1 | //===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements semantic analysis for C++ Coroutines. |
10 | // |
11 | // This file contains references to sections of the Coroutines TS, which |
12 | // can be found at http://wg21.link/coroutines. |
13 | // |
14 | //===----------------------------------------------------------------------===// |
15 | |
16 | #include "CoroutineStmtBuilder.h" |
17 | #include "clang/AST/ASTLambda.h" |
18 | #include "clang/AST/Decl.h" |
19 | #include "clang/AST/Expr.h" |
20 | #include "clang/AST/ExprCXX.h" |
21 | #include "clang/AST/StmtCXX.h" |
22 | #include "clang/Basic/Builtins.h" |
23 | #include "clang/Lex/Preprocessor.h" |
24 | #include "clang/Sema/EnterExpressionEvaluationContext.h" |
25 | #include "clang/Sema/Initialization.h" |
26 | #include "clang/Sema/Overload.h" |
27 | #include "clang/Sema/ScopeInfo.h" |
28 | #include "clang/Sema/SemaInternal.h" |
29 | #include "llvm/ADT/SmallSet.h" |
30 | |
31 | using namespace clang; |
32 | using namespace sema; |
33 | |
34 | static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD, |
35 | SourceLocation Loc, bool &Res) { |
36 | DeclarationName DN = S.PP.getIdentifierInfo(Name); |
37 | LookupResult LR(S, DN, Loc, Sema::LookupMemberName); |
38 | // Suppress diagnostics when a private member is selected. The same warnings |
39 | // will be produced again when building the call. |
40 | LR.suppressDiagnostics(); |
41 | Res = S.LookupQualifiedName(R&: LR, LookupCtx: RD); |
42 | return LR; |
43 | } |
44 | |
45 | static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD, |
46 | SourceLocation Loc) { |
47 | bool Res; |
48 | lookupMember(S, Name, RD, Loc, Res); |
49 | return Res; |
50 | } |
51 | |
52 | /// Look up the std::coroutine_traits<...>::promise_type for the given |
53 | /// function type. |
54 | static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD, |
55 | SourceLocation KwLoc) { |
56 | const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>(); |
57 | const SourceLocation FuncLoc = FD->getLocation(); |
58 | |
59 | ClassTemplateDecl *CoroTraits = |
60 | S.lookupCoroutineTraits(KwLoc, FuncLoc); |
61 | if (!CoroTraits) |
62 | return QualType(); |
63 | |
64 | // Form template argument list for coroutine_traits<R, P1, P2, ...> according |
65 | // to [dcl.fct.def.coroutine]3 |
66 | TemplateArgumentListInfo Args(KwLoc, KwLoc); |
67 | auto AddArg = [&](QualType T) { |
68 | Args.addArgument(Loc: TemplateArgumentLoc( |
69 | TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, Loc: KwLoc))); |
70 | }; |
71 | AddArg(FnType->getReturnType()); |
72 | // If the function is a non-static member function, add the type |
73 | // of the implicit object parameter before the formal parameters. |
74 | if (auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
75 | if (MD->isImplicitObjectMemberFunction()) { |
76 | // [over.match.funcs]4 |
77 | // For non-static member functions, the type of the implicit object |
78 | // parameter is |
79 | // -- "lvalue reference to cv X" for functions declared without a |
80 | // ref-qualifier or with the & ref-qualifier |
81 | // -- "rvalue reference to cv X" for functions declared with the && |
82 | // ref-qualifier |
83 | QualType T = MD->getFunctionObjectParameterType(); |
84 | T = FnType->getRefQualifier() == RQ_RValue |
85 | ? S.Context.getRValueReferenceType(T) |
86 | : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true); |
87 | AddArg(T); |
88 | } |
89 | } |
90 | for (QualType T : FnType->getParamTypes()) |
91 | AddArg(T); |
92 | |
93 | // Build the template-id. |
94 | QualType CoroTrait = |
95 | S.CheckTemplateIdType(Template: TemplateName(CoroTraits), TemplateLoc: KwLoc, TemplateArgs&: Args); |
96 | if (CoroTrait.isNull()) |
97 | return QualType(); |
98 | if (S.RequireCompleteType(Loc: KwLoc, T: CoroTrait, |
99 | DiagID: diag::err_coroutine_type_missing_specialization)) |
100 | return QualType(); |
101 | |
102 | auto *RD = CoroTrait->getAsCXXRecordDecl(); |
103 | assert(RD && "specialization of class template is not a class?" ); |
104 | |
105 | // Look up the ::promise_type member. |
106 | LookupResult R(S, &S.PP.getIdentifierTable().get(Name: "promise_type" ), KwLoc, |
107 | Sema::LookupOrdinaryName); |
108 | S.LookupQualifiedName(R, LookupCtx: RD); |
109 | auto *Promise = R.getAsSingle<TypeDecl>(); |
110 | if (!Promise) { |
111 | S.Diag(Loc: FuncLoc, |
112 | DiagID: diag::err_implied_std_coroutine_traits_promise_type_not_found) |
113 | << RD; |
114 | return QualType(); |
115 | } |
116 | // The promise type is required to be a class type. |
117 | QualType PromiseType = S.Context.getTypeDeclType(Decl: Promise); |
118 | |
119 | auto buildElaboratedType = [&]() { |
120 | auto *NNS = NestedNameSpecifier::Create(Context: S.Context, Prefix: nullptr, NS: S.getStdNamespace()); |
121 | NNS = NestedNameSpecifier::Create(Context: S.Context, Prefix: NNS, Template: false, |
122 | T: CoroTrait.getTypePtr()); |
123 | return S.Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS, |
124 | NamedType: PromiseType); |
125 | }; |
126 | |
127 | if (!PromiseType->getAsCXXRecordDecl()) { |
128 | S.Diag(Loc: FuncLoc, |
129 | DiagID: diag::err_implied_std_coroutine_traits_promise_type_not_class) |
130 | << buildElaboratedType(); |
131 | return QualType(); |
132 | } |
133 | if (S.RequireCompleteType(Loc: FuncLoc, T: buildElaboratedType(), |
134 | DiagID: diag::err_coroutine_promise_type_incomplete)) |
135 | return QualType(); |
136 | |
137 | return PromiseType; |
138 | } |
139 | |
140 | /// Look up the std::coroutine_handle<PromiseType>. |
141 | static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType, |
142 | SourceLocation Loc) { |
143 | if (PromiseType.isNull()) |
144 | return QualType(); |
145 | |
146 | NamespaceDecl *CoroNamespace = S.getStdNamespace(); |
147 | assert(CoroNamespace && "Should already be diagnosed" ); |
148 | |
149 | LookupResult Result(S, &S.PP.getIdentifierTable().get(Name: "coroutine_handle" ), |
150 | Loc, Sema::LookupOrdinaryName); |
151 | if (!S.LookupQualifiedName(R&: Result, LookupCtx: CoroNamespace)) { |
152 | S.Diag(Loc, DiagID: diag::err_implied_coroutine_type_not_found) |
153 | << "std::coroutine_handle" ; |
154 | return QualType(); |
155 | } |
156 | |
157 | ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>(); |
158 | if (!CoroHandle) { |
159 | Result.suppressDiagnostics(); |
160 | // We found something weird. Complain about the first thing we found. |
161 | NamedDecl *Found = *Result.begin(); |
162 | S.Diag(Loc: Found->getLocation(), DiagID: diag::err_malformed_std_coroutine_handle); |
163 | return QualType(); |
164 | } |
165 | |
166 | // Form template argument list for coroutine_handle<Promise>. |
167 | TemplateArgumentListInfo Args(Loc, Loc); |
168 | Args.addArgument(Loc: TemplateArgumentLoc( |
169 | TemplateArgument(PromiseType), |
170 | S.Context.getTrivialTypeSourceInfo(T: PromiseType, Loc))); |
171 | |
172 | // Build the template-id. |
173 | QualType CoroHandleType = |
174 | S.CheckTemplateIdType(Template: TemplateName(CoroHandle), TemplateLoc: Loc, TemplateArgs&: Args); |
175 | if (CoroHandleType.isNull()) |
176 | return QualType(); |
177 | if (S.RequireCompleteType(Loc, T: CoroHandleType, |
178 | DiagID: diag::err_coroutine_type_missing_specialization)) |
179 | return QualType(); |
180 | |
181 | return CoroHandleType; |
182 | } |
183 | |
184 | static bool isValidCoroutineContext(Sema &S, SourceLocation Loc, |
185 | StringRef Keyword) { |
186 | // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within |
187 | // a function body. |
188 | // FIXME: This also covers [expr.await]p2: "An await-expression shall not |
189 | // appear in a default argument." But the diagnostic QoI here could be |
190 | // improved to inform the user that default arguments specifically are not |
191 | // allowed. |
192 | auto *FD = dyn_cast<FunctionDecl>(Val: S.CurContext); |
193 | if (!FD) { |
194 | S.Diag(Loc, DiagID: isa<ObjCMethodDecl>(Val: S.CurContext) |
195 | ? diag::err_coroutine_objc_method |
196 | : diag::err_coroutine_outside_function) << Keyword; |
197 | return false; |
198 | } |
199 | |
200 | // An enumeration for mapping the diagnostic type to the correct diagnostic |
201 | // selection index. |
202 | enum InvalidFuncDiag { |
203 | DiagCtor = 0, |
204 | DiagDtor, |
205 | DiagMain, |
206 | DiagConstexpr, |
207 | DiagAutoRet, |
208 | DiagVarargs, |
209 | DiagConsteval, |
210 | }; |
211 | bool Diagnosed = false; |
212 | auto DiagInvalid = [&](InvalidFuncDiag ID) { |
213 | S.Diag(Loc, DiagID: diag::err_coroutine_invalid_func_context) << ID << Keyword; |
214 | Diagnosed = true; |
215 | return false; |
216 | }; |
217 | |
218 | // Diagnose when a constructor, destructor |
219 | // or the function 'main' are declared as a coroutine. |
220 | auto *MD = dyn_cast<CXXMethodDecl>(Val: FD); |
221 | // [class.ctor]p11: "A constructor shall not be a coroutine." |
222 | if (MD && isa<CXXConstructorDecl>(Val: MD)) |
223 | return DiagInvalid(DiagCtor); |
224 | // [class.dtor]p17: "A destructor shall not be a coroutine." |
225 | else if (MD && isa<CXXDestructorDecl>(Val: MD)) |
226 | return DiagInvalid(DiagDtor); |
227 | // [basic.start.main]p3: "The function main shall not be a coroutine." |
228 | else if (FD->isMain()) |
229 | return DiagInvalid(DiagMain); |
230 | |
231 | // Emit a diagnostics for each of the following conditions which is not met. |
232 | // [expr.const]p2: "An expression e is a core constant expression unless the |
233 | // evaluation of e [...] would evaluate one of the following expressions: |
234 | // [...] an await-expression [...] a yield-expression." |
235 | if (FD->isConstexpr()) |
236 | DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr); |
237 | // [dcl.spec.auto]p15: "A function declared with a return type that uses a |
238 | // placeholder type shall not be a coroutine." |
239 | if (FD->getReturnType()->isUndeducedType()) |
240 | DiagInvalid(DiagAutoRet); |
241 | // [dcl.fct.def.coroutine]p1 |
242 | // The parameter-declaration-clause of the coroutine shall not terminate with |
243 | // an ellipsis that is not part of a parameter-declaration. |
244 | if (FD->isVariadic()) |
245 | DiagInvalid(DiagVarargs); |
246 | |
247 | return !Diagnosed; |
248 | } |
249 | |
250 | /// Build a call to 'operator co_await' if there is a suitable operator for |
251 | /// the given expression. |
252 | ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E, |
253 | UnresolvedLookupExpr *Lookup) { |
254 | UnresolvedSet<16> Functions; |
255 | Functions.append(I: Lookup->decls_begin(), E: Lookup->decls_end()); |
256 | return CreateOverloadedUnaryOp(OpLoc: Loc, Opc: UO_Coawait, Fns: Functions, input: E); |
257 | } |
258 | |
259 | static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S, |
260 | SourceLocation Loc, Expr *E) { |
261 | ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc); |
262 | if (R.isInvalid()) |
263 | return ExprError(); |
264 | return SemaRef.BuildOperatorCoawaitCall(Loc, E, |
265 | Lookup: cast<UnresolvedLookupExpr>(Val: R.get())); |
266 | } |
267 | |
268 | static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType, |
269 | SourceLocation Loc) { |
270 | QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc); |
271 | if (CoroHandleType.isNull()) |
272 | return ExprError(); |
273 | |
274 | DeclContext *LookupCtx = S.computeDeclContext(T: CoroHandleType); |
275 | LookupResult Found(S, &S.PP.getIdentifierTable().get(Name: "from_address" ), Loc, |
276 | Sema::LookupOrdinaryName); |
277 | if (!S.LookupQualifiedName(R&: Found, LookupCtx)) { |
278 | S.Diag(Loc, DiagID: diag::err_coroutine_handle_missing_member) |
279 | << "from_address" ; |
280 | return ExprError(); |
281 | } |
282 | |
283 | Expr *FramePtr = |
284 | S.BuildBuiltinCallExpr(Loc, Id: Builtin::BI__builtin_coro_frame, CallArgs: {}); |
285 | |
286 | CXXScopeSpec SS; |
287 | ExprResult FromAddr = |
288 | S.BuildDeclarationNameExpr(SS, R&: Found, /*NeedsADL=*/false); |
289 | if (FromAddr.isInvalid()) |
290 | return ExprError(); |
291 | |
292 | return S.BuildCallExpr(S: nullptr, Fn: FromAddr.get(), LParenLoc: Loc, ArgExprs: FramePtr, RParenLoc: Loc); |
293 | } |
294 | |
295 | struct ReadySuspendResumeResult { |
296 | enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume }; |
297 | Expr *Results[3]; |
298 | OpaqueValueExpr *OpaqueValue; |
299 | bool IsInvalid; |
300 | }; |
301 | |
302 | static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc, |
303 | StringRef Name, MultiExprArg Args) { |
304 | DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc); |
305 | |
306 | // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&. |
307 | CXXScopeSpec SS; |
308 | ExprResult Result = S.BuildMemberReferenceExpr( |
309 | Base, BaseType: Base->getType(), OpLoc: Loc, /*IsPtr=*/IsArrow: false, SS, |
310 | TemplateKWLoc: SourceLocation(), FirstQualifierInScope: nullptr, NameInfo, /*TemplateArgs=*/nullptr, |
311 | /*Scope=*/S: nullptr); |
312 | if (Result.isInvalid()) |
313 | return ExprError(); |
314 | |
315 | // We meant exactly what we asked for. No need for typo correction. |
316 | if (auto *TE = dyn_cast<TypoExpr>(Val: Result.get())) { |
317 | S.clearDelayedTypo(TE); |
318 | S.Diag(Loc, DiagID: diag::err_no_member) |
319 | << NameInfo.getName() << Base->getType()->getAsCXXRecordDecl() |
320 | << Base->getSourceRange(); |
321 | return ExprError(); |
322 | } |
323 | |
324 | auto EndLoc = Args.empty() ? Loc : Args.back()->getEndLoc(); |
325 | return S.BuildCallExpr(S: nullptr, Fn: Result.get(), LParenLoc: Loc, ArgExprs: Args, RParenLoc: EndLoc, ExecConfig: nullptr); |
326 | } |
327 | |
328 | // See if return type is coroutine-handle and if so, invoke builtin coro-resume |
329 | // on its address. This is to enable the support for coroutine-handle |
330 | // returning await_suspend that results in a guaranteed tail call to the target |
331 | // coroutine. |
332 | static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E, |
333 | SourceLocation Loc) { |
334 | if (RetType->isReferenceType()) |
335 | return nullptr; |
336 | Type const *T = RetType.getTypePtr(); |
337 | if (!T->isClassType() && !T->isStructureType()) |
338 | return nullptr; |
339 | |
340 | // FIXME: Add convertability check to coroutine_handle<>. Possibly via |
341 | // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment |
342 | // a private function in SemaExprCXX.cpp |
343 | |
344 | ExprResult AddressExpr = buildMemberCall(S, Base: E, Loc, Name: "address" , Args: std::nullopt); |
345 | if (AddressExpr.isInvalid()) |
346 | return nullptr; |
347 | |
348 | Expr *JustAddress = AddressExpr.get(); |
349 | |
350 | // Check that the type of AddressExpr is void* |
351 | if (!JustAddress->getType().getTypePtr()->isVoidPointerType()) |
352 | S.Diag(Loc: cast<CallExpr>(Val: JustAddress)->getCalleeDecl()->getLocation(), |
353 | DiagID: diag::warn_coroutine_handle_address_invalid_return_type) |
354 | << JustAddress->getType(); |
355 | |
356 | // Clean up temporary objects, because the resulting expression |
357 | // will become the body of await_suspend wrapper. |
358 | return S.MaybeCreateExprWithCleanups(SubExpr: JustAddress); |
359 | } |
360 | |
361 | /// Build calls to await_ready, await_suspend, and await_resume for a co_await |
362 | /// expression. |
363 | /// The generated AST tries to clean up temporary objects as early as |
364 | /// possible so that they don't live across suspension points if possible. |
365 | /// Having temporary objects living across suspension points unnecessarily can |
366 | /// lead to large frame size, and also lead to memory corruptions if the |
367 | /// coroutine frame is destroyed after coming back from suspension. This is done |
368 | /// by wrapping both the await_ready call and the await_suspend call with |
369 | /// ExprWithCleanups. In the end of this function, we also need to explicitly |
370 | /// set cleanup state so that the CoawaitExpr is also wrapped with an |
371 | /// ExprWithCleanups to clean up the awaiter associated with the co_await |
372 | /// expression. |
373 | static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise, |
374 | SourceLocation Loc, Expr *E) { |
375 | OpaqueValueExpr *Operand = new (S.Context) |
376 | OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E); |
377 | |
378 | // Assume valid until we see otherwise. |
379 | // Further operations are responsible for setting IsInalid to true. |
380 | ReadySuspendResumeResult Calls = {.Results: {}, .OpaqueValue: Operand, /*IsInvalid=*/false}; |
381 | |
382 | using ACT = ReadySuspendResumeResult::AwaitCallType; |
383 | |
384 | auto BuildSubExpr = [&](ACT CallType, StringRef Func, |
385 | MultiExprArg Arg) -> Expr * { |
386 | ExprResult Result = buildMemberCall(S, Base: Operand, Loc, Name: Func, Args: Arg); |
387 | if (Result.isInvalid()) { |
388 | Calls.IsInvalid = true; |
389 | return nullptr; |
390 | } |
391 | Calls.Results[CallType] = Result.get(); |
392 | return Result.get(); |
393 | }; |
394 | |
395 | CallExpr *AwaitReady = cast_or_null<CallExpr>( |
396 | Val: BuildSubExpr(ACT::ACT_Ready, "await_ready" , std::nullopt)); |
397 | if (!AwaitReady) |
398 | return Calls; |
399 | if (!AwaitReady->getType()->isDependentType()) { |
400 | // [expr.await]p3 [...] |
401 | // — await-ready is the expression e.await_ready(), contextually converted |
402 | // to bool. |
403 | ExprResult Conv = S.PerformContextuallyConvertToBool(From: AwaitReady); |
404 | if (Conv.isInvalid()) { |
405 | S.Diag(Loc: AwaitReady->getDirectCallee()->getBeginLoc(), |
406 | DiagID: diag::note_await_ready_no_bool_conversion); |
407 | S.Diag(Loc, DiagID: diag::note_coroutine_promise_call_implicitly_required) |
408 | << AwaitReady->getDirectCallee() << E->getSourceRange(); |
409 | Calls.IsInvalid = true; |
410 | } else |
411 | Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(SubExpr: Conv.get()); |
412 | } |
413 | |
414 | ExprResult CoroHandleRes = |
415 | buildCoroutineHandle(S, PromiseType: CoroPromise->getType(), Loc); |
416 | if (CoroHandleRes.isInvalid()) { |
417 | Calls.IsInvalid = true; |
418 | return Calls; |
419 | } |
420 | Expr *CoroHandle = CoroHandleRes.get(); |
421 | CallExpr *AwaitSuspend = cast_or_null<CallExpr>( |
422 | Val: BuildSubExpr(ACT::ACT_Suspend, "await_suspend" , CoroHandle)); |
423 | if (!AwaitSuspend) |
424 | return Calls; |
425 | if (!AwaitSuspend->getType()->isDependentType()) { |
426 | // [expr.await]p3 [...] |
427 | // - await-suspend is the expression e.await_suspend(h), which shall be |
428 | // a prvalue of type void, bool, or std::coroutine_handle<Z> for some |
429 | // type Z. |
430 | QualType RetType = AwaitSuspend->getCallReturnType(Ctx: S.Context); |
431 | |
432 | // Support for coroutine_handle returning await_suspend. |
433 | if (Expr *TailCallSuspend = |
434 | maybeTailCall(S, RetType, E: AwaitSuspend, Loc)) |
435 | // Note that we don't wrap the expression with ExprWithCleanups here |
436 | // because that might interfere with tailcall contract (e.g. inserting |
437 | // clean up instructions in-between tailcall and return). Instead |
438 | // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume |
439 | // call. |
440 | Calls.Results[ACT::ACT_Suspend] = TailCallSuspend; |
441 | else { |
442 | // non-class prvalues always have cv-unqualified types |
443 | if (RetType->isReferenceType() || |
444 | (!RetType->isBooleanType() && !RetType->isVoidType())) { |
445 | S.Diag(Loc: AwaitSuspend->getCalleeDecl()->getLocation(), |
446 | DiagID: diag::err_await_suspend_invalid_return_type) |
447 | << RetType; |
448 | S.Diag(Loc, DiagID: diag::note_coroutine_promise_call_implicitly_required) |
449 | << AwaitSuspend->getDirectCallee(); |
450 | Calls.IsInvalid = true; |
451 | } else |
452 | Calls.Results[ACT::ACT_Suspend] = |
453 | S.MaybeCreateExprWithCleanups(SubExpr: AwaitSuspend); |
454 | } |
455 | } |
456 | |
457 | BuildSubExpr(ACT::ACT_Resume, "await_resume" , std::nullopt); |
458 | |
459 | // Make sure the awaiter object gets a chance to be cleaned up. |
460 | S.Cleanup.setExprNeedsCleanups(true); |
461 | |
462 | return Calls; |
463 | } |
464 | |
465 | static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise, |
466 | SourceLocation Loc, StringRef Name, |
467 | MultiExprArg Args) { |
468 | |
469 | // Form a reference to the promise. |
470 | ExprResult PromiseRef = S.BuildDeclRefExpr( |
471 | D: Promise, Ty: Promise->getType().getNonReferenceType(), VK: VK_LValue, Loc); |
472 | if (PromiseRef.isInvalid()) |
473 | return ExprError(); |
474 | |
475 | return buildMemberCall(S, Base: PromiseRef.get(), Loc, Name, Args); |
476 | } |
477 | |
478 | VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) { |
479 | assert(isa<FunctionDecl>(CurContext) && "not in a function scope" ); |
480 | auto *FD = cast<FunctionDecl>(Val: CurContext); |
481 | bool IsThisDependentType = [&] { |
482 | if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(Val: FD)) |
483 | return MD->isImplicitObjectMemberFunction() && |
484 | MD->getThisType()->isDependentType(); |
485 | return false; |
486 | }(); |
487 | |
488 | QualType T = FD->getType()->isDependentType() || IsThisDependentType |
489 | ? Context.DependentTy |
490 | : lookupPromiseType(S&: *this, FD, KwLoc: Loc); |
491 | if (T.isNull()) |
492 | return nullptr; |
493 | |
494 | auto *VD = VarDecl::Create(C&: Context, DC: FD, StartLoc: FD->getLocation(), IdLoc: FD->getLocation(), |
495 | Id: &PP.getIdentifierTable().get(Name: "__promise" ), T, |
496 | TInfo: Context.getTrivialTypeSourceInfo(T, Loc), S: SC_None); |
497 | VD->setImplicit(); |
498 | CheckVariableDeclarationType(NewVD: VD); |
499 | if (VD->isInvalidDecl()) |
500 | return nullptr; |
501 | |
502 | auto *ScopeInfo = getCurFunction(); |
503 | |
504 | // Build a list of arguments, based on the coroutine function's arguments, |
505 | // that if present will be passed to the promise type's constructor. |
506 | llvm::SmallVector<Expr *, 4> CtorArgExprs; |
507 | |
508 | // Add implicit object parameter. |
509 | if (auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
510 | if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) { |
511 | ExprResult ThisExpr = ActOnCXXThis(Loc); |
512 | if (ThisExpr.isInvalid()) |
513 | return nullptr; |
514 | ThisExpr = CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_Deref, InputExpr: ThisExpr.get()); |
515 | if (ThisExpr.isInvalid()) |
516 | return nullptr; |
517 | CtorArgExprs.push_back(Elt: ThisExpr.get()); |
518 | } |
519 | } |
520 | |
521 | // Add the coroutine function's parameters. |
522 | auto &Moves = ScopeInfo->CoroutineParameterMoves; |
523 | for (auto *PD : FD->parameters()) { |
524 | if (PD->getType()->isDependentType()) |
525 | continue; |
526 | |
527 | auto RefExpr = ExprEmpty(); |
528 | auto Move = Moves.find(Key: PD); |
529 | assert(Move != Moves.end() && |
530 | "Coroutine function parameter not inserted into move map" ); |
531 | // If a reference to the function parameter exists in the coroutine |
532 | // frame, use that reference. |
533 | auto *MoveDecl = |
534 | cast<VarDecl>(Val: cast<DeclStmt>(Val: Move->second)->getSingleDecl()); |
535 | RefExpr = |
536 | BuildDeclRefExpr(D: MoveDecl, Ty: MoveDecl->getType().getNonReferenceType(), |
537 | VK: ExprValueKind::VK_LValue, Loc: FD->getLocation()); |
538 | if (RefExpr.isInvalid()) |
539 | return nullptr; |
540 | CtorArgExprs.push_back(Elt: RefExpr.get()); |
541 | } |
542 | |
543 | // If we have a non-zero number of constructor arguments, try to use them. |
544 | // Otherwise, fall back to the promise type's default constructor. |
545 | if (!CtorArgExprs.empty()) { |
546 | // Create an initialization sequence for the promise type using the |
547 | // constructor arguments, wrapped in a parenthesized list expression. |
548 | Expr *PLE = ParenListExpr::Create(Ctx: Context, LParenLoc: FD->getLocation(), |
549 | Exprs: CtorArgExprs, RParenLoc: FD->getLocation()); |
550 | InitializedEntity Entity = InitializedEntity::InitializeVariable(Var: VD); |
551 | InitializationKind Kind = InitializationKind::CreateForInit( |
552 | Loc: VD->getLocation(), /*DirectInit=*/true, Init: PLE); |
553 | InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs, |
554 | /*TopLevelOfInitList=*/false, |
555 | /*TreatUnavailableAsInvalid=*/false); |
556 | |
557 | // [dcl.fct.def.coroutine]5.7 |
558 | // promise-constructor-arguments is determined as follows: overload |
559 | // resolution is performed on a promise constructor call created by |
560 | // assembling an argument list q_1 ... q_n . If a viable constructor is |
561 | // found ([over.match.viable]), then promise-constructor-arguments is ( q_1 |
562 | // , ..., q_n ), otherwise promise-constructor-arguments is empty. |
563 | if (InitSeq) { |
564 | ExprResult Result = InitSeq.Perform(S&: *this, Entity, Kind, Args: CtorArgExprs); |
565 | if (Result.isInvalid()) { |
566 | VD->setInvalidDecl(); |
567 | } else if (Result.get()) { |
568 | VD->setInit(MaybeCreateExprWithCleanups(SubExpr: Result.get())); |
569 | VD->setInitStyle(VarDecl::CallInit); |
570 | CheckCompleteVariableDeclaration(VD); |
571 | } |
572 | } else |
573 | ActOnUninitializedDecl(dcl: VD); |
574 | } else |
575 | ActOnUninitializedDecl(dcl: VD); |
576 | |
577 | FD->addDecl(D: VD); |
578 | return VD; |
579 | } |
580 | |
581 | /// Check that this is a context in which a coroutine suspension can appear. |
582 | static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc, |
583 | StringRef Keyword, |
584 | bool IsImplicit = false) { |
585 | if (!isValidCoroutineContext(S, Loc, Keyword)) |
586 | return nullptr; |
587 | |
588 | assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope" ); |
589 | |
590 | auto *ScopeInfo = S.getCurFunction(); |
591 | assert(ScopeInfo && "missing function scope for function" ); |
592 | |
593 | if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit) |
594 | ScopeInfo->setFirstCoroutineStmt(Loc, Keyword); |
595 | |
596 | if (ScopeInfo->CoroutinePromise) |
597 | return ScopeInfo; |
598 | |
599 | if (!S.buildCoroutineParameterMoves(Loc)) |
600 | return nullptr; |
601 | |
602 | ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc); |
603 | if (!ScopeInfo->CoroutinePromise) |
604 | return nullptr; |
605 | |
606 | return ScopeInfo; |
607 | } |
608 | |
609 | /// Recursively check \p E and all its children to see if any call target |
610 | /// (including constructor call) is declared noexcept. Also any value returned |
611 | /// from the call has a noexcept destructor. |
612 | static void checkNoThrow(Sema &S, const Stmt *E, |
613 | llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) { |
614 | auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) { |
615 | // In the case of dtor, the call to dtor is implicit and hence we should |
616 | // pass nullptr to canCalleeThrow. |
617 | if (Sema::canCalleeThrow(S, E: IsDtor ? nullptr : cast<Expr>(Val: E), D)) { |
618 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
619 | // co_await promise.final_suspend() could end up calling |
620 | // __builtin_coro_resume for symmetric transfer if await_suspend() |
621 | // returns a handle. In that case, even __builtin_coro_resume is not |
622 | // declared as noexcept and may throw, it does not throw _into_ the |
623 | // coroutine that just suspended, but rather throws back out from |
624 | // whoever called coroutine_handle::resume(), hence we claim that |
625 | // logically it does not throw. |
626 | if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume) |
627 | return; |
628 | } |
629 | if (ThrowingDecls.empty()) { |
630 | // [dcl.fct.def.coroutine]p15 |
631 | // The expression co_await promise.final_suspend() shall not be |
632 | // potentially-throwing ([except.spec]). |
633 | // |
634 | // First time seeing an error, emit the error message. |
635 | S.Diag(Loc: cast<FunctionDecl>(Val: S.CurContext)->getLocation(), |
636 | DiagID: diag::err_coroutine_promise_final_suspend_requires_nothrow); |
637 | } |
638 | ThrowingDecls.insert(Ptr: D); |
639 | } |
640 | }; |
641 | |
642 | if (auto *CE = dyn_cast<CXXConstructExpr>(Val: E)) { |
643 | CXXConstructorDecl *Ctor = CE->getConstructor(); |
644 | checkDeclNoexcept(Ctor); |
645 | // Check the corresponding destructor of the constructor. |
646 | checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true); |
647 | } else if (auto *CE = dyn_cast<CallExpr>(Val: E)) { |
648 | if (CE->isTypeDependent()) |
649 | return; |
650 | |
651 | checkDeclNoexcept(CE->getCalleeDecl()); |
652 | QualType ReturnType = CE->getCallReturnType(Ctx: S.getASTContext()); |
653 | // Check the destructor of the call return type, if any. |
654 | if (ReturnType.isDestructedType() == |
655 | QualType::DestructionKind::DK_cxx_destructor) { |
656 | const auto *T = |
657 | cast<RecordType>(Val: ReturnType.getCanonicalType().getTypePtr()); |
658 | checkDeclNoexcept(cast<CXXRecordDecl>(Val: T->getDecl())->getDestructor(), |
659 | /*IsDtor=*/true); |
660 | } |
661 | } else |
662 | for (const auto *Child : E->children()) { |
663 | if (!Child) |
664 | continue; |
665 | checkNoThrow(S, E: Child, ThrowingDecls); |
666 | } |
667 | } |
668 | |
669 | bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) { |
670 | llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls; |
671 | // We first collect all declarations that should not throw but not declared |
672 | // with noexcept. We then sort them based on the location before printing. |
673 | // This is to avoid emitting the same note multiple times on the same |
674 | // declaration, and also provide a deterministic order for the messages. |
675 | checkNoThrow(S&: *this, E: FinalSuspend, ThrowingDecls); |
676 | auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(), |
677 | ThrowingDecls.end()}; |
678 | sort(C&: SortedDecls, Comp: [](const Decl *A, const Decl *B) { |
679 | return A->getEndLoc() < B->getEndLoc(); |
680 | }); |
681 | for (const auto *D : SortedDecls) { |
682 | Diag(Loc: D->getEndLoc(), DiagID: diag::note_coroutine_function_declare_noexcept); |
683 | } |
684 | return ThrowingDecls.empty(); |
685 | } |
686 | |
687 | bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc, |
688 | StringRef Keyword) { |
689 | // Ignore previous expr evaluation contexts. |
690 | EnterExpressionEvaluationContext PotentiallyEvaluated( |
691 | *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); |
692 | if (!checkCoroutineContext(S&: *this, Loc: KWLoc, Keyword)) |
693 | return false; |
694 | auto *ScopeInfo = getCurFunction(); |
695 | assert(ScopeInfo->CoroutinePromise); |
696 | |
697 | // If we have existing coroutine statements then we have already built |
698 | // the initial and final suspend points. |
699 | if (!ScopeInfo->NeedsCoroutineSuspends) |
700 | return true; |
701 | |
702 | ScopeInfo->setNeedsCoroutineSuspends(false); |
703 | |
704 | auto *Fn = cast<FunctionDecl>(Val: CurContext); |
705 | SourceLocation Loc = Fn->getLocation(); |
706 | // Build the initial suspend point |
707 | auto buildSuspends = [&](StringRef Name) mutable -> StmtResult { |
708 | ExprResult Operand = buildPromiseCall(S&: *this, Promise: ScopeInfo->CoroutinePromise, |
709 | Loc, Name, Args: std::nullopt); |
710 | if (Operand.isInvalid()) |
711 | return StmtError(); |
712 | ExprResult Suspend = |
713 | buildOperatorCoawaitCall(SemaRef&: *this, S: SC, Loc, E: Operand.get()); |
714 | if (Suspend.isInvalid()) |
715 | return StmtError(); |
716 | Suspend = BuildResolvedCoawaitExpr(KwLoc: Loc, Operand: Operand.get(), Awaiter: Suspend.get(), |
717 | /*IsImplicit*/ true); |
718 | Suspend = ActOnFinishFullExpr(Expr: Suspend.get(), /*DiscardedValue*/ false); |
719 | if (Suspend.isInvalid()) { |
720 | Diag(Loc, DiagID: diag::note_coroutine_promise_suspend_implicitly_required) |
721 | << ((Name == "initial_suspend" ) ? 0 : 1); |
722 | Diag(Loc: KWLoc, DiagID: diag::note_declared_coroutine_here) << Keyword; |
723 | return StmtError(); |
724 | } |
725 | return cast<Stmt>(Val: Suspend.get()); |
726 | }; |
727 | |
728 | StmtResult InitSuspend = buildSuspends("initial_suspend" ); |
729 | if (InitSuspend.isInvalid()) |
730 | return true; |
731 | |
732 | StmtResult FinalSuspend = buildSuspends("final_suspend" ); |
733 | if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend: FinalSuspend.get())) |
734 | return true; |
735 | |
736 | ScopeInfo->setCoroutineSuspends(Initial: InitSuspend.get(), Final: FinalSuspend.get()); |
737 | |
738 | return true; |
739 | } |
740 | |
741 | // Recursively walks up the scope hierarchy until either a 'catch' or a function |
742 | // scope is found, whichever comes first. |
743 | static bool isWithinCatchScope(Scope *S) { |
744 | // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but |
745 | // lambdas that use 'co_await' are allowed. The loop below ends when a |
746 | // function scope is found in order to ensure the following behavior: |
747 | // |
748 | // void foo() { // <- function scope |
749 | // try { // |
750 | // co_await x; // <- 'co_await' is OK within a function scope |
751 | // } catch { // <- catch scope |
752 | // co_await x; // <- 'co_await' is not OK within a catch scope |
753 | // []() { // <- function scope |
754 | // co_await x; // <- 'co_await' is OK within a function scope |
755 | // }(); |
756 | // } |
757 | // } |
758 | while (S && !S->isFunctionScope()) { |
759 | if (S->isCatchScope()) |
760 | return true; |
761 | S = S->getParent(); |
762 | } |
763 | return false; |
764 | } |
765 | |
766 | // [expr.await]p2, emphasis added: "An await-expression shall appear only in |
767 | // a *potentially evaluated* expression within the compound-statement of a |
768 | // function-body *outside of a handler* [...] A context within a function |
769 | // where an await-expression can appear is called a suspension context of the |
770 | // function." |
771 | static bool checkSuspensionContext(Sema &S, SourceLocation Loc, |
772 | StringRef Keyword) { |
773 | // First emphasis of [expr.await]p2: must be a potentially evaluated context. |
774 | // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of |
775 | // \c sizeof. |
776 | if (S.isUnevaluatedContext()) { |
777 | S.Diag(Loc, DiagID: diag::err_coroutine_unevaluated_context) << Keyword; |
778 | return false; |
779 | } |
780 | |
781 | // Second emphasis of [expr.await]p2: must be outside of an exception handler. |
782 | if (isWithinCatchScope(S: S.getCurScope())) { |
783 | S.Diag(Loc, DiagID: diag::err_coroutine_within_handler) << Keyword; |
784 | return false; |
785 | } |
786 | |
787 | return true; |
788 | } |
789 | |
790 | ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) { |
791 | if (!checkSuspensionContext(S&: *this, Loc, Keyword: "co_await" )) |
792 | return ExprError(); |
793 | |
794 | if (!ActOnCoroutineBodyStart(SC: S, KWLoc: Loc, Keyword: "co_await" )) { |
795 | CorrectDelayedTyposInExpr(E); |
796 | return ExprError(); |
797 | } |
798 | |
799 | if (E->hasPlaceholderType()) { |
800 | ExprResult R = CheckPlaceholderExpr(E); |
801 | if (R.isInvalid()) return ExprError(); |
802 | E = R.get(); |
803 | } |
804 | ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc); |
805 | if (Lookup.isInvalid()) |
806 | return ExprError(); |
807 | return BuildUnresolvedCoawaitExpr(KwLoc: Loc, Operand: E, |
808 | Lookup: cast<UnresolvedLookupExpr>(Val: Lookup.get())); |
809 | } |
810 | |
811 | ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) { |
812 | DeclarationName OpName = |
813 | Context.DeclarationNames.getCXXOperatorName(Op: OO_Coawait); |
814 | LookupResult Operators(*this, OpName, SourceLocation(), |
815 | Sema::LookupOperatorName); |
816 | LookupName(R&: Operators, S); |
817 | |
818 | assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous" ); |
819 | const auto &Functions = Operators.asUnresolvedSet(); |
820 | Expr *CoawaitOp = UnresolvedLookupExpr::Create( |
821 | Context, /*NamingClass*/ nullptr, QualifierLoc: NestedNameSpecifierLoc(), |
822 | NameInfo: DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, Begin: Functions.begin(), |
823 | End: Functions.end(), /*KnownDependent=*/false, |
824 | /*KnownInstantiationDependent=*/false); |
825 | assert(CoawaitOp); |
826 | return CoawaitOp; |
827 | } |
828 | |
829 | // Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to |
830 | // DependentCoawaitExpr if needed. |
831 | ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand, |
832 | UnresolvedLookupExpr *Lookup) { |
833 | auto *FSI = checkCoroutineContext(S&: *this, Loc, Keyword: "co_await" ); |
834 | if (!FSI) |
835 | return ExprError(); |
836 | |
837 | if (Operand->hasPlaceholderType()) { |
838 | ExprResult R = CheckPlaceholderExpr(E: Operand); |
839 | if (R.isInvalid()) |
840 | return ExprError(); |
841 | Operand = R.get(); |
842 | } |
843 | |
844 | auto *Promise = FSI->CoroutinePromise; |
845 | if (Promise->getType()->isDependentType()) { |
846 | Expr *Res = new (Context) |
847 | DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup); |
848 | return Res; |
849 | } |
850 | |
851 | auto *RD = Promise->getType()->getAsCXXRecordDecl(); |
852 | auto *Transformed = Operand; |
853 | if (lookupMember(S&: *this, Name: "await_transform" , RD, Loc)) { |
854 | ExprResult R = |
855 | buildPromiseCall(S&: *this, Promise, Loc, Name: "await_transform" , Args: Operand); |
856 | if (R.isInvalid()) { |
857 | Diag(Loc, |
858 | DiagID: diag::note_coroutine_promise_implicit_await_transform_required_here) |
859 | << Operand->getSourceRange(); |
860 | return ExprError(); |
861 | } |
862 | Transformed = R.get(); |
863 | } |
864 | ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, E: Transformed, Lookup); |
865 | if (Awaiter.isInvalid()) |
866 | return ExprError(); |
867 | |
868 | return BuildResolvedCoawaitExpr(KwLoc: Loc, Operand, Awaiter: Awaiter.get()); |
869 | } |
870 | |
871 | ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand, |
872 | Expr *Awaiter, bool IsImplicit) { |
873 | auto *Coroutine = checkCoroutineContext(S&: *this, Loc, Keyword: "co_await" , IsImplicit); |
874 | if (!Coroutine) |
875 | return ExprError(); |
876 | |
877 | if (Awaiter->hasPlaceholderType()) { |
878 | ExprResult R = CheckPlaceholderExpr(E: Awaiter); |
879 | if (R.isInvalid()) return ExprError(); |
880 | Awaiter = R.get(); |
881 | } |
882 | |
883 | if (Awaiter->getType()->isDependentType()) { |
884 | Expr *Res = new (Context) |
885 | CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit); |
886 | return Res; |
887 | } |
888 | |
889 | // If the expression is a temporary, materialize it as an lvalue so that we |
890 | // can use it multiple times. |
891 | if (Awaiter->isPRValue()) |
892 | Awaiter = CreateMaterializeTemporaryExpr(T: Awaiter->getType(), Temporary: Awaiter, BoundToLvalueReference: true); |
893 | |
894 | // The location of the `co_await` token cannot be used when constructing |
895 | // the member call expressions since it's before the location of `Expr`, which |
896 | // is used as the start of the member call expression. |
897 | SourceLocation CallLoc = Awaiter->getExprLoc(); |
898 | |
899 | // Build the await_ready, await_suspend, await_resume calls. |
900 | ReadySuspendResumeResult = |
901 | buildCoawaitCalls(S&: *this, CoroPromise: Coroutine->CoroutinePromise, Loc: CallLoc, E: Awaiter); |
902 | if (RSS.IsInvalid) |
903 | return ExprError(); |
904 | |
905 | Expr *Res = new (Context) |
906 | CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1], |
907 | RSS.Results[2], RSS.OpaqueValue, IsImplicit); |
908 | |
909 | return Res; |
910 | } |
911 | |
912 | ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) { |
913 | if (!checkSuspensionContext(S&: *this, Loc, Keyword: "co_yield" )) |
914 | return ExprError(); |
915 | |
916 | if (!ActOnCoroutineBodyStart(SC: S, KWLoc: Loc, Keyword: "co_yield" )) { |
917 | CorrectDelayedTyposInExpr(E); |
918 | return ExprError(); |
919 | } |
920 | |
921 | // Build yield_value call. |
922 | ExprResult Awaitable = buildPromiseCall( |
923 | S&: *this, Promise: getCurFunction()->CoroutinePromise, Loc, Name: "yield_value" , Args: E); |
924 | if (Awaitable.isInvalid()) |
925 | return ExprError(); |
926 | |
927 | // Build 'operator co_await' call. |
928 | Awaitable = buildOperatorCoawaitCall(SemaRef&: *this, S, Loc, E: Awaitable.get()); |
929 | if (Awaitable.isInvalid()) |
930 | return ExprError(); |
931 | |
932 | return BuildCoyieldExpr(KwLoc: Loc, E: Awaitable.get()); |
933 | } |
934 | ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) { |
935 | auto *Coroutine = checkCoroutineContext(S&: *this, Loc, Keyword: "co_yield" ); |
936 | if (!Coroutine) |
937 | return ExprError(); |
938 | |
939 | if (E->hasPlaceholderType()) { |
940 | ExprResult R = CheckPlaceholderExpr(E); |
941 | if (R.isInvalid()) return ExprError(); |
942 | E = R.get(); |
943 | } |
944 | |
945 | Expr *Operand = E; |
946 | |
947 | if (E->getType()->isDependentType()) { |
948 | Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E); |
949 | return Res; |
950 | } |
951 | |
952 | // If the expression is a temporary, materialize it as an lvalue so that we |
953 | // can use it multiple times. |
954 | if (E->isPRValue()) |
955 | E = CreateMaterializeTemporaryExpr(T: E->getType(), Temporary: E, BoundToLvalueReference: true); |
956 | |
957 | // Build the await_ready, await_suspend, await_resume calls. |
958 | ReadySuspendResumeResult = buildCoawaitCalls( |
959 | S&: *this, CoroPromise: Coroutine->CoroutinePromise, Loc, E); |
960 | if (RSS.IsInvalid) |
961 | return ExprError(); |
962 | |
963 | Expr *Res = |
964 | new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1], |
965 | RSS.Results[2], RSS.OpaqueValue); |
966 | |
967 | return Res; |
968 | } |
969 | |
970 | StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) { |
971 | if (!ActOnCoroutineBodyStart(SC: S, KWLoc: Loc, Keyword: "co_return" )) { |
972 | CorrectDelayedTyposInExpr(E); |
973 | return StmtError(); |
974 | } |
975 | return BuildCoreturnStmt(KwLoc: Loc, E); |
976 | } |
977 | |
978 | StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E, |
979 | bool IsImplicit) { |
980 | auto *FSI = checkCoroutineContext(S&: *this, Loc, Keyword: "co_return" , IsImplicit); |
981 | if (!FSI) |
982 | return StmtError(); |
983 | |
984 | if (E && E->hasPlaceholderType() && |
985 | !E->hasPlaceholderType(K: BuiltinType::Overload)) { |
986 | ExprResult R = CheckPlaceholderExpr(E); |
987 | if (R.isInvalid()) return StmtError(); |
988 | E = R.get(); |
989 | } |
990 | |
991 | VarDecl *Promise = FSI->CoroutinePromise; |
992 | ExprResult PC; |
993 | if (E && (isa<InitListExpr>(Val: E) || !E->getType()->isVoidType())) { |
994 | getNamedReturnInfo(E, Mode: SimplerImplicitMoveMode::ForceOn); |
995 | PC = buildPromiseCall(S&: *this, Promise, Loc, Name: "return_value" , Args: E); |
996 | } else { |
997 | E = MakeFullDiscardedValueExpr(Arg: E).get(); |
998 | PC = buildPromiseCall(S&: *this, Promise, Loc, Name: "return_void" , Args: std::nullopt); |
999 | } |
1000 | if (PC.isInvalid()) |
1001 | return StmtError(); |
1002 | |
1003 | Expr *PCE = ActOnFinishFullExpr(Expr: PC.get(), /*DiscardedValue*/ false).get(); |
1004 | |
1005 | Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit); |
1006 | return Res; |
1007 | } |
1008 | |
1009 | /// Look up the std::nothrow object. |
1010 | static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) { |
1011 | NamespaceDecl *Std = S.getStdNamespace(); |
1012 | assert(Std && "Should already be diagnosed" ); |
1013 | |
1014 | LookupResult Result(S, &S.PP.getIdentifierTable().get(Name: "nothrow" ), Loc, |
1015 | Sema::LookupOrdinaryName); |
1016 | if (!S.LookupQualifiedName(R&: Result, LookupCtx: Std)) { |
1017 | // <coroutine> is not requred to include <new>, so we couldn't omit |
1018 | // the check here. |
1019 | S.Diag(Loc, DiagID: diag::err_implicit_coroutine_std_nothrow_type_not_found); |
1020 | return nullptr; |
1021 | } |
1022 | |
1023 | auto *VD = Result.getAsSingle<VarDecl>(); |
1024 | if (!VD) { |
1025 | Result.suppressDiagnostics(); |
1026 | // We found something weird. Complain about the first thing we found. |
1027 | NamedDecl *Found = *Result.begin(); |
1028 | S.Diag(Loc: Found->getLocation(), DiagID: diag::err_malformed_std_nothrow); |
1029 | return nullptr; |
1030 | } |
1031 | |
1032 | ExprResult DR = S.BuildDeclRefExpr(D: VD, Ty: VD->getType(), VK: VK_LValue, Loc); |
1033 | if (DR.isInvalid()) |
1034 | return nullptr; |
1035 | |
1036 | return DR.get(); |
1037 | } |
1038 | |
1039 | static TypeSourceInfo *getTypeSourceInfoForStdAlignValT(Sema &S, |
1040 | SourceLocation Loc) { |
1041 | EnumDecl *StdAlignValT = S.getStdAlignValT(); |
1042 | QualType StdAlignValDecl = S.Context.getTypeDeclType(Decl: StdAlignValT); |
1043 | return S.Context.getTrivialTypeSourceInfo(T: StdAlignValDecl); |
1044 | } |
1045 | |
1046 | // Find an appropriate delete for the promise. |
1047 | static bool findDeleteForPromise(Sema &S, SourceLocation Loc, QualType PromiseType, |
1048 | FunctionDecl *&OperatorDelete) { |
1049 | DeclarationName DeleteName = |
1050 | S.Context.DeclarationNames.getCXXOperatorName(Op: OO_Delete); |
1051 | |
1052 | auto *PointeeRD = PromiseType->getAsCXXRecordDecl(); |
1053 | assert(PointeeRD && "PromiseType must be a CxxRecordDecl type" ); |
1054 | |
1055 | const bool Overaligned = S.getLangOpts().CoroAlignedAllocation; |
1056 | |
1057 | // [dcl.fct.def.coroutine]p12 |
1058 | // The deallocation function's name is looked up by searching for it in the |
1059 | // scope of the promise type. If nothing is found, a search is performed in |
1060 | // the global scope. |
1061 | if (S.FindDeallocationFunction(StartLoc: Loc, RD: PointeeRD, Name: DeleteName, Operator&: OperatorDelete, |
1062 | /*Diagnose*/ true, /*WantSize*/ true, |
1063 | /*WantAligned*/ Overaligned)) |
1064 | return false; |
1065 | |
1066 | // [dcl.fct.def.coroutine]p12 |
1067 | // If both a usual deallocation function with only a pointer parameter and a |
1068 | // usual deallocation function with both a pointer parameter and a size |
1069 | // parameter are found, then the selected deallocation function shall be the |
1070 | // one with two parameters. Otherwise, the selected deallocation function |
1071 | // shall be the function with one parameter. |
1072 | if (!OperatorDelete) { |
1073 | // Look for a global declaration. |
1074 | // Coroutines can always provide their required size. |
1075 | const bool CanProvideSize = true; |
1076 | // Sema::FindUsualDeallocationFunction will try to find the one with two |
1077 | // parameters first. It will return the deallocation function with one |
1078 | // parameter if failed. |
1079 | OperatorDelete = S.FindUsualDeallocationFunction(StartLoc: Loc, CanProvideSize, |
1080 | Overaligned, Name: DeleteName); |
1081 | |
1082 | if (!OperatorDelete) |
1083 | return false; |
1084 | } |
1085 | |
1086 | S.MarkFunctionReferenced(Loc, Func: OperatorDelete); |
1087 | return true; |
1088 | } |
1089 | |
1090 | |
1091 | void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) { |
1092 | FunctionScopeInfo *Fn = getCurFunction(); |
1093 | assert(Fn && Fn->isCoroutine() && "not a coroutine" ); |
1094 | if (!Body) { |
1095 | assert(FD->isInvalidDecl() && |
1096 | "a null body is only allowed for invalid declarations" ); |
1097 | return; |
1098 | } |
1099 | // We have a function that uses coroutine keywords, but we failed to build |
1100 | // the promise type. |
1101 | if (!Fn->CoroutinePromise) |
1102 | return FD->setInvalidDecl(); |
1103 | |
1104 | if (isa<CoroutineBodyStmt>(Val: Body)) { |
1105 | // Nothing todo. the body is already a transformed coroutine body statement. |
1106 | return; |
1107 | } |
1108 | |
1109 | // The always_inline attribute doesn't reliably apply to a coroutine, |
1110 | // because the coroutine will be split into pieces and some pieces |
1111 | // might be called indirectly, as in a virtual call. Even the ramp |
1112 | // function cannot be inlined at -O0, due to pipeline ordering |
1113 | // problems (see https://llvm.org/PR53413). Tell the user about it. |
1114 | if (FD->hasAttr<AlwaysInlineAttr>()) |
1115 | Diag(Loc: FD->getLocation(), DiagID: diag::warn_always_inline_coroutine); |
1116 | |
1117 | // The design of coroutines means we cannot allow use of VLAs within one, so |
1118 | // diagnose if we've seen a VLA in the body of this function. |
1119 | if (Fn->FirstVLALoc.isValid()) |
1120 | Diag(Loc: Fn->FirstVLALoc, DiagID: diag::err_vla_in_coroutine_unsupported); |
1121 | |
1122 | // [stmt.return.coroutine]p1: |
1123 | // A coroutine shall not enclose a return statement ([stmt.return]). |
1124 | if (Fn->FirstReturnLoc.isValid()) { |
1125 | assert(Fn->FirstCoroutineStmtLoc.isValid() && |
1126 | "first coroutine location not set" ); |
1127 | Diag(Loc: Fn->FirstReturnLoc, DiagID: diag::err_return_in_coroutine); |
1128 | Diag(Loc: Fn->FirstCoroutineStmtLoc, DiagID: diag::note_declared_coroutine_here) |
1129 | << Fn->getFirstCoroutineStmtKeyword(); |
1130 | } |
1131 | |
1132 | // Coroutines will get splitted into pieces. The GNU address of label |
1133 | // extension wouldn't be meaningful in coroutines. |
1134 | for (AddrLabelExpr *ALE : Fn->AddrLabels) |
1135 | Diag(Loc: ALE->getBeginLoc(), DiagID: diag::err_coro_invalid_addr_of_label); |
1136 | |
1137 | CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body); |
1138 | if (Builder.isInvalid() || !Builder.buildStatements()) |
1139 | return FD->setInvalidDecl(); |
1140 | |
1141 | // Build body for the coroutine wrapper statement. |
1142 | Body = CoroutineBodyStmt::Create(C: Context, Args: Builder); |
1143 | } |
1144 | |
1145 | static CompoundStmt *buildCoroutineBody(Stmt *Body, ASTContext &Context) { |
1146 | if (auto *CS = dyn_cast<CompoundStmt>(Val: Body)) |
1147 | return CS; |
1148 | |
1149 | // The body of the coroutine may be a try statement if it is in |
1150 | // 'function-try-block' syntax. Here we wrap it into a compound |
1151 | // statement for consistency. |
1152 | assert(isa<CXXTryStmt>(Body) && "Unimaged coroutine body type" ); |
1153 | return CompoundStmt::Create(C: Context, Stmts: {Body}, FPFeatures: FPOptionsOverride(), |
1154 | LB: SourceLocation(), RB: SourceLocation()); |
1155 | } |
1156 | |
1157 | CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD, |
1158 | sema::FunctionScopeInfo &Fn, |
1159 | Stmt *Body) |
1160 | : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()), |
1161 | IsPromiseDependentType( |
1162 | !Fn.CoroutinePromise || |
1163 | Fn.CoroutinePromise->getType()->isDependentType()) { |
1164 | this->Body = buildCoroutineBody(Body, Context&: S.getASTContext()); |
1165 | |
1166 | for (auto KV : Fn.CoroutineParameterMoves) |
1167 | this->ParamMovesVector.push_back(Elt: KV.second); |
1168 | this->ParamMoves = this->ParamMovesVector; |
1169 | |
1170 | if (!IsPromiseDependentType) { |
1171 | PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl(); |
1172 | assert(PromiseRecordDecl && "Type should have already been checked" ); |
1173 | } |
1174 | this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend(); |
1175 | } |
1176 | |
1177 | bool CoroutineStmtBuilder::buildStatements() { |
1178 | assert(this->IsValid && "coroutine already invalid" ); |
1179 | this->IsValid = makeReturnObject(); |
1180 | if (this->IsValid && !IsPromiseDependentType) |
1181 | buildDependentStatements(); |
1182 | return this->IsValid; |
1183 | } |
1184 | |
1185 | bool CoroutineStmtBuilder::buildDependentStatements() { |
1186 | assert(this->IsValid && "coroutine already invalid" ); |
1187 | assert(!this->IsPromiseDependentType && |
1188 | "coroutine cannot have a dependent promise type" ); |
1189 | this->IsValid = makeOnException() && makeOnFallthrough() && |
1190 | makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() && |
1191 | makeNewAndDeleteExpr(); |
1192 | return this->IsValid; |
1193 | } |
1194 | |
1195 | bool CoroutineStmtBuilder::makePromiseStmt() { |
1196 | // Form a declaration statement for the promise declaration, so that AST |
1197 | // visitors can more easily find it. |
1198 | StmtResult PromiseStmt = |
1199 | S.ActOnDeclStmt(Decl: S.ConvertDeclToDeclGroup(Ptr: Fn.CoroutinePromise), StartLoc: Loc, EndLoc: Loc); |
1200 | if (PromiseStmt.isInvalid()) |
1201 | return false; |
1202 | |
1203 | this->Promise = PromiseStmt.get(); |
1204 | return true; |
1205 | } |
1206 | |
1207 | bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() { |
1208 | if (Fn.hasInvalidCoroutineSuspends()) |
1209 | return false; |
1210 | this->InitialSuspend = cast<Expr>(Val: Fn.CoroutineSuspends.first); |
1211 | this->FinalSuspend = cast<Expr>(Val: Fn.CoroutineSuspends.second); |
1212 | return true; |
1213 | } |
1214 | |
1215 | static bool diagReturnOnAllocFailure(Sema &S, Expr *E, |
1216 | CXXRecordDecl *PromiseRecordDecl, |
1217 | FunctionScopeInfo &Fn) { |
1218 | auto Loc = E->getExprLoc(); |
1219 | if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(Val: E)) { |
1220 | auto *Decl = DeclRef->getDecl(); |
1221 | if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Val: Decl)) { |
1222 | if (Method->isStatic()) |
1223 | return true; |
1224 | else |
1225 | Loc = Decl->getLocation(); |
1226 | } |
1227 | } |
1228 | |
1229 | S.Diag( |
1230 | Loc, |
1231 | DiagID: diag::err_coroutine_promise_get_return_object_on_allocation_failure) |
1232 | << PromiseRecordDecl; |
1233 | S.Diag(Loc: Fn.FirstCoroutineStmtLoc, DiagID: diag::note_declared_coroutine_here) |
1234 | << Fn.getFirstCoroutineStmtKeyword(); |
1235 | return false; |
1236 | } |
1237 | |
1238 | bool CoroutineStmtBuilder::makeReturnOnAllocFailure() { |
1239 | assert(!IsPromiseDependentType && |
1240 | "cannot make statement while the promise type is dependent" ); |
1241 | |
1242 | // [dcl.fct.def.coroutine]p10 |
1243 | // If a search for the name get_return_object_on_allocation_failure in |
1244 | // the scope of the promise type ([class.member.lookup]) finds any |
1245 | // declarations, then the result of a call to an allocation function used to |
1246 | // obtain storage for the coroutine state is assumed to return nullptr if it |
1247 | // fails to obtain storage, ... If the allocation function returns nullptr, |
1248 | // ... and the return value is obtained by a call to |
1249 | // T::get_return_object_on_allocation_failure(), where T is the |
1250 | // promise type. |
1251 | DeclarationName DN = |
1252 | S.PP.getIdentifierInfo(Name: "get_return_object_on_allocation_failure" ); |
1253 | LookupResult Found(S, DN, Loc, Sema::LookupMemberName); |
1254 | if (!S.LookupQualifiedName(R&: Found, LookupCtx: PromiseRecordDecl)) |
1255 | return true; |
1256 | |
1257 | CXXScopeSpec SS; |
1258 | ExprResult DeclNameExpr = |
1259 | S.BuildDeclarationNameExpr(SS, R&: Found, /*NeedsADL=*/false); |
1260 | if (DeclNameExpr.isInvalid()) |
1261 | return false; |
1262 | |
1263 | if (!diagReturnOnAllocFailure(S, E: DeclNameExpr.get(), PromiseRecordDecl, Fn)) |
1264 | return false; |
1265 | |
1266 | ExprResult ReturnObjectOnAllocationFailure = |
1267 | S.BuildCallExpr(S: nullptr, Fn: DeclNameExpr.get(), LParenLoc: Loc, ArgExprs: {}, RParenLoc: Loc); |
1268 | if (ReturnObjectOnAllocationFailure.isInvalid()) |
1269 | return false; |
1270 | |
1271 | StmtResult ReturnStmt = |
1272 | S.BuildReturnStmt(ReturnLoc: Loc, RetValExp: ReturnObjectOnAllocationFailure.get()); |
1273 | if (ReturnStmt.isInvalid()) { |
1274 | S.Diag(Loc: Found.getFoundDecl()->getLocation(), DiagID: diag::note_member_declared_here) |
1275 | << DN; |
1276 | S.Diag(Loc: Fn.FirstCoroutineStmtLoc, DiagID: diag::note_declared_coroutine_here) |
1277 | << Fn.getFirstCoroutineStmtKeyword(); |
1278 | return false; |
1279 | } |
1280 | |
1281 | this->ReturnStmtOnAllocFailure = ReturnStmt.get(); |
1282 | return true; |
1283 | } |
1284 | |
1285 | // Collect placement arguments for allocation function of coroutine FD. |
1286 | // Return true if we collect placement arguments succesfully. Return false, |
1287 | // otherwise. |
1288 | static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc, |
1289 | SmallVectorImpl<Expr *> &PlacementArgs) { |
1290 | if (auto *MD = dyn_cast<CXXMethodDecl>(Val: &FD)) { |
1291 | if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) { |
1292 | ExprResult ThisExpr = S.ActOnCXXThis(Loc); |
1293 | if (ThisExpr.isInvalid()) |
1294 | return false; |
1295 | ThisExpr = S.CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_Deref, InputExpr: ThisExpr.get()); |
1296 | if (ThisExpr.isInvalid()) |
1297 | return false; |
1298 | PlacementArgs.push_back(Elt: ThisExpr.get()); |
1299 | } |
1300 | } |
1301 | |
1302 | for (auto *PD : FD.parameters()) { |
1303 | if (PD->getType()->isDependentType()) |
1304 | continue; |
1305 | |
1306 | // Build a reference to the parameter. |
1307 | auto PDLoc = PD->getLocation(); |
1308 | ExprResult PDRefExpr = |
1309 | S.BuildDeclRefExpr(D: PD, Ty: PD->getOriginalType().getNonReferenceType(), |
1310 | VK: ExprValueKind::VK_LValue, Loc: PDLoc); |
1311 | if (PDRefExpr.isInvalid()) |
1312 | return false; |
1313 | |
1314 | PlacementArgs.push_back(Elt: PDRefExpr.get()); |
1315 | } |
1316 | |
1317 | return true; |
1318 | } |
1319 | |
1320 | bool CoroutineStmtBuilder::makeNewAndDeleteExpr() { |
1321 | // Form and check allocation and deallocation calls. |
1322 | assert(!IsPromiseDependentType && |
1323 | "cannot make statement while the promise type is dependent" ); |
1324 | QualType PromiseType = Fn.CoroutinePromise->getType(); |
1325 | |
1326 | if (S.RequireCompleteType(Loc, T: PromiseType, DiagID: diag::err_incomplete_type)) |
1327 | return false; |
1328 | |
1329 | const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr; |
1330 | |
1331 | // According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a |
1332 | // parameter list composed of the requested size of the coroutine state being |
1333 | // allocated, followed by the coroutine function's arguments. If a matching |
1334 | // allocation function exists, use it. Otherwise, use an allocation function |
1335 | // that just takes the requested size. |
1336 | // |
1337 | // [dcl.fct.def.coroutine]p9 |
1338 | // An implementation may need to allocate additional storage for a |
1339 | // coroutine. |
1340 | // This storage is known as the coroutine state and is obtained by calling a |
1341 | // non-array allocation function ([basic.stc.dynamic.allocation]). The |
1342 | // allocation function's name is looked up by searching for it in the scope of |
1343 | // the promise type. |
1344 | // - If any declarations are found, overload resolution is performed on a |
1345 | // function call created by assembling an argument list. The first argument is |
1346 | // the amount of space requested, and has type std::size_t. The |
1347 | // lvalues p1 ... pn are the succeeding arguments. |
1348 | // |
1349 | // ...where "p1 ... pn" are defined earlier as: |
1350 | // |
1351 | // [dcl.fct.def.coroutine]p3 |
1352 | // The promise type of a coroutine is `std::coroutine_traits<R, P1, ..., |
1353 | // Pn>` |
1354 | // , where R is the return type of the function, and `P1, ..., Pn` are the |
1355 | // sequence of types of the non-object function parameters, preceded by the |
1356 | // type of the object parameter ([dcl.fct]) if the coroutine is a non-static |
1357 | // member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an |
1358 | // lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes |
1359 | // the i-th non-object function parameter for a non-static member function, |
1360 | // and p_i denotes the i-th function parameter otherwise. For a non-static |
1361 | // member function, q_1 is an lvalue that denotes *this; any other q_i is an |
1362 | // lvalue that denotes the parameter copy corresponding to p_i. |
1363 | |
1364 | FunctionDecl *OperatorNew = nullptr; |
1365 | SmallVector<Expr *, 1> PlacementArgs; |
1366 | |
1367 | const bool PromiseContainsNew = [this, &PromiseType]() -> bool { |
1368 | DeclarationName NewName = |
1369 | S.getASTContext().DeclarationNames.getCXXOperatorName(Op: OO_New); |
1370 | LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName); |
1371 | |
1372 | if (PromiseType->isRecordType()) |
1373 | S.LookupQualifiedName(R, LookupCtx: PromiseType->getAsCXXRecordDecl()); |
1374 | |
1375 | return !R.empty() && !R.isAmbiguous(); |
1376 | }(); |
1377 | |
1378 | // Helper function to indicate whether the last lookup found the aligned |
1379 | // allocation function. |
1380 | bool PassAlignment = S.getLangOpts().CoroAlignedAllocation; |
1381 | auto LookupAllocationFunction = [&](Sema::AllocationFunctionScope NewScope = |
1382 | Sema::AFS_Both, |
1383 | bool WithoutPlacementArgs = false, |
1384 | bool ForceNonAligned = false) { |
1385 | // [dcl.fct.def.coroutine]p9 |
1386 | // The allocation function's name is looked up by searching for it in the |
1387 | // scope of the promise type. |
1388 | // - If any declarations are found, ... |
1389 | // - If no declarations are found in the scope of the promise type, a search |
1390 | // is performed in the global scope. |
1391 | if (NewScope == Sema::AFS_Both) |
1392 | NewScope = PromiseContainsNew ? Sema::AFS_Class : Sema::AFS_Global; |
1393 | |
1394 | PassAlignment = !ForceNonAligned && S.getLangOpts().CoroAlignedAllocation; |
1395 | FunctionDecl *UnusedResult = nullptr; |
1396 | S.FindAllocationFunctions(StartLoc: Loc, Range: SourceRange(), NewScope, |
1397 | /*DeleteScope*/ Sema::AFS_Both, AllocType: PromiseType, |
1398 | /*isArray*/ IsArray: false, PassAlignment, |
1399 | PlaceArgs: WithoutPlacementArgs ? MultiExprArg{} |
1400 | : PlacementArgs, |
1401 | OperatorNew, OperatorDelete&: UnusedResult, /*Diagnose*/ false); |
1402 | }; |
1403 | |
1404 | // We don't expect to call to global operator new with (size, p0, …, pn). |
1405 | // So if we choose to lookup the allocation function in global scope, we |
1406 | // shouldn't lookup placement arguments. |
1407 | if (PromiseContainsNew && !collectPlacementArgs(S, FD, Loc, PlacementArgs)) |
1408 | return false; |
1409 | |
1410 | LookupAllocationFunction(); |
1411 | |
1412 | if (PromiseContainsNew && !PlacementArgs.empty()) { |
1413 | // [dcl.fct.def.coroutine]p9 |
1414 | // If no viable function is found ([over.match.viable]), overload |
1415 | // resolution |
1416 | // is performed again on a function call created by passing just the amount |
1417 | // of space required as an argument of type std::size_t. |
1418 | // |
1419 | // Proposed Change of [dcl.fct.def.coroutine]p9 in P2014R0: |
1420 | // Otherwise, overload resolution is performed again on a function call |
1421 | // created |
1422 | // by passing the amount of space requested as an argument of type |
1423 | // std::size_t as the first argument, and the requested alignment as |
1424 | // an argument of type std:align_val_t as the second argument. |
1425 | if (!OperatorNew || |
1426 | (S.getLangOpts().CoroAlignedAllocation && !PassAlignment)) |
1427 | LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, |
1428 | /*WithoutPlacementArgs*/ true); |
1429 | } |
1430 | |
1431 | // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0: |
1432 | // Otherwise, overload resolution is performed again on a function call |
1433 | // created |
1434 | // by passing the amount of space requested as an argument of type |
1435 | // std::size_t as the first argument, and the lvalues p1 ... pn as the |
1436 | // succeeding arguments. Otherwise, overload resolution is performed again |
1437 | // on a function call created by passing just the amount of space required as |
1438 | // an argument of type std::size_t. |
1439 | // |
1440 | // So within the proposed change in P2014RO, the priority order of aligned |
1441 | // allocation functions wiht promise_type is: |
1442 | // |
1443 | // void* operator new( std::size_t, std::align_val_t, placement_args... ); |
1444 | // void* operator new( std::size_t, std::align_val_t); |
1445 | // void* operator new( std::size_t, placement_args... ); |
1446 | // void* operator new( std::size_t); |
1447 | |
1448 | // Helper variable to emit warnings. |
1449 | bool FoundNonAlignedInPromise = false; |
1450 | if (PromiseContainsNew && S.getLangOpts().CoroAlignedAllocation) |
1451 | if (!OperatorNew || !PassAlignment) { |
1452 | FoundNonAlignedInPromise = OperatorNew; |
1453 | |
1454 | LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, |
1455 | /*WithoutPlacementArgs*/ false, |
1456 | /*ForceNonAligned*/ true); |
1457 | |
1458 | if (!OperatorNew && !PlacementArgs.empty()) |
1459 | LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, |
1460 | /*WithoutPlacementArgs*/ true, |
1461 | /*ForceNonAligned*/ true); |
1462 | } |
1463 | |
1464 | bool IsGlobalOverload = |
1465 | OperatorNew && !isa<CXXRecordDecl>(Val: OperatorNew->getDeclContext()); |
1466 | // If we didn't find a class-local new declaration and non-throwing new |
1467 | // was is required then we need to lookup the non-throwing global operator |
1468 | // instead. |
1469 | if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) { |
1470 | auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc); |
1471 | if (!StdNoThrow) |
1472 | return false; |
1473 | PlacementArgs = {StdNoThrow}; |
1474 | OperatorNew = nullptr; |
1475 | LookupAllocationFunction(Sema::AFS_Global); |
1476 | } |
1477 | |
1478 | // If we found a non-aligned allocation function in the promise_type, |
1479 | // it indicates the user forgot to update the allocation function. Let's emit |
1480 | // a warning here. |
1481 | if (FoundNonAlignedInPromise) { |
1482 | S.Diag(Loc: OperatorNew->getLocation(), |
1483 | DiagID: diag::warn_non_aligned_allocation_function) |
1484 | << &FD; |
1485 | } |
1486 | |
1487 | if (!OperatorNew) { |
1488 | if (PromiseContainsNew) |
1489 | S.Diag(Loc, DiagID: diag::err_coroutine_unusable_new) << PromiseType << &FD; |
1490 | else if (RequiresNoThrowAlloc) |
1491 | S.Diag(Loc, DiagID: diag::err_coroutine_unfound_nothrow_new) |
1492 | << &FD << S.getLangOpts().CoroAlignedAllocation; |
1493 | |
1494 | return false; |
1495 | } |
1496 | |
1497 | if (RequiresNoThrowAlloc) { |
1498 | const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>(); |
1499 | if (!FT->isNothrow(/*ResultIfDependent*/ false)) { |
1500 | S.Diag(Loc: OperatorNew->getLocation(), |
1501 | DiagID: diag::err_coroutine_promise_new_requires_nothrow) |
1502 | << OperatorNew; |
1503 | S.Diag(Loc, DiagID: diag::note_coroutine_promise_call_implicitly_required) |
1504 | << OperatorNew; |
1505 | return false; |
1506 | } |
1507 | } |
1508 | |
1509 | FunctionDecl *OperatorDelete = nullptr; |
1510 | if (!findDeleteForPromise(S, Loc, PromiseType, OperatorDelete)) { |
1511 | // FIXME: We should add an error here. According to: |
1512 | // [dcl.fct.def.coroutine]p12 |
1513 | // If no usual deallocation function is found, the program is ill-formed. |
1514 | return false; |
1515 | } |
1516 | |
1517 | Expr *FramePtr = |
1518 | S.BuildBuiltinCallExpr(Loc, Id: Builtin::BI__builtin_coro_frame, CallArgs: {}); |
1519 | |
1520 | Expr *FrameSize = |
1521 | S.BuildBuiltinCallExpr(Loc, Id: Builtin::BI__builtin_coro_size, CallArgs: {}); |
1522 | |
1523 | Expr *FrameAlignment = nullptr; |
1524 | |
1525 | if (S.getLangOpts().CoroAlignedAllocation) { |
1526 | FrameAlignment = |
1527 | S.BuildBuiltinCallExpr(Loc, Id: Builtin::BI__builtin_coro_align, CallArgs: {}); |
1528 | |
1529 | TypeSourceInfo *AlignValTy = getTypeSourceInfoForStdAlignValT(S, Loc); |
1530 | if (!AlignValTy) |
1531 | return false; |
1532 | |
1533 | FrameAlignment = S.BuildCXXNamedCast(OpLoc: Loc, Kind: tok::kw_static_cast, Ty: AlignValTy, |
1534 | E: FrameAlignment, AngleBrackets: SourceRange(Loc, Loc), |
1535 | Parens: SourceRange(Loc, Loc)) |
1536 | .get(); |
1537 | } |
1538 | |
1539 | // Make new call. |
1540 | ExprResult NewRef = |
1541 | S.BuildDeclRefExpr(D: OperatorNew, Ty: OperatorNew->getType(), VK: VK_LValue, Loc); |
1542 | if (NewRef.isInvalid()) |
1543 | return false; |
1544 | |
1545 | SmallVector<Expr *, 2> NewArgs(1, FrameSize); |
1546 | if (S.getLangOpts().CoroAlignedAllocation && PassAlignment) |
1547 | NewArgs.push_back(Elt: FrameAlignment); |
1548 | |
1549 | if (OperatorNew->getNumParams() > NewArgs.size()) |
1550 | llvm::append_range(C&: NewArgs, R&: PlacementArgs); |
1551 | |
1552 | ExprResult NewExpr = |
1553 | S.BuildCallExpr(S: S.getCurScope(), Fn: NewRef.get(), LParenLoc: Loc, ArgExprs: NewArgs, RParenLoc: Loc); |
1554 | NewExpr = S.ActOnFinishFullExpr(Expr: NewExpr.get(), /*DiscardedValue*/ false); |
1555 | if (NewExpr.isInvalid()) |
1556 | return false; |
1557 | |
1558 | // Make delete call. |
1559 | |
1560 | QualType OpDeleteQualType = OperatorDelete->getType(); |
1561 | |
1562 | ExprResult DeleteRef = |
1563 | S.BuildDeclRefExpr(D: OperatorDelete, Ty: OpDeleteQualType, VK: VK_LValue, Loc); |
1564 | if (DeleteRef.isInvalid()) |
1565 | return false; |
1566 | |
1567 | Expr *CoroFree = |
1568 | S.BuildBuiltinCallExpr(Loc, Id: Builtin::BI__builtin_coro_free, CallArgs: {FramePtr}); |
1569 | |
1570 | SmallVector<Expr *, 2> DeleteArgs{CoroFree}; |
1571 | |
1572 | // [dcl.fct.def.coroutine]p12 |
1573 | // The selected deallocation function shall be called with the address of |
1574 | // the block of storage to be reclaimed as its first argument. If a |
1575 | // deallocation function with a parameter of type std::size_t is |
1576 | // used, the size of the block is passed as the corresponding argument. |
1577 | const auto *OpDeleteType = |
1578 | OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>(); |
1579 | if (OpDeleteType->getNumParams() > DeleteArgs.size() && |
1580 | S.getASTContext().hasSameUnqualifiedType( |
1581 | T1: OpDeleteType->getParamType(i: DeleteArgs.size()), T2: FrameSize->getType())) |
1582 | DeleteArgs.push_back(Elt: FrameSize); |
1583 | |
1584 | // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0: |
1585 | // If deallocation function lookup finds a usual deallocation function with |
1586 | // a pointer parameter, size parameter and alignment parameter then this |
1587 | // will be the selected deallocation function, otherwise if lookup finds a |
1588 | // usual deallocation function with both a pointer parameter and a size |
1589 | // parameter, then this will be the selected deallocation function. |
1590 | // Otherwise, if lookup finds a usual deallocation function with only a |
1591 | // pointer parameter, then this will be the selected deallocation |
1592 | // function. |
1593 | // |
1594 | // So we are not forced to pass alignment to the deallocation function. |
1595 | if (S.getLangOpts().CoroAlignedAllocation && |
1596 | OpDeleteType->getNumParams() > DeleteArgs.size() && |
1597 | S.getASTContext().hasSameUnqualifiedType( |
1598 | T1: OpDeleteType->getParamType(i: DeleteArgs.size()), |
1599 | T2: FrameAlignment->getType())) |
1600 | DeleteArgs.push_back(Elt: FrameAlignment); |
1601 | |
1602 | ExprResult DeleteExpr = |
1603 | S.BuildCallExpr(S: S.getCurScope(), Fn: DeleteRef.get(), LParenLoc: Loc, ArgExprs: DeleteArgs, RParenLoc: Loc); |
1604 | DeleteExpr = |
1605 | S.ActOnFinishFullExpr(Expr: DeleteExpr.get(), /*DiscardedValue*/ false); |
1606 | if (DeleteExpr.isInvalid()) |
1607 | return false; |
1608 | |
1609 | this->Allocate = NewExpr.get(); |
1610 | this->Deallocate = DeleteExpr.get(); |
1611 | |
1612 | return true; |
1613 | } |
1614 | |
1615 | bool CoroutineStmtBuilder::makeOnFallthrough() { |
1616 | assert(!IsPromiseDependentType && |
1617 | "cannot make statement while the promise type is dependent" ); |
1618 | |
1619 | // [dcl.fct.def.coroutine]/p6 |
1620 | // If searches for the names return_void and return_value in the scope of |
1621 | // the promise type each find any declarations, the program is ill-formed. |
1622 | // [Note 1: If return_void is found, flowing off the end of a coroutine is |
1623 | // equivalent to a co_return with no operand. Otherwise, flowing off the end |
1624 | // of a coroutine results in undefined behavior ([stmt.return.coroutine]). — |
1625 | // end note] |
1626 | bool HasRVoid, HasRValue; |
1627 | LookupResult LRVoid = |
1628 | lookupMember(S, Name: "return_void" , RD: PromiseRecordDecl, Loc, Res&: HasRVoid); |
1629 | LookupResult LRValue = |
1630 | lookupMember(S, Name: "return_value" , RD: PromiseRecordDecl, Loc, Res&: HasRValue); |
1631 | |
1632 | StmtResult Fallthrough; |
1633 | if (HasRVoid && HasRValue) { |
1634 | // FIXME Improve this diagnostic |
1635 | S.Diag(Loc: FD.getLocation(), |
1636 | DiagID: diag::err_coroutine_promise_incompatible_return_functions) |
1637 | << PromiseRecordDecl; |
1638 | S.Diag(Loc: LRVoid.getRepresentativeDecl()->getLocation(), |
1639 | DiagID: diag::note_member_first_declared_here) |
1640 | << LRVoid.getLookupName(); |
1641 | S.Diag(Loc: LRValue.getRepresentativeDecl()->getLocation(), |
1642 | DiagID: diag::note_member_first_declared_here) |
1643 | << LRValue.getLookupName(); |
1644 | return false; |
1645 | } else if (!HasRVoid && !HasRValue) { |
1646 | // We need to set 'Fallthrough'. Otherwise the other analysis part might |
1647 | // think the coroutine has defined a return_value method. So it might emit |
1648 | // **false** positive warning. e.g., |
1649 | // |
1650 | // promise_without_return_func foo() { |
1651 | // co_await something(); |
1652 | // } |
1653 | // |
1654 | // Then AnalysisBasedWarning would emit a warning about `foo()` lacking a |
1655 | // co_return statements, which isn't correct. |
1656 | Fallthrough = S.ActOnNullStmt(SemiLoc: PromiseRecordDecl->getLocation()); |
1657 | if (Fallthrough.isInvalid()) |
1658 | return false; |
1659 | } else if (HasRVoid) { |
1660 | Fallthrough = S.BuildCoreturnStmt(Loc: FD.getLocation(), E: nullptr, |
1661 | /*IsImplicit=*/true); |
1662 | Fallthrough = S.ActOnFinishFullStmt(Stmt: Fallthrough.get()); |
1663 | if (Fallthrough.isInvalid()) |
1664 | return false; |
1665 | } |
1666 | |
1667 | this->OnFallthrough = Fallthrough.get(); |
1668 | return true; |
1669 | } |
1670 | |
1671 | bool CoroutineStmtBuilder::makeOnException() { |
1672 | // Try to form 'p.unhandled_exception();' |
1673 | assert(!IsPromiseDependentType && |
1674 | "cannot make statement while the promise type is dependent" ); |
1675 | |
1676 | const bool RequireUnhandledException = S.getLangOpts().CXXExceptions; |
1677 | |
1678 | if (!lookupMember(S, Name: "unhandled_exception" , RD: PromiseRecordDecl, Loc)) { |
1679 | auto DiagID = |
1680 | RequireUnhandledException |
1681 | ? diag::err_coroutine_promise_unhandled_exception_required |
1682 | : diag:: |
1683 | warn_coroutine_promise_unhandled_exception_required_with_exceptions; |
1684 | S.Diag(Loc, DiagID) << PromiseRecordDecl; |
1685 | S.Diag(Loc: PromiseRecordDecl->getLocation(), DiagID: diag::note_defined_here) |
1686 | << PromiseRecordDecl; |
1687 | return !RequireUnhandledException; |
1688 | } |
1689 | |
1690 | // If exceptions are disabled, don't try to build OnException. |
1691 | if (!S.getLangOpts().CXXExceptions) |
1692 | return true; |
1693 | |
1694 | ExprResult UnhandledException = buildPromiseCall( |
1695 | S, Promise: Fn.CoroutinePromise, Loc, Name: "unhandled_exception" , Args: std::nullopt); |
1696 | UnhandledException = S.ActOnFinishFullExpr(Expr: UnhandledException.get(), CC: Loc, |
1697 | /*DiscardedValue*/ false); |
1698 | if (UnhandledException.isInvalid()) |
1699 | return false; |
1700 | |
1701 | // Since the body of the coroutine will be wrapped in try-catch, it will |
1702 | // be incompatible with SEH __try if present in a function. |
1703 | if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) { |
1704 | S.Diag(Loc: Fn.FirstSEHTryLoc, DiagID: diag::err_seh_in_a_coroutine_with_cxx_exceptions); |
1705 | S.Diag(Loc: Fn.FirstCoroutineStmtLoc, DiagID: diag::note_declared_coroutine_here) |
1706 | << Fn.getFirstCoroutineStmtKeyword(); |
1707 | return false; |
1708 | } |
1709 | |
1710 | this->OnException = UnhandledException.get(); |
1711 | return true; |
1712 | } |
1713 | |
1714 | bool CoroutineStmtBuilder::makeReturnObject() { |
1715 | // [dcl.fct.def.coroutine]p7 |
1716 | // The expression promise.get_return_object() is used to initialize the |
1717 | // returned reference or prvalue result object of a call to a coroutine. |
1718 | ExprResult ReturnObject = buildPromiseCall(S, Promise: Fn.CoroutinePromise, Loc, |
1719 | Name: "get_return_object" , Args: std::nullopt); |
1720 | if (ReturnObject.isInvalid()) |
1721 | return false; |
1722 | |
1723 | this->ReturnValue = ReturnObject.get(); |
1724 | return true; |
1725 | } |
1726 | |
1727 | static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) { |
1728 | if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(Val: E)) { |
1729 | auto *MethodDecl = MbrRef->getMethodDecl(); |
1730 | S.Diag(Loc: MethodDecl->getLocation(), DiagID: diag::note_member_declared_here) |
1731 | << MethodDecl; |
1732 | } |
1733 | S.Diag(Loc: Fn.FirstCoroutineStmtLoc, DiagID: diag::note_declared_coroutine_here) |
1734 | << Fn.getFirstCoroutineStmtKeyword(); |
1735 | } |
1736 | |
1737 | bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() { |
1738 | assert(!IsPromiseDependentType && |
1739 | "cannot make statement while the promise type is dependent" ); |
1740 | assert(this->ReturnValue && "ReturnValue must be already formed" ); |
1741 | |
1742 | QualType const GroType = this->ReturnValue->getType(); |
1743 | assert(!GroType->isDependentType() && |
1744 | "get_return_object type must no longer be dependent" ); |
1745 | |
1746 | QualType const FnRetType = FD.getReturnType(); |
1747 | assert(!FnRetType->isDependentType() && |
1748 | "get_return_object type must no longer be dependent" ); |
1749 | |
1750 | // The call to get_Âreturn_Âobject is sequenced before the call to |
1751 | // initial_Âsuspend and is invoked at most once, but there are caveats |
1752 | // regarding on whether the prvalue result object may be initialized |
1753 | // directly/eager or delayed, depending on the types involved. |
1754 | // |
1755 | // More info at https://github.com/cplusplus/papers/issues/1414 |
1756 | bool GroMatchesRetType = S.getASTContext().hasSameType(T1: GroType, T2: FnRetType); |
1757 | |
1758 | if (FnRetType->isVoidType()) { |
1759 | ExprResult Res = |
1760 | S.ActOnFinishFullExpr(Expr: this->ReturnValue, CC: Loc, /*DiscardedValue*/ false); |
1761 | if (Res.isInvalid()) |
1762 | return false; |
1763 | |
1764 | if (!GroMatchesRetType) |
1765 | this->ResultDecl = Res.get(); |
1766 | return true; |
1767 | } |
1768 | |
1769 | if (GroType->isVoidType()) { |
1770 | // Trigger a nice error message. |
1771 | InitializedEntity Entity = |
1772 | InitializedEntity::InitializeResult(ReturnLoc: Loc, Type: FnRetType); |
1773 | S.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: ReturnValue); |
1774 | noteMemberDeclaredHere(S, E: ReturnValue, Fn); |
1775 | return false; |
1776 | } |
1777 | |
1778 | StmtResult ReturnStmt; |
1779 | clang::VarDecl *GroDecl = nullptr; |
1780 | if (GroMatchesRetType) { |
1781 | ReturnStmt = S.BuildReturnStmt(ReturnLoc: Loc, RetValExp: ReturnValue); |
1782 | } else { |
1783 | GroDecl = VarDecl::Create( |
1784 | C&: S.Context, DC: &FD, StartLoc: FD.getLocation(), IdLoc: FD.getLocation(), |
1785 | Id: &S.PP.getIdentifierTable().get(Name: "__coro_gro" ), T: GroType, |
1786 | TInfo: S.Context.getTrivialTypeSourceInfo(T: GroType, Loc), S: SC_None); |
1787 | GroDecl->setImplicit(); |
1788 | |
1789 | S.CheckVariableDeclarationType(NewVD: GroDecl); |
1790 | if (GroDecl->isInvalidDecl()) |
1791 | return false; |
1792 | |
1793 | InitializedEntity Entity = InitializedEntity::InitializeVariable(Var: GroDecl); |
1794 | ExprResult Res = |
1795 | S.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: ReturnValue); |
1796 | if (Res.isInvalid()) |
1797 | return false; |
1798 | |
1799 | Res = S.ActOnFinishFullExpr(Expr: Res.get(), /*DiscardedValue*/ false); |
1800 | if (Res.isInvalid()) |
1801 | return false; |
1802 | |
1803 | S.AddInitializerToDecl(dcl: GroDecl, init: Res.get(), |
1804 | /*DirectInit=*/false); |
1805 | |
1806 | S.FinalizeDeclaration(D: GroDecl); |
1807 | |
1808 | // Form a declaration statement for the return declaration, so that AST |
1809 | // visitors can more easily find it. |
1810 | StmtResult GroDeclStmt = |
1811 | S.ActOnDeclStmt(Decl: S.ConvertDeclToDeclGroup(Ptr: GroDecl), StartLoc: Loc, EndLoc: Loc); |
1812 | if (GroDeclStmt.isInvalid()) |
1813 | return false; |
1814 | |
1815 | this->ResultDecl = GroDeclStmt.get(); |
1816 | |
1817 | ExprResult declRef = S.BuildDeclRefExpr(D: GroDecl, Ty: GroType, VK: VK_LValue, Loc); |
1818 | if (declRef.isInvalid()) |
1819 | return false; |
1820 | |
1821 | ReturnStmt = S.BuildReturnStmt(ReturnLoc: Loc, RetValExp: declRef.get()); |
1822 | } |
1823 | |
1824 | if (ReturnStmt.isInvalid()) { |
1825 | noteMemberDeclaredHere(S, E: ReturnValue, Fn); |
1826 | return false; |
1827 | } |
1828 | |
1829 | if (!GroMatchesRetType && |
1830 | cast<clang::ReturnStmt>(Val: ReturnStmt.get())->getNRVOCandidate() == GroDecl) |
1831 | GroDecl->setNRVOVariable(true); |
1832 | |
1833 | this->ReturnStmt = ReturnStmt.get(); |
1834 | return true; |
1835 | } |
1836 | |
1837 | // Create a static_cast\<T&&>(expr). |
1838 | static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) { |
1839 | if (T.isNull()) |
1840 | T = E->getType(); |
1841 | QualType TargetType = S.BuildReferenceType( |
1842 | T, /*SpelledAsLValue*/ LValueRef: false, Loc: SourceLocation(), Entity: DeclarationName()); |
1843 | SourceLocation ExprLoc = E->getBeginLoc(); |
1844 | TypeSourceInfo *TargetLoc = |
1845 | S.Context.getTrivialTypeSourceInfo(T: TargetType, Loc: ExprLoc); |
1846 | |
1847 | return S |
1848 | .BuildCXXNamedCast(OpLoc: ExprLoc, Kind: tok::kw_static_cast, Ty: TargetLoc, E, |
1849 | AngleBrackets: SourceRange(ExprLoc, ExprLoc), Parens: E->getSourceRange()) |
1850 | .get(); |
1851 | } |
1852 | |
1853 | /// Build a variable declaration for move parameter. |
1854 | static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type, |
1855 | IdentifierInfo *II) { |
1856 | TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(T: Type, Loc); |
1857 | VarDecl *Decl = VarDecl::Create(C&: S.Context, DC: S.CurContext, StartLoc: Loc, IdLoc: Loc, Id: II, T: Type, |
1858 | TInfo, S: SC_None); |
1859 | Decl->setImplicit(); |
1860 | return Decl; |
1861 | } |
1862 | |
1863 | // Build statements that move coroutine function parameters to the coroutine |
1864 | // frame, and store them on the function scope info. |
1865 | bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) { |
1866 | assert(isa<FunctionDecl>(CurContext) && "not in a function scope" ); |
1867 | auto *FD = cast<FunctionDecl>(Val: CurContext); |
1868 | |
1869 | auto *ScopeInfo = getCurFunction(); |
1870 | if (!ScopeInfo->CoroutineParameterMoves.empty()) |
1871 | return false; |
1872 | |
1873 | // [dcl.fct.def.coroutine]p13 |
1874 | // When a coroutine is invoked, after initializing its parameters |
1875 | // ([expr.call]), a copy is created for each coroutine parameter. For a |
1876 | // parameter of type cv T, the copy is a variable of type cv T with |
1877 | // automatic storage duration that is direct-initialized from an xvalue of |
1878 | // type T referring to the parameter. |
1879 | for (auto *PD : FD->parameters()) { |
1880 | if (PD->getType()->isDependentType()) |
1881 | continue; |
1882 | |
1883 | // Preserve the referenced state for unused parameter diagnostics. |
1884 | bool DeclReferenced = PD->isReferenced(); |
1885 | |
1886 | ExprResult PDRefExpr = |
1887 | BuildDeclRefExpr(D: PD, Ty: PD->getType().getNonReferenceType(), |
1888 | VK: ExprValueKind::VK_LValue, Loc); // FIXME: scope? |
1889 | |
1890 | PD->setReferenced(DeclReferenced); |
1891 | |
1892 | if (PDRefExpr.isInvalid()) |
1893 | return false; |
1894 | |
1895 | Expr *CExpr = nullptr; |
1896 | if (PD->getType()->getAsCXXRecordDecl() || |
1897 | PD->getType()->isRValueReferenceType()) |
1898 | CExpr = castForMoving(S&: *this, E: PDRefExpr.get()); |
1899 | else |
1900 | CExpr = PDRefExpr.get(); |
1901 | // [dcl.fct.def.coroutine]p13 |
1902 | // The initialization and destruction of each parameter copy occurs in the |
1903 | // context of the called coroutine. |
1904 | auto *D = buildVarDecl(S&: *this, Loc, Type: PD->getType(), II: PD->getIdentifier()); |
1905 | AddInitializerToDecl(dcl: D, init: CExpr, /*DirectInit=*/true); |
1906 | |
1907 | // Convert decl to a statement. |
1908 | StmtResult Stmt = ActOnDeclStmt(Decl: ConvertDeclToDeclGroup(Ptr: D), StartLoc: Loc, EndLoc: Loc); |
1909 | if (Stmt.isInvalid()) |
1910 | return false; |
1911 | |
1912 | ScopeInfo->CoroutineParameterMoves.insert(KV: std::make_pair(x&: PD, y: Stmt.get())); |
1913 | } |
1914 | return true; |
1915 | } |
1916 | |
1917 | StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) { |
1918 | CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(C: Context, Args); |
1919 | if (!Res) |
1920 | return StmtError(); |
1921 | return Res; |
1922 | } |
1923 | |
1924 | ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc, |
1925 | SourceLocation FuncLoc) { |
1926 | if (StdCoroutineTraitsCache) |
1927 | return StdCoroutineTraitsCache; |
1928 | |
1929 | IdentifierInfo const &TraitIdent = |
1930 | PP.getIdentifierTable().get(Name: "coroutine_traits" ); |
1931 | |
1932 | NamespaceDecl *StdSpace = getStdNamespace(); |
1933 | LookupResult Result(*this, &TraitIdent, FuncLoc, LookupOrdinaryName); |
1934 | bool Found = StdSpace && LookupQualifiedName(R&: Result, LookupCtx: StdSpace); |
1935 | |
1936 | if (!Found) { |
1937 | // The goggles, we found nothing! |
1938 | Diag(Loc: KwLoc, DiagID: diag::err_implied_coroutine_type_not_found) |
1939 | << "std::coroutine_traits" ; |
1940 | return nullptr; |
1941 | } |
1942 | |
1943 | // coroutine_traits is required to be a class template. |
1944 | StdCoroutineTraitsCache = Result.getAsSingle<ClassTemplateDecl>(); |
1945 | if (!StdCoroutineTraitsCache) { |
1946 | Result.suppressDiagnostics(); |
1947 | NamedDecl *Found = *Result.begin(); |
1948 | Diag(Loc: Found->getLocation(), DiagID: diag::err_malformed_std_coroutine_traits); |
1949 | return nullptr; |
1950 | } |
1951 | |
1952 | return StdCoroutineTraitsCache; |
1953 | } |
1954 | |