posLen)); |
6374 | } |
6375 | |
6376 | void CheckFormatHandler::HandleInvalidPosition( |
6377 | const char *startSpecifier, unsigned specifierLen, |
6378 | analyze_format_string::PositionContext p) { |
6379 | EmitFormatDiagnostic( |
6380 | PDiag: S.PDiag(DiagID: diag::warn_format_invalid_positional_specifier) << (unsigned)p, |
6381 | StringLoc: getLocationOfByte(x: startSpecifier), /*IsStringLocation*/ true, |
6382 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
6383 | } |
6384 | |
6385 | void CheckFormatHandler::HandleZeroPosition(const char *startPos, |
6386 | unsigned posLen) { |
6387 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_zero_positional_specifier), |
6388 | StringLoc: getLocationOfByte(x: startPos), |
6389 | /*IsStringLocation*/true, |
6390 | StringRange: getSpecifierRange(startSpecifier: startPos, specifierLen: posLen)); |
6391 | } |
6392 | |
6393 | void CheckFormatHandler::HandleNullChar(const char *nullCharacter) { |
6394 | if (!isa<ObjCStringLiteral>(Val: OrigFormatExpr)) { |
6395 | // The presence of a null character is likely an error. |
6396 | EmitFormatDiagnostic( |
6397 | PDiag: S.PDiag(DiagID: diag::warn_printf_format_string_contains_null_char), |
6398 | StringLoc: getLocationOfByte(x: nullCharacter), /*IsStringLocation*/true, |
6399 | StringRange: getFormatStringRange()); |
6400 | } |
6401 | } |
6402 | |
6403 | // Note that this may return NULL if there was an error parsing or building |
6404 | // one of the argument expressions. |
6405 | const Expr *CheckFormatHandler::getDataArg(unsigned i) const { |
6406 | return Args[FirstDataArg + i]; |
6407 | } |
6408 | |
6409 | void CheckFormatHandler::DoneProcessing() { |
6410 | // Does the number of data arguments exceed the number of |
6411 | // format conversions in the format string? |
6412 | if (ArgPassingKind != Sema::FAPK_VAList) { |
6413 | // Find any arguments that weren't covered. |
6414 | CoveredArgs.flip(); |
6415 | signed notCoveredArg = CoveredArgs.find_first(); |
6416 | if (notCoveredArg >= 0) { |
6417 | assert((unsigned)notCoveredArg < NumDataArgs); |
6418 | UncoveredArg.Update(NewFirstUncoveredArg: notCoveredArg, StrExpr: OrigFormatExpr); |
6419 | } else { |
6420 | UncoveredArg.setAllCovered(); |
6421 | } |
6422 | } |
6423 | } |
6424 | |
6425 | void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall, |
6426 | const Expr *ArgExpr) { |
6427 | assert(hasUncoveredArg() && !DiagnosticExprs.empty() && |
6428 | "Invalid state" ); |
6429 | |
6430 | if (!ArgExpr) |
6431 | return; |
6432 | |
6433 | SourceLocation Loc = ArgExpr->getBeginLoc(); |
6434 | |
6435 | if (S.getSourceManager().isInSystemMacro(loc: Loc)) |
6436 | return; |
6437 | |
6438 | PartialDiagnostic PDiag = S.PDiag(DiagID: diag::warn_printf_data_arg_not_used); |
6439 | for (auto E : DiagnosticExprs) |
6440 | PDiag << E->getSourceRange(); |
6441 | |
6442 | CheckFormatHandler::EmitFormatDiagnostic( |
6443 | S, inFunctionCall: IsFunctionCall, ArgumentExpr: DiagnosticExprs[0], |
6444 | PDiag, StringLoc: Loc, /*IsStringLocation*/false, |
6445 | StringRange: DiagnosticExprs[0]->getSourceRange()); |
6446 | } |
6447 | |
6448 | bool |
6449 | CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex, |
6450 | SourceLocation Loc, |
6451 | const char *startSpec, |
6452 | unsigned specifierLen, |
6453 | const char *csStart, |
6454 | unsigned csLen) { |
6455 | bool keepGoing = true; |
6456 | if (argIndex < NumDataArgs) { |
6457 | // Consider the argument coverered, even though the specifier doesn't |
6458 | // make sense. |
6459 | CoveredArgs.set(argIndex); |
6460 | } |
6461 | else { |
6462 | // If argIndex exceeds the number of data arguments we |
6463 | // don't issue a warning because that is just a cascade of warnings (and |
6464 | // they may have intended '%%' anyway). We don't want to continue processing |
6465 | // the format string after this point, however, as we will like just get |
6466 | // gibberish when trying to match arguments. |
6467 | keepGoing = false; |
6468 | } |
6469 | |
6470 | StringRef Specifier(csStart, csLen); |
6471 | |
6472 | // If the specifier in non-printable, it could be the first byte of a UTF-8 |
6473 | // sequence. In that case, print the UTF-8 code point. If not, print the byte |
6474 | // hex value. |
6475 | std::string CodePointStr; |
6476 | if (!llvm::sys::locale::isPrint(c: *csStart)) { |
6477 | llvm::UTF32 CodePoint; |
6478 | const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart); |
6479 | const llvm::UTF8 *E = |
6480 | reinterpret_cast<const llvm::UTF8 *>(csStart + csLen); |
6481 | llvm::ConversionResult Result = |
6482 | llvm::convertUTF8Sequence(source: B, sourceEnd: E, target: &CodePoint, flags: llvm::strictConversion); |
6483 | |
6484 | if (Result != llvm::conversionOK) { |
6485 | unsigned char FirstChar = *csStart; |
6486 | CodePoint = (llvm::UTF32)FirstChar; |
6487 | } |
6488 | |
6489 | llvm::raw_string_ostream OS(CodePointStr); |
6490 | if (CodePoint < 256) |
6491 | OS << "\\x" << llvm::format(Fmt: "%02x" , Vals: CodePoint); |
6492 | else if (CodePoint <= 0xFFFF) |
6493 | OS << "\\u" << llvm::format(Fmt: "%04x" , Vals: CodePoint); |
6494 | else |
6495 | OS << "\\U" << llvm::format(Fmt: "%08x" , Vals: CodePoint); |
6496 | OS.flush(); |
6497 | Specifier = CodePointStr; |
6498 | } |
6499 | |
6500 | EmitFormatDiagnostic( |
6501 | PDiag: S.PDiag(DiagID: diag::warn_format_invalid_conversion) << Specifier, StringLoc: Loc, |
6502 | /*IsStringLocation*/ true, StringRange: getSpecifierRange(startSpecifier: startSpec, specifierLen)); |
6503 | |
6504 | return keepGoing; |
6505 | } |
6506 | |
6507 | void |
6508 | CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc, |
6509 | const char *startSpec, |
6510 | unsigned specifierLen) { |
6511 | EmitFormatDiagnostic( |
6512 | PDiag: S.PDiag(DiagID: diag::warn_format_mix_positional_nonpositional_args), |
6513 | StringLoc: Loc, /*isStringLoc*/IsStringLocation: true, StringRange: getSpecifierRange(startSpecifier: startSpec, specifierLen)); |
6514 | } |
6515 | |
6516 | bool |
6517 | CheckFormatHandler::CheckNumArgs( |
6518 | const analyze_format_string::FormatSpecifier &FS, |
6519 | const analyze_format_string::ConversionSpecifier &CS, |
6520 | const char *startSpecifier, unsigned specifierLen, unsigned argIndex) { |
6521 | |
6522 | if (argIndex >= NumDataArgs) { |
6523 | PartialDiagnostic PDiag = FS.usesPositionalArg() |
6524 | ? (S.PDiag(DiagID: diag::warn_printf_positional_arg_exceeds_data_args) |
6525 | << (argIndex+1) << NumDataArgs) |
6526 | : S.PDiag(DiagID: diag::warn_printf_insufficient_data_args); |
6527 | EmitFormatDiagnostic( |
6528 | PDiag, StringLoc: getLocationOfByte(x: CS.getStart()), /*IsStringLocation*/true, |
6529 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
6530 | |
6531 | // Since more arguments than conversion tokens are given, by extension |
6532 | // all arguments are covered, so mark this as so. |
6533 | UncoveredArg.setAllCovered(); |
6534 | return false; |
6535 | } |
6536 | return true; |
6537 | } |
6538 | |
6539 | template<typename Range> |
6540 | void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag, |
6541 | SourceLocation Loc, |
6542 | bool IsStringLocation, |
6543 | Range StringRange, |
6544 | ArrayRef<FixItHint> FixIt) { |
6545 | EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag, |
6546 | Loc, IsStringLocation, StringRange, FixIt); |
6547 | } |
6548 | |
6549 | /// If the format string is not within the function call, emit a note |
6550 | /// so that the function call and string are in diagnostic messages. |
6551 | /// |
6552 | /// \param InFunctionCall if true, the format string is within the function |
6553 | /// call and only one diagnostic message will be produced. Otherwise, an |
6554 | /// extra note will be emitted pointing to location of the format string. |
6555 | /// |
6556 | /// \param ArgumentExpr the expression that is passed as the format string |
6557 | /// argument in the function call. Used for getting locations when two |
6558 | /// diagnostics are emitted. |
6559 | /// |
6560 | /// \param PDiag the callee should already have provided any strings for the |
6561 | /// diagnostic message. This function only adds locations and fixits |
6562 | /// to diagnostics. |
6563 | /// |
6564 | /// \param Loc primary location for diagnostic. If two diagnostics are |
6565 | /// required, one will be at Loc and a new SourceLocation will be created for |
6566 | /// the other one. |
6567 | /// |
6568 | /// \param IsStringLocation if true, Loc points to the format string should be |
6569 | /// used for the note. Otherwise, Loc points to the argument list and will |
6570 | /// be used with PDiag. |
6571 | /// |
6572 | /// \param StringRange some or all of the string to highlight. This is |
6573 | /// templated so it can accept either a CharSourceRange or a SourceRange. |
6574 | /// |
6575 | /// \param FixIt optional fix it hint for the format string. |
6576 | template <typename Range> |
6577 | void CheckFormatHandler::EmitFormatDiagnostic( |
6578 | Sema &S, bool InFunctionCall, const Expr *ArgumentExpr, |
6579 | const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation, |
6580 | Range StringRange, ArrayRef<FixItHint> FixIt) { |
6581 | if (InFunctionCall) { |
6582 | const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PD: PDiag); |
6583 | D << StringRange; |
6584 | D << FixIt; |
6585 | } else { |
6586 | S.Diag(Loc: IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PD: PDiag) |
6587 | << ArgumentExpr->getSourceRange(); |
6588 | |
6589 | const Sema::SemaDiagnosticBuilder &Note = |
6590 | S.Diag(IsStringLocation ? Loc : StringRange.getBegin(), |
6591 | diag::note_format_string_defined); |
6592 | |
6593 | Note << StringRange; |
6594 | Note << FixIt; |
6595 | } |
6596 | } |
6597 | |
6598 | //===--- CHECK: Printf format string checking -----------------------------===// |
6599 | |
6600 | namespace { |
6601 | |
6602 | class CheckPrintfHandler : public CheckFormatHandler { |
6603 | public: |
6604 | CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr, |
6605 | const Expr *origFormatExpr, |
6606 | const Sema::FormatStringType type, unsigned firstDataArg, |
6607 | unsigned numDataArgs, bool isObjC, const char *beg, |
6608 | Sema::FormatArgumentPassingKind APK, |
6609 | ArrayRef<const Expr *> Args, unsigned formatIdx, |
6610 | bool inFunctionCall, Sema::VariadicCallType CallType, |
6611 | llvm::SmallBitVector &CheckedVarArgs, |
6612 | UncoveredArgHandler &UncoveredArg) |
6613 | : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, |
6614 | numDataArgs, beg, APK, Args, formatIdx, |
6615 | inFunctionCall, CallType, CheckedVarArgs, |
6616 | UncoveredArg) {} |
6617 | |
6618 | bool isObjCContext() const { return FSType == Sema::FST_NSString; } |
6619 | |
6620 | /// Returns true if '%@' specifiers are allowed in the format string. |
6621 | bool allowsObjCArg() const { |
6622 | return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog || |
6623 | FSType == Sema::FST_OSTrace; |
6624 | } |
6625 | |
6626 | bool HandleInvalidPrintfConversionSpecifier( |
6627 | const analyze_printf::PrintfSpecifier &FS, |
6628 | const char *startSpecifier, |
6629 | unsigned specifierLen) override; |
6630 | |
6631 | void handleInvalidMaskType(StringRef MaskType) override; |
6632 | |
6633 | bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, |
6634 | const char *startSpecifier, unsigned specifierLen, |
6635 | const TargetInfo &Target) override; |
6636 | bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, |
6637 | const char *StartSpecifier, |
6638 | unsigned SpecifierLen, |
6639 | const Expr *E); |
6640 | |
6641 | bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k, |
6642 | const char *startSpecifier, unsigned specifierLen); |
6643 | void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS, |
6644 | const analyze_printf::OptionalAmount &Amt, |
6645 | unsigned type, |
6646 | const char *startSpecifier, unsigned specifierLen); |
6647 | void HandleFlag(const analyze_printf::PrintfSpecifier &FS, |
6648 | const analyze_printf::OptionalFlag &flag, |
6649 | const char *startSpecifier, unsigned specifierLen); |
6650 | void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS, |
6651 | const analyze_printf::OptionalFlag &ignoredFlag, |
6652 | const analyze_printf::OptionalFlag &flag, |
6653 | const char *startSpecifier, unsigned specifierLen); |
6654 | bool checkForCStrMembers(const analyze_printf::ArgType &AT, |
6655 | const Expr *E); |
6656 | |
6657 | void HandleEmptyObjCModifierFlag(const char *startFlag, |
6658 | unsigned flagLen) override; |
6659 | |
6660 | void HandleInvalidObjCModifierFlag(const char *startFlag, |
6661 | unsigned flagLen) override; |
6662 | |
6663 | void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart, |
6664 | const char *flagsEnd, |
6665 | const char *conversionPosition) |
6666 | override; |
6667 | }; |
6668 | |
6669 | } // namespace |
6670 | |
6671 | bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier( |
6672 | const analyze_printf::PrintfSpecifier &FS, |
6673 | const char *startSpecifier, |
6674 | unsigned specifierLen) { |
6675 | const analyze_printf::PrintfConversionSpecifier &CS = |
6676 | FS.getConversionSpecifier(); |
6677 | |
6678 | return HandleInvalidConversionSpecifier(argIndex: FS.getArgIndex(), |
6679 | Loc: getLocationOfByte(x: CS.getStart()), |
6680 | startSpec: startSpecifier, specifierLen, |
6681 | csStart: CS.getStart(), csLen: CS.getLength()); |
6682 | } |
6683 | |
6684 | void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) { |
6685 | S.Diag(Loc: getLocationOfByte(x: MaskType.data()), DiagID: diag::err_invalid_mask_type_size); |
6686 | } |
6687 | |
6688 | bool CheckPrintfHandler::HandleAmount( |
6689 | const analyze_format_string::OptionalAmount &Amt, unsigned k, |
6690 | const char *startSpecifier, unsigned specifierLen) { |
6691 | if (Amt.hasDataArgument()) { |
6692 | if (ArgPassingKind != Sema::FAPK_VAList) { |
6693 | unsigned argIndex = Amt.getArgIndex(); |
6694 | if (argIndex >= NumDataArgs) { |
6695 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_printf_asterisk_missing_arg) |
6696 | << k, |
6697 | StringLoc: getLocationOfByte(x: Amt.getStart()), |
6698 | /*IsStringLocation*/ true, |
6699 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
6700 | // Don't do any more checking. We will just emit |
6701 | // spurious errors. |
6702 | return false; |
6703 | } |
6704 | |
6705 | // Type check the data argument. It should be an 'int'. |
6706 | // Although not in conformance with C99, we also allow the argument to be |
6707 | // an 'unsigned int' as that is a reasonably safe case. GCC also |
6708 | // doesn't emit a warning for that case. |
6709 | CoveredArgs.set(argIndex); |
6710 | const Expr *Arg = getDataArg(i: argIndex); |
6711 | if (!Arg) |
6712 | return false; |
6713 | |
6714 | QualType T = Arg->getType(); |
6715 | |
6716 | const analyze_printf::ArgType &AT = Amt.getArgType(Ctx&: S.Context); |
6717 | assert(AT.isValid()); |
6718 | |
6719 | if (!AT.matchesType(C&: S.Context, argTy: T)) { |
6720 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_printf_asterisk_wrong_type) |
6721 | << k << AT.getRepresentativeTypeName(C&: S.Context) |
6722 | << T << Arg->getSourceRange(), |
6723 | StringLoc: getLocationOfByte(x: Amt.getStart()), |
6724 | /*IsStringLocation*/true, |
6725 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
6726 | // Don't do any more checking. We will just emit |
6727 | // spurious errors. |
6728 | return false; |
6729 | } |
6730 | } |
6731 | } |
6732 | return true; |
6733 | } |
6734 | |
6735 | void CheckPrintfHandler::HandleInvalidAmount( |
6736 | const analyze_printf::PrintfSpecifier &FS, |
6737 | const analyze_printf::OptionalAmount &Amt, |
6738 | unsigned type, |
6739 | const char *startSpecifier, |
6740 | unsigned specifierLen) { |
6741 | const analyze_printf::PrintfConversionSpecifier &CS = |
6742 | FS.getConversionSpecifier(); |
6743 | |
6744 | FixItHint fixit = |
6745 | Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant |
6746 | ? FixItHint::CreateRemoval(RemoveRange: getSpecifierRange(startSpecifier: Amt.getStart(), |
6747 | specifierLen: Amt.getConstantLength())) |
6748 | : FixItHint(); |
6749 | |
6750 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_printf_nonsensical_optional_amount) |
6751 | << type << CS.toString(), |
6752 | StringLoc: getLocationOfByte(x: Amt.getStart()), |
6753 | /*IsStringLocation*/true, |
6754 | StringRange: getSpecifierRange(startSpecifier, specifierLen), |
6755 | Fixit: fixit); |
6756 | } |
6757 | |
6758 | void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS, |
6759 | const analyze_printf::OptionalFlag &flag, |
6760 | const char *startSpecifier, |
6761 | unsigned specifierLen) { |
6762 | // Warn about pointless flag with a fixit removal. |
6763 | const analyze_printf::PrintfConversionSpecifier &CS = |
6764 | FS.getConversionSpecifier(); |
6765 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_printf_nonsensical_flag) |
6766 | << flag.toString() << CS.toString(), |
6767 | StringLoc: getLocationOfByte(x: flag.getPosition()), |
6768 | /*IsStringLocation*/true, |
6769 | StringRange: getSpecifierRange(startSpecifier, specifierLen), |
6770 | Fixit: FixItHint::CreateRemoval( |
6771 | RemoveRange: getSpecifierRange(startSpecifier: flag.getPosition(), specifierLen: 1))); |
6772 | } |
6773 | |
6774 | void CheckPrintfHandler::HandleIgnoredFlag( |
6775 | const analyze_printf::PrintfSpecifier &FS, |
6776 | const analyze_printf::OptionalFlag &ignoredFlag, |
6777 | const analyze_printf::OptionalFlag &flag, |
6778 | const char *startSpecifier, |
6779 | unsigned specifierLen) { |
6780 | // Warn about ignored flag with a fixit removal. |
6781 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_printf_ignored_flag) |
6782 | << ignoredFlag.toString() << flag.toString(), |
6783 | StringLoc: getLocationOfByte(x: ignoredFlag.getPosition()), |
6784 | /*IsStringLocation*/true, |
6785 | StringRange: getSpecifierRange(startSpecifier, specifierLen), |
6786 | Fixit: FixItHint::CreateRemoval( |
6787 | RemoveRange: getSpecifierRange(startSpecifier: ignoredFlag.getPosition(), specifierLen: 1))); |
6788 | } |
6789 | |
6790 | void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag, |
6791 | unsigned flagLen) { |
6792 | // Warn about an empty flag. |
6793 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_printf_empty_objc_flag), |
6794 | StringLoc: getLocationOfByte(x: startFlag), |
6795 | /*IsStringLocation*/true, |
6796 | StringRange: getSpecifierRange(startSpecifier: startFlag, specifierLen: flagLen)); |
6797 | } |
6798 | |
6799 | void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag, |
6800 | unsigned flagLen) { |
6801 | // Warn about an invalid flag. |
6802 | auto Range = getSpecifierRange(startSpecifier: startFlag, specifierLen: flagLen); |
6803 | StringRef flag(startFlag, flagLen); |
6804 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_printf_invalid_objc_flag) << flag, |
6805 | StringLoc: getLocationOfByte(x: startFlag), |
6806 | /*IsStringLocation*/true, |
6807 | StringRange: Range, Fixit: FixItHint::CreateRemoval(RemoveRange: Range)); |
6808 | } |
6809 | |
6810 | void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion( |
6811 | const char *flagsStart, const char *flagsEnd, const char *conversionPosition) { |
6812 | // Warn about using '[...]' without a '@' conversion. |
6813 | auto Range = getSpecifierRange(startSpecifier: flagsStart, specifierLen: flagsEnd - flagsStart + 1); |
6814 | auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion; |
6815 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag) << StringRef(conversionPosition, 1), |
6816 | StringLoc: getLocationOfByte(x: conversionPosition), |
6817 | /*IsStringLocation*/true, |
6818 | StringRange: Range, Fixit: FixItHint::CreateRemoval(RemoveRange: Range)); |
6819 | } |
6820 | |
6821 | // Determines if the specified is a C++ class or struct containing |
6822 | // a member with the specified name and kind (e.g. a CXXMethodDecl named |
6823 | // "c_str()"). |
6824 | template<typename MemberKind> |
6825 | static llvm::SmallPtrSet<MemberKind*, 1> |
6826 | CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) { |
6827 | const RecordType *RT = Ty->getAs<RecordType>(); |
6828 | llvm::SmallPtrSet<MemberKind*, 1> Results; |
6829 | |
6830 | if (!RT) |
6831 | return Results; |
6832 | const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: RT->getDecl()); |
6833 | if (!RD || !RD->getDefinition()) |
6834 | return Results; |
6835 | |
6836 | LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(), |
6837 | Sema::LookupMemberName); |
6838 | R.suppressDiagnostics(); |
6839 | |
6840 | // We just need to include all members of the right kind turned up by the |
6841 | // filter, at this point. |
6842 | if (S.LookupQualifiedName(R, LookupCtx: RT->getDecl())) |
6843 | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { |
6844 | NamedDecl *decl = (*I)->getUnderlyingDecl(); |
6845 | if (MemberKind *FK = dyn_cast<MemberKind>(decl)) |
6846 | Results.insert(FK); |
6847 | } |
6848 | return Results; |
6849 | } |
6850 | |
6851 | /// Check if we could call '.c_str()' on an object. |
6852 | /// |
6853 | /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't |
6854 | /// allow the call, or if it would be ambiguous). |
6855 | bool Sema::hasCStrMethod(const Expr *E) { |
6856 | using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; |
6857 | |
6858 | MethodSet Results = |
6859 | CXXRecordMembersNamed<CXXMethodDecl>(Name: "c_str" , S&: *this, Ty: E->getType()); |
6860 | for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); |
6861 | MI != ME; ++MI) |
6862 | if ((*MI)->getMinRequiredArguments() == 0) |
6863 | return true; |
6864 | return false; |
6865 | } |
6866 | |
6867 | // Check if a (w)string was passed when a (w)char* was needed, and offer a |
6868 | // better diagnostic if so. AT is assumed to be valid. |
6869 | // Returns true when a c_str() conversion method is found. |
6870 | bool CheckPrintfHandler::checkForCStrMembers( |
6871 | const analyze_printf::ArgType &AT, const Expr *E) { |
6872 | using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; |
6873 | |
6874 | MethodSet Results = |
6875 | CXXRecordMembersNamed<CXXMethodDecl>(Name: "c_str" , S, Ty: E->getType()); |
6876 | |
6877 | for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); |
6878 | MI != ME; ++MI) { |
6879 | const CXXMethodDecl *Method = *MI; |
6880 | if (Method->getMinRequiredArguments() == 0 && |
6881 | AT.matchesType(C&: S.Context, argTy: Method->getReturnType())) { |
6882 | // FIXME: Suggest parens if the expression needs them. |
6883 | SourceLocation EndLoc = S.getLocForEndOfToken(Loc: E->getEndLoc()); |
6884 | S.Diag(Loc: E->getBeginLoc(), DiagID: diag::note_printf_c_str) |
6885 | << "c_str()" << FixItHint::CreateInsertion(InsertionLoc: EndLoc, Code: ".c_str()" ); |
6886 | return true; |
6887 | } |
6888 | } |
6889 | |
6890 | return false; |
6891 | } |
6892 | |
6893 | bool CheckPrintfHandler::HandlePrintfSpecifier( |
6894 | const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier, |
6895 | unsigned specifierLen, const TargetInfo &Target) { |
6896 | using namespace analyze_format_string; |
6897 | using namespace analyze_printf; |
6898 | |
6899 | const PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); |
6900 | |
6901 | if (FS.consumesDataArgument()) { |
6902 | if (atFirstArg) { |
6903 | atFirstArg = false; |
6904 | usesPositionalArgs = FS.usesPositionalArg(); |
6905 | } |
6906 | else if (usesPositionalArgs != FS.usesPositionalArg()) { |
6907 | HandlePositionalNonpositionalArgs(Loc: getLocationOfByte(x: CS.getStart()), |
6908 | startSpec: startSpecifier, specifierLen); |
6909 | return false; |
6910 | } |
6911 | } |
6912 | |
6913 | // First check if the field width, precision, and conversion specifier |
6914 | // have matching data arguments. |
6915 | if (!HandleAmount(Amt: FS.getFieldWidth(), /* field width */ k: 0, |
6916 | startSpecifier, specifierLen)) { |
6917 | return false; |
6918 | } |
6919 | |
6920 | if (!HandleAmount(Amt: FS.getPrecision(), /* precision */ k: 1, |
6921 | startSpecifier, specifierLen)) { |
6922 | return false; |
6923 | } |
6924 | |
6925 | if (!CS.consumesDataArgument()) { |
6926 | // FIXME: Technically specifying a precision or field width here |
6927 | // makes no sense. Worth issuing a warning at some point. |
6928 | return true; |
6929 | } |
6930 | |
6931 | // Consume the argument. |
6932 | unsigned argIndex = FS.getArgIndex(); |
6933 | if (argIndex < NumDataArgs) { |
6934 | // The check to see if the argIndex is valid will come later. |
6935 | // We set the bit here because we may exit early from this |
6936 | // function if we encounter some other error. |
6937 | CoveredArgs.set(argIndex); |
6938 | } |
6939 | |
6940 | // FreeBSD kernel extensions. |
6941 | if (CS.getKind() == ConversionSpecifier::FreeBSDbArg || |
6942 | CS.getKind() == ConversionSpecifier::FreeBSDDArg) { |
6943 | // We need at least two arguments. |
6944 | if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex: argIndex + 1)) |
6945 | return false; |
6946 | |
6947 | // Claim the second argument. |
6948 | CoveredArgs.set(argIndex + 1); |
6949 | |
6950 | // Type check the first argument (int for %b, pointer for %D) |
6951 | const Expr *Ex = getDataArg(i: argIndex); |
6952 | const analyze_printf::ArgType &AT = |
6953 | (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ? |
6954 | ArgType(S.Context.IntTy) : ArgType::CPointerTy; |
6955 | if (AT.isValid() && !AT.matchesType(C&: S.Context, argTy: Ex->getType())) |
6956 | EmitFormatDiagnostic( |
6957 | PDiag: S.PDiag(DiagID: diag::warn_format_conversion_argument_type_mismatch) |
6958 | << AT.getRepresentativeTypeName(C&: S.Context) << Ex->getType() |
6959 | << false << Ex->getSourceRange(), |
6960 | StringLoc: Ex->getBeginLoc(), /*IsStringLocation*/ false, |
6961 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
6962 | |
6963 | // Type check the second argument (char * for both %b and %D) |
6964 | Ex = getDataArg(i: argIndex + 1); |
6965 | const analyze_printf::ArgType &AT2 = ArgType::CStrTy; |
6966 | if (AT2.isValid() && !AT2.matchesType(C&: S.Context, argTy: Ex->getType())) |
6967 | EmitFormatDiagnostic( |
6968 | PDiag: S.PDiag(DiagID: diag::warn_format_conversion_argument_type_mismatch) |
6969 | << AT2.getRepresentativeTypeName(C&: S.Context) << Ex->getType() |
6970 | << false << Ex->getSourceRange(), |
6971 | StringLoc: Ex->getBeginLoc(), /*IsStringLocation*/ false, |
6972 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
6973 | |
6974 | return true; |
6975 | } |
6976 | |
6977 | // Check for using an Objective-C specific conversion specifier |
6978 | // in a non-ObjC literal. |
6979 | if (!allowsObjCArg() && CS.isObjCArg()) { |
6980 | return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, |
6981 | specifierLen); |
6982 | } |
6983 | |
6984 | // %P can only be used with os_log. |
6985 | if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) { |
6986 | return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, |
6987 | specifierLen); |
6988 | } |
6989 | |
6990 | // %n is not allowed with os_log. |
6991 | if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) { |
6992 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_os_log_format_narg), |
6993 | StringLoc: getLocationOfByte(x: CS.getStart()), |
6994 | /*IsStringLocation*/ false, |
6995 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
6996 | |
6997 | return true; |
6998 | } |
6999 | |
7000 | // Only scalars are allowed for os_trace. |
7001 | if (FSType == Sema::FST_OSTrace && |
7002 | (CS.getKind() == ConversionSpecifier::PArg || |
7003 | CS.getKind() == ConversionSpecifier::sArg || |
7004 | CS.getKind() == ConversionSpecifier::ObjCObjArg)) { |
7005 | return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, |
7006 | specifierLen); |
7007 | } |
7008 | |
7009 | // Check for use of public/private annotation outside of os_log(). |
7010 | if (FSType != Sema::FST_OSLog) { |
7011 | if (FS.isPublic().isSet()) { |
7012 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_invalid_annotation) |
7013 | << "public" , |
7014 | StringLoc: getLocationOfByte(x: FS.isPublic().getPosition()), |
7015 | /*IsStringLocation*/ false, |
7016 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
7017 | } |
7018 | if (FS.isPrivate().isSet()) { |
7019 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_invalid_annotation) |
7020 | << "private" , |
7021 | StringLoc: getLocationOfByte(x: FS.isPrivate().getPosition()), |
7022 | /*IsStringLocation*/ false, |
7023 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
7024 | } |
7025 | } |
7026 | |
7027 | const llvm::Triple &Triple = Target.getTriple(); |
7028 | if (CS.getKind() == ConversionSpecifier::nArg && |
7029 | (Triple.isAndroid() || Triple.isOSFuchsia())) { |
7030 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_printf_narg_not_supported), |
7031 | StringLoc: getLocationOfByte(x: CS.getStart()), |
7032 | /*IsStringLocation*/ false, |
7033 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
7034 | } |
7035 | |
7036 | // Check for invalid use of field width |
7037 | if (!FS.hasValidFieldWidth()) { |
7038 | HandleInvalidAmount(FS, Amt: FS.getFieldWidth(), /* field width */ type: 0, |
7039 | startSpecifier, specifierLen); |
7040 | } |
7041 | |
7042 | // Check for invalid use of precision |
7043 | if (!FS.hasValidPrecision()) { |
7044 | HandleInvalidAmount(FS, Amt: FS.getPrecision(), /* precision */ type: 1, |
7045 | startSpecifier, specifierLen); |
7046 | } |
7047 | |
7048 | // Precision is mandatory for %P specifier. |
7049 | if (CS.getKind() == ConversionSpecifier::PArg && |
7050 | FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) { |
7051 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_P_no_precision), |
7052 | StringLoc: getLocationOfByte(x: startSpecifier), |
7053 | /*IsStringLocation*/ false, |
7054 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
7055 | } |
7056 | |
7057 | // Check each flag does not conflict with any other component. |
7058 | if (!FS.hasValidThousandsGroupingPrefix()) |
7059 | HandleFlag(FS, flag: FS.hasThousandsGrouping(), startSpecifier, specifierLen); |
7060 | if (!FS.hasValidLeadingZeros()) |
7061 | HandleFlag(FS, flag: FS.hasLeadingZeros(), startSpecifier, specifierLen); |
7062 | if (!FS.hasValidPlusPrefix()) |
7063 | HandleFlag(FS, flag: FS.hasPlusPrefix(), startSpecifier, specifierLen); |
7064 | if (!FS.hasValidSpacePrefix()) |
7065 | HandleFlag(FS, flag: FS.hasSpacePrefix(), startSpecifier, specifierLen); |
7066 | if (!FS.hasValidAlternativeForm()) |
7067 | HandleFlag(FS, flag: FS.hasAlternativeForm(), startSpecifier, specifierLen); |
7068 | if (!FS.hasValidLeftJustified()) |
7069 | HandleFlag(FS, flag: FS.isLeftJustified(), startSpecifier, specifierLen); |
7070 | |
7071 | // Check that flags are not ignored by another flag |
7072 | if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+' |
7073 | HandleIgnoredFlag(FS, ignoredFlag: FS.hasSpacePrefix(), flag: FS.hasPlusPrefix(), |
7074 | startSpecifier, specifierLen); |
7075 | if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-' |
7076 | HandleIgnoredFlag(FS, ignoredFlag: FS.hasLeadingZeros(), flag: FS.isLeftJustified(), |
7077 | startSpecifier, specifierLen); |
7078 | |
7079 | // Check the length modifier is valid with the given conversion specifier. |
7080 | if (!FS.hasValidLengthModifier(Target: S.getASTContext().getTargetInfo(), |
7081 | LO: S.getLangOpts())) |
7082 | HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, |
7083 | DiagID: diag::warn_format_nonsensical_length); |
7084 | else if (!FS.hasStandardLengthModifier()) |
7085 | HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); |
7086 | else if (!FS.hasStandardLengthConversionCombination()) |
7087 | HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, |
7088 | DiagID: diag::warn_format_non_standard_conversion_spec); |
7089 | |
7090 | if (!FS.hasStandardConversionSpecifier(LangOpt: S.getLangOpts())) |
7091 | HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); |
7092 | |
7093 | // The remaining checks depend on the data arguments. |
7094 | if (ArgPassingKind == Sema::FAPK_VAList) |
7095 | return true; |
7096 | |
7097 | if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) |
7098 | return false; |
7099 | |
7100 | const Expr *Arg = getDataArg(i: argIndex); |
7101 | if (!Arg) |
7102 | return true; |
7103 | |
7104 | return checkFormatExpr(FS, StartSpecifier: startSpecifier, SpecifierLen: specifierLen, E: Arg); |
7105 | } |
7106 | |
7107 | static bool requiresParensToAddCast(const Expr *E) { |
7108 | // FIXME: We should have a general way to reason about operator |
7109 | // precedence and whether parens are actually needed here. |
7110 | // Take care of a few common cases where they aren't. |
7111 | const Expr *Inside = E->IgnoreImpCasts(); |
7112 | if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Val: Inside)) |
7113 | Inside = POE->getSyntacticForm()->IgnoreImpCasts(); |
7114 | |
7115 | switch (Inside->getStmtClass()) { |
7116 | case Stmt::ArraySubscriptExprClass: |
7117 | case Stmt::CallExprClass: |
7118 | case Stmt::CharacterLiteralClass: |
7119 | case Stmt::CXXBoolLiteralExprClass: |
7120 | case Stmt::DeclRefExprClass: |
7121 | case Stmt::FloatingLiteralClass: |
7122 | case Stmt::IntegerLiteralClass: |
7123 | case Stmt::MemberExprClass: |
7124 | case Stmt::ObjCArrayLiteralClass: |
7125 | case Stmt::ObjCBoolLiteralExprClass: |
7126 | case Stmt::ObjCBoxedExprClass: |
7127 | case Stmt::ObjCDictionaryLiteralClass: |
7128 | case Stmt::ObjCEncodeExprClass: |
7129 | case Stmt::ObjCIvarRefExprClass: |
7130 | case Stmt::ObjCMessageExprClass: |
7131 | case Stmt::ObjCPropertyRefExprClass: |
7132 | case Stmt::ObjCStringLiteralClass: |
7133 | case Stmt::ObjCSubscriptRefExprClass: |
7134 | case Stmt::ParenExprClass: |
7135 | case Stmt::StringLiteralClass: |
7136 | case Stmt::UnaryOperatorClass: |
7137 | return false; |
7138 | default: |
7139 | return true; |
7140 | } |
7141 | } |
7142 | |
7143 | static std::pair<QualType, StringRef> |
7144 | shouldNotPrintDirectly(const ASTContext &Context, |
7145 | QualType IntendedTy, |
7146 | const Expr *E) { |
7147 | // Use a 'while' to peel off layers of typedefs. |
7148 | QualType TyTy = IntendedTy; |
7149 | while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) { |
7150 | StringRef Name = UserTy->getDecl()->getName(); |
7151 | QualType CastTy = llvm::StringSwitch<QualType>(Name) |
7152 | .Case(S: "CFIndex" , Value: Context.getNSIntegerType()) |
7153 | .Case(S: "NSInteger" , Value: Context.getNSIntegerType()) |
7154 | .Case(S: "NSUInteger" , Value: Context.getNSUIntegerType()) |
7155 | .Case(S: "SInt32" , Value: Context.IntTy) |
7156 | .Case(S: "UInt32" , Value: Context.UnsignedIntTy) |
7157 | .Default(Value: QualType()); |
7158 | |
7159 | if (!CastTy.isNull()) |
7160 | return std::make_pair(x&: CastTy, y&: Name); |
7161 | |
7162 | TyTy = UserTy->desugar(); |
7163 | } |
7164 | |
7165 | // Strip parens if necessary. |
7166 | if (const ParenExpr *PE = dyn_cast<ParenExpr>(Val: E)) |
7167 | return shouldNotPrintDirectly(Context, |
7168 | IntendedTy: PE->getSubExpr()->getType(), |
7169 | E: PE->getSubExpr()); |
7170 | |
7171 | // If this is a conditional expression, then its result type is constructed |
7172 | // via usual arithmetic conversions and thus there might be no necessary |
7173 | // typedef sugar there. Recurse to operands to check for NSInteger & |
7174 | // Co. usage condition. |
7175 | if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(Val: E)) { |
7176 | QualType TrueTy, FalseTy; |
7177 | StringRef TrueName, FalseName; |
7178 | |
7179 | std::tie(args&: TrueTy, args&: TrueName) = |
7180 | shouldNotPrintDirectly(Context, |
7181 | IntendedTy: CO->getTrueExpr()->getType(), |
7182 | E: CO->getTrueExpr()); |
7183 | std::tie(args&: FalseTy, args&: FalseName) = |
7184 | shouldNotPrintDirectly(Context, |
7185 | IntendedTy: CO->getFalseExpr()->getType(), |
7186 | E: CO->getFalseExpr()); |
7187 | |
7188 | if (TrueTy == FalseTy) |
7189 | return std::make_pair(x&: TrueTy, y&: TrueName); |
7190 | else if (TrueTy.isNull()) |
7191 | return std::make_pair(x&: FalseTy, y&: FalseName); |
7192 | else if (FalseTy.isNull()) |
7193 | return std::make_pair(x&: TrueTy, y&: TrueName); |
7194 | } |
7195 | |
7196 | return std::make_pair(x: QualType(), y: StringRef()); |
7197 | } |
7198 | |
7199 | /// Return true if \p ICE is an implicit argument promotion of an arithmetic |
7200 | /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked |
7201 | /// type do not count. |
7202 | static bool |
7203 | isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) { |
7204 | QualType From = ICE->getSubExpr()->getType(); |
7205 | QualType To = ICE->getType(); |
7206 | // It's an integer promotion if the destination type is the promoted |
7207 | // source type. |
7208 | if (ICE->getCastKind() == CK_IntegralCast && |
7209 | S.Context.isPromotableIntegerType(T: From) && |
7210 | S.Context.getPromotedIntegerType(PromotableType: From) == To) |
7211 | return true; |
7212 | // Look through vector types, since we do default argument promotion for |
7213 | // those in OpenCL. |
7214 | if (const auto *VecTy = From->getAs<ExtVectorType>()) |
7215 | From = VecTy->getElementType(); |
7216 | if (const auto *VecTy = To->getAs<ExtVectorType>()) |
7217 | To = VecTy->getElementType(); |
7218 | // It's a floating promotion if the source type is a lower rank. |
7219 | return ICE->getCastKind() == CK_FloatingCast && |
7220 | S.Context.getFloatingTypeOrder(LHS: From, RHS: To) < 0; |
7221 | } |
7222 | |
7223 | static analyze_format_string::ArgType::MatchKind |
7224 | handleFormatSignedness(analyze_format_string::ArgType::MatchKind Match, |
7225 | DiagnosticsEngine &Diags, SourceLocation Loc) { |
7226 | if (Match == analyze_format_string::ArgType::NoMatchSignedness) { |
7227 | Match = |
7228 | Diags.isIgnored( |
7229 | DiagID: diag::warn_format_conversion_argument_type_mismatch_signedness, Loc) |
7230 | ? analyze_format_string::ArgType::Match |
7231 | : analyze_format_string::ArgType::NoMatch; |
7232 | } |
7233 | return Match; |
7234 | } |
7235 | |
7236 | bool |
7237 | CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, |
7238 | const char *StartSpecifier, |
7239 | unsigned SpecifierLen, |
7240 | const Expr *E) { |
7241 | using namespace analyze_format_string; |
7242 | using namespace analyze_printf; |
7243 | |
7244 | // Now type check the data expression that matches the |
7245 | // format specifier. |
7246 | const analyze_printf::ArgType &AT = FS.getArgType(Ctx&: S.Context, IsObjCLiteral: isObjCContext()); |
7247 | if (!AT.isValid()) |
7248 | return true; |
7249 | |
7250 | QualType ExprTy = E->getType(); |
7251 | while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(Val&: ExprTy)) { |
7252 | ExprTy = TET->getUnderlyingExpr()->getType(); |
7253 | } |
7254 | |
7255 | // When using the format attribute in C++, you can receive a function or an |
7256 | // array that will necessarily decay to a pointer when passed to the final |
7257 | // format consumer. Apply decay before type comparison. |
7258 | if (ExprTy->canDecayToPointerType()) |
7259 | ExprTy = S.Context.getDecayedType(T: ExprTy); |
7260 | |
7261 | // Diagnose attempts to print a boolean value as a character. Unlike other |
7262 | // -Wformat diagnostics, this is fine from a type perspective, but it still |
7263 | // doesn't make sense. |
7264 | if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg && |
7265 | E->isKnownToHaveBooleanValue()) { |
7266 | const CharSourceRange &CSR = |
7267 | getSpecifierRange(startSpecifier: StartSpecifier, specifierLen: SpecifierLen); |
7268 | SmallString<4> FSString; |
7269 | llvm::raw_svector_ostream os(FSString); |
7270 | FS.toString(os); |
7271 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_bool_as_character) |
7272 | << FSString, |
7273 | StringLoc: E->getExprLoc(), IsStringLocation: false, StringRange: CSR); |
7274 | return true; |
7275 | } |
7276 | |
7277 | // Diagnose attempts to use '%P' with ObjC object types, which will result in |
7278 | // dumping raw class data (like is-a pointer), not actual data. |
7279 | if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::PArg && |
7280 | ExprTy->isObjCObjectPointerType()) { |
7281 | const CharSourceRange &CSR = |
7282 | getSpecifierRange(startSpecifier: StartSpecifier, specifierLen: SpecifierLen); |
7283 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_format_P_with_objc_pointer), |
7284 | StringLoc: E->getExprLoc(), IsStringLocation: false, StringRange: CSR); |
7285 | return true; |
7286 | } |
7287 | |
7288 | ArgType::MatchKind ImplicitMatch = ArgType::NoMatch; |
7289 | ArgType::MatchKind Match = AT.matchesType(C&: S.Context, argTy: ExprTy); |
7290 | ArgType::MatchKind OrigMatch = Match; |
7291 | |
7292 | Match = handleFormatSignedness(Match, Diags&: S.getDiagnostics(), Loc: E->getExprLoc()); |
7293 | if (Match == ArgType::Match) |
7294 | return true; |
7295 | |
7296 | // NoMatchPromotionTypeConfusion should be only returned in ImplictCastExpr |
7297 | assert(Match != ArgType::NoMatchPromotionTypeConfusion); |
7298 | |
7299 | // Look through argument promotions for our error message's reported type. |
7300 | // This includes the integral and floating promotions, but excludes array |
7301 | // and function pointer decay (seeing that an argument intended to be a |
7302 | // string has type 'char [6]' is probably more confusing than 'char *') and |
7303 | // certain bitfield promotions (bitfields can be 'demoted' to a lesser type). |
7304 | if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
7305 | if (isArithmeticArgumentPromotion(S, ICE)) { |
7306 | E = ICE->getSubExpr(); |
7307 | ExprTy = E->getType(); |
7308 | |
7309 | // Check if we didn't match because of an implicit cast from a 'char' |
7310 | // or 'short' to an 'int'. This is done because printf is a varargs |
7311 | // function. |
7312 | if (ICE->getType() == S.Context.IntTy || |
7313 | ICE->getType() == S.Context.UnsignedIntTy) { |
7314 | // All further checking is done on the subexpression |
7315 | ImplicitMatch = AT.matchesType(C&: S.Context, argTy: ExprTy); |
7316 | if (OrigMatch == ArgType::NoMatchSignedness && |
7317 | ImplicitMatch != ArgType::NoMatchSignedness) |
7318 | // If the original match was a signedness match this match on the |
7319 | // implicit cast type also need to be signedness match otherwise we |
7320 | // might introduce new unexpected warnings from -Wformat-signedness. |
7321 | return true; |
7322 | ImplicitMatch = handleFormatSignedness( |
7323 | Match: ImplicitMatch, Diags&: S.getDiagnostics(), Loc: E->getExprLoc()); |
7324 | if (ImplicitMatch == ArgType::Match) |
7325 | return true; |
7326 | } |
7327 | } |
7328 | } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(Val: E)) { |
7329 | // Special case for 'a', which has type 'int' in C. |
7330 | // Note, however, that we do /not/ want to treat multibyte constants like |
7331 | // 'MooV' as characters! This form is deprecated but still exists. In |
7332 | // addition, don't treat expressions as of type 'char' if one byte length |
7333 | // modifier is provided. |
7334 | if (ExprTy == S.Context.IntTy && |
7335 | FS.getLengthModifier().getKind() != LengthModifier::AsChar) |
7336 | if (llvm::isUIntN(N: S.Context.getCharWidth(), x: CL->getValue())) { |
7337 | ExprTy = S.Context.CharTy; |
7338 | // To improve check results, we consider a character literal in C |
7339 | // to be a 'char' rather than an 'int'. 'printf("%hd", 'a');' is |
7340 | // more likely a type confusion situation, so we will suggest to |
7341 | // use '%hhd' instead by discarding the MatchPromotion. |
7342 | if (Match == ArgType::MatchPromotion) |
7343 | Match = ArgType::NoMatch; |
7344 | } |
7345 | } |
7346 | if (Match == ArgType::MatchPromotion) { |
7347 | // WG14 N2562 only clarified promotions in *printf |
7348 | // For NSLog in ObjC, just preserve -Wformat behavior |
7349 | if (!S.getLangOpts().ObjC && |
7350 | ImplicitMatch != ArgType::NoMatchPromotionTypeConfusion && |
7351 | ImplicitMatch != ArgType::NoMatchTypeConfusion) |
7352 | return true; |
7353 | Match = ArgType::NoMatch; |
7354 | } |
7355 | if (ImplicitMatch == ArgType::NoMatchPedantic || |
7356 | ImplicitMatch == ArgType::NoMatchTypeConfusion) |
7357 | Match = ImplicitMatch; |
7358 | assert(Match != ArgType::MatchPromotion); |
7359 | |
7360 | // Look through unscoped enums to their underlying type. |
7361 | bool IsEnum = false; |
7362 | bool IsScopedEnum = false; |
7363 | QualType IntendedTy = ExprTy; |
7364 | if (auto EnumTy = ExprTy->getAs<EnumType>()) { |
7365 | IntendedTy = EnumTy->getDecl()->getIntegerType(); |
7366 | if (EnumTy->isUnscopedEnumerationType()) { |
7367 | ExprTy = IntendedTy; |
7368 | // This controls whether we're talking about the underlying type or not, |
7369 | // which we only want to do when it's an unscoped enum. |
7370 | IsEnum = true; |
7371 | } else { |
7372 | IsScopedEnum = true; |
7373 | } |
7374 | } |
7375 | |
7376 | // %C in an Objective-C context prints a unichar, not a wchar_t. |
7377 | // If the argument is an integer of some kind, believe the %C and suggest |
7378 | // a cast instead of changing the conversion specifier. |
7379 | if (isObjCContext() && |
7380 | FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) { |
7381 | if (ExprTy->isIntegralOrUnscopedEnumerationType() && |
7382 | !ExprTy->isCharType()) { |
7383 | // 'unichar' is defined as a typedef of unsigned short, but we should |
7384 | // prefer using the typedef if it is visible. |
7385 | IntendedTy = S.Context.UnsignedShortTy; |
7386 | |
7387 | // While we are here, check if the value is an IntegerLiteral that happens |
7388 | // to be within the valid range. |
7389 | if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(Val: E)) { |
7390 | const llvm::APInt &V = IL->getValue(); |
7391 | if (V.getActiveBits() <= S.Context.getTypeSize(T: IntendedTy)) |
7392 | return true; |
7393 | } |
7394 | |
7395 | LookupResult Result(S, &S.Context.Idents.get(Name: "unichar" ), E->getBeginLoc(), |
7396 | Sema::LookupOrdinaryName); |
7397 | if (S.LookupName(R&: Result, S: S.getCurScope())) { |
7398 | NamedDecl *ND = Result.getFoundDecl(); |
7399 | if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(Val: ND)) |
7400 | if (TD->getUnderlyingType() == IntendedTy) |
7401 | IntendedTy = S.Context.getTypedefType(Decl: TD); |
7402 | } |
7403 | } |
7404 | } |
7405 | |
7406 | // Special-case some of Darwin's platform-independence types by suggesting |
7407 | // casts to primitive types that are known to be large enough. |
7408 | bool ShouldNotPrintDirectly = false; StringRef CastTyName; |
7409 | if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { |
7410 | QualType CastTy; |
7411 | std::tie(args&: CastTy, args&: CastTyName) = shouldNotPrintDirectly(Context: S.Context, IntendedTy, E); |
7412 | if (!CastTy.isNull()) { |
7413 | // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int |
7414 | // (long in ASTContext). Only complain to pedants or when they're the |
7415 | // underlying type of a scoped enum (which always needs a cast). |
7416 | if (!IsScopedEnum && |
7417 | (CastTyName == "NSInteger" || CastTyName == "NSUInteger" ) && |
7418 | (AT.isSizeT() || AT.isPtrdiffT()) && |
7419 | AT.matchesType(C&: S.Context, argTy: CastTy)) |
7420 | Match = ArgType::NoMatchPedantic; |
7421 | IntendedTy = CastTy; |
7422 | ShouldNotPrintDirectly = true; |
7423 | } |
7424 | } |
7425 | |
7426 | // We may be able to offer a FixItHint if it is a supported type. |
7427 | PrintfSpecifier fixedFS = FS; |
7428 | bool Success = |
7429 | fixedFS.fixType(QT: IntendedTy, LangOpt: S.getLangOpts(), Ctx&: S.Context, IsObjCLiteral: isObjCContext()); |
7430 | |
7431 | if (Success) { |
7432 | // Get the fix string from the fixed format specifier |
7433 | SmallString<16> buf; |
7434 | llvm::raw_svector_ostream os(buf); |
7435 | fixedFS.toString(os); |
7436 | |
7437 | CharSourceRange SpecRange = getSpecifierRange(startSpecifier: StartSpecifier, specifierLen: SpecifierLen); |
7438 | |
7439 | if (IntendedTy == ExprTy && !ShouldNotPrintDirectly && !IsScopedEnum) { |
7440 | unsigned Diag; |
7441 | switch (Match) { |
7442 | case ArgType::Match: |
7443 | case ArgType::MatchPromotion: |
7444 | case ArgType::NoMatchPromotionTypeConfusion: |
7445 | case ArgType::NoMatchSignedness: |
7446 | llvm_unreachable("expected non-matching" ); |
7447 | case ArgType::NoMatchPedantic: |
7448 | Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; |
7449 | break; |
7450 | case ArgType::NoMatchTypeConfusion: |
7451 | Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; |
7452 | break; |
7453 | case ArgType::NoMatch: |
7454 | Diag = diag::warn_format_conversion_argument_type_mismatch; |
7455 | break; |
7456 | } |
7457 | |
7458 | // In this case, the specifier is wrong and should be changed to match |
7459 | // the argument. |
7460 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: Diag) |
7461 | << AT.getRepresentativeTypeName(C&: S.Context) |
7462 | << IntendedTy << IsEnum << E->getSourceRange(), |
7463 | StringLoc: E->getBeginLoc(), |
7464 | /*IsStringLocation*/ false, StringRange: SpecRange, |
7465 | Fixit: FixItHint::CreateReplacement(RemoveRange: SpecRange, Code: os.str())); |
7466 | } else { |
7467 | // The canonical type for formatting this value is different from the |
7468 | // actual type of the expression. (This occurs, for example, with Darwin's |
7469 | // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but |
7470 | // should be printed as 'long' for 64-bit compatibility.) |
7471 | // Rather than emitting a normal format/argument mismatch, we want to |
7472 | // add a cast to the recommended type (and correct the format string |
7473 | // if necessary). We should also do so for scoped enumerations. |
7474 | SmallString<16> CastBuf; |
7475 | llvm::raw_svector_ostream CastFix(CastBuf); |
7476 | CastFix << (S.LangOpts.CPlusPlus ? "static_cast<" : "(" ); |
7477 | IntendedTy.print(OS&: CastFix, Policy: S.Context.getPrintingPolicy()); |
7478 | CastFix << (S.LangOpts.CPlusPlus ? ">" : ")" ); |
7479 | |
7480 | SmallVector<FixItHint,4> Hints; |
7481 | ArgType::MatchKind IntendedMatch = AT.matchesType(C&: S.Context, argTy: IntendedTy); |
7482 | IntendedMatch = handleFormatSignedness(Match: IntendedMatch, Diags&: S.getDiagnostics(), |
7483 | Loc: E->getExprLoc()); |
7484 | if ((IntendedMatch != ArgType::Match) || ShouldNotPrintDirectly) |
7485 | Hints.push_back(Elt: FixItHint::CreateReplacement(RemoveRange: SpecRange, Code: os.str())); |
7486 | |
7487 | if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(Val: E)) { |
7488 | // If there's already a cast present, just replace it. |
7489 | SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc()); |
7490 | Hints.push_back(Elt: FixItHint::CreateReplacement(RemoveRange: CastRange, Code: CastFix.str())); |
7491 | |
7492 | } else if (!requiresParensToAddCast(E) && !S.LangOpts.CPlusPlus) { |
7493 | // If the expression has high enough precedence, |
7494 | // just write the C-style cast. |
7495 | Hints.push_back( |
7496 | Elt: FixItHint::CreateInsertion(InsertionLoc: E->getBeginLoc(), Code: CastFix.str())); |
7497 | } else { |
7498 | // Otherwise, add parens around the expression as well as the cast. |
7499 | CastFix << "(" ; |
7500 | Hints.push_back( |
7501 | Elt: FixItHint::CreateInsertion(InsertionLoc: E->getBeginLoc(), Code: CastFix.str())); |
7502 | |
7503 | // We don't use getLocForEndOfToken because it returns invalid source |
7504 | // locations for macro expansions (by design). |
7505 | SourceLocation EndLoc = S.SourceMgr.getSpellingLoc(Loc: E->getEndLoc()); |
7506 | SourceLocation After = EndLoc.getLocWithOffset( |
7507 | Offset: Lexer::MeasureTokenLength(Loc: EndLoc, SM: S.SourceMgr, LangOpts: S.LangOpts)); |
7508 | Hints.push_back(Elt: FixItHint::CreateInsertion(InsertionLoc: After, Code: ")" )); |
7509 | } |
7510 | |
7511 | if (ShouldNotPrintDirectly && !IsScopedEnum) { |
7512 | // The expression has a type that should not be printed directly. |
7513 | // We extract the name from the typedef because we don't want to show |
7514 | // the underlying type in the diagnostic. |
7515 | StringRef Name; |
7516 | if (const auto *TypedefTy = ExprTy->getAs<TypedefType>()) |
7517 | Name = TypedefTy->getDecl()->getName(); |
7518 | else |
7519 | Name = CastTyName; |
7520 | unsigned Diag = Match == ArgType::NoMatchPedantic |
7521 | ? diag::warn_format_argument_needs_cast_pedantic |
7522 | : diag::warn_format_argument_needs_cast; |
7523 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: Diag) << Name << IntendedTy << IsEnum |
7524 | << E->getSourceRange(), |
7525 | StringLoc: E->getBeginLoc(), /*IsStringLocation=*/false, |
7526 | StringRange: SpecRange, Fixit: Hints); |
7527 | } else { |
7528 | // In this case, the expression could be printed using a different |
7529 | // specifier, but we've decided that the specifier is probably correct |
7530 | // and we should cast instead. Just use the normal warning message. |
7531 | |
7532 | unsigned Diag = |
7533 | IsScopedEnum |
7534 | ? diag::warn_format_conversion_argument_type_mismatch_pedantic |
7535 | : diag::warn_format_conversion_argument_type_mismatch; |
7536 | |
7537 | EmitFormatDiagnostic( |
7538 | PDiag: S.PDiag(DiagID: Diag) << AT.getRepresentativeTypeName(C&: S.Context) << ExprTy |
7539 | << IsEnum << E->getSourceRange(), |
7540 | StringLoc: E->getBeginLoc(), /*IsStringLocation*/ false, StringRange: SpecRange, Fixit: Hints); |
7541 | } |
7542 | } |
7543 | } else { |
7544 | const CharSourceRange &CSR = getSpecifierRange(startSpecifier: StartSpecifier, |
7545 | specifierLen: SpecifierLen); |
7546 | // Since the warning for passing non-POD types to variadic functions |
7547 | // was deferred until now, we emit a warning for non-POD |
7548 | // arguments here. |
7549 | bool EmitTypeMismatch = false; |
7550 | switch (S.isValidVarArgType(Ty: ExprTy)) { |
7551 | case Sema::VAK_Valid: |
7552 | case Sema::VAK_ValidInCXX11: { |
7553 | unsigned Diag; |
7554 | switch (Match) { |
7555 | case ArgType::Match: |
7556 | case ArgType::MatchPromotion: |
7557 | case ArgType::NoMatchPromotionTypeConfusion: |
7558 | case ArgType::NoMatchSignedness: |
7559 | llvm_unreachable("expected non-matching" ); |
7560 | case ArgType::NoMatchPedantic: |
7561 | Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; |
7562 | break; |
7563 | case ArgType::NoMatchTypeConfusion: |
7564 | Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; |
7565 | break; |
7566 | case ArgType::NoMatch: |
7567 | Diag = diag::warn_format_conversion_argument_type_mismatch; |
7568 | break; |
7569 | } |
7570 | |
7571 | EmitFormatDiagnostic( |
7572 | PDiag: S.PDiag(DiagID: Diag) << AT.getRepresentativeTypeName(C&: S.Context) << ExprTy |
7573 | << IsEnum << CSR << E->getSourceRange(), |
7574 | StringLoc: E->getBeginLoc(), /*IsStringLocation*/ false, StringRange: CSR); |
7575 | break; |
7576 | } |
7577 | case Sema::VAK_Undefined: |
7578 | case Sema::VAK_MSVCUndefined: |
7579 | if (CallType == Sema::VariadicDoesNotApply) { |
7580 | EmitTypeMismatch = true; |
7581 | } else { |
7582 | EmitFormatDiagnostic( |
7583 | PDiag: S.PDiag(DiagID: diag::warn_non_pod_vararg_with_format_string) |
7584 | << S.getLangOpts().CPlusPlus11 << ExprTy << CallType |
7585 | << AT.getRepresentativeTypeName(C&: S.Context) << CSR |
7586 | << E->getSourceRange(), |
7587 | StringLoc: E->getBeginLoc(), /*IsStringLocation*/ false, StringRange: CSR); |
7588 | checkForCStrMembers(AT, E); |
7589 | } |
7590 | break; |
7591 | |
7592 | case Sema::VAK_Invalid: |
7593 | if (CallType == Sema::VariadicDoesNotApply) |
7594 | EmitTypeMismatch = true; |
7595 | else if (ExprTy->isObjCObjectType()) |
7596 | EmitFormatDiagnostic( |
7597 | PDiag: S.PDiag(DiagID: diag::err_cannot_pass_objc_interface_to_vararg_format) |
7598 | << S.getLangOpts().CPlusPlus11 << ExprTy << CallType |
7599 | << AT.getRepresentativeTypeName(C&: S.Context) << CSR |
7600 | << E->getSourceRange(), |
7601 | StringLoc: E->getBeginLoc(), /*IsStringLocation*/ false, StringRange: CSR); |
7602 | else |
7603 | // FIXME: If this is an initializer list, suggest removing the braces |
7604 | // or inserting a cast to the target type. |
7605 | S.Diag(Loc: E->getBeginLoc(), DiagID: diag::err_cannot_pass_to_vararg_format) |
7606 | << isa<InitListExpr>(Val: E) << ExprTy << CallType |
7607 | << AT.getRepresentativeTypeName(C&: S.Context) << E->getSourceRange(); |
7608 | break; |
7609 | } |
7610 | |
7611 | if (EmitTypeMismatch) { |
7612 | // The function is not variadic, so we do not generate warnings about |
7613 | // being allowed to pass that object as a variadic argument. Instead, |
7614 | // since there are inherently no printf specifiers for types which cannot |
7615 | // be passed as variadic arguments, emit a plain old specifier mismatch |
7616 | // argument. |
7617 | EmitFormatDiagnostic( |
7618 | PDiag: S.PDiag(DiagID: diag::warn_format_conversion_argument_type_mismatch) |
7619 | << AT.getRepresentativeTypeName(C&: S.Context) << ExprTy << false |
7620 | << E->getSourceRange(), |
7621 | StringLoc: E->getBeginLoc(), IsStringLocation: false, StringRange: CSR); |
7622 | } |
7623 | |
7624 | assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && |
7625 | "format string specifier index out of range" ); |
7626 | CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true; |
7627 | } |
7628 | |
7629 | return true; |
7630 | } |
7631 | |
7632 | //===--- CHECK: Scanf format string checking ------------------------------===// |
7633 | |
7634 | namespace { |
7635 | |
7636 | class CheckScanfHandler : public CheckFormatHandler { |
7637 | public: |
7638 | CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr, |
7639 | const Expr *origFormatExpr, Sema::FormatStringType type, |
7640 | unsigned firstDataArg, unsigned numDataArgs, |
7641 | const char *beg, Sema::FormatArgumentPassingKind APK, |
7642 | ArrayRef<const Expr *> Args, unsigned formatIdx, |
7643 | bool inFunctionCall, Sema::VariadicCallType CallType, |
7644 | llvm::SmallBitVector &CheckedVarArgs, |
7645 | UncoveredArgHandler &UncoveredArg) |
7646 | : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, |
7647 | numDataArgs, beg, APK, Args, formatIdx, |
7648 | inFunctionCall, CallType, CheckedVarArgs, |
7649 | UncoveredArg) {} |
7650 | |
7651 | bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, |
7652 | const char *startSpecifier, |
7653 | unsigned specifierLen) override; |
7654 | |
7655 | bool HandleInvalidScanfConversionSpecifier( |
7656 | const analyze_scanf::ScanfSpecifier &FS, |
7657 | const char *startSpecifier, |
7658 | unsigned specifierLen) override; |
7659 | |
7660 | void HandleIncompleteScanList(const char *start, const char *end) override; |
7661 | }; |
7662 | |
7663 | } // namespace |
7664 | |
7665 | void CheckScanfHandler::HandleIncompleteScanList(const char *start, |
7666 | const char *end) { |
7667 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_scanf_scanlist_incomplete), |
7668 | StringLoc: getLocationOfByte(x: end), /*IsStringLocation*/true, |
7669 | StringRange: getSpecifierRange(startSpecifier: start, specifierLen: end - start)); |
7670 | } |
7671 | |
7672 | bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier( |
7673 | const analyze_scanf::ScanfSpecifier &FS, |
7674 | const char *startSpecifier, |
7675 | unsigned specifierLen) { |
7676 | const analyze_scanf::ScanfConversionSpecifier &CS = |
7677 | FS.getConversionSpecifier(); |
7678 | |
7679 | return HandleInvalidConversionSpecifier(argIndex: FS.getArgIndex(), |
7680 | Loc: getLocationOfByte(x: CS.getStart()), |
7681 | startSpec: startSpecifier, specifierLen, |
7682 | csStart: CS.getStart(), csLen: CS.getLength()); |
7683 | } |
7684 | |
7685 | bool CheckScanfHandler::HandleScanfSpecifier( |
7686 | const analyze_scanf::ScanfSpecifier &FS, |
7687 | const char *startSpecifier, |
7688 | unsigned specifierLen) { |
7689 | using namespace analyze_scanf; |
7690 | using namespace analyze_format_string; |
7691 | |
7692 | const ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); |
7693 | |
7694 | // Handle case where '%' and '*' don't consume an argument. These shouldn't |
7695 | // be used to decide if we are using positional arguments consistently. |
7696 | if (FS.consumesDataArgument()) { |
7697 | if (atFirstArg) { |
7698 | atFirstArg = false; |
7699 | usesPositionalArgs = FS.usesPositionalArg(); |
7700 | } |
7701 | else if (usesPositionalArgs != FS.usesPositionalArg()) { |
7702 | HandlePositionalNonpositionalArgs(Loc: getLocationOfByte(x: CS.getStart()), |
7703 | startSpec: startSpecifier, specifierLen); |
7704 | return false; |
7705 | } |
7706 | } |
7707 | |
7708 | // Check if the field with is non-zero. |
7709 | const OptionalAmount &Amt = FS.getFieldWidth(); |
7710 | if (Amt.getHowSpecified() == OptionalAmount::Constant) { |
7711 | if (Amt.getConstantAmount() == 0) { |
7712 | const CharSourceRange &R = getSpecifierRange(startSpecifier: Amt.getStart(), |
7713 | specifierLen: Amt.getConstantLength()); |
7714 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: diag::warn_scanf_nonzero_width), |
7715 | StringLoc: getLocationOfByte(x: Amt.getStart()), |
7716 | /*IsStringLocation*/true, StringRange: R, |
7717 | Fixit: FixItHint::CreateRemoval(RemoveRange: R)); |
7718 | } |
7719 | } |
7720 | |
7721 | if (!FS.consumesDataArgument()) { |
7722 | // FIXME: Technically specifying a precision or field width here |
7723 | // makes no sense. Worth issuing a warning at some point. |
7724 | return true; |
7725 | } |
7726 | |
7727 | // Consume the argument. |
7728 | unsigned argIndex = FS.getArgIndex(); |
7729 | if (argIndex < NumDataArgs) { |
7730 | // The check to see if the argIndex is valid will come later. |
7731 | // We set the bit here because we may exit early from this |
7732 | // function if we encounter some other error. |
7733 | CoveredArgs.set(argIndex); |
7734 | } |
7735 | |
7736 | // Check the length modifier is valid with the given conversion specifier. |
7737 | if (!FS.hasValidLengthModifier(Target: S.getASTContext().getTargetInfo(), |
7738 | LO: S.getLangOpts())) |
7739 | HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, |
7740 | DiagID: diag::warn_format_nonsensical_length); |
7741 | else if (!FS.hasStandardLengthModifier()) |
7742 | HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); |
7743 | else if (!FS.hasStandardLengthConversionCombination()) |
7744 | HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, |
7745 | DiagID: diag::warn_format_non_standard_conversion_spec); |
7746 | |
7747 | if (!FS.hasStandardConversionSpecifier(LangOpt: S.getLangOpts())) |
7748 | HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); |
7749 | |
7750 | // The remaining checks depend on the data arguments. |
7751 | if (ArgPassingKind == Sema::FAPK_VAList) |
7752 | return true; |
7753 | |
7754 | if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) |
7755 | return false; |
7756 | |
7757 | // Check that the argument type matches the format specifier. |
7758 | const Expr *Ex = getDataArg(i: argIndex); |
7759 | if (!Ex) |
7760 | return true; |
7761 | |
7762 | const analyze_format_string::ArgType &AT = FS.getArgType(Ctx&: S.Context); |
7763 | |
7764 | if (!AT.isValid()) { |
7765 | return true; |
7766 | } |
7767 | |
7768 | analyze_format_string::ArgType::MatchKind Match = |
7769 | AT.matchesType(C&: S.Context, argTy: Ex->getType()); |
7770 | Match = handleFormatSignedness(Match, Diags&: S.getDiagnostics(), Loc: Ex->getExprLoc()); |
7771 | bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic; |
7772 | if (Match == analyze_format_string::ArgType::Match) |
7773 | return true; |
7774 | |
7775 | ScanfSpecifier fixedFS = FS; |
7776 | bool Success = fixedFS.fixType(QT: Ex->getType(), RawQT: Ex->IgnoreImpCasts()->getType(), |
7777 | LangOpt: S.getLangOpts(), Ctx&: S.Context); |
7778 | |
7779 | unsigned Diag = |
7780 | Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic |
7781 | : diag::warn_format_conversion_argument_type_mismatch; |
7782 | |
7783 | if (Success) { |
7784 | // Get the fix string from the fixed format specifier. |
7785 | SmallString<128> buf; |
7786 | llvm::raw_svector_ostream os(buf); |
7787 | fixedFS.toString(os); |
7788 | |
7789 | EmitFormatDiagnostic( |
7790 | PDiag: S.PDiag(DiagID: Diag) << AT.getRepresentativeTypeName(C&: S.Context) |
7791 | << Ex->getType() << false << Ex->getSourceRange(), |
7792 | StringLoc: Ex->getBeginLoc(), |
7793 | /*IsStringLocation*/ false, |
7794 | StringRange: getSpecifierRange(startSpecifier, specifierLen), |
7795 | Fixit: FixItHint::CreateReplacement( |
7796 | RemoveRange: getSpecifierRange(startSpecifier, specifierLen), Code: os.str())); |
7797 | } else { |
7798 | EmitFormatDiagnostic(PDiag: S.PDiag(DiagID: Diag) |
7799 | << AT.getRepresentativeTypeName(C&: S.Context) |
7800 | << Ex->getType() << false << Ex->getSourceRange(), |
7801 | StringLoc: Ex->getBeginLoc(), |
7802 | /*IsStringLocation*/ false, |
7803 | StringRange: getSpecifierRange(startSpecifier, specifierLen)); |
7804 | } |
7805 | |
7806 | return true; |
7807 | } |
7808 | |
7809 | static void CheckFormatString( |
7810 | Sema &S, const FormatStringLiteral *FExpr, const Expr *OrigFormatExpr, |
7811 | ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK, |
7812 | unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type, |
7813 | bool inFunctionCall, Sema::VariadicCallType CallType, |
7814 | llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg, |
7815 | bool IgnoreStringsWithoutSpecifiers) { |
7816 | // CHECK: is the format string a wide literal? |
7817 | if (!FExpr->isAscii() && !FExpr->isUTF8()) { |
7818 | CheckFormatHandler::EmitFormatDiagnostic( |
7819 | S, inFunctionCall, ArgumentExpr: Args[format_idx], |
7820 | PDiag: S.PDiag(DiagID: diag::warn_format_string_is_wide_literal), StringLoc: FExpr->getBeginLoc(), |
7821 | /*IsStringLocation*/ true, StringRange: OrigFormatExpr->getSourceRange()); |
7822 | return; |
7823 | } |
7824 | |
7825 | // Str - The format string. NOTE: this is NOT null-terminated! |
7826 | StringRef StrRef = FExpr->getString(); |
7827 | const char *Str = StrRef.data(); |
7828 | // Account for cases where the string literal is truncated in a declaration. |
7829 | const ConstantArrayType *T = |
7830 | S.Context.getAsConstantArrayType(T: FExpr->getType()); |
7831 | assert(T && "String literal not of constant array type!" ); |
7832 | size_t TypeSize = T->getZExtSize(); |
7833 | size_t StrLen = std::min(a: std::max(a: TypeSize, b: size_t(1)) - 1, b: StrRef.size()); |
7834 | const unsigned numDataArgs = Args.size() - firstDataArg; |
7835 | |
7836 | if (IgnoreStringsWithoutSpecifiers && |
7837 | !analyze_format_string::parseFormatStringHasFormattingSpecifiers( |
7838 | Begin: Str, End: Str + StrLen, LO: S.getLangOpts(), Target: S.Context.getTargetInfo())) |
7839 | return; |
7840 | |
7841 | // Emit a warning if the string literal is truncated and does not contain an |
7842 | // embedded null character. |
7843 | if (TypeSize <= StrRef.size() && !StrRef.substr(Start: 0, N: TypeSize).contains(C: '\0')) { |
7844 | CheckFormatHandler::EmitFormatDiagnostic( |
7845 | S, inFunctionCall, ArgumentExpr: Args[format_idx], |
7846 | PDiag: S.PDiag(DiagID: diag::warn_printf_format_string_not_null_terminated), |
7847 | StringLoc: FExpr->getBeginLoc(), |
7848 | /*IsStringLocation=*/true, StringRange: OrigFormatExpr->getSourceRange()); |
7849 | return; |
7850 | } |
7851 | |
7852 | // CHECK: empty format string? |
7853 | if (StrLen == 0 && numDataArgs > 0) { |
7854 | CheckFormatHandler::EmitFormatDiagnostic( |
7855 | S, inFunctionCall, ArgumentExpr: Args[format_idx], |
7856 | PDiag: S.PDiag(DiagID: diag::warn_empty_format_string), StringLoc: FExpr->getBeginLoc(), |
7857 | /*IsStringLocation*/ true, StringRange: OrigFormatExpr->getSourceRange()); |
7858 | return; |
7859 | } |
7860 | |
7861 | if (Type == Sema::FST_Printf || Type == Sema::FST_NSString || |
7862 | Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog || |
7863 | Type == Sema::FST_OSTrace) { |
7864 | CheckPrintfHandler H( |
7865 | S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs, |
7866 | (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, APK, |
7867 | Args, format_idx, inFunctionCall, CallType, CheckedVarArgs, |
7868 | UncoveredArg); |
7869 | |
7870 | if (!analyze_format_string::ParsePrintfString( |
7871 | H, beg: Str, end: Str + StrLen, LO: S.getLangOpts(), Target: S.Context.getTargetInfo(), |
7872 | isFreeBSDKPrintf: Type == Sema::FST_FreeBSDKPrintf)) |
7873 | H.DoneProcessing(); |
7874 | } else if (Type == Sema::FST_Scanf) { |
7875 | CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg, |
7876 | numDataArgs, Str, APK, Args, format_idx, inFunctionCall, |
7877 | CallType, CheckedVarArgs, UncoveredArg); |
7878 | |
7879 | if (!analyze_format_string::ParseScanfString( |
7880 | H, beg: Str, end: Str + StrLen, LO: S.getLangOpts(), Target: S.Context.getTargetInfo())) |
7881 | H.DoneProcessing(); |
7882 | } // TODO: handle other formats |
7883 | } |
7884 | |
7885 | bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) { |
7886 | // Str - The format string. NOTE: this is NOT null-terminated! |
7887 | StringRef StrRef = FExpr->getString(); |
7888 | const char *Str = StrRef.data(); |
7889 | // Account for cases where the string literal is truncated in a declaration. |
7890 | const ConstantArrayType *T = Context.getAsConstantArrayType(T: FExpr->getType()); |
7891 | assert(T && "String literal not of constant array type!" ); |
7892 | size_t TypeSize = T->getZExtSize(); |
7893 | size_t StrLen = std::min(a: std::max(a: TypeSize, b: size_t(1)) - 1, b: StrRef.size()); |
7894 | return analyze_format_string::ParseFormatStringHasSArg(beg: Str, end: Str + StrLen, |
7895 | LO: getLangOpts(), |
7896 | Target: Context.getTargetInfo()); |
7897 | } |
7898 | |
7899 | //===--- CHECK: Warn on use of wrong absolute value function. -------------===// |
7900 | |
7901 | // Returns the related absolute value function that is larger, of 0 if one |
7902 | // does not exist. |
7903 | static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) { |
7904 | switch (AbsFunction) { |
7905 | default: |
7906 | return 0; |
7907 | |
7908 | case Builtin::BI__builtin_abs: |
7909 | return Builtin::BI__builtin_labs; |
7910 | case Builtin::BI__builtin_labs: |
7911 | return Builtin::BI__builtin_llabs; |
7912 | case Builtin::BI__builtin_llabs: |
7913 | return 0; |
7914 | |
7915 | case Builtin::BI__builtin_fabsf: |
7916 | return Builtin::BI__builtin_fabs; |
7917 | case Builtin::BI__builtin_fabs: |
7918 | return Builtin::BI__builtin_fabsl; |
7919 | case Builtin::BI__builtin_fabsl: |
7920 | return 0; |
7921 | |
7922 | case Builtin::BI__builtin_cabsf: |
7923 | return Builtin::BI__builtin_cabs; |
7924 | case Builtin::BI__builtin_cabs: |
7925 | return Builtin::BI__builtin_cabsl; |
7926 | case Builtin::BI__builtin_cabsl: |
7927 | return 0; |
7928 | |
7929 | case Builtin::BIabs: |
7930 | return Builtin::BIlabs; |
7931 | case Builtin::BIlabs: |
7932 | return Builtin::BIllabs; |
7933 | case Builtin::BIllabs: |
7934 | return 0; |
7935 | |
7936 | case Builtin::BIfabsf: |
7937 | return Builtin::BIfabs; |
7938 | case Builtin::BIfabs: |
7939 | return Builtin::BIfabsl; |
7940 | case Builtin::BIfabsl: |
7941 | return 0; |
7942 | |
7943 | case Builtin::BIcabsf: |
7944 | return Builtin::BIcabs; |
7945 | case Builtin::BIcabs: |
7946 | return Builtin::BIcabsl; |
7947 | case Builtin::BIcabsl: |
7948 | return 0; |
7949 | } |
7950 | } |
7951 | |
7952 | // Returns the argument type of the absolute value function. |
7953 | static QualType getAbsoluteValueArgumentType(ASTContext &Context, |
7954 | unsigned AbsType) { |
7955 | if (AbsType == 0) |
7956 | return QualType(); |
7957 | |
7958 | ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; |
7959 | QualType BuiltinType = Context.GetBuiltinType(ID: AbsType, Error); |
7960 | if (Error != ASTContext::GE_None) |
7961 | return QualType(); |
7962 | |
7963 | const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>(); |
7964 | if (!FT) |
7965 | return QualType(); |
7966 | |
7967 | if (FT->getNumParams() != 1) |
7968 | return QualType(); |
7969 | |
7970 | return FT->getParamType(i: 0); |
7971 | } |
7972 | |
7973 | // Returns the best absolute value function, or zero, based on type and |
7974 | // current absolute value function. |
7975 | static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType, |
7976 | unsigned AbsFunctionKind) { |
7977 | unsigned BestKind = 0; |
7978 | uint64_t ArgSize = Context.getTypeSize(T: ArgType); |
7979 | for (unsigned Kind = AbsFunctionKind; Kind != 0; |
7980 | Kind = getLargerAbsoluteValueFunction(AbsFunction: Kind)) { |
7981 | QualType ParamType = getAbsoluteValueArgumentType(Context, AbsType: Kind); |
7982 | if (Context.getTypeSize(T: ParamType) >= ArgSize) { |
7983 | if (BestKind == 0) |
7984 | BestKind = Kind; |
7985 | else if (Context.hasSameType(T1: ParamType, T2: ArgType)) { |
7986 | BestKind = Kind; |
7987 | break; |
7988 | } |
7989 | } |
7990 | } |
7991 | return BestKind; |
7992 | } |
7993 | |
7994 | enum AbsoluteValueKind { |
7995 | AVK_Integer, |
7996 | AVK_Floating, |
7997 | AVK_Complex |
7998 | }; |
7999 | |
8000 | static AbsoluteValueKind getAbsoluteValueKind(QualType T) { |
8001 | if (T->isIntegralOrEnumerationType()) |
8002 | return AVK_Integer; |
8003 | if (T->isRealFloatingType()) |
8004 | return AVK_Floating; |
8005 | if (T->isAnyComplexType()) |
8006 | return AVK_Complex; |
8007 | |
8008 | llvm_unreachable("Type not integer, floating, or complex" ); |
8009 | } |
8010 | |
8011 | // Changes the absolute value function to a different type. Preserves whether |
8012 | // the function is a builtin. |
8013 | static unsigned changeAbsFunction(unsigned AbsKind, |
8014 | AbsoluteValueKind ValueKind) { |
8015 | switch (ValueKind) { |
8016 | case AVK_Integer: |
8017 | switch (AbsKind) { |
8018 | default: |
8019 | return 0; |
8020 | case Builtin::BI__builtin_fabsf: |
8021 | case Builtin::BI__builtin_fabs: |
8022 | case Builtin::BI__builtin_fabsl: |
8023 | case Builtin::BI__builtin_cabsf: |
8024 | case Builtin::BI__builtin_cabs: |
8025 | case Builtin::BI__builtin_cabsl: |
8026 | return Builtin::BI__builtin_abs; |
8027 | case Builtin::BIfabsf: |
8028 | case Builtin::BIfabs: |
8029 | case Builtin::BIfabsl: |
8030 | case Builtin::BIcabsf: |
8031 | case Builtin::BIcabs: |
8032 | case Builtin::BIcabsl: |
8033 | return Builtin::BIabs; |
8034 | } |
8035 | case AVK_Floating: |
8036 | switch (AbsKind) { |
8037 | default: |
8038 | return 0; |
8039 | case Builtin::BI__builtin_abs: |
8040 | case Builtin::BI__builtin_labs: |
8041 | case Builtin::BI__builtin_llabs: |
8042 | case Builtin::BI__builtin_cabsf: |
8043 | case Builtin::BI__builtin_cabs: |
8044 | case Builtin::BI__builtin_cabsl: |
8045 | return Builtin::BI__builtin_fabsf; |
8046 | case Builtin::BIabs: |
8047 | case Builtin::BIlabs: |
8048 | case Builtin::BIllabs: |
8049 | case Builtin::BIcabsf: |
8050 | case Builtin::BIcabs: |
8051 | case Builtin::BIcabsl: |
8052 | return Builtin::BIfabsf; |
8053 | } |
8054 | case AVK_Complex: |
8055 | switch (AbsKind) { |
8056 | default: |
8057 | return 0; |
8058 | case Builtin::BI__builtin_abs: |
8059 | case Builtin::BI__builtin_labs: |
8060 | case Builtin::BI__builtin_llabs: |
8061 | case Builtin::BI__builtin_fabsf: |
8062 | case Builtin::BI__builtin_fabs: |
8063 | case Builtin::BI__builtin_fabsl: |
8064 | return Builtin::BI__builtin_cabsf; |
8065 | case Builtin::BIabs: |
8066 | case Builtin::BIlabs: |
8067 | case Builtin::BIllabs: |
8068 | case Builtin::BIfabsf: |
8069 | case Builtin::BIfabs: |
8070 | case Builtin::BIfabsl: |
8071 | return Builtin::BIcabsf; |
8072 | } |
8073 | } |
8074 | llvm_unreachable("Unable to convert function" ); |
8075 | } |
8076 | |
8077 | static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) { |
8078 | const IdentifierInfo *FnInfo = FDecl->getIdentifier(); |
8079 | if (!FnInfo) |
8080 | return 0; |
8081 | |
8082 | switch (FDecl->getBuiltinID()) { |
8083 | default: |
8084 | return 0; |
8085 | case Builtin::BI__builtin_abs: |
8086 | case Builtin::BI__builtin_fabs: |
8087 | case Builtin::BI__builtin_fabsf: |
8088 | case Builtin::BI__builtin_fabsl: |
8089 | case Builtin::BI__builtin_labs: |
8090 | case Builtin::BI__builtin_llabs: |
8091 | case Builtin::BI__builtin_cabs: |
8092 | case Builtin::BI__builtin_cabsf: |
8093 | case Builtin::BI__builtin_cabsl: |
8094 | case Builtin::BIabs: |
8095 | case Builtin::BIlabs: |
8096 | case Builtin::BIllabs: |
8097 | case Builtin::BIfabs: |
8098 | case Builtin::BIfabsf: |
8099 | case Builtin::BIfabsl: |
8100 | case Builtin::BIcabs: |
8101 | case Builtin::BIcabsf: |
8102 | case Builtin::BIcabsl: |
8103 | return FDecl->getBuiltinID(); |
8104 | } |
8105 | llvm_unreachable("Unknown Builtin type" ); |
8106 | } |
8107 | |
8108 | // If the replacement is valid, emit a note with replacement function. |
8109 | // Additionally, suggest including the proper header if not already included. |
8110 | static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range, |
8111 | unsigned AbsKind, QualType ArgType) { |
8112 | bool = true; |
8113 | const char * = nullptr; |
8114 | StringRef FunctionName; |
8115 | if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) { |
8116 | FunctionName = "std::abs" ; |
8117 | if (ArgType->isIntegralOrEnumerationType()) { |
8118 | HeaderName = "cstdlib" ; |
8119 | } else if (ArgType->isRealFloatingType()) { |
8120 | HeaderName = "cmath" ; |
8121 | } else { |
8122 | llvm_unreachable("Invalid Type" ); |
8123 | } |
8124 | |
8125 | // Lookup all std::abs |
8126 | if (NamespaceDecl *Std = S.getStdNamespace()) { |
8127 | LookupResult R(S, &S.Context.Idents.get(Name: "abs" ), Loc, Sema::LookupAnyName); |
8128 | R.suppressDiagnostics(); |
8129 | S.LookupQualifiedName(R, LookupCtx: Std); |
8130 | |
8131 | for (const auto *I : R) { |
8132 | const FunctionDecl *FDecl = nullptr; |
8133 | if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(Val: I)) { |
8134 | FDecl = dyn_cast<FunctionDecl>(Val: UsingD->getTargetDecl()); |
8135 | } else { |
8136 | FDecl = dyn_cast<FunctionDecl>(Val: I); |
8137 | } |
8138 | if (!FDecl) |
8139 | continue; |
8140 | |
8141 | // Found std::abs(), check that they are the right ones. |
8142 | if (FDecl->getNumParams() != 1) |
8143 | continue; |
8144 | |
8145 | // Check that the parameter type can handle the argument. |
8146 | QualType ParamType = FDecl->getParamDecl(i: 0)->getType(); |
8147 | if (getAbsoluteValueKind(T: ArgType) == getAbsoluteValueKind(T: ParamType) && |
8148 | S.Context.getTypeSize(T: ArgType) <= |
8149 | S.Context.getTypeSize(T: ParamType)) { |
8150 | // Found a function, don't need the header hint. |
8151 | EmitHeaderHint = false; |
8152 | break; |
8153 | } |
8154 | } |
8155 | } |
8156 | } else { |
8157 | FunctionName = S.Context.BuiltinInfo.getName(ID: AbsKind); |
8158 | HeaderName = S.Context.BuiltinInfo.getHeaderName(ID: AbsKind); |
8159 | |
8160 | if (HeaderName) { |
8161 | DeclarationName DN(&S.Context.Idents.get(Name: FunctionName)); |
8162 | LookupResult R(S, DN, Loc, Sema::LookupAnyName); |
8163 | R.suppressDiagnostics(); |
8164 | S.LookupName(R, S: S.getCurScope()); |
8165 | |
8166 | if (R.isSingleResult()) { |
8167 | FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: R.getFoundDecl()); |
8168 | if (FD && FD->getBuiltinID() == AbsKind) { |
8169 | EmitHeaderHint = false; |
8170 | } else { |
8171 | return; |
8172 | } |
8173 | } else if (!R.empty()) { |
8174 | return; |
8175 | } |
8176 | } |
8177 | } |
8178 | |
8179 | S.Diag(Loc, DiagID: diag::note_replace_abs_function) |
8180 | << FunctionName << FixItHint::CreateReplacement(RemoveRange: Range, Code: FunctionName); |
8181 | |
8182 | if (!HeaderName) |
8183 | return; |
8184 | |
8185 | if (!EmitHeaderHint) |
8186 | return; |
8187 | |
8188 | S.Diag(Loc, DiagID: diag::note_include_header_or_declare) << HeaderName |
8189 | << FunctionName; |
8190 | } |
8191 | |
8192 | template <std::size_t StrLen> |
8193 | static bool IsStdFunction(const FunctionDecl *FDecl, |
8194 | const char (&Str)[StrLen]) { |
8195 | if (!FDecl) |
8196 | return false; |
8197 | if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str)) |
8198 | return false; |
8199 | if (!FDecl->isInStdNamespace()) |
8200 | return false; |
8201 | |
8202 | return true; |
8203 | } |
8204 | |
8205 | void Sema::CheckInfNaNFunction(const CallExpr *Call, |
8206 | const FunctionDecl *FDecl) { |
8207 | FPOptions FPO = Call->getFPFeaturesInEffect(LO: getLangOpts()); |
8208 | if ((IsStdFunction(FDecl, Str: "isnan" ) || IsStdFunction(FDecl, Str: "isunordered" ) || |
8209 | (Call->getBuiltinCallee() == Builtin::BI__builtin_nanf)) && |
8210 | FPO.getNoHonorNaNs()) |
8211 | Diag(Loc: Call->getBeginLoc(), DiagID: diag::warn_fp_nan_inf_when_disabled) |
8212 | << 1 << 0 << Call->getSourceRange(); |
8213 | else if ((IsStdFunction(FDecl, Str: "isinf" ) || |
8214 | (IsStdFunction(FDecl, Str: "isfinite" ) || |
8215 | (FDecl->getIdentifier() && FDecl->getName() == "infinity" ))) && |
8216 | FPO.getNoHonorInfs()) |
8217 | Diag(Loc: Call->getBeginLoc(), DiagID: diag::warn_fp_nan_inf_when_disabled) |
8218 | << 0 << 0 << Call->getSourceRange(); |
8219 | } |
8220 | |
8221 | void Sema::CheckAbsoluteValueFunction(const CallExpr *Call, |
8222 | const FunctionDecl *FDecl) { |
8223 | if (Call->getNumArgs() != 1) |
8224 | return; |
8225 | |
8226 | unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl); |
8227 | bool IsStdAbs = IsStdFunction(FDecl, Str: "abs" ); |
8228 | if (AbsKind == 0 && !IsStdAbs) |
8229 | return; |
8230 | |
8231 | QualType ArgType = Call->getArg(Arg: 0)->IgnoreParenImpCasts()->getType(); |
8232 | QualType ParamType = Call->getArg(Arg: 0)->getType(); |
8233 | |
8234 | // Unsigned types cannot be negative. Suggest removing the absolute value |
8235 | // function call. |
8236 | if (ArgType->isUnsignedIntegerType()) { |
8237 | StringRef FunctionName = |
8238 | IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(ID: AbsKind); |
8239 | Diag(Loc: Call->getExprLoc(), DiagID: diag::warn_unsigned_abs) << ArgType << ParamType; |
8240 | Diag(Loc: Call->getExprLoc(), DiagID: diag::note_remove_abs) |
8241 | << FunctionName |
8242 | << FixItHint::CreateRemoval(RemoveRange: Call->getCallee()->getSourceRange()); |
8243 | return; |
8244 | } |
8245 | |
8246 | // Taking the absolute value of a pointer is very suspicious, they probably |
8247 | // wanted to index into an array, dereference a pointer, call a function, etc. |
8248 | if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) { |
8249 | unsigned DiagType = 0; |
8250 | if (ArgType->isFunctionType()) |
8251 | DiagType = 1; |
8252 | else if (ArgType->isArrayType()) |
8253 | DiagType = 2; |
8254 | |
8255 | Diag(Loc: Call->getExprLoc(), DiagID: diag::warn_pointer_abs) << DiagType << ArgType; |
8256 | return; |
8257 | } |
8258 | |
8259 | // std::abs has overloads which prevent most of the absolute value problems |
8260 | // from occurring. |
8261 | if (IsStdAbs) |
8262 | return; |
8263 | |
8264 | AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(T: ArgType); |
8265 | AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(T: ParamType); |
8266 | |
8267 | // The argument and parameter are the same kind. Check if they are the right |
8268 | // size. |
8269 | if (ArgValueKind == ParamValueKind) { |
8270 | if (Context.getTypeSize(T: ArgType) <= Context.getTypeSize(T: ParamType)) |
8271 | return; |
8272 | |
8273 | unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsFunctionKind: AbsKind); |
8274 | Diag(Loc: Call->getExprLoc(), DiagID: diag::warn_abs_too_small) |
8275 | << FDecl << ArgType << ParamType; |
8276 | |
8277 | if (NewAbsKind == 0) |
8278 | return; |
8279 | |
8280 | emitReplacement(S&: *this, Loc: Call->getExprLoc(), |
8281 | Range: Call->getCallee()->getSourceRange(), AbsKind: NewAbsKind, ArgType); |
8282 | return; |
8283 | } |
8284 | |
8285 | // ArgValueKind != ParamValueKind |
8286 | // The wrong type of absolute value function was used. Attempt to find the |
8287 | // proper one. |
8288 | unsigned NewAbsKind = changeAbsFunction(AbsKind, ValueKind: ArgValueKind); |
8289 | NewAbsKind = getBestAbsFunction(Context, ArgType, AbsFunctionKind: NewAbsKind); |
8290 | if (NewAbsKind == 0) |
8291 | return; |
8292 | |
8293 | Diag(Loc: Call->getExprLoc(), DiagID: diag::warn_wrong_absolute_value_type) |
8294 | << FDecl << ParamValueKind << ArgValueKind; |
8295 | |
8296 | emitReplacement(S&: *this, Loc: Call->getExprLoc(), |
8297 | Range: Call->getCallee()->getSourceRange(), AbsKind: NewAbsKind, ArgType); |
8298 | } |
8299 | |
8300 | //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===// |
8301 | void Sema::CheckMaxUnsignedZero(const CallExpr *Call, |
8302 | const FunctionDecl *FDecl) { |
8303 | if (!Call || !FDecl) return; |
8304 | |
8305 | // Ignore template specializations and macros. |
8306 | if (inTemplateInstantiation()) return; |
8307 | if (Call->getExprLoc().isMacroID()) return; |
8308 | |
8309 | // Only care about the one template argument, two function parameter std::max |
8310 | if (Call->getNumArgs() != 2) return; |
8311 | if (!IsStdFunction(FDecl, Str: "max" )) return; |
8312 | const auto * ArgList = FDecl->getTemplateSpecializationArgs(); |
8313 | if (!ArgList) return; |
8314 | if (ArgList->size() != 1) return; |
8315 | |
8316 | // Check that template type argument is unsigned integer. |
8317 | const auto& TA = ArgList->get(Idx: 0); |
8318 | if (TA.getKind() != TemplateArgument::Type) return; |
8319 | QualType ArgType = TA.getAsType(); |
8320 | if (!ArgType->isUnsignedIntegerType()) return; |
8321 | |
8322 | // See if either argument is a literal zero. |
8323 | auto IsLiteralZeroArg = [](const Expr* E) -> bool { |
8324 | const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: E); |
8325 | if (!MTE) return false; |
8326 | const auto *Num = dyn_cast<IntegerLiteral>(Val: MTE->getSubExpr()); |
8327 | if (!Num) return false; |
8328 | if (Num->getValue() != 0) return false; |
8329 | return true; |
8330 | }; |
8331 | |
8332 | const Expr *FirstArg = Call->getArg(Arg: 0); |
8333 | const Expr *SecondArg = Call->getArg(Arg: 1); |
8334 | const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg); |
8335 | const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg); |
8336 | |
8337 | // Only warn when exactly one argument is zero. |
8338 | if (IsFirstArgZero == IsSecondArgZero) return; |
8339 | |
8340 | SourceRange FirstRange = FirstArg->getSourceRange(); |
8341 | SourceRange SecondRange = SecondArg->getSourceRange(); |
8342 | |
8343 | SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange; |
8344 | |
8345 | Diag(Loc: Call->getExprLoc(), DiagID: diag::warn_max_unsigned_zero) |
8346 | << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange; |
8347 | |
8348 | // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)". |
8349 | SourceRange RemovalRange; |
8350 | if (IsFirstArgZero) { |
8351 | RemovalRange = SourceRange(FirstRange.getBegin(), |
8352 | SecondRange.getBegin().getLocWithOffset(Offset: -1)); |
8353 | } else { |
8354 | RemovalRange = SourceRange(getLocForEndOfToken(Loc: FirstRange.getEnd()), |
8355 | SecondRange.getEnd()); |
8356 | } |
8357 | |
8358 | Diag(Loc: Call->getExprLoc(), DiagID: diag::note_remove_max_call) |
8359 | << FixItHint::CreateRemoval(RemoveRange: Call->getCallee()->getSourceRange()) |
8360 | << FixItHint::CreateRemoval(RemoveRange: RemovalRange); |
8361 | } |
8362 | |
8363 | //===--- CHECK: Standard memory functions ---------------------------------===// |
8364 | |
8365 | /// Takes the expression passed to the size_t parameter of functions |
8366 | /// such as memcmp, strncat, etc and warns if it's a comparison. |
8367 | /// |
8368 | /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`. |
8369 | static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E, |
8370 | IdentifierInfo *FnName, |
8371 | SourceLocation FnLoc, |
8372 | SourceLocation RParenLoc) { |
8373 | const BinaryOperator *Size = dyn_cast<BinaryOperator>(Val: E); |
8374 | if (!Size) |
8375 | return false; |
8376 | |
8377 | // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||: |
8378 | if (!Size->isComparisonOp() && !Size->isLogicalOp()) |
8379 | return false; |
8380 | |
8381 | SourceRange SizeRange = Size->getSourceRange(); |
8382 | S.Diag(Loc: Size->getOperatorLoc(), DiagID: diag::warn_memsize_comparison) |
8383 | << SizeRange << FnName; |
8384 | S.Diag(Loc: FnLoc, DiagID: diag::note_memsize_comparison_paren) |
8385 | << FnName |
8386 | << FixItHint::CreateInsertion( |
8387 | InsertionLoc: S.getLocForEndOfToken(Loc: Size->getLHS()->getEndLoc()), Code: ")" ) |
8388 | << FixItHint::CreateRemoval(RemoveRange: RParenLoc); |
8389 | S.Diag(Loc: SizeRange.getBegin(), DiagID: diag::note_memsize_comparison_cast_silence) |
8390 | << FixItHint::CreateInsertion(InsertionLoc: SizeRange.getBegin(), Code: "(size_t)(" ) |
8391 | << FixItHint::CreateInsertion(InsertionLoc: S.getLocForEndOfToken(Loc: SizeRange.getEnd()), |
8392 | Code: ")" ); |
8393 | |
8394 | return true; |
8395 | } |
8396 | |
8397 | /// Determine whether the given type is or contains a dynamic class type |
8398 | /// (e.g., whether it has a vtable). |
8399 | static const CXXRecordDecl *getContainedDynamicClass(QualType T, |
8400 | bool &IsContained) { |
8401 | // Look through array types while ignoring qualifiers. |
8402 | const Type *Ty = T->getBaseElementTypeUnsafe(); |
8403 | IsContained = false; |
8404 | |
8405 | const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); |
8406 | RD = RD ? RD->getDefinition() : nullptr; |
8407 | if (!RD || RD->isInvalidDecl()) |
8408 | return nullptr; |
8409 | |
8410 | if (RD->isDynamicClass()) |
8411 | return RD; |
8412 | |
8413 | // Check all the fields. If any bases were dynamic, the class is dynamic. |
8414 | // It's impossible for a class to transitively contain itself by value, so |
8415 | // infinite recursion is impossible. |
8416 | for (auto *FD : RD->fields()) { |
8417 | bool SubContained; |
8418 | if (const CXXRecordDecl *ContainedRD = |
8419 | getContainedDynamicClass(T: FD->getType(), IsContained&: SubContained)) { |
8420 | IsContained = true; |
8421 | return ContainedRD; |
8422 | } |
8423 | } |
8424 | |
8425 | return nullptr; |
8426 | } |
8427 | |
8428 | static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) { |
8429 | if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(Val: E)) |
8430 | if (Unary->getKind() == UETT_SizeOf) |
8431 | return Unary; |
8432 | return nullptr; |
8433 | } |
8434 | |
8435 | /// If E is a sizeof expression, returns its argument expression, |
8436 | /// otherwise returns NULL. |
8437 | static const Expr *getSizeOfExprArg(const Expr *E) { |
8438 | if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) |
8439 | if (!SizeOf->isArgumentType()) |
8440 | return SizeOf->getArgumentExpr()->IgnoreParenImpCasts(); |
8441 | return nullptr; |
8442 | } |
8443 | |
8444 | /// If E is a sizeof expression, returns its argument type. |
8445 | static QualType getSizeOfArgType(const Expr *E) { |
8446 | if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) |
8447 | return SizeOf->getTypeOfArgument(); |
8448 | return QualType(); |
8449 | } |
8450 | |
8451 | namespace { |
8452 | |
8453 | struct SearchNonTrivialToInitializeField |
8454 | : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> { |
8455 | using Super = |
8456 | DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>; |
8457 | |
8458 | SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {} |
8459 | |
8460 | void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT, |
8461 | SourceLocation SL) { |
8462 | if (const auto *AT = asDerived().getContext().getAsArrayType(T: FT)) { |
8463 | asDerived().visitArray(PDIK, AT, SL); |
8464 | return; |
8465 | } |
8466 | |
8467 | Super::visitWithKind(PDIK, FT, Args&: SL); |
8468 | } |
8469 | |
8470 | void visitARCStrong(QualType FT, SourceLocation SL) { |
8471 | S.DiagRuntimeBehavior(Loc: SL, Statement: E, PD: S.PDiag(DiagID: diag::note_nontrivial_field) << 1); |
8472 | } |
8473 | void visitARCWeak(QualType FT, SourceLocation SL) { |
8474 | S.DiagRuntimeBehavior(Loc: SL, Statement: E, PD: S.PDiag(DiagID: diag::note_nontrivial_field) << 1); |
8475 | } |
8476 | void visitStruct(QualType FT, SourceLocation SL) { |
8477 | for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) |
8478 | visit(FT: FD->getType(), Args: FD->getLocation()); |
8479 | } |
8480 | void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK, |
8481 | const ArrayType *AT, SourceLocation SL) { |
8482 | visit(FT: getContext().getBaseElementType(VAT: AT), Args&: SL); |
8483 | } |
8484 | void visitTrivial(QualType FT, SourceLocation SL) {} |
8485 | |
8486 | static void diag(QualType RT, const Expr *E, Sema &S) { |
8487 | SearchNonTrivialToInitializeField(E, S).visitStruct(FT: RT, SL: SourceLocation()); |
8488 | } |
8489 | |
8490 | ASTContext &getContext() { return S.getASTContext(); } |
8491 | |
8492 | const Expr *E; |
8493 | Sema &S; |
8494 | }; |
8495 | |
8496 | struct SearchNonTrivialToCopyField |
8497 | : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> { |
8498 | using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>; |
8499 | |
8500 | SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {} |
8501 | |
8502 | void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT, |
8503 | SourceLocation SL) { |
8504 | if (const auto *AT = asDerived().getContext().getAsArrayType(T: FT)) { |
8505 | asDerived().visitArray(PCK, AT, SL); |
8506 | return; |
8507 | } |
8508 | |
8509 | Super::visitWithKind(PCK, FT, Args&: SL); |
8510 | } |
8511 | |
8512 | void visitARCStrong(QualType FT, SourceLocation SL) { |
8513 | S.DiagRuntimeBehavior(Loc: SL, Statement: E, PD: S.PDiag(DiagID: diag::note_nontrivial_field) << 0); |
8514 | } |
8515 | void visitARCWeak(QualType FT, SourceLocation SL) { |
8516 | S.DiagRuntimeBehavior(Loc: SL, Statement: E, PD: S.PDiag(DiagID: diag::note_nontrivial_field) << 0); |
8517 | } |
8518 | void visitStruct(QualType FT, SourceLocation SL) { |
8519 | for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) |
8520 | visit(FT: FD->getType(), Args: FD->getLocation()); |
8521 | } |
8522 | void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT, |
8523 | SourceLocation SL) { |
8524 | visit(FT: getContext().getBaseElementType(VAT: AT), Args&: SL); |
8525 | } |
8526 | void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT, |
8527 | SourceLocation SL) {} |
8528 | void visitTrivial(QualType FT, SourceLocation SL) {} |
8529 | void visitVolatileTrivial(QualType FT, SourceLocation SL) {} |
8530 | |
8531 | static void diag(QualType RT, const Expr *E, Sema &S) { |
8532 | SearchNonTrivialToCopyField(E, S).visitStruct(FT: RT, SL: SourceLocation()); |
8533 | } |
8534 | |
8535 | ASTContext &getContext() { return S.getASTContext(); } |
8536 | |
8537 | const Expr *E; |
8538 | Sema &S; |
8539 | }; |
8540 | |
8541 | } |
8542 | |
8543 | /// Detect if \c SizeofExpr is likely to calculate the sizeof an object. |
8544 | static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) { |
8545 | SizeofExpr = SizeofExpr->IgnoreParenImpCasts(); |
8546 | |
8547 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: SizeofExpr)) { |
8548 | if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add) |
8549 | return false; |
8550 | |
8551 | return doesExprLikelyComputeSize(SizeofExpr: BO->getLHS()) || |
8552 | doesExprLikelyComputeSize(SizeofExpr: BO->getRHS()); |
8553 | } |
8554 | |
8555 | return getAsSizeOfExpr(E: SizeofExpr) != nullptr; |
8556 | } |
8557 | |
8558 | /// Check if the ArgLoc originated from a macro passed to the call at CallLoc. |
8559 | /// |
8560 | /// \code |
8561 | /// #define MACRO 0 |
8562 | /// foo(MACRO); |
8563 | /// foo(0); |
8564 | /// \endcode |
8565 | /// |
8566 | /// This should return true for the first call to foo, but not for the second |
8567 | /// (regardless of whether foo is a macro or function). |
8568 | static bool isArgumentExpandedFromMacro(SourceManager &SM, |
8569 | SourceLocation CallLoc, |
8570 | SourceLocation ArgLoc) { |
8571 | if (!CallLoc.isMacroID()) |
8572 | return SM.getFileID(SpellingLoc: CallLoc) != SM.getFileID(SpellingLoc: ArgLoc); |
8573 | |
8574 | return SM.getFileID(SpellingLoc: SM.getImmediateMacroCallerLoc(Loc: CallLoc)) != |
8575 | SM.getFileID(SpellingLoc: SM.getImmediateMacroCallerLoc(Loc: ArgLoc)); |
8576 | } |
8577 | |
8578 | /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the |
8579 | /// last two arguments transposed. |
8580 | static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) { |
8581 | if (BId != Builtin::BImemset && BId != Builtin::BIbzero) |
8582 | return; |
8583 | |
8584 | const Expr *SizeArg = |
8585 | Call->getArg(Arg: BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts(); |
8586 | |
8587 | auto isLiteralZero = [](const Expr *E) { |
8588 | return (isa<IntegerLiteral>(Val: E) && |
8589 | cast<IntegerLiteral>(Val: E)->getValue() == 0) || |
8590 | (isa<CharacterLiteral>(Val: E) && |
8591 | cast<CharacterLiteral>(Val: E)->getValue() == 0); |
8592 | }; |
8593 | |
8594 | // If we're memsetting or bzeroing 0 bytes, then this is likely an error. |
8595 | SourceLocation CallLoc = Call->getRParenLoc(); |
8596 | SourceManager &SM = S.getSourceManager(); |
8597 | if (isLiteralZero(SizeArg) && |
8598 | !isArgumentExpandedFromMacro(SM, CallLoc, ArgLoc: SizeArg->getExprLoc())) { |
8599 | |
8600 | SourceLocation DiagLoc = SizeArg->getExprLoc(); |
8601 | |
8602 | // Some platforms #define bzero to __builtin_memset. See if this is the |
8603 | // case, and if so, emit a better diagnostic. |
8604 | if (BId == Builtin::BIbzero || |
8605 | (CallLoc.isMacroID() && Lexer::getImmediateMacroName( |
8606 | Loc: CallLoc, SM, LangOpts: S.getLangOpts()) == "bzero" )) { |
8607 | S.Diag(Loc: DiagLoc, DiagID: diag::warn_suspicious_bzero_size); |
8608 | S.Diag(Loc: DiagLoc, DiagID: diag::note_suspicious_bzero_size_silence); |
8609 | } else if (!isLiteralZero(Call->getArg(Arg: 1)->IgnoreImpCasts())) { |
8610 | S.Diag(Loc: DiagLoc, DiagID: diag::warn_suspicious_sizeof_memset) << 0; |
8611 | S.Diag(Loc: DiagLoc, DiagID: diag::note_suspicious_sizeof_memset_silence) << 0; |
8612 | } |
8613 | return; |
8614 | } |
8615 | |
8616 | // If the second argument to a memset is a sizeof expression and the third |
8617 | // isn't, this is also likely an error. This should catch |
8618 | // 'memset(buf, sizeof(buf), 0xff)'. |
8619 | if (BId == Builtin::BImemset && |
8620 | doesExprLikelyComputeSize(SizeofExpr: Call->getArg(Arg: 1)) && |
8621 | !doesExprLikelyComputeSize(SizeofExpr: Call->getArg(Arg: 2))) { |
8622 | SourceLocation DiagLoc = Call->getArg(Arg: 1)->getExprLoc(); |
8623 | S.Diag(Loc: DiagLoc, DiagID: diag::warn_suspicious_sizeof_memset) << 1; |
8624 | S.Diag(Loc: DiagLoc, DiagID: diag::note_suspicious_sizeof_memset_silence) << 1; |
8625 | return; |
8626 | } |
8627 | } |
8628 | |
8629 | void Sema::CheckMemaccessArguments(const CallExpr *Call, |
8630 | unsigned BId, |
8631 | IdentifierInfo *FnName) { |
8632 | assert(BId != 0); |
8633 | |
8634 | // It is possible to have a non-standard definition of memset. Validate |
8635 | // we have enough arguments, and if not, abort further checking. |
8636 | unsigned ExpectedNumArgs = |
8637 | (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3); |
8638 | if (Call->getNumArgs() < ExpectedNumArgs) |
8639 | return; |
8640 | |
8641 | unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero || |
8642 | BId == Builtin::BIstrndup ? 1 : 2); |
8643 | unsigned LenArg = |
8644 | (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2); |
8645 | const Expr *LenExpr = Call->getArg(Arg: LenArg)->IgnoreParenImpCasts(); |
8646 | |
8647 | if (CheckMemorySizeofForComparison(S&: *this, E: LenExpr, FnName, |
8648 | FnLoc: Call->getBeginLoc(), RParenLoc: Call->getRParenLoc())) |
8649 | return; |
8650 | |
8651 | // Catch cases like 'memset(buf, sizeof(buf), 0)'. |
8652 | CheckMemaccessSize(S&: *this, BId, Call); |
8653 | |
8654 | // We have special checking when the length is a sizeof expression. |
8655 | QualType SizeOfArgTy = getSizeOfArgType(E: LenExpr); |
8656 | const Expr *SizeOfArg = getSizeOfExprArg(E: LenExpr); |
8657 | llvm::FoldingSetNodeID SizeOfArgID; |
8658 | |
8659 | // Although widely used, 'bzero' is not a standard function. Be more strict |
8660 | // with the argument types before allowing diagnostics and only allow the |
8661 | // form bzero(ptr, sizeof(...)). |
8662 | QualType FirstArgTy = Call->getArg(Arg: 0)->IgnoreParenImpCasts()->getType(); |
8663 | if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>()) |
8664 | return; |
8665 | |
8666 | for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) { |
8667 | const Expr *Dest = Call->getArg(Arg: ArgIdx)->IgnoreParenImpCasts(); |
8668 | SourceRange ArgRange = Call->getArg(Arg: ArgIdx)->getSourceRange(); |
8669 | |
8670 | QualType DestTy = Dest->getType(); |
8671 | QualType PointeeTy; |
8672 | if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) { |
8673 | PointeeTy = DestPtrTy->getPointeeType(); |
8674 | |
8675 | // Never warn about void type pointers. This can be used to suppress |
8676 | // false positives. |
8677 | if (PointeeTy->isVoidType()) |
8678 | continue; |
8679 | |
8680 | // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by |
8681 | // actually comparing the expressions for equality. Because computing the |
8682 | // expression IDs can be expensive, we only do this if the diagnostic is |
8683 | // enabled. |
8684 | if (SizeOfArg && |
8685 | !Diags.isIgnored(DiagID: diag::warn_sizeof_pointer_expr_memaccess, |
8686 | Loc: SizeOfArg->getExprLoc())) { |
8687 | // We only compute IDs for expressions if the warning is enabled, and |
8688 | // cache the sizeof arg's ID. |
8689 | if (SizeOfArgID == llvm::FoldingSetNodeID()) |
8690 | SizeOfArg->Profile(ID&: SizeOfArgID, Context, Canonical: true); |
8691 | llvm::FoldingSetNodeID DestID; |
8692 | Dest->Profile(ID&: DestID, Context, Canonical: true); |
8693 | if (DestID == SizeOfArgID) { |
8694 | // TODO: For strncpy() and friends, this could suggest sizeof(dst) |
8695 | // over sizeof(src) as well. |
8696 | unsigned ActionIdx = 0; // Default is to suggest dereferencing. |
8697 | StringRef ReadableName = FnName->getName(); |
8698 | |
8699 | if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Val: Dest)) |
8700 | if (UnaryOp->getOpcode() == UO_AddrOf) |
8701 | ActionIdx = 1; // If its an address-of operator, just remove it. |
8702 | if (!PointeeTy->isIncompleteType() && |
8703 | (Context.getTypeSize(T: PointeeTy) == Context.getCharWidth())) |
8704 | ActionIdx = 2; // If the pointee's size is sizeof(char), |
8705 | // suggest an explicit length. |
8706 | |
8707 | // If the function is defined as a builtin macro, do not show macro |
8708 | // expansion. |
8709 | SourceLocation SL = SizeOfArg->getExprLoc(); |
8710 | SourceRange DSR = Dest->getSourceRange(); |
8711 | SourceRange SSR = SizeOfArg->getSourceRange(); |
8712 | SourceManager &SM = getSourceManager(); |
8713 | |
8714 | if (SM.isMacroArgExpansion(Loc: SL)) { |
8715 | ReadableName = Lexer::getImmediateMacroName(Loc: SL, SM, LangOpts); |
8716 | SL = SM.getSpellingLoc(Loc: SL); |
8717 | DSR = SourceRange(SM.getSpellingLoc(Loc: DSR.getBegin()), |
8718 | SM.getSpellingLoc(Loc: DSR.getEnd())); |
8719 | SSR = SourceRange(SM.getSpellingLoc(Loc: SSR.getBegin()), |
8720 | SM.getSpellingLoc(Loc: SSR.getEnd())); |
8721 | } |
8722 | |
8723 | DiagRuntimeBehavior(Loc: SL, Statement: SizeOfArg, |
8724 | PD: PDiag(DiagID: diag::warn_sizeof_pointer_expr_memaccess) |
8725 | << ReadableName |
8726 | << PointeeTy |
8727 | << DestTy |
8728 | << DSR |
8729 | << SSR); |
8730 | DiagRuntimeBehavior(Loc: SL, Statement: SizeOfArg, |
8731 | PD: PDiag(DiagID: diag::warn_sizeof_pointer_expr_memaccess_note) |
8732 | << ActionIdx |
8733 | << SSR); |
8734 | |
8735 | break; |
8736 | } |
8737 | } |
8738 | |
8739 | // Also check for cases where the sizeof argument is the exact same |
8740 | // type as the memory argument, and where it points to a user-defined |
8741 | // record type. |
8742 | if (SizeOfArgTy != QualType()) { |
8743 | if (PointeeTy->isRecordType() && |
8744 | Context.typesAreCompatible(T1: SizeOfArgTy, T2: DestTy)) { |
8745 | DiagRuntimeBehavior(Loc: LenExpr->getExprLoc(), Statement: Dest, |
8746 | PD: PDiag(DiagID: diag::warn_sizeof_pointer_type_memaccess) |
8747 | << FnName << SizeOfArgTy << ArgIdx |
8748 | << PointeeTy << Dest->getSourceRange() |
8749 | << LenExpr->getSourceRange()); |
8750 | break; |
8751 | } |
8752 | } |
8753 | } else if (DestTy->isArrayType()) { |
8754 | PointeeTy = DestTy; |
8755 | } |
8756 | |
8757 | if (PointeeTy == QualType()) |
8758 | continue; |
8759 | |
8760 | // Always complain about dynamic classes. |
8761 | bool IsContained; |
8762 | if (const CXXRecordDecl *ContainedRD = |
8763 | getContainedDynamicClass(T: PointeeTy, IsContained)) { |
8764 | |
8765 | unsigned OperationType = 0; |
8766 | const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp; |
8767 | // "overwritten" if we're warning about the destination for any call |
8768 | // but memcmp; otherwise a verb appropriate to the call. |
8769 | if (ArgIdx != 0 || IsCmp) { |
8770 | if (BId == Builtin::BImemcpy) |
8771 | OperationType = 1; |
8772 | else if(BId == Builtin::BImemmove) |
8773 | OperationType = 2; |
8774 | else if (IsCmp) |
8775 | OperationType = 3; |
8776 | } |
8777 | |
8778 | DiagRuntimeBehavior(Loc: Dest->getExprLoc(), Statement: Dest, |
8779 | PD: PDiag(DiagID: diag::warn_dyn_class_memaccess) |
8780 | << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName |
8781 | << IsContained << ContainedRD << OperationType |
8782 | << Call->getCallee()->getSourceRange()); |
8783 | } else if (PointeeTy.hasNonTrivialObjCLifetime() && |
8784 | BId != Builtin::BImemset) |
8785 | DiagRuntimeBehavior( |
8786 | Loc: Dest->getExprLoc(), Statement: Dest, |
8787 | PD: PDiag(DiagID: diag::warn_arc_object_memaccess) |
8788 | << ArgIdx << FnName << PointeeTy |
8789 | << Call->getCallee()->getSourceRange()); |
8790 | else if (const auto *RT = PointeeTy->getAs<RecordType>()) { |
8791 | if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) && |
8792 | RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) { |
8793 | DiagRuntimeBehavior(Loc: Dest->getExprLoc(), Statement: Dest, |
8794 | PD: PDiag(DiagID: diag::warn_cstruct_memaccess) |
8795 | << ArgIdx << FnName << PointeeTy << 0); |
8796 | SearchNonTrivialToInitializeField::diag(RT: PointeeTy, E: Dest, S&: *this); |
8797 | } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) && |
8798 | RT->getDecl()->isNonTrivialToPrimitiveCopy()) { |
8799 | DiagRuntimeBehavior(Loc: Dest->getExprLoc(), Statement: Dest, |
8800 | PD: PDiag(DiagID: diag::warn_cstruct_memaccess) |
8801 | << ArgIdx << FnName << PointeeTy << 1); |
8802 | SearchNonTrivialToCopyField::diag(RT: PointeeTy, E: Dest, S&: *this); |
8803 | } else { |
8804 | continue; |
8805 | } |
8806 | } else |
8807 | continue; |
8808 | |
8809 | DiagRuntimeBehavior( |
8810 | Loc: Dest->getExprLoc(), Statement: Dest, |
8811 | PD: PDiag(DiagID: diag::note_bad_memaccess_silence) |
8812 | << FixItHint::CreateInsertion(InsertionLoc: ArgRange.getBegin(), Code: "(void*)" )); |
8813 | break; |
8814 | } |
8815 | } |
8816 | |
8817 | // A little helper routine: ignore addition and subtraction of integer literals. |
8818 | // This intentionally does not ignore all integer constant expressions because |
8819 | // we don't want to remove sizeof(). |
8820 | static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) { |
8821 | Ex = Ex->IgnoreParenCasts(); |
8822 | |
8823 | while (true) { |
8824 | const BinaryOperator * BO = dyn_cast<BinaryOperator>(Val: Ex); |
8825 | if (!BO || !BO->isAdditiveOp()) |
8826 | break; |
8827 | |
8828 | const Expr *RHS = BO->getRHS()->IgnoreParenCasts(); |
8829 | const Expr *LHS = BO->getLHS()->IgnoreParenCasts(); |
8830 | |
8831 | if (isa<IntegerLiteral>(Val: RHS)) |
8832 | Ex = LHS; |
8833 | else if (isa<IntegerLiteral>(Val: LHS)) |
8834 | Ex = RHS; |
8835 | else |
8836 | break; |
8837 | } |
8838 | |
8839 | return Ex; |
8840 | } |
8841 | |
8842 | static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty, |
8843 | ASTContext &Context) { |
8844 | // Only handle constant-sized or VLAs, but not flexible members. |
8845 | if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T: Ty)) { |
8846 | // Only issue the FIXIT for arrays of size > 1. |
8847 | if (CAT->getZExtSize() <= 1) |
8848 | return false; |
8849 | } else if (!Ty->isVariableArrayType()) { |
8850 | return false; |
8851 | } |
8852 | return true; |
8853 | } |
8854 | |
8855 | void Sema::CheckStrlcpycatArguments(const CallExpr *Call, |
8856 | IdentifierInfo *FnName) { |
8857 | |
8858 | // Don't crash if the user has the wrong number of arguments |
8859 | unsigned NumArgs = Call->getNumArgs(); |
8860 | if ((NumArgs != 3) && (NumArgs != 4)) |
8861 | return; |
8862 | |
8863 | const Expr *SrcArg = ignoreLiteralAdditions(Ex: Call->getArg(Arg: 1), Ctx&: Context); |
8864 | const Expr *SizeArg = ignoreLiteralAdditions(Ex: Call->getArg(Arg: 2), Ctx&: Context); |
8865 | const Expr *CompareWithSrc = nullptr; |
8866 | |
8867 | if (CheckMemorySizeofForComparison(S&: *this, E: SizeArg, FnName, |
8868 | FnLoc: Call->getBeginLoc(), RParenLoc: Call->getRParenLoc())) |
8869 | return; |
8870 | |
8871 | // Look for 'strlcpy(dst, x, sizeof(x))' |
8872 | if (const Expr *Ex = getSizeOfExprArg(E: SizeArg)) |
8873 | CompareWithSrc = Ex; |
8874 | else { |
8875 | // Look for 'strlcpy(dst, x, strlen(x))' |
8876 | if (const CallExpr *SizeCall = dyn_cast<CallExpr>(Val: SizeArg)) { |
8877 | if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen && |
8878 | SizeCall->getNumArgs() == 1) |
8879 | CompareWithSrc = ignoreLiteralAdditions(Ex: SizeCall->getArg(Arg: 0), Ctx&: Context); |
8880 | } |
8881 | } |
8882 | |
8883 | if (!CompareWithSrc) |
8884 | return; |
8885 | |
8886 | // Determine if the argument to sizeof/strlen is equal to the source |
8887 | // argument. In principle there's all kinds of things you could do |
8888 | // here, for instance creating an == expression and evaluating it with |
8889 | // EvaluateAsBooleanCondition, but this uses a more direct technique: |
8890 | const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(Val: SrcArg); |
8891 | if (!SrcArgDRE) |
8892 | return; |
8893 | |
8894 | const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(Val: CompareWithSrc); |
8895 | if (!CompareWithSrcDRE || |
8896 | SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl()) |
8897 | return; |
8898 | |
8899 | const Expr *OriginalSizeArg = Call->getArg(Arg: 2); |
8900 | Diag(Loc: CompareWithSrcDRE->getBeginLoc(), DiagID: diag::warn_strlcpycat_wrong_size) |
8901 | << OriginalSizeArg->getSourceRange() << FnName; |
8902 | |
8903 | // Output a FIXIT hint if the destination is an array (rather than a |
8904 | // pointer to an array). This could be enhanced to handle some |
8905 | // pointers if we know the actual size, like if DstArg is 'array+2' |
8906 | // we could say 'sizeof(array)-2'. |
8907 | const Expr *DstArg = Call->getArg(Arg: 0)->IgnoreParenImpCasts(); |
8908 | if (!isConstantSizeArrayWithMoreThanOneElement(Ty: DstArg->getType(), Context)) |
8909 | return; |
8910 | |
8911 | SmallString<128> sizeString; |
8912 | llvm::raw_svector_ostream OS(sizeString); |
8913 | OS << "sizeof(" ; |
8914 | DstArg->printPretty(OS, Helper: nullptr, Policy: getPrintingPolicy()); |
8915 | OS << ")" ; |
8916 | |
8917 | Diag(Loc: OriginalSizeArg->getBeginLoc(), DiagID: diag::note_strlcpycat_wrong_size) |
8918 | << FixItHint::CreateReplacement(RemoveRange: OriginalSizeArg->getSourceRange(), |
8919 | Code: OS.str()); |
8920 | } |
8921 | |
8922 | /// Check if two expressions refer to the same declaration. |
8923 | static bool referToTheSameDecl(const Expr *E1, const Expr *E2) { |
8924 | if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(Val: E1)) |
8925 | if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(Val: E2)) |
8926 | return D1->getDecl() == D2->getDecl(); |
8927 | return false; |
8928 | } |
8929 | |
8930 | static const Expr *getStrlenExprArg(const Expr *E) { |
8931 | if (const CallExpr *CE = dyn_cast<CallExpr>(Val: E)) { |
8932 | const FunctionDecl *FD = CE->getDirectCallee(); |
8933 | if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen) |
8934 | return nullptr; |
8935 | return CE->getArg(Arg: 0)->IgnoreParenCasts(); |
8936 | } |
8937 | return nullptr; |
8938 | } |
8939 | |
8940 | void Sema::CheckStrncatArguments(const CallExpr *CE, |
8941 | IdentifierInfo *FnName) { |
8942 | // Don't crash if the user has the wrong number of arguments. |
8943 | if (CE->getNumArgs() < 3) |
8944 | return; |
8945 | const Expr *DstArg = CE->getArg(Arg: 0)->IgnoreParenCasts(); |
8946 | const Expr *SrcArg = CE->getArg(Arg: 1)->IgnoreParenCasts(); |
8947 | const Expr *LenArg = CE->getArg(Arg: 2)->IgnoreParenCasts(); |
8948 | |
8949 | if (CheckMemorySizeofForComparison(S&: *this, E: LenArg, FnName, FnLoc: CE->getBeginLoc(), |
8950 | RParenLoc: CE->getRParenLoc())) |
8951 | return; |
8952 | |
8953 | // Identify common expressions, which are wrongly used as the size argument |
8954 | // to strncat and may lead to buffer overflows. |
8955 | unsigned PatternType = 0; |
8956 | if (const Expr *SizeOfArg = getSizeOfExprArg(E: LenArg)) { |
8957 | // - sizeof(dst) |
8958 | if (referToTheSameDecl(E1: SizeOfArg, E2: DstArg)) |
8959 | PatternType = 1; |
8960 | // - sizeof(src) |
8961 | else if (referToTheSameDecl(E1: SizeOfArg, E2: SrcArg)) |
8962 | PatternType = 2; |
8963 | } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Val: LenArg)) { |
8964 | if (BE->getOpcode() == BO_Sub) { |
8965 | const Expr *L = BE->getLHS()->IgnoreParenCasts(); |
8966 | const Expr *R = BE->getRHS()->IgnoreParenCasts(); |
8967 | // - sizeof(dst) - strlen(dst) |
8968 | if (referToTheSameDecl(E1: DstArg, E2: getSizeOfExprArg(E: L)) && |
8969 | referToTheSameDecl(E1: DstArg, E2: getStrlenExprArg(E: R))) |
8970 | PatternType = 1; |
8971 | // - sizeof(src) - (anything) |
8972 | else if (referToTheSameDecl(E1: SrcArg, E2: getSizeOfExprArg(E: L))) |
8973 | PatternType = 2; |
8974 | } |
8975 | } |
8976 | |
8977 | if (PatternType == 0) |
8978 | return; |
8979 | |
8980 | // Generate the diagnostic. |
8981 | SourceLocation SL = LenArg->getBeginLoc(); |
8982 | SourceRange SR = LenArg->getSourceRange(); |
8983 | SourceManager &SM = getSourceManager(); |
8984 | |
8985 | // If the function is defined as a builtin macro, do not show macro expansion. |
8986 | if (SM.isMacroArgExpansion(Loc: SL)) { |
8987 | SL = SM.getSpellingLoc(Loc: SL); |
8988 | SR = SourceRange(SM.getSpellingLoc(Loc: SR.getBegin()), |
8989 | SM.getSpellingLoc(Loc: SR.getEnd())); |
8990 | } |
8991 | |
8992 | // Check if the destination is an array (rather than a pointer to an array). |
8993 | QualType DstTy = DstArg->getType(); |
8994 | bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(Ty: DstTy, |
8995 | Context); |
8996 | if (!isKnownSizeArray) { |
8997 | if (PatternType == 1) |
8998 | Diag(Loc: SL, DiagID: diag::warn_strncat_wrong_size) << SR; |
8999 | else |
9000 | Diag(Loc: SL, DiagID: diag::warn_strncat_src_size) << SR; |
9001 | return; |
9002 | } |
9003 | |
9004 | if (PatternType == 1) |
9005 | Diag(Loc: SL, DiagID: diag::warn_strncat_large_size) << SR; |
9006 | else |
9007 | Diag(Loc: SL, DiagID: diag::warn_strncat_src_size) << SR; |
9008 | |
9009 | SmallString<128> sizeString; |
9010 | llvm::raw_svector_ostream OS(sizeString); |
9011 | OS << "sizeof(" ; |
9012 | DstArg->printPretty(OS, Helper: nullptr, Policy: getPrintingPolicy()); |
9013 | OS << ") - " ; |
9014 | OS << "strlen(" ; |
9015 | DstArg->printPretty(OS, Helper: nullptr, Policy: getPrintingPolicy()); |
9016 | OS << ") - 1" ; |
9017 | |
9018 | Diag(Loc: SL, DiagID: diag::note_strncat_wrong_size) |
9019 | << FixItHint::CreateReplacement(RemoveRange: SR, Code: OS.str()); |
9020 | } |
9021 | |
9022 | namespace { |
9023 | void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName, |
9024 | const UnaryOperator *UnaryExpr, const Decl *D) { |
9025 | if (isa<FieldDecl, FunctionDecl, VarDecl>(Val: D)) { |
9026 | S.Diag(Loc: UnaryExpr->getBeginLoc(), DiagID: diag::warn_free_nonheap_object) |
9027 | << CalleeName << 0 /*object: */ << cast<NamedDecl>(Val: D); |
9028 | return; |
9029 | } |
9030 | } |
9031 | |
9032 | void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName, |
9033 | const UnaryOperator *UnaryExpr) { |
9034 | if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Val: UnaryExpr->getSubExpr())) { |
9035 | const Decl *D = Lvalue->getDecl(); |
9036 | if (isa<DeclaratorDecl>(Val: D)) |
9037 | if (!dyn_cast<DeclaratorDecl>(Val: D)->getType()->isReferenceType()) |
9038 | return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D); |
9039 | } |
9040 | |
9041 | if (const auto *Lvalue = dyn_cast<MemberExpr>(Val: UnaryExpr->getSubExpr())) |
9042 | return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, |
9043 | D: Lvalue->getMemberDecl()); |
9044 | } |
9045 | |
9046 | void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName, |
9047 | const UnaryOperator *UnaryExpr) { |
9048 | const auto *Lambda = dyn_cast<LambdaExpr>( |
9049 | Val: UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens()); |
9050 | if (!Lambda) |
9051 | return; |
9052 | |
9053 | S.Diag(Loc: Lambda->getBeginLoc(), DiagID: diag::warn_free_nonheap_object) |
9054 | << CalleeName << 2 /*object: lambda expression*/; |
9055 | } |
9056 | |
9057 | void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName, |
9058 | const DeclRefExpr *Lvalue) { |
9059 | const auto *Var = dyn_cast<VarDecl>(Val: Lvalue->getDecl()); |
9060 | if (Var == nullptr) |
9061 | return; |
9062 | |
9063 | S.Diag(Loc: Lvalue->getBeginLoc(), DiagID: diag::warn_free_nonheap_object) |
9064 | << CalleeName << 0 /*object: */ << Var; |
9065 | } |
9066 | |
9067 | void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName, |
9068 | const CastExpr *Cast) { |
9069 | SmallString<128> SizeString; |
9070 | llvm::raw_svector_ostream OS(SizeString); |
9071 | |
9072 | clang::CastKind Kind = Cast->getCastKind(); |
9073 | if (Kind == clang::CK_BitCast && |
9074 | !Cast->getSubExpr()->getType()->isFunctionPointerType()) |
9075 | return; |
9076 | if (Kind == clang::CK_IntegralToPointer && |
9077 | !isa<IntegerLiteral>( |
9078 | Val: Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens())) |
9079 | return; |
9080 | |
9081 | switch (Cast->getCastKind()) { |
9082 | case clang::CK_BitCast: |
9083 | case clang::CK_IntegralToPointer: |
9084 | case clang::CK_FunctionToPointerDecay: |
9085 | OS << '\''; |
9086 | Cast->printPretty(OS, Helper: nullptr, Policy: S.getPrintingPolicy()); |
9087 | OS << '\''; |
9088 | break; |
9089 | default: |
9090 | return; |
9091 | } |
9092 | |
9093 | S.Diag(Loc: Cast->getBeginLoc(), DiagID: diag::warn_free_nonheap_object) |
9094 | << CalleeName << 0 /*object: */ << OS.str(); |
9095 | } |
9096 | } // namespace |
9097 | |
9098 | void Sema::CheckFreeArguments(const CallExpr *E) { |
9099 | const std::string CalleeName = |
9100 | cast<FunctionDecl>(Val: E->getCalleeDecl())->getQualifiedNameAsString(); |
9101 | |
9102 | { // Prefer something that doesn't involve a cast to make things simpler. |
9103 | const Expr *Arg = E->getArg(Arg: 0)->IgnoreParenCasts(); |
9104 | if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Val: Arg)) |
9105 | switch (UnaryExpr->getOpcode()) { |
9106 | case UnaryOperator::Opcode::UO_AddrOf: |
9107 | return CheckFreeArgumentsAddressof(S&: *this, CalleeName, UnaryExpr); |
9108 | case UnaryOperator::Opcode::UO_Plus: |
9109 | return CheckFreeArgumentsPlus(S&: *this, CalleeName, UnaryExpr); |
9110 | default: |
9111 | break; |
9112 | } |
9113 | |
9114 | if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Val: Arg)) |
9115 | if (Lvalue->getType()->isArrayType()) |
9116 | return CheckFreeArgumentsStackArray(S&: *this, CalleeName, Lvalue); |
9117 | |
9118 | if (const auto *Label = dyn_cast<AddrLabelExpr>(Val: Arg)) { |
9119 | Diag(Loc: Label->getBeginLoc(), DiagID: diag::warn_free_nonheap_object) |
9120 | << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier(); |
9121 | return; |
9122 | } |
9123 | |
9124 | if (isa<BlockExpr>(Val: Arg)) { |
9125 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::warn_free_nonheap_object) |
9126 | << CalleeName << 1 /*object: block*/; |
9127 | return; |
9128 | } |
9129 | } |
9130 | // Maybe the cast was important, check after the other cases. |
9131 | if (const auto *Cast = dyn_cast<CastExpr>(Val: E->getArg(Arg: 0))) |
9132 | return CheckFreeArgumentsCast(S&: *this, CalleeName, Cast); |
9133 | } |
9134 | |
9135 | void |
9136 | Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType, |
9137 | SourceLocation ReturnLoc, |
9138 | bool isObjCMethod, |
9139 | const AttrVec *Attrs, |
9140 | const FunctionDecl *FD) { |
9141 | // Check if the return value is null but should not be. |
9142 | if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(container: *Attrs)) || |
9143 | (!isObjCMethod && isNonNullType(type: lhsType))) && |
9144 | CheckNonNullExpr(S&: *this, Expr: RetValExp)) |
9145 | Diag(Loc: ReturnLoc, DiagID: diag::warn_null_ret) |
9146 | << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange(); |
9147 | |
9148 | // C++11 [basic.stc.dynamic.allocation]p4: |
9149 | // If an allocation function declared with a non-throwing |
9150 | // exception-specification fails to allocate storage, it shall return |
9151 | // a null pointer. Any other allocation function that fails to allocate |
9152 | // storage shall indicate failure only by throwing an exception [...] |
9153 | if (FD) { |
9154 | OverloadedOperatorKind Op = FD->getOverloadedOperator(); |
9155 | if (Op == OO_New || Op == OO_Array_New) { |
9156 | const FunctionProtoType *Proto |
9157 | = FD->getType()->castAs<FunctionProtoType>(); |
9158 | if (!Proto->isNothrow(/*ResultIfDependent*/true) && |
9159 | CheckNonNullExpr(S&: *this, Expr: RetValExp)) |
9160 | Diag(Loc: ReturnLoc, DiagID: diag::warn_operator_new_returns_null) |
9161 | << FD << getLangOpts().CPlusPlus11; |
9162 | } |
9163 | } |
9164 | |
9165 | if (RetValExp && RetValExp->getType()->isWebAssemblyTableType()) { |
9166 | Diag(Loc: ReturnLoc, DiagID: diag::err_wasm_table_art) << 1; |
9167 | } |
9168 | |
9169 | // PPC MMA non-pointer types are not allowed as return type. Checking the type |
9170 | // here prevent the user from using a PPC MMA type as trailing return type. |
9171 | if (Context.getTargetInfo().getTriple().isPPC64()) |
9172 | PPC().CheckPPCMMAType(Type: RetValExp->getType(), TypeLoc: ReturnLoc); |
9173 | } |
9174 | |
9175 | void Sema::CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS, |
9176 | BinaryOperatorKind Opcode) { |
9177 | if (!BinaryOperator::isEqualityOp(Opc: Opcode)) |
9178 | return; |
9179 | |
9180 | // Match and capture subexpressions such as "(float) X == 0.1". |
9181 | FloatingLiteral *FPLiteral; |
9182 | CastExpr *FPCast; |
9183 | auto getCastAndLiteral = [&FPLiteral, &FPCast](Expr *L, Expr *R) { |
9184 | FPLiteral = dyn_cast<FloatingLiteral>(Val: L->IgnoreParens()); |
9185 | FPCast = dyn_cast<CastExpr>(Val: R->IgnoreParens()); |
9186 | return FPLiteral && FPCast; |
9187 | }; |
9188 | |
9189 | if (getCastAndLiteral(LHS, RHS) || getCastAndLiteral(RHS, LHS)) { |
9190 | auto *SourceTy = FPCast->getSubExpr()->getType()->getAs<BuiltinType>(); |
9191 | auto *TargetTy = FPLiteral->getType()->getAs<BuiltinType>(); |
9192 | if (SourceTy && TargetTy && SourceTy->isFloatingPoint() && |
9193 | TargetTy->isFloatingPoint()) { |
9194 | bool Lossy; |
9195 | llvm::APFloat TargetC = FPLiteral->getValue(); |
9196 | TargetC.convert(ToSemantics: Context.getFloatTypeSemantics(T: QualType(SourceTy, 0)), |
9197 | RM: llvm::APFloat::rmNearestTiesToEven, losesInfo: &Lossy); |
9198 | if (Lossy) { |
9199 | // If the literal cannot be represented in the source type, then a |
9200 | // check for == is always false and check for != is always true. |
9201 | Diag(Loc, DiagID: diag::warn_float_compare_literal) |
9202 | << (Opcode == BO_EQ) << QualType(SourceTy, 0) |
9203 | << LHS->getSourceRange() << RHS->getSourceRange(); |
9204 | return; |
9205 | } |
9206 | } |
9207 | } |
9208 | |
9209 | // Match a more general floating-point equality comparison (-Wfloat-equal). |
9210 | Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts(); |
9211 | Expr* RightExprSansParen = RHS->IgnoreParenImpCasts(); |
9212 | |
9213 | // Special case: check for x == x (which is OK). |
9214 | // Do not emit warnings for such cases. |
9215 | if (auto *DRL = dyn_cast<DeclRefExpr>(Val: LeftExprSansParen)) |
9216 | if (auto *DRR = dyn_cast<DeclRefExpr>(Val: RightExprSansParen)) |
9217 | if (DRL->getDecl() == DRR->getDecl()) |
9218 | return; |
9219 | |
9220 | // Special case: check for comparisons against literals that can be exactly |
9221 | // represented by APFloat. In such cases, do not emit a warning. This |
9222 | // is a heuristic: often comparison against such literals are used to |
9223 | // detect if a value in a variable has not changed. This clearly can |
9224 | // lead to false negatives. |
9225 | if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(Val: LeftExprSansParen)) { |
9226 | if (FLL->isExact()) |
9227 | return; |
9228 | } else |
9229 | if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(Val: RightExprSansParen)) |
9230 | if (FLR->isExact()) |
9231 | return; |
9232 | |
9233 | // Check for comparisons with builtin types. |
9234 | if (CallExpr* CL = dyn_cast<CallExpr>(Val: LeftExprSansParen)) |
9235 | if (CL->getBuiltinCallee()) |
9236 | return; |
9237 | |
9238 | if (CallExpr* CR = dyn_cast<CallExpr>(Val: RightExprSansParen)) |
9239 | if (CR->getBuiltinCallee()) |
9240 | return; |
9241 | |
9242 | // Emit the diagnostic. |
9243 | Diag(Loc, DiagID: diag::warn_floatingpoint_eq) |
9244 | << LHS->getSourceRange() << RHS->getSourceRange(); |
9245 | } |
9246 | |
9247 | //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// |
9248 | //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// |
9249 | |
9250 | namespace { |
9251 | |
9252 | /// Structure recording the 'active' range of an integer-valued |
9253 | /// expression. |
9254 | struct IntRange { |
9255 | /// The number of bits active in the int. Note that this includes exactly one |
9256 | /// sign bit if !NonNegative. |
9257 | unsigned Width; |
9258 | |
9259 | /// True if the int is known not to have negative values. If so, all leading |
9260 | /// bits before Width are known zero, otherwise they are known to be the |
9261 | /// same as the MSB within Width. |
9262 | bool NonNegative; |
9263 | |
9264 | IntRange(unsigned Width, bool NonNegative) |
9265 | : Width(Width), NonNegative(NonNegative) {} |
9266 | |
9267 | /// Number of bits excluding the sign bit. |
9268 | unsigned valueBits() const { |
9269 | return NonNegative ? Width : Width - 1; |
9270 | } |
9271 | |
9272 | /// Returns the range of the bool type. |
9273 | static IntRange forBoolType() { |
9274 | return IntRange(1, true); |
9275 | } |
9276 | |
9277 | /// Returns the range of an opaque value of the given integral type. |
9278 | static IntRange forValueOfType(ASTContext &C, QualType T) { |
9279 | return forValueOfCanonicalType(C, |
9280 | T: T->getCanonicalTypeInternal().getTypePtr()); |
9281 | } |
9282 | |
9283 | /// Returns the range of an opaque value of a canonical integral type. |
9284 | static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) { |
9285 | assert(T->isCanonicalUnqualified()); |
9286 | |
9287 | if (const VectorType *VT = dyn_cast<VectorType>(Val: T)) |
9288 | T = VT->getElementType().getTypePtr(); |
9289 | if (const ComplexType *CT = dyn_cast<ComplexType>(Val: T)) |
9290 | T = CT->getElementType().getTypePtr(); |
9291 | if (const AtomicType *AT = dyn_cast<AtomicType>(Val: T)) |
9292 | T = AT->getValueType().getTypePtr(); |
9293 | |
9294 | if (!C.getLangOpts().CPlusPlus) { |
9295 | // For enum types in C code, use the underlying datatype. |
9296 | if (const EnumType *ET = dyn_cast<EnumType>(Val: T)) |
9297 | T = ET->getDecl()->getIntegerType().getDesugaredType(Context: C).getTypePtr(); |
9298 | } else if (const EnumType *ET = dyn_cast<EnumType>(Val: T)) { |
9299 | // For enum types in C++, use the known bit width of the enumerators. |
9300 | EnumDecl *Enum = ET->getDecl(); |
9301 | // In C++11, enums can have a fixed underlying type. Use this type to |
9302 | // compute the range. |
9303 | if (Enum->isFixed()) { |
9304 | return IntRange(C.getIntWidth(T: QualType(T, 0)), |
9305 | !ET->isSignedIntegerOrEnumerationType()); |
9306 | } |
9307 | |
9308 | unsigned NumPositive = Enum->getNumPositiveBits(); |
9309 | unsigned NumNegative = Enum->getNumNegativeBits(); |
9310 | |
9311 | if (NumNegative == 0) |
9312 | return IntRange(NumPositive, true/*NonNegative*/); |
9313 | else |
9314 | return IntRange(std::max(a: NumPositive + 1, b: NumNegative), |
9315 | false/*NonNegative*/); |
9316 | } |
9317 | |
9318 | if (const auto *EIT = dyn_cast<BitIntType>(Val: T)) |
9319 | return IntRange(EIT->getNumBits(), EIT->isUnsigned()); |
9320 | |
9321 | const BuiltinType *BT = cast<BuiltinType>(Val: T); |
9322 | assert(BT->isInteger()); |
9323 | |
9324 | return IntRange(C.getIntWidth(T: QualType(T, 0)), BT->isUnsignedInteger()); |
9325 | } |
9326 | |
9327 | /// Returns the "target" range of a canonical integral type, i.e. |
9328 | /// the range of values expressible in the type. |
9329 | /// |
9330 | /// This matches forValueOfCanonicalType except that enums have the |
9331 | /// full range of their type, not the range of their enumerators. |
9332 | static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) { |
9333 | assert(T->isCanonicalUnqualified()); |
9334 | |
9335 | if (const VectorType *VT = dyn_cast<VectorType>(Val: T)) |
9336 | T = VT->getElementType().getTypePtr(); |
9337 | if (const ComplexType *CT = dyn_cast<ComplexType>(Val: T)) |
9338 | T = CT->getElementType().getTypePtr(); |
9339 | if (const AtomicType *AT = dyn_cast<AtomicType>(Val: T)) |
9340 | T = AT->getValueType().getTypePtr(); |
9341 | if (const EnumType *ET = dyn_cast<EnumType>(Val: T)) |
9342 | T = C.getCanonicalType(T: ET->getDecl()->getIntegerType()).getTypePtr(); |
9343 | |
9344 | if (const auto *EIT = dyn_cast<BitIntType>(Val: T)) |
9345 | return IntRange(EIT->getNumBits(), EIT->isUnsigned()); |
9346 | |
9347 | const BuiltinType *BT = cast<BuiltinType>(Val: T); |
9348 | assert(BT->isInteger()); |
9349 | |
9350 | return IntRange(C.getIntWidth(T: QualType(T, 0)), BT->isUnsignedInteger()); |
9351 | } |
9352 | |
9353 | /// Returns the supremum of two ranges: i.e. their conservative merge. |
9354 | static IntRange join(IntRange L, IntRange R) { |
9355 | bool Unsigned = L.NonNegative && R.NonNegative; |
9356 | return IntRange(std::max(a: L.valueBits(), b: R.valueBits()) + !Unsigned, |
9357 | L.NonNegative && R.NonNegative); |
9358 | } |
9359 | |
9360 | /// Return the range of a bitwise-AND of the two ranges. |
9361 | static IntRange bit_and(IntRange L, IntRange R) { |
9362 | unsigned Bits = std::max(a: L.Width, b: R.Width); |
9363 | bool NonNegative = false; |
9364 | if (L.NonNegative) { |
9365 | Bits = std::min(a: Bits, b: L.Width); |
9366 | NonNegative = true; |
9367 | } |
9368 | if (R.NonNegative) { |
9369 | Bits = std::min(a: Bits, b: R.Width); |
9370 | NonNegative = true; |
9371 | } |
9372 | return IntRange(Bits, NonNegative); |
9373 | } |
9374 | |
9375 | /// Return the range of a sum of the two ranges. |
9376 | static IntRange sum(IntRange L, IntRange R) { |
9377 | bool Unsigned = L.NonNegative && R.NonNegative; |
9378 | return IntRange(std::max(a: L.valueBits(), b: R.valueBits()) + 1 + !Unsigned, |
9379 | Unsigned); |
9380 | } |
9381 | |
9382 | /// Return the range of a difference of the two ranges. |
9383 | static IntRange difference(IntRange L, IntRange R) { |
9384 | // We need a 1-bit-wider range if: |
9385 | // 1) LHS can be negative: least value can be reduced. |
9386 | // 2) RHS can be negative: greatest value can be increased. |
9387 | bool CanWiden = !L.NonNegative || !R.NonNegative; |
9388 | bool Unsigned = L.NonNegative && R.Width == 0; |
9389 | return IntRange(std::max(a: L.valueBits(), b: R.valueBits()) + CanWiden + |
9390 | !Unsigned, |
9391 | Unsigned); |
9392 | } |
9393 | |
9394 | /// Return the range of a product of the two ranges. |
9395 | static IntRange product(IntRange L, IntRange R) { |
9396 | // If both LHS and RHS can be negative, we can form |
9397 | // -2^L * -2^R = 2^(L + R) |
9398 | // which requires L + R + 1 value bits to represent. |
9399 | bool CanWiden = !L.NonNegative && !R.NonNegative; |
9400 | bool Unsigned = L.NonNegative && R.NonNegative; |
9401 | return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned, |
9402 | Unsigned); |
9403 | } |
9404 | |
9405 | /// Return the range of a remainder operation between the two ranges. |
9406 | static IntRange rem(IntRange L, IntRange R) { |
9407 | // The result of a remainder can't be larger than the result of |
9408 | // either side. The sign of the result is the sign of the LHS. |
9409 | bool Unsigned = L.NonNegative; |
9410 | return IntRange(std::min(a: L.valueBits(), b: R.valueBits()) + !Unsigned, |
9411 | Unsigned); |
9412 | } |
9413 | }; |
9414 | |
9415 | } // namespace |
9416 | |
9417 | static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, |
9418 | unsigned MaxWidth) { |
9419 | if (value.isSigned() && value.isNegative()) |
9420 | return IntRange(value.getSignificantBits(), false); |
9421 | |
9422 | if (value.getBitWidth() > MaxWidth) |
9423 | value = value.trunc(width: MaxWidth); |
9424 | |
9425 | // isNonNegative() just checks the sign bit without considering |
9426 | // signedness. |
9427 | return IntRange(value.getActiveBits(), true); |
9428 | } |
9429 | |
9430 | static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty, |
9431 | unsigned MaxWidth) { |
9432 | if (result.isInt()) |
9433 | return GetValueRange(C, value&: result.getInt(), MaxWidth); |
9434 | |
9435 | if (result.isVector()) { |
9436 | IntRange R = GetValueRange(C, result&: result.getVectorElt(I: 0), Ty, MaxWidth); |
9437 | for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { |
9438 | IntRange El = GetValueRange(C, result&: result.getVectorElt(I: i), Ty, MaxWidth); |
9439 | R = IntRange::join(L: R, R: El); |
9440 | } |
9441 | return R; |
9442 | } |
9443 | |
9444 | if (result.isComplexInt()) { |
9445 | IntRange R = GetValueRange(C, value&: result.getComplexIntReal(), MaxWidth); |
9446 | IntRange I = GetValueRange(C, value&: result.getComplexIntImag(), MaxWidth); |
9447 | return IntRange::join(L: R, R: I); |
9448 | } |
9449 | |
9450 | // This can happen with lossless casts to intptr_t of "based" lvalues. |
9451 | // Assume it might use arbitrary bits. |
9452 | // FIXME: The only reason we need to pass the type in here is to get |
9453 | // the sign right on this one case. It would be nice if APValue |
9454 | // preserved this. |
9455 | assert(result.isLValue() || result.isAddrLabelDiff()); |
9456 | return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType()); |
9457 | } |
9458 | |
9459 | static QualType GetExprType(const Expr *E) { |
9460 | QualType Ty = E->getType(); |
9461 | if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>()) |
9462 | Ty = AtomicRHS->getValueType(); |
9463 | return Ty; |
9464 | } |
9465 | |
9466 | /// Pseudo-evaluate the given integer expression, estimating the |
9467 | /// range of values it might take. |
9468 | /// |
9469 | /// \param MaxWidth The width to which the value will be truncated. |
9470 | /// \param Approximate If \c true, return a likely range for the result: in |
9471 | /// particular, assume that arithmetic on narrower types doesn't leave |
9472 | /// those types. If \c false, return a range including all possible |
9473 | /// result values. |
9474 | static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth, |
9475 | bool InConstantContext, bool Approximate) { |
9476 | E = E->IgnoreParens(); |
9477 | |
9478 | // Try a full evaluation first. |
9479 | Expr::EvalResult result; |
9480 | if (E->EvaluateAsRValue(Result&: result, Ctx: C, InConstantContext)) |
9481 | return GetValueRange(C, result&: result.Val, Ty: GetExprType(E), MaxWidth); |
9482 | |
9483 | // I think we only want to look through implicit casts here; if the |
9484 | // user has an explicit widening cast, we should treat the value as |
9485 | // being of the new, wider type. |
9486 | if (const auto *CE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
9487 | if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue) |
9488 | return GetExprRange(C, E: CE->getSubExpr(), MaxWidth, InConstantContext, |
9489 | Approximate); |
9490 | |
9491 | IntRange OutputTypeRange = IntRange::forValueOfType(C, T: GetExprType(E: CE)); |
9492 | |
9493 | bool isIntegerCast = CE->getCastKind() == CK_IntegralCast || |
9494 | CE->getCastKind() == CK_BooleanToSignedIntegral; |
9495 | |
9496 | // Assume that non-integer casts can span the full range of the type. |
9497 | if (!isIntegerCast) |
9498 | return OutputTypeRange; |
9499 | |
9500 | IntRange SubRange = GetExprRange(C, E: CE->getSubExpr(), |
9501 | MaxWidth: std::min(a: MaxWidth, b: OutputTypeRange.Width), |
9502 | InConstantContext, Approximate); |
9503 | |
9504 | // Bail out if the subexpr's range is as wide as the cast type. |
9505 | if (SubRange.Width >= OutputTypeRange.Width) |
9506 | return OutputTypeRange; |
9507 | |
9508 | // Otherwise, we take the smaller width, and we're non-negative if |
9509 | // either the output type or the subexpr is. |
9510 | return IntRange(SubRange.Width, |
9511 | SubRange.NonNegative || OutputTypeRange.NonNegative); |
9512 | } |
9513 | |
9514 | if (const auto *CO = dyn_cast<ConditionalOperator>(Val: E)) { |
9515 | // If we can fold the condition, just take that operand. |
9516 | bool CondResult; |
9517 | if (CO->getCond()->EvaluateAsBooleanCondition(Result&: CondResult, Ctx: C)) |
9518 | return GetExprRange(C, |
9519 | E: CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), |
9520 | MaxWidth, InConstantContext, Approximate); |
9521 | |
9522 | // Otherwise, conservatively merge. |
9523 | // GetExprRange requires an integer expression, but a throw expression |
9524 | // results in a void type. |
9525 | Expr *E = CO->getTrueExpr(); |
9526 | IntRange L = E->getType()->isVoidType() |
9527 | ? IntRange{0, true} |
9528 | : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate); |
9529 | E = CO->getFalseExpr(); |
9530 | IntRange R = E->getType()->isVoidType() |
9531 | ? IntRange{0, true} |
9532 | : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate); |
9533 | return IntRange::join(L, R); |
9534 | } |
9535 | |
9536 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: E)) { |
9537 | IntRange (*Combine)(IntRange, IntRange) = IntRange::join; |
9538 | |
9539 | switch (BO->getOpcode()) { |
9540 | case BO_Cmp: |
9541 | llvm_unreachable("builtin <=> should have class type" ); |
9542 | |
9543 | // Boolean-valued operations are single-bit and positive. |
9544 | case BO_LAnd: |
9545 | case BO_LOr: |
9546 | case BO_LT: |
9547 | case BO_GT: |
9548 | case BO_LE: |
9549 | case BO_GE: |
9550 | case BO_EQ: |
9551 | case BO_NE: |
9552 | return IntRange::forBoolType(); |
9553 | |
9554 | // The type of the assignments is the type of the LHS, so the RHS |
9555 | // is not necessarily the same type. |
9556 | case BO_MulAssign: |
9557 | case BO_DivAssign: |
9558 | case BO_RemAssign: |
9559 | case BO_AddAssign: |
9560 | case BO_SubAssign: |
9561 | case BO_XorAssign: |
9562 | case BO_OrAssign: |
9563 | // TODO: bitfields? |
9564 | return IntRange::forValueOfType(C, T: GetExprType(E)); |
9565 | |
9566 | // Simple assignments just pass through the RHS, which will have |
9567 | // been coerced to the LHS type. |
9568 | case BO_Assign: |
9569 | // TODO: bitfields? |
9570 | return GetExprRange(C, E: BO->getRHS(), MaxWidth, InConstantContext, |
9571 | Approximate); |
9572 | |
9573 | // Operations with opaque sources are black-listed. |
9574 | case BO_PtrMemD: |
9575 | case BO_PtrMemI: |
9576 | return IntRange::forValueOfType(C, T: GetExprType(E)); |
9577 | |
9578 | // Bitwise-and uses the *infinum* of the two source ranges. |
9579 | case BO_And: |
9580 | case BO_AndAssign: |
9581 | Combine = IntRange::bit_and; |
9582 | break; |
9583 | |
9584 | // Left shift gets black-listed based on a judgement call. |
9585 | case BO_Shl: |
9586 | // ...except that we want to treat '1 << (blah)' as logically |
9587 | // positive. It's an important idiom. |
9588 | if (IntegerLiteral *I |
9589 | = dyn_cast<IntegerLiteral>(Val: BO->getLHS()->IgnoreParenCasts())) { |
9590 | if (I->getValue() == 1) { |
9591 | IntRange R = IntRange::forValueOfType(C, T: GetExprType(E)); |
9592 | return IntRange(R.Width, /*NonNegative*/ true); |
9593 | } |
9594 | } |
9595 | [[fallthrough]]; |
9596 | |
9597 | case BO_ShlAssign: |
9598 | return IntRange::forValueOfType(C, T: GetExprType(E)); |
9599 | |
9600 | // Right shift by a constant can narrow its left argument. |
9601 | case BO_Shr: |
9602 | case BO_ShrAssign: { |
9603 | IntRange L = GetExprRange(C, E: BO->getLHS(), MaxWidth, InConstantContext, |
9604 | Approximate); |
9605 | |
9606 | // If the shift amount is a positive constant, drop the width by |
9607 | // that much. |
9608 | if (std::optional<llvm::APSInt> shift = |
9609 | BO->getRHS()->getIntegerConstantExpr(Ctx: C)) { |
9610 | if (shift->isNonNegative()) { |
9611 | if (shift->uge(RHS: L.Width)) |
9612 | L.Width = (L.NonNegative ? 0 : 1); |
9613 | else |
9614 | L.Width -= shift->getZExtValue(); |
9615 | } |
9616 | } |
9617 | |
9618 | return L; |
9619 | } |
9620 | |
9621 | // Comma acts as its right operand. |
9622 | case BO_Comma: |
9623 | return GetExprRange(C, E: BO->getRHS(), MaxWidth, InConstantContext, |
9624 | Approximate); |
9625 | |
9626 | case BO_Add: |
9627 | if (!Approximate) |
9628 | Combine = IntRange::sum; |
9629 | break; |
9630 | |
9631 | case BO_Sub: |
9632 | if (BO->getLHS()->getType()->isPointerType()) |
9633 | return IntRange::forValueOfType(C, T: GetExprType(E)); |
9634 | if (!Approximate) |
9635 | Combine = IntRange::difference; |
9636 | break; |
9637 | |
9638 | case BO_Mul: |
9639 | if (!Approximate) |
9640 | Combine = IntRange::product; |
9641 | break; |
9642 | |
9643 | // The width of a division result is mostly determined by the size |
9644 | // of the LHS. |
9645 | case BO_Div: { |
9646 | // Don't 'pre-truncate' the operands. |
9647 | unsigned opWidth = C.getIntWidth(T: GetExprType(E)); |
9648 | IntRange L = GetExprRange(C, E: BO->getLHS(), MaxWidth: opWidth, InConstantContext, |
9649 | Approximate); |
9650 | |
9651 | // If the divisor is constant, use that. |
9652 | if (std::optional<llvm::APSInt> divisor = |
9653 | BO->getRHS()->getIntegerConstantExpr(Ctx: C)) { |
9654 | unsigned log2 = divisor->logBase2(); // floor(log_2(divisor)) |
9655 | if (log2 >= L.Width) |
9656 | L.Width = (L.NonNegative ? 0 : 1); |
9657 | else |
9658 | L.Width = std::min(a: L.Width - log2, b: MaxWidth); |
9659 | return L; |
9660 | } |
9661 | |
9662 | // Otherwise, just use the LHS's width. |
9663 | // FIXME: This is wrong if the LHS could be its minimal value and the RHS |
9664 | // could be -1. |
9665 | IntRange R = GetExprRange(C, E: BO->getRHS(), MaxWidth: opWidth, InConstantContext, |
9666 | Approximate); |
9667 | return IntRange(L.Width, L.NonNegative && R.NonNegative); |
9668 | } |
9669 | |
9670 | case BO_Rem: |
9671 | Combine = IntRange::rem; |
9672 | break; |
9673 | |
9674 | // The default behavior is okay for these. |
9675 | case BO_Xor: |
9676 | case BO_Or: |
9677 | break; |
9678 | } |
9679 | |
9680 | // Combine the two ranges, but limit the result to the type in which we |
9681 | // performed the computation. |
9682 | QualType T = GetExprType(E); |
9683 | unsigned opWidth = C.getIntWidth(T); |
9684 | IntRange L = |
9685 | GetExprRange(C, E: BO->getLHS(), MaxWidth: opWidth, InConstantContext, Approximate); |
9686 | IntRange R = |
9687 | GetExprRange(C, E: BO->getRHS(), MaxWidth: opWidth, InConstantContext, Approximate); |
9688 | IntRange C = Combine(L, R); |
9689 | C.NonNegative |= T->isUnsignedIntegerOrEnumerationType(); |
9690 | C.Width = std::min(a: C.Width, b: MaxWidth); |
9691 | return C; |
9692 | } |
9693 | |
9694 | if (const auto *UO = dyn_cast<UnaryOperator>(Val: E)) { |
9695 | switch (UO->getOpcode()) { |
9696 | // Boolean-valued operations are white-listed. |
9697 | case UO_LNot: |
9698 | return IntRange::forBoolType(); |
9699 | |
9700 | // Operations with opaque sources are black-listed. |
9701 | case UO_Deref: |
9702 | case UO_AddrOf: // should be impossible |
9703 | return IntRange::forValueOfType(C, T: GetExprType(E)); |
9704 | |
9705 | default: |
9706 | return GetExprRange(C, E: UO->getSubExpr(), MaxWidth, InConstantContext, |
9707 | Approximate); |
9708 | } |
9709 | } |
9710 | |
9711 | if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Val: E)) |
9712 | return GetExprRange(C, E: OVE->getSourceExpr(), MaxWidth, InConstantContext, |
9713 | Approximate); |
9714 | |
9715 | if (const auto *BitField = E->getSourceBitField()) |
9716 | return IntRange(BitField->getBitWidthValue(Ctx: C), |
9717 | BitField->getType()->isUnsignedIntegerOrEnumerationType()); |
9718 | |
9719 | return IntRange::forValueOfType(C, T: GetExprType(E)); |
9720 | } |
9721 | |
9722 | static IntRange GetExprRange(ASTContext &C, const Expr *E, |
9723 | bool InConstantContext, bool Approximate) { |
9724 | return GetExprRange(C, E, MaxWidth: C.getIntWidth(T: GetExprType(E)), InConstantContext, |
9725 | Approximate); |
9726 | } |
9727 | |
9728 | /// Checks whether the given value, which currently has the given |
9729 | /// source semantics, has the same value when coerced through the |
9730 | /// target semantics. |
9731 | static bool IsSameFloatAfterCast(const llvm::APFloat &value, |
9732 | const llvm::fltSemantics &Src, |
9733 | const llvm::fltSemantics &Tgt) { |
9734 | llvm::APFloat truncated = value; |
9735 | |
9736 | bool ignored; |
9737 | truncated.convert(ToSemantics: Src, RM: llvm::APFloat::rmNearestTiesToEven, losesInfo: &ignored); |
9738 | truncated.convert(ToSemantics: Tgt, RM: llvm::APFloat::rmNearestTiesToEven, losesInfo: &ignored); |
9739 | |
9740 | return truncated.bitwiseIsEqual(RHS: value); |
9741 | } |
9742 | |
9743 | /// Checks whether the given value, which currently has the given |
9744 | /// source semantics, has the same value when coerced through the |
9745 | /// target semantics. |
9746 | /// |
9747 | /// The value might be a vector of floats (or a complex number). |
9748 | static bool IsSameFloatAfterCast(const APValue &value, |
9749 | const llvm::fltSemantics &Src, |
9750 | const llvm::fltSemantics &Tgt) { |
9751 | if (value.isFloat()) |
9752 | return IsSameFloatAfterCast(value: value.getFloat(), Src, Tgt); |
9753 | |
9754 | if (value.isVector()) { |
9755 | for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) |
9756 | if (!IsSameFloatAfterCast(value: value.getVectorElt(I: i), Src, Tgt)) |
9757 | return false; |
9758 | return true; |
9759 | } |
9760 | |
9761 | assert(value.isComplexFloat()); |
9762 | return (IsSameFloatAfterCast(value: value.getComplexFloatReal(), Src, Tgt) && |
9763 | IsSameFloatAfterCast(value: value.getComplexFloatImag(), Src, Tgt)); |
9764 | } |
9765 | |
9766 | static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC, |
9767 | bool IsListInit = false); |
9768 | |
9769 | static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) { |
9770 | // Suppress cases where we are comparing against an enum constant. |
9771 | if (const DeclRefExpr *DR = |
9772 | dyn_cast<DeclRefExpr>(Val: E->IgnoreParenImpCasts())) |
9773 | if (isa<EnumConstantDecl>(Val: DR->getDecl())) |
9774 | return true; |
9775 | |
9776 | // Suppress cases where the value is expanded from a macro, unless that macro |
9777 | // is how a language represents a boolean literal. This is the case in both C |
9778 | // and Objective-C. |
9779 | SourceLocation BeginLoc = E->getBeginLoc(); |
9780 | if (BeginLoc.isMacroID()) { |
9781 | StringRef MacroName = Lexer::getImmediateMacroName( |
9782 | Loc: BeginLoc, SM: S.getSourceManager(), LangOpts: S.getLangOpts()); |
9783 | return MacroName != "YES" && MacroName != "NO" && |
9784 | MacroName != "true" && MacroName != "false" ; |
9785 | } |
9786 | |
9787 | return false; |
9788 | } |
9789 | |
9790 | static bool isKnownToHaveUnsignedValue(Expr *E) { |
9791 | return E->getType()->isIntegerType() && |
9792 | (!E->getType()->isSignedIntegerType() || |
9793 | !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType()); |
9794 | } |
9795 | |
9796 | namespace { |
9797 | /// The promoted range of values of a type. In general this has the |
9798 | /// following structure: |
9799 | /// |
9800 | /// |-----------| . . . |-----------| |
9801 | /// ^ ^ ^ ^ |
9802 | /// Min HoleMin HoleMax Max |
9803 | /// |
9804 | /// ... where there is only a hole if a signed type is promoted to unsigned |
9805 | /// (in which case Min and Max are the smallest and largest representable |
9806 | /// values). |
9807 | struct PromotedRange { |
9808 | // Min, or HoleMax if there is a hole. |
9809 | llvm::APSInt PromotedMin; |
9810 | // Max, or HoleMin if there is a hole. |
9811 | llvm::APSInt PromotedMax; |
9812 | |
9813 | PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) { |
9814 | if (R.Width == 0) |
9815 | PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned); |
9816 | else if (R.Width >= BitWidth && !Unsigned) { |
9817 | // Promotion made the type *narrower*. This happens when promoting |
9818 | // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'. |
9819 | // Treat all values of 'signed int' as being in range for now. |
9820 | PromotedMin = llvm::APSInt::getMinValue(numBits: BitWidth, Unsigned); |
9821 | PromotedMax = llvm::APSInt::getMaxValue(numBits: BitWidth, Unsigned); |
9822 | } else { |
9823 | PromotedMin = llvm::APSInt::getMinValue(numBits: R.Width, Unsigned: R.NonNegative) |
9824 | .extOrTrunc(width: BitWidth); |
9825 | PromotedMin.setIsUnsigned(Unsigned); |
9826 | |
9827 | PromotedMax = llvm::APSInt::getMaxValue(numBits: R.Width, Unsigned: R.NonNegative) |
9828 | .extOrTrunc(width: BitWidth); |
9829 | PromotedMax.setIsUnsigned(Unsigned); |
9830 | } |
9831 | } |
9832 | |
9833 | // Determine whether this range is contiguous (has no hole). |
9834 | bool isContiguous() const { return PromotedMin <= PromotedMax; } |
9835 | |
9836 | // Where a constant value is within the range. |
9837 | enum ComparisonResult { |
9838 | LT = 0x1, |
9839 | LE = 0x2, |
9840 | GT = 0x4, |
9841 | GE = 0x8, |
9842 | EQ = 0x10, |
9843 | NE = 0x20, |
9844 | InRangeFlag = 0x40, |
9845 | |
9846 | Less = LE | LT | NE, |
9847 | Min = LE | InRangeFlag, |
9848 | InRange = InRangeFlag, |
9849 | Max = GE | InRangeFlag, |
9850 | Greater = GE | GT | NE, |
9851 | |
9852 | OnlyValue = LE | GE | EQ | InRangeFlag, |
9853 | InHole = NE |
9854 | }; |
9855 | |
9856 | ComparisonResult compare(const llvm::APSInt &Value) const { |
9857 | assert(Value.getBitWidth() == PromotedMin.getBitWidth() && |
9858 | Value.isUnsigned() == PromotedMin.isUnsigned()); |
9859 | if (!isContiguous()) { |
9860 | assert(Value.isUnsigned() && "discontiguous range for signed compare" ); |
9861 | if (Value.isMinValue()) return Min; |
9862 | if (Value.isMaxValue()) return Max; |
9863 | if (Value >= PromotedMin) return InRange; |
9864 | if (Value <= PromotedMax) return InRange; |
9865 | return InHole; |
9866 | } |
9867 | |
9868 | switch (llvm::APSInt::compareValues(I1: Value, I2: PromotedMin)) { |
9869 | case -1: return Less; |
9870 | case 0: return PromotedMin == PromotedMax ? OnlyValue : Min; |
9871 | case 1: |
9872 | switch (llvm::APSInt::compareValues(I1: Value, I2: PromotedMax)) { |
9873 | case -1: return InRange; |
9874 | case 0: return Max; |
9875 | case 1: return Greater; |
9876 | } |
9877 | } |
9878 | |
9879 | llvm_unreachable("impossible compare result" ); |
9880 | } |
9881 | |
9882 | static std::optional<StringRef> |
9883 | constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) { |
9884 | if (Op == BO_Cmp) { |
9885 | ComparisonResult LTFlag = LT, GTFlag = GT; |
9886 | if (ConstantOnRHS) std::swap(a&: LTFlag, b&: GTFlag); |
9887 | |
9888 | if (R & EQ) return StringRef("'std::strong_ordering::equal'" ); |
9889 | if (R & LTFlag) return StringRef("'std::strong_ordering::less'" ); |
9890 | if (R & GTFlag) return StringRef("'std::strong_ordering::greater'" ); |
9891 | return std::nullopt; |
9892 | } |
9893 | |
9894 | ComparisonResult TrueFlag, FalseFlag; |
9895 | if (Op == BO_EQ) { |
9896 | TrueFlag = EQ; |
9897 | FalseFlag = NE; |
9898 | } else if (Op == BO_NE) { |
9899 | TrueFlag = NE; |
9900 | FalseFlag = EQ; |
9901 | } else { |
9902 | if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) { |
9903 | TrueFlag = LT; |
9904 | FalseFlag = GE; |
9905 | } else { |
9906 | TrueFlag = GT; |
9907 | FalseFlag = LE; |
9908 | } |
9909 | if (Op == BO_GE || Op == BO_LE) |
9910 | std::swap(a&: TrueFlag, b&: FalseFlag); |
9911 | } |
9912 | if (R & TrueFlag) |
9913 | return StringRef("true" ); |
9914 | if (R & FalseFlag) |
9915 | return StringRef("false" ); |
9916 | return std::nullopt; |
9917 | } |
9918 | }; |
9919 | } |
9920 | |
9921 | static bool HasEnumType(Expr *E) { |
9922 | // Strip off implicit integral promotions. |
9923 | while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
9924 | if (ICE->getCastKind() != CK_IntegralCast && |
9925 | ICE->getCastKind() != CK_NoOp) |
9926 | break; |
9927 | E = ICE->getSubExpr(); |
9928 | } |
9929 | |
9930 | return E->getType()->isEnumeralType(); |
9931 | } |
9932 | |
9933 | static int classifyConstantValue(Expr *Constant) { |
9934 | // The values of this enumeration are used in the diagnostics |
9935 | // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare. |
9936 | enum ConstantValueKind { |
9937 | Miscellaneous = 0, |
9938 | LiteralTrue, |
9939 | LiteralFalse |
9940 | }; |
9941 | if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Val: Constant)) |
9942 | return BL->getValue() ? ConstantValueKind::LiteralTrue |
9943 | : ConstantValueKind::LiteralFalse; |
9944 | return ConstantValueKind::Miscellaneous; |
9945 | } |
9946 | |
9947 | static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E, |
9948 | Expr *Constant, Expr *Other, |
9949 | const llvm::APSInt &Value, |
9950 | bool RhsConstant) { |
9951 | if (S.inTemplateInstantiation()) |
9952 | return false; |
9953 | |
9954 | Expr *OriginalOther = Other; |
9955 | |
9956 | Constant = Constant->IgnoreParenImpCasts(); |
9957 | Other = Other->IgnoreParenImpCasts(); |
9958 | |
9959 | // Suppress warnings on tautological comparisons between values of the same |
9960 | // enumeration type. There are only two ways we could warn on this: |
9961 | // - If the constant is outside the range of representable values of |
9962 | // the enumeration. In such a case, we should warn about the cast |
9963 | // to enumeration type, not about the comparison. |
9964 | // - If the constant is the maximum / minimum in-range value. For an |
9965 | // enumeratin type, such comparisons can be meaningful and useful. |
9966 | if (Constant->getType()->isEnumeralType() && |
9967 | S.Context.hasSameUnqualifiedType(T1: Constant->getType(), T2: Other->getType())) |
9968 | return false; |
9969 | |
9970 | IntRange OtherValueRange = GetExprRange( |
9971 | C&: S.Context, E: Other, InConstantContext: S.isConstantEvaluatedContext(), /*Approximate=*/false); |
9972 | |
9973 | QualType OtherT = Other->getType(); |
9974 | if (const auto *AT = OtherT->getAs<AtomicType>()) |
9975 | OtherT = AT->getValueType(); |
9976 | IntRange OtherTypeRange = IntRange::forValueOfType(C&: S.Context, T: OtherT); |
9977 | |
9978 | // Special case for ObjC BOOL on targets where its a typedef for a signed char |
9979 | // (Namely, macOS). FIXME: IntRange::forValueOfType should do this. |
9980 | bool IsObjCSignedCharBool = S.getLangOpts().ObjC && |
9981 | S.ObjC().NSAPIObj->isObjCBOOLType(T: OtherT) && |
9982 | OtherT->isSpecificBuiltinType(K: BuiltinType::SChar); |
9983 | |
9984 | // Whether we're treating Other as being a bool because of the form of |
9985 | // expression despite it having another type (typically 'int' in C). |
9986 | bool OtherIsBooleanDespiteType = |
9987 | !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue(); |
9988 | if (OtherIsBooleanDespiteType || IsObjCSignedCharBool) |
9989 | OtherTypeRange = OtherValueRange = IntRange::forBoolType(); |
9990 | |
9991 | // Check if all values in the range of possible values of this expression |
9992 | // lead to the same comparison outcome. |
9993 | PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(), |
9994 | Value.isUnsigned()); |
9995 | auto Cmp = OtherPromotedValueRange.compare(Value); |
9996 | auto Result = PromotedRange::constantValue(Op: E->getOpcode(), R: Cmp, ConstantOnRHS: RhsConstant); |
9997 | if (!Result) |
9998 | return false; |
9999 | |
10000 | // Also consider the range determined by the type alone. This allows us to |
10001 | // classify the warning under the proper diagnostic group. |
10002 | bool TautologicalTypeCompare = false; |
10003 | { |
10004 | PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(), |
10005 | Value.isUnsigned()); |
10006 | auto TypeCmp = OtherPromotedTypeRange.compare(Value); |
10007 | if (auto TypeResult = PromotedRange::constantValue(Op: E->getOpcode(), R: TypeCmp, |
10008 | ConstantOnRHS: RhsConstant)) { |
10009 | TautologicalTypeCompare = true; |
10010 | Cmp = TypeCmp; |
10011 | Result = TypeResult; |
10012 | } |
10013 | } |
10014 | |
10015 | // Don't warn if the non-constant operand actually always evaluates to the |
10016 | // same value. |
10017 | if (!TautologicalTypeCompare && OtherValueRange.Width == 0) |
10018 | return false; |
10019 | |
10020 | // Suppress the diagnostic for an in-range comparison if the constant comes |
10021 | // from a macro or enumerator. We don't want to diagnose |
10022 | // |
10023 | // some_long_value <= INT_MAX |
10024 | // |
10025 | // when sizeof(int) == sizeof(long). |
10026 | bool InRange = Cmp & PromotedRange::InRangeFlag; |
10027 | if (InRange && IsEnumConstOrFromMacro(S, E: Constant)) |
10028 | return false; |
10029 | |
10030 | // A comparison of an unsigned bit-field against 0 is really a type problem, |
10031 | // even though at the type level the bit-field might promote to 'signed int'. |
10032 | if (Other->refersToBitField() && InRange && Value == 0 && |
10033 | Other->getType()->isUnsignedIntegerOrEnumerationType()) |
10034 | TautologicalTypeCompare = true; |
10035 | |
10036 | // If this is a comparison to an enum constant, include that |
10037 | // constant in the diagnostic. |
10038 | const EnumConstantDecl *ED = nullptr; |
10039 | if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Val: Constant)) |
10040 | ED = dyn_cast<EnumConstantDecl>(Val: DR->getDecl()); |
10041 | |
10042 | // Should be enough for uint128 (39 decimal digits) |
10043 | SmallString<64> PrettySourceValue; |
10044 | llvm::raw_svector_ostream OS(PrettySourceValue); |
10045 | if (ED) { |
10046 | OS << '\'' << *ED << "' (" << Value << ")" ; |
10047 | } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>( |
10048 | Val: Constant->IgnoreParenImpCasts())) { |
10049 | OS << (BL->getValue() ? "YES" : "NO" ); |
10050 | } else { |
10051 | OS << Value; |
10052 | } |
10053 | |
10054 | if (!TautologicalTypeCompare) { |
10055 | S.Diag(Loc: E->getOperatorLoc(), DiagID: diag::warn_tautological_compare_value_range) |
10056 | << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative |
10057 | << E->getOpcodeStr() << OS.str() << *Result |
10058 | << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); |
10059 | return true; |
10060 | } |
10061 | |
10062 | if (IsObjCSignedCharBool) { |
10063 | S.DiagRuntimeBehavior(Loc: E->getOperatorLoc(), Statement: E, |
10064 | PD: S.PDiag(DiagID: diag::warn_tautological_compare_objc_bool) |
10065 | << OS.str() << *Result); |
10066 | return true; |
10067 | } |
10068 | |
10069 | // FIXME: We use a somewhat different formatting for the in-range cases and |
10070 | // cases involving boolean values for historical reasons. We should pick a |
10071 | // consistent way of presenting these diagnostics. |
10072 | if (!InRange || Other->isKnownToHaveBooleanValue()) { |
10073 | |
10074 | S.DiagRuntimeBehavior( |
10075 | Loc: E->getOperatorLoc(), Statement: E, |
10076 | PD: S.PDiag(DiagID: !InRange ? diag::warn_out_of_range_compare |
10077 | : diag::warn_tautological_bool_compare) |
10078 | << OS.str() << classifyConstantValue(Constant) << OtherT |
10079 | << OtherIsBooleanDespiteType << *Result |
10080 | << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange()); |
10081 | } else { |
10082 | bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy; |
10083 | unsigned Diag = |
10084 | (isKnownToHaveUnsignedValue(E: OriginalOther) && Value == 0) |
10085 | ? (HasEnumType(E: OriginalOther) |
10086 | ? diag::warn_unsigned_enum_always_true_comparison |
10087 | : IsCharTy ? diag::warn_unsigned_char_always_true_comparison |
10088 | : diag::warn_unsigned_always_true_comparison) |
10089 | : diag::warn_tautological_constant_compare; |
10090 | |
10091 | S.Diag(Loc: E->getOperatorLoc(), DiagID: Diag) |
10092 | << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result |
10093 | << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); |
10094 | } |
10095 | |
10096 | return true; |
10097 | } |
10098 | |
10099 | /// Analyze the operands of the given comparison. Implements the |
10100 | /// fallback case from AnalyzeComparison. |
10101 | static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) { |
10102 | AnalyzeImplicitConversions(S, E: E->getLHS(), CC: E->getOperatorLoc()); |
10103 | AnalyzeImplicitConversions(S, E: E->getRHS(), CC: E->getOperatorLoc()); |
10104 | } |
10105 | |
10106 | /// Implements -Wsign-compare. |
10107 | /// |
10108 | /// \param E the binary operator to check for warnings |
10109 | static void AnalyzeComparison(Sema &S, BinaryOperator *E) { |
10110 | // The type the comparison is being performed in. |
10111 | QualType T = E->getLHS()->getType(); |
10112 | |
10113 | // Only analyze comparison operators where both sides have been converted to |
10114 | // the same type. |
10115 | if (!S.Context.hasSameUnqualifiedType(T1: T, T2: E->getRHS()->getType())) |
10116 | return AnalyzeImpConvsInComparison(S, E); |
10117 | |
10118 | // Don't analyze value-dependent comparisons directly. |
10119 | if (E->isValueDependent()) |
10120 | return AnalyzeImpConvsInComparison(S, E); |
10121 | |
10122 | Expr *LHS = E->getLHS(); |
10123 | Expr *RHS = E->getRHS(); |
10124 | |
10125 | if (T->isIntegralType(Ctx: S.Context)) { |
10126 | std::optional<llvm::APSInt> RHSValue = |
10127 | RHS->getIntegerConstantExpr(Ctx: S.Context); |
10128 | std::optional<llvm::APSInt> LHSValue = |
10129 | LHS->getIntegerConstantExpr(Ctx: S.Context); |
10130 | |
10131 | // We don't care about expressions whose result is a constant. |
10132 | if (RHSValue && LHSValue) |
10133 | return AnalyzeImpConvsInComparison(S, E); |
10134 | |
10135 | // We only care about expressions where just one side is literal |
10136 | if ((bool)RHSValue ^ (bool)LHSValue) { |
10137 | // Is the constant on the RHS or LHS? |
10138 | const bool RhsConstant = (bool)RHSValue; |
10139 | Expr *Const = RhsConstant ? RHS : LHS; |
10140 | Expr *Other = RhsConstant ? LHS : RHS; |
10141 | const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue; |
10142 | |
10143 | // Check whether an integer constant comparison results in a value |
10144 | // of 'true' or 'false'. |
10145 | if (CheckTautologicalComparison(S, E, Constant: Const, Other, Value, RhsConstant)) |
10146 | return AnalyzeImpConvsInComparison(S, E); |
10147 | } |
10148 | } |
10149 | |
10150 | if (!T->hasUnsignedIntegerRepresentation()) { |
10151 | // We don't do anything special if this isn't an unsigned integral |
10152 | // comparison: we're only interested in integral comparisons, and |
10153 | // signed comparisons only happen in cases we don't care to warn about. |
10154 | return AnalyzeImpConvsInComparison(S, E); |
10155 | } |
10156 | |
10157 | LHS = LHS->IgnoreParenImpCasts(); |
10158 | RHS = RHS->IgnoreParenImpCasts(); |
10159 | |
10160 | if (!S.getLangOpts().CPlusPlus) { |
10161 | // Avoid warning about comparison of integers with different signs when |
10162 | // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of |
10163 | // the type of `E`. |
10164 | if (const auto *TET = dyn_cast<TypeOfExprType>(Val: LHS->getType())) |
10165 | LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); |
10166 | if (const auto *TET = dyn_cast<TypeOfExprType>(Val: RHS->getType())) |
10167 | RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); |
10168 | } |
10169 | |
10170 | // Check to see if one of the (unmodified) operands is of different |
10171 | // signedness. |
10172 | Expr *signedOperand, *unsignedOperand; |
10173 | if (LHS->getType()->hasSignedIntegerRepresentation()) { |
10174 | assert(!RHS->getType()->hasSignedIntegerRepresentation() && |
10175 | "unsigned comparison between two signed integer expressions?" ); |
10176 | signedOperand = LHS; |
10177 | unsignedOperand = RHS; |
10178 | } else if (RHS->getType()->hasSignedIntegerRepresentation()) { |
10179 | signedOperand = RHS; |
10180 | unsignedOperand = LHS; |
10181 | } else { |
10182 | return AnalyzeImpConvsInComparison(S, E); |
10183 | } |
10184 | |
10185 | // Otherwise, calculate the effective range of the signed operand. |
10186 | IntRange signedRange = |
10187 | GetExprRange(C&: S.Context, E: signedOperand, InConstantContext: S.isConstantEvaluatedContext(), |
10188 | /*Approximate=*/true); |
10189 | |
10190 | // Go ahead and analyze implicit conversions in the operands. Note |
10191 | // that we skip the implicit conversions on both sides. |
10192 | AnalyzeImplicitConversions(S, E: LHS, CC: E->getOperatorLoc()); |
10193 | AnalyzeImplicitConversions(S, E: RHS, CC: E->getOperatorLoc()); |
10194 | |
10195 | // If the signed range is non-negative, -Wsign-compare won't fire. |
10196 | if (signedRange.NonNegative) |
10197 | return; |
10198 | |
10199 | // For (in)equality comparisons, if the unsigned operand is a |
10200 | // constant which cannot collide with a overflowed signed operand, |
10201 | // then reinterpreting the signed operand as unsigned will not |
10202 | // change the result of the comparison. |
10203 | if (E->isEqualityOp()) { |
10204 | unsigned comparisonWidth = S.Context.getIntWidth(T); |
10205 | IntRange unsignedRange = |
10206 | GetExprRange(C&: S.Context, E: unsignedOperand, InConstantContext: S.isConstantEvaluatedContext(), |
10207 | /*Approximate=*/true); |
10208 | |
10209 | // We should never be unable to prove that the unsigned operand is |
10210 | // non-negative. |
10211 | assert(unsignedRange.NonNegative && "unsigned range includes negative?" ); |
10212 | |
10213 | if (unsignedRange.Width < comparisonWidth) |
10214 | return; |
10215 | } |
10216 | |
10217 | S.DiagRuntimeBehavior(Loc: E->getOperatorLoc(), Statement: E, |
10218 | PD: S.PDiag(DiagID: diag::warn_mixed_sign_comparison) |
10219 | << LHS->getType() << RHS->getType() |
10220 | << LHS->getSourceRange() << RHS->getSourceRange()); |
10221 | } |
10222 | |
10223 | /// Analyzes an attempt to assign the given value to a bitfield. |
10224 | /// |
10225 | /// Returns true if there was something fishy about the attempt. |
10226 | static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init, |
10227 | SourceLocation InitLoc) { |
10228 | assert(Bitfield->isBitField()); |
10229 | if (Bitfield->isInvalidDecl()) |
10230 | return false; |
10231 | |
10232 | // White-list bool bitfields. |
10233 | QualType BitfieldType = Bitfield->getType(); |
10234 | if (BitfieldType->isBooleanType()) |
10235 | return false; |
10236 | |
10237 | if (BitfieldType->isEnumeralType()) { |
10238 | EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl(); |
10239 | // If the underlying enum type was not explicitly specified as an unsigned |
10240 | // type and the enum contain only positive values, MSVC++ will cause an |
10241 | // inconsistency by storing this as a signed type. |
10242 | if (S.getLangOpts().CPlusPlus11 && |
10243 | !BitfieldEnumDecl->getIntegerTypeSourceInfo() && |
10244 | BitfieldEnumDecl->getNumPositiveBits() > 0 && |
10245 | BitfieldEnumDecl->getNumNegativeBits() == 0) { |
10246 | S.Diag(Loc: InitLoc, DiagID: diag::warn_no_underlying_type_specified_for_enum_bitfield) |
10247 | << BitfieldEnumDecl; |
10248 | } |
10249 | } |
10250 | |
10251 | // Ignore value- or type-dependent expressions. |
10252 | if (Bitfield->getBitWidth()->isValueDependent() || |
10253 | Bitfield->getBitWidth()->isTypeDependent() || |
10254 | Init->isValueDependent() || |
10255 | Init->isTypeDependent()) |
10256 | return false; |
10257 | |
10258 | Expr *OriginalInit = Init->IgnoreParenImpCasts(); |
10259 | unsigned FieldWidth = Bitfield->getBitWidthValue(Ctx: S.Context); |
10260 | |
10261 | Expr::EvalResult Result; |
10262 | if (!OriginalInit->EvaluateAsInt(Result, Ctx: S.Context, |
10263 | AllowSideEffects: Expr::SE_AllowSideEffects)) { |
10264 | // The RHS is not constant. If the RHS has an enum type, make sure the |
10265 | // bitfield is wide enough to hold all the values of the enum without |
10266 | // truncation. |
10267 | if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) { |
10268 | EnumDecl *ED = EnumTy->getDecl(); |
10269 | bool SignedBitfield = BitfieldType->isSignedIntegerType(); |
10270 | |
10271 | // Enum types are implicitly signed on Windows, so check if there are any |
10272 | // negative enumerators to see if the enum was intended to be signed or |
10273 | // not. |
10274 | bool SignedEnum = ED->getNumNegativeBits() > 0; |
10275 | |
10276 | // Check for surprising sign changes when assigning enum values to a |
10277 | // bitfield of different signedness. If the bitfield is signed and we |
10278 | // have exactly the right number of bits to store this unsigned enum, |
10279 | // suggest changing the enum to an unsigned type. This typically happens |
10280 | // on Windows where unfixed enums always use an underlying type of 'int'. |
10281 | unsigned DiagID = 0; |
10282 | if (SignedEnum && !SignedBitfield) { |
10283 | DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum; |
10284 | } else if (SignedBitfield && !SignedEnum && |
10285 | ED->getNumPositiveBits() == FieldWidth) { |
10286 | DiagID = diag::warn_signed_bitfield_enum_conversion; |
10287 | } |
10288 | |
10289 | if (DiagID) { |
10290 | S.Diag(Loc: InitLoc, DiagID) << Bitfield << ED; |
10291 | TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo(); |
10292 | SourceRange TypeRange = |
10293 | TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange(); |
10294 | S.Diag(Loc: Bitfield->getTypeSpecStartLoc(), DiagID: diag::note_change_bitfield_sign) |
10295 | << SignedEnum << TypeRange; |
10296 | } |
10297 | |
10298 | // Compute the required bitwidth. If the enum has negative values, we need |
10299 | // one more bit than the normal number of positive bits to represent the |
10300 | // sign bit. |
10301 | unsigned BitsNeeded = SignedEnum ? std::max(a: ED->getNumPositiveBits() + 1, |
10302 | b: ED->getNumNegativeBits()) |
10303 | : ED->getNumPositiveBits(); |
10304 | |
10305 | // Check the bitwidth. |
10306 | if (BitsNeeded > FieldWidth) { |
10307 | Expr *WidthExpr = Bitfield->getBitWidth(); |
10308 | S.Diag(Loc: InitLoc, DiagID: diag::warn_bitfield_too_small_for_enum) |
10309 | << Bitfield << ED; |
10310 | S.Diag(Loc: WidthExpr->getExprLoc(), DiagID: diag::note_widen_bitfield) |
10311 | << BitsNeeded << ED << WidthExpr->getSourceRange(); |
10312 | } |
10313 | } |
10314 | |
10315 | return false; |
10316 | } |
10317 | |
10318 | llvm::APSInt Value = Result.Val.getInt(); |
10319 | |
10320 | unsigned OriginalWidth = Value.getBitWidth(); |
10321 | |
10322 | // In C, the macro 'true' from stdbool.h will evaluate to '1'; To reduce |
10323 | // false positives where the user is demonstrating they intend to use the |
10324 | // bit-field as a Boolean, check to see if the value is 1 and we're assigning |
10325 | // to a one-bit bit-field to see if the value came from a macro named 'true'. |
10326 | bool OneAssignedToOneBitBitfield = FieldWidth == 1 && Value == 1; |
10327 | if (OneAssignedToOneBitBitfield && !S.LangOpts.CPlusPlus) { |
10328 | SourceLocation MaybeMacroLoc = OriginalInit->getBeginLoc(); |
10329 | if (S.SourceMgr.isInSystemMacro(loc: MaybeMacroLoc) && |
10330 | S.findMacroSpelling(loc&: MaybeMacroLoc, name: "true" )) |
10331 | return false; |
10332 | } |
10333 | |
10334 | if (!Value.isSigned() || Value.isNegative()) |
10335 | if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: OriginalInit)) |
10336 | if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not) |
10337 | OriginalWidth = Value.getSignificantBits(); |
10338 | |
10339 | if (OriginalWidth <= FieldWidth) |
10340 | return false; |
10341 | |
10342 | // Compute the value which the bitfield will contain. |
10343 | llvm::APSInt TruncatedValue = Value.trunc(width: FieldWidth); |
10344 | TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType()); |
10345 | |
10346 | // Check whether the stored value is equal to the original value. |
10347 | TruncatedValue = TruncatedValue.extend(width: OriginalWidth); |
10348 | if (llvm::APSInt::isSameValue(I1: Value, I2: TruncatedValue)) |
10349 | return false; |
10350 | |
10351 | std::string PrettyValue = toString(I: Value, Radix: 10); |
10352 | std::string PrettyTrunc = toString(I: TruncatedValue, Radix: 10); |
10353 | |
10354 | S.Diag(Loc: InitLoc, DiagID: OneAssignedToOneBitBitfield |
10355 | ? diag::warn_impcast_single_bit_bitield_precision_constant |
10356 | : diag::warn_impcast_bitfield_precision_constant) |
10357 | << PrettyValue << PrettyTrunc << OriginalInit->getType() |
10358 | << Init->getSourceRange(); |
10359 | |
10360 | return true; |
10361 | } |
10362 | |
10363 | /// Analyze the given simple or compound assignment for warning-worthy |
10364 | /// operations. |
10365 | static void AnalyzeAssignment(Sema &S, BinaryOperator *E) { |
10366 | // Just recurse on the LHS. |
10367 | AnalyzeImplicitConversions(S, E: E->getLHS(), CC: E->getOperatorLoc()); |
10368 | |
10369 | // We want to recurse on the RHS as normal unless we're assigning to |
10370 | // a bitfield. |
10371 | if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) { |
10372 | if (AnalyzeBitFieldAssignment(S, Bitfield, Init: E->getRHS(), |
10373 | InitLoc: E->getOperatorLoc())) { |
10374 | // Recurse, ignoring any implicit conversions on the RHS. |
10375 | return AnalyzeImplicitConversions(S, E: E->getRHS()->IgnoreParenImpCasts(), |
10376 | CC: E->getOperatorLoc()); |
10377 | } |
10378 | } |
10379 | |
10380 | AnalyzeImplicitConversions(S, E: E->getRHS(), CC: E->getOperatorLoc()); |
10381 | |
10382 | // Diagnose implicitly sequentially-consistent atomic assignment. |
10383 | if (E->getLHS()->getType()->isAtomicType()) |
10384 | S.Diag(Loc: E->getRHS()->getBeginLoc(), DiagID: diag::warn_atomic_implicit_seq_cst); |
10385 | } |
10386 | |
10387 | /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. |
10388 | static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T, |
10389 | SourceLocation CContext, unsigned diag, |
10390 | bool pruneControlFlow = false) { |
10391 | if (pruneControlFlow) { |
10392 | S.DiagRuntimeBehavior(Loc: E->getExprLoc(), Statement: E, |
10393 | PD: S.PDiag(DiagID: diag) |
10394 | << SourceType << T << E->getSourceRange() |
10395 | << SourceRange(CContext)); |
10396 | return; |
10397 | } |
10398 | S.Diag(Loc: E->getExprLoc(), DiagID: diag) |
10399 | << SourceType << T << E->getSourceRange() << SourceRange(CContext); |
10400 | } |
10401 | |
10402 | /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. |
10403 | static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, |
10404 | SourceLocation CContext, |
10405 | unsigned diag, bool pruneControlFlow = false) { |
10406 | DiagnoseImpCast(S, E, SourceType: E->getType(), T, CContext, diag, pruneControlFlow); |
10407 | } |
10408 | |
10409 | /// Diagnose an implicit cast from a floating point value to an integer value. |
10410 | static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T, |
10411 | SourceLocation CContext) { |
10412 | const bool IsBool = T->isSpecificBuiltinType(K: BuiltinType::Bool); |
10413 | const bool PruneWarnings = S.inTemplateInstantiation(); |
10414 | |
10415 | Expr *InnerE = E->IgnoreParenImpCasts(); |
10416 | // We also want to warn on, e.g., "int i = -1.234" |
10417 | if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(Val: InnerE)) |
10418 | if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus) |
10419 | InnerE = UOp->getSubExpr()->IgnoreParenImpCasts(); |
10420 | |
10421 | const bool IsLiteral = |
10422 | isa<FloatingLiteral>(Val: E) || isa<FloatingLiteral>(Val: InnerE); |
10423 | |
10424 | llvm::APFloat Value(0.0); |
10425 | bool IsConstant = |
10426 | E->EvaluateAsFloat(Result&: Value, Ctx: S.Context, AllowSideEffects: Expr::SE_AllowSideEffects); |
10427 | if (!IsConstant) { |
10428 | if (S.ObjC().isSignedCharBool(Ty: T)) { |
10429 | return S.ObjC().adornBoolConversionDiagWithTernaryFixit( |
10430 | SourceExpr: E, Builder: S.Diag(Loc: CContext, DiagID: diag::warn_impcast_float_to_objc_signed_char_bool) |
10431 | << E->getType()); |
10432 | } |
10433 | |
10434 | return DiagnoseImpCast(S, E, T, CContext, |
10435 | diag: diag::warn_impcast_float_integer, pruneControlFlow: PruneWarnings); |
10436 | } |
10437 | |
10438 | bool isExact = false; |
10439 | |
10440 | llvm::APSInt IntegerValue(S.Context.getIntWidth(T), |
10441 | T->hasUnsignedIntegerRepresentation()); |
10442 | llvm::APFloat::opStatus Result = Value.convertToInteger( |
10443 | Result&: IntegerValue, RM: llvm::APFloat::rmTowardZero, IsExact: &isExact); |
10444 | |
10445 | // FIXME: Force the precision of the source value down so we don't print |
10446 | // digits which are usually useless (we don't really care here if we |
10447 | // truncate a digit by accident in edge cases). Ideally, APFloat::toString |
10448 | // would automatically print the shortest representation, but it's a bit |
10449 | // tricky to implement. |
10450 | SmallString<16> PrettySourceValue; |
10451 | unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics()); |
10452 | precision = (precision * 59 + 195) / 196; |
10453 | Value.toString(Str&: PrettySourceValue, FormatPrecision: precision); |
10454 | |
10455 | if (S.ObjC().isSignedCharBool(Ty: T) && IntegerValue != 0 && IntegerValue != 1) { |
10456 | return S.ObjC().adornBoolConversionDiagWithTernaryFixit( |
10457 | SourceExpr: E, Builder: S.Diag(Loc: CContext, DiagID: diag::warn_impcast_constant_value_to_objc_bool) |
10458 | << PrettySourceValue); |
10459 | } |
10460 | |
10461 | if (Result == llvm::APFloat::opOK && isExact) { |
10462 | if (IsLiteral) return; |
10463 | return DiagnoseImpCast(S, E, T, CContext, diag: diag::warn_impcast_float_integer, |
10464 | pruneControlFlow: PruneWarnings); |
10465 | } |
10466 | |
10467 | // Conversion of a floating-point value to a non-bool integer where the |
10468 | // integral part cannot be represented by the integer type is undefined. |
10469 | if (!IsBool && Result == llvm::APFloat::opInvalidOp) |
10470 | return DiagnoseImpCast( |
10471 | S, E, T, CContext, |
10472 | diag: IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range |
10473 | : diag::warn_impcast_float_to_integer_out_of_range, |
10474 | pruneControlFlow: PruneWarnings); |
10475 | |
10476 | unsigned DiagID = 0; |
10477 | if (IsLiteral) { |
10478 | // Warn on floating point literal to integer. |
10479 | DiagID = diag::warn_impcast_literal_float_to_integer; |
10480 | } else if (IntegerValue == 0) { |
10481 | if (Value.isZero()) { // Skip -0.0 to 0 conversion. |
10482 | return DiagnoseImpCast(S, E, T, CContext, |
10483 | diag: diag::warn_impcast_float_integer, pruneControlFlow: PruneWarnings); |
10484 | } |
10485 | // Warn on non-zero to zero conversion. |
10486 | DiagID = diag::warn_impcast_float_to_integer_zero; |
10487 | } else { |
10488 | if (IntegerValue.isUnsigned()) { |
10489 | if (!IntegerValue.isMaxValue()) { |
10490 | return DiagnoseImpCast(S, E, T, CContext, |
10491 | diag: diag::warn_impcast_float_integer, pruneControlFlow: PruneWarnings); |
10492 | } |
10493 | } else { // IntegerValue.isSigned() |
10494 | if (!IntegerValue.isMaxSignedValue() && |
10495 | !IntegerValue.isMinSignedValue()) { |
10496 | return DiagnoseImpCast(S, E, T, CContext, |
10497 | diag: diag::warn_impcast_float_integer, pruneControlFlow: PruneWarnings); |
10498 | } |
10499 | } |
10500 | // Warn on evaluatable floating point expression to integer conversion. |
10501 | DiagID = diag::warn_impcast_float_to_integer; |
10502 | } |
10503 | |
10504 | SmallString<16> PrettyTargetValue; |
10505 | if (IsBool) |
10506 | PrettyTargetValue = Value.isZero() ? "false" : "true" ; |
10507 | else |
10508 | IntegerValue.toString(Str&: PrettyTargetValue); |
10509 | |
10510 | if (PruneWarnings) { |
10511 | S.DiagRuntimeBehavior(Loc: E->getExprLoc(), Statement: E, |
10512 | PD: S.PDiag(DiagID) |
10513 | << E->getType() << T.getUnqualifiedType() |
10514 | << PrettySourceValue << PrettyTargetValue |
10515 | << E->getSourceRange() << SourceRange(CContext)); |
10516 | } else { |
10517 | S.Diag(Loc: E->getExprLoc(), DiagID) |
10518 | << E->getType() << T.getUnqualifiedType() << PrettySourceValue |
10519 | << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext); |
10520 | } |
10521 | } |
10522 | |
10523 | /// Analyze the given compound assignment for the possible losing of |
10524 | /// floating-point precision. |
10525 | static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) { |
10526 | assert(isa<CompoundAssignOperator>(E) && |
10527 | "Must be compound assignment operation" ); |
10528 | // Recurse on the LHS and RHS in here |
10529 | AnalyzeImplicitConversions(S, E: E->getLHS(), CC: E->getOperatorLoc()); |
10530 | AnalyzeImplicitConversions(S, E: E->getRHS(), CC: E->getOperatorLoc()); |
10531 | |
10532 | if (E->getLHS()->getType()->isAtomicType()) |
10533 | S.Diag(Loc: E->getOperatorLoc(), DiagID: diag::warn_atomic_implicit_seq_cst); |
10534 | |
10535 | // Now check the outermost expression |
10536 | const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>(); |
10537 | const auto *RBT = cast<CompoundAssignOperator>(Val: E) |
10538 | ->getComputationResultType() |
10539 | ->getAs<BuiltinType>(); |
10540 | |
10541 | // The below checks assume source is floating point. |
10542 | if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return; |
10543 | |
10544 | // If source is floating point but target is an integer. |
10545 | if (ResultBT->isInteger()) |
10546 | return DiagnoseImpCast(S, E, SourceType: E->getRHS()->getType(), T: E->getLHS()->getType(), |
10547 | CContext: E->getExprLoc(), diag: diag::warn_impcast_float_integer); |
10548 | |
10549 | if (!ResultBT->isFloatingPoint()) |
10550 | return; |
10551 | |
10552 | // If both source and target are floating points, warn about losing precision. |
10553 | int Order = S.getASTContext().getFloatingTypeSemanticOrder( |
10554 | LHS: QualType(ResultBT, 0), RHS: QualType(RBT, 0)); |
10555 | if (Order < 0 && !S.SourceMgr.isInSystemMacro(loc: E->getOperatorLoc())) |
10556 | // warn about dropping FP rank. |
10557 | DiagnoseImpCast(S, E: E->getRHS(), T: E->getLHS()->getType(), CContext: E->getOperatorLoc(), |
10558 | diag: diag::warn_impcast_float_result_precision); |
10559 | } |
10560 | |
10561 | static std::string PrettyPrintInRange(const llvm::APSInt &Value, |
10562 | IntRange Range) { |
10563 | if (!Range.Width) return "0" ; |
10564 | |
10565 | llvm::APSInt ValueInRange = Value; |
10566 | ValueInRange.setIsSigned(!Range.NonNegative); |
10567 | ValueInRange = ValueInRange.trunc(width: Range.Width); |
10568 | return toString(I: ValueInRange, Radix: 10); |
10569 | } |
10570 | |
10571 | static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) { |
10572 | if (!isa<ImplicitCastExpr>(Val: Ex)) |
10573 | return false; |
10574 | |
10575 | Expr *InnerE = Ex->IgnoreParenImpCasts(); |
10576 | const Type *Target = S.Context.getCanonicalType(T: Ex->getType()).getTypePtr(); |
10577 | const Type *Source = |
10578 | S.Context.getCanonicalType(T: InnerE->getType()).getTypePtr(); |
10579 | if (Target->isDependentType()) |
10580 | return false; |
10581 | |
10582 | const BuiltinType *FloatCandidateBT = |
10583 | dyn_cast<BuiltinType>(Val: ToBool ? Source : Target); |
10584 | const Type *BoolCandidateType = ToBool ? Target : Source; |
10585 | |
10586 | return (BoolCandidateType->isSpecificBuiltinType(K: BuiltinType::Bool) && |
10587 | FloatCandidateBT && (FloatCandidateBT->isFloatingPoint())); |
10588 | } |
10589 | |
10590 | static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall, |
10591 | SourceLocation CC) { |
10592 | unsigned NumArgs = TheCall->getNumArgs(); |
10593 | for (unsigned i = 0; i < NumArgs; ++i) { |
10594 | Expr *CurrA = TheCall->getArg(Arg: i); |
10595 | if (!IsImplicitBoolFloatConversion(S, Ex: CurrA, ToBool: true)) |
10596 | continue; |
10597 | |
10598 | bool IsSwapped = ((i > 0) && |
10599 | IsImplicitBoolFloatConversion(S, Ex: TheCall->getArg(Arg: i - 1), ToBool: false)); |
10600 | IsSwapped |= ((i < (NumArgs - 1)) && |
10601 | IsImplicitBoolFloatConversion(S, Ex: TheCall->getArg(Arg: i + 1), ToBool: false)); |
10602 | if (IsSwapped) { |
10603 | // Warn on this floating-point to bool conversion. |
10604 | DiagnoseImpCast(S, E: CurrA->IgnoreParenImpCasts(), |
10605 | T: CurrA->getType(), CContext: CC, |
10606 | diag: diag::warn_impcast_floating_point_to_bool); |
10607 | } |
10608 | } |
10609 | } |
10610 | |
10611 | static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T, |
10612 | SourceLocation CC) { |
10613 | if (S.Diags.isIgnored(DiagID: diag::warn_impcast_null_pointer_to_integer, |
10614 | Loc: E->getExprLoc())) |
10615 | return; |
10616 | |
10617 | // Don't warn on functions which have return type nullptr_t. |
10618 | if (isa<CallExpr>(Val: E)) |
10619 | return; |
10620 | |
10621 | // Check for NULL (GNUNull) or nullptr (CXX11_nullptr). |
10622 | const Expr *NewE = E->IgnoreParenImpCasts(); |
10623 | bool IsGNUNullExpr = isa<GNUNullExpr>(Val: NewE); |
10624 | bool HasNullPtrType = NewE->getType()->isNullPtrType(); |
10625 | if (!IsGNUNullExpr && !HasNullPtrType) |
10626 | return; |
10627 | |
10628 | // Return if target type is a safe conversion. |
10629 | if (T->isAnyPointerType() || T->isBlockPointerType() || |
10630 | T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType()) |
10631 | return; |
10632 | |
10633 | SourceLocation Loc = E->getSourceRange().getBegin(); |
10634 | |
10635 | // Venture through the macro stacks to get to the source of macro arguments. |
10636 | // The new location is a better location than the complete location that was |
10637 | // passed in. |
10638 | Loc = S.SourceMgr.getTopMacroCallerLoc(Loc); |
10639 | CC = S.SourceMgr.getTopMacroCallerLoc(Loc: CC); |
10640 | |
10641 | // __null is usually wrapped in a macro. Go up a macro if that is the case. |
10642 | if (IsGNUNullExpr && Loc.isMacroID()) { |
10643 | StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( |
10644 | Loc, SM: S.SourceMgr, LangOpts: S.getLangOpts()); |
10645 | if (MacroName == "NULL" ) |
10646 | Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin(); |
10647 | } |
10648 | |
10649 | // Only warn if the null and context location are in the same macro expansion. |
10650 | if (S.SourceMgr.getFileID(SpellingLoc: Loc) != S.SourceMgr.getFileID(SpellingLoc: CC)) |
10651 | return; |
10652 | |
10653 | S.Diag(Loc, DiagID: diag::warn_impcast_null_pointer_to_integer) |
10654 | << HasNullPtrType << T << SourceRange(CC) |
10655 | << FixItHint::CreateReplacement(RemoveRange: Loc, |
10656 | Code: S.getFixItZeroLiteralForType(T, Loc)); |
10657 | } |
10658 | |
10659 | // Helper function to filter out cases for constant width constant conversion. |
10660 | // Don't warn on char array initialization or for non-decimal values. |
10661 | static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T, |
10662 | SourceLocation CC) { |
10663 | // If initializing from a constant, and the constant starts with '0', |
10664 | // then it is a binary, octal, or hexadecimal. Allow these constants |
10665 | // to fill all the bits, even if there is a sign change. |
10666 | if (auto *IntLit = dyn_cast<IntegerLiteral>(Val: E->IgnoreParenImpCasts())) { |
10667 | const char FirstLiteralCharacter = |
10668 | S.getSourceManager().getCharacterData(SL: IntLit->getBeginLoc())[0]; |
10669 | if (FirstLiteralCharacter == '0') |
10670 | return false; |
10671 | } |
10672 | |
10673 | // If the CC location points to a '{', and the type is char, then assume |
10674 | // assume it is an array initialization. |
10675 | if (CC.isValid() && T->isCharType()) { |
10676 | const char FirstContextCharacter = |
10677 | S.getSourceManager().getCharacterData(SL: CC)[0]; |
10678 | if (FirstContextCharacter == '{') |
10679 | return false; |
10680 | } |
10681 | |
10682 | return true; |
10683 | } |
10684 | |
10685 | static const IntegerLiteral *getIntegerLiteral(Expr *E) { |
10686 | const auto *IL = dyn_cast<IntegerLiteral>(Val: E); |
10687 | if (!IL) { |
10688 | if (auto *UO = dyn_cast<UnaryOperator>(Val: E)) { |
10689 | if (UO->getOpcode() == UO_Minus) |
10690 | return dyn_cast<IntegerLiteral>(Val: UO->getSubExpr()); |
10691 | } |
10692 | } |
10693 | |
10694 | return IL; |
10695 | } |
10696 | |
10697 | static void DiagnoseIntInBoolContext(Sema &S, Expr *E) { |
10698 | E = E->IgnoreParenImpCasts(); |
10699 | SourceLocation ExprLoc = E->getExprLoc(); |
10700 | |
10701 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: E)) { |
10702 | BinaryOperator::Opcode Opc = BO->getOpcode(); |
10703 | Expr::EvalResult Result; |
10704 | // Do not diagnose unsigned shifts. |
10705 | if (Opc == BO_Shl) { |
10706 | const auto *LHS = getIntegerLiteral(E: BO->getLHS()); |
10707 | const auto *RHS = getIntegerLiteral(E: BO->getRHS()); |
10708 | if (LHS && LHS->getValue() == 0) |
10709 | S.Diag(Loc: ExprLoc, DiagID: diag::warn_left_shift_always) << 0; |
10710 | else if (!E->isValueDependent() && LHS && RHS && |
10711 | RHS->getValue().isNonNegative() && |
10712 | E->EvaluateAsInt(Result, Ctx: S.Context, AllowSideEffects: Expr::SE_AllowSideEffects)) |
10713 | S.Diag(Loc: ExprLoc, DiagID: diag::warn_left_shift_always) |
10714 | << (Result.Val.getInt() != 0); |
10715 | else if (E->getType()->isSignedIntegerType()) |
10716 | S.Diag(Loc: ExprLoc, DiagID: diag::warn_left_shift_in_bool_context) << E; |
10717 | } |
10718 | } |
10719 | |
10720 | if (const auto *CO = dyn_cast<ConditionalOperator>(Val: E)) { |
10721 | const auto *LHS = getIntegerLiteral(E: CO->getTrueExpr()); |
10722 | const auto *RHS = getIntegerLiteral(E: CO->getFalseExpr()); |
10723 | if (!LHS || !RHS) |
10724 | return; |
10725 | if ((LHS->getValue() == 0 || LHS->getValue() == 1) && |
10726 | (RHS->getValue() == 0 || RHS->getValue() == 1)) |
10727 | // Do not diagnose common idioms. |
10728 | return; |
10729 | if (LHS->getValue() != 0 && RHS->getValue() != 0) |
10730 | S.Diag(Loc: ExprLoc, DiagID: diag::warn_integer_constants_in_conditional_always_true); |
10731 | } |
10732 | } |
10733 | |
10734 | void Sema::CheckImplicitConversion(Expr *E, QualType T, SourceLocation CC, |
10735 | bool *ICContext, bool IsListInit) { |
10736 | if (E->isTypeDependent() || E->isValueDependent()) return; |
10737 | |
10738 | const Type *Source = Context.getCanonicalType(T: E->getType()).getTypePtr(); |
10739 | const Type *Target = Context.getCanonicalType(T).getTypePtr(); |
10740 | if (Source == Target) return; |
10741 | if (Target->isDependentType()) return; |
10742 | |
10743 | // If the conversion context location is invalid don't complain. We also |
10744 | // don't want to emit a warning if the issue occurs from the expansion of |
10745 | // a system macro. The problem is that 'getSpellingLoc()' is slow, so we |
10746 | // delay this check as long as possible. Once we detect we are in that |
10747 | // scenario, we just return. |
10748 | if (CC.isInvalid()) |
10749 | return; |
10750 | |
10751 | if (Source->isAtomicType()) |
10752 | Diag(Loc: E->getExprLoc(), DiagID: diag::warn_atomic_implicit_seq_cst); |
10753 | |
10754 | // Diagnose implicit casts to bool. |
10755 | if (Target->isSpecificBuiltinType(K: BuiltinType::Bool)) { |
10756 | if (isa<StringLiteral>(Val: E)) |
10757 | // Warn on string literal to bool. Checks for string literals in logical |
10758 | // and expressions, for instance, assert(0 && "error here"), are |
10759 | // prevented by a check in AnalyzeImplicitConversions(). |
10760 | return DiagnoseImpCast(S&: *this, E, T, CContext: CC, |
10761 | diag: diag::warn_impcast_string_literal_to_bool); |
10762 | if (isa<ObjCStringLiteral>(Val: E) || isa<ObjCArrayLiteral>(Val: E) || |
10763 | isa<ObjCDictionaryLiteral>(Val: E) || isa<ObjCBoxedExpr>(Val: E)) { |
10764 | // This covers the literal expressions that evaluate to Objective-C |
10765 | // objects. |
10766 | return DiagnoseImpCast(S&: *this, E, T, CContext: CC, |
10767 | diag: diag::warn_impcast_objective_c_literal_to_bool); |
10768 | } |
10769 | if (Source->isPointerType() || Source->canDecayToPointerType()) { |
10770 | // Warn on pointer to bool conversion that is always true. |
10771 | DiagnoseAlwaysNonNullPointer(E, NullType: Expr::NPCK_NotNull, /*IsEqual*/ false, |
10772 | Range: SourceRange(CC)); |
10773 | } |
10774 | } |
10775 | |
10776 | // If the we're converting a constant to an ObjC BOOL on a platform where BOOL |
10777 | // is a typedef for signed char (macOS), then that constant value has to be 1 |
10778 | // or 0. |
10779 | if (ObjC().isSignedCharBool(Ty: T) && Source->isIntegralType(Ctx: Context)) { |
10780 | Expr::EvalResult Result; |
10781 | if (E->EvaluateAsInt(Result, Ctx: getASTContext(), AllowSideEffects: Expr::SE_AllowSideEffects)) { |
10782 | if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) { |
10783 | ObjC().adornBoolConversionDiagWithTernaryFixit( |
10784 | SourceExpr: E, Builder: Diag(Loc: CC, DiagID: diag::warn_impcast_constant_value_to_objc_bool) |
10785 | << toString(I: Result.Val.getInt(), Radix: 10)); |
10786 | } |
10787 | return; |
10788 | } |
10789 | } |
10790 | |
10791 | // Check implicit casts from Objective-C collection literals to specialized |
10792 | // collection types, e.g., NSArray<NSString *> *. |
10793 | if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Val: E)) |
10794 | ObjC().checkArrayLiteral(TargetType: QualType(Target, 0), ArrayLiteral); |
10795 | else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Val: E)) |
10796 | ObjC().checkDictionaryLiteral(TargetType: QualType(Target, 0), DictionaryLiteral); |
10797 | |
10798 | // Strip vector types. |
10799 | if (isa<VectorType>(Val: Source)) { |
10800 | if (Target->isSveVLSBuiltinType() && |
10801 | (Context.areCompatibleSveTypes(FirstType: QualType(Target, 0), |
10802 | SecondType: QualType(Source, 0)) || |
10803 | Context.areLaxCompatibleSveTypes(FirstType: QualType(Target, 0), |
10804 | SecondType: QualType(Source, 0)))) |
10805 | return; |
10806 | |
10807 | if (Target->isRVVVLSBuiltinType() && |
10808 | (Context.areCompatibleRVVTypes(FirstType: QualType(Target, 0), |
10809 | SecondType: QualType(Source, 0)) || |
10810 | Context.areLaxCompatibleRVVTypes(FirstType: QualType(Target, 0), |
10811 | SecondType: QualType(Source, 0)))) |
10812 | return; |
10813 | |
10814 | if (!isa<VectorType>(Val: Target)) { |
10815 | if (SourceMgr.isInSystemMacro(loc: CC)) |
10816 | return; |
10817 | return DiagnoseImpCast(S&: *this, E, T, CContext: CC, diag: diag::warn_impcast_vector_scalar); |
10818 | } else if (getLangOpts().HLSL && |
10819 | Target->castAs<VectorType>()->getNumElements() < |
10820 | Source->castAs<VectorType>()->getNumElements()) { |
10821 | // Diagnose vector truncation but don't return. We may also want to |
10822 | // diagnose an element conversion. |
10823 | DiagnoseImpCast(S&: *this, E, T, CContext: CC, |
10824 | diag: diag::warn_hlsl_impcast_vector_truncation); |
10825 | } |
10826 | |
10827 | // If the vector cast is cast between two vectors of the same size, it is |
10828 | // a bitcast, not a conversion, except under HLSL where it is a conversion. |
10829 | if (!getLangOpts().HLSL && |
10830 | Context.getTypeSize(T: Source) == Context.getTypeSize(T: Target)) |
10831 | return; |
10832 | |
10833 | Source = cast<VectorType>(Val: Source)->getElementType().getTypePtr(); |
10834 | Target = cast<VectorType>(Val: Target)->getElementType().getTypePtr(); |
10835 | } |
10836 | if (auto VecTy = dyn_cast<VectorType>(Val: Target)) |
10837 | Target = VecTy->getElementType().getTypePtr(); |
10838 | |
10839 | // Strip complex types. |
10840 | if (isa<ComplexType>(Val: Source)) { |
10841 | if (!isa<ComplexType>(Val: Target)) { |
10842 | if (SourceMgr.isInSystemMacro(loc: CC) || Target->isBooleanType()) |
10843 | return; |
10844 | |
10845 | return DiagnoseImpCast(S&: *this, E, T, CContext: CC, |
10846 | diag: getLangOpts().CPlusPlus |
10847 | ? diag::err_impcast_complex_scalar |
10848 | : diag::warn_impcast_complex_scalar); |
10849 | } |
10850 | |
10851 | Source = cast<ComplexType>(Val: Source)->getElementType().getTypePtr(); |
10852 | Target = cast<ComplexType>(Val: Target)->getElementType().getTypePtr(); |
10853 | } |
10854 | |
10855 | const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Val: Source); |
10856 | const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Val: Target); |
10857 | |
10858 | // Strip SVE vector types |
10859 | if (SourceBT && SourceBT->isSveVLSBuiltinType()) { |
10860 | // Need the original target type for vector type checks |
10861 | const Type *OriginalTarget = Context.getCanonicalType(T).getTypePtr(); |
10862 | // Handle conversion from scalable to fixed when msve-vector-bits is |
10863 | // specified |
10864 | if (Context.areCompatibleSveTypes(FirstType: QualType(OriginalTarget, 0), |
10865 | SecondType: QualType(Source, 0)) || |
10866 | Context.areLaxCompatibleSveTypes(FirstType: QualType(OriginalTarget, 0), |
10867 | SecondType: QualType(Source, 0))) |
10868 | return; |
10869 | |
10870 | // If the vector cast is cast between two vectors of the same size, it is |
10871 | // a bitcast, not a conversion. |
10872 | if (Context.getTypeSize(T: Source) == Context.getTypeSize(T: Target)) |
10873 | return; |
10874 | |
10875 | Source = SourceBT->getSveEltType(Ctx: Context).getTypePtr(); |
10876 | } |
10877 | |
10878 | if (TargetBT && TargetBT->isSveVLSBuiltinType()) |
10879 | Target = TargetBT->getSveEltType(Ctx: Context).getTypePtr(); |
10880 | |
10881 | // If the source is floating point... |
10882 | if (SourceBT && SourceBT->isFloatingPoint()) { |
10883 | // ...and the target is floating point... |
10884 | if (TargetBT && TargetBT->isFloatingPoint()) { |
10885 | // ...then warn if we're dropping FP rank. |
10886 | |
10887 | int Order = getASTContext().getFloatingTypeSemanticOrder( |
10888 | LHS: QualType(SourceBT, 0), RHS: QualType(TargetBT, 0)); |
10889 | if (Order > 0) { |
10890 | // Don't warn about float constants that are precisely |
10891 | // representable in the target type. |
10892 | Expr::EvalResult result; |
10893 | if (E->EvaluateAsRValue(Result&: result, Ctx: Context)) { |
10894 | // Value might be a float, a float vector, or a float complex. |
10895 | if (IsSameFloatAfterCast( |
10896 | value: result.Val, |
10897 | Src: Context.getFloatTypeSemantics(T: QualType(TargetBT, 0)), |
10898 | Tgt: Context.getFloatTypeSemantics(T: QualType(SourceBT, 0)))) |
10899 | return; |
10900 | } |
10901 | |
10902 | if (SourceMgr.isInSystemMacro(loc: CC)) |
10903 | return; |
10904 | |
10905 | DiagnoseImpCast(S&: *this, E, T, CContext: CC, diag: diag::warn_impcast_float_precision); |
10906 | } |
10907 | // ... or possibly if we're increasing rank, too |
10908 | else if (Order < 0) { |
10909 | if (SourceMgr.isInSystemMacro(loc: CC)) |
10910 | return; |
10911 | |
10912 | DiagnoseImpCast(S&: *this, E, T, CContext: CC, diag: diag::warn_impcast_double_promotion); |
10913 | } |
10914 | return; |
10915 | } |
10916 | |
10917 | // If the target is integral, always warn. |
10918 | if (TargetBT && TargetBT->isInteger()) { |
10919 | if (SourceMgr.isInSystemMacro(loc: CC)) |
10920 | return; |
10921 | |
10922 | DiagnoseFloatingImpCast(S&: *this, E, T, CContext: CC); |
10923 | } |
10924 | |
10925 | // Detect the case where a call result is converted from floating-point to |
10926 | // to bool, and the final argument to the call is converted from bool, to |
10927 | // discover this typo: |
10928 | // |
10929 | // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;" |
10930 | // |
10931 | // FIXME: This is an incredibly special case; is there some more general |
10932 | // way to detect this class of misplaced-parentheses bug? |
10933 | if (Target->isBooleanType() && isa<CallExpr>(Val: E)) { |
10934 | // Check last argument of function call to see if it is an |
10935 | // implicit cast from a type matching the type the result |
10936 | // is being cast to. |
10937 | CallExpr *CEx = cast<CallExpr>(Val: E); |
10938 | if (unsigned NumArgs = CEx->getNumArgs()) { |
10939 | Expr *LastA = CEx->getArg(Arg: NumArgs - 1); |
10940 | Expr *InnerE = LastA->IgnoreParenImpCasts(); |
10941 | if (isa<ImplicitCastExpr>(Val: LastA) && |
10942 | InnerE->getType()->isBooleanType()) { |
10943 | // Warn on this floating-point to bool conversion |
10944 | DiagnoseImpCast(S&: *this, E, T, CContext: CC, |
10945 | diag: diag::warn_impcast_floating_point_to_bool); |
10946 | } |
10947 | } |
10948 | } |
10949 | return; |
10950 | } |
10951 | |
10952 | // Valid casts involving fixed point types should be accounted for here. |
10953 | if (Source->isFixedPointType()) { |
10954 | if (Target->isUnsaturatedFixedPointType()) { |
10955 | Expr::EvalResult Result; |
10956 | if (E->EvaluateAsFixedPoint(Result, Ctx: Context, AllowSideEffects: Expr::SE_AllowSideEffects, |
10957 | InConstantContext: isConstantEvaluatedContext())) { |
10958 | llvm::APFixedPoint Value = Result.Val.getFixedPoint(); |
10959 | llvm::APFixedPoint MaxVal = Context.getFixedPointMax(Ty: T); |
10960 | llvm::APFixedPoint MinVal = Context.getFixedPointMin(Ty: T); |
10961 | if (Value > MaxVal || Value < MinVal) { |
10962 | DiagRuntimeBehavior(Loc: E->getExprLoc(), Statement: E, |
10963 | PD: PDiag(DiagID: diag::warn_impcast_fixed_point_range) |
10964 | << Value.toString() << T |
10965 | << E->getSourceRange() |
10966 | << clang::SourceRange(CC)); |
10967 | return; |
10968 | } |
10969 | } |
10970 | } else if (Target->isIntegerType()) { |
10971 | Expr::EvalResult Result; |
10972 | if (!isConstantEvaluatedContext() && |
10973 | E->EvaluateAsFixedPoint(Result, Ctx: Context, AllowSideEffects: Expr::SE_AllowSideEffects)) { |
10974 | llvm::APFixedPoint FXResult = Result.Val.getFixedPoint(); |
10975 | |
10976 | bool Overflowed; |
10977 | llvm::APSInt IntResult = FXResult.convertToInt( |
10978 | DstWidth: Context.getIntWidth(T), DstSign: Target->isSignedIntegerOrEnumerationType(), |
10979 | Overflow: &Overflowed); |
10980 | |
10981 | if (Overflowed) { |
10982 | DiagRuntimeBehavior(Loc: E->getExprLoc(), Statement: E, |
10983 | PD: PDiag(DiagID: diag::warn_impcast_fixed_point_range) |
10984 | << FXResult.toString() << T |
10985 | << E->getSourceRange() |
10986 | << clang::SourceRange(CC)); |
10987 | return; |
10988 | } |
10989 | } |
10990 | } |
10991 | } else if (Target->isUnsaturatedFixedPointType()) { |
10992 | if (Source->isIntegerType()) { |
10993 | Expr::EvalResult Result; |
10994 | if (!isConstantEvaluatedContext() && |
10995 | E->EvaluateAsInt(Result, Ctx: Context, AllowSideEffects: Expr::SE_AllowSideEffects)) { |
10996 | llvm::APSInt Value = Result.Val.getInt(); |
10997 | |
10998 | bool Overflowed; |
10999 | llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue( |
11000 | Value, DstFXSema: Context.getFixedPointSemantics(Ty: T), Overflow: &Overflowed); |
11001 | |
11002 | if (Overflowed) { |
11003 | DiagRuntimeBehavior(Loc: E->getExprLoc(), Statement: E, |
11004 | PD: PDiag(DiagID: diag::warn_impcast_fixed_point_range) |
11005 | << toString(I: Value, /*Radix=*/10) << T |
11006 | << E->getSourceRange() |
11007 | << clang::SourceRange(CC)); |
11008 | return; |
11009 | } |
11010 | } |
11011 | } |
11012 | } |
11013 | |
11014 | // If we are casting an integer type to a floating point type without |
11015 | // initialization-list syntax, we might lose accuracy if the floating |
11016 | // point type has a narrower significand than the integer type. |
11017 | if (SourceBT && TargetBT && SourceBT->isIntegerType() && |
11018 | TargetBT->isFloatingType() && !IsListInit) { |
11019 | // Determine the number of precision bits in the source integer type. |
11020 | IntRange SourceRange = |
11021 | GetExprRange(C&: Context, E, InConstantContext: isConstantEvaluatedContext(), |
11022 | /*Approximate=*/true); |
11023 | unsigned int SourcePrecision = SourceRange.Width; |
11024 | |
11025 | // Determine the number of precision bits in the |
11026 | // target floating point type. |
11027 | unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision( |
11028 | Context.getFloatTypeSemantics(T: QualType(TargetBT, 0))); |
11029 | |
11030 | if (SourcePrecision > 0 && TargetPrecision > 0 && |
11031 | SourcePrecision > TargetPrecision) { |
11032 | |
11033 | if (std::optional<llvm::APSInt> SourceInt = |
11034 | E->getIntegerConstantExpr(Ctx: Context)) { |
11035 | // If the source integer is a constant, convert it to the target |
11036 | // floating point type. Issue a warning if the value changes |
11037 | // during the whole conversion. |
11038 | llvm::APFloat TargetFloatValue( |
11039 | Context.getFloatTypeSemantics(T: QualType(TargetBT, 0))); |
11040 | llvm::APFloat::opStatus ConversionStatus = |
11041 | TargetFloatValue.convertFromAPInt( |
11042 | Input: *SourceInt, IsSigned: SourceBT->isSignedInteger(), |
11043 | RM: llvm::APFloat::rmNearestTiesToEven); |
11044 | |
11045 | if (ConversionStatus != llvm::APFloat::opOK) { |
11046 | SmallString<32> PrettySourceValue; |
11047 | SourceInt->toString(Str&: PrettySourceValue, Radix: 10); |
11048 | SmallString<32> PrettyTargetValue; |
11049 | TargetFloatValue.toString(Str&: PrettyTargetValue, FormatPrecision: TargetPrecision); |
11050 | |
11051 | DiagRuntimeBehavior( |
11052 | Loc: E->getExprLoc(), Statement: E, |
11053 | PD: PDiag(DiagID: diag::warn_impcast_integer_float_precision_constant) |
11054 | << PrettySourceValue << PrettyTargetValue << E->getType() << T |
11055 | << E->getSourceRange() << clang::SourceRange(CC)); |
11056 | } |
11057 | } else { |
11058 | // Otherwise, the implicit conversion may lose precision. |
11059 | DiagnoseImpCast(S&: *this, E, T, CContext: CC, |
11060 | diag: diag::warn_impcast_integer_float_precision); |
11061 | } |
11062 | } |
11063 | } |
11064 | |
11065 | DiagnoseNullConversion(S&: *this, E, T, CC); |
11066 | |
11067 | DiscardMisalignedMemberAddress(T: Target, E); |
11068 | |
11069 | if (Target->isBooleanType()) |
11070 | DiagnoseIntInBoolContext(S&: *this, E); |
11071 | |
11072 | if (!Source->isIntegerType() || !Target->isIntegerType()) |
11073 | return; |
11074 | |
11075 | // TODO: remove this early return once the false positives for constant->bool |
11076 | // in templates, macros, etc, are reduced or removed. |
11077 | if (Target->isSpecificBuiltinType(K: BuiltinType::Bool)) |
11078 | return; |
11079 | |
11080 | if (ObjC().isSignedCharBool(Ty: T) && !Source->isCharType() && |
11081 | !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) { |
11082 | return ObjC().adornBoolConversionDiagWithTernaryFixit( |
11083 | SourceExpr: E, Builder: Diag(Loc: CC, DiagID: diag::warn_impcast_int_to_objc_signed_char_bool) |
11084 | << E->getType()); |
11085 | } |
11086 | |
11087 | IntRange SourceTypeRange = |
11088 | IntRange::forTargetOfCanonicalType(C&: Context, T: Source); |
11089 | IntRange LikelySourceRange = GetExprRange( |
11090 | C&: Context, E, InConstantContext: isConstantEvaluatedContext(), /*Approximate=*/true); |
11091 | IntRange TargetRange = IntRange::forTargetOfCanonicalType(C&: Context, T: Target); |
11092 | |
11093 | if (LikelySourceRange.Width > TargetRange.Width) { |
11094 | // If the source is a constant, use a default-on diagnostic. |
11095 | // TODO: this should happen for bitfield stores, too. |
11096 | Expr::EvalResult Result; |
11097 | if (E->EvaluateAsInt(Result, Ctx: Context, AllowSideEffects: Expr::SE_AllowSideEffects, |
11098 | InConstantContext: isConstantEvaluatedContext())) { |
11099 | llvm::APSInt Value(32); |
11100 | Value = Result.Val.getInt(); |
11101 | |
11102 | if (SourceMgr.isInSystemMacro(loc: CC)) |
11103 | return; |
11104 | |
11105 | std::string PrettySourceValue = toString(I: Value, Radix: 10); |
11106 | std::string PrettyTargetValue = PrettyPrintInRange(Value, Range: TargetRange); |
11107 | |
11108 | DiagRuntimeBehavior(Loc: E->getExprLoc(), Statement: E, |
11109 | PD: PDiag(DiagID: diag::warn_impcast_integer_precision_constant) |
11110 | << PrettySourceValue << PrettyTargetValue |
11111 | << E->getType() << T << E->getSourceRange() |
11112 | << SourceRange(CC)); |
11113 | return; |
11114 | } |
11115 | |
11116 | // People want to build with -Wshorten-64-to-32 and not -Wconversion. |
11117 | if (SourceMgr.isInSystemMacro(loc: CC)) |
11118 | return; |
11119 | |
11120 | if (TargetRange.Width == 32 && Context.getIntWidth(T: E->getType()) == 64) |
11121 | return DiagnoseImpCast(S&: *this, E, T, CContext: CC, diag: diag::warn_impcast_integer_64_32, |
11122 | /* pruneControlFlow */ true); |
11123 | return DiagnoseImpCast(S&: *this, E, T, CContext: CC, |
11124 | diag: diag::warn_impcast_integer_precision); |
11125 | } |
11126 | |
11127 | if (TargetRange.Width > SourceTypeRange.Width) { |
11128 | if (auto *UO = dyn_cast<UnaryOperator>(Val: E)) |
11129 | if (UO->getOpcode() == UO_Minus) |
11130 | if (Source->isUnsignedIntegerType()) { |
11131 | if (Target->isUnsignedIntegerType()) |
11132 | return DiagnoseImpCast(S&: *this, E, T, CContext: CC, |
11133 | diag: diag::warn_impcast_high_order_zero_bits); |
11134 | if (Target->isSignedIntegerType()) |
11135 | return DiagnoseImpCast(S&: *this, E, T, CContext: CC, |
11136 | diag: diag::warn_impcast_nonnegative_result); |
11137 | } |
11138 | } |
11139 | |
11140 | if (TargetRange.Width == LikelySourceRange.Width && |
11141 | !TargetRange.NonNegative && LikelySourceRange.NonNegative && |
11142 | Source->isSignedIntegerType()) { |
11143 | // Warn when doing a signed to signed conversion, warn if the positive |
11144 | // source value is exactly the width of the target type, which will |
11145 | // cause a negative value to be stored. |
11146 | |
11147 | Expr::EvalResult Result; |
11148 | if (E->EvaluateAsInt(Result, Ctx: Context, AllowSideEffects: Expr::SE_AllowSideEffects) && |
11149 | !SourceMgr.isInSystemMacro(loc: CC)) { |
11150 | llvm::APSInt Value = Result.Val.getInt(); |
11151 | if (isSameWidthConstantConversion(S&: *this, E, T, CC)) { |
11152 | std::string PrettySourceValue = toString(I: Value, Radix: 10); |
11153 | std::string PrettyTargetValue = PrettyPrintInRange(Value, Range: TargetRange); |
11154 | |
11155 | Diag(Loc: E->getExprLoc(), |
11156 | PD: PDiag(DiagID: diag::warn_impcast_integer_precision_constant) |
11157 | << PrettySourceValue << PrettyTargetValue << E->getType() << T |
11158 | << E->getSourceRange() << SourceRange(CC)); |
11159 | return; |
11160 | } |
11161 | } |
11162 | |
11163 | // Fall through for non-constants to give a sign conversion warning. |
11164 | } |
11165 | |
11166 | if ((!isa<EnumType>(Val: Target) || !isa<EnumType>(Val: Source)) && |
11167 | ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) || |
11168 | (!TargetRange.NonNegative && LikelySourceRange.NonNegative && |
11169 | LikelySourceRange.Width == TargetRange.Width))) { |
11170 | if (SourceMgr.isInSystemMacro(loc: CC)) |
11171 | return; |
11172 | |
11173 | if (SourceBT && SourceBT->isInteger() && TargetBT && |
11174 | TargetBT->isInteger() && |
11175 | Source->isSignedIntegerType() == Target->isSignedIntegerType()) { |
11176 | return; |
11177 | } |
11178 | |
11179 | unsigned DiagID = diag::warn_impcast_integer_sign; |
11180 | |
11181 | // Traditionally, gcc has warned about this under -Wsign-compare. |
11182 | // We also want to warn about it in -Wconversion. |
11183 | // So if -Wconversion is off, use a completely identical diagnostic |
11184 | // in the sign-compare group. |
11185 | // The conditional-checking code will |
11186 | if (ICContext) { |
11187 | DiagID = diag::warn_impcast_integer_sign_conditional; |
11188 | *ICContext = true; |
11189 | } |
11190 | |
11191 | return DiagnoseImpCast(S&: *this, E, T, CContext: CC, diag: DiagID); |
11192 | } |
11193 | |
11194 | // Diagnose conversions between different enumeration types. |
11195 | // In C, we pretend that the type of an EnumConstantDecl is its enumeration |
11196 | // type, to give us better diagnostics. |
11197 | QualType SourceType = E->getEnumCoercedType(Ctx: Context); |
11198 | Source = Context.getCanonicalType(T: SourceType).getTypePtr(); |
11199 | |
11200 | if (const EnumType *SourceEnum = Source->getAs<EnumType>()) |
11201 | if (const EnumType *TargetEnum = Target->getAs<EnumType>()) |
11202 | if (SourceEnum->getDecl()->hasNameForLinkage() && |
11203 | TargetEnum->getDecl()->hasNameForLinkage() && |
11204 | SourceEnum != TargetEnum) { |
11205 | if (SourceMgr.isInSystemMacro(loc: CC)) |
11206 | return; |
11207 | |
11208 | return DiagnoseImpCast(S&: *this, E, SourceType, T, CContext: CC, |
11209 | diag: diag::warn_impcast_different_enum_types); |
11210 | } |
11211 | } |
11212 | |
11213 | static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, |
11214 | SourceLocation CC, QualType T); |
11215 | |
11216 | static void CheckConditionalOperand(Sema &S, Expr *E, QualType T, |
11217 | SourceLocation CC, bool &ICContext) { |
11218 | E = E->IgnoreParenImpCasts(); |
11219 | // Diagnose incomplete type for second or third operand in C. |
11220 | if (!S.getLangOpts().CPlusPlus && E->getType()->isRecordType()) |
11221 | S.RequireCompleteExprType(E, DiagID: diag::err_incomplete_type); |
11222 | |
11223 | if (auto *CO = dyn_cast<AbstractConditionalOperator>(Val: E)) |
11224 | return CheckConditionalOperator(S, E: CO, CC, T); |
11225 | |
11226 | AnalyzeImplicitConversions(S, E, CC); |
11227 | if (E->getType() != T) |
11228 | return S.CheckImplicitConversion(E, T, CC, ICContext: &ICContext); |
11229 | } |
11230 | |
11231 | static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, |
11232 | SourceLocation CC, QualType T) { |
11233 | AnalyzeImplicitConversions(S, E: E->getCond(), CC: E->getQuestionLoc()); |
11234 | |
11235 | Expr *TrueExpr = E->getTrueExpr(); |
11236 | if (auto *BCO = dyn_cast<BinaryConditionalOperator>(Val: E)) |
11237 | TrueExpr = BCO->getCommon(); |
11238 | |
11239 | bool Suspicious = false; |
11240 | CheckConditionalOperand(S, E: TrueExpr, T, CC, ICContext&: Suspicious); |
11241 | CheckConditionalOperand(S, E: E->getFalseExpr(), T, CC, ICContext&: Suspicious); |
11242 | |
11243 | if (T->isBooleanType()) |
11244 | DiagnoseIntInBoolContext(S, E); |
11245 | |
11246 | // If -Wconversion would have warned about either of the candidates |
11247 | // for a signedness conversion to the context type... |
11248 | if (!Suspicious) return; |
11249 | |
11250 | // ...but it's currently ignored... |
11251 | if (!S.Diags.isIgnored(DiagID: diag::warn_impcast_integer_sign_conditional, Loc: CC)) |
11252 | return; |
11253 | |
11254 | // ...then check whether it would have warned about either of the |
11255 | // candidates for a signedness conversion to the condition type. |
11256 | if (E->getType() == T) return; |
11257 | |
11258 | Suspicious = false; |
11259 | S.CheckImplicitConversion(E: TrueExpr->IgnoreParenImpCasts(), T: E->getType(), CC, |
11260 | ICContext: &Suspicious); |
11261 | if (!Suspicious) |
11262 | S.CheckImplicitConversion(E: E->getFalseExpr()->IgnoreParenImpCasts(), |
11263 | T: E->getType(), CC, ICContext: &Suspicious); |
11264 | } |
11265 | |
11266 | /// Check conversion of given expression to boolean. |
11267 | /// Input argument E is a logical expression. |
11268 | static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) { |
11269 | // Run the bool-like conversion checks only for C since there bools are |
11270 | // still not used as the return type from "boolean" operators or as the input |
11271 | // type for conditional operators. |
11272 | if (S.getLangOpts().CPlusPlus) |
11273 | return; |
11274 | if (E->IgnoreParenImpCasts()->getType()->isAtomicType()) |
11275 | return; |
11276 | S.CheckImplicitConversion(E: E->IgnoreParenImpCasts(), T: S.Context.BoolTy, CC); |
11277 | } |
11278 | |
11279 | namespace { |
11280 | struct AnalyzeImplicitConversionsWorkItem { |
11281 | Expr *E; |
11282 | SourceLocation CC; |
11283 | bool IsListInit; |
11284 | }; |
11285 | } |
11286 | |
11287 | /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions |
11288 | /// that should be visited are added to WorkList. |
11289 | static void AnalyzeImplicitConversions( |
11290 | Sema &S, AnalyzeImplicitConversionsWorkItem Item, |
11291 | llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) { |
11292 | Expr *OrigE = Item.E; |
11293 | SourceLocation CC = Item.CC; |
11294 | |
11295 | QualType T = OrigE->getType(); |
11296 | Expr *E = OrigE->IgnoreParenImpCasts(); |
11297 | |
11298 | // Propagate whether we are in a C++ list initialization expression. |
11299 | // If so, we do not issue warnings for implicit int-float conversion |
11300 | // precision loss, because C++11 narrowing already handles it. |
11301 | bool IsListInit = Item.IsListInit || |
11302 | (isa<InitListExpr>(Val: OrigE) && S.getLangOpts().CPlusPlus); |
11303 | |
11304 | if (E->isTypeDependent() || E->isValueDependent()) |
11305 | return; |
11306 | |
11307 | Expr *SourceExpr = E; |
11308 | // Examine, but don't traverse into the source expression of an |
11309 | // OpaqueValueExpr, since it may have multiple parents and we don't want to |
11310 | // emit duplicate diagnostics. Its fine to examine the form or attempt to |
11311 | // evaluate it in the context of checking the specific conversion to T though. |
11312 | if (auto *OVE = dyn_cast<OpaqueValueExpr>(Val: E)) |
11313 | if (auto *Src = OVE->getSourceExpr()) |
11314 | SourceExpr = Src; |
11315 | |
11316 | if (const auto *UO = dyn_cast<UnaryOperator>(Val: SourceExpr)) |
11317 | if (UO->getOpcode() == UO_Not && |
11318 | UO->getSubExpr()->isKnownToHaveBooleanValue()) |
11319 | S.Diag(Loc: UO->getBeginLoc(), DiagID: diag::warn_bitwise_negation_bool) |
11320 | << OrigE->getSourceRange() << T->isBooleanType() |
11321 | << FixItHint::CreateReplacement(RemoveRange: UO->getBeginLoc(), Code: "!" ); |
11322 | |
11323 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: SourceExpr)) |
11324 | if ((BO->getOpcode() == BO_And || BO->getOpcode() == BO_Or) && |
11325 | BO->getLHS()->isKnownToHaveBooleanValue() && |
11326 | BO->getRHS()->isKnownToHaveBooleanValue() && |
11327 | BO->getLHS()->HasSideEffects(Ctx: S.Context) && |
11328 | BO->getRHS()->HasSideEffects(Ctx: S.Context)) { |
11329 | SourceManager &SM = S.getSourceManager(); |
11330 | const LangOptions &LO = S.getLangOpts(); |
11331 | SourceLocation BLoc = BO->getOperatorLoc(); |
11332 | SourceLocation ELoc = Lexer::getLocForEndOfToken(Loc: BLoc, Offset: 0, SM, LangOpts: LO); |
11333 | StringRef SR = clang::Lexer::getSourceText( |
11334 | Range: clang::CharSourceRange::getTokenRange(B: BLoc, E: ELoc), SM, LangOpts: LO); |
11335 | // To reduce false positives, only issue the diagnostic if the operator |
11336 | // is explicitly spelled as a punctuator. This suppresses the diagnostic |
11337 | // when using 'bitand' or 'bitor' either as keywords in C++ or as macros |
11338 | // in C, along with other macro spellings the user might invent. |
11339 | if (SR.str() == "&" || SR.str() == "|" ) { |
11340 | |
11341 | S.Diag(Loc: BO->getBeginLoc(), DiagID: diag::warn_bitwise_instead_of_logical) |
11342 | << (BO->getOpcode() == BO_And ? "&" : "|" ) |
11343 | << OrigE->getSourceRange() |
11344 | << FixItHint::CreateReplacement( |
11345 | RemoveRange: BO->getOperatorLoc(), |
11346 | Code: (BO->getOpcode() == BO_And ? "&&" : "||" )); |
11347 | S.Diag(Loc: BO->getBeginLoc(), DiagID: diag::note_cast_operand_to_int); |
11348 | } |
11349 | } |
11350 | |
11351 | // For conditional operators, we analyze the arguments as if they |
11352 | // were being fed directly into the output. |
11353 | if (auto *CO = dyn_cast<AbstractConditionalOperator>(Val: SourceExpr)) { |
11354 | CheckConditionalOperator(S, E: CO, CC, T); |
11355 | return; |
11356 | } |
11357 | |
11358 | // Check implicit argument conversions for function calls. |
11359 | if (CallExpr *Call = dyn_cast<CallExpr>(Val: SourceExpr)) |
11360 | CheckImplicitArgumentConversions(S, TheCall: Call, CC); |
11361 | |
11362 | // Go ahead and check any implicit conversions we might have skipped. |
11363 | // The non-canonical typecheck is just an optimization; |
11364 | // CheckImplicitConversion will filter out dead implicit conversions. |
11365 | if (SourceExpr->getType() != T) |
11366 | S.CheckImplicitConversion(E: SourceExpr, T, CC, ICContext: nullptr, IsListInit); |
11367 | |
11368 | // Now continue drilling into this expression. |
11369 | |
11370 | if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Val: E)) { |
11371 | // The bound subexpressions in a PseudoObjectExpr are not reachable |
11372 | // as transitive children. |
11373 | // FIXME: Use a more uniform representation for this. |
11374 | for (auto *SE : POE->semantics()) |
11375 | if (auto *OVE = dyn_cast<OpaqueValueExpr>(Val: SE)) |
11376 | WorkList.push_back(Elt: {.E: OVE->getSourceExpr(), .CC: CC, .IsListInit: IsListInit}); |
11377 | } |
11378 | |
11379 | // Skip past explicit casts. |
11380 | if (auto *CE = dyn_cast<ExplicitCastExpr>(Val: E)) { |
11381 | E = CE->getSubExpr()->IgnoreParenImpCasts(); |
11382 | if (!CE->getType()->isVoidType() && E->getType()->isAtomicType()) |
11383 | S.Diag(Loc: E->getBeginLoc(), DiagID: diag::warn_atomic_implicit_seq_cst); |
11384 | WorkList.push_back(Elt: {.E: E, .CC: CC, .IsListInit: IsListInit}); |
11385 | return; |
11386 | } |
11387 | |
11388 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) { |
11389 | // Do a somewhat different check with comparison operators. |
11390 | if (BO->isComparisonOp()) |
11391 | return AnalyzeComparison(S, E: BO); |
11392 | |
11393 | // And with simple assignments. |
11394 | if (BO->getOpcode() == BO_Assign) |
11395 | return AnalyzeAssignment(S, E: BO); |
11396 | // And with compound assignments. |
11397 | if (BO->isAssignmentOp()) |
11398 | return AnalyzeCompoundAssignment(S, E: BO); |
11399 | } |
11400 | |
11401 | // These break the otherwise-useful invariant below. Fortunately, |
11402 | // we don't really need to recurse into them, because any internal |
11403 | // expressions should have been analyzed already when they were |
11404 | // built into statements. |
11405 | if (isa<StmtExpr>(Val: E)) return; |
11406 | |
11407 | // Don't descend into unevaluated contexts. |
11408 | if (isa<UnaryExprOrTypeTraitExpr>(Val: E)) return; |
11409 | |
11410 | // Now just recurse over the expression's children. |
11411 | CC = E->getExprLoc(); |
11412 | BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E); |
11413 | bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd; |
11414 | for (Stmt *SubStmt : E->children()) { |
11415 | Expr *ChildExpr = dyn_cast_or_null<Expr>(Val: SubStmt); |
11416 | if (!ChildExpr) |
11417 | continue; |
11418 | |
11419 | if (auto *CSE = dyn_cast<CoroutineSuspendExpr>(Val: E)) |
11420 | if (ChildExpr == CSE->getOperand()) |
11421 | // Do not recurse over a CoroutineSuspendExpr's operand. |
11422 | // The operand is also a subexpression of getCommonExpr(), and |
11423 | // recursing into it directly would produce duplicate diagnostics. |
11424 | continue; |
11425 | |
11426 | if (IsLogicalAndOperator && |
11427 | isa<StringLiteral>(Val: ChildExpr->IgnoreParenImpCasts())) |
11428 | // Ignore checking string literals that are in logical and operators. |
11429 | // This is a common pattern for asserts. |
11430 | continue; |
11431 | WorkList.push_back(Elt: {.E: ChildExpr, .CC: CC, .IsListInit: IsListInit}); |
11432 | } |
11433 | |
11434 | if (BO && BO->isLogicalOp()) { |
11435 | Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts(); |
11436 | if (!IsLogicalAndOperator || !isa<StringLiteral>(Val: SubExpr)) |
11437 | ::CheckBoolLikeConversion(S, E: SubExpr, CC: BO->getExprLoc()); |
11438 | |
11439 | SubExpr = BO->getRHS()->IgnoreParenImpCasts(); |
11440 | if (!IsLogicalAndOperator || !isa<StringLiteral>(Val: SubExpr)) |
11441 | ::CheckBoolLikeConversion(S, E: SubExpr, CC: BO->getExprLoc()); |
11442 | } |
11443 | |
11444 | if (const UnaryOperator *U = dyn_cast<UnaryOperator>(Val: E)) { |
11445 | if (U->getOpcode() == UO_LNot) { |
11446 | ::CheckBoolLikeConversion(S, E: U->getSubExpr(), CC); |
11447 | } else if (U->getOpcode() != UO_AddrOf) { |
11448 | if (U->getSubExpr()->getType()->isAtomicType()) |
11449 | S.Diag(Loc: U->getSubExpr()->getBeginLoc(), |
11450 | DiagID: diag::warn_atomic_implicit_seq_cst); |
11451 | } |
11452 | } |
11453 | } |
11454 | |
11455 | /// AnalyzeImplicitConversions - Find and report any interesting |
11456 | /// implicit conversions in the given expression. There are a couple |
11457 | /// of competing diagnostics here, -Wconversion and -Wsign-compare. |
11458 | static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC, |
11459 | bool IsListInit/*= false*/) { |
11460 | llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList; |
11461 | WorkList.push_back(Elt: {.E: OrigE, .CC: CC, .IsListInit: IsListInit}); |
11462 | while (!WorkList.empty()) |
11463 | AnalyzeImplicitConversions(S, Item: WorkList.pop_back_val(), WorkList); |
11464 | } |
11465 | |
11466 | // Helper function for Sema::DiagnoseAlwaysNonNullPointer. |
11467 | // Returns true when emitting a warning about taking the address of a reference. |
11468 | static bool CheckForReference(Sema &SemaRef, const Expr *E, |
11469 | const PartialDiagnostic &PD) { |
11470 | E = E->IgnoreParenImpCasts(); |
11471 | |
11472 | const FunctionDecl *FD = nullptr; |
11473 | |
11474 | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) { |
11475 | if (!DRE->getDecl()->getType()->isReferenceType()) |
11476 | return false; |
11477 | } else if (const MemberExpr *M = dyn_cast<MemberExpr>(Val: E)) { |
11478 | if (!M->getMemberDecl()->getType()->isReferenceType()) |
11479 | return false; |
11480 | } else if (const CallExpr *Call = dyn_cast<CallExpr>(Val: E)) { |
11481 | if (!Call->getCallReturnType(Ctx: SemaRef.Context)->isReferenceType()) |
11482 | return false; |
11483 | FD = Call->getDirectCallee(); |
11484 | } else { |
11485 | return false; |
11486 | } |
11487 | |
11488 | SemaRef.Diag(Loc: E->getExprLoc(), PD); |
11489 | |
11490 | // If possible, point to location of function. |
11491 | if (FD) { |
11492 | SemaRef.Diag(Loc: FD->getLocation(), DiagID: diag::note_reference_is_return_value) << FD; |
11493 | } |
11494 | |
11495 | return true; |
11496 | } |
11497 | |
11498 | // Returns true if the SourceLocation is expanded from any macro body. |
11499 | // Returns false if the SourceLocation is invalid, is from not in a macro |
11500 | // expansion, or is from expanded from a top-level macro argument. |
11501 | static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) { |
11502 | if (Loc.isInvalid()) |
11503 | return false; |
11504 | |
11505 | while (Loc.isMacroID()) { |
11506 | if (SM.isMacroBodyExpansion(Loc)) |
11507 | return true; |
11508 | Loc = SM.getImmediateMacroCallerLoc(Loc); |
11509 | } |
11510 | |
11511 | return false; |
11512 | } |
11513 | |
11514 | void Sema::DiagnoseAlwaysNonNullPointer(Expr *E, |
11515 | Expr::NullPointerConstantKind NullKind, |
11516 | bool IsEqual, SourceRange Range) { |
11517 | if (!E) |
11518 | return; |
11519 | |
11520 | // Don't warn inside macros. |
11521 | if (E->getExprLoc().isMacroID()) { |
11522 | const SourceManager &SM = getSourceManager(); |
11523 | if (IsInAnyMacroBody(SM, Loc: E->getExprLoc()) || |
11524 | IsInAnyMacroBody(SM, Loc: Range.getBegin())) |
11525 | return; |
11526 | } |
11527 | E = E->IgnoreImpCasts(); |
11528 | |
11529 | const bool IsCompare = NullKind != Expr::NPCK_NotNull; |
11530 | |
11531 | if (isa<CXXThisExpr>(Val: E)) { |
11532 | unsigned DiagID = IsCompare ? diag::warn_this_null_compare |
11533 | : diag::warn_this_bool_conversion; |
11534 | Diag(Loc: E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual; |
11535 | return; |
11536 | } |
11537 | |
11538 | bool IsAddressOf = false; |
11539 | |
11540 | if (auto *UO = dyn_cast<UnaryOperator>(Val: E->IgnoreParens())) { |
11541 | if (UO->getOpcode() != UO_AddrOf) |
11542 | return; |
11543 | IsAddressOf = true; |
11544 | E = UO->getSubExpr(); |
11545 | } |
11546 | |
11547 | if (IsAddressOf) { |
11548 | unsigned DiagID = IsCompare |
11549 | ? diag::warn_address_of_reference_null_compare |
11550 | : diag::warn_address_of_reference_bool_conversion; |
11551 | PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range |
11552 | << IsEqual; |
11553 | if (CheckForReference(SemaRef&: *this, E, PD)) { |
11554 | return; |
11555 | } |
11556 | } |
11557 | |
11558 | auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) { |
11559 | bool IsParam = isa<NonNullAttr>(Val: NonnullAttr); |
11560 | std::string Str; |
11561 | llvm::raw_string_ostream S(Str); |
11562 | E->printPretty(OS&: S, Helper: nullptr, Policy: getPrintingPolicy()); |
11563 | unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare |
11564 | : diag::warn_cast_nonnull_to_bool; |
11565 | Diag(Loc: E->getExprLoc(), DiagID) << IsParam << S.str() |
11566 | << E->getSourceRange() << Range << IsEqual; |
11567 | Diag(Loc: NonnullAttr->getLocation(), DiagID: diag::note_declared_nonnull) << IsParam; |
11568 | }; |
11569 | |
11570 | // If we have a CallExpr that is tagged with returns_nonnull, we can complain. |
11571 | if (auto *Call = dyn_cast<CallExpr>(Val: E->IgnoreParenImpCasts())) { |
11572 | if (auto *Callee = Call->getDirectCallee()) { |
11573 | if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) { |
11574 | ComplainAboutNonnullParamOrCall(A); |
11575 | return; |
11576 | } |
11577 | } |
11578 | } |
11579 | |
11580 | // Complain if we are converting a lambda expression to a boolean value |
11581 | // outside of instantiation. |
11582 | if (!inTemplateInstantiation()) { |
11583 | if (const auto *MCallExpr = dyn_cast<CXXMemberCallExpr>(Val: E)) { |
11584 | if (const auto *MRecordDecl = MCallExpr->getRecordDecl(); |
11585 | MRecordDecl && MRecordDecl->isLambda()) { |
11586 | Diag(Loc: E->getExprLoc(), DiagID: diag::warn_impcast_pointer_to_bool) |
11587 | << /*LambdaPointerConversionOperatorType=*/3 |
11588 | << MRecordDecl->getSourceRange() << Range << IsEqual; |
11589 | return; |
11590 | } |
11591 | } |
11592 | } |
11593 | |
11594 | // Expect to find a single Decl. Skip anything more complicated. |
11595 | ValueDecl *D = nullptr; |
11596 | if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(Val: E)) { |
11597 | D = R->getDecl(); |
11598 | } else if (MemberExpr *M = dyn_cast<MemberExpr>(Val: E)) { |
11599 | D = M->getMemberDecl(); |
11600 | } |
11601 | |
11602 | // Weak Decls can be null. |
11603 | if (!D || D->isWeak()) |
11604 | return; |
11605 | |
11606 | // Check for parameter decl with nonnull attribute |
11607 | if (const auto* PV = dyn_cast<ParmVarDecl>(Val: D)) { |
11608 | if (getCurFunction() && |
11609 | !getCurFunction()->ModifiedNonNullParams.count(Ptr: PV)) { |
11610 | if (const Attr *A = PV->getAttr<NonNullAttr>()) { |
11611 | ComplainAboutNonnullParamOrCall(A); |
11612 | return; |
11613 | } |
11614 | |
11615 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: PV->getDeclContext())) { |
11616 | // Skip function template not specialized yet. |
11617 | if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) |
11618 | return; |
11619 | auto ParamIter = llvm::find(Range: FD->parameters(), Val: PV); |
11620 | assert(ParamIter != FD->param_end()); |
11621 | unsigned ParamNo = std::distance(first: FD->param_begin(), last: ParamIter); |
11622 | |
11623 | for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) { |
11624 | if (!NonNull->args_size()) { |
11625 | ComplainAboutNonnullParamOrCall(NonNull); |
11626 | return; |
11627 | } |
11628 | |
11629 | for (const ParamIdx &ArgNo : NonNull->args()) { |
11630 | if (ArgNo.getASTIndex() == ParamNo) { |
11631 | ComplainAboutNonnullParamOrCall(NonNull); |
11632 | return; |
11633 | } |
11634 | } |
11635 | } |
11636 | } |
11637 | } |
11638 | } |
11639 | |
11640 | QualType T = D->getType(); |
11641 | const bool IsArray = T->isArrayType(); |
11642 | const bool IsFunction = T->isFunctionType(); |
11643 | |
11644 | // Address of function is used to silence the function warning. |
11645 | if (IsAddressOf && IsFunction) { |
11646 | return; |
11647 | } |
11648 | |
11649 | // Found nothing. |
11650 | if (!IsAddressOf && !IsFunction && !IsArray) |
11651 | return; |
11652 | |
11653 | // Pretty print the expression for the diagnostic. |
11654 | std::string Str; |
11655 | llvm::raw_string_ostream S(Str); |
11656 | E->printPretty(OS&: S, Helper: nullptr, Policy: getPrintingPolicy()); |
11657 | |
11658 | unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare |
11659 | : diag::warn_impcast_pointer_to_bool; |
11660 | enum { |
11661 | AddressOf, |
11662 | FunctionPointer, |
11663 | ArrayPointer |
11664 | } DiagType; |
11665 | if (IsAddressOf) |
11666 | DiagType = AddressOf; |
11667 | else if (IsFunction) |
11668 | DiagType = FunctionPointer; |
11669 | else if (IsArray) |
11670 | DiagType = ArrayPointer; |
11671 | else |
11672 | llvm_unreachable("Could not determine diagnostic." ); |
11673 | Diag(Loc: E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange() |
11674 | << Range << IsEqual; |
11675 | |
11676 | if (!IsFunction) |
11677 | return; |
11678 | |
11679 | // Suggest '&' to silence the function warning. |
11680 | Diag(Loc: E->getExprLoc(), DiagID: diag::note_function_warning_silence) |
11681 | << FixItHint::CreateInsertion(InsertionLoc: E->getBeginLoc(), Code: "&" ); |
11682 | |
11683 | // Check to see if '()' fixit should be emitted. |
11684 | QualType ReturnType; |
11685 | UnresolvedSet<4> NonTemplateOverloads; |
11686 | tryExprAsCall(E&: *E, ZeroArgCallReturnTy&: ReturnType, NonTemplateOverloads); |
11687 | if (ReturnType.isNull()) |
11688 | return; |
11689 | |
11690 | if (IsCompare) { |
11691 | // There are two cases here. If there is null constant, the only suggest |
11692 | // for a pointer return type. If the null is 0, then suggest if the return |
11693 | // type is a pointer or an integer type. |
11694 | if (!ReturnType->isPointerType()) { |
11695 | if (NullKind == Expr::NPCK_ZeroExpression || |
11696 | NullKind == Expr::NPCK_ZeroLiteral) { |
11697 | if (!ReturnType->isIntegerType()) |
11698 | return; |
11699 | } else { |
11700 | return; |
11701 | } |
11702 | } |
11703 | } else { // !IsCompare |
11704 | // For function to bool, only suggest if the function pointer has bool |
11705 | // return type. |
11706 | if (!ReturnType->isSpecificBuiltinType(K: BuiltinType::Bool)) |
11707 | return; |
11708 | } |
11709 | Diag(Loc: E->getExprLoc(), DiagID: diag::note_function_to_function_call) |
11710 | << FixItHint::CreateInsertion(InsertionLoc: getLocForEndOfToken(Loc: E->getEndLoc()), Code: "()" ); |
11711 | } |
11712 | |
11713 | void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) { |
11714 | // Don't diagnose in unevaluated contexts. |
11715 | if (isUnevaluatedContext()) |
11716 | return; |
11717 | |
11718 | // Don't diagnose for value- or type-dependent expressions. |
11719 | if (E->isTypeDependent() || E->isValueDependent()) |
11720 | return; |
11721 | |
11722 | // Check for array bounds violations in cases where the check isn't triggered |
11723 | // elsewhere for other Expr types (like BinaryOperators), e.g. when an |
11724 | // ArraySubscriptExpr is on the RHS of a variable initialization. |
11725 | CheckArrayAccess(E); |
11726 | |
11727 | // This is not the right CC for (e.g.) a variable initialization. |
11728 | AnalyzeImplicitConversions(S&: *this, OrigE: E, CC); |
11729 | } |
11730 | |
11731 | void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) { |
11732 | ::CheckBoolLikeConversion(S&: *this, E, CC); |
11733 | } |
11734 | |
11735 | void Sema::CheckForIntOverflow (const Expr *E) { |
11736 | // Use a work list to deal with nested struct initializers. |
11737 | SmallVector<const Expr *, 2> Exprs(1, E); |
11738 | |
11739 | do { |
11740 | const Expr *OriginalE = Exprs.pop_back_val(); |
11741 | const Expr *E = OriginalE->IgnoreParenCasts(); |
11742 | |
11743 | if (isa<BinaryOperator, UnaryOperator>(Val: E)) { |
11744 | E->EvaluateForOverflow(Ctx: Context); |
11745 | continue; |
11746 | } |
11747 | |
11748 | if (const auto *InitList = dyn_cast<InitListExpr>(Val: OriginalE)) |
11749 | Exprs.append(in_start: InitList->inits().begin(), in_end: InitList->inits().end()); |
11750 | else if (isa<ObjCBoxedExpr>(Val: OriginalE)) |
11751 | E->EvaluateForOverflow(Ctx: Context); |
11752 | else if (const auto *Call = dyn_cast<CallExpr>(Val: E)) |
11753 | Exprs.append(in_start: Call->arg_begin(), in_end: Call->arg_end()); |
11754 | else if (const auto *Message = dyn_cast<ObjCMessageExpr>(Val: E)) |
11755 | Exprs.append(in_start: Message->arg_begin(), in_end: Message->arg_end()); |
11756 | else if (const auto *Construct = dyn_cast<CXXConstructExpr>(Val: E)) |
11757 | Exprs.append(in_start: Construct->arg_begin(), in_end: Construct->arg_end()); |
11758 | else if (const auto *Temporary = dyn_cast<CXXBindTemporaryExpr>(Val: E)) |
11759 | Exprs.push_back(Elt: Temporary->getSubExpr()); |
11760 | else if (const auto *Array = dyn_cast<ArraySubscriptExpr>(Val: E)) |
11761 | Exprs.push_back(Elt: Array->getIdx()); |
11762 | else if (const auto *Compound = dyn_cast<CompoundLiteralExpr>(Val: E)) |
11763 | Exprs.push_back(Elt: Compound->getInitializer()); |
11764 | else if (const auto *New = dyn_cast<CXXNewExpr>(Val: E); |
11765 | New && New->isArray()) { |
11766 | if (auto ArraySize = New->getArraySize()) |
11767 | Exprs.push_back(Elt: *ArraySize); |
11768 | } |
11769 | } while (!Exprs.empty()); |
11770 | } |
11771 | |
11772 | namespace { |
11773 | |
11774 | /// Visitor for expressions which looks for unsequenced operations on the |
11775 | /// same object. |
11776 | class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> { |
11777 | using Base = ConstEvaluatedExprVisitor<SequenceChecker>; |
11778 | |
11779 | /// A tree of sequenced regions within an expression. Two regions are |
11780 | /// unsequenced if one is an ancestor or a descendent of the other. When we |
11781 | /// finish processing an expression with sequencing, such as a comma |
11782 | /// expression, we fold its tree nodes into its parent, since they are |
11783 | /// unsequenced with respect to nodes we will visit later. |
11784 | class SequenceTree { |
11785 | struct Value { |
11786 | explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {} |
11787 | unsigned Parent : 31; |
11788 | LLVM_PREFERRED_TYPE(bool) |
11789 | unsigned Merged : 1; |
11790 | }; |
11791 | SmallVector<Value, 8> Values; |
11792 | |
11793 | public: |
11794 | /// A region within an expression which may be sequenced with respect |
11795 | /// to some other region. |
11796 | class Seq { |
11797 | friend class SequenceTree; |
11798 | |
11799 | unsigned Index; |
11800 | |
11801 | explicit Seq(unsigned N) : Index(N) {} |
11802 | |
11803 | public: |
11804 | Seq() : Index(0) {} |
11805 | }; |
11806 | |
11807 | SequenceTree() { Values.push_back(Elt: Value(0)); } |
11808 | Seq root() const { return Seq(0); } |
11809 | |
11810 | /// Create a new sequence of operations, which is an unsequenced |
11811 | /// subset of \p Parent. This sequence of operations is sequenced with |
11812 | /// respect to other children of \p Parent. |
11813 | Seq allocate(Seq Parent) { |
11814 | Values.push_back(Elt: Value(Parent.Index)); |
11815 | return Seq(Values.size() - 1); |
11816 | } |
11817 | |
11818 | /// Merge a sequence of operations into its parent. |
11819 | void merge(Seq S) { |
11820 | Values[S.Index].Merged = true; |
11821 | } |
11822 | |
11823 | /// Determine whether two operations are unsequenced. This operation |
11824 | /// is asymmetric: \p Cur should be the more recent sequence, and \p Old |
11825 | /// should have been merged into its parent as appropriate. |
11826 | bool isUnsequenced(Seq Cur, Seq Old) { |
11827 | unsigned C = representative(K: Cur.Index); |
11828 | unsigned Target = representative(K: Old.Index); |
11829 | while (C >= Target) { |
11830 | if (C == Target) |
11831 | return true; |
11832 | C = Values[C].Parent; |
11833 | } |
11834 | return false; |
11835 | } |
11836 | |
11837 | private: |
11838 | /// Pick a representative for a sequence. |
11839 | unsigned representative(unsigned K) { |
11840 | if (Values[K].Merged) |
11841 | // Perform path compression as we go. |
11842 | return Values[K].Parent = representative(K: Values[K].Parent); |
11843 | return K; |
11844 | } |
11845 | }; |
11846 | |
11847 | /// An object for which we can track unsequenced uses. |
11848 | using Object = const NamedDecl *; |
11849 | |
11850 | /// Different flavors of object usage which we track. We only track the |
11851 | /// least-sequenced usage of each kind. |
11852 | enum UsageKind { |
11853 | /// A read of an object. Multiple unsequenced reads are OK. |
11854 | UK_Use, |
11855 | |
11856 | /// A modification of an object which is sequenced before the value |
11857 | /// computation of the expression, such as ++n in C++. |
11858 | UK_ModAsValue, |
11859 | |
11860 | /// A modification of an object which is not sequenced before the value |
11861 | /// computation of the expression, such as n++. |
11862 | UK_ModAsSideEffect, |
11863 | |
11864 | UK_Count = UK_ModAsSideEffect + 1 |
11865 | }; |
11866 | |
11867 | /// Bundle together a sequencing region and the expression corresponding |
11868 | /// to a specific usage. One Usage is stored for each usage kind in UsageInfo. |
11869 | struct Usage { |
11870 | const Expr *UsageExpr = nullptr; |
11871 | SequenceTree::Seq Seq; |
11872 | |
11873 | Usage() = default; |
11874 | }; |
11875 | |
11876 | struct UsageInfo { |
11877 | Usage Uses[UK_Count]; |
11878 | |
11879 | /// Have we issued a diagnostic for this object already? |
11880 | bool Diagnosed = false; |
11881 | |
11882 | UsageInfo(); |
11883 | }; |
11884 | using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>; |
11885 | |
11886 | Sema &SemaRef; |
11887 | |
11888 | /// Sequenced regions within the expression. |
11889 | SequenceTree Tree; |
11890 | |
11891 | /// Declaration modifications and references which we have seen. |
11892 | UsageInfoMap UsageMap; |
11893 | |
11894 | /// The region we are currently within. |
11895 | SequenceTree::Seq Region; |
11896 | |
11897 | /// Filled in with declarations which were modified as a side-effect |
11898 | /// (that is, post-increment operations). |
11899 | SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr; |
11900 | |
11901 | /// Expressions to check later. We defer checking these to reduce |
11902 | /// stack usage. |
11903 | SmallVectorImpl<const Expr *> &WorkList; |
11904 | |
11905 | /// RAII object wrapping the visitation of a sequenced subexpression of an |
11906 | /// expression. At the end of this process, the side-effects of the evaluation |
11907 | /// become sequenced with respect to the value computation of the result, so |
11908 | /// we downgrade any UK_ModAsSideEffect within the evaluation to |
11909 | /// UK_ModAsValue. |
11910 | struct SequencedSubexpression { |
11911 | SequencedSubexpression(SequenceChecker &Self) |
11912 | : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) { |
11913 | Self.ModAsSideEffect = &ModAsSideEffect; |
11914 | } |
11915 | |
11916 | ~SequencedSubexpression() { |
11917 | for (const std::pair<Object, Usage> &M : llvm::reverse(C&: ModAsSideEffect)) { |
11918 | // Add a new usage with usage kind UK_ModAsValue, and then restore |
11919 | // the previous usage with UK_ModAsSideEffect (thus clearing it if |
11920 | // the previous one was empty). |
11921 | UsageInfo &UI = Self.UsageMap[M.first]; |
11922 | auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect]; |
11923 | Self.addUsage(O: M.first, UI, UsageExpr: SideEffectUsage.UsageExpr, UK: UK_ModAsValue); |
11924 | SideEffectUsage = M.second; |
11925 | } |
11926 | Self.ModAsSideEffect = OldModAsSideEffect; |
11927 | } |
11928 | |
11929 | SequenceChecker &Self; |
11930 | SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect; |
11931 | SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect; |
11932 | }; |
11933 | |
11934 | /// RAII object wrapping the visitation of a subexpression which we might |
11935 | /// choose to evaluate as a constant. If any subexpression is evaluated and |
11936 | /// found to be non-constant, this allows us to suppress the evaluation of |
11937 | /// the outer expression. |
11938 | class EvaluationTracker { |
11939 | public: |
11940 | EvaluationTracker(SequenceChecker &Self) |
11941 | : Self(Self), Prev(Self.EvalTracker) { |
11942 | Self.EvalTracker = this; |
11943 | } |
11944 | |
11945 | ~EvaluationTracker() { |
11946 | Self.EvalTracker = Prev; |
11947 | if (Prev) |
11948 | Prev->EvalOK &= EvalOK; |
11949 | } |
11950 | |
11951 | bool evaluate(const Expr *E, bool &Result) { |
11952 | if (!EvalOK || E->isValueDependent()) |
11953 | return false; |
11954 | EvalOK = E->EvaluateAsBooleanCondition( |
11955 | Result, Ctx: Self.SemaRef.Context, |
11956 | InConstantContext: Self.SemaRef.isConstantEvaluatedContext()); |
11957 | return EvalOK; |
11958 | } |
11959 | |
11960 | private: |
11961 | SequenceChecker &Self; |
11962 | EvaluationTracker *Prev; |
11963 | bool EvalOK = true; |
11964 | } *EvalTracker = nullptr; |
11965 | |
11966 | /// Find the object which is produced by the specified expression, |
11967 | /// if any. |
11968 | Object getObject(const Expr *E, bool Mod) const { |
11969 | E = E->IgnoreParenCasts(); |
11970 | if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: E)) { |
11971 | if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec)) |
11972 | return getObject(E: UO->getSubExpr(), Mod); |
11973 | } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) { |
11974 | if (BO->getOpcode() == BO_Comma) |
11975 | return getObject(E: BO->getRHS(), Mod); |
11976 | if (Mod && BO->isAssignmentOp()) |
11977 | return getObject(E: BO->getLHS(), Mod); |
11978 | } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(Val: E)) { |
11979 | // FIXME: Check for more interesting cases, like "x.n = ++x.n". |
11980 | if (isa<CXXThisExpr>(Val: ME->getBase()->IgnoreParenCasts())) |
11981 | return ME->getMemberDecl(); |
11982 | } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) |
11983 | // FIXME: If this is a reference, map through to its value. |
11984 | return DRE->getDecl(); |
11985 | return nullptr; |
11986 | } |
11987 | |
11988 | /// Note that an object \p O was modified or used by an expression |
11989 | /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for |
11990 | /// the object \p O as obtained via the \p UsageMap. |
11991 | void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) { |
11992 | // Get the old usage for the given object and usage kind. |
11993 | Usage &U = UI.Uses[UK]; |
11994 | if (!U.UsageExpr || !Tree.isUnsequenced(Cur: Region, Old: U.Seq)) { |
11995 | // If we have a modification as side effect and are in a sequenced |
11996 | // subexpression, save the old Usage so that we can restore it later |
11997 | // in SequencedSubexpression::~SequencedSubexpression. |
11998 | if (UK == UK_ModAsSideEffect && ModAsSideEffect) |
11999 | ModAsSideEffect->push_back(Elt: std::make_pair(x&: O, y&: U)); |
12000 | // Then record the new usage with the current sequencing region. |
12001 | U.UsageExpr = UsageExpr; |
12002 | U.Seq = Region; |
12003 | } |
12004 | } |
12005 | |
12006 | /// Check whether a modification or use of an object \p O in an expression |
12007 | /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is |
12008 | /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap. |
12009 | /// \p IsModMod is true when we are checking for a mod-mod unsequenced |
12010 | /// usage and false we are checking for a mod-use unsequenced usage. |
12011 | void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, |
12012 | UsageKind OtherKind, bool IsModMod) { |
12013 | if (UI.Diagnosed) |
12014 | return; |
12015 | |
12016 | const Usage &U = UI.Uses[OtherKind]; |
12017 | if (!U.UsageExpr || !Tree.isUnsequenced(Cur: Region, Old: U.Seq)) |
12018 | return; |
12019 | |
12020 | const Expr *Mod = U.UsageExpr; |
12021 | const Expr *ModOrUse = UsageExpr; |
12022 | if (OtherKind == UK_Use) |
12023 | std::swap(a&: Mod, b&: ModOrUse); |
12024 | |
12025 | SemaRef.DiagRuntimeBehavior( |
12026 | Loc: Mod->getExprLoc(), Stmts: {Mod, ModOrUse}, |
12027 | PD: SemaRef.PDiag(DiagID: IsModMod ? diag::warn_unsequenced_mod_mod |
12028 | : diag::warn_unsequenced_mod_use) |
12029 | << O << SourceRange(ModOrUse->getExprLoc())); |
12030 | UI.Diagnosed = true; |
12031 | } |
12032 | |
12033 | // A note on note{Pre, Post}{Use, Mod}: |
12034 | // |
12035 | // (It helps to follow the algorithm with an expression such as |
12036 | // "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced |
12037 | // operations before C++17 and both are well-defined in C++17). |
12038 | // |
12039 | // When visiting a node which uses/modify an object we first call notePreUse |
12040 | // or notePreMod before visiting its sub-expression(s). At this point the |
12041 | // children of the current node have not yet been visited and so the eventual |
12042 | // uses/modifications resulting from the children of the current node have not |
12043 | // been recorded yet. |
12044 | // |
12045 | // We then visit the children of the current node. After that notePostUse or |
12046 | // notePostMod is called. These will 1) detect an unsequenced modification |
12047 | // as side effect (as in "k++ + k") and 2) add a new usage with the |
12048 | // appropriate usage kind. |
12049 | // |
12050 | // We also have to be careful that some operation sequences modification as |
12051 | // side effect as well (for example: || or ,). To account for this we wrap |
12052 | // the visitation of such a sub-expression (for example: the LHS of || or ,) |
12053 | // with SequencedSubexpression. SequencedSubexpression is an RAII object |
12054 | // which record usages which are modifications as side effect, and then |
12055 | // downgrade them (or more accurately restore the previous usage which was a |
12056 | // modification as side effect) when exiting the scope of the sequenced |
12057 | // subexpression. |
12058 | |
12059 | void notePreUse(Object O, const Expr *UseExpr) { |
12060 | UsageInfo &UI = UsageMap[O]; |
12061 | // Uses conflict with other modifications. |
12062 | checkUsage(O, UI, UsageExpr: UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false); |
12063 | } |
12064 | |
12065 | void notePostUse(Object O, const Expr *UseExpr) { |
12066 | UsageInfo &UI = UsageMap[O]; |
12067 | checkUsage(O, UI, UsageExpr: UseExpr, /*OtherKind=*/UK_ModAsSideEffect, |
12068 | /*IsModMod=*/false); |
12069 | addUsage(O, UI, UsageExpr: UseExpr, /*UsageKind=*/UK: UK_Use); |
12070 | } |
12071 | |
12072 | void notePreMod(Object O, const Expr *ModExpr) { |
12073 | UsageInfo &UI = UsageMap[O]; |
12074 | // Modifications conflict with other modifications and with uses. |
12075 | checkUsage(O, UI, UsageExpr: ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true); |
12076 | checkUsage(O, UI, UsageExpr: ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false); |
12077 | } |
12078 | |
12079 | void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) { |
12080 | UsageInfo &UI = UsageMap[O]; |
12081 | checkUsage(O, UI, UsageExpr: ModExpr, /*OtherKind=*/UK_ModAsSideEffect, |
12082 | /*IsModMod=*/true); |
12083 | addUsage(O, UI, UsageExpr: ModExpr, /*UsageKind=*/UK); |
12084 | } |
12085 | |
12086 | public: |
12087 | SequenceChecker(Sema &S, const Expr *E, |
12088 | SmallVectorImpl<const Expr *> &WorkList) |
12089 | : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) { |
12090 | Visit(S: E); |
12091 | // Silence a -Wunused-private-field since WorkList is now unused. |
12092 | // TODO: Evaluate if it can be used, and if not remove it. |
12093 | (void)this->WorkList; |
12094 | } |
12095 | |
12096 | void VisitStmt(const Stmt *S) { |
12097 | // Skip all statements which aren't expressions for now. |
12098 | } |
12099 | |
12100 | void VisitExpr(const Expr *E) { |
12101 | // By default, just recurse to evaluated subexpressions. |
12102 | Base::VisitStmt(S: E); |
12103 | } |
12104 | |
12105 | void VisitCoroutineSuspendExpr(const CoroutineSuspendExpr *CSE) { |
12106 | for (auto *Sub : CSE->children()) { |
12107 | const Expr *ChildExpr = dyn_cast_or_null<Expr>(Val: Sub); |
12108 | if (!ChildExpr) |
12109 | continue; |
12110 | |
12111 | if (ChildExpr == CSE->getOperand()) |
12112 | // Do not recurse over a CoroutineSuspendExpr's operand. |
12113 | // The operand is also a subexpression of getCommonExpr(), and |
12114 | // recursing into it directly could confuse object management |
12115 | // for the sake of sequence tracking. |
12116 | continue; |
12117 | |
12118 | Visit(S: Sub); |
12119 | } |
12120 | } |
12121 | |
12122 | void VisitCastExpr(const CastExpr *E) { |
12123 | Object O = Object(); |
12124 | if (E->getCastKind() == CK_LValueToRValue) |
12125 | O = getObject(E: E->getSubExpr(), Mod: false); |
12126 | |
12127 | if (O) |
12128 | notePreUse(O, UseExpr: E); |
12129 | VisitExpr(E); |
12130 | if (O) |
12131 | notePostUse(O, UseExpr: E); |
12132 | } |
12133 | |
12134 | void VisitSequencedExpressions(const Expr *SequencedBefore, |
12135 | const Expr *SequencedAfter) { |
12136 | SequenceTree::Seq BeforeRegion = Tree.allocate(Parent: Region); |
12137 | SequenceTree::Seq AfterRegion = Tree.allocate(Parent: Region); |
12138 | SequenceTree::Seq OldRegion = Region; |
12139 | |
12140 | { |
12141 | SequencedSubexpression SeqBefore(*this); |
12142 | Region = BeforeRegion; |
12143 | Visit(S: SequencedBefore); |
12144 | } |
12145 | |
12146 | Region = AfterRegion; |
12147 | Visit(S: SequencedAfter); |
12148 | |
12149 | Region = OldRegion; |
12150 | |
12151 | Tree.merge(S: BeforeRegion); |
12152 | Tree.merge(S: AfterRegion); |
12153 | } |
12154 | |
12155 | void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) { |
12156 | // C++17 [expr.sub]p1: |
12157 | // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The |
12158 | // expression E1 is sequenced before the expression E2. |
12159 | if (SemaRef.getLangOpts().CPlusPlus17) |
12160 | VisitSequencedExpressions(SequencedBefore: ASE->getLHS(), SequencedAfter: ASE->getRHS()); |
12161 | else { |
12162 | Visit(S: ASE->getLHS()); |
12163 | Visit(S: ASE->getRHS()); |
12164 | } |
12165 | } |
12166 | |
12167 | void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); } |
12168 | void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); } |
12169 | void VisitBinPtrMem(const BinaryOperator *BO) { |
12170 | // C++17 [expr.mptr.oper]p4: |
12171 | // Abbreviating pm-expression.*cast-expression as E1.*E2, [...] |
12172 | // the expression E1 is sequenced before the expression E2. |
12173 | if (SemaRef.getLangOpts().CPlusPlus17) |
12174 | VisitSequencedExpressions(SequencedBefore: BO->getLHS(), SequencedAfter: BO->getRHS()); |
12175 | else { |
12176 | Visit(S: BO->getLHS()); |
12177 | Visit(S: BO->getRHS()); |
12178 | } |
12179 | } |
12180 | |
12181 | void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); } |
12182 | void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); } |
12183 | void VisitBinShlShr(const BinaryOperator *BO) { |
12184 | // C++17 [expr.shift]p4: |
12185 | // The expression E1 is sequenced before the expression E2. |
12186 | if (SemaRef.getLangOpts().CPlusPlus17) |
12187 | VisitSequencedExpressions(SequencedBefore: BO->getLHS(), SequencedAfter: BO->getRHS()); |
12188 | else { |
12189 | Visit(S: BO->getLHS()); |
12190 | Visit(S: BO->getRHS()); |
12191 | } |
12192 | } |
12193 | |
12194 | void VisitBinComma(const BinaryOperator *BO) { |
12195 | // C++11 [expr.comma]p1: |
12196 | // Every value computation and side effect associated with the left |
12197 | // expression is sequenced before every value computation and side |
12198 | // effect associated with the right expression. |
12199 | VisitSequencedExpressions(SequencedBefore: BO->getLHS(), SequencedAfter: BO->getRHS()); |
12200 | } |
12201 | |
12202 | void VisitBinAssign(const BinaryOperator *BO) { |
12203 | SequenceTree::Seq RHSRegion; |
12204 | SequenceTree::Seq LHSRegion; |
12205 | if (SemaRef.getLangOpts().CPlusPlus17) { |
12206 | RHSRegion = Tree.allocate(Parent: Region); |
12207 | LHSRegion = Tree.allocate(Parent: Region); |
12208 | } else { |
12209 | RHSRegion = Region; |
12210 | LHSRegion = Region; |
12211 | } |
12212 | SequenceTree::Seq OldRegion = Region; |
12213 | |
12214 | // C++11 [expr.ass]p1: |
12215 | // [...] the assignment is sequenced after the value computation |
12216 | // of the right and left operands, [...] |
12217 | // |
12218 | // so check it before inspecting the operands and update the |
12219 | // map afterwards. |
12220 | Object O = getObject(E: BO->getLHS(), /*Mod=*/true); |
12221 | if (O) |
12222 | notePreMod(O, ModExpr: BO); |
12223 | |
12224 | if (SemaRef.getLangOpts().CPlusPlus17) { |
12225 | // C++17 [expr.ass]p1: |
12226 | // [...] The right operand is sequenced before the left operand. [...] |
12227 | { |
12228 | SequencedSubexpression SeqBefore(*this); |
12229 | Region = RHSRegion; |
12230 | Visit(S: BO->getRHS()); |
12231 | } |
12232 | |
12233 | Region = LHSRegion; |
12234 | Visit(S: BO->getLHS()); |
12235 | |
12236 | if (O && isa<CompoundAssignOperator>(Val: BO)) |
12237 | notePostUse(O, UseExpr: BO); |
12238 | |
12239 | } else { |
12240 | // C++11 does not specify any sequencing between the LHS and RHS. |
12241 | Region = LHSRegion; |
12242 | Visit(S: BO->getLHS()); |
12243 | |
12244 | if (O && isa<CompoundAssignOperator>(Val: BO)) |
12245 | notePostUse(O, UseExpr: BO); |
12246 | |
12247 | Region = RHSRegion; |
12248 | Visit(S: BO->getRHS()); |
12249 | } |
12250 | |
12251 | // C++11 [expr.ass]p1: |
12252 | // the assignment is sequenced [...] before the value computation of the |
12253 | // assignment expression. |
12254 | // C11 6.5.16/3 has no such rule. |
12255 | Region = OldRegion; |
12256 | if (O) |
12257 | notePostMod(O, ModExpr: BO, |
12258 | UK: SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue |
12259 | : UK_ModAsSideEffect); |
12260 | if (SemaRef.getLangOpts().CPlusPlus17) { |
12261 | Tree.merge(S: RHSRegion); |
12262 | Tree.merge(S: LHSRegion); |
12263 | } |
12264 | } |
12265 | |
12266 | void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) { |
12267 | VisitBinAssign(BO: CAO); |
12268 | } |
12269 | |
12270 | void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } |
12271 | void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } |
12272 | void VisitUnaryPreIncDec(const UnaryOperator *UO) { |
12273 | Object O = getObject(E: UO->getSubExpr(), Mod: true); |
12274 | if (!O) |
12275 | return VisitExpr(E: UO); |
12276 | |
12277 | notePreMod(O, ModExpr: UO); |
12278 | Visit(S: UO->getSubExpr()); |
12279 | // C++11 [expr.pre.incr]p1: |
12280 | // the expression ++x is equivalent to x+=1 |
12281 | notePostMod(O, ModExpr: UO, |
12282 | UK: SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue |
12283 | : UK_ModAsSideEffect); |
12284 | } |
12285 | |
12286 | void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } |
12287 | void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } |
12288 | void VisitUnaryPostIncDec(const UnaryOperator *UO) { |
12289 | Object O = getObject(E: UO->getSubExpr(), Mod: true); |
12290 | if (!O) |
12291 | return VisitExpr(E: UO); |
12292 | |
12293 | notePreMod(O, ModExpr: UO); |
12294 | Visit(S: UO->getSubExpr()); |
12295 | notePostMod(O, ModExpr: UO, UK: UK_ModAsSideEffect); |
12296 | } |
12297 | |
12298 | void VisitBinLOr(const BinaryOperator *BO) { |
12299 | // C++11 [expr.log.or]p2: |
12300 | // If the second expression is evaluated, every value computation and |
12301 | // side effect associated with the first expression is sequenced before |
12302 | // every value computation and side effect associated with the |
12303 | // second expression. |
12304 | SequenceTree::Seq LHSRegion = Tree.allocate(Parent: Region); |
12305 | SequenceTree::Seq RHSRegion = Tree.allocate(Parent: Region); |
12306 | SequenceTree::Seq OldRegion = Region; |
12307 | |
12308 | EvaluationTracker Eval(*this); |
12309 | { |
12310 | SequencedSubexpression Sequenced(*this); |
12311 | Region = LHSRegion; |
12312 | Visit(S: BO->getLHS()); |
12313 | } |
12314 | |
12315 | // C++11 [expr.log.or]p1: |
12316 | // [...] the second operand is not evaluated if the first operand |
12317 | // evaluates to true. |
12318 | bool EvalResult = false; |
12319 | bool EvalOK = Eval.evaluate(E: BO->getLHS(), Result&: EvalResult); |
12320 | bool ShouldVisitRHS = !EvalOK || !EvalResult; |
12321 | if (ShouldVisitRHS) { |
12322 | Region = RHSRegion; |
12323 | Visit(S: BO->getRHS()); |
12324 | } |
12325 | |
12326 | Region = OldRegion; |
12327 | Tree.merge(S: LHSRegion); |
12328 | Tree.merge(S: RHSRegion); |
12329 | } |
12330 | |
12331 | void VisitBinLAnd(const BinaryOperator *BO) { |
12332 | // C++11 [expr.log.and]p2: |
12333 | // If the second expression is evaluated, every value computation and |
12334 | // side effect associated with the first expression is sequenced before |
12335 | // every value computation and side effect associated with the |
12336 | // second expression. |
12337 | SequenceTree::Seq LHSRegion = Tree.allocate(Parent: Region); |
12338 | SequenceTree::Seq RHSRegion = Tree.allocate(Parent: Region); |
12339 | SequenceTree::Seq OldRegion = Region; |
12340 | |
12341 | EvaluationTracker Eval(*this); |
12342 | { |
12343 | SequencedSubexpression Sequenced(*this); |
12344 | Region = LHSRegion; |
12345 | Visit(S: BO->getLHS()); |
12346 | } |
12347 | |
12348 | // C++11 [expr.log.and]p1: |
12349 | // [...] the second operand is not evaluated if the first operand is false. |
12350 | bool EvalResult = false; |
12351 | bool EvalOK = Eval.evaluate(E: BO->getLHS(), Result&: EvalResult); |
12352 | bool ShouldVisitRHS = !EvalOK || EvalResult; |
12353 | if (ShouldVisitRHS) { |
12354 | Region = RHSRegion; |
12355 | Visit(S: BO->getRHS()); |
12356 | } |
12357 | |
12358 | Region = OldRegion; |
12359 | Tree.merge(S: LHSRegion); |
12360 | Tree.merge(S: RHSRegion); |
12361 | } |
12362 | |
12363 | void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) { |
12364 | // C++11 [expr.cond]p1: |
12365 | // [...] Every value computation and side effect associated with the first |
12366 | // expression is sequenced before every value computation and side effect |
12367 | // associated with the second or third expression. |
12368 | SequenceTree::Seq ConditionRegion = Tree.allocate(Parent: Region); |
12369 | |
12370 | // No sequencing is specified between the true and false expression. |
12371 | // However since exactly one of both is going to be evaluated we can |
12372 | // consider them to be sequenced. This is needed to avoid warning on |
12373 | // something like "x ? y+= 1 : y += 2;" in the case where we will visit |
12374 | // both the true and false expressions because we can't evaluate x. |
12375 | // This will still allow us to detect an expression like (pre C++17) |
12376 | // "(x ? y += 1 : y += 2) = y". |
12377 | // |
12378 | // We don't wrap the visitation of the true and false expression with |
12379 | // SequencedSubexpression because we don't want to downgrade modifications |
12380 | // as side effect in the true and false expressions after the visition |
12381 | // is done. (for example in the expression "(x ? y++ : y++) + y" we should |
12382 | // not warn between the two "y++", but we should warn between the "y++" |
12383 | // and the "y". |
12384 | SequenceTree::Seq TrueRegion = Tree.allocate(Parent: Region); |
12385 | SequenceTree::Seq FalseRegion = Tree.allocate(Parent: Region); |
12386 | SequenceTree::Seq OldRegion = Region; |
12387 | |
12388 | EvaluationTracker Eval(*this); |
12389 | { |
12390 | SequencedSubexpression Sequenced(*this); |
12391 | Region = ConditionRegion; |
12392 | Visit(S: CO->getCond()); |
12393 | } |
12394 | |
12395 | // C++11 [expr.cond]p1: |
12396 | // [...] The first expression is contextually converted to bool (Clause 4). |
12397 | // It is evaluated and if it is true, the result of the conditional |
12398 | // expression is the value of the second expression, otherwise that of the |
12399 | // third expression. Only one of the second and third expressions is |
12400 | // evaluated. [...] |
12401 | bool EvalResult = false; |
12402 | bool EvalOK = Eval.evaluate(E: CO->getCond(), Result&: EvalResult); |
12403 | bool ShouldVisitTrueExpr = !EvalOK || EvalResult; |
12404 | bool ShouldVisitFalseExpr = !EvalOK || !EvalResult; |
12405 | if (ShouldVisitTrueExpr) { |
12406 | Region = TrueRegion; |
12407 | Visit(S: CO->getTrueExpr()); |
12408 | } |
12409 | if (ShouldVisitFalseExpr) { |
12410 | Region = FalseRegion; |
12411 | Visit(S: CO->getFalseExpr()); |
12412 | } |
12413 | |
12414 | Region = OldRegion; |
12415 | Tree.merge(S: ConditionRegion); |
12416 | Tree.merge(S: TrueRegion); |
12417 | Tree.merge(S: FalseRegion); |
12418 | } |
12419 | |
12420 | void VisitCallExpr(const CallExpr *CE) { |
12421 | // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions. |
12422 | |
12423 | if (CE->isUnevaluatedBuiltinCall(Ctx: Context)) |
12424 | return; |
12425 | |
12426 | // C++11 [intro.execution]p15: |
12427 | // When calling a function [...], every value computation and side effect |
12428 | // associated with any argument expression, or with the postfix expression |
12429 | // designating the called function, is sequenced before execution of every |
12430 | // expression or statement in the body of the function [and thus before |
12431 | // the value computation of its result]. |
12432 | SequencedSubexpression Sequenced(*this); |
12433 | SemaRef.runWithSufficientStackSpace(Loc: CE->getExprLoc(), Fn: [&] { |
12434 | // C++17 [expr.call]p5 |
12435 | // The postfix-expression is sequenced before each expression in the |
12436 | // expression-list and any default argument. [...] |
12437 | SequenceTree::Seq CalleeRegion; |
12438 | SequenceTree::Seq OtherRegion; |
12439 | if (SemaRef.getLangOpts().CPlusPlus17) { |
12440 | CalleeRegion = Tree.allocate(Parent: Region); |
12441 | OtherRegion = Tree.allocate(Parent: Region); |
12442 | } else { |
12443 | CalleeRegion = Region; |
12444 | OtherRegion = Region; |
12445 | } |
12446 | SequenceTree::Seq OldRegion = Region; |
12447 | |
12448 | // Visit the callee expression first. |
12449 | Region = CalleeRegion; |
12450 | if (SemaRef.getLangOpts().CPlusPlus17) { |
12451 | SequencedSubexpression Sequenced(*this); |
12452 | Visit(S: CE->getCallee()); |
12453 | } else { |
12454 | Visit(S: CE->getCallee()); |
12455 | } |
12456 | |
12457 | // Then visit the argument expressions. |
12458 | Region = OtherRegion; |
12459 | for (const Expr *Argument : CE->arguments()) |
12460 | Visit(S: Argument); |
12461 | |
12462 | Region = OldRegion; |
12463 | if (SemaRef.getLangOpts().CPlusPlus17) { |
12464 | Tree.merge(S: CalleeRegion); |
12465 | Tree.merge(S: OtherRegion); |
12466 | } |
12467 | }); |
12468 | } |
12469 | |
12470 | void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) { |
12471 | // C++17 [over.match.oper]p2: |
12472 | // [...] the operator notation is first transformed to the equivalent |
12473 | // function-call notation as summarized in Table 12 (where @ denotes one |
12474 | // of the operators covered in the specified subclause). However, the |
12475 | // operands are sequenced in the order prescribed for the built-in |
12476 | // operator (Clause 8). |
12477 | // |
12478 | // From the above only overloaded binary operators and overloaded call |
12479 | // operators have sequencing rules in C++17 that we need to handle |
12480 | // separately. |
12481 | if (!SemaRef.getLangOpts().CPlusPlus17 || |
12482 | (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call)) |
12483 | return VisitCallExpr(CE: CXXOCE); |
12484 | |
12485 | enum { |
12486 | NoSequencing, |
12487 | LHSBeforeRHS, |
12488 | RHSBeforeLHS, |
12489 | LHSBeforeRest |
12490 | } SequencingKind; |
12491 | switch (CXXOCE->getOperator()) { |
12492 | case OO_Equal: |
12493 | case OO_PlusEqual: |
12494 | case OO_MinusEqual: |
12495 | case OO_StarEqual: |
12496 | case OO_SlashEqual: |
12497 | case OO_PercentEqual: |
12498 | case OO_CaretEqual: |
12499 | case OO_AmpEqual: |
12500 | case OO_PipeEqual: |
12501 | case OO_LessLessEqual: |
12502 | case OO_GreaterGreaterEqual: |
12503 | SequencingKind = RHSBeforeLHS; |
12504 | break; |
12505 | |
12506 | case OO_LessLess: |
12507 | case OO_GreaterGreater: |
12508 | case OO_AmpAmp: |
12509 | case OO_PipePipe: |
12510 | case OO_Comma: |
12511 | case OO_ArrowStar: |
12512 | case OO_Subscript: |
12513 | SequencingKind = LHSBeforeRHS; |
12514 | break; |
12515 | |
12516 | case OO_Call: |
12517 | SequencingKind = LHSBeforeRest; |
12518 | break; |
12519 | |
12520 | default: |
12521 | SequencingKind = NoSequencing; |
12522 | break; |
12523 | } |
12524 | |
12525 | if (SequencingKind == NoSequencing) |
12526 | return VisitCallExpr(CE: CXXOCE); |
12527 | |
12528 | // This is a call, so all subexpressions are sequenced before the result. |
12529 | SequencedSubexpression Sequenced(*this); |
12530 | |
12531 | SemaRef.runWithSufficientStackSpace(Loc: CXXOCE->getExprLoc(), Fn: [&] { |
12532 | assert(SemaRef.getLangOpts().CPlusPlus17 && |
12533 | "Should only get there with C++17 and above!" ); |
12534 | assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && |
12535 | "Should only get there with an overloaded binary operator" |
12536 | " or an overloaded call operator!" ); |
12537 | |
12538 | if (SequencingKind == LHSBeforeRest) { |
12539 | assert(CXXOCE->getOperator() == OO_Call && |
12540 | "We should only have an overloaded call operator here!" ); |
12541 | |
12542 | // This is very similar to VisitCallExpr, except that we only have the |
12543 | // C++17 case. The postfix-expression is the first argument of the |
12544 | // CXXOperatorCallExpr. The expressions in the expression-list, if any, |
12545 | // are in the following arguments. |
12546 | // |
12547 | // Note that we intentionally do not visit the callee expression since |
12548 | // it is just a decayed reference to a function. |
12549 | SequenceTree::Seq PostfixExprRegion = Tree.allocate(Parent: Region); |
12550 | SequenceTree::Seq ArgsRegion = Tree.allocate(Parent: Region); |
12551 | SequenceTree::Seq OldRegion = Region; |
12552 | |
12553 | assert(CXXOCE->getNumArgs() >= 1 && |
12554 | "An overloaded call operator must have at least one argument" |
12555 | " for the postfix-expression!" ); |
12556 | const Expr *PostfixExpr = CXXOCE->getArgs()[0]; |
12557 | llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1, |
12558 | CXXOCE->getNumArgs() - 1); |
12559 | |
12560 | // Visit the postfix-expression first. |
12561 | { |
12562 | Region = PostfixExprRegion; |
12563 | SequencedSubexpression Sequenced(*this); |
12564 | Visit(S: PostfixExpr); |
12565 | } |
12566 | |
12567 | // Then visit the argument expressions. |
12568 | Region = ArgsRegion; |
12569 | for (const Expr *Arg : Args) |
12570 | Visit(S: Arg); |
12571 | |
12572 | Region = OldRegion; |
12573 | Tree.merge(S: PostfixExprRegion); |
12574 | Tree.merge(S: ArgsRegion); |
12575 | } else { |
12576 | assert(CXXOCE->getNumArgs() == 2 && |
12577 | "Should only have two arguments here!" ); |
12578 | assert((SequencingKind == LHSBeforeRHS || |
12579 | SequencingKind == RHSBeforeLHS) && |
12580 | "Unexpected sequencing kind!" ); |
12581 | |
12582 | // We do not visit the callee expression since it is just a decayed |
12583 | // reference to a function. |
12584 | const Expr *E1 = CXXOCE->getArg(Arg: 0); |
12585 | const Expr *E2 = CXXOCE->getArg(Arg: 1); |
12586 | if (SequencingKind == RHSBeforeLHS) |
12587 | std::swap(a&: E1, b&: E2); |
12588 | |
12589 | return VisitSequencedExpressions(SequencedBefore: E1, SequencedAfter: E2); |
12590 | } |
12591 | }); |
12592 | } |
12593 | |
12594 | void VisitCXXConstructExpr(const CXXConstructExpr *CCE) { |
12595 | // This is a call, so all subexpressions are sequenced before the result. |
12596 | SequencedSubexpression Sequenced(*this); |
12597 | |
12598 | if (!CCE->isListInitialization()) |
12599 | return VisitExpr(E: CCE); |
12600 | |
12601 | // In C++11, list initializations are sequenced. |
12602 | SequenceExpressionsInOrder( |
12603 | ExpressionList: llvm::ArrayRef(CCE->getArgs(), CCE->getNumArgs())); |
12604 | } |
12605 | |
12606 | void VisitInitListExpr(const InitListExpr *ILE) { |
12607 | if (!SemaRef.getLangOpts().CPlusPlus11) |
12608 | return VisitExpr(E: ILE); |
12609 | |
12610 | // In C++11, list initializations are sequenced. |
12611 | SequenceExpressionsInOrder(ExpressionList: ILE->inits()); |
12612 | } |
12613 | |
12614 | void VisitCXXParenListInitExpr(const CXXParenListInitExpr *PLIE) { |
12615 | // C++20 parenthesized list initializations are sequenced. See C++20 |
12616 | // [decl.init.general]p16.5 and [decl.init.general]p16.6.2.2. |
12617 | SequenceExpressionsInOrder(ExpressionList: PLIE->getInitExprs()); |
12618 | } |
12619 | |
12620 | private: |
12621 | void SequenceExpressionsInOrder(ArrayRef<const Expr *> ExpressionList) { |
12622 | SmallVector<SequenceTree::Seq, 32> Elts; |
12623 | SequenceTree::Seq Parent = Region; |
12624 | for (const Expr *E : ExpressionList) { |
12625 | if (!E) |
12626 | continue; |
12627 | Region = Tree.allocate(Parent); |
12628 | Elts.push_back(Elt: Region); |
12629 | Visit(S: E); |
12630 | } |
12631 | |
12632 | // Forget that the initializers are sequenced. |
12633 | Region = Parent; |
12634 | for (unsigned I = 0; I < Elts.size(); ++I) |
12635 | Tree.merge(S: Elts[I]); |
12636 | } |
12637 | }; |
12638 | |
12639 | SequenceChecker::UsageInfo::UsageInfo() = default; |
12640 | |
12641 | } // namespace |
12642 | |
12643 | void Sema::CheckUnsequencedOperations(const Expr *E) { |
12644 | SmallVector<const Expr *, 8> WorkList; |
12645 | WorkList.push_back(Elt: E); |
12646 | while (!WorkList.empty()) { |
12647 | const Expr *Item = WorkList.pop_back_val(); |
12648 | SequenceChecker(*this, Item, WorkList); |
12649 | } |
12650 | } |
12651 | |
12652 | void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc, |
12653 | bool IsConstexpr) { |
12654 | llvm::SaveAndRestore ConstantContext(isConstantEvaluatedOverride, |
12655 | IsConstexpr || isa<ConstantExpr>(Val: E)); |
12656 | CheckImplicitConversions(E, CC: CheckLoc); |
12657 | if (!E->isInstantiationDependent()) |
12658 | CheckUnsequencedOperations(E); |
12659 | if (!IsConstexpr && !E->isValueDependent()) |
12660 | CheckForIntOverflow(E); |
12661 | DiagnoseMisalignedMembers(); |
12662 | } |
12663 | |
12664 | void Sema::CheckBitFieldInitialization(SourceLocation InitLoc, |
12665 | FieldDecl *BitField, |
12666 | Expr *Init) { |
12667 | (void) AnalyzeBitFieldAssignment(S&: *this, Bitfield: BitField, Init, InitLoc); |
12668 | } |
12669 | |
12670 | static void diagnoseArrayStarInParamType(Sema &S, QualType PType, |
12671 | SourceLocation Loc) { |
12672 | if (!PType->isVariablyModifiedType()) |
12673 | return; |
12674 | if (const auto *PointerTy = dyn_cast<PointerType>(Val&: PType)) { |
12675 | diagnoseArrayStarInParamType(S, PType: PointerTy->getPointeeType(), Loc); |
12676 | return; |
12677 | } |
12678 | if (const auto *ReferenceTy = dyn_cast<ReferenceType>(Val&: PType)) { |
12679 | diagnoseArrayStarInParamType(S, PType: ReferenceTy->getPointeeType(), Loc); |
12680 | return; |
12681 | } |
12682 | if (const auto *ParenTy = dyn_cast<ParenType>(Val&: PType)) { |
12683 | diagnoseArrayStarInParamType(S, PType: ParenTy->getInnerType(), Loc); |
12684 | return; |
12685 | } |
12686 | |
12687 | const ArrayType *AT = S.Context.getAsArrayType(T: PType); |
12688 | if (!AT) |
12689 | return; |
12690 | |
12691 | if (AT->getSizeModifier() != ArraySizeModifier::Star) { |
12692 | diagnoseArrayStarInParamType(S, PType: AT->getElementType(), Loc); |
12693 | return; |
12694 | } |
12695 | |
12696 | S.Diag(Loc, DiagID: diag::err_array_star_in_function_definition); |
12697 | } |
12698 | |
12699 | bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters, |
12700 | bool CheckParameterNames) { |
12701 | bool HasInvalidParm = false; |
12702 | for (ParmVarDecl *Param : Parameters) { |
12703 | assert(Param && "null in a parameter list" ); |
12704 | // C99 6.7.5.3p4: the parameters in a parameter type list in a |
12705 | // function declarator that is part of a function definition of |
12706 | // that function shall not have incomplete type. |
12707 | // |
12708 | // C++23 [dcl.fct.def.general]/p2 |
12709 | // The type of a parameter [...] for a function definition |
12710 | // shall not be a (possibly cv-qualified) class type that is incomplete |
12711 | // or abstract within the function body unless the function is deleted. |
12712 | if (!Param->isInvalidDecl() && |
12713 | (RequireCompleteType(Loc: Param->getLocation(), T: Param->getType(), |
12714 | DiagID: diag::err_typecheck_decl_incomplete_type) || |
12715 | RequireNonAbstractType(Loc: Param->getBeginLoc(), T: Param->getOriginalType(), |
12716 | DiagID: diag::err_abstract_type_in_decl, |
12717 | Args: AbstractParamType))) { |
12718 | Param->setInvalidDecl(); |
12719 | HasInvalidParm = true; |
12720 | } |
12721 | |
12722 | // C99 6.9.1p5: If the declarator includes a parameter type list, the |
12723 | // declaration of each parameter shall include an identifier. |
12724 | if (CheckParameterNames && Param->getIdentifier() == nullptr && |
12725 | !Param->isImplicit() && !getLangOpts().CPlusPlus) { |
12726 | // Diagnose this as an extension in C17 and earlier. |
12727 | if (!getLangOpts().C23) |
12728 | Diag(Loc: Param->getLocation(), DiagID: diag::ext_parameter_name_omitted_c23); |
12729 | } |
12730 | |
12731 | // C99 6.7.5.3p12: |
12732 | // If the function declarator is not part of a definition of that |
12733 | // function, parameters may have incomplete type and may use the [*] |
12734 | // notation in their sequences of declarator specifiers to specify |
12735 | // variable length array types. |
12736 | QualType PType = Param->getOriginalType(); |
12737 | // FIXME: This diagnostic should point the '[*]' if source-location |
12738 | // information is added for it. |
12739 | diagnoseArrayStarInParamType(S&: *this, PType, Loc: Param->getLocation()); |
12740 | |
12741 | // If the parameter is a c++ class type and it has to be destructed in the |
12742 | // callee function, declare the destructor so that it can be called by the |
12743 | // callee function. Do not perform any direct access check on the dtor here. |
12744 | if (!Param->isInvalidDecl()) { |
12745 | if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) { |
12746 | if (!ClassDecl->isInvalidDecl() && |
12747 | !ClassDecl->hasIrrelevantDestructor() && |
12748 | !ClassDecl->isDependentContext() && |
12749 | ClassDecl->isParamDestroyedInCallee()) { |
12750 | CXXDestructorDecl *Destructor = LookupDestructor(Class: ClassDecl); |
12751 | MarkFunctionReferenced(Loc: Param->getLocation(), Func: Destructor); |
12752 | DiagnoseUseOfDecl(D: Destructor, Locs: Param->getLocation()); |
12753 | } |
12754 | } |
12755 | } |
12756 | |
12757 | // Parameters with the pass_object_size attribute only need to be marked |
12758 | // constant at function definitions. Because we lack information about |
12759 | // whether we're on a declaration or definition when we're instantiating the |
12760 | // attribute, we need to check for constness here. |
12761 | if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>()) |
12762 | if (!Param->getType().isConstQualified()) |
12763 | Diag(Loc: Param->getLocation(), DiagID: diag::err_attribute_pointers_only) |
12764 | << Attr->getSpelling() << 1; |
12765 | |
12766 | // Check for parameter names shadowing fields from the class. |
12767 | if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) { |
12768 | // The owning context for the parameter should be the function, but we |
12769 | // want to see if this function's declaration context is a record. |
12770 | DeclContext *DC = Param->getDeclContext(); |
12771 | if (DC && DC->isFunctionOrMethod()) { |
12772 | if (auto *RD = dyn_cast<CXXRecordDecl>(Val: DC->getParent())) |
12773 | CheckShadowInheritedFields(Loc: Param->getLocation(), FieldName: Param->getDeclName(), |
12774 | RD, /*DeclIsField*/ false); |
12775 | } |
12776 | } |
12777 | |
12778 | if (!Param->isInvalidDecl() && |
12779 | Param->getOriginalType()->isWebAssemblyTableType()) { |
12780 | Param->setInvalidDecl(); |
12781 | HasInvalidParm = true; |
12782 | Diag(Loc: Param->getLocation(), DiagID: diag::err_wasm_table_as_function_parameter); |
12783 | } |
12784 | } |
12785 | |
12786 | return HasInvalidParm; |
12787 | } |
12788 | |
12789 | std::optional<std::pair< |
12790 | CharUnits, CharUnits>> static getBaseAlignmentAndOffsetFromPtr(const Expr |
12791 | *E, |
12792 | ASTContext |
12793 | &Ctx); |
12794 | |
12795 | /// Compute the alignment and offset of the base class object given the |
12796 | /// derived-to-base cast expression and the alignment and offset of the derived |
12797 | /// class object. |
12798 | static std::pair<CharUnits, CharUnits> |
12799 | getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType, |
12800 | CharUnits BaseAlignment, CharUnits Offset, |
12801 | ASTContext &Ctx) { |
12802 | for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE; |
12803 | ++PathI) { |
12804 | const CXXBaseSpecifier *Base = *PathI; |
12805 | const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); |
12806 | if (Base->isVirtual()) { |
12807 | // The complete object may have a lower alignment than the non-virtual |
12808 | // alignment of the base, in which case the base may be misaligned. Choose |
12809 | // the smaller of the non-virtual alignment and BaseAlignment, which is a |
12810 | // conservative lower bound of the complete object alignment. |
12811 | CharUnits NonVirtualAlignment = |
12812 | Ctx.getASTRecordLayout(D: BaseDecl).getNonVirtualAlignment(); |
12813 | BaseAlignment = std::min(a: BaseAlignment, b: NonVirtualAlignment); |
12814 | Offset = CharUnits::Zero(); |
12815 | } else { |
12816 | const ASTRecordLayout &RL = |
12817 | Ctx.getASTRecordLayout(D: DerivedType->getAsCXXRecordDecl()); |
12818 | Offset += RL.getBaseClassOffset(Base: BaseDecl); |
12819 | } |
12820 | DerivedType = Base->getType(); |
12821 | } |
12822 | |
12823 | return std::make_pair(x&: BaseAlignment, y&: Offset); |
12824 | } |
12825 | |
12826 | /// Compute the alignment and offset of a binary additive operator. |
12827 | static std::optional<std::pair<CharUnits, CharUnits>> |
12828 | getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE, |
12829 | bool IsSub, ASTContext &Ctx) { |
12830 | QualType PointeeType = PtrE->getType()->getPointeeType(); |
12831 | |
12832 | if (!PointeeType->isConstantSizeType()) |
12833 | return std::nullopt; |
12834 | |
12835 | auto P = getBaseAlignmentAndOffsetFromPtr(E: PtrE, Ctx); |
12836 | |
12837 | if (!P) |
12838 | return std::nullopt; |
12839 | |
12840 | CharUnits EltSize = Ctx.getTypeSizeInChars(T: PointeeType); |
12841 | if (std::optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) { |
12842 | CharUnits Offset = EltSize * IdxRes->getExtValue(); |
12843 | if (IsSub) |
12844 | Offset = -Offset; |
12845 | return std::make_pair(x&: P->first, y: P->second + Offset); |
12846 | } |
12847 | |
12848 | // If the integer expression isn't a constant expression, compute the lower |
12849 | // bound of the alignment using the alignment and offset of the pointer |
12850 | // expression and the element size. |
12851 | return std::make_pair( |
12852 | x: P->first.alignmentAtOffset(offset: P->second).alignmentAtOffset(offset: EltSize), |
12853 | y: CharUnits::Zero()); |
12854 | } |
12855 | |
12856 | /// This helper function takes an lvalue expression and returns the alignment of |
12857 | /// a VarDecl and a constant offset from the VarDecl. |
12858 | std::optional<std::pair< |
12859 | CharUnits, |
12860 | CharUnits>> static getBaseAlignmentAndOffsetFromLValue(const Expr *E, |
12861 | ASTContext &Ctx) { |
12862 | E = E->IgnoreParens(); |
12863 | switch (E->getStmtClass()) { |
12864 | default: |
12865 | break; |
12866 | case Stmt::CStyleCastExprClass: |
12867 | case Stmt::CXXStaticCastExprClass: |
12868 | case Stmt::ImplicitCastExprClass: { |
12869 | auto *CE = cast<CastExpr>(Val: E); |
12870 | const Expr *From = CE->getSubExpr(); |
12871 | switch (CE->getCastKind()) { |
12872 | default: |
12873 | break; |
12874 | case CK_NoOp: |
12875 | return getBaseAlignmentAndOffsetFromLValue(E: From, Ctx); |
12876 | case CK_UncheckedDerivedToBase: |
12877 | case CK_DerivedToBase: { |
12878 | auto P = getBaseAlignmentAndOffsetFromLValue(E: From, Ctx); |
12879 | if (!P) |
12880 | break; |
12881 | return getDerivedToBaseAlignmentAndOffset(CE, DerivedType: From->getType(), BaseAlignment: P->first, |
12882 | Offset: P->second, Ctx); |
12883 | } |
12884 | } |
12885 | break; |
12886 | } |
12887 | case Stmt::ArraySubscriptExprClass: { |
12888 | auto *ASE = cast<ArraySubscriptExpr>(Val: E); |
12889 | return getAlignmentAndOffsetFromBinAddOrSub(PtrE: ASE->getBase(), IntE: ASE->getIdx(), |
12890 | IsSub: false, Ctx); |
12891 | } |
12892 | case Stmt::DeclRefExprClass: { |
12893 | if (auto *VD = dyn_cast<VarDecl>(Val: cast<DeclRefExpr>(Val: E)->getDecl())) { |
12894 | // FIXME: If VD is captured by copy or is an escaping __block variable, |
12895 | // use the alignment of VD's type. |
12896 | if (!VD->getType()->isReferenceType()) { |
12897 | // Dependent alignment cannot be resolved -> bail out. |
12898 | if (VD->hasDependentAlignment()) |
12899 | break; |
12900 | return std::make_pair(x: Ctx.getDeclAlign(D: VD), y: CharUnits::Zero()); |
12901 | } |
12902 | if (VD->hasInit()) |
12903 | return getBaseAlignmentAndOffsetFromLValue(E: VD->getInit(), Ctx); |
12904 | } |
12905 | break; |
12906 | } |
12907 | case Stmt::MemberExprClass: { |
12908 | auto *ME = cast<MemberExpr>(Val: E); |
12909 | auto *FD = dyn_cast<FieldDecl>(Val: ME->getMemberDecl()); |
12910 | if (!FD || FD->getType()->isReferenceType() || |
12911 | FD->getParent()->isInvalidDecl()) |
12912 | break; |
12913 | std::optional<std::pair<CharUnits, CharUnits>> P; |
12914 | if (ME->isArrow()) |
12915 | P = getBaseAlignmentAndOffsetFromPtr(E: ME->getBase(), Ctx); |
12916 | else |
12917 | P = getBaseAlignmentAndOffsetFromLValue(E: ME->getBase(), Ctx); |
12918 | if (!P) |
12919 | break; |
12920 | const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(D: FD->getParent()); |
12921 | uint64_t Offset = Layout.getFieldOffset(FieldNo: FD->getFieldIndex()); |
12922 | return std::make_pair(x&: P->first, |
12923 | y: P->second + CharUnits::fromQuantity(Quantity: Offset)); |
12924 | } |
12925 | case Stmt::UnaryOperatorClass: { |
12926 | auto *UO = cast<UnaryOperator>(Val: E); |
12927 | switch (UO->getOpcode()) { |
12928 | default: |
12929 | break; |
12930 | case UO_Deref: |
12931 | return getBaseAlignmentAndOffsetFromPtr(E: UO->getSubExpr(), Ctx); |
12932 | } |
12933 | break; |
12934 | } |
12935 | case Stmt::BinaryOperatorClass: { |
12936 | auto *BO = cast<BinaryOperator>(Val: E); |
12937 | auto Opcode = BO->getOpcode(); |
12938 | switch (Opcode) { |
12939 | default: |
12940 | break; |
12941 | case BO_Comma: |
12942 | return getBaseAlignmentAndOffsetFromLValue(E: BO->getRHS(), Ctx); |
12943 | } |
12944 | break; |
12945 | } |
12946 | } |
12947 | return std::nullopt; |
12948 | } |
12949 | |
12950 | /// This helper function takes a pointer expression and returns the alignment of |
12951 | /// a VarDecl and a constant offset from the VarDecl. |
12952 | std::optional<std::pair< |
12953 | CharUnits, CharUnits>> static getBaseAlignmentAndOffsetFromPtr(const Expr |
12954 | *E, |
12955 | ASTContext |
12956 | &Ctx) { |
12957 | E = E->IgnoreParens(); |
12958 | switch (E->getStmtClass()) { |
12959 | default: |
12960 | break; |
12961 | case Stmt::CStyleCastExprClass: |
12962 | case Stmt::CXXStaticCastExprClass: |
12963 | case Stmt::ImplicitCastExprClass: { |
12964 | auto *CE = cast<CastExpr>(Val: E); |
12965 | const Expr *From = CE->getSubExpr(); |
12966 | switch (CE->getCastKind()) { |
12967 | default: |
12968 | break; |
12969 | case CK_NoOp: |
12970 | return getBaseAlignmentAndOffsetFromPtr(E: From, Ctx); |
12971 | case CK_ArrayToPointerDecay: |
12972 | return getBaseAlignmentAndOffsetFromLValue(E: From, Ctx); |
12973 | case CK_UncheckedDerivedToBase: |
12974 | case CK_DerivedToBase: { |
12975 | auto P = getBaseAlignmentAndOffsetFromPtr(E: From, Ctx); |
12976 | if (!P) |
12977 | break; |
12978 | return getDerivedToBaseAlignmentAndOffset( |
12979 | CE, DerivedType: From->getType()->getPointeeType(), BaseAlignment: P->first, Offset: P->second, Ctx); |
12980 | } |
12981 | } |
12982 | break; |
12983 | } |
12984 | case Stmt::CXXThisExprClass: { |
12985 | auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl(); |
12986 | CharUnits Alignment = Ctx.getASTRecordLayout(D: RD).getNonVirtualAlignment(); |
12987 | return std::make_pair(x&: Alignment, y: CharUnits::Zero()); |
12988 | } |
12989 | case Stmt::UnaryOperatorClass: { |
12990 | auto *UO = cast<UnaryOperator>(Val: E); |
12991 | if (UO->getOpcode() == UO_AddrOf) |
12992 | return getBaseAlignmentAndOffsetFromLValue(E: UO->getSubExpr(), Ctx); |
12993 | break; |
12994 | } |
12995 | case Stmt::BinaryOperatorClass: { |
12996 | auto *BO = cast<BinaryOperator>(Val: E); |
12997 | auto Opcode = BO->getOpcode(); |
12998 | switch (Opcode) { |
12999 | default: |
13000 | break; |
13001 | case BO_Add: |
13002 | case BO_Sub: { |
13003 | const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS(); |
13004 | if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType()) |
13005 | std::swap(a&: LHS, b&: RHS); |
13006 | return getAlignmentAndOffsetFromBinAddOrSub(PtrE: LHS, IntE: RHS, IsSub: Opcode == BO_Sub, |
13007 | Ctx); |
13008 | } |
13009 | case BO_Comma: |
13010 | return getBaseAlignmentAndOffsetFromPtr(E: BO->getRHS(), Ctx); |
13011 | } |
13012 | break; |
13013 | } |
13014 | } |
13015 | return std::nullopt; |
13016 | } |
13017 | |
13018 | static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) { |
13019 | // See if we can compute the alignment of a VarDecl and an offset from it. |
13020 | std::optional<std::pair<CharUnits, CharUnits>> P = |
13021 | getBaseAlignmentAndOffsetFromPtr(E, Ctx&: S.Context); |
13022 | |
13023 | if (P) |
13024 | return P->first.alignmentAtOffset(offset: P->second); |
13025 | |
13026 | // If that failed, return the type's alignment. |
13027 | return S.Context.getTypeAlignInChars(T: E->getType()->getPointeeType()); |
13028 | } |
13029 | |
13030 | void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) { |
13031 | // This is actually a lot of work to potentially be doing on every |
13032 | // cast; don't do it if we're ignoring -Wcast_align (as is the default). |
13033 | if (getDiagnostics().isIgnored(DiagID: diag::warn_cast_align, Loc: TRange.getBegin())) |
13034 | return; |
13035 | |
13036 | // Ignore dependent types. |
13037 | if (T->isDependentType() || Op->getType()->isDependentType()) |
13038 | return; |
13039 | |
13040 | // Require that the destination be a pointer type. |
13041 | const PointerType *DestPtr = T->getAs<PointerType>(); |
13042 | if (!DestPtr) return; |
13043 | |
13044 | // If the destination has alignment 1, we're done. |
13045 | QualType DestPointee = DestPtr->getPointeeType(); |
13046 | if (DestPointee->isIncompleteType()) return; |
13047 | CharUnits DestAlign = Context.getTypeAlignInChars(T: DestPointee); |
13048 | if (DestAlign.isOne()) return; |
13049 | |
13050 | // Require that the source be a pointer type. |
13051 | const PointerType *SrcPtr = Op->getType()->getAs<PointerType>(); |
13052 | if (!SrcPtr) return; |
13053 | QualType SrcPointee = SrcPtr->getPointeeType(); |
13054 | |
13055 | // Explicitly allow casts from cv void*. We already implicitly |
13056 | // allowed casts to cv void*, since they have alignment 1. |
13057 | // Also allow casts involving incomplete types, which implicitly |
13058 | // includes 'void'. |
13059 | if (SrcPointee->isIncompleteType()) return; |
13060 | |
13061 | CharUnits SrcAlign = getPresumedAlignmentOfPointer(E: Op, S&: *this); |
13062 | |
13063 | if (SrcAlign >= DestAlign) return; |
13064 | |
13065 | Diag(Loc: TRange.getBegin(), DiagID: diag::warn_cast_align) |
13066 | << Op->getType() << T |
13067 | << static_cast<unsigned>(SrcAlign.getQuantity()) |
13068 | << static_cast<unsigned>(DestAlign.getQuantity()) |
13069 | << TRange << Op->getSourceRange(); |
13070 | } |
13071 | |
13072 | void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, |
13073 | const ArraySubscriptExpr *ASE, |
13074 | bool AllowOnePastEnd, bool IndexNegated) { |
13075 | // Already diagnosed by the constant evaluator. |
13076 | if (isConstantEvaluatedContext()) |
13077 | return; |
13078 | |
13079 | IndexExpr = IndexExpr->IgnoreParenImpCasts(); |
13080 | if (IndexExpr->isValueDependent()) |
13081 | return; |
13082 | |
13083 | const Type *EffectiveType = |
13084 | BaseExpr->getType()->getPointeeOrArrayElementType(); |
13085 | BaseExpr = BaseExpr->IgnoreParenCasts(); |
13086 | const ConstantArrayType *ArrayTy = |
13087 | Context.getAsConstantArrayType(T: BaseExpr->getType()); |
13088 | |
13089 | LangOptions::StrictFlexArraysLevelKind |
13090 | StrictFlexArraysLevel = getLangOpts().getStrictFlexArraysLevel(); |
13091 | |
13092 | const Type *BaseType = |
13093 | ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr(); |
13094 | bool IsUnboundedArray = |
13095 | BaseType == nullptr || BaseExpr->isFlexibleArrayMemberLike( |
13096 | Context, StrictFlexArraysLevel, |
13097 | /*IgnoreTemplateOrMacroSubstitution=*/true); |
13098 | if (EffectiveType->isDependentType() || |
13099 | (!IsUnboundedArray && BaseType->isDependentType())) |
13100 | return; |
13101 | |
13102 | Expr::EvalResult Result; |
13103 | if (!IndexExpr->EvaluateAsInt(Result, Ctx: Context, AllowSideEffects: Expr::SE_AllowSideEffects)) |
13104 | return; |
13105 | |
13106 | llvm::APSInt index = Result.Val.getInt(); |
13107 | if (IndexNegated) { |
13108 | index.setIsUnsigned(false); |
13109 | index = -index; |
13110 | } |
13111 | |
13112 | if (IsUnboundedArray) { |
13113 | if (EffectiveType->isFunctionType()) |
13114 | return; |
13115 | if (index.isUnsigned() || !index.isNegative()) { |
13116 | const auto &ASTC = getASTContext(); |
13117 | unsigned AddrBits = ASTC.getTargetInfo().getPointerWidth( |
13118 | AddrSpace: EffectiveType->getCanonicalTypeInternal().getAddressSpace()); |
13119 | if (index.getBitWidth() < AddrBits) |
13120 | index = index.zext(width: AddrBits); |
13121 | std::optional<CharUnits> ElemCharUnits = |
13122 | ASTC.getTypeSizeInCharsIfKnown(Ty: EffectiveType); |
13123 | // PR50741 - If EffectiveType has unknown size (e.g., if it's a void |
13124 | // pointer) bounds-checking isn't meaningful. |
13125 | if (!ElemCharUnits || ElemCharUnits->isZero()) |
13126 | return; |
13127 | llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity()); |
13128 | // If index has more active bits than address space, we already know |
13129 | // we have a bounds violation to warn about. Otherwise, compute |
13130 | // address of (index + 1)th element, and warn about bounds violation |
13131 | // only if that address exceeds address space. |
13132 | if (index.getActiveBits() <= AddrBits) { |
13133 | bool Overflow; |
13134 | llvm::APInt Product(index); |
13135 | Product += 1; |
13136 | Product = Product.umul_ov(RHS: ElemBytes, Overflow); |
13137 | if (!Overflow && Product.getActiveBits() <= AddrBits) |
13138 | return; |
13139 | } |
13140 | |
13141 | // Need to compute max possible elements in address space, since that |
13142 | // is included in diag message. |
13143 | llvm::APInt MaxElems = llvm::APInt::getMaxValue(numBits: AddrBits); |
13144 | MaxElems = MaxElems.zext(width: std::max(a: AddrBits + 1, b: ElemBytes.getBitWidth())); |
13145 | MaxElems += 1; |
13146 | ElemBytes = ElemBytes.zextOrTrunc(width: MaxElems.getBitWidth()); |
13147 | MaxElems = MaxElems.udiv(RHS: ElemBytes); |
13148 | |
13149 | unsigned DiagID = |
13150 | ASE ? diag::warn_array_index_exceeds_max_addressable_bounds |
13151 | : diag::warn_ptr_arith_exceeds_max_addressable_bounds; |
13152 | |
13153 | // Diag message shows element size in bits and in "bytes" (platform- |
13154 | // dependent CharUnits) |
13155 | DiagRuntimeBehavior(Loc: BaseExpr->getBeginLoc(), Statement: BaseExpr, |
13156 | PD: PDiag(DiagID) |
13157 | << toString(I: index, Radix: 10, Signed: true) << AddrBits |
13158 | << (unsigned)ASTC.toBits(CharSize: *ElemCharUnits) |
13159 | << toString(I: ElemBytes, Radix: 10, Signed: false) |
13160 | << toString(I: MaxElems, Radix: 10, Signed: false) |
13161 | << (unsigned)MaxElems.getLimitedValue(Limit: ~0U) |
13162 | << IndexExpr->getSourceRange()); |
13163 | |
13164 | const NamedDecl *ND = nullptr; |
13165 | // Try harder to find a NamedDecl to point at in the note. |
13166 | while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Val: BaseExpr)) |
13167 | BaseExpr = ASE->getBase()->IgnoreParenCasts(); |
13168 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: BaseExpr)) |
13169 | ND = DRE->getDecl(); |
13170 | if (const auto *ME = dyn_cast<MemberExpr>(Val: BaseExpr)) |
13171 | ND = ME->getMemberDecl(); |
13172 | |
13173 | if (ND) |
13174 | DiagRuntimeBehavior(Loc: ND->getBeginLoc(), Statement: BaseExpr, |
13175 | PD: PDiag(DiagID: diag::note_array_declared_here) << ND); |
13176 | } |
13177 | return; |
13178 | } |
13179 | |
13180 | if (index.isUnsigned() || !index.isNegative()) { |
13181 | // It is possible that the type of the base expression after |
13182 | // IgnoreParenCasts is incomplete, even though the type of the base |
13183 | // expression before IgnoreParenCasts is complete (see PR39746 for an |
13184 | // example). In this case we have no information about whether the array |
13185 | // access exceeds the array bounds. However we can still diagnose an array |
13186 | // access which precedes the array bounds. |
13187 | if (BaseType->isIncompleteType()) |
13188 | return; |
13189 | |
13190 | llvm::APInt size = ArrayTy->getSize(); |
13191 | |
13192 | if (BaseType != EffectiveType) { |
13193 | // Make sure we're comparing apples to apples when comparing index to |
13194 | // size. |
13195 | uint64_t ptrarith_typesize = Context.getTypeSize(T: EffectiveType); |
13196 | uint64_t array_typesize = Context.getTypeSize(T: BaseType); |
13197 | |
13198 | // Handle ptrarith_typesize being zero, such as when casting to void*. |
13199 | // Use the size in bits (what "getTypeSize()" returns) rather than bytes. |
13200 | if (!ptrarith_typesize) |
13201 | ptrarith_typesize = Context.getCharWidth(); |
13202 | |
13203 | if (ptrarith_typesize != array_typesize) { |
13204 | // There's a cast to a different size type involved. |
13205 | uint64_t ratio = array_typesize / ptrarith_typesize; |
13206 | |
13207 | // TODO: Be smarter about handling cases where array_typesize is not a |
13208 | // multiple of ptrarith_typesize. |
13209 | if (ptrarith_typesize * ratio == array_typesize) |
13210 | size *= llvm::APInt(size.getBitWidth(), ratio); |
13211 | } |
13212 | } |
13213 | |
13214 | if (size.getBitWidth() > index.getBitWidth()) |
13215 | index = index.zext(width: size.getBitWidth()); |
13216 | else if (size.getBitWidth() < index.getBitWidth()) |
13217 | size = size.zext(width: index.getBitWidth()); |
13218 | |
13219 | // For array subscripting the index must be less than size, but for pointer |
13220 | // arithmetic also allow the index (offset) to be equal to size since |
13221 | // computing the next address after the end of the array is legal and |
13222 | // commonly done e.g. in C++ iterators and range-based for loops. |
13223 | if (AllowOnePastEnd ? index.ule(RHS: size) : index.ult(RHS: size)) |
13224 | return; |
13225 | |
13226 | // Suppress the warning if the subscript expression (as identified by the |
13227 | // ']' location) and the index expression are both from macro expansions |
13228 | // within a system header. |
13229 | if (ASE) { |
13230 | SourceLocation RBracketLoc = SourceMgr.getSpellingLoc( |
13231 | Loc: ASE->getRBracketLoc()); |
13232 | if (SourceMgr.isInSystemHeader(Loc: RBracketLoc)) { |
13233 | SourceLocation IndexLoc = |
13234 | SourceMgr.getSpellingLoc(Loc: IndexExpr->getBeginLoc()); |
13235 | if (SourceMgr.isWrittenInSameFile(Loc1: RBracketLoc, Loc2: IndexLoc)) |
13236 | return; |
13237 | } |
13238 | } |
13239 | |
13240 | unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds |
13241 | : diag::warn_ptr_arith_exceeds_bounds; |
13242 | unsigned CastMsg = (!ASE || BaseType == EffectiveType) ? 0 : 1; |
13243 | QualType CastMsgTy = ASE ? ASE->getLHS()->getType() : QualType(); |
13244 | |
13245 | DiagRuntimeBehavior( |
13246 | Loc: BaseExpr->getBeginLoc(), Statement: BaseExpr, |
13247 | PD: PDiag(DiagID) << toString(I: index, Radix: 10, Signed: true) << ArrayTy->desugar() |
13248 | << CastMsg << CastMsgTy << IndexExpr->getSourceRange()); |
13249 | } else { |
13250 | unsigned DiagID = diag::warn_array_index_precedes_bounds; |
13251 | if (!ASE) { |
13252 | DiagID = diag::warn_ptr_arith_precedes_bounds; |
13253 | if (index.isNegative()) index = -index; |
13254 | } |
13255 | |
13256 | DiagRuntimeBehavior(Loc: BaseExpr->getBeginLoc(), Statement: BaseExpr, |
13257 | PD: PDiag(DiagID) << toString(I: index, Radix: 10, Signed: true) |
13258 | << IndexExpr->getSourceRange()); |
13259 | } |
13260 | |
13261 | const NamedDecl *ND = nullptr; |
13262 | // Try harder to find a NamedDecl to point at in the note. |
13263 | while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Val: BaseExpr)) |
13264 | BaseExpr = ASE->getBase()->IgnoreParenCasts(); |
13265 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: BaseExpr)) |
13266 | ND = DRE->getDecl(); |
13267 | if (const auto *ME = dyn_cast<MemberExpr>(Val: BaseExpr)) |
13268 | ND = ME->getMemberDecl(); |
13269 | |
13270 | if (ND) |
13271 | DiagRuntimeBehavior(Loc: ND->getBeginLoc(), Statement: BaseExpr, |
13272 | PD: PDiag(DiagID: diag::note_array_declared_here) << ND); |
13273 | } |
13274 | |
13275 | void Sema::CheckArrayAccess(const Expr *expr) { |
13276 | int AllowOnePastEnd = 0; |
13277 | while (expr) { |
13278 | expr = expr->IgnoreParenImpCasts(); |
13279 | switch (expr->getStmtClass()) { |
13280 | case Stmt::ArraySubscriptExprClass: { |
13281 | const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Val: expr); |
13282 | CheckArrayAccess(BaseExpr: ASE->getBase(), IndexExpr: ASE->getIdx(), ASE, |
13283 | AllowOnePastEnd: AllowOnePastEnd > 0); |
13284 | expr = ASE->getBase(); |
13285 | break; |
13286 | } |
13287 | case Stmt::MemberExprClass: { |
13288 | expr = cast<MemberExpr>(Val: expr)->getBase(); |
13289 | break; |
13290 | } |
13291 | case Stmt::ArraySectionExprClass: { |
13292 | const ArraySectionExpr *ASE = cast<ArraySectionExpr>(Val: expr); |
13293 | // FIXME: We should probably be checking all of the elements to the |
13294 | // 'length' here as well. |
13295 | if (ASE->getLowerBound()) |
13296 | CheckArrayAccess(BaseExpr: ASE->getBase(), IndexExpr: ASE->getLowerBound(), |
13297 | /*ASE=*/nullptr, AllowOnePastEnd: AllowOnePastEnd > 0); |
13298 | return; |
13299 | } |
13300 | case Stmt::UnaryOperatorClass: { |
13301 | // Only unwrap the * and & unary operators |
13302 | const UnaryOperator *UO = cast<UnaryOperator>(Val: expr); |
13303 | expr = UO->getSubExpr(); |
13304 | switch (UO->getOpcode()) { |
13305 | case UO_AddrOf: |
13306 | AllowOnePastEnd++; |
13307 | break; |
13308 | case UO_Deref: |
13309 | AllowOnePastEnd--; |
13310 | break; |
13311 | default: |
13312 | return; |
13313 | } |
13314 | break; |
13315 | } |
13316 | case Stmt::ConditionalOperatorClass: { |
13317 | const ConditionalOperator *cond = cast<ConditionalOperator>(Val: expr); |
13318 | if (const Expr *lhs = cond->getLHS()) |
13319 | CheckArrayAccess(expr: lhs); |
13320 | if (const Expr *rhs = cond->getRHS()) |
13321 | CheckArrayAccess(expr: rhs); |
13322 | return; |
13323 | } |
13324 | case Stmt::CXXOperatorCallExprClass: { |
13325 | const auto *OCE = cast<CXXOperatorCallExpr>(Val: expr); |
13326 | for (const auto *Arg : OCE->arguments()) |
13327 | CheckArrayAccess(expr: Arg); |
13328 | return; |
13329 | } |
13330 | default: |
13331 | return; |
13332 | } |
13333 | } |
13334 | } |
13335 | |
13336 | static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc, |
13337 | Expr *RHS, bool isProperty) { |
13338 | // Check if RHS is an Objective-C object literal, which also can get |
13339 | // immediately zapped in a weak reference. Note that we explicitly |
13340 | // allow ObjCStringLiterals, since those are designed to never really die. |
13341 | RHS = RHS->IgnoreParenImpCasts(); |
13342 | |
13343 | // This enum needs to match with the 'select' in |
13344 | // warn_objc_arc_literal_assign (off-by-1). |
13345 | SemaObjC::ObjCLiteralKind Kind = S.ObjC().CheckLiteralKind(FromE: RHS); |
13346 | if (Kind == SemaObjC::LK_String || Kind == SemaObjC::LK_None) |
13347 | return false; |
13348 | |
13349 | S.Diag(Loc, DiagID: diag::warn_arc_literal_assign) |
13350 | << (unsigned) Kind |
13351 | << (isProperty ? 0 : 1) |
13352 | << RHS->getSourceRange(); |
13353 | |
13354 | return true; |
13355 | } |
13356 | |
13357 | static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc, |
13358 | Qualifiers::ObjCLifetime LT, |
13359 | Expr *RHS, bool isProperty) { |
13360 | // Strip off any implicit cast added to get to the one ARC-specific. |
13361 | while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(Val: RHS)) { |
13362 | if (cast->getCastKind() == CK_ARCConsumeObject) { |
13363 | S.Diag(Loc, DiagID: diag::warn_arc_retained_assign) |
13364 | << (LT == Qualifiers::OCL_ExplicitNone) |
13365 | << (isProperty ? 0 : 1) |
13366 | << RHS->getSourceRange(); |
13367 | return true; |
13368 | } |
13369 | RHS = cast->getSubExpr(); |
13370 | } |
13371 | |
13372 | if (LT == Qualifiers::OCL_Weak && |
13373 | checkUnsafeAssignLiteral(S, Loc, RHS, isProperty)) |
13374 | return true; |
13375 | |
13376 | return false; |
13377 | } |
13378 | |
13379 | bool Sema::checkUnsafeAssigns(SourceLocation Loc, |
13380 | QualType LHS, Expr *RHS) { |
13381 | Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime(); |
13382 | |
13383 | if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone) |
13384 | return false; |
13385 | |
13386 | if (checkUnsafeAssignObject(S&: *this, Loc, LT, RHS, isProperty: false)) |
13387 | return true; |
13388 | |
13389 | return false; |
13390 | } |
13391 | |
13392 | void Sema::checkUnsafeExprAssigns(SourceLocation Loc, |
13393 | Expr *LHS, Expr *RHS) { |
13394 | QualType LHSType; |
13395 | // PropertyRef on LHS type need be directly obtained from |
13396 | // its declaration as it has a PseudoType. |
13397 | ObjCPropertyRefExpr *PRE |
13398 | = dyn_cast<ObjCPropertyRefExpr>(Val: LHS->IgnoreParens()); |
13399 | if (PRE && !PRE->isImplicitProperty()) { |
13400 | const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); |
13401 | if (PD) |
13402 | LHSType = PD->getType(); |
13403 | } |
13404 | |
13405 | if (LHSType.isNull()) |
13406 | LHSType = LHS->getType(); |
13407 | |
13408 | Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime(); |
13409 | |
13410 | if (LT == Qualifiers::OCL_Weak) { |
13411 | if (!Diags.isIgnored(DiagID: diag::warn_arc_repeated_use_of_weak, Loc)) |
13412 | getCurFunction()->markSafeWeakUse(E: LHS); |
13413 | } |
13414 | |
13415 | if (checkUnsafeAssigns(Loc, LHS: LHSType, RHS)) |
13416 | return; |
13417 | |
13418 | // FIXME. Check for other life times. |
13419 | if (LT != Qualifiers::OCL_None) |
13420 | return; |
13421 | |
13422 | if (PRE) { |
13423 | if (PRE->isImplicitProperty()) |
13424 | return; |
13425 | const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); |
13426 | if (!PD) |
13427 | return; |
13428 | |
13429 | unsigned Attributes = PD->getPropertyAttributes(); |
13430 | if (Attributes & ObjCPropertyAttribute::kind_assign) { |
13431 | // when 'assign' attribute was not explicitly specified |
13432 | // by user, ignore it and rely on property type itself |
13433 | // for lifetime info. |
13434 | unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten(); |
13435 | if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) && |
13436 | LHSType->isObjCRetainableType()) |
13437 | return; |
13438 | |
13439 | while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(Val: RHS)) { |
13440 | if (cast->getCastKind() == CK_ARCConsumeObject) { |
13441 | Diag(Loc, DiagID: diag::warn_arc_retained_property_assign) |
13442 | << RHS->getSourceRange(); |
13443 | return; |
13444 | } |
13445 | RHS = cast->getSubExpr(); |
13446 | } |
13447 | } else if (Attributes & ObjCPropertyAttribute::kind_weak) { |
13448 | if (checkUnsafeAssignObject(S&: *this, Loc, LT: Qualifiers::OCL_Weak, RHS, isProperty: true)) |
13449 | return; |
13450 | } |
13451 | } |
13452 | } |
13453 | |
13454 | //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===// |
13455 | |
13456 | static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr, |
13457 | SourceLocation StmtLoc, |
13458 | const NullStmt *Body) { |
13459 | // Do not warn if the body is a macro that expands to nothing, e.g: |
13460 | // |
13461 | // #define CALL(x) |
13462 | // if (condition) |
13463 | // CALL(0); |
13464 | if (Body->hasLeadingEmptyMacro()) |
13465 | return false; |
13466 | |
13467 | // Get line numbers of statement and body. |
13468 | bool StmtLineInvalid; |
13469 | unsigned StmtLine = SourceMgr.getPresumedLineNumber(Loc: StmtLoc, |
13470 | Invalid: &StmtLineInvalid); |
13471 | if (StmtLineInvalid) |
13472 | return false; |
13473 | |
13474 | bool BodyLineInvalid; |
13475 | unsigned BodyLine = SourceMgr.getSpellingLineNumber(Loc: Body->getSemiLoc(), |
13476 | Invalid: &BodyLineInvalid); |
13477 | if (BodyLineInvalid) |
13478 | return false; |
13479 | |
13480 | // Warn if null statement and body are on the same line. |
13481 | if (StmtLine != BodyLine) |
13482 | return false; |
13483 | |
13484 | return true; |
13485 | } |
13486 | |
13487 | void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc, |
13488 | const Stmt *Body, |
13489 | unsigned DiagID) { |
13490 | // Since this is a syntactic check, don't emit diagnostic for template |
13491 | // instantiations, this just adds noise. |
13492 | if (CurrentInstantiationScope) |
13493 | return; |
13494 | |
13495 | // The body should be a null statement. |
13496 | const NullStmt *NBody = dyn_cast<NullStmt>(Val: Body); |
13497 | if (!NBody) |
13498 | return; |
13499 | |
13500 | // Do the usual checks. |
13501 | if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, Body: NBody)) |
13502 | return; |
13503 | |
13504 | Diag(Loc: NBody->getSemiLoc(), DiagID); |
13505 | Diag(Loc: NBody->getSemiLoc(), DiagID: diag::note_empty_body_on_separate_line); |
13506 | } |
13507 | |
13508 | void Sema::DiagnoseEmptyLoopBody(const Stmt *S, |
13509 | const Stmt *PossibleBody) { |
13510 | assert(!CurrentInstantiationScope); // Ensured by caller |
13511 | |
13512 | SourceLocation StmtLoc; |
13513 | const Stmt *Body; |
13514 | unsigned DiagID; |
13515 | if (const ForStmt *FS = dyn_cast<ForStmt>(Val: S)) { |
13516 | StmtLoc = FS->getRParenLoc(); |
13517 | Body = FS->getBody(); |
13518 | DiagID = diag::warn_empty_for_body; |
13519 | } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(Val: S)) { |
13520 | StmtLoc = WS->getRParenLoc(); |
13521 | Body = WS->getBody(); |
13522 | DiagID = diag::warn_empty_while_body; |
13523 | } else |
13524 | return; // Neither `for' nor `while'. |
13525 | |
13526 | // The body should be a null statement. |
13527 | const NullStmt *NBody = dyn_cast<NullStmt>(Val: Body); |
13528 | if (!NBody) |
13529 | return; |
13530 | |
13531 | // Skip expensive checks if diagnostic is disabled. |
13532 | if (Diags.isIgnored(DiagID, Loc: NBody->getSemiLoc())) |
13533 | return; |
13534 | |
13535 | // Do the usual checks. |
13536 | if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, Body: NBody)) |
13537 | return; |
13538 | |
13539 | // `for(...);' and `while(...);' are popular idioms, so in order to keep |
13540 | // noise level low, emit diagnostics only if for/while is followed by a |
13541 | // CompoundStmt, e.g.: |
13542 | // for (int i = 0; i < n; i++); |
13543 | // { |
13544 | // a(i); |
13545 | // } |
13546 | // or if for/while is followed by a statement with more indentation |
13547 | // than for/while itself: |
13548 | // for (int i = 0; i < n; i++); |
13549 | // a(i); |
13550 | bool ProbableTypo = isa<CompoundStmt>(Val: PossibleBody); |
13551 | if (!ProbableTypo) { |
13552 | bool BodyColInvalid; |
13553 | unsigned BodyCol = SourceMgr.getPresumedColumnNumber( |
13554 | Loc: PossibleBody->getBeginLoc(), Invalid: &BodyColInvalid); |
13555 | if (BodyColInvalid) |
13556 | return; |
13557 | |
13558 | bool StmtColInvalid; |
13559 | unsigned StmtCol = |
13560 | SourceMgr.getPresumedColumnNumber(Loc: S->getBeginLoc(), Invalid: &StmtColInvalid); |
13561 | if (StmtColInvalid) |
13562 | return; |
13563 | |
13564 | if (BodyCol > StmtCol) |
13565 | ProbableTypo = true; |
13566 | } |
13567 | |
13568 | if (ProbableTypo) { |
13569 | Diag(Loc: NBody->getSemiLoc(), DiagID); |
13570 | Diag(Loc: NBody->getSemiLoc(), DiagID: diag::note_empty_body_on_separate_line); |
13571 | } |
13572 | } |
13573 | |
13574 | //===--- CHECK: Warn on self move with std::move. -------------------------===// |
13575 | |
13576 | void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, |
13577 | SourceLocation OpLoc) { |
13578 | if (Diags.isIgnored(DiagID: diag::warn_sizeof_pointer_expr_memaccess, Loc: OpLoc)) |
13579 | return; |
13580 | |
13581 | if (inTemplateInstantiation()) |
13582 | return; |
13583 | |
13584 | // Strip parens and casts away. |
13585 | LHSExpr = LHSExpr->IgnoreParenImpCasts(); |
13586 | RHSExpr = RHSExpr->IgnoreParenImpCasts(); |
13587 | |
13588 | // Check for a call to std::move or for a static_cast<T&&>(..) to an xvalue |
13589 | // which we can treat as an inlined std::move |
13590 | if (const auto *CE = dyn_cast<CallExpr>(Val: RHSExpr); |
13591 | CE && CE->getNumArgs() == 1 && CE->isCallToStdMove()) |
13592 | RHSExpr = CE->getArg(Arg: 0); |
13593 | else if (const auto *CXXSCE = dyn_cast<CXXStaticCastExpr>(Val: RHSExpr); |
13594 | CXXSCE && CXXSCE->isXValue()) |
13595 | RHSExpr = CXXSCE->getSubExpr(); |
13596 | else |
13597 | return; |
13598 | |
13599 | const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(Val: LHSExpr); |
13600 | const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(Val: RHSExpr); |
13601 | |
13602 | // Two DeclRefExpr's, check that the decls are the same. |
13603 | if (LHSDeclRef && RHSDeclRef) { |
13604 | if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) |
13605 | return; |
13606 | if (LHSDeclRef->getDecl()->getCanonicalDecl() != |
13607 | RHSDeclRef->getDecl()->getCanonicalDecl()) |
13608 | return; |
13609 | |
13610 | auto D = Diag(Loc: OpLoc, DiagID: diag::warn_self_move) |
13611 | << LHSExpr->getType() << LHSExpr->getSourceRange() |
13612 | << RHSExpr->getSourceRange(); |
13613 | if (const FieldDecl *F = |
13614 | getSelfAssignmentClassMemberCandidate(SelfAssigned: RHSDeclRef->getDecl())) |
13615 | D << 1 << F |
13616 | << FixItHint::CreateInsertion(InsertionLoc: LHSDeclRef->getBeginLoc(), Code: "this->" ); |
13617 | else |
13618 | D << 0; |
13619 | return; |
13620 | } |
13621 | |
13622 | // Member variables require a different approach to check for self moves. |
13623 | // MemberExpr's are the same if every nested MemberExpr refers to the same |
13624 | // Decl and that the base Expr's are DeclRefExpr's with the same Decl or |
13625 | // the base Expr's are CXXThisExpr's. |
13626 | const Expr *LHSBase = LHSExpr; |
13627 | const Expr *RHSBase = RHSExpr; |
13628 | const MemberExpr *LHSME = dyn_cast<MemberExpr>(Val: LHSExpr); |
13629 | const MemberExpr *RHSME = dyn_cast<MemberExpr>(Val: RHSExpr); |
13630 | if (!LHSME || !RHSME) |
13631 | return; |
13632 | |
13633 | while (LHSME && RHSME) { |
13634 | if (LHSME->getMemberDecl()->getCanonicalDecl() != |
13635 | RHSME->getMemberDecl()->getCanonicalDecl()) |
13636 | return; |
13637 | |
13638 | LHSBase = LHSME->getBase(); |
13639 | RHSBase = RHSME->getBase(); |
13640 | LHSME = dyn_cast<MemberExpr>(Val: LHSBase); |
13641 | RHSME = dyn_cast<MemberExpr>(Val: RHSBase); |
13642 | } |
13643 | |
13644 | LHSDeclRef = dyn_cast<DeclRefExpr>(Val: LHSBase); |
13645 | RHSDeclRef = dyn_cast<DeclRefExpr>(Val: RHSBase); |
13646 | if (LHSDeclRef && RHSDeclRef) { |
13647 | if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) |
13648 | return; |
13649 | if (LHSDeclRef->getDecl()->getCanonicalDecl() != |
13650 | RHSDeclRef->getDecl()->getCanonicalDecl()) |
13651 | return; |
13652 | |
13653 | Diag(Loc: OpLoc, DiagID: diag::warn_self_move) |
13654 | << LHSExpr->getType() << 0 << LHSExpr->getSourceRange() |
13655 | << RHSExpr->getSourceRange(); |
13656 | return; |
13657 | } |
13658 | |
13659 | if (isa<CXXThisExpr>(Val: LHSBase) && isa<CXXThisExpr>(Val: RHSBase)) |
13660 | Diag(Loc: OpLoc, DiagID: diag::warn_self_move) |
13661 | << LHSExpr->getType() << 0 << LHSExpr->getSourceRange() |
13662 | << RHSExpr->getSourceRange(); |
13663 | } |
13664 | |
13665 | //===--- Layout compatibility ----------------------------------------------// |
13666 | |
13667 | static bool isLayoutCompatible(const ASTContext &C, QualType T1, QualType T2); |
13668 | |
13669 | /// Check if two enumeration types are layout-compatible. |
13670 | static bool isLayoutCompatible(const ASTContext &C, const EnumDecl *ED1, |
13671 | const EnumDecl *ED2) { |
13672 | // C++11 [dcl.enum] p8: |
13673 | // Two enumeration types are layout-compatible if they have the same |
13674 | // underlying type. |
13675 | return ED1->isComplete() && ED2->isComplete() && |
13676 | C.hasSameType(T1: ED1->getIntegerType(), T2: ED2->getIntegerType()); |
13677 | } |
13678 | |
13679 | /// Check if two fields are layout-compatible. |
13680 | /// Can be used on union members, which are exempt from alignment requirement |
13681 | /// of common initial sequence. |
13682 | static bool isLayoutCompatible(const ASTContext &C, const FieldDecl *Field1, |
13683 | const FieldDecl *Field2, |
13684 | bool AreUnionMembers = false) { |
13685 | [[maybe_unused]] const Type *Field1Parent = |
13686 | Field1->getParent()->getTypeForDecl(); |
13687 | [[maybe_unused]] const Type *Field2Parent = |
13688 | Field2->getParent()->getTypeForDecl(); |
13689 | assert(((Field1Parent->isStructureOrClassType() && |
13690 | Field2Parent->isStructureOrClassType()) || |
13691 | (Field1Parent->isUnionType() && Field2Parent->isUnionType())) && |
13692 | "Can't evaluate layout compatibility between a struct field and a " |
13693 | "union field." ); |
13694 | assert(((!AreUnionMembers && Field1Parent->isStructureOrClassType()) || |
13695 | (AreUnionMembers && Field1Parent->isUnionType())) && |
13696 | "AreUnionMembers should be 'true' for union fields (only)." ); |
13697 | |
13698 | if (!isLayoutCompatible(C, T1: Field1->getType(), T2: Field2->getType())) |
13699 | return false; |
13700 | |
13701 | if (Field1->isBitField() != Field2->isBitField()) |
13702 | return false; |
13703 | |
13704 | if (Field1->isBitField()) { |
13705 | // Make sure that the bit-fields are the same length. |
13706 | unsigned Bits1 = Field1->getBitWidthValue(Ctx: C); |
13707 | unsigned Bits2 = Field2->getBitWidthValue(Ctx: C); |
13708 | |
13709 | if (Bits1 != Bits2) |
13710 | return false; |
13711 | } |
13712 | |
13713 | if (Field1->hasAttr<clang::NoUniqueAddressAttr>() || |
13714 | Field2->hasAttr<clang::NoUniqueAddressAttr>()) |
13715 | return false; |
13716 | |
13717 | if (!AreUnionMembers && |
13718 | Field1->getMaxAlignment() != Field2->getMaxAlignment()) |
13719 | return false; |
13720 | |
13721 | return true; |
13722 | } |
13723 | |
13724 | /// Check if two standard-layout structs are layout-compatible. |
13725 | /// (C++11 [class.mem] p17) |
13726 | static bool isLayoutCompatibleStruct(const ASTContext &C, const RecordDecl *RD1, |
13727 | const RecordDecl *RD2) { |
13728 | // Get to the class where the fields are declared |
13729 | if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(Val: RD1)) |
13730 | RD1 = D1CXX->getStandardLayoutBaseWithFields(); |
13731 | |
13732 | if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(Val: RD2)) |
13733 | RD2 = D2CXX->getStandardLayoutBaseWithFields(); |
13734 | |
13735 | // Check the fields. |
13736 | return llvm::equal(LRange: RD1->fields(), RRange: RD2->fields(), |
13737 | P: [&C](const FieldDecl *F1, const FieldDecl *F2) -> bool { |
13738 | return isLayoutCompatible(C, Field1: F1, Field2: F2); |
13739 | }); |
13740 | } |
13741 | |
13742 | /// Check if two standard-layout unions are layout-compatible. |
13743 | /// (C++11 [class.mem] p18) |
13744 | static bool isLayoutCompatibleUnion(const ASTContext &C, const RecordDecl *RD1, |
13745 | const RecordDecl *RD2) { |
13746 | llvm::SmallPtrSet<const FieldDecl *, 8> UnmatchedFields; |
13747 | for (auto *Field2 : RD2->fields()) |
13748 | UnmatchedFields.insert(Ptr: Field2); |
13749 | |
13750 | for (auto *Field1 : RD1->fields()) { |
13751 | auto I = UnmatchedFields.begin(); |
13752 | auto E = UnmatchedFields.end(); |
13753 | |
13754 | for ( ; I != E; ++I) { |
13755 | if (isLayoutCompatible(C, Field1, Field2: *I, /*IsUnionMember=*/AreUnionMembers: true)) { |
13756 | bool Result = UnmatchedFields.erase(Ptr: *I); |
13757 | (void) Result; |
13758 | assert(Result); |
13759 | break; |
13760 | } |
13761 | } |
13762 | if (I == E) |
13763 | return false; |
13764 | } |
13765 | |
13766 | return UnmatchedFields.empty(); |
13767 | } |
13768 | |
13769 | static bool isLayoutCompatible(const ASTContext &C, const RecordDecl *RD1, |
13770 | const RecordDecl *RD2) { |
13771 | if (RD1->isUnion() != RD2->isUnion()) |
13772 | return false; |
13773 | |
13774 | if (RD1->isUnion()) |
13775 | return isLayoutCompatibleUnion(C, RD1, RD2); |
13776 | else |
13777 | return isLayoutCompatibleStruct(C, RD1, RD2); |
13778 | } |
13779 | |
13780 | /// Check if two types are layout-compatible in C++11 sense. |
13781 | static bool isLayoutCompatible(const ASTContext &C, QualType T1, QualType T2) { |
13782 | if (T1.isNull() || T2.isNull()) |
13783 | return false; |
13784 | |
13785 | // C++20 [basic.types] p11: |
13786 | // Two types cv1 T1 and cv2 T2 are layout-compatible types |
13787 | // if T1 and T2 are the same type, layout-compatible enumerations (9.7.1), |
13788 | // or layout-compatible standard-layout class types (11.4). |
13789 | T1 = T1.getCanonicalType().getUnqualifiedType(); |
13790 | T2 = T2.getCanonicalType().getUnqualifiedType(); |
13791 | |
13792 | if (C.hasSameType(T1, T2)) |
13793 | return true; |
13794 | |
13795 | const Type::TypeClass TC1 = T1->getTypeClass(); |
13796 | const Type::TypeClass TC2 = T2->getTypeClass(); |
13797 | |
13798 | if (TC1 != TC2) |
13799 | return false; |
13800 | |
13801 | if (TC1 == Type::Enum) { |
13802 | return isLayoutCompatible(C, |
13803 | ED1: cast<EnumType>(Val&: T1)->getDecl(), |
13804 | ED2: cast<EnumType>(Val&: T2)->getDecl()); |
13805 | } else if (TC1 == Type::Record) { |
13806 | if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType()) |
13807 | return false; |
13808 | |
13809 | return isLayoutCompatible(C, |
13810 | RD1: cast<RecordType>(Val&: T1)->getDecl(), |
13811 | RD2: cast<RecordType>(Val&: T2)->getDecl()); |
13812 | } |
13813 | |
13814 | return false; |
13815 | } |
13816 | |
13817 | bool Sema::IsLayoutCompatible(QualType T1, QualType T2) const { |
13818 | return isLayoutCompatible(C: getASTContext(), T1, T2); |
13819 | } |
13820 | |
13821 | //===-------------- Pointer interconvertibility ----------------------------// |
13822 | |
13823 | bool Sema::IsPointerInterconvertibleBaseOf(const TypeSourceInfo *Base, |
13824 | const TypeSourceInfo *Derived) { |
13825 | QualType BaseT = Base->getType()->getCanonicalTypeUnqualified(); |
13826 | QualType DerivedT = Derived->getType()->getCanonicalTypeUnqualified(); |
13827 | |
13828 | if (BaseT->isStructureOrClassType() && DerivedT->isStructureOrClassType() && |
13829 | getASTContext().hasSameType(T1: BaseT, T2: DerivedT)) |
13830 | return true; |
13831 | |
13832 | if (!IsDerivedFrom(Loc: Derived->getTypeLoc().getBeginLoc(), Derived: DerivedT, Base: BaseT)) |
13833 | return false; |
13834 | |
13835 | // Per [basic.compound]/4.3, containing object has to be standard-layout. |
13836 | if (DerivedT->getAsCXXRecordDecl()->isStandardLayout()) |
13837 | return true; |
13838 | |
13839 | return false; |
13840 | } |
13841 | |
13842 | //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----// |
13843 | |
13844 | /// Given a type tag expression find the type tag itself. |
13845 | /// |
13846 | /// \param TypeExpr Type tag expression, as it appears in user's code. |
13847 | /// |
13848 | /// \param VD Declaration of an identifier that appears in a type tag. |
13849 | /// |
13850 | /// \param MagicValue Type tag magic value. |
13851 | /// |
13852 | /// \param isConstantEvaluated whether the evalaution should be performed in |
13853 | |
13854 | /// constant context. |
13855 | static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx, |
13856 | const ValueDecl **VD, uint64_t *MagicValue, |
13857 | bool isConstantEvaluated) { |
13858 | while(true) { |
13859 | if (!TypeExpr) |
13860 | return false; |
13861 | |
13862 | TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts(); |
13863 | |
13864 | switch (TypeExpr->getStmtClass()) { |
13865 | case Stmt::UnaryOperatorClass: { |
13866 | const UnaryOperator *UO = cast<UnaryOperator>(Val: TypeExpr); |
13867 | if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) { |
13868 | TypeExpr = UO->getSubExpr(); |
13869 | continue; |
13870 | } |
13871 | return false; |
13872 | } |
13873 | |
13874 | case Stmt::DeclRefExprClass: { |
13875 | const DeclRefExpr *DRE = cast<DeclRefExpr>(Val: TypeExpr); |
13876 | *VD = DRE->getDecl(); |
13877 | return true; |
13878 | } |
13879 | |
13880 | case Stmt::IntegerLiteralClass: { |
13881 | const IntegerLiteral *IL = cast<IntegerLiteral>(Val: TypeExpr); |
13882 | llvm::APInt MagicValueAPInt = IL->getValue(); |
13883 | if (MagicValueAPInt.getActiveBits() <= 64) { |
13884 | *MagicValue = MagicValueAPInt.getZExtValue(); |
13885 | return true; |
13886 | } else |
13887 | return false; |
13888 | } |
13889 | |
13890 | case Stmt::BinaryConditionalOperatorClass: |
13891 | case Stmt::ConditionalOperatorClass: { |
13892 | const AbstractConditionalOperator *ACO = |
13893 | cast<AbstractConditionalOperator>(Val: TypeExpr); |
13894 | bool Result; |
13895 | if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx, |
13896 | InConstantContext: isConstantEvaluated)) { |
13897 | if (Result) |
13898 | TypeExpr = ACO->getTrueExpr(); |
13899 | else |
13900 | TypeExpr = ACO->getFalseExpr(); |
13901 | continue; |
13902 | } |
13903 | return false; |
13904 | } |
13905 | |
13906 | case Stmt::BinaryOperatorClass: { |
13907 | const BinaryOperator *BO = cast<BinaryOperator>(Val: TypeExpr); |
13908 | if (BO->getOpcode() == BO_Comma) { |
13909 | TypeExpr = BO->getRHS(); |
13910 | continue; |
13911 | } |
13912 | return false; |
13913 | } |
13914 | |
13915 | default: |
13916 | return false; |
13917 | } |
13918 | } |
13919 | } |
13920 | |
13921 | /// Retrieve the C type corresponding to type tag TypeExpr. |
13922 | /// |
13923 | /// \param TypeExpr Expression that specifies a type tag. |
13924 | /// |
13925 | /// \param MagicValues Registered magic values. |
13926 | /// |
13927 | /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong |
13928 | /// kind. |
13929 | /// |
13930 | /// \param TypeInfo Information about the corresponding C type. |
13931 | /// |
13932 | /// \param isConstantEvaluated whether the evalaution should be performed in |
13933 | /// constant context. |
13934 | /// |
13935 | /// \returns true if the corresponding C type was found. |
13936 | static bool GetMatchingCType( |
13937 | const IdentifierInfo *ArgumentKind, const Expr *TypeExpr, |
13938 | const ASTContext &Ctx, |
13939 | const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData> |
13940 | *MagicValues, |
13941 | bool &FoundWrongKind, Sema::TypeTagData &TypeInfo, |
13942 | bool isConstantEvaluated) { |
13943 | FoundWrongKind = false; |
13944 | |
13945 | // Variable declaration that has type_tag_for_datatype attribute. |
13946 | const ValueDecl *VD = nullptr; |
13947 | |
13948 | uint64_t MagicValue; |
13949 | |
13950 | if (!FindTypeTagExpr(TypeExpr, Ctx, VD: &VD, MagicValue: &MagicValue, isConstantEvaluated)) |
13951 | return false; |
13952 | |
13953 | if (VD) { |
13954 | if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) { |
13955 | if (I->getArgumentKind() != ArgumentKind) { |
13956 | FoundWrongKind = true; |
13957 | return false; |
13958 | } |
13959 | TypeInfo.Type = I->getMatchingCType(); |
13960 | TypeInfo.LayoutCompatible = I->getLayoutCompatible(); |
13961 | TypeInfo.MustBeNull = I->getMustBeNull(); |
13962 | return true; |
13963 | } |
13964 | return false; |
13965 | } |
13966 | |
13967 | if (!MagicValues) |
13968 | return false; |
13969 | |
13970 | llvm::DenseMap<Sema::TypeTagMagicValue, |
13971 | Sema::TypeTagData>::const_iterator I = |
13972 | MagicValues->find(Val: std::make_pair(x&: ArgumentKind, y&: MagicValue)); |
13973 | if (I == MagicValues->end()) |
13974 | return false; |
13975 | |
13976 | TypeInfo = I->second; |
13977 | return true; |
13978 | } |
13979 | |
13980 | void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, |
13981 | uint64_t MagicValue, QualType Type, |
13982 | bool LayoutCompatible, |
13983 | bool MustBeNull) { |
13984 | if (!TypeTagForDatatypeMagicValues) |
13985 | TypeTagForDatatypeMagicValues.reset( |
13986 | p: new llvm::DenseMap<TypeTagMagicValue, TypeTagData>); |
13987 | |
13988 | TypeTagMagicValue Magic(ArgumentKind, MagicValue); |
13989 | (*TypeTagForDatatypeMagicValues)[Magic] = |
13990 | TypeTagData(Type, LayoutCompatible, MustBeNull); |
13991 | } |
13992 | |
13993 | static bool IsSameCharType(QualType T1, QualType T2) { |
13994 | const BuiltinType *BT1 = T1->getAs<BuiltinType>(); |
13995 | if (!BT1) |
13996 | return false; |
13997 | |
13998 | const BuiltinType *BT2 = T2->getAs<BuiltinType>(); |
13999 | if (!BT2) |
14000 | return false; |
14001 | |
14002 | BuiltinType::Kind T1Kind = BT1->getKind(); |
14003 | BuiltinType::Kind T2Kind = BT2->getKind(); |
14004 | |
14005 | return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) || |
14006 | (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) || |
14007 | (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) || |
14008 | (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar); |
14009 | } |
14010 | |
14011 | void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, |
14012 | const ArrayRef<const Expr *> ExprArgs, |
14013 | SourceLocation CallSiteLoc) { |
14014 | const IdentifierInfo *ArgumentKind = Attr->getArgumentKind(); |
14015 | bool IsPointerAttr = Attr->getIsPointer(); |
14016 | |
14017 | // Retrieve the argument representing the 'type_tag'. |
14018 | unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex(); |
14019 | if (TypeTagIdxAST >= ExprArgs.size()) { |
14020 | Diag(Loc: CallSiteLoc, DiagID: diag::err_tag_index_out_of_range) |
14021 | << 0 << Attr->getTypeTagIdx().getSourceIndex(); |
14022 | return; |
14023 | } |
14024 | const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST]; |
14025 | bool FoundWrongKind; |
14026 | TypeTagData TypeInfo; |
14027 | if (!GetMatchingCType(ArgumentKind, TypeExpr: TypeTagExpr, Ctx: Context, |
14028 | MagicValues: TypeTagForDatatypeMagicValues.get(), FoundWrongKind, |
14029 | TypeInfo, isConstantEvaluated: isConstantEvaluatedContext())) { |
14030 | if (FoundWrongKind) |
14031 | Diag(Loc: TypeTagExpr->getExprLoc(), |
14032 | DiagID: diag::warn_type_tag_for_datatype_wrong_kind) |
14033 | << TypeTagExpr->getSourceRange(); |
14034 | return; |
14035 | } |
14036 | |
14037 | // Retrieve the argument representing the 'arg_idx'. |
14038 | unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex(); |
14039 | if (ArgumentIdxAST >= ExprArgs.size()) { |
14040 | Diag(Loc: CallSiteLoc, DiagID: diag::err_tag_index_out_of_range) |
14041 | << 1 << Attr->getArgumentIdx().getSourceIndex(); |
14042 | return; |
14043 | } |
14044 | const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST]; |
14045 | if (IsPointerAttr) { |
14046 | // Skip implicit cast of pointer to `void *' (as a function argument). |
14047 | if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: ArgumentExpr)) |
14048 | if (ICE->getType()->isVoidPointerType() && |
14049 | ICE->getCastKind() == CK_BitCast) |
14050 | ArgumentExpr = ICE->getSubExpr(); |
14051 | } |
14052 | QualType ArgumentType = ArgumentExpr->getType(); |
14053 | |
14054 | // Passing a `void*' pointer shouldn't trigger a warning. |
14055 | if (IsPointerAttr && ArgumentType->isVoidPointerType()) |
14056 | return; |
14057 | |
14058 | if (TypeInfo.MustBeNull) { |
14059 | // Type tag with matching void type requires a null pointer. |
14060 | if (!ArgumentExpr->isNullPointerConstant(Ctx&: Context, |
14061 | NPC: Expr::NPC_ValueDependentIsNotNull)) { |
14062 | Diag(Loc: ArgumentExpr->getExprLoc(), |
14063 | DiagID: diag::warn_type_safety_null_pointer_required) |
14064 | << ArgumentKind->getName() |
14065 | << ArgumentExpr->getSourceRange() |
14066 | << TypeTagExpr->getSourceRange(); |
14067 | } |
14068 | return; |
14069 | } |
14070 | |
14071 | QualType RequiredType = TypeInfo.Type; |
14072 | if (IsPointerAttr) |
14073 | RequiredType = Context.getPointerType(T: RequiredType); |
14074 | |
14075 | bool mismatch = false; |
14076 | if (!TypeInfo.LayoutCompatible) { |
14077 | mismatch = !Context.hasSameType(T1: ArgumentType, T2: RequiredType); |
14078 | |
14079 | // C++11 [basic.fundamental] p1: |
14080 | // Plain char, signed char, and unsigned char are three distinct types. |
14081 | // |
14082 | // But we treat plain `char' as equivalent to `signed char' or `unsigned |
14083 | // char' depending on the current char signedness mode. |
14084 | if (mismatch) |
14085 | if ((IsPointerAttr && IsSameCharType(T1: ArgumentType->getPointeeType(), |
14086 | T2: RequiredType->getPointeeType())) || |
14087 | (!IsPointerAttr && IsSameCharType(T1: ArgumentType, T2: RequiredType))) |
14088 | mismatch = false; |
14089 | } else |
14090 | if (IsPointerAttr) |
14091 | mismatch = !isLayoutCompatible(C: Context, |
14092 | T1: ArgumentType->getPointeeType(), |
14093 | T2: RequiredType->getPointeeType()); |
14094 | else |
14095 | mismatch = !isLayoutCompatible(C: Context, T1: ArgumentType, T2: RequiredType); |
14096 | |
14097 | if (mismatch) |
14098 | Diag(Loc: ArgumentExpr->getExprLoc(), DiagID: diag::warn_type_safety_type_mismatch) |
14099 | << ArgumentType << ArgumentKind |
14100 | << TypeInfo.LayoutCompatible << RequiredType |
14101 | << ArgumentExpr->getSourceRange() |
14102 | << TypeTagExpr->getSourceRange(); |
14103 | } |
14104 | |
14105 | void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, |
14106 | CharUnits Alignment) { |
14107 | MisalignedMembers.emplace_back(Args&: E, Args&: RD, Args&: MD, Args&: Alignment); |
14108 | } |
14109 | |
14110 | void Sema::DiagnoseMisalignedMembers() { |
14111 | for (MisalignedMember &m : MisalignedMembers) { |
14112 | const NamedDecl *ND = m.RD; |
14113 | if (ND->getName().empty()) { |
14114 | if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl()) |
14115 | ND = TD; |
14116 | } |
14117 | Diag(Loc: m.E->getBeginLoc(), DiagID: diag::warn_taking_address_of_packed_member) |
14118 | << m.MD << ND << m.E->getSourceRange(); |
14119 | } |
14120 | MisalignedMembers.clear(); |
14121 | } |
14122 | |
14123 | void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) { |
14124 | E = E->IgnoreParens(); |
14125 | if (!T->isPointerType() && !T->isIntegerType() && !T->isDependentType()) |
14126 | return; |
14127 | if (isa<UnaryOperator>(Val: E) && |
14128 | cast<UnaryOperator>(Val: E)->getOpcode() == UO_AddrOf) { |
14129 | auto *Op = cast<UnaryOperator>(Val: E)->getSubExpr()->IgnoreParens(); |
14130 | if (isa<MemberExpr>(Val: Op)) { |
14131 | auto *MA = llvm::find(Range&: MisalignedMembers, Val: MisalignedMember(Op)); |
14132 | if (MA != MisalignedMembers.end() && |
14133 | (T->isDependentType() || T->isIntegerType() || |
14134 | (T->isPointerType() && (T->getPointeeType()->isIncompleteType() || |
14135 | Context.getTypeAlignInChars( |
14136 | T: T->getPointeeType()) <= MA->Alignment)))) |
14137 | MisalignedMembers.erase(CI: MA); |
14138 | } |
14139 | } |
14140 | } |
14141 | |
14142 | void Sema::RefersToMemberWithReducedAlignment( |
14143 | Expr *E, |
14144 | llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)> |
14145 | Action) { |
14146 | const auto *ME = dyn_cast<MemberExpr>(Val: E); |
14147 | if (!ME) |
14148 | return; |
14149 | |
14150 | // No need to check expressions with an __unaligned-qualified type. |
14151 | if (E->getType().getQualifiers().hasUnaligned()) |
14152 | return; |
14153 | |
14154 | // For a chain of MemberExpr like "a.b.c.d" this list |
14155 | // will keep FieldDecl's like [d, c, b]. |
14156 | SmallVector<FieldDecl *, 4> ReverseMemberChain; |
14157 | const MemberExpr *TopME = nullptr; |
14158 | bool AnyIsPacked = false; |
14159 | do { |
14160 | QualType BaseType = ME->getBase()->getType(); |
14161 | if (BaseType->isDependentType()) |
14162 | return; |
14163 | if (ME->isArrow()) |
14164 | BaseType = BaseType->getPointeeType(); |
14165 | RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl(); |
14166 | if (RD->isInvalidDecl()) |
14167 | return; |
14168 | |
14169 | ValueDecl *MD = ME->getMemberDecl(); |
14170 | auto *FD = dyn_cast<FieldDecl>(Val: MD); |
14171 | // We do not care about non-data members. |
14172 | if (!FD || FD->isInvalidDecl()) |
14173 | return; |
14174 | |
14175 | AnyIsPacked = |
14176 | AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>()); |
14177 | ReverseMemberChain.push_back(Elt: FD); |
14178 | |
14179 | TopME = ME; |
14180 | ME = dyn_cast<MemberExpr>(Val: ME->getBase()->IgnoreParens()); |
14181 | } while (ME); |
14182 | assert(TopME && "We did not compute a topmost MemberExpr!" ); |
14183 | |
14184 | // Not the scope of this diagnostic. |
14185 | if (!AnyIsPacked) |
14186 | return; |
14187 | |
14188 | const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts(); |
14189 | const auto *DRE = dyn_cast<DeclRefExpr>(Val: TopBase); |
14190 | // TODO: The innermost base of the member expression may be too complicated. |
14191 | // For now, just disregard these cases. This is left for future |
14192 | // improvement. |
14193 | if (!DRE && !isa<CXXThisExpr>(Val: TopBase)) |
14194 | return; |
14195 | |
14196 | // Alignment expected by the whole expression. |
14197 | CharUnits ExpectedAlignment = Context.getTypeAlignInChars(T: E->getType()); |
14198 | |
14199 | // No need to do anything else with this case. |
14200 | if (ExpectedAlignment.isOne()) |
14201 | return; |
14202 | |
14203 | // Synthesize offset of the whole access. |
14204 | CharUnits Offset; |
14205 | for (const FieldDecl *FD : llvm::reverse(C&: ReverseMemberChain)) |
14206 | Offset += Context.toCharUnitsFromBits(BitSize: Context.getFieldOffset(FD)); |
14207 | |
14208 | // Compute the CompleteObjectAlignment as the alignment of the whole chain. |
14209 | CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars( |
14210 | T: ReverseMemberChain.back()->getParent()->getTypeForDecl()); |
14211 | |
14212 | // The base expression of the innermost MemberExpr may give |
14213 | // stronger guarantees than the class containing the member. |
14214 | if (DRE && !TopME->isArrow()) { |
14215 | const ValueDecl *VD = DRE->getDecl(); |
14216 | if (!VD->getType()->isReferenceType()) |
14217 | CompleteObjectAlignment = |
14218 | std::max(a: CompleteObjectAlignment, b: Context.getDeclAlign(D: VD)); |
14219 | } |
14220 | |
14221 | // Check if the synthesized offset fulfills the alignment. |
14222 | if (Offset % ExpectedAlignment != 0 || |
14223 | // It may fulfill the offset it but the effective alignment may still be |
14224 | // lower than the expected expression alignment. |
14225 | CompleteObjectAlignment < ExpectedAlignment) { |
14226 | // If this happens, we want to determine a sensible culprit of this. |
14227 | // Intuitively, watching the chain of member expressions from right to |
14228 | // left, we start with the required alignment (as required by the field |
14229 | // type) but some packed attribute in that chain has reduced the alignment. |
14230 | // It may happen that another packed structure increases it again. But if |
14231 | // we are here such increase has not been enough. So pointing the first |
14232 | // FieldDecl that either is packed or else its RecordDecl is, |
14233 | // seems reasonable. |
14234 | FieldDecl *FD = nullptr; |
14235 | CharUnits Alignment; |
14236 | for (FieldDecl *FDI : ReverseMemberChain) { |
14237 | if (FDI->hasAttr<PackedAttr>() || |
14238 | FDI->getParent()->hasAttr<PackedAttr>()) { |
14239 | FD = FDI; |
14240 | Alignment = std::min( |
14241 | a: Context.getTypeAlignInChars(T: FD->getType()), |
14242 | b: Context.getTypeAlignInChars(T: FD->getParent()->getTypeForDecl())); |
14243 | break; |
14244 | } |
14245 | } |
14246 | assert(FD && "We did not find a packed FieldDecl!" ); |
14247 | Action(E, FD->getParent(), FD, Alignment); |
14248 | } |
14249 | } |
14250 | |
14251 | void Sema::CheckAddressOfPackedMember(Expr *rhs) { |
14252 | using namespace std::placeholders; |
14253 | |
14254 | RefersToMemberWithReducedAlignment( |
14255 | E: rhs, Action: std::bind(f: &Sema::AddPotentialMisalignedMembers, args: std::ref(t&: *this), args: _1, |
14256 | args: _2, args: _3, args: _4)); |
14257 | } |
14258 | |
14259 | bool Sema::PrepareBuiltinElementwiseMathOneArgCall(CallExpr *TheCall) { |
14260 | if (checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
14261 | return true; |
14262 | |
14263 | ExprResult A = UsualUnaryConversions(E: TheCall->getArg(Arg: 0)); |
14264 | if (A.isInvalid()) |
14265 | return true; |
14266 | |
14267 | TheCall->setArg(Arg: 0, ArgExpr: A.get()); |
14268 | QualType TyA = A.get()->getType(); |
14269 | |
14270 | if (checkMathBuiltinElementType(S&: *this, Loc: A.get()->getBeginLoc(), ArgTy: TyA, ArgIndex: 1)) |
14271 | return true; |
14272 | |
14273 | TheCall->setType(TyA); |
14274 | return false; |
14275 | } |
14276 | |
14277 | bool Sema::BuiltinElementwiseMath(CallExpr *TheCall) { |
14278 | QualType Res; |
14279 | if (BuiltinVectorMath(TheCall, Res)) |
14280 | return true; |
14281 | TheCall->setType(Res); |
14282 | return false; |
14283 | } |
14284 | |
14285 | bool Sema::BuiltinVectorToScalarMath(CallExpr *TheCall) { |
14286 | QualType Res; |
14287 | if (BuiltinVectorMath(TheCall, Res)) |
14288 | return true; |
14289 | |
14290 | if (auto *VecTy0 = Res->getAs<VectorType>()) |
14291 | TheCall->setType(VecTy0->getElementType()); |
14292 | else |
14293 | TheCall->setType(Res); |
14294 | |
14295 | return false; |
14296 | } |
14297 | |
14298 | bool Sema::BuiltinVectorMath(CallExpr *TheCall, QualType &Res) { |
14299 | if (checkArgCount(Call: TheCall, DesiredArgCount: 2)) |
14300 | return true; |
14301 | |
14302 | ExprResult A = TheCall->getArg(Arg: 0); |
14303 | ExprResult B = TheCall->getArg(Arg: 1); |
14304 | // Do standard promotions between the two arguments, returning their common |
14305 | // type. |
14306 | Res = UsualArithmeticConversions(LHS&: A, RHS&: B, Loc: TheCall->getExprLoc(), ACK: ACK_Comparison); |
14307 | if (A.isInvalid() || B.isInvalid()) |
14308 | return true; |
14309 | |
14310 | QualType TyA = A.get()->getType(); |
14311 | QualType TyB = B.get()->getType(); |
14312 | |
14313 | if (Res.isNull() || TyA.getCanonicalType() != TyB.getCanonicalType()) |
14314 | return Diag(Loc: A.get()->getBeginLoc(), |
14315 | DiagID: diag::err_typecheck_call_different_arg_types) |
14316 | << TyA << TyB; |
14317 | |
14318 | if (checkMathBuiltinElementType(S&: *this, Loc: A.get()->getBeginLoc(), ArgTy: TyA, ArgIndex: 1)) |
14319 | return true; |
14320 | |
14321 | TheCall->setArg(Arg: 0, ArgExpr: A.get()); |
14322 | TheCall->setArg(Arg: 1, ArgExpr: B.get()); |
14323 | return false; |
14324 | } |
14325 | |
14326 | bool Sema::BuiltinElementwiseTernaryMath(CallExpr *TheCall, |
14327 | bool CheckForFloatArgs) { |
14328 | if (checkArgCount(Call: TheCall, DesiredArgCount: 3)) |
14329 | return true; |
14330 | |
14331 | Expr *Args[3]; |
14332 | for (int I = 0; I < 3; ++I) { |
14333 | ExprResult Converted = UsualUnaryConversions(E: TheCall->getArg(Arg: I)); |
14334 | if (Converted.isInvalid()) |
14335 | return true; |
14336 | Args[I] = Converted.get(); |
14337 | } |
14338 | |
14339 | if (CheckForFloatArgs) { |
14340 | int ArgOrdinal = 1; |
14341 | for (Expr *Arg : Args) { |
14342 | if (checkFPMathBuiltinElementType(S&: *this, Loc: Arg->getBeginLoc(), |
14343 | ArgTy: Arg->getType(), ArgIndex: ArgOrdinal++)) |
14344 | return true; |
14345 | } |
14346 | } else { |
14347 | int ArgOrdinal = 1; |
14348 | for (Expr *Arg : Args) { |
14349 | if (checkMathBuiltinElementType(S&: *this, Loc: Arg->getBeginLoc(), ArgTy: Arg->getType(), |
14350 | ArgIndex: ArgOrdinal++)) |
14351 | return true; |
14352 | } |
14353 | } |
14354 | |
14355 | for (int I = 1; I < 3; ++I) { |
14356 | if (Args[0]->getType().getCanonicalType() != |
14357 | Args[I]->getType().getCanonicalType()) { |
14358 | return Diag(Loc: Args[0]->getBeginLoc(), |
14359 | DiagID: diag::err_typecheck_call_different_arg_types) |
14360 | << Args[0]->getType() << Args[I]->getType(); |
14361 | } |
14362 | |
14363 | TheCall->setArg(Arg: I, ArgExpr: Args[I]); |
14364 | } |
14365 | |
14366 | TheCall->setType(Args[0]->getType()); |
14367 | return false; |
14368 | } |
14369 | |
14370 | bool Sema::PrepareBuiltinReduceMathOneArgCall(CallExpr *TheCall) { |
14371 | if (checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
14372 | return true; |
14373 | |
14374 | ExprResult A = UsualUnaryConversions(E: TheCall->getArg(Arg: 0)); |
14375 | if (A.isInvalid()) |
14376 | return true; |
14377 | |
14378 | TheCall->setArg(Arg: 0, ArgExpr: A.get()); |
14379 | return false; |
14380 | } |
14381 | |
14382 | bool Sema::BuiltinNonDeterministicValue(CallExpr *TheCall) { |
14383 | if (checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
14384 | return true; |
14385 | |
14386 | ExprResult Arg = TheCall->getArg(Arg: 0); |
14387 | QualType TyArg = Arg.get()->getType(); |
14388 | |
14389 | if (!TyArg->isBuiltinType() && !TyArg->isVectorType()) |
14390 | return Diag(Loc: TheCall->getArg(Arg: 0)->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
14391 | << 1 << /*vector, integer or floating point ty*/ 0 << TyArg; |
14392 | |
14393 | TheCall->setType(TyArg); |
14394 | return false; |
14395 | } |
14396 | |
14397 | ExprResult Sema::BuiltinMatrixTranspose(CallExpr *TheCall, |
14398 | ExprResult CallResult) { |
14399 | if (checkArgCount(Call: TheCall, DesiredArgCount: 1)) |
14400 | return ExprError(); |
14401 | |
14402 | ExprResult MatrixArg = DefaultLvalueConversion(E: TheCall->getArg(Arg: 0)); |
14403 | if (MatrixArg.isInvalid()) |
14404 | return MatrixArg; |
14405 | Expr *Matrix = MatrixArg.get(); |
14406 | |
14407 | auto *MType = Matrix->getType()->getAs<ConstantMatrixType>(); |
14408 | if (!MType) { |
14409 | Diag(Loc: Matrix->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
14410 | << 1 << /* matrix ty*/ 1 << Matrix->getType(); |
14411 | return ExprError(); |
14412 | } |
14413 | |
14414 | // Create returned matrix type by swapping rows and columns of the argument |
14415 | // matrix type. |
14416 | QualType ResultType = Context.getConstantMatrixType( |
14417 | ElementType: MType->getElementType(), NumRows: MType->getNumColumns(), NumColumns: MType->getNumRows()); |
14418 | |
14419 | // Change the return type to the type of the returned matrix. |
14420 | TheCall->setType(ResultType); |
14421 | |
14422 | // Update call argument to use the possibly converted matrix argument. |
14423 | TheCall->setArg(Arg: 0, ArgExpr: Matrix); |
14424 | return CallResult; |
14425 | } |
14426 | |
14427 | // Get and verify the matrix dimensions. |
14428 | static std::optional<unsigned> |
14429 | getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) { |
14430 | SourceLocation ErrorPos; |
14431 | std::optional<llvm::APSInt> Value = |
14432 | Expr->getIntegerConstantExpr(Ctx: S.Context, Loc: &ErrorPos); |
14433 | if (!Value) { |
14434 | S.Diag(Loc: Expr->getBeginLoc(), DiagID: diag::err_builtin_matrix_scalar_unsigned_arg) |
14435 | << Name; |
14436 | return {}; |
14437 | } |
14438 | uint64_t Dim = Value->getZExtValue(); |
14439 | if (!ConstantMatrixType::isDimensionValid(NumElements: Dim)) { |
14440 | S.Diag(Loc: Expr->getBeginLoc(), DiagID: diag::err_builtin_matrix_invalid_dimension) |
14441 | << Name << ConstantMatrixType::getMaxElementsPerDimension(); |
14442 | return {}; |
14443 | } |
14444 | return Dim; |
14445 | } |
14446 | |
14447 | ExprResult Sema::BuiltinMatrixColumnMajorLoad(CallExpr *TheCall, |
14448 | ExprResult CallResult) { |
14449 | if (!getLangOpts().MatrixTypes) { |
14450 | Diag(Loc: TheCall->getBeginLoc(), DiagID: diag::err_builtin_matrix_disabled); |
14451 | return ExprError(); |
14452 | } |
14453 | |
14454 | if (checkArgCount(Call: TheCall, DesiredArgCount: 4)) |
14455 | return ExprError(); |
14456 | |
14457 | unsigned PtrArgIdx = 0; |
14458 | Expr *PtrExpr = TheCall->getArg(Arg: PtrArgIdx); |
14459 | Expr *RowsExpr = TheCall->getArg(Arg: 1); |
14460 | Expr *ColumnsExpr = TheCall->getArg(Arg: 2); |
14461 | Expr *StrideExpr = TheCall->getArg(Arg: 3); |
14462 | |
14463 | bool ArgError = false; |
14464 | |
14465 | // Check pointer argument. |
14466 | { |
14467 | ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(E: PtrExpr); |
14468 | if (PtrConv.isInvalid()) |
14469 | return PtrConv; |
14470 | PtrExpr = PtrConv.get(); |
14471 | TheCall->setArg(Arg: 0, ArgExpr: PtrExpr); |
14472 | if (PtrExpr->isTypeDependent()) { |
14473 | TheCall->setType(Context.DependentTy); |
14474 | return TheCall; |
14475 | } |
14476 | } |
14477 | |
14478 | auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); |
14479 | QualType ElementTy; |
14480 | if (!PtrTy) { |
14481 | Diag(Loc: PtrExpr->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
14482 | << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType(); |
14483 | ArgError = true; |
14484 | } else { |
14485 | ElementTy = PtrTy->getPointeeType().getUnqualifiedType(); |
14486 | |
14487 | if (!ConstantMatrixType::isValidElementType(T: ElementTy)) { |
14488 | Diag(Loc: PtrExpr->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
14489 | << PtrArgIdx + 1 << /* pointer to element ty*/ 2 |
14490 | << PtrExpr->getType(); |
14491 | ArgError = true; |
14492 | } |
14493 | } |
14494 | |
14495 | // Apply default Lvalue conversions and convert the expression to size_t. |
14496 | auto ApplyArgumentConversions = [this](Expr *E) { |
14497 | ExprResult Conv = DefaultLvalueConversion(E); |
14498 | if (Conv.isInvalid()) |
14499 | return Conv; |
14500 | |
14501 | return tryConvertExprToType(E: Conv.get(), Ty: Context.getSizeType()); |
14502 | }; |
14503 | |
14504 | // Apply conversion to row and column expressions. |
14505 | ExprResult RowsConv = ApplyArgumentConversions(RowsExpr); |
14506 | if (!RowsConv.isInvalid()) { |
14507 | RowsExpr = RowsConv.get(); |
14508 | TheCall->setArg(Arg: 1, ArgExpr: RowsExpr); |
14509 | } else |
14510 | RowsExpr = nullptr; |
14511 | |
14512 | ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr); |
14513 | if (!ColumnsConv.isInvalid()) { |
14514 | ColumnsExpr = ColumnsConv.get(); |
14515 | TheCall->setArg(Arg: 2, ArgExpr: ColumnsExpr); |
14516 | } else |
14517 | ColumnsExpr = nullptr; |
14518 | |
14519 | // If any part of the result matrix type is still pending, just use |
14520 | // Context.DependentTy, until all parts are resolved. |
14521 | if ((RowsExpr && RowsExpr->isTypeDependent()) || |
14522 | (ColumnsExpr && ColumnsExpr->isTypeDependent())) { |
14523 | TheCall->setType(Context.DependentTy); |
14524 | return CallResult; |
14525 | } |
14526 | |
14527 | // Check row and column dimensions. |
14528 | std::optional<unsigned> MaybeRows; |
14529 | if (RowsExpr) |
14530 | MaybeRows = getAndVerifyMatrixDimension(Expr: RowsExpr, Name: "row" , S&: *this); |
14531 | |
14532 | std::optional<unsigned> MaybeColumns; |
14533 | if (ColumnsExpr) |
14534 | MaybeColumns = getAndVerifyMatrixDimension(Expr: ColumnsExpr, Name: "column" , S&: *this); |
14535 | |
14536 | // Check stride argument. |
14537 | ExprResult StrideConv = ApplyArgumentConversions(StrideExpr); |
14538 | if (StrideConv.isInvalid()) |
14539 | return ExprError(); |
14540 | StrideExpr = StrideConv.get(); |
14541 | TheCall->setArg(Arg: 3, ArgExpr: StrideExpr); |
14542 | |
14543 | if (MaybeRows) { |
14544 | if (std::optional<llvm::APSInt> Value = |
14545 | StrideExpr->getIntegerConstantExpr(Ctx: Context)) { |
14546 | uint64_t Stride = Value->getZExtValue(); |
14547 | if (Stride < *MaybeRows) { |
14548 | Diag(Loc: StrideExpr->getBeginLoc(), |
14549 | DiagID: diag::err_builtin_matrix_stride_too_small); |
14550 | ArgError = true; |
14551 | } |
14552 | } |
14553 | } |
14554 | |
14555 | if (ArgError || !MaybeRows || !MaybeColumns) |
14556 | return ExprError(); |
14557 | |
14558 | TheCall->setType( |
14559 | Context.getConstantMatrixType(ElementType: ElementTy, NumRows: *MaybeRows, NumColumns: *MaybeColumns)); |
14560 | return CallResult; |
14561 | } |
14562 | |
14563 | ExprResult Sema::BuiltinMatrixColumnMajorStore(CallExpr *TheCall, |
14564 | ExprResult CallResult) { |
14565 | if (checkArgCount(Call: TheCall, DesiredArgCount: 3)) |
14566 | return ExprError(); |
14567 | |
14568 | unsigned PtrArgIdx = 1; |
14569 | Expr *MatrixExpr = TheCall->getArg(Arg: 0); |
14570 | Expr *PtrExpr = TheCall->getArg(Arg: PtrArgIdx); |
14571 | Expr *StrideExpr = TheCall->getArg(Arg: 2); |
14572 | |
14573 | bool ArgError = false; |
14574 | |
14575 | { |
14576 | ExprResult MatrixConv = DefaultLvalueConversion(E: MatrixExpr); |
14577 | if (MatrixConv.isInvalid()) |
14578 | return MatrixConv; |
14579 | MatrixExpr = MatrixConv.get(); |
14580 | TheCall->setArg(Arg: 0, ArgExpr: MatrixExpr); |
14581 | } |
14582 | if (MatrixExpr->isTypeDependent()) { |
14583 | TheCall->setType(Context.DependentTy); |
14584 | return TheCall; |
14585 | } |
14586 | |
14587 | auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>(); |
14588 | if (!MatrixTy) { |
14589 | Diag(Loc: MatrixExpr->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
14590 | << 1 << /*matrix ty */ 1 << MatrixExpr->getType(); |
14591 | ArgError = true; |
14592 | } |
14593 | |
14594 | { |
14595 | ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(E: PtrExpr); |
14596 | if (PtrConv.isInvalid()) |
14597 | return PtrConv; |
14598 | PtrExpr = PtrConv.get(); |
14599 | TheCall->setArg(Arg: 1, ArgExpr: PtrExpr); |
14600 | if (PtrExpr->isTypeDependent()) { |
14601 | TheCall->setType(Context.DependentTy); |
14602 | return TheCall; |
14603 | } |
14604 | } |
14605 | |
14606 | // Check pointer argument. |
14607 | auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); |
14608 | if (!PtrTy) { |
14609 | Diag(Loc: PtrExpr->getBeginLoc(), DiagID: diag::err_builtin_invalid_arg_type) |
14610 | << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType(); |
14611 | ArgError = true; |
14612 | } else { |
14613 | QualType ElementTy = PtrTy->getPointeeType(); |
14614 | if (ElementTy.isConstQualified()) { |
14615 | Diag(Loc: PtrExpr->getBeginLoc(), DiagID: diag::err_builtin_matrix_store_to_const); |
14616 | ArgError = true; |
14617 | } |
14618 | ElementTy = ElementTy.getUnqualifiedType().getCanonicalType(); |
14619 | if (MatrixTy && |
14620 | !Context.hasSameType(T1: ElementTy, T2: MatrixTy->getElementType())) { |
14621 | Diag(Loc: PtrExpr->getBeginLoc(), |
14622 | DiagID: diag::err_builtin_matrix_pointer_arg_mismatch) |
14623 | << ElementTy << MatrixTy->getElementType(); |
14624 | ArgError = true; |
14625 | } |
14626 | } |
14627 | |
14628 | // Apply default Lvalue conversions and convert the stride expression to |
14629 | // size_t. |
14630 | { |
14631 | ExprResult StrideConv = DefaultLvalueConversion(E: StrideExpr); |
14632 | if (StrideConv.isInvalid()) |
14633 | return StrideConv; |
14634 | |
14635 | StrideConv = tryConvertExprToType(E: StrideConv.get(), Ty: Context.getSizeType()); |
14636 | if (StrideConv.isInvalid()) |
14637 | return StrideConv; |
14638 | StrideExpr = StrideConv.get(); |
14639 | TheCall->setArg(Arg: 2, ArgExpr: StrideExpr); |
14640 | } |
14641 | |
14642 | // Check stride argument. |
14643 | if (MatrixTy) { |
14644 | if (std::optional<llvm::APSInt> Value = |
14645 | StrideExpr->getIntegerConstantExpr(Ctx: Context)) { |
14646 | uint64_t Stride = Value->getZExtValue(); |
14647 | if (Stride < MatrixTy->getNumRows()) { |
14648 | Diag(Loc: StrideExpr->getBeginLoc(), |
14649 | DiagID: diag::err_builtin_matrix_stride_too_small); |
14650 | ArgError = true; |
14651 | } |
14652 | } |
14653 | } |
14654 | |
14655 | if (ArgError) |
14656 | return ExprError(); |
14657 | |
14658 | return CallResult; |
14659 | } |
14660 | |
14661 | void Sema::CheckTCBEnforcement(const SourceLocation CallExprLoc, |
14662 | const NamedDecl *Callee) { |
14663 | // This warning does not make sense in code that has no runtime behavior. |
14664 | if (isUnevaluatedContext()) |
14665 | return; |
14666 | |
14667 | const NamedDecl *Caller = getCurFunctionOrMethodDecl(); |
14668 | |
14669 | if (!Caller || !Caller->hasAttr<EnforceTCBAttr>()) |
14670 | return; |
14671 | |
14672 | // Search through the enforce_tcb and enforce_tcb_leaf attributes to find |
14673 | // all TCBs the callee is a part of. |
14674 | llvm::StringSet<> CalleeTCBs; |
14675 | for (const auto *A : Callee->specific_attrs<EnforceTCBAttr>()) |
14676 | CalleeTCBs.insert(key: A->getTCBName()); |
14677 | for (const auto *A : Callee->specific_attrs<EnforceTCBLeafAttr>()) |
14678 | CalleeTCBs.insert(key: A->getTCBName()); |
14679 | |
14680 | // Go through the TCBs the caller is a part of and emit warnings if Caller |
14681 | // is in a TCB that the Callee is not. |
14682 | for (const auto *A : Caller->specific_attrs<EnforceTCBAttr>()) { |
14683 | StringRef CallerTCB = A->getTCBName(); |
14684 | if (CalleeTCBs.count(Key: CallerTCB) == 0) { |
14685 | this->Diag(Loc: CallExprLoc, DiagID: diag::warn_tcb_enforcement_violation) |
14686 | << Callee << CallerTCB; |
14687 | } |
14688 | } |
14689 | } |
14690 | |