1 | //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements decl-related attribute processing. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/ASTConsumer.h" |
14 | #include "clang/AST/ASTContext.h" |
15 | #include "clang/AST/ASTMutationListener.h" |
16 | #include "clang/AST/CXXInheritance.h" |
17 | #include "clang/AST/DeclCXX.h" |
18 | #include "clang/AST/DeclObjC.h" |
19 | #include "clang/AST/DeclTemplate.h" |
20 | #include "clang/AST/Expr.h" |
21 | #include "clang/AST/ExprCXX.h" |
22 | #include "clang/AST/Mangle.h" |
23 | #include "clang/AST/RecursiveASTVisitor.h" |
24 | #include "clang/AST/Type.h" |
25 | #include "clang/Basic/CharInfo.h" |
26 | #include "clang/Basic/Cuda.h" |
27 | #include "clang/Basic/DarwinSDKInfo.h" |
28 | #include "clang/Basic/HLSLRuntime.h" |
29 | #include "clang/Basic/IdentifierTable.h" |
30 | #include "clang/Basic/LangOptions.h" |
31 | #include "clang/Basic/SourceLocation.h" |
32 | #include "clang/Basic/SourceManager.h" |
33 | #include "clang/Basic/TargetBuiltins.h" |
34 | #include "clang/Basic/TargetInfo.h" |
35 | #include "clang/Lex/Preprocessor.h" |
36 | #include "clang/Sema/Attr.h" |
37 | #include "clang/Sema/DeclSpec.h" |
38 | #include "clang/Sema/DelayedDiagnostic.h" |
39 | #include "clang/Sema/Initialization.h" |
40 | #include "clang/Sema/Lookup.h" |
41 | #include "clang/Sema/ParsedAttr.h" |
42 | #include "clang/Sema/Scope.h" |
43 | #include "clang/Sema/ScopeInfo.h" |
44 | #include "clang/Sema/SemaAMDGPU.h" |
45 | #include "clang/Sema/SemaARM.h" |
46 | #include "clang/Sema/SemaAVR.h" |
47 | #include "clang/Sema/SemaBPF.h" |
48 | #include "clang/Sema/SemaCUDA.h" |
49 | #include "clang/Sema/SemaHLSL.h" |
50 | #include "clang/Sema/SemaInternal.h" |
51 | #include "clang/Sema/SemaM68k.h" |
52 | #include "clang/Sema/SemaMIPS.h" |
53 | #include "clang/Sema/SemaMSP430.h" |
54 | #include "clang/Sema/SemaObjC.h" |
55 | #include "clang/Sema/SemaOpenCL.h" |
56 | #include "clang/Sema/SemaOpenMP.h" |
57 | #include "clang/Sema/SemaRISCV.h" |
58 | #include "clang/Sema/SemaSYCL.h" |
59 | #include "clang/Sema/SemaSwift.h" |
60 | #include "clang/Sema/SemaWasm.h" |
61 | #include "clang/Sema/SemaX86.h" |
62 | #include "llvm/ADT/STLExtras.h" |
63 | #include "llvm/ADT/STLForwardCompat.h" |
64 | #include "llvm/ADT/StringExtras.h" |
65 | #include "llvm/Demangle/Demangle.h" |
66 | #include "llvm/IR/Assumptions.h" |
67 | #include "llvm/MC/MCSectionMachO.h" |
68 | #include "llvm/Support/Error.h" |
69 | #include "llvm/Support/MathExtras.h" |
70 | #include "llvm/Support/raw_ostream.h" |
71 | #include "llvm/TargetParser/Triple.h" |
72 | #include <optional> |
73 | |
74 | using namespace clang; |
75 | using namespace sema; |
76 | |
77 | namespace AttributeLangSupport { |
78 | enum LANG { |
79 | C, |
80 | Cpp, |
81 | ObjC |
82 | }; |
83 | } // end namespace AttributeLangSupport |
84 | |
85 | static unsigned getNumAttributeArgs(const ParsedAttr &AL) { |
86 | // FIXME: Include the type in the argument list. |
87 | return AL.getNumArgs() + AL.hasParsedType(); |
88 | } |
89 | |
90 | SourceLocation Sema::getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); } |
91 | |
92 | /// Wrapper around checkUInt32Argument, with an extra check to be sure |
93 | /// that the result will fit into a regular (signed) int. All args have the same |
94 | /// purpose as they do in checkUInt32Argument. |
95 | template <typename AttrInfo> |
96 | static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr, |
97 | int &Val, unsigned Idx = UINT_MAX) { |
98 | uint32_t UVal; |
99 | if (!S.checkUInt32Argument(AI, Expr, UVal, Idx)) |
100 | return false; |
101 | |
102 | if (UVal > (uint32_t)std::numeric_limits<int>::max()) { |
103 | llvm::APSInt I(32); // for toString |
104 | I = UVal; |
105 | S.Diag(Loc: Expr->getExprLoc(), DiagID: diag::err_ice_too_large) |
106 | << toString(I, Radix: 10, Signed: false) << 32 << /* Unsigned */ 0; |
107 | return false; |
108 | } |
109 | |
110 | Val = UVal; |
111 | return true; |
112 | } |
113 | |
114 | bool Sema::checkStringLiteralArgumentAttr(const AttributeCommonInfo &CI, |
115 | const Expr *E, StringRef &Str, |
116 | SourceLocation *ArgLocation) { |
117 | const auto *Literal = dyn_cast<StringLiteral>(Val: E->IgnoreParenCasts()); |
118 | if (ArgLocation) |
119 | *ArgLocation = E->getBeginLoc(); |
120 | |
121 | if (!Literal || (!Literal->isUnevaluated() && !Literal->isOrdinary())) { |
122 | Diag(Loc: E->getBeginLoc(), DiagID: diag::err_attribute_argument_type) |
123 | << CI << AANT_ArgumentString; |
124 | return false; |
125 | } |
126 | |
127 | Str = Literal->getString(); |
128 | return true; |
129 | } |
130 | |
131 | bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum, |
132 | StringRef &Str, |
133 | SourceLocation *ArgLocation) { |
134 | // Look for identifiers. If we have one emit a hint to fix it to a literal. |
135 | if (AL.isArgIdent(Arg: ArgNum)) { |
136 | IdentifierLoc *Loc = AL.getArgAsIdent(Arg: ArgNum); |
137 | Diag(Loc: Loc->Loc, DiagID: diag::err_attribute_argument_type) |
138 | << AL << AANT_ArgumentString |
139 | << FixItHint::CreateInsertion(InsertionLoc: Loc->Loc, Code: "\"" ) |
140 | << FixItHint::CreateInsertion(InsertionLoc: getLocForEndOfToken(Loc: Loc->Loc), Code: "\"" ); |
141 | Str = Loc->Ident->getName(); |
142 | if (ArgLocation) |
143 | *ArgLocation = Loc->Loc; |
144 | return true; |
145 | } |
146 | |
147 | // Now check for an actual string literal. |
148 | Expr *ArgExpr = AL.getArgAsExpr(Arg: ArgNum); |
149 | const auto *Literal = dyn_cast<StringLiteral>(Val: ArgExpr->IgnoreParenCasts()); |
150 | if (ArgLocation) |
151 | *ArgLocation = ArgExpr->getBeginLoc(); |
152 | |
153 | if (!Literal || (!Literal->isUnevaluated() && !Literal->isOrdinary())) { |
154 | Diag(Loc: ArgExpr->getBeginLoc(), DiagID: diag::err_attribute_argument_type) |
155 | << AL << AANT_ArgumentString; |
156 | return false; |
157 | } |
158 | Str = Literal->getString(); |
159 | return checkStringLiteralArgumentAttr(CI: AL, E: ArgExpr, Str, ArgLocation); |
160 | } |
161 | |
162 | /// Check if the passed-in expression is of type int or bool. |
163 | static bool isIntOrBool(Expr *Exp) { |
164 | QualType QT = Exp->getType(); |
165 | return QT->isBooleanType() || QT->isIntegerType(); |
166 | } |
167 | |
168 | |
169 | // Check to see if the type is a smart pointer of some kind. We assume |
170 | // it's a smart pointer if it defines both operator-> and operator*. |
171 | static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) { |
172 | auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record, |
173 | OverloadedOperatorKind Op) { |
174 | DeclContextLookupResult Result = |
175 | Record->lookup(Name: S.Context.DeclarationNames.getCXXOperatorName(Op)); |
176 | return !Result.empty(); |
177 | }; |
178 | |
179 | const RecordDecl *Record = RT->getDecl(); |
180 | bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star); |
181 | bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow); |
182 | if (foundStarOperator && foundArrowOperator) |
183 | return true; |
184 | |
185 | const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Val: Record); |
186 | if (!CXXRecord) |
187 | return false; |
188 | |
189 | for (const auto &BaseSpecifier : CXXRecord->bases()) { |
190 | if (!foundStarOperator) |
191 | foundStarOperator = IsOverloadedOperatorPresent( |
192 | BaseSpecifier.getType()->getAsRecordDecl(), OO_Star); |
193 | if (!foundArrowOperator) |
194 | foundArrowOperator = IsOverloadedOperatorPresent( |
195 | BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow); |
196 | } |
197 | |
198 | if (foundStarOperator && foundArrowOperator) |
199 | return true; |
200 | |
201 | return false; |
202 | } |
203 | |
204 | /// Check if passed in Decl is a pointer type. |
205 | /// Note that this function may produce an error message. |
206 | /// \return true if the Decl is a pointer type; false otherwise |
207 | static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D, |
208 | const ParsedAttr &AL) { |
209 | const auto *VD = cast<ValueDecl>(Val: D); |
210 | QualType QT = VD->getType(); |
211 | if (QT->isAnyPointerType()) |
212 | return true; |
213 | |
214 | if (const auto *RT = QT->getAs<RecordType>()) { |
215 | // If it's an incomplete type, it could be a smart pointer; skip it. |
216 | // (We don't want to force template instantiation if we can avoid it, |
217 | // since that would alter the order in which templates are instantiated.) |
218 | if (RT->isIncompleteType()) |
219 | return true; |
220 | |
221 | if (threadSafetyCheckIsSmartPointer(S, RT)) |
222 | return true; |
223 | } |
224 | |
225 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_thread_attribute_decl_not_pointer) << AL << QT; |
226 | return false; |
227 | } |
228 | |
229 | /// Checks that the passed in QualType either is of RecordType or points |
230 | /// to RecordType. Returns the relevant RecordType, null if it does not exit. |
231 | static const RecordType *getRecordType(QualType QT) { |
232 | if (const auto *RT = QT->getAs<RecordType>()) |
233 | return RT; |
234 | |
235 | // Now check if we point to record type. |
236 | if (const auto *PT = QT->getAs<PointerType>()) |
237 | return PT->getPointeeType()->getAs<RecordType>(); |
238 | |
239 | return nullptr; |
240 | } |
241 | |
242 | template <typename AttrType> |
243 | static bool checkRecordDeclForAttr(const RecordDecl *RD) { |
244 | // Check if the record itself has the attribute. |
245 | if (RD->hasAttr<AttrType>()) |
246 | return true; |
247 | |
248 | // Else check if any base classes have the attribute. |
249 | if (const auto *CRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
250 | if (!CRD->forallBases(BaseMatches: [](const CXXRecordDecl *Base) { |
251 | return !Base->hasAttr<AttrType>(); |
252 | })) |
253 | return true; |
254 | } |
255 | return false; |
256 | } |
257 | |
258 | static bool checkRecordTypeForCapability(Sema &S, QualType Ty) { |
259 | const RecordType *RT = getRecordType(QT: Ty); |
260 | |
261 | if (!RT) |
262 | return false; |
263 | |
264 | // Don't check for the capability if the class hasn't been defined yet. |
265 | if (RT->isIncompleteType()) |
266 | return true; |
267 | |
268 | // Allow smart pointers to be used as capability objects. |
269 | // FIXME -- Check the type that the smart pointer points to. |
270 | if (threadSafetyCheckIsSmartPointer(S, RT)) |
271 | return true; |
272 | |
273 | return checkRecordDeclForAttr<CapabilityAttr>(RD: RT->getDecl()); |
274 | } |
275 | |
276 | static bool checkTypedefTypeForCapability(QualType Ty) { |
277 | const auto *TD = Ty->getAs<TypedefType>(); |
278 | if (!TD) |
279 | return false; |
280 | |
281 | TypedefNameDecl *TN = TD->getDecl(); |
282 | if (!TN) |
283 | return false; |
284 | |
285 | return TN->hasAttr<CapabilityAttr>(); |
286 | } |
287 | |
288 | static bool typeHasCapability(Sema &S, QualType Ty) { |
289 | if (checkTypedefTypeForCapability(Ty)) |
290 | return true; |
291 | |
292 | if (checkRecordTypeForCapability(S, Ty)) |
293 | return true; |
294 | |
295 | return false; |
296 | } |
297 | |
298 | static bool isCapabilityExpr(Sema &S, const Expr *Ex) { |
299 | // Capability expressions are simple expressions involving the boolean logic |
300 | // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once |
301 | // a DeclRefExpr is found, its type should be checked to determine whether it |
302 | // is a capability or not. |
303 | |
304 | if (const auto *E = dyn_cast<CastExpr>(Val: Ex)) |
305 | return isCapabilityExpr(S, Ex: E->getSubExpr()); |
306 | else if (const auto *E = dyn_cast<ParenExpr>(Val: Ex)) |
307 | return isCapabilityExpr(S, Ex: E->getSubExpr()); |
308 | else if (const auto *E = dyn_cast<UnaryOperator>(Val: Ex)) { |
309 | if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf || |
310 | E->getOpcode() == UO_Deref) |
311 | return isCapabilityExpr(S, Ex: E->getSubExpr()); |
312 | return false; |
313 | } else if (const auto *E = dyn_cast<BinaryOperator>(Val: Ex)) { |
314 | if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr) |
315 | return isCapabilityExpr(S, Ex: E->getLHS()) && |
316 | isCapabilityExpr(S, Ex: E->getRHS()); |
317 | return false; |
318 | } |
319 | |
320 | return typeHasCapability(S, Ty: Ex->getType()); |
321 | } |
322 | |
323 | /// Checks that all attribute arguments, starting from Sidx, resolve to |
324 | /// a capability object. |
325 | /// \param Sidx The attribute argument index to start checking with. |
326 | /// \param ParamIdxOk Whether an argument can be indexing into a function |
327 | /// parameter list. |
328 | static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D, |
329 | const ParsedAttr &AL, |
330 | SmallVectorImpl<Expr *> &Args, |
331 | unsigned Sidx = 0, |
332 | bool ParamIdxOk = false) { |
333 | if (Sidx == AL.getNumArgs()) { |
334 | // If we don't have any capability arguments, the attribute implicitly |
335 | // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're |
336 | // a non-static method, and that the class is a (scoped) capability. |
337 | const auto *MD = dyn_cast<const CXXMethodDecl>(Val: D); |
338 | if (MD && !MD->isStatic()) { |
339 | const CXXRecordDecl *RD = MD->getParent(); |
340 | // FIXME -- need to check this again on template instantiation |
341 | if (!checkRecordDeclForAttr<CapabilityAttr>(RD) && |
342 | !checkRecordDeclForAttr<ScopedLockableAttr>(RD)) |
343 | S.Diag(Loc: AL.getLoc(), |
344 | DiagID: diag::warn_thread_attribute_not_on_capability_member) |
345 | << AL << MD->getParent(); |
346 | } else { |
347 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_thread_attribute_not_on_non_static_member) |
348 | << AL; |
349 | } |
350 | } |
351 | |
352 | for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) { |
353 | Expr *ArgExp = AL.getArgAsExpr(Arg: Idx); |
354 | |
355 | if (ArgExp->isTypeDependent()) { |
356 | // FIXME -- need to check this again on template instantiation |
357 | Args.push_back(Elt: ArgExp); |
358 | continue; |
359 | } |
360 | |
361 | if (const auto *StrLit = dyn_cast<StringLiteral>(Val: ArgExp)) { |
362 | if (StrLit->getLength() == 0 || |
363 | (StrLit->isOrdinary() && StrLit->getString() == "*" )) { |
364 | // Pass empty strings to the analyzer without warnings. |
365 | // Treat "*" as the universal lock. |
366 | Args.push_back(Elt: ArgExp); |
367 | continue; |
368 | } |
369 | |
370 | // We allow constant strings to be used as a placeholder for expressions |
371 | // that are not valid C++ syntax, but warn that they are ignored. |
372 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_thread_attribute_ignored) << AL; |
373 | Args.push_back(Elt: ArgExp); |
374 | continue; |
375 | } |
376 | |
377 | QualType ArgTy = ArgExp->getType(); |
378 | |
379 | // A pointer to member expression of the form &MyClass::mu is treated |
380 | // specially -- we need to look at the type of the member. |
381 | if (const auto *UOp = dyn_cast<UnaryOperator>(Val: ArgExp)) |
382 | if (UOp->getOpcode() == UO_AddrOf) |
383 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: UOp->getSubExpr())) |
384 | if (DRE->getDecl()->isCXXInstanceMember()) |
385 | ArgTy = DRE->getDecl()->getType(); |
386 | |
387 | // First see if we can just cast to record type, or pointer to record type. |
388 | const RecordType *RT = getRecordType(QT: ArgTy); |
389 | |
390 | // Now check if we index into a record type function param. |
391 | if(!RT && ParamIdxOk) { |
392 | const auto *FD = dyn_cast<FunctionDecl>(Val: D); |
393 | const auto *IL = dyn_cast<IntegerLiteral>(Val: ArgExp); |
394 | if(FD && IL) { |
395 | unsigned int NumParams = FD->getNumParams(); |
396 | llvm::APInt ArgValue = IL->getValue(); |
397 | uint64_t ParamIdxFromOne = ArgValue.getZExtValue(); |
398 | uint64_t ParamIdxFromZero = ParamIdxFromOne - 1; |
399 | if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) { |
400 | S.Diag(Loc: AL.getLoc(), |
401 | DiagID: diag::err_attribute_argument_out_of_bounds_extra_info) |
402 | << AL << Idx + 1 << NumParams; |
403 | continue; |
404 | } |
405 | ArgTy = FD->getParamDecl(i: ParamIdxFromZero)->getType(); |
406 | } |
407 | } |
408 | |
409 | // If the type does not have a capability, see if the components of the |
410 | // expression have capabilities. This allows for writing C code where the |
411 | // capability may be on the type, and the expression is a capability |
412 | // boolean logic expression. Eg) requires_capability(A || B && !C) |
413 | if (!typeHasCapability(S, Ty: ArgTy) && !isCapabilityExpr(S, Ex: ArgExp)) |
414 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_thread_attribute_argument_not_lockable) |
415 | << AL << ArgTy; |
416 | |
417 | Args.push_back(Elt: ArgExp); |
418 | } |
419 | } |
420 | |
421 | //===----------------------------------------------------------------------===// |
422 | // Attribute Implementations |
423 | //===----------------------------------------------------------------------===// |
424 | |
425 | static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
426 | if (!threadSafetyCheckIsPointer(S, D, AL)) |
427 | return; |
428 | |
429 | D->addAttr(A: ::new (S.Context) PtGuardedVarAttr(S.Context, AL)); |
430 | } |
431 | |
432 | static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
433 | Expr *&Arg) { |
434 | SmallVector<Expr *, 1> Args; |
435 | // check that all arguments are lockable objects |
436 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
437 | unsigned Size = Args.size(); |
438 | if (Size != 1) |
439 | return false; |
440 | |
441 | Arg = Args[0]; |
442 | |
443 | return true; |
444 | } |
445 | |
446 | static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
447 | Expr *Arg = nullptr; |
448 | if (!checkGuardedByAttrCommon(S, D, AL, Arg)) |
449 | return; |
450 | |
451 | D->addAttr(A: ::new (S.Context) GuardedByAttr(S.Context, AL, Arg)); |
452 | } |
453 | |
454 | static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
455 | Expr *Arg = nullptr; |
456 | if (!checkGuardedByAttrCommon(S, D, AL, Arg)) |
457 | return; |
458 | |
459 | if (!threadSafetyCheckIsPointer(S, D, AL)) |
460 | return; |
461 | |
462 | D->addAttr(A: ::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg)); |
463 | } |
464 | |
465 | static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
466 | SmallVectorImpl<Expr *> &Args) { |
467 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
468 | return false; |
469 | |
470 | // Check that this attribute only applies to lockable types. |
471 | QualType QT = cast<ValueDecl>(Val: D)->getType(); |
472 | if (!QT->isDependentType() && !typeHasCapability(S, Ty: QT)) { |
473 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_thread_attribute_decl_not_lockable) << AL; |
474 | return false; |
475 | } |
476 | |
477 | // Check that all arguments are lockable objects. |
478 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
479 | if (Args.empty()) |
480 | return false; |
481 | |
482 | return true; |
483 | } |
484 | |
485 | static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
486 | SmallVector<Expr *, 1> Args; |
487 | if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) |
488 | return; |
489 | |
490 | Expr **StartArg = &Args[0]; |
491 | D->addAttr(A: ::new (S.Context) |
492 | AcquiredAfterAttr(S.Context, AL, StartArg, Args.size())); |
493 | } |
494 | |
495 | static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
496 | SmallVector<Expr *, 1> Args; |
497 | if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) |
498 | return; |
499 | |
500 | Expr **StartArg = &Args[0]; |
501 | D->addAttr(A: ::new (S.Context) |
502 | AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size())); |
503 | } |
504 | |
505 | static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
506 | SmallVectorImpl<Expr *> &Args) { |
507 | // zero or more arguments ok |
508 | // check that all arguments are lockable objects |
509 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args, Sidx: 0, /*ParamIdxOk=*/true); |
510 | |
511 | return true; |
512 | } |
513 | |
514 | static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
515 | SmallVector<Expr *, 1> Args; |
516 | if (!checkLockFunAttrCommon(S, D, AL, Args)) |
517 | return; |
518 | |
519 | unsigned Size = Args.size(); |
520 | Expr **StartArg = Size == 0 ? nullptr : &Args[0]; |
521 | D->addAttr(A: ::new (S.Context) |
522 | AssertSharedLockAttr(S.Context, AL, StartArg, Size)); |
523 | } |
524 | |
525 | static void handleAssertExclusiveLockAttr(Sema &S, Decl *D, |
526 | const ParsedAttr &AL) { |
527 | SmallVector<Expr *, 1> Args; |
528 | if (!checkLockFunAttrCommon(S, D, AL, Args)) |
529 | return; |
530 | |
531 | unsigned Size = Args.size(); |
532 | Expr **StartArg = Size == 0 ? nullptr : &Args[0]; |
533 | D->addAttr(A: ::new (S.Context) |
534 | AssertExclusiveLockAttr(S.Context, AL, StartArg, Size)); |
535 | } |
536 | |
537 | /// Checks to be sure that the given parameter number is in bounds, and |
538 | /// is an integral type. Will emit appropriate diagnostics if this returns |
539 | /// false. |
540 | /// |
541 | /// AttrArgNo is used to actually retrieve the argument, so it's base-0. |
542 | template <typename AttrInfo> |
543 | static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI, |
544 | unsigned AttrArgNo) { |
545 | assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument" ); |
546 | Expr *AttrArg = AI.getArgAsExpr(AttrArgNo); |
547 | ParamIdx Idx; |
548 | if (!S.checkFunctionOrMethodParameterIndex(D, AI, AttrArgNo + 1, AttrArg, |
549 | Idx)) |
550 | return false; |
551 | |
552 | QualType ParamTy = getFunctionOrMethodParamType(D, Idx: Idx.getASTIndex()); |
553 | if (!ParamTy->isIntegerType() && !ParamTy->isCharType()) { |
554 | SourceLocation SrcLoc = AttrArg->getBeginLoc(); |
555 | S.Diag(Loc: SrcLoc, DiagID: diag::err_attribute_integers_only) |
556 | << AI << getFunctionOrMethodParamRange(D, Idx: Idx.getASTIndex()); |
557 | return false; |
558 | } |
559 | return true; |
560 | } |
561 | |
562 | static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
563 | if (!AL.checkAtLeastNumArgs(S, Num: 1) || !AL.checkAtMostNumArgs(S, Num: 2)) |
564 | return; |
565 | |
566 | assert(isFuncOrMethodForAttrSubject(D) && hasFunctionProto(D)); |
567 | |
568 | QualType RetTy = getFunctionOrMethodResultType(D); |
569 | if (!RetTy->isPointerType()) { |
570 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_return_pointers_only) << AL; |
571 | return; |
572 | } |
573 | |
574 | const Expr *SizeExpr = AL.getArgAsExpr(Arg: 0); |
575 | int SizeArgNoVal; |
576 | // Parameter indices are 1-indexed, hence Index=1 |
577 | if (!checkPositiveIntArgument(S, AI: AL, Expr: SizeExpr, Val&: SizeArgNoVal, /*Idx=*/1)) |
578 | return; |
579 | if (!checkParamIsIntegerType(S, D, AI: AL, /*AttrArgNo=*/0)) |
580 | return; |
581 | ParamIdx SizeArgNo(SizeArgNoVal, D); |
582 | |
583 | ParamIdx NumberArgNo; |
584 | if (AL.getNumArgs() == 2) { |
585 | const Expr *NumberExpr = AL.getArgAsExpr(Arg: 1); |
586 | int Val; |
587 | // Parameter indices are 1-based, hence Index=2 |
588 | if (!checkPositiveIntArgument(S, AI: AL, Expr: NumberExpr, Val, /*Idx=*/2)) |
589 | return; |
590 | if (!checkParamIsIntegerType(S, D, AI: AL, /*AttrArgNo=*/1)) |
591 | return; |
592 | NumberArgNo = ParamIdx(Val, D); |
593 | } |
594 | |
595 | D->addAttr(A: ::new (S.Context) |
596 | AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo)); |
597 | } |
598 | |
599 | static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
600 | SmallVectorImpl<Expr *> &Args) { |
601 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
602 | return false; |
603 | |
604 | if (!isIntOrBool(Exp: AL.getArgAsExpr(Arg: 0))) { |
605 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_n_type) |
606 | << AL << 1 << AANT_ArgumentIntOrBool; |
607 | return false; |
608 | } |
609 | |
610 | // check that all arguments are lockable objects |
611 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args, Sidx: 1); |
612 | |
613 | return true; |
614 | } |
615 | |
616 | static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D, |
617 | const ParsedAttr &AL) { |
618 | SmallVector<Expr*, 2> Args; |
619 | if (!checkTryLockFunAttrCommon(S, D, AL, Args)) |
620 | return; |
621 | |
622 | D->addAttr(A: ::new (S.Context) SharedTrylockFunctionAttr( |
623 | S.Context, AL, AL.getArgAsExpr(Arg: 0), Args.data(), Args.size())); |
624 | } |
625 | |
626 | static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D, |
627 | const ParsedAttr &AL) { |
628 | SmallVector<Expr*, 2> Args; |
629 | if (!checkTryLockFunAttrCommon(S, D, AL, Args)) |
630 | return; |
631 | |
632 | D->addAttr(A: ::new (S.Context) ExclusiveTrylockFunctionAttr( |
633 | S.Context, AL, AL.getArgAsExpr(Arg: 0), Args.data(), Args.size())); |
634 | } |
635 | |
636 | static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
637 | // check that the argument is lockable object |
638 | SmallVector<Expr*, 1> Args; |
639 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
640 | unsigned Size = Args.size(); |
641 | if (Size == 0) |
642 | return; |
643 | |
644 | D->addAttr(A: ::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0])); |
645 | } |
646 | |
647 | static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
648 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
649 | return; |
650 | |
651 | // check that all arguments are lockable objects |
652 | SmallVector<Expr*, 1> Args; |
653 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
654 | unsigned Size = Args.size(); |
655 | if (Size == 0) |
656 | return; |
657 | Expr **StartArg = &Args[0]; |
658 | |
659 | D->addAttr(A: ::new (S.Context) |
660 | LocksExcludedAttr(S.Context, AL, StartArg, Size)); |
661 | } |
662 | |
663 | static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL, |
664 | Expr *&Cond, StringRef &Msg) { |
665 | Cond = AL.getArgAsExpr(Arg: 0); |
666 | if (!Cond->isTypeDependent()) { |
667 | ExprResult Converted = S.PerformContextuallyConvertToBool(From: Cond); |
668 | if (Converted.isInvalid()) |
669 | return false; |
670 | Cond = Converted.get(); |
671 | } |
672 | |
673 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 1, Str&: Msg)) |
674 | return false; |
675 | |
676 | if (Msg.empty()) |
677 | Msg = "<no message provided>" ; |
678 | |
679 | SmallVector<PartialDiagnosticAt, 8> Diags; |
680 | if (isa<FunctionDecl>(Val: D) && !Cond->isValueDependent() && |
681 | !Expr::isPotentialConstantExprUnevaluated(E: Cond, FD: cast<FunctionDecl>(Val: D), |
682 | Diags)) { |
683 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attr_cond_never_constant_expr) << AL; |
684 | for (const PartialDiagnosticAt &PDiag : Diags) |
685 | S.Diag(Loc: PDiag.first, PD: PDiag.second); |
686 | return false; |
687 | } |
688 | return true; |
689 | } |
690 | |
691 | static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
692 | S.Diag(Loc: AL.getLoc(), DiagID: diag::ext_clang_enable_if); |
693 | |
694 | Expr *Cond; |
695 | StringRef Msg; |
696 | if (checkFunctionConditionAttr(S, D, AL, Cond, Msg)) |
697 | D->addAttr(A: ::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg)); |
698 | } |
699 | |
700 | static void handleErrorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
701 | StringRef NewUserDiagnostic; |
702 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: NewUserDiagnostic)) |
703 | return; |
704 | if (ErrorAttr *EA = S.mergeErrorAttr(D, CI: AL, NewUserDiagnostic)) |
705 | D->addAttr(A: EA); |
706 | } |
707 | |
708 | static void handleExcludeFromExplicitInstantiationAttr(Sema &S, Decl *D, |
709 | const ParsedAttr &AL) { |
710 | const auto *PD = isa<CXXRecordDecl>(Val: D) |
711 | ? cast<DeclContext>(Val: D) |
712 | : D->getDeclContext()->getRedeclContext(); |
713 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: PD); RD && RD->isLocalClass()) { |
714 | S.Diag(Loc: AL.getLoc(), |
715 | DiagID: diag::warn_attribute_exclude_from_explicit_instantiation_local_class) |
716 | << AL << /*IsMember=*/!isa<CXXRecordDecl>(Val: D); |
717 | return; |
718 | } |
719 | D->addAttr(A: ::new (S.Context) |
720 | ExcludeFromExplicitInstantiationAttr(S.Context, AL)); |
721 | } |
722 | |
723 | namespace { |
724 | /// Determines if a given Expr references any of the given function's |
725 | /// ParmVarDecls, or the function's implicit `this` parameter (if applicable). |
726 | class ArgumentDependenceChecker |
727 | : public RecursiveASTVisitor<ArgumentDependenceChecker> { |
728 | #ifndef NDEBUG |
729 | const CXXRecordDecl *ClassType; |
730 | #endif |
731 | llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms; |
732 | bool Result; |
733 | |
734 | public: |
735 | ArgumentDependenceChecker(const FunctionDecl *FD) { |
736 | #ifndef NDEBUG |
737 | if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) |
738 | ClassType = MD->getParent(); |
739 | else |
740 | ClassType = nullptr; |
741 | #endif |
742 | Parms.insert(I: FD->param_begin(), E: FD->param_end()); |
743 | } |
744 | |
745 | bool referencesArgs(Expr *E) { |
746 | Result = false; |
747 | TraverseStmt(S: E); |
748 | return Result; |
749 | } |
750 | |
751 | bool VisitCXXThisExpr(CXXThisExpr *E) { |
752 | assert(E->getType()->getPointeeCXXRecordDecl() == ClassType && |
753 | "`this` doesn't refer to the enclosing class?" ); |
754 | Result = true; |
755 | return false; |
756 | } |
757 | |
758 | bool VisitDeclRefExpr(DeclRefExpr *DRE) { |
759 | if (const auto *PVD = dyn_cast<ParmVarDecl>(Val: DRE->getDecl())) |
760 | if (Parms.count(Ptr: PVD)) { |
761 | Result = true; |
762 | return false; |
763 | } |
764 | return true; |
765 | } |
766 | }; |
767 | } |
768 | |
769 | static void handleDiagnoseAsBuiltinAttr(Sema &S, Decl *D, |
770 | const ParsedAttr &AL) { |
771 | const auto *DeclFD = cast<FunctionDecl>(Val: D); |
772 | |
773 | if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(Val: DeclFD)) |
774 | if (!MethodDecl->isStatic()) { |
775 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_no_member_function) << AL; |
776 | return; |
777 | } |
778 | |
779 | auto DiagnoseType = [&](unsigned Index, AttributeArgumentNType T) { |
780 | SourceLocation Loc = [&]() { |
781 | auto Union = AL.getArg(Arg: Index - 1); |
782 | if (Union.is<Expr *>()) |
783 | return Union.get<Expr *>()->getBeginLoc(); |
784 | return Union.get<IdentifierLoc *>()->Loc; |
785 | }(); |
786 | |
787 | S.Diag(Loc, DiagID: diag::err_attribute_argument_n_type) << AL << Index << T; |
788 | }; |
789 | |
790 | FunctionDecl *AttrFD = [&]() -> FunctionDecl * { |
791 | if (!AL.isArgExpr(Arg: 0)) |
792 | return nullptr; |
793 | auto *F = dyn_cast_if_present<DeclRefExpr>(Val: AL.getArgAsExpr(Arg: 0)); |
794 | if (!F) |
795 | return nullptr; |
796 | return dyn_cast_if_present<FunctionDecl>(Val: F->getFoundDecl()); |
797 | }(); |
798 | |
799 | if (!AttrFD || !AttrFD->getBuiltinID(ConsiderWrapperFunctions: true)) { |
800 | DiagnoseType(1, AANT_ArgumentBuiltinFunction); |
801 | return; |
802 | } |
803 | |
804 | if (AttrFD->getNumParams() != AL.getNumArgs() - 1) { |
805 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments_for) |
806 | << AL << AttrFD << AttrFD->getNumParams(); |
807 | return; |
808 | } |
809 | |
810 | SmallVector<unsigned, 8> Indices; |
811 | |
812 | for (unsigned I = 1; I < AL.getNumArgs(); ++I) { |
813 | if (!AL.isArgExpr(Arg: I)) { |
814 | DiagnoseType(I + 1, AANT_ArgumentIntegerConstant); |
815 | return; |
816 | } |
817 | |
818 | const Expr *IndexExpr = AL.getArgAsExpr(Arg: I); |
819 | uint32_t Index; |
820 | |
821 | if (!S.checkUInt32Argument(AI: AL, Expr: IndexExpr, Val&: Index, Idx: I + 1, StrictlyUnsigned: false)) |
822 | return; |
823 | |
824 | if (Index > DeclFD->getNumParams()) { |
825 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_bounds_for_function) |
826 | << AL << Index << DeclFD << DeclFD->getNumParams(); |
827 | return; |
828 | } |
829 | |
830 | QualType T1 = AttrFD->getParamDecl(i: I - 1)->getType(); |
831 | QualType T2 = DeclFD->getParamDecl(i: Index - 1)->getType(); |
832 | |
833 | if (T1.getCanonicalType().getUnqualifiedType() != |
834 | T2.getCanonicalType().getUnqualifiedType()) { |
835 | S.Diag(Loc: IndexExpr->getBeginLoc(), DiagID: diag::err_attribute_parameter_types) |
836 | << AL << Index << DeclFD << T2 << I << AttrFD << T1; |
837 | return; |
838 | } |
839 | |
840 | Indices.push_back(Elt: Index - 1); |
841 | } |
842 | |
843 | D->addAttr(A: ::new (S.Context) DiagnoseAsBuiltinAttr( |
844 | S.Context, AL, AttrFD, Indices.data(), Indices.size())); |
845 | } |
846 | |
847 | static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
848 | S.Diag(Loc: AL.getLoc(), DiagID: diag::ext_clang_diagnose_if); |
849 | |
850 | Expr *Cond; |
851 | StringRef Msg; |
852 | if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg)) |
853 | return; |
854 | |
855 | StringRef DiagTypeStr; |
856 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 2, Str&: DiagTypeStr)) |
857 | return; |
858 | |
859 | DiagnoseIfAttr::DiagnosticType DiagType; |
860 | if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(Val: DiagTypeStr, Out&: DiagType)) { |
861 | S.Diag(Loc: AL.getArgAsExpr(Arg: 2)->getBeginLoc(), |
862 | DiagID: diag::err_diagnose_if_invalid_diagnostic_type); |
863 | return; |
864 | } |
865 | |
866 | bool ArgDependent = false; |
867 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
868 | ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(E: Cond); |
869 | D->addAttr(A: ::new (S.Context) DiagnoseIfAttr( |
870 | S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast<NamedDecl>(Val: D))); |
871 | } |
872 | |
873 | static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
874 | static constexpr const StringRef kWildcard = "*" ; |
875 | |
876 | llvm::SmallVector<StringRef, 16> Names; |
877 | bool HasWildcard = false; |
878 | |
879 | const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) { |
880 | if (Name == kWildcard) |
881 | HasWildcard = true; |
882 | Names.push_back(Elt: Name); |
883 | }; |
884 | |
885 | // Add previously defined attributes. |
886 | if (const auto *NBA = D->getAttr<NoBuiltinAttr>()) |
887 | for (StringRef BuiltinName : NBA->builtinNames()) |
888 | AddBuiltinName(BuiltinName); |
889 | |
890 | // Add current attributes. |
891 | if (AL.getNumArgs() == 0) |
892 | AddBuiltinName(kWildcard); |
893 | else |
894 | for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
895 | StringRef BuiltinName; |
896 | SourceLocation LiteralLoc; |
897 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: I, Str&: BuiltinName, ArgLocation: &LiteralLoc)) |
898 | return; |
899 | |
900 | if (Builtin::Context::isBuiltinFunc(Name: BuiltinName)) |
901 | AddBuiltinName(BuiltinName); |
902 | else |
903 | S.Diag(Loc: LiteralLoc, DiagID: diag::warn_attribute_no_builtin_invalid_builtin_name) |
904 | << BuiltinName << AL; |
905 | } |
906 | |
907 | // Repeating the same attribute is fine. |
908 | llvm::sort(C&: Names); |
909 | Names.erase(CS: std::unique(first: Names.begin(), last: Names.end()), CE: Names.end()); |
910 | |
911 | // Empty no_builtin must be on its own. |
912 | if (HasWildcard && Names.size() > 1) |
913 | S.Diag(Loc: D->getLocation(), |
914 | DiagID: diag::err_attribute_no_builtin_wildcard_or_builtin_name) |
915 | << AL; |
916 | |
917 | if (D->hasAttr<NoBuiltinAttr>()) |
918 | D->dropAttr<NoBuiltinAttr>(); |
919 | D->addAttr(A: ::new (S.Context) |
920 | NoBuiltinAttr(S.Context, AL, Names.data(), Names.size())); |
921 | } |
922 | |
923 | static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
924 | if (D->hasAttr<PassObjectSizeAttr>()) { |
925 | S.Diag(Loc: D->getBeginLoc(), DiagID: diag::err_attribute_only_once_per_parameter) << AL; |
926 | return; |
927 | } |
928 | |
929 | Expr *E = AL.getArgAsExpr(Arg: 0); |
930 | uint32_t Type; |
931 | if (!S.checkUInt32Argument(AI: AL, Expr: E, Val&: Type, /*Idx=*/1)) |
932 | return; |
933 | |
934 | // pass_object_size's argument is passed in as the second argument of |
935 | // __builtin_object_size. So, it has the same constraints as that second |
936 | // argument; namely, it must be in the range [0, 3]. |
937 | if (Type > 3) { |
938 | S.Diag(Loc: E->getBeginLoc(), DiagID: diag::err_attribute_argument_out_of_range) |
939 | << AL << 0 << 3 << E->getSourceRange(); |
940 | return; |
941 | } |
942 | |
943 | // pass_object_size is only supported on constant pointer parameters; as a |
944 | // kindness to users, we allow the parameter to be non-const for declarations. |
945 | // At this point, we have no clue if `D` belongs to a function declaration or |
946 | // definition, so we defer the constness check until later. |
947 | if (!cast<ParmVarDecl>(Val: D)->getType()->isPointerType()) { |
948 | S.Diag(Loc: D->getBeginLoc(), DiagID: diag::err_attribute_pointers_only) << AL << 1; |
949 | return; |
950 | } |
951 | |
952 | D->addAttr(A: ::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type)); |
953 | } |
954 | |
955 | static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
956 | ConsumableAttr::ConsumedState DefaultState; |
957 | |
958 | if (AL.isArgIdent(Arg: 0)) { |
959 | IdentifierLoc *IL = AL.getArgAsIdent(Arg: 0); |
960 | if (!ConsumableAttr::ConvertStrToConsumedState(Val: IL->Ident->getName(), |
961 | Out&: DefaultState)) { |
962 | S.Diag(Loc: IL->Loc, DiagID: diag::warn_attribute_type_not_supported) << AL |
963 | << IL->Ident; |
964 | return; |
965 | } |
966 | } else { |
967 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
968 | << AL << AANT_ArgumentIdentifier; |
969 | return; |
970 | } |
971 | |
972 | D->addAttr(A: ::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState)); |
973 | } |
974 | |
975 | static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD, |
976 | const ParsedAttr &AL) { |
977 | QualType ThisType = MD->getFunctionObjectParameterType(); |
978 | |
979 | if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) { |
980 | if (!RD->hasAttr<ConsumableAttr>()) { |
981 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attr_on_unconsumable_class) << RD; |
982 | |
983 | return false; |
984 | } |
985 | } |
986 | |
987 | return true; |
988 | } |
989 | |
990 | static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
991 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
992 | return; |
993 | |
994 | if (!checkForConsumableClass(S, MD: cast<CXXMethodDecl>(Val: D), AL)) |
995 | return; |
996 | |
997 | SmallVector<CallableWhenAttr::ConsumedState, 3> States; |
998 | for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) { |
999 | CallableWhenAttr::ConsumedState CallableState; |
1000 | |
1001 | StringRef StateString; |
1002 | SourceLocation Loc; |
1003 | if (AL.isArgIdent(Arg: ArgIndex)) { |
1004 | IdentifierLoc *Ident = AL.getArgAsIdent(Arg: ArgIndex); |
1005 | StateString = Ident->Ident->getName(); |
1006 | Loc = Ident->Loc; |
1007 | } else { |
1008 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: ArgIndex, Str&: StateString, ArgLocation: &Loc)) |
1009 | return; |
1010 | } |
1011 | |
1012 | if (!CallableWhenAttr::ConvertStrToConsumedState(Val: StateString, |
1013 | Out&: CallableState)) { |
1014 | S.Diag(Loc, DiagID: diag::warn_attribute_type_not_supported) << AL << StateString; |
1015 | return; |
1016 | } |
1017 | |
1018 | States.push_back(Elt: CallableState); |
1019 | } |
1020 | |
1021 | D->addAttr(A: ::new (S.Context) |
1022 | CallableWhenAttr(S.Context, AL, States.data(), States.size())); |
1023 | } |
1024 | |
1025 | static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1026 | ParamTypestateAttr::ConsumedState ParamState; |
1027 | |
1028 | if (AL.isArgIdent(Arg: 0)) { |
1029 | IdentifierLoc *Ident = AL.getArgAsIdent(Arg: 0); |
1030 | StringRef StateString = Ident->Ident->getName(); |
1031 | |
1032 | if (!ParamTypestateAttr::ConvertStrToConsumedState(Val: StateString, |
1033 | Out&: ParamState)) { |
1034 | S.Diag(Loc: Ident->Loc, DiagID: diag::warn_attribute_type_not_supported) |
1035 | << AL << StateString; |
1036 | return; |
1037 | } |
1038 | } else { |
1039 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
1040 | << AL << AANT_ArgumentIdentifier; |
1041 | return; |
1042 | } |
1043 | |
1044 | // FIXME: This check is currently being done in the analysis. It can be |
1045 | // enabled here only after the parser propagates attributes at |
1046 | // template specialization definition, not declaration. |
1047 | //QualType ReturnType = cast<ParmVarDecl>(D)->getType(); |
1048 | //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); |
1049 | // |
1050 | //if (!RD || !RD->hasAttr<ConsumableAttr>()) { |
1051 | // S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) << |
1052 | // ReturnType.getAsString(); |
1053 | // return; |
1054 | //} |
1055 | |
1056 | D->addAttr(A: ::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState)); |
1057 | } |
1058 | |
1059 | static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1060 | ReturnTypestateAttr::ConsumedState ReturnState; |
1061 | |
1062 | if (AL.isArgIdent(Arg: 0)) { |
1063 | IdentifierLoc *IL = AL.getArgAsIdent(Arg: 0); |
1064 | if (!ReturnTypestateAttr::ConvertStrToConsumedState(Val: IL->Ident->getName(), |
1065 | Out&: ReturnState)) { |
1066 | S.Diag(Loc: IL->Loc, DiagID: diag::warn_attribute_type_not_supported) << AL |
1067 | << IL->Ident; |
1068 | return; |
1069 | } |
1070 | } else { |
1071 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
1072 | << AL << AANT_ArgumentIdentifier; |
1073 | return; |
1074 | } |
1075 | |
1076 | // FIXME: This check is currently being done in the analysis. It can be |
1077 | // enabled here only after the parser propagates attributes at |
1078 | // template specialization definition, not declaration. |
1079 | // QualType ReturnType; |
1080 | // |
1081 | // if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) { |
1082 | // ReturnType = Param->getType(); |
1083 | // |
1084 | //} else if (const CXXConstructorDecl *Constructor = |
1085 | // dyn_cast<CXXConstructorDecl>(D)) { |
1086 | // ReturnType = Constructor->getFunctionObjectParameterType(); |
1087 | // |
1088 | //} else { |
1089 | // |
1090 | // ReturnType = cast<FunctionDecl>(D)->getCallResultType(); |
1091 | //} |
1092 | // |
1093 | // const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); |
1094 | // |
1095 | // if (!RD || !RD->hasAttr<ConsumableAttr>()) { |
1096 | // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) << |
1097 | // ReturnType.getAsString(); |
1098 | // return; |
1099 | //} |
1100 | |
1101 | D->addAttr(A: ::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState)); |
1102 | } |
1103 | |
1104 | static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1105 | if (!checkForConsumableClass(S, MD: cast<CXXMethodDecl>(Val: D), AL)) |
1106 | return; |
1107 | |
1108 | SetTypestateAttr::ConsumedState NewState; |
1109 | if (AL.isArgIdent(Arg: 0)) { |
1110 | IdentifierLoc *Ident = AL.getArgAsIdent(Arg: 0); |
1111 | StringRef Param = Ident->Ident->getName(); |
1112 | if (!SetTypestateAttr::ConvertStrToConsumedState(Val: Param, Out&: NewState)) { |
1113 | S.Diag(Loc: Ident->Loc, DiagID: diag::warn_attribute_type_not_supported) << AL |
1114 | << Param; |
1115 | return; |
1116 | } |
1117 | } else { |
1118 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
1119 | << AL << AANT_ArgumentIdentifier; |
1120 | return; |
1121 | } |
1122 | |
1123 | D->addAttr(A: ::new (S.Context) SetTypestateAttr(S.Context, AL, NewState)); |
1124 | } |
1125 | |
1126 | static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1127 | if (!checkForConsumableClass(S, MD: cast<CXXMethodDecl>(Val: D), AL)) |
1128 | return; |
1129 | |
1130 | TestTypestateAttr::ConsumedState TestState; |
1131 | if (AL.isArgIdent(Arg: 0)) { |
1132 | IdentifierLoc *Ident = AL.getArgAsIdent(Arg: 0); |
1133 | StringRef Param = Ident->Ident->getName(); |
1134 | if (!TestTypestateAttr::ConvertStrToConsumedState(Val: Param, Out&: TestState)) { |
1135 | S.Diag(Loc: Ident->Loc, DiagID: diag::warn_attribute_type_not_supported) << AL |
1136 | << Param; |
1137 | return; |
1138 | } |
1139 | } else { |
1140 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
1141 | << AL << AANT_ArgumentIdentifier; |
1142 | return; |
1143 | } |
1144 | |
1145 | D->addAttr(A: ::new (S.Context) TestTypestateAttr(S.Context, AL, TestState)); |
1146 | } |
1147 | |
1148 | static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1149 | // Remember this typedef decl, we will need it later for diagnostics. |
1150 | S.ExtVectorDecls.push_back(LocalValue: cast<TypedefNameDecl>(Val: D)); |
1151 | } |
1152 | |
1153 | static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1154 | if (auto *TD = dyn_cast<TagDecl>(Val: D)) |
1155 | TD->addAttr(A: ::new (S.Context) PackedAttr(S.Context, AL)); |
1156 | else if (auto *FD = dyn_cast<FieldDecl>(Val: D)) { |
1157 | bool BitfieldByteAligned = (!FD->getType()->isDependentType() && |
1158 | !FD->getType()->isIncompleteType() && |
1159 | FD->isBitField() && |
1160 | S.Context.getTypeAlign(T: FD->getType()) <= 8); |
1161 | |
1162 | if (S.getASTContext().getTargetInfo().getTriple().isPS()) { |
1163 | if (BitfieldByteAligned) |
1164 | // The PS4/PS5 targets need to maintain ABI backwards compatibility. |
1165 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_ignored_for_field_of_type) |
1166 | << AL << FD->getType(); |
1167 | else |
1168 | FD->addAttr(A: ::new (S.Context) PackedAttr(S.Context, AL)); |
1169 | } else { |
1170 | // Report warning about changed offset in the newer compiler versions. |
1171 | if (BitfieldByteAligned) |
1172 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_packed_for_bitfield); |
1173 | |
1174 | FD->addAttr(A: ::new (S.Context) PackedAttr(S.Context, AL)); |
1175 | } |
1176 | |
1177 | } else |
1178 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_ignored) << AL; |
1179 | } |
1180 | |
1181 | static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL) { |
1182 | auto *RD = cast<CXXRecordDecl>(Val: D); |
1183 | ClassTemplateDecl *CTD = RD->getDescribedClassTemplate(); |
1184 | assert(CTD && "attribute does not appertain to this declaration" ); |
1185 | |
1186 | ParsedType PT = AL.getTypeArg(); |
1187 | TypeSourceInfo *TSI = nullptr; |
1188 | QualType T = S.GetTypeFromParser(Ty: PT, TInfo: &TSI); |
1189 | if (!TSI) |
1190 | TSI = S.Context.getTrivialTypeSourceInfo(T, Loc: AL.getLoc()); |
1191 | |
1192 | if (!T.hasQualifiers() && T->isTypedefNameType()) { |
1193 | // Find the template name, if this type names a template specialization. |
1194 | const TemplateDecl *Template = nullptr; |
1195 | if (const auto *CTSD = dyn_cast_if_present<ClassTemplateSpecializationDecl>( |
1196 | Val: T->getAsCXXRecordDecl())) { |
1197 | Template = CTSD->getSpecializedTemplate(); |
1198 | } else if (const auto *TST = T->getAs<TemplateSpecializationType>()) { |
1199 | while (TST && TST->isTypeAlias()) |
1200 | TST = TST->getAliasedType()->getAs<TemplateSpecializationType>(); |
1201 | if (TST) |
1202 | Template = TST->getTemplateName().getAsTemplateDecl(); |
1203 | } |
1204 | |
1205 | if (Template && declaresSameEntity(D1: Template, D2: CTD)) { |
1206 | D->addAttr(A: ::new (S.Context) PreferredNameAttr(S.Context, AL, TSI)); |
1207 | return; |
1208 | } |
1209 | } |
1210 | |
1211 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_preferred_name_arg_invalid) |
1212 | << T << CTD; |
1213 | if (const auto *TT = T->getAs<TypedefType>()) |
1214 | S.Diag(Loc: TT->getDecl()->getLocation(), DiagID: diag::note_entity_declared_at) |
1215 | << TT->getDecl(); |
1216 | } |
1217 | |
1218 | bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) { |
1219 | if (RefOkay) { |
1220 | if (T->isReferenceType()) |
1221 | return true; |
1222 | } else { |
1223 | T = T.getNonReferenceType(); |
1224 | } |
1225 | |
1226 | // The nonnull attribute, and other similar attributes, can be applied to a |
1227 | // transparent union that contains a pointer type. |
1228 | if (const RecordType *UT = T->getAsUnionType()) { |
1229 | if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) { |
1230 | RecordDecl *UD = UT->getDecl(); |
1231 | for (const auto *I : UD->fields()) { |
1232 | QualType QT = I->getType(); |
1233 | if (QT->isAnyPointerType() || QT->isBlockPointerType()) |
1234 | return true; |
1235 | } |
1236 | } |
1237 | } |
1238 | |
1239 | return T->isAnyPointerType() || T->isBlockPointerType(); |
1240 | } |
1241 | |
1242 | static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL, |
1243 | SourceRange AttrParmRange, |
1244 | SourceRange TypeRange, |
1245 | bool isReturnValue = false) { |
1246 | if (!S.isValidPointerAttrType(T)) { |
1247 | if (isReturnValue) |
1248 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_return_pointers_only) |
1249 | << AL << AttrParmRange << TypeRange; |
1250 | else |
1251 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_pointers_only) |
1252 | << AL << AttrParmRange << TypeRange << 0; |
1253 | return false; |
1254 | } |
1255 | return true; |
1256 | } |
1257 | |
1258 | static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1259 | SmallVector<ParamIdx, 8> NonNullArgs; |
1260 | for (unsigned I = 0; I < AL.getNumArgs(); ++I) { |
1261 | Expr *Ex = AL.getArgAsExpr(Arg: I); |
1262 | ParamIdx Idx; |
1263 | if (!S.checkFunctionOrMethodParameterIndex(D, AI: AL, AttrArgNum: I + 1, IdxExpr: Ex, Idx)) |
1264 | return; |
1265 | |
1266 | // Is the function argument a pointer type? |
1267 | if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) && |
1268 | !attrNonNullArgCheck( |
1269 | S, T: getFunctionOrMethodParamType(D, Idx: Idx.getASTIndex()), AL, |
1270 | AttrParmRange: Ex->getSourceRange(), |
1271 | TypeRange: getFunctionOrMethodParamRange(D, Idx: Idx.getASTIndex()))) |
1272 | continue; |
1273 | |
1274 | NonNullArgs.push_back(Elt: Idx); |
1275 | } |
1276 | |
1277 | // If no arguments were specified to __attribute__((nonnull)) then all pointer |
1278 | // arguments have a nonnull attribute; warn if there aren't any. Skip this |
1279 | // check if the attribute came from a macro expansion or a template |
1280 | // instantiation. |
1281 | if (NonNullArgs.empty() && AL.getLoc().isFileID() && |
1282 | !S.inTemplateInstantiation()) { |
1283 | bool AnyPointers = isFunctionOrMethodVariadic(D); |
1284 | for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); |
1285 | I != E && !AnyPointers; ++I) { |
1286 | QualType T = getFunctionOrMethodParamType(D, Idx: I); |
1287 | if (T->isDependentType() || S.isValidPointerAttrType(T)) |
1288 | AnyPointers = true; |
1289 | } |
1290 | |
1291 | if (!AnyPointers) |
1292 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_nonnull_no_pointers); |
1293 | } |
1294 | |
1295 | ParamIdx *Start = NonNullArgs.data(); |
1296 | unsigned Size = NonNullArgs.size(); |
1297 | llvm::array_pod_sort(Start, End: Start + Size); |
1298 | D->addAttr(A: ::new (S.Context) NonNullAttr(S.Context, AL, Start, Size)); |
1299 | } |
1300 | |
1301 | static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D, |
1302 | const ParsedAttr &AL) { |
1303 | if (AL.getNumArgs() > 0) { |
1304 | if (D->getFunctionType()) { |
1305 | handleNonNullAttr(S, D, AL); |
1306 | } else { |
1307 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_nonnull_parm_no_args) |
1308 | << D->getSourceRange(); |
1309 | } |
1310 | return; |
1311 | } |
1312 | |
1313 | // Is the argument a pointer type? |
1314 | if (!attrNonNullArgCheck(S, T: D->getType(), AL, AttrParmRange: SourceRange(), |
1315 | TypeRange: D->getSourceRange())) |
1316 | return; |
1317 | |
1318 | D->addAttr(A: ::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0)); |
1319 | } |
1320 | |
1321 | static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1322 | QualType ResultType = getFunctionOrMethodResultType(D); |
1323 | SourceRange SR = getFunctionOrMethodResultSourceRange(D); |
1324 | if (!attrNonNullArgCheck(S, T: ResultType, AL, AttrParmRange: SourceRange(), TypeRange: SR, |
1325 | /* isReturnValue */ true)) |
1326 | return; |
1327 | |
1328 | D->addAttr(A: ::new (S.Context) ReturnsNonNullAttr(S.Context, AL)); |
1329 | } |
1330 | |
1331 | static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1332 | if (D->isInvalidDecl()) |
1333 | return; |
1334 | |
1335 | // noescape only applies to pointer types. |
1336 | QualType T = cast<ParmVarDecl>(Val: D)->getType(); |
1337 | if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) { |
1338 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_pointers_only) |
1339 | << AL << AL.getRange() << 0; |
1340 | return; |
1341 | } |
1342 | |
1343 | D->addAttr(A: ::new (S.Context) NoEscapeAttr(S.Context, AL)); |
1344 | } |
1345 | |
1346 | static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1347 | Expr *E = AL.getArgAsExpr(Arg: 0), |
1348 | *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(Arg: 1) : nullptr; |
1349 | S.AddAssumeAlignedAttr(D, CI: AL, E, OE); |
1350 | } |
1351 | |
1352 | static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1353 | S.AddAllocAlignAttr(D, CI: AL, ParamExpr: AL.getArgAsExpr(Arg: 0)); |
1354 | } |
1355 | |
1356 | void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, |
1357 | Expr *OE) { |
1358 | QualType ResultType = getFunctionOrMethodResultType(D); |
1359 | SourceRange SR = getFunctionOrMethodResultSourceRange(D); |
1360 | |
1361 | AssumeAlignedAttr TmpAttr(Context, CI, E, OE); |
1362 | SourceLocation AttrLoc = TmpAttr.getLocation(); |
1363 | |
1364 | if (!isValidPointerAttrType(T: ResultType, /* RefOkay */ true)) { |
1365 | Diag(Loc: AttrLoc, DiagID: diag::warn_attribute_return_pointers_refs_only) |
1366 | << &TmpAttr << TmpAttr.getRange() << SR; |
1367 | return; |
1368 | } |
1369 | |
1370 | if (!E->isValueDependent()) { |
1371 | std::optional<llvm::APSInt> I = llvm::APSInt(64); |
1372 | if (!(I = E->getIntegerConstantExpr(Ctx: Context))) { |
1373 | if (OE) |
1374 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_argument_n_type) |
1375 | << &TmpAttr << 1 << AANT_ArgumentIntegerConstant |
1376 | << E->getSourceRange(); |
1377 | else |
1378 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_argument_type) |
1379 | << &TmpAttr << AANT_ArgumentIntegerConstant |
1380 | << E->getSourceRange(); |
1381 | return; |
1382 | } |
1383 | |
1384 | if (!I->isPowerOf2()) { |
1385 | Diag(Loc: AttrLoc, DiagID: diag::err_alignment_not_power_of_two) |
1386 | << E->getSourceRange(); |
1387 | return; |
1388 | } |
1389 | |
1390 | if (*I > Sema::MaximumAlignment) |
1391 | Diag(Loc: CI.getLoc(), DiagID: diag::warn_assume_aligned_too_great) |
1392 | << CI.getRange() << Sema::MaximumAlignment; |
1393 | } |
1394 | |
1395 | if (OE && !OE->isValueDependent() && !OE->isIntegerConstantExpr(Ctx: Context)) { |
1396 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_argument_n_type) |
1397 | << &TmpAttr << 2 << AANT_ArgumentIntegerConstant |
1398 | << OE->getSourceRange(); |
1399 | return; |
1400 | } |
1401 | |
1402 | D->addAttr(A: ::new (Context) AssumeAlignedAttr(Context, CI, E, OE)); |
1403 | } |
1404 | |
1405 | void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI, |
1406 | Expr *ParamExpr) { |
1407 | QualType ResultType = getFunctionOrMethodResultType(D); |
1408 | |
1409 | AllocAlignAttr TmpAttr(Context, CI, ParamIdx()); |
1410 | SourceLocation AttrLoc = CI.getLoc(); |
1411 | |
1412 | if (!ResultType->isDependentType() && |
1413 | !isValidPointerAttrType(T: ResultType, /* RefOkay */ true)) { |
1414 | Diag(Loc: AttrLoc, DiagID: diag::warn_attribute_return_pointers_refs_only) |
1415 | << &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D); |
1416 | return; |
1417 | } |
1418 | |
1419 | ParamIdx Idx; |
1420 | const auto *FuncDecl = cast<FunctionDecl>(Val: D); |
1421 | if (!checkFunctionOrMethodParameterIndex(D: FuncDecl, AI: TmpAttr, |
1422 | /*AttrArgNum=*/1, IdxExpr: ParamExpr, Idx)) |
1423 | return; |
1424 | |
1425 | QualType Ty = getFunctionOrMethodParamType(D, Idx: Idx.getASTIndex()); |
1426 | if (!Ty->isDependentType() && !Ty->isIntegralType(Ctx: Context) && |
1427 | !Ty->isAlignValT()) { |
1428 | Diag(Loc: ParamExpr->getBeginLoc(), DiagID: diag::err_attribute_integers_only) |
1429 | << &TmpAttr |
1430 | << FuncDecl->getParamDecl(i: Idx.getASTIndex())->getSourceRange(); |
1431 | return; |
1432 | } |
1433 | |
1434 | D->addAttr(A: ::new (Context) AllocAlignAttr(Context, CI, Idx)); |
1435 | } |
1436 | |
1437 | /// Normalize the attribute, __foo__ becomes foo. |
1438 | /// Returns true if normalization was applied. |
1439 | static bool normalizeName(StringRef &AttrName) { |
1440 | if (AttrName.size() > 4 && AttrName.starts_with(Prefix: "__" ) && |
1441 | AttrName.ends_with(Suffix: "__" )) { |
1442 | AttrName = AttrName.drop_front(N: 2).drop_back(N: 2); |
1443 | return true; |
1444 | } |
1445 | return false; |
1446 | } |
1447 | |
1448 | static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1449 | // This attribute must be applied to a function declaration. The first |
1450 | // argument to the attribute must be an identifier, the name of the resource, |
1451 | // for example: malloc. The following arguments must be argument indexes, the |
1452 | // arguments must be of integer type for Returns, otherwise of pointer type. |
1453 | // The difference between Holds and Takes is that a pointer may still be used |
1454 | // after being held. free() should be __attribute((ownership_takes)), whereas |
1455 | // a list append function may well be __attribute((ownership_holds)). |
1456 | |
1457 | if (!AL.isArgIdent(Arg: 0)) { |
1458 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_n_type) |
1459 | << AL << 1 << AANT_ArgumentIdentifier; |
1460 | return; |
1461 | } |
1462 | |
1463 | // Figure out our Kind. |
1464 | OwnershipAttr::OwnershipKind K = |
1465 | OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind(); |
1466 | |
1467 | // Check arguments. |
1468 | switch (K) { |
1469 | case OwnershipAttr::Takes: |
1470 | case OwnershipAttr::Holds: |
1471 | if (AL.getNumArgs() < 2) { |
1472 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_too_few_arguments) << AL << 2; |
1473 | return; |
1474 | } |
1475 | break; |
1476 | case OwnershipAttr::Returns: |
1477 | if (AL.getNumArgs() > 2) { |
1478 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_too_many_arguments) << AL << 1; |
1479 | return; |
1480 | } |
1481 | break; |
1482 | } |
1483 | |
1484 | IdentifierInfo *Module = AL.getArgAsIdent(Arg: 0)->Ident; |
1485 | |
1486 | StringRef ModuleName = Module->getName(); |
1487 | if (normalizeName(AttrName&: ModuleName)) { |
1488 | Module = &S.PP.getIdentifierTable().get(Name: ModuleName); |
1489 | } |
1490 | |
1491 | SmallVector<ParamIdx, 8> OwnershipArgs; |
1492 | for (unsigned i = 1; i < AL.getNumArgs(); ++i) { |
1493 | Expr *Ex = AL.getArgAsExpr(Arg: i); |
1494 | ParamIdx Idx; |
1495 | if (!S.checkFunctionOrMethodParameterIndex(D, AI: AL, AttrArgNum: i, IdxExpr: Ex, Idx)) |
1496 | return; |
1497 | |
1498 | // Is the function argument a pointer type? |
1499 | QualType T = getFunctionOrMethodParamType(D, Idx: Idx.getASTIndex()); |
1500 | int Err = -1; // No error |
1501 | switch (K) { |
1502 | case OwnershipAttr::Takes: |
1503 | case OwnershipAttr::Holds: |
1504 | if (!T->isAnyPointerType() && !T->isBlockPointerType()) |
1505 | Err = 0; |
1506 | break; |
1507 | case OwnershipAttr::Returns: |
1508 | if (!T->isIntegerType()) |
1509 | Err = 1; |
1510 | break; |
1511 | } |
1512 | if (-1 != Err) { |
1513 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_ownership_type) << AL << Err |
1514 | << Ex->getSourceRange(); |
1515 | return; |
1516 | } |
1517 | |
1518 | // Check we don't have a conflict with another ownership attribute. |
1519 | for (const auto *I : D->specific_attrs<OwnershipAttr>()) { |
1520 | // Cannot have two ownership attributes of different kinds for the same |
1521 | // index. |
1522 | if (I->getOwnKind() != K && llvm::is_contained(Range: I->args(), Element: Idx)) { |
1523 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attributes_are_not_compatible) |
1524 | << AL << I |
1525 | << (AL.isRegularKeywordAttribute() || |
1526 | I->isRegularKeywordAttribute()); |
1527 | return; |
1528 | } else if (K == OwnershipAttr::Returns && |
1529 | I->getOwnKind() == OwnershipAttr::Returns) { |
1530 | // A returns attribute conflicts with any other returns attribute using |
1531 | // a different index. |
1532 | if (!llvm::is_contained(Range: I->args(), Element: Idx)) { |
1533 | S.Diag(Loc: I->getLocation(), DiagID: diag::err_ownership_returns_index_mismatch) |
1534 | << I->args_begin()->getSourceIndex(); |
1535 | if (I->args_size()) |
1536 | S.Diag(Loc: AL.getLoc(), DiagID: diag::note_ownership_returns_index_mismatch) |
1537 | << Idx.getSourceIndex() << Ex->getSourceRange(); |
1538 | return; |
1539 | } |
1540 | } |
1541 | } |
1542 | OwnershipArgs.push_back(Elt: Idx); |
1543 | } |
1544 | |
1545 | ParamIdx *Start = OwnershipArgs.data(); |
1546 | unsigned Size = OwnershipArgs.size(); |
1547 | llvm::array_pod_sort(Start, End: Start + Size); |
1548 | D->addAttr(A: ::new (S.Context) |
1549 | OwnershipAttr(S.Context, AL, Module, Start, Size)); |
1550 | } |
1551 | |
1552 | static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1553 | // Check the attribute arguments. |
1554 | if (AL.getNumArgs() > 1) { |
1555 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) << AL << 1; |
1556 | return; |
1557 | } |
1558 | |
1559 | // gcc rejects |
1560 | // class c { |
1561 | // static int a __attribute__((weakref ("v2"))); |
1562 | // static int b() __attribute__((weakref ("f3"))); |
1563 | // }; |
1564 | // and ignores the attributes of |
1565 | // void f(void) { |
1566 | // static int a __attribute__((weakref ("v2"))); |
1567 | // } |
1568 | // we reject them |
1569 | const DeclContext *Ctx = D->getDeclContext()->getRedeclContext(); |
1570 | if (!Ctx->isFileContext()) { |
1571 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_weakref_not_global_context) |
1572 | << cast<NamedDecl>(Val: D); |
1573 | return; |
1574 | } |
1575 | |
1576 | // The GCC manual says |
1577 | // |
1578 | // At present, a declaration to which `weakref' is attached can only |
1579 | // be `static'. |
1580 | // |
1581 | // It also says |
1582 | // |
1583 | // Without a TARGET, |
1584 | // given as an argument to `weakref' or to `alias', `weakref' is |
1585 | // equivalent to `weak'. |
1586 | // |
1587 | // gcc 4.4.1 will accept |
1588 | // int a7 __attribute__((weakref)); |
1589 | // as |
1590 | // int a7 __attribute__((weak)); |
1591 | // This looks like a bug in gcc. We reject that for now. We should revisit |
1592 | // it if this behaviour is actually used. |
1593 | |
1594 | // GCC rejects |
1595 | // static ((alias ("y"), weakref)). |
1596 | // Should we? How to check that weakref is before or after alias? |
1597 | |
1598 | // FIXME: it would be good for us to keep the WeakRefAttr as-written instead |
1599 | // of transforming it into an AliasAttr. The WeakRefAttr never uses the |
1600 | // StringRef parameter it was given anyway. |
1601 | StringRef Str; |
1602 | if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str)) |
1603 | // GCC will accept anything as the argument of weakref. Should we |
1604 | // check for an existing decl? |
1605 | D->addAttr(A: ::new (S.Context) AliasAttr(S.Context, AL, Str)); |
1606 | |
1607 | D->addAttr(A: ::new (S.Context) WeakRefAttr(S.Context, AL)); |
1608 | } |
1609 | |
1610 | // Mark alias/ifunc target as used. Due to name mangling, we look up the |
1611 | // demangled name ignoring parameters (not supported by microsoftDemangle |
1612 | // https://github.com/llvm/llvm-project/issues/88825). This should handle the |
1613 | // majority of use cases while leaving namespace scope names unmarked. |
1614 | static void markUsedForAliasOrIfunc(Sema &S, Decl *D, const ParsedAttr &AL, |
1615 | StringRef Str) { |
1616 | std::unique_ptr<char, llvm::FreeDeleter> Demangled; |
1617 | if (S.getASTContext().getCXXABIKind() != TargetCXXABI::Microsoft) |
1618 | Demangled.reset(p: llvm::itaniumDemangle(mangled_name: Str, /*ParseParams=*/false)); |
1619 | std::unique_ptr<MangleContext> MC(S.Context.createMangleContext()); |
1620 | SmallString<256> Name; |
1621 | |
1622 | const DeclarationNameInfo Target( |
1623 | &S.Context.Idents.get(Name: Demangled ? Demangled.get() : Str), AL.getLoc()); |
1624 | LookupResult LR(S, Target, Sema::LookupOrdinaryName); |
1625 | if (S.LookupName(R&: LR, S: S.TUScope)) { |
1626 | for (NamedDecl *ND : LR) { |
1627 | if (!isa<FunctionDecl>(Val: ND) && !isa<VarDecl>(Val: ND)) |
1628 | continue; |
1629 | if (MC->shouldMangleDeclName(D: ND)) { |
1630 | llvm::raw_svector_ostream Out(Name); |
1631 | Name.clear(); |
1632 | MC->mangleName(GD: GlobalDecl(ND), Out); |
1633 | } else { |
1634 | Name = ND->getIdentifier()->getName(); |
1635 | } |
1636 | if (Name == Str) |
1637 | ND->markUsed(C&: S.Context); |
1638 | } |
1639 | } |
1640 | } |
1641 | |
1642 | static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1643 | StringRef Str; |
1644 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str)) |
1645 | return; |
1646 | |
1647 | // Aliases should be on declarations, not definitions. |
1648 | const auto *FD = cast<FunctionDecl>(Val: D); |
1649 | if (FD->isThisDeclarationADefinition()) { |
1650 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_alias_is_definition) << FD << 1; |
1651 | return; |
1652 | } |
1653 | |
1654 | markUsedForAliasOrIfunc(S, D, AL, Str); |
1655 | D->addAttr(A: ::new (S.Context) IFuncAttr(S.Context, AL, Str)); |
1656 | } |
1657 | |
1658 | static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1659 | StringRef Str; |
1660 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str)) |
1661 | return; |
1662 | |
1663 | if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { |
1664 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_alias_not_supported_on_darwin); |
1665 | return; |
1666 | } |
1667 | |
1668 | if (S.Context.getTargetInfo().getTriple().isNVPTX()) { |
1669 | CudaVersion Version = |
1670 | ToCudaVersion(S.Context.getTargetInfo().getSDKVersion()); |
1671 | if (Version != CudaVersion::UNKNOWN && Version < CudaVersion::CUDA_100) |
1672 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_alias_not_supported_on_nvptx); |
1673 | } |
1674 | |
1675 | // Aliases should be on declarations, not definitions. |
1676 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
1677 | if (FD->isThisDeclarationADefinition()) { |
1678 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_alias_is_definition) << FD << 0; |
1679 | return; |
1680 | } |
1681 | } else { |
1682 | const auto *VD = cast<VarDecl>(Val: D); |
1683 | if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) { |
1684 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_alias_is_definition) << VD << 0; |
1685 | return; |
1686 | } |
1687 | } |
1688 | |
1689 | markUsedForAliasOrIfunc(S, D, AL, Str); |
1690 | D->addAttr(A: ::new (S.Context) AliasAttr(S.Context, AL, Str)); |
1691 | } |
1692 | |
1693 | static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1694 | StringRef Model; |
1695 | SourceLocation LiteralLoc; |
1696 | // Check that it is a string. |
1697 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: Model, ArgLocation: &LiteralLoc)) |
1698 | return; |
1699 | |
1700 | // Check that the value. |
1701 | if (Model != "global-dynamic" && Model != "local-dynamic" |
1702 | && Model != "initial-exec" && Model != "local-exec" ) { |
1703 | S.Diag(Loc: LiteralLoc, DiagID: diag::err_attr_tlsmodel_arg); |
1704 | return; |
1705 | } |
1706 | |
1707 | D->addAttr(A: ::new (S.Context) TLSModelAttr(S.Context, AL, Model)); |
1708 | } |
1709 | |
1710 | static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1711 | QualType ResultType = getFunctionOrMethodResultType(D); |
1712 | if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) { |
1713 | D->addAttr(A: ::new (S.Context) RestrictAttr(S.Context, AL)); |
1714 | return; |
1715 | } |
1716 | |
1717 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_return_pointers_only) |
1718 | << AL << getFunctionOrMethodResultSourceRange(D); |
1719 | } |
1720 | |
1721 | static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1722 | // Ensure we don't combine these with themselves, since that causes some |
1723 | // confusing behavior. |
1724 | if (AL.getParsedKind() == ParsedAttr::AT_CPUDispatch) { |
1725 | if (checkAttrMutualExclusion<CPUSpecificAttr>(S, D, AL)) |
1726 | return; |
1727 | |
1728 | if (const auto *Other = D->getAttr<CPUDispatchAttr>()) { |
1729 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_disallowed_duplicate_attribute) << AL; |
1730 | S.Diag(Loc: Other->getLocation(), DiagID: diag::note_conflicting_attribute); |
1731 | return; |
1732 | } |
1733 | } else if (AL.getParsedKind() == ParsedAttr::AT_CPUSpecific) { |
1734 | if (checkAttrMutualExclusion<CPUDispatchAttr>(S, D, AL)) |
1735 | return; |
1736 | |
1737 | if (const auto *Other = D->getAttr<CPUSpecificAttr>()) { |
1738 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_disallowed_duplicate_attribute) << AL; |
1739 | S.Diag(Loc: Other->getLocation(), DiagID: diag::note_conflicting_attribute); |
1740 | return; |
1741 | } |
1742 | } |
1743 | |
1744 | FunctionDecl *FD = cast<FunctionDecl>(Val: D); |
1745 | |
1746 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: D)) { |
1747 | if (MD->getParent()->isLambda()) { |
1748 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_dll_lambda) << AL; |
1749 | return; |
1750 | } |
1751 | } |
1752 | |
1753 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
1754 | return; |
1755 | |
1756 | SmallVector<IdentifierInfo *, 8> CPUs; |
1757 | for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) { |
1758 | if (!AL.isArgIdent(Arg: ArgNo)) { |
1759 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
1760 | << AL << AANT_ArgumentIdentifier; |
1761 | return; |
1762 | } |
1763 | |
1764 | IdentifierLoc *CPUArg = AL.getArgAsIdent(Arg: ArgNo); |
1765 | StringRef CPUName = CPUArg->Ident->getName().trim(); |
1766 | |
1767 | if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(Name: CPUName)) { |
1768 | S.Diag(Loc: CPUArg->Loc, DiagID: diag::err_invalid_cpu_specific_dispatch_value) |
1769 | << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch); |
1770 | return; |
1771 | } |
1772 | |
1773 | const TargetInfo &Target = S.Context.getTargetInfo(); |
1774 | if (llvm::any_of(Range&: CPUs, P: [CPUName, &Target](const IdentifierInfo *Cur) { |
1775 | return Target.CPUSpecificManglingCharacter(Name: CPUName) == |
1776 | Target.CPUSpecificManglingCharacter(Name: Cur->getName()); |
1777 | })) { |
1778 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_multiversion_duplicate_entries); |
1779 | return; |
1780 | } |
1781 | CPUs.push_back(Elt: CPUArg->Ident); |
1782 | } |
1783 | |
1784 | FD->setIsMultiVersion(true); |
1785 | if (AL.getKind() == ParsedAttr::AT_CPUSpecific) |
1786 | D->addAttr(A: ::new (S.Context) |
1787 | CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size())); |
1788 | else |
1789 | D->addAttr(A: ::new (S.Context) |
1790 | CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size())); |
1791 | } |
1792 | |
1793 | static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1794 | if (S.LangOpts.CPlusPlus) { |
1795 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_not_supported_in_lang) |
1796 | << AL << AttributeLangSupport::Cpp; |
1797 | return; |
1798 | } |
1799 | |
1800 | D->addAttr(A: ::new (S.Context) CommonAttr(S.Context, AL)); |
1801 | } |
1802 | |
1803 | static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1804 | if (AL.isDeclspecAttribute()) { |
1805 | const auto &Triple = S.getASTContext().getTargetInfo().getTriple(); |
1806 | const auto &Arch = Triple.getArch(); |
1807 | if (Arch != llvm::Triple::x86 && |
1808 | (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) { |
1809 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_not_supported_on_arch) |
1810 | << AL << Triple.getArchName(); |
1811 | return; |
1812 | } |
1813 | |
1814 | // This form is not allowed to be written on a member function (static or |
1815 | // nonstatic) when in Microsoft compatibility mode. |
1816 | if (S.getLangOpts().MSVCCompat && isa<CXXMethodDecl>(Val: D)) { |
1817 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_decl_type_str) |
1818 | << AL << AL.isRegularKeywordAttribute() << "non-member functions" ; |
1819 | return; |
1820 | } |
1821 | } |
1822 | |
1823 | D->addAttr(A: ::new (S.Context) NakedAttr(S.Context, AL)); |
1824 | } |
1825 | |
1826 | static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { |
1827 | if (hasDeclarator(D)) return; |
1828 | |
1829 | if (!isa<ObjCMethodDecl>(Val: D)) { |
1830 | S.Diag(Loc: Attrs.getLoc(), DiagID: diag::warn_attribute_wrong_decl_type) |
1831 | << Attrs << Attrs.isRegularKeywordAttribute() |
1832 | << ExpectedFunctionOrMethod; |
1833 | return; |
1834 | } |
1835 | |
1836 | D->addAttr(A: ::new (S.Context) NoReturnAttr(S.Context, Attrs)); |
1837 | } |
1838 | |
1839 | static void handleStandardNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &A) { |
1840 | // The [[_Noreturn]] spelling is deprecated in C23, so if that was used, |
1841 | // issue an appropriate diagnostic. However, don't issue a diagnostic if the |
1842 | // attribute name comes from a macro expansion. We don't want to punish users |
1843 | // who write [[noreturn]] after including <stdnoreturn.h> (where 'noreturn' |
1844 | // is defined as a macro which expands to '_Noreturn'). |
1845 | if (!S.getLangOpts().CPlusPlus && |
1846 | A.getSemanticSpelling() == CXX11NoReturnAttr::C23_Noreturn && |
1847 | !(A.getLoc().isMacroID() && |
1848 | S.getSourceManager().isInSystemMacro(loc: A.getLoc()))) |
1849 | S.Diag(Loc: A.getLoc(), DiagID: diag::warn_deprecated_noreturn_spelling) << A.getRange(); |
1850 | |
1851 | D->addAttr(A: ::new (S.Context) CXX11NoReturnAttr(S.Context, A)); |
1852 | } |
1853 | |
1854 | static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { |
1855 | if (!S.getLangOpts().CFProtectionBranch) |
1856 | S.Diag(Loc: Attrs.getLoc(), DiagID: diag::warn_nocf_check_attribute_ignored); |
1857 | else |
1858 | handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, CI: Attrs); |
1859 | } |
1860 | |
1861 | bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) { |
1862 | if (!Attrs.checkExactlyNumArgs(S&: *this, Num: 0)) { |
1863 | Attrs.setInvalid(); |
1864 | return true; |
1865 | } |
1866 | |
1867 | return false; |
1868 | } |
1869 | |
1870 | bool Sema::CheckAttrTarget(const ParsedAttr &AL) { |
1871 | // Check whether the attribute is valid on the current target. |
1872 | if (!AL.existsInTarget(Target: Context.getTargetInfo())) { |
1873 | Diag(Loc: AL.getLoc(), DiagID: AL.isRegularKeywordAttribute() |
1874 | ? diag::err_keyword_not_supported_on_target |
1875 | : diag::warn_unknown_attribute_ignored) |
1876 | << AL << AL.getRange(); |
1877 | AL.setInvalid(); |
1878 | return true; |
1879 | } |
1880 | |
1881 | return false; |
1882 | } |
1883 | |
1884 | static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1885 | |
1886 | // The checking path for 'noreturn' and 'analyzer_noreturn' are different |
1887 | // because 'analyzer_noreturn' does not impact the type. |
1888 | if (!isFunctionOrMethodOrBlockForAttrSubject(D)) { |
1889 | ValueDecl *VD = dyn_cast<ValueDecl>(Val: D); |
1890 | if (!VD || (!VD->getType()->isBlockPointerType() && |
1891 | !VD->getType()->isFunctionPointerType())) { |
1892 | S.Diag(Loc: AL.getLoc(), DiagID: AL.isStandardAttributeSyntax() |
1893 | ? diag::err_attribute_wrong_decl_type |
1894 | : diag::warn_attribute_wrong_decl_type) |
1895 | << AL << AL.isRegularKeywordAttribute() |
1896 | << ExpectedFunctionMethodOrBlock; |
1897 | return; |
1898 | } |
1899 | } |
1900 | |
1901 | D->addAttr(A: ::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL)); |
1902 | } |
1903 | |
1904 | // PS3 PPU-specific. |
1905 | static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1906 | /* |
1907 | Returning a Vector Class in Registers |
1908 | |
1909 | According to the PPU ABI specifications, a class with a single member of |
1910 | vector type is returned in memory when used as the return value of a |
1911 | function. |
1912 | This results in inefficient code when implementing vector classes. To return |
1913 | the value in a single vector register, add the vecreturn attribute to the |
1914 | class definition. This attribute is also applicable to struct types. |
1915 | |
1916 | Example: |
1917 | |
1918 | struct Vector |
1919 | { |
1920 | __vector float xyzw; |
1921 | } __attribute__((vecreturn)); |
1922 | |
1923 | Vector Add(Vector lhs, Vector rhs) |
1924 | { |
1925 | Vector result; |
1926 | result.xyzw = vec_add(lhs.xyzw, rhs.xyzw); |
1927 | return result; // This will be returned in a register |
1928 | } |
1929 | */ |
1930 | if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) { |
1931 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_repeat_attribute) << A; |
1932 | return; |
1933 | } |
1934 | |
1935 | const auto *R = cast<RecordDecl>(Val: D); |
1936 | int count = 0; |
1937 | |
1938 | if (!isa<CXXRecordDecl>(Val: R)) { |
1939 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_vecreturn_only_vector_member); |
1940 | return; |
1941 | } |
1942 | |
1943 | if (!cast<CXXRecordDecl>(Val: R)->isPOD()) { |
1944 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_vecreturn_only_pod_record); |
1945 | return; |
1946 | } |
1947 | |
1948 | for (const auto *I : R->fields()) { |
1949 | if ((count == 1) || !I->getType()->isVectorType()) { |
1950 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_vecreturn_only_vector_member); |
1951 | return; |
1952 | } |
1953 | count++; |
1954 | } |
1955 | |
1956 | D->addAttr(A: ::new (S.Context) VecReturnAttr(S.Context, AL)); |
1957 | } |
1958 | |
1959 | static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D, |
1960 | const ParsedAttr &AL) { |
1961 | if (isa<ParmVarDecl>(Val: D)) { |
1962 | // [[carries_dependency]] can only be applied to a parameter if it is a |
1963 | // parameter of a function declaration or lambda. |
1964 | if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) { |
1965 | S.Diag(Loc: AL.getLoc(), |
1966 | DiagID: diag::err_carries_dependency_param_not_function_decl); |
1967 | return; |
1968 | } |
1969 | } |
1970 | |
1971 | D->addAttr(A: ::new (S.Context) CarriesDependencyAttr(S.Context, AL)); |
1972 | } |
1973 | |
1974 | static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1975 | bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName(); |
1976 | |
1977 | // If this is spelled as the standard C++17 attribute, but not in C++17, warn |
1978 | // about using it as an extension. |
1979 | if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr) |
1980 | S.Diag(Loc: AL.getLoc(), DiagID: diag::ext_cxx17_attr) << AL; |
1981 | |
1982 | D->addAttr(A: ::new (S.Context) UnusedAttr(S.Context, AL)); |
1983 | } |
1984 | |
1985 | static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1986 | uint32_t priority = ConstructorAttr::DefaultPriority; |
1987 | if (S.getLangOpts().HLSL && AL.getNumArgs()) { |
1988 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_init_priority_unsupported); |
1989 | return; |
1990 | } |
1991 | if (AL.getNumArgs() && |
1992 | !S.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: priority)) |
1993 | return; |
1994 | |
1995 | D->addAttr(A: ::new (S.Context) ConstructorAttr(S.Context, AL, priority)); |
1996 | } |
1997 | |
1998 | static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1999 | uint32_t priority = DestructorAttr::DefaultPriority; |
2000 | if (AL.getNumArgs() && |
2001 | !S.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: priority)) |
2002 | return; |
2003 | |
2004 | D->addAttr(A: ::new (S.Context) DestructorAttr(S.Context, AL, priority)); |
2005 | } |
2006 | |
2007 | template <typename AttrTy> |
2008 | static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) { |
2009 | // Handle the case where the attribute has a text message. |
2010 | StringRef Str; |
2011 | if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str)) |
2012 | return; |
2013 | |
2014 | D->addAttr(A: ::new (S.Context) AttrTy(S.Context, AL, Str)); |
2015 | } |
2016 | |
2017 | static bool checkAvailabilityAttr(Sema &S, SourceRange Range, |
2018 | IdentifierInfo *Platform, |
2019 | VersionTuple Introduced, |
2020 | VersionTuple Deprecated, |
2021 | VersionTuple Obsoleted) { |
2022 | StringRef PlatformName |
2023 | = AvailabilityAttr::getPrettyPlatformName(Platform: Platform->getName()); |
2024 | if (PlatformName.empty()) |
2025 | PlatformName = Platform->getName(); |
2026 | |
2027 | // Ensure that Introduced <= Deprecated <= Obsoleted (although not all |
2028 | // of these steps are needed). |
2029 | if (!Introduced.empty() && !Deprecated.empty() && |
2030 | !(Introduced <= Deprecated)) { |
2031 | S.Diag(Loc: Range.getBegin(), DiagID: diag::warn_availability_version_ordering) |
2032 | << 1 << PlatformName << Deprecated.getAsString() |
2033 | << 0 << Introduced.getAsString(); |
2034 | return true; |
2035 | } |
2036 | |
2037 | if (!Introduced.empty() && !Obsoleted.empty() && |
2038 | !(Introduced <= Obsoleted)) { |
2039 | S.Diag(Loc: Range.getBegin(), DiagID: diag::warn_availability_version_ordering) |
2040 | << 2 << PlatformName << Obsoleted.getAsString() |
2041 | << 0 << Introduced.getAsString(); |
2042 | return true; |
2043 | } |
2044 | |
2045 | if (!Deprecated.empty() && !Obsoleted.empty() && |
2046 | !(Deprecated <= Obsoleted)) { |
2047 | S.Diag(Loc: Range.getBegin(), DiagID: diag::warn_availability_version_ordering) |
2048 | << 2 << PlatformName << Obsoleted.getAsString() |
2049 | << 1 << Deprecated.getAsString(); |
2050 | return true; |
2051 | } |
2052 | |
2053 | return false; |
2054 | } |
2055 | |
2056 | /// Check whether the two versions match. |
2057 | /// |
2058 | /// If either version tuple is empty, then they are assumed to match. If |
2059 | /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y. |
2060 | static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y, |
2061 | bool BeforeIsOkay) { |
2062 | if (X.empty() || Y.empty()) |
2063 | return true; |
2064 | |
2065 | if (X == Y) |
2066 | return true; |
2067 | |
2068 | if (BeforeIsOkay && X < Y) |
2069 | return true; |
2070 | |
2071 | return false; |
2072 | } |
2073 | |
2074 | AvailabilityAttr *Sema::mergeAvailabilityAttr( |
2075 | NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform, |
2076 | bool Implicit, VersionTuple Introduced, VersionTuple Deprecated, |
2077 | VersionTuple Obsoleted, bool IsUnavailable, StringRef Message, |
2078 | bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK, |
2079 | int Priority, IdentifierInfo *Environment) { |
2080 | VersionTuple MergedIntroduced = Introduced; |
2081 | VersionTuple MergedDeprecated = Deprecated; |
2082 | VersionTuple MergedObsoleted = Obsoleted; |
2083 | bool FoundAny = false; |
2084 | bool OverrideOrImpl = false; |
2085 | switch (AMK) { |
2086 | case AMK_None: |
2087 | case AMK_Redeclaration: |
2088 | OverrideOrImpl = false; |
2089 | break; |
2090 | |
2091 | case AMK_Override: |
2092 | case AMK_ProtocolImplementation: |
2093 | case AMK_OptionalProtocolImplementation: |
2094 | OverrideOrImpl = true; |
2095 | break; |
2096 | } |
2097 | |
2098 | if (D->hasAttrs()) { |
2099 | AttrVec &Attrs = D->getAttrs(); |
2100 | for (unsigned i = 0, e = Attrs.size(); i != e;) { |
2101 | const auto *OldAA = dyn_cast<AvailabilityAttr>(Val: Attrs[i]); |
2102 | if (!OldAA) { |
2103 | ++i; |
2104 | continue; |
2105 | } |
2106 | |
2107 | IdentifierInfo *OldPlatform = OldAA->getPlatform(); |
2108 | if (OldPlatform != Platform) { |
2109 | ++i; |
2110 | continue; |
2111 | } |
2112 | |
2113 | IdentifierInfo *OldEnvironment = OldAA->getEnvironment(); |
2114 | if (OldEnvironment != Environment) { |
2115 | ++i; |
2116 | continue; |
2117 | } |
2118 | |
2119 | // If there is an existing availability attribute for this platform that |
2120 | // has a lower priority use the existing one and discard the new |
2121 | // attribute. |
2122 | if (OldAA->getPriority() < Priority) |
2123 | return nullptr; |
2124 | |
2125 | // If there is an existing attribute for this platform that has a higher |
2126 | // priority than the new attribute then erase the old one and continue |
2127 | // processing the attributes. |
2128 | if (OldAA->getPriority() > Priority) { |
2129 | Attrs.erase(CI: Attrs.begin() + i); |
2130 | --e; |
2131 | continue; |
2132 | } |
2133 | |
2134 | FoundAny = true; |
2135 | VersionTuple OldIntroduced = OldAA->getIntroduced(); |
2136 | VersionTuple OldDeprecated = OldAA->getDeprecated(); |
2137 | VersionTuple OldObsoleted = OldAA->getObsoleted(); |
2138 | bool OldIsUnavailable = OldAA->getUnavailable(); |
2139 | |
2140 | if (!versionsMatch(X: OldIntroduced, Y: Introduced, BeforeIsOkay: OverrideOrImpl) || |
2141 | !versionsMatch(X: Deprecated, Y: OldDeprecated, BeforeIsOkay: OverrideOrImpl) || |
2142 | !versionsMatch(X: Obsoleted, Y: OldObsoleted, BeforeIsOkay: OverrideOrImpl) || |
2143 | !(OldIsUnavailable == IsUnavailable || |
2144 | (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) { |
2145 | if (OverrideOrImpl) { |
2146 | int Which = -1; |
2147 | VersionTuple FirstVersion; |
2148 | VersionTuple SecondVersion; |
2149 | if (!versionsMatch(X: OldIntroduced, Y: Introduced, BeforeIsOkay: OverrideOrImpl)) { |
2150 | Which = 0; |
2151 | FirstVersion = OldIntroduced; |
2152 | SecondVersion = Introduced; |
2153 | } else if (!versionsMatch(X: Deprecated, Y: OldDeprecated, BeforeIsOkay: OverrideOrImpl)) { |
2154 | Which = 1; |
2155 | FirstVersion = Deprecated; |
2156 | SecondVersion = OldDeprecated; |
2157 | } else if (!versionsMatch(X: Obsoleted, Y: OldObsoleted, BeforeIsOkay: OverrideOrImpl)) { |
2158 | Which = 2; |
2159 | FirstVersion = Obsoleted; |
2160 | SecondVersion = OldObsoleted; |
2161 | } |
2162 | |
2163 | if (Which == -1) { |
2164 | Diag(Loc: OldAA->getLocation(), |
2165 | DiagID: diag::warn_mismatched_availability_override_unavail) |
2166 | << AvailabilityAttr::getPrettyPlatformName(Platform: Platform->getName()) |
2167 | << (AMK == AMK_Override); |
2168 | } else if (Which != 1 && AMK == AMK_OptionalProtocolImplementation) { |
2169 | // Allow different 'introduced' / 'obsoleted' availability versions |
2170 | // on a method that implements an optional protocol requirement. It |
2171 | // makes less sense to allow this for 'deprecated' as the user can't |
2172 | // see if the method is 'deprecated' as 'respondsToSelector' will |
2173 | // still return true when the method is deprecated. |
2174 | ++i; |
2175 | continue; |
2176 | } else { |
2177 | Diag(Loc: OldAA->getLocation(), |
2178 | DiagID: diag::warn_mismatched_availability_override) |
2179 | << Which |
2180 | << AvailabilityAttr::getPrettyPlatformName(Platform: Platform->getName()) |
2181 | << FirstVersion.getAsString() << SecondVersion.getAsString() |
2182 | << (AMK == AMK_Override); |
2183 | } |
2184 | if (AMK == AMK_Override) |
2185 | Diag(Loc: CI.getLoc(), DiagID: diag::note_overridden_method); |
2186 | else |
2187 | Diag(Loc: CI.getLoc(), DiagID: diag::note_protocol_method); |
2188 | } else { |
2189 | Diag(Loc: OldAA->getLocation(), DiagID: diag::warn_mismatched_availability); |
2190 | Diag(Loc: CI.getLoc(), DiagID: diag::note_previous_attribute); |
2191 | } |
2192 | |
2193 | Attrs.erase(CI: Attrs.begin() + i); |
2194 | --e; |
2195 | continue; |
2196 | } |
2197 | |
2198 | VersionTuple MergedIntroduced2 = MergedIntroduced; |
2199 | VersionTuple MergedDeprecated2 = MergedDeprecated; |
2200 | VersionTuple MergedObsoleted2 = MergedObsoleted; |
2201 | |
2202 | if (MergedIntroduced2.empty()) |
2203 | MergedIntroduced2 = OldIntroduced; |
2204 | if (MergedDeprecated2.empty()) |
2205 | MergedDeprecated2 = OldDeprecated; |
2206 | if (MergedObsoleted2.empty()) |
2207 | MergedObsoleted2 = OldObsoleted; |
2208 | |
2209 | if (checkAvailabilityAttr(S&: *this, Range: OldAA->getRange(), Platform, |
2210 | Introduced: MergedIntroduced2, Deprecated: MergedDeprecated2, |
2211 | Obsoleted: MergedObsoleted2)) { |
2212 | Attrs.erase(CI: Attrs.begin() + i); |
2213 | --e; |
2214 | continue; |
2215 | } |
2216 | |
2217 | MergedIntroduced = MergedIntroduced2; |
2218 | MergedDeprecated = MergedDeprecated2; |
2219 | MergedObsoleted = MergedObsoleted2; |
2220 | ++i; |
2221 | } |
2222 | } |
2223 | |
2224 | if (FoundAny && |
2225 | MergedIntroduced == Introduced && |
2226 | MergedDeprecated == Deprecated && |
2227 | MergedObsoleted == Obsoleted) |
2228 | return nullptr; |
2229 | |
2230 | // Only create a new attribute if !OverrideOrImpl, but we want to do |
2231 | // the checking. |
2232 | if (!checkAvailabilityAttr(S&: *this, Range: CI.getRange(), Platform, Introduced: MergedIntroduced, |
2233 | Deprecated: MergedDeprecated, Obsoleted: MergedObsoleted) && |
2234 | !OverrideOrImpl) { |
2235 | auto *Avail = ::new (Context) AvailabilityAttr( |
2236 | Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable, |
2237 | Message, IsStrict, Replacement, Priority, Environment); |
2238 | Avail->setImplicit(Implicit); |
2239 | return Avail; |
2240 | } |
2241 | return nullptr; |
2242 | } |
2243 | |
2244 | static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2245 | if (isa<UsingDecl, UnresolvedUsingTypenameDecl, UnresolvedUsingValueDecl>( |
2246 | Val: D)) { |
2247 | S.Diag(Loc: AL.getRange().getBegin(), DiagID: diag::warn_deprecated_ignored_on_using) |
2248 | << AL; |
2249 | return; |
2250 | } |
2251 | |
2252 | if (!AL.checkExactlyNumArgs(S, Num: 1)) |
2253 | return; |
2254 | IdentifierLoc *Platform = AL.getArgAsIdent(Arg: 0); |
2255 | |
2256 | IdentifierInfo *II = Platform->Ident; |
2257 | if (AvailabilityAttr::getPrettyPlatformName(Platform: II->getName()).empty()) |
2258 | S.Diag(Loc: Platform->Loc, DiagID: diag::warn_availability_unknown_platform) |
2259 | << Platform->Ident; |
2260 | |
2261 | auto *ND = dyn_cast<NamedDecl>(Val: D); |
2262 | if (!ND) // We warned about this already, so just return. |
2263 | return; |
2264 | |
2265 | AvailabilityChange Introduced = AL.getAvailabilityIntroduced(); |
2266 | AvailabilityChange Deprecated = AL.getAvailabilityDeprecated(); |
2267 | AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted(); |
2268 | bool IsUnavailable = AL.getUnavailableLoc().isValid(); |
2269 | bool IsStrict = AL.getStrictLoc().isValid(); |
2270 | StringRef Str; |
2271 | if (const auto *SE = dyn_cast_if_present<StringLiteral>(Val: AL.getMessageExpr())) |
2272 | Str = SE->getString(); |
2273 | StringRef Replacement; |
2274 | if (const auto *SE = |
2275 | dyn_cast_if_present<StringLiteral>(Val: AL.getReplacementExpr())) |
2276 | Replacement = SE->getString(); |
2277 | |
2278 | if (II->isStr(Str: "swift" )) { |
2279 | if (Introduced.isValid() || Obsoleted.isValid() || |
2280 | (!IsUnavailable && !Deprecated.isValid())) { |
2281 | S.Diag(Loc: AL.getLoc(), |
2282 | DiagID: diag::warn_availability_swift_unavailable_deprecated_only); |
2283 | return; |
2284 | } |
2285 | } |
2286 | |
2287 | if (II->isStr(Str: "fuchsia" )) { |
2288 | std::optional<unsigned> Min, Sub; |
2289 | if ((Min = Introduced.Version.getMinor()) || |
2290 | (Sub = Introduced.Version.getSubminor())) { |
2291 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_availability_fuchsia_unavailable_minor); |
2292 | return; |
2293 | } |
2294 | } |
2295 | |
2296 | if (S.getLangOpts().HLSL && IsStrict) |
2297 | S.Diag(Loc: AL.getStrictLoc(), DiagID: diag::err_availability_unexpected_parameter) |
2298 | << "strict" << /* HLSL */ 0; |
2299 | |
2300 | int PriorityModifier = AL.isPragmaClangAttribute() |
2301 | ? Sema::AP_PragmaClangAttribute |
2302 | : Sema::AP_Explicit; |
2303 | |
2304 | const IdentifierLoc *EnvironmentLoc = AL.getEnvironment(); |
2305 | IdentifierInfo *IIEnvironment = nullptr; |
2306 | if (EnvironmentLoc) { |
2307 | if (S.getLangOpts().HLSL) { |
2308 | IIEnvironment = EnvironmentLoc->Ident; |
2309 | if (AvailabilityAttr::getEnvironmentType( |
2310 | Environment: EnvironmentLoc->Ident->getName()) == |
2311 | llvm::Triple::EnvironmentType::UnknownEnvironment) |
2312 | S.Diag(Loc: EnvironmentLoc->Loc, DiagID: diag::warn_availability_unknown_environment) |
2313 | << EnvironmentLoc->Ident; |
2314 | } else { |
2315 | S.Diag(Loc: EnvironmentLoc->Loc, DiagID: diag::err_availability_unexpected_parameter) |
2316 | << "environment" << /* C/C++ */ 1; |
2317 | } |
2318 | } |
2319 | |
2320 | AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
2321 | D: ND, CI: AL, Platform: II, Implicit: false /*Implicit*/, Introduced: Introduced.Version, Deprecated: Deprecated.Version, |
2322 | Obsoleted: Obsoleted.Version, IsUnavailable, Message: Str, IsStrict, Replacement, |
2323 | AMK: Sema::AMK_None, Priority: PriorityModifier, Environment: IIEnvironment); |
2324 | if (NewAttr) |
2325 | D->addAttr(A: NewAttr); |
2326 | |
2327 | // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning |
2328 | // matches before the start of the watchOS platform. |
2329 | if (S.Context.getTargetInfo().getTriple().isWatchOS()) { |
2330 | IdentifierInfo *NewII = nullptr; |
2331 | if (II->getName() == "ios" ) |
2332 | NewII = &S.Context.Idents.get(Name: "watchos" ); |
2333 | else if (II->getName() == "ios_app_extension" ) |
2334 | NewII = &S.Context.Idents.get(Name: "watchos_app_extension" ); |
2335 | |
2336 | if (NewII) { |
2337 | const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking(); |
2338 | const auto *IOSToWatchOSMapping = |
2339 | SDKInfo ? SDKInfo->getVersionMapping( |
2340 | Kind: DarwinSDKInfo::OSEnvPair::iOStoWatchOSPair()) |
2341 | : nullptr; |
2342 | |
2343 | auto adjustWatchOSVersion = |
2344 | [IOSToWatchOSMapping](VersionTuple Version) -> VersionTuple { |
2345 | if (Version.empty()) |
2346 | return Version; |
2347 | auto MinimumWatchOSVersion = VersionTuple(2, 0); |
2348 | |
2349 | if (IOSToWatchOSMapping) { |
2350 | if (auto MappedVersion = IOSToWatchOSMapping->map( |
2351 | Key: Version, MinimumValue: MinimumWatchOSVersion, MaximumValue: std::nullopt)) { |
2352 | return *MappedVersion; |
2353 | } |
2354 | } |
2355 | |
2356 | auto Major = Version.getMajor(); |
2357 | auto NewMajor = Major >= 9 ? Major - 7 : 0; |
2358 | if (NewMajor >= 2) { |
2359 | if (Version.getMinor()) { |
2360 | if (Version.getSubminor()) |
2361 | return VersionTuple(NewMajor, *Version.getMinor(), |
2362 | *Version.getSubminor()); |
2363 | else |
2364 | return VersionTuple(NewMajor, *Version.getMinor()); |
2365 | } |
2366 | return VersionTuple(NewMajor); |
2367 | } |
2368 | |
2369 | return MinimumWatchOSVersion; |
2370 | }; |
2371 | |
2372 | auto NewIntroduced = adjustWatchOSVersion(Introduced.Version); |
2373 | auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version); |
2374 | auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version); |
2375 | |
2376 | AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
2377 | D: ND, CI: AL, Platform: NewII, Implicit: true /*Implicit*/, Introduced: NewIntroduced, Deprecated: NewDeprecated, |
2378 | Obsoleted: NewObsoleted, IsUnavailable, Message: Str, IsStrict, Replacement, |
2379 | AMK: Sema::AMK_None, Priority: PriorityModifier + Sema::AP_InferredFromOtherPlatform, |
2380 | Environment: IIEnvironment); |
2381 | if (NewAttr) |
2382 | D->addAttr(A: NewAttr); |
2383 | } |
2384 | } else if (S.Context.getTargetInfo().getTriple().isTvOS()) { |
2385 | // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning |
2386 | // matches before the start of the tvOS platform. |
2387 | IdentifierInfo *NewII = nullptr; |
2388 | if (II->getName() == "ios" ) |
2389 | NewII = &S.Context.Idents.get(Name: "tvos" ); |
2390 | else if (II->getName() == "ios_app_extension" ) |
2391 | NewII = &S.Context.Idents.get(Name: "tvos_app_extension" ); |
2392 | |
2393 | if (NewII) { |
2394 | const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking(); |
2395 | const auto *IOSToTvOSMapping = |
2396 | SDKInfo ? SDKInfo->getVersionMapping( |
2397 | Kind: DarwinSDKInfo::OSEnvPair::iOStoTvOSPair()) |
2398 | : nullptr; |
2399 | |
2400 | auto AdjustTvOSVersion = |
2401 | [IOSToTvOSMapping](VersionTuple Version) -> VersionTuple { |
2402 | if (Version.empty()) |
2403 | return Version; |
2404 | |
2405 | if (IOSToTvOSMapping) { |
2406 | if (auto MappedVersion = IOSToTvOSMapping->map( |
2407 | Key: Version, MinimumValue: VersionTuple(0, 0), MaximumValue: std::nullopt)) { |
2408 | return *MappedVersion; |
2409 | } |
2410 | } |
2411 | return Version; |
2412 | }; |
2413 | |
2414 | auto NewIntroduced = AdjustTvOSVersion(Introduced.Version); |
2415 | auto NewDeprecated = AdjustTvOSVersion(Deprecated.Version); |
2416 | auto NewObsoleted = AdjustTvOSVersion(Obsoleted.Version); |
2417 | |
2418 | AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
2419 | D: ND, CI: AL, Platform: NewII, Implicit: true /*Implicit*/, Introduced: NewIntroduced, Deprecated: NewDeprecated, |
2420 | Obsoleted: NewObsoleted, IsUnavailable, Message: Str, IsStrict, Replacement, |
2421 | AMK: Sema::AMK_None, Priority: PriorityModifier + Sema::AP_InferredFromOtherPlatform, |
2422 | Environment: IIEnvironment); |
2423 | if (NewAttr) |
2424 | D->addAttr(A: NewAttr); |
2425 | } |
2426 | } else if (S.Context.getTargetInfo().getTriple().getOS() == |
2427 | llvm::Triple::IOS && |
2428 | S.Context.getTargetInfo().getTriple().isMacCatalystEnvironment()) { |
2429 | auto GetSDKInfo = [&]() { |
2430 | return S.getDarwinSDKInfoForAvailabilityChecking(Loc: AL.getRange().getBegin(), |
2431 | Platform: "macOS" ); |
2432 | }; |
2433 | |
2434 | // Transcribe "ios" to "maccatalyst" (and add a new attribute). |
2435 | IdentifierInfo *NewII = nullptr; |
2436 | if (II->getName() == "ios" ) |
2437 | NewII = &S.Context.Idents.get(Name: "maccatalyst" ); |
2438 | else if (II->getName() == "ios_app_extension" ) |
2439 | NewII = &S.Context.Idents.get(Name: "maccatalyst_app_extension" ); |
2440 | if (NewII) { |
2441 | auto MinMacCatalystVersion = [](const VersionTuple &V) { |
2442 | if (V.empty()) |
2443 | return V; |
2444 | if (V.getMajor() < 13 || |
2445 | (V.getMajor() == 13 && V.getMinor() && *V.getMinor() < 1)) |
2446 | return VersionTuple(13, 1); // The min Mac Catalyst version is 13.1. |
2447 | return V; |
2448 | }; |
2449 | AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
2450 | D: ND, CI: AL, Platform: NewII, Implicit: true /*Implicit*/, |
2451 | Introduced: MinMacCatalystVersion(Introduced.Version), |
2452 | Deprecated: MinMacCatalystVersion(Deprecated.Version), |
2453 | Obsoleted: MinMacCatalystVersion(Obsoleted.Version), IsUnavailable, Message: Str, |
2454 | IsStrict, Replacement, AMK: Sema::AMK_None, |
2455 | Priority: PriorityModifier + Sema::AP_InferredFromOtherPlatform, Environment: IIEnvironment); |
2456 | if (NewAttr) |
2457 | D->addAttr(A: NewAttr); |
2458 | } else if (II->getName() == "macos" && GetSDKInfo() && |
2459 | (!Introduced.Version.empty() || !Deprecated.Version.empty() || |
2460 | !Obsoleted.Version.empty())) { |
2461 | if (const auto *MacOStoMacCatalystMapping = |
2462 | GetSDKInfo()->getVersionMapping( |
2463 | Kind: DarwinSDKInfo::OSEnvPair::macOStoMacCatalystPair())) { |
2464 | // Infer Mac Catalyst availability from the macOS availability attribute |
2465 | // if it has versioned availability. Don't infer 'unavailable'. This |
2466 | // inferred availability has lower priority than the other availability |
2467 | // attributes that are inferred from 'ios'. |
2468 | NewII = &S.Context.Idents.get(Name: "maccatalyst" ); |
2469 | auto RemapMacOSVersion = |
2470 | [&](const VersionTuple &V) -> std::optional<VersionTuple> { |
2471 | if (V.empty()) |
2472 | return std::nullopt; |
2473 | // API_TO_BE_DEPRECATED is 100000. |
2474 | if (V.getMajor() == 100000) |
2475 | return VersionTuple(100000); |
2476 | // The minimum iosmac version is 13.1 |
2477 | return MacOStoMacCatalystMapping->map(Key: V, MinimumValue: VersionTuple(13, 1), |
2478 | MaximumValue: std::nullopt); |
2479 | }; |
2480 | std::optional<VersionTuple> NewIntroduced = |
2481 | RemapMacOSVersion(Introduced.Version), |
2482 | NewDeprecated = |
2483 | RemapMacOSVersion(Deprecated.Version), |
2484 | NewObsoleted = |
2485 | RemapMacOSVersion(Obsoleted.Version); |
2486 | if (NewIntroduced || NewDeprecated || NewObsoleted) { |
2487 | auto VersionOrEmptyVersion = |
2488 | [](const std::optional<VersionTuple> &V) -> VersionTuple { |
2489 | return V ? *V : VersionTuple(); |
2490 | }; |
2491 | AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
2492 | D: ND, CI: AL, Platform: NewII, Implicit: true /*Implicit*/, |
2493 | Introduced: VersionOrEmptyVersion(NewIntroduced), |
2494 | Deprecated: VersionOrEmptyVersion(NewDeprecated), |
2495 | Obsoleted: VersionOrEmptyVersion(NewObsoleted), /*IsUnavailable=*/false, Message: Str, |
2496 | IsStrict, Replacement, AMK: Sema::AMK_None, |
2497 | Priority: PriorityModifier + Sema::AP_InferredFromOtherPlatform + |
2498 | Sema::AP_InferredFromOtherPlatform, |
2499 | Environment: IIEnvironment); |
2500 | if (NewAttr) |
2501 | D->addAttr(A: NewAttr); |
2502 | } |
2503 | } |
2504 | } |
2505 | } |
2506 | } |
2507 | |
2508 | static void handleExternalSourceSymbolAttr(Sema &S, Decl *D, |
2509 | const ParsedAttr &AL) { |
2510 | if (!AL.checkAtLeastNumArgs(S, Num: 1) || !AL.checkAtMostNumArgs(S, Num: 4)) |
2511 | return; |
2512 | |
2513 | StringRef Language; |
2514 | if (const auto *SE = dyn_cast_if_present<StringLiteral>(Val: AL.getArgAsExpr(Arg: 0))) |
2515 | Language = SE->getString(); |
2516 | StringRef DefinedIn; |
2517 | if (const auto *SE = dyn_cast_if_present<StringLiteral>(Val: AL.getArgAsExpr(Arg: 1))) |
2518 | DefinedIn = SE->getString(); |
2519 | bool IsGeneratedDeclaration = AL.getArgAsIdent(Arg: 2) != nullptr; |
2520 | StringRef USR; |
2521 | if (const auto *SE = dyn_cast_if_present<StringLiteral>(Val: AL.getArgAsExpr(Arg: 3))) |
2522 | USR = SE->getString(); |
2523 | |
2524 | D->addAttr(A: ::new (S.Context) ExternalSourceSymbolAttr( |
2525 | S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration, USR)); |
2526 | } |
2527 | |
2528 | template <class T> |
2529 | static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI, |
2530 | typename T::VisibilityType value) { |
2531 | T *existingAttr = D->getAttr<T>(); |
2532 | if (existingAttr) { |
2533 | typename T::VisibilityType existingValue = existingAttr->getVisibility(); |
2534 | if (existingValue == value) |
2535 | return nullptr; |
2536 | S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility); |
2537 | S.Diag(Loc: CI.getLoc(), DiagID: diag::note_previous_attribute); |
2538 | D->dropAttr<T>(); |
2539 | } |
2540 | return ::new (S.Context) T(S.Context, CI, value); |
2541 | } |
2542 | |
2543 | VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, |
2544 | const AttributeCommonInfo &CI, |
2545 | VisibilityAttr::VisibilityType Vis) { |
2546 | return ::mergeVisibilityAttr<VisibilityAttr>(S&: *this, D, CI, value: Vis); |
2547 | } |
2548 | |
2549 | TypeVisibilityAttr * |
2550 | Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, |
2551 | TypeVisibilityAttr::VisibilityType Vis) { |
2552 | return ::mergeVisibilityAttr<TypeVisibilityAttr>(S&: *this, D, CI, value: Vis); |
2553 | } |
2554 | |
2555 | static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL, |
2556 | bool isTypeVisibility) { |
2557 | // Visibility attributes don't mean anything on a typedef. |
2558 | if (isa<TypedefNameDecl>(Val: D)) { |
2559 | S.Diag(Loc: AL.getRange().getBegin(), DiagID: diag::warn_attribute_ignored) << AL; |
2560 | return; |
2561 | } |
2562 | |
2563 | // 'type_visibility' can only go on a type or namespace. |
2564 | if (isTypeVisibility && !(isa<TagDecl>(Val: D) || isa<ObjCInterfaceDecl>(Val: D) || |
2565 | isa<NamespaceDecl>(Val: D))) { |
2566 | S.Diag(Loc: AL.getRange().getBegin(), DiagID: diag::err_attribute_wrong_decl_type) |
2567 | << AL << AL.isRegularKeywordAttribute() << ExpectedTypeOrNamespace; |
2568 | return; |
2569 | } |
2570 | |
2571 | // Check that the argument is a string literal. |
2572 | StringRef TypeStr; |
2573 | SourceLocation LiteralLoc; |
2574 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: TypeStr, ArgLocation: &LiteralLoc)) |
2575 | return; |
2576 | |
2577 | VisibilityAttr::VisibilityType type; |
2578 | if (!VisibilityAttr::ConvertStrToVisibilityType(Val: TypeStr, Out&: type)) { |
2579 | S.Diag(Loc: LiteralLoc, DiagID: diag::warn_attribute_type_not_supported) << AL |
2580 | << TypeStr; |
2581 | return; |
2582 | } |
2583 | |
2584 | // Complain about attempts to use protected visibility on targets |
2585 | // (like Darwin) that don't support it. |
2586 | if (type == VisibilityAttr::Protected && |
2587 | !S.Context.getTargetInfo().hasProtectedVisibility()) { |
2588 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_protected_visibility); |
2589 | type = VisibilityAttr::Default; |
2590 | } |
2591 | |
2592 | Attr *newAttr; |
2593 | if (isTypeVisibility) { |
2594 | newAttr = S.mergeTypeVisibilityAttr( |
2595 | D, CI: AL, Vis: (TypeVisibilityAttr::VisibilityType)type); |
2596 | } else { |
2597 | newAttr = S.mergeVisibilityAttr(D, CI: AL, Vis: type); |
2598 | } |
2599 | if (newAttr) |
2600 | D->addAttr(A: newAttr); |
2601 | } |
2602 | |
2603 | static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2604 | unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel; |
2605 | if (AL.getNumArgs() > 0) { |
2606 | Expr *E = AL.getArgAsExpr(Arg: 0); |
2607 | std::optional<llvm::APSInt> Idx = llvm::APSInt(32); |
2608 | if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(Ctx: S.Context))) { |
2609 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_n_type) |
2610 | << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange(); |
2611 | return; |
2612 | } |
2613 | |
2614 | if (Idx->isSigned() && Idx->isNegative()) { |
2615 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_sentinel_less_than_zero) |
2616 | << E->getSourceRange(); |
2617 | return; |
2618 | } |
2619 | |
2620 | sentinel = Idx->getZExtValue(); |
2621 | } |
2622 | |
2623 | unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos; |
2624 | if (AL.getNumArgs() > 1) { |
2625 | Expr *E = AL.getArgAsExpr(Arg: 1); |
2626 | std::optional<llvm::APSInt> Idx = llvm::APSInt(32); |
2627 | if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(Ctx: S.Context))) { |
2628 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_n_type) |
2629 | << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange(); |
2630 | return; |
2631 | } |
2632 | nullPos = Idx->getZExtValue(); |
2633 | |
2634 | if ((Idx->isSigned() && Idx->isNegative()) || nullPos > 1) { |
2635 | // FIXME: This error message could be improved, it would be nice |
2636 | // to say what the bounds actually are. |
2637 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_sentinel_not_zero_or_one) |
2638 | << E->getSourceRange(); |
2639 | return; |
2640 | } |
2641 | } |
2642 | |
2643 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
2644 | const FunctionType *FT = FD->getType()->castAs<FunctionType>(); |
2645 | if (isa<FunctionNoProtoType>(Val: FT)) { |
2646 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_sentinel_named_arguments); |
2647 | return; |
2648 | } |
2649 | |
2650 | if (!cast<FunctionProtoType>(Val: FT)->isVariadic()) { |
2651 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_sentinel_not_variadic) << 0; |
2652 | return; |
2653 | } |
2654 | } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(Val: D)) { |
2655 | if (!MD->isVariadic()) { |
2656 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_sentinel_not_variadic) << 0; |
2657 | return; |
2658 | } |
2659 | } else if (const auto *BD = dyn_cast<BlockDecl>(Val: D)) { |
2660 | if (!BD->isVariadic()) { |
2661 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_sentinel_not_variadic) << 1; |
2662 | return; |
2663 | } |
2664 | } else if (const auto *V = dyn_cast<VarDecl>(Val: D)) { |
2665 | QualType Ty = V->getType(); |
2666 | if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { |
2667 | const FunctionType *FT = Ty->isFunctionPointerType() |
2668 | ? D->getFunctionType() |
2669 | : Ty->castAs<BlockPointerType>() |
2670 | ->getPointeeType() |
2671 | ->castAs<FunctionType>(); |
2672 | if (!cast<FunctionProtoType>(Val: FT)->isVariadic()) { |
2673 | int m = Ty->isFunctionPointerType() ? 0 : 1; |
2674 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_sentinel_not_variadic) << m; |
2675 | return; |
2676 | } |
2677 | } else { |
2678 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_wrong_decl_type) |
2679 | << AL << AL.isRegularKeywordAttribute() |
2680 | << ExpectedFunctionMethodOrBlock; |
2681 | return; |
2682 | } |
2683 | } else { |
2684 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_wrong_decl_type) |
2685 | << AL << AL.isRegularKeywordAttribute() |
2686 | << ExpectedFunctionMethodOrBlock; |
2687 | return; |
2688 | } |
2689 | D->addAttr(A: ::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos)); |
2690 | } |
2691 | |
2692 | static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) { |
2693 | if (D->getFunctionType() && |
2694 | D->getFunctionType()->getReturnType()->isVoidType() && |
2695 | !isa<CXXConstructorDecl>(Val: D)) { |
2696 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_void_function_method) << AL << 0; |
2697 | return; |
2698 | } |
2699 | if (const auto *MD = dyn_cast<ObjCMethodDecl>(Val: D)) |
2700 | if (MD->getReturnType()->isVoidType()) { |
2701 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_void_function_method) << AL << 1; |
2702 | return; |
2703 | } |
2704 | |
2705 | StringRef Str; |
2706 | if (AL.isStandardAttributeSyntax() && !AL.getScopeName()) { |
2707 | // The standard attribute cannot be applied to variable declarations such |
2708 | // as a function pointer. |
2709 | if (isa<VarDecl>(Val: D)) |
2710 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_wrong_decl_type_str) |
2711 | << AL << AL.isRegularKeywordAttribute() |
2712 | << "functions, classes, or enumerations" ; |
2713 | |
2714 | // If this is spelled as the standard C++17 attribute, but not in C++17, |
2715 | // warn about using it as an extension. If there are attribute arguments, |
2716 | // then claim it's a C++20 extension instead. |
2717 | // FIXME: If WG14 does not seem likely to adopt the same feature, add an |
2718 | // extension warning for C23 mode. |
2719 | const LangOptions &LO = S.getLangOpts(); |
2720 | if (AL.getNumArgs() == 1) { |
2721 | if (LO.CPlusPlus && !LO.CPlusPlus20) |
2722 | S.Diag(Loc: AL.getLoc(), DiagID: diag::ext_cxx20_attr) << AL; |
2723 | |
2724 | // Since this is spelled [[nodiscard]], get the optional string |
2725 | // literal. If in C++ mode, but not in C++20 mode, diagnose as an |
2726 | // extension. |
2727 | // FIXME: C23 should support this feature as well, even as an extension. |
2728 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: nullptr)) |
2729 | return; |
2730 | } else if (LO.CPlusPlus && !LO.CPlusPlus17) |
2731 | S.Diag(Loc: AL.getLoc(), DiagID: diag::ext_cxx17_attr) << AL; |
2732 | } |
2733 | |
2734 | if ((!AL.isGNUAttribute() && |
2735 | !(AL.isStandardAttributeSyntax() && AL.isClangScope())) && |
2736 | isa<TypedefNameDecl>(Val: D)) { |
2737 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_unused_result_typedef_unsupported_spelling) |
2738 | << AL.isGNUScope(); |
2739 | return; |
2740 | } |
2741 | |
2742 | D->addAttr(A: ::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str)); |
2743 | } |
2744 | |
2745 | static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2746 | // weak_import only applies to variable & function declarations. |
2747 | bool isDef = false; |
2748 | if (!D->canBeWeakImported(IsDefinition&: isDef)) { |
2749 | if (isDef) |
2750 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_invalid_on_definition) |
2751 | << "weak_import" ; |
2752 | else if (isa<ObjCPropertyDecl>(Val: D) || isa<ObjCMethodDecl>(Val: D) || |
2753 | (S.Context.getTargetInfo().getTriple().isOSDarwin() && |
2754 | (isa<ObjCInterfaceDecl>(Val: D) || isa<EnumDecl>(Val: D)))) { |
2755 | // Nothing to warn about here. |
2756 | } else |
2757 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_wrong_decl_type) |
2758 | << AL << AL.isRegularKeywordAttribute() << ExpectedVariableOrFunction; |
2759 | |
2760 | return; |
2761 | } |
2762 | |
2763 | D->addAttr(A: ::new (S.Context) WeakImportAttr(S.Context, AL)); |
2764 | } |
2765 | |
2766 | // Handles reqd_work_group_size and work_group_size_hint. |
2767 | template <typename WorkGroupAttr> |
2768 | static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) { |
2769 | uint32_t WGSize[3]; |
2770 | for (unsigned i = 0; i < 3; ++i) { |
2771 | const Expr *E = AL.getArgAsExpr(Arg: i); |
2772 | if (!S.checkUInt32Argument(AI: AL, Expr: E, Val&: WGSize[i], Idx: i, |
2773 | /*StrictlyUnsigned=*/true)) |
2774 | return; |
2775 | if (WGSize[i] == 0) { |
2776 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_is_zero) |
2777 | << AL << E->getSourceRange(); |
2778 | return; |
2779 | } |
2780 | } |
2781 | |
2782 | WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>(); |
2783 | if (Existing && !(Existing->getXDim() == WGSize[0] && |
2784 | Existing->getYDim() == WGSize[1] && |
2785 | Existing->getZDim() == WGSize[2])) |
2786 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_duplicate_attribute) << AL; |
2787 | |
2788 | D->addAttr(A: ::new (S.Context) |
2789 | WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2])); |
2790 | } |
2791 | |
2792 | static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) { |
2793 | if (!AL.hasParsedType()) { |
2794 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) << AL << 1; |
2795 | return; |
2796 | } |
2797 | |
2798 | TypeSourceInfo *ParmTSI = nullptr; |
2799 | QualType ParmType = S.GetTypeFromParser(Ty: AL.getTypeArg(), TInfo: &ParmTSI); |
2800 | assert(ParmTSI && "no type source info for attribute argument" ); |
2801 | |
2802 | if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() && |
2803 | (ParmType->isBooleanType() || |
2804 | !ParmType->isIntegralType(Ctx: S.getASTContext()))) { |
2805 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_invalid_argument) << 2 << AL; |
2806 | return; |
2807 | } |
2808 | |
2809 | if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) { |
2810 | if (!S.Context.hasSameType(T1: A->getTypeHint(), T2: ParmType)) { |
2811 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_duplicate_attribute) << AL; |
2812 | return; |
2813 | } |
2814 | } |
2815 | |
2816 | D->addAttr(A: ::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI)); |
2817 | } |
2818 | |
2819 | SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI, |
2820 | StringRef Name) { |
2821 | // Explicit or partial specializations do not inherit |
2822 | // the section attribute from the primary template. |
2823 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
2824 | if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate && |
2825 | FD->isFunctionTemplateSpecialization()) |
2826 | return nullptr; |
2827 | } |
2828 | if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) { |
2829 | if (ExistingAttr->getName() == Name) |
2830 | return nullptr; |
2831 | Diag(Loc: ExistingAttr->getLocation(), DiagID: diag::warn_mismatched_section) |
2832 | << 1 /*section*/; |
2833 | Diag(Loc: CI.getLoc(), DiagID: diag::note_previous_attribute); |
2834 | return nullptr; |
2835 | } |
2836 | return ::new (Context) SectionAttr(Context, CI, Name); |
2837 | } |
2838 | |
2839 | llvm::Error Sema::isValidSectionSpecifier(StringRef SecName) { |
2840 | if (!Context.getTargetInfo().getTriple().isOSDarwin()) |
2841 | return llvm::Error::success(); |
2842 | |
2843 | // Let MCSectionMachO validate this. |
2844 | StringRef Segment, Section; |
2845 | unsigned TAA, StubSize; |
2846 | bool HasTAA; |
2847 | return llvm::MCSectionMachO::ParseSectionSpecifier(Spec: SecName, Segment, Section, |
2848 | TAA, TAAParsed&: HasTAA, StubSize); |
2849 | } |
2850 | |
2851 | bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) { |
2852 | if (llvm::Error E = isValidSectionSpecifier(SecName)) { |
2853 | Diag(Loc: LiteralLoc, DiagID: diag::err_attribute_section_invalid_for_target) |
2854 | << toString(E: std::move(E)) << 1 /*'section'*/; |
2855 | return false; |
2856 | } |
2857 | return true; |
2858 | } |
2859 | |
2860 | static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2861 | // Make sure that there is a string literal as the sections's single |
2862 | // argument. |
2863 | StringRef Str; |
2864 | SourceLocation LiteralLoc; |
2865 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &LiteralLoc)) |
2866 | return; |
2867 | |
2868 | if (!S.checkSectionName(LiteralLoc, SecName: Str)) |
2869 | return; |
2870 | |
2871 | SectionAttr *NewAttr = S.mergeSectionAttr(D, CI: AL, Name: Str); |
2872 | if (NewAttr) { |
2873 | D->addAttr(A: NewAttr); |
2874 | if (isa<FunctionDecl, FunctionTemplateDecl, ObjCMethodDecl, |
2875 | ObjCPropertyDecl>(Val: D)) |
2876 | S.UnifySection(SectionName: NewAttr->getName(), |
2877 | SectionFlags: ASTContext::PSF_Execute | ASTContext::PSF_Read, |
2878 | TheDecl: cast<NamedDecl>(Val: D)); |
2879 | } |
2880 | } |
2881 | |
2882 | static void handleCodeModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2883 | StringRef Str; |
2884 | SourceLocation LiteralLoc; |
2885 | // Check that it is a string. |
2886 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &LiteralLoc)) |
2887 | return; |
2888 | |
2889 | llvm::CodeModel::Model CM; |
2890 | if (!CodeModelAttr::ConvertStrToModel(Val: Str, Out&: CM)) { |
2891 | S.Diag(Loc: LiteralLoc, DiagID: diag::err_attr_codemodel_arg) << Str; |
2892 | return; |
2893 | } |
2894 | |
2895 | D->addAttr(A: ::new (S.Context) CodeModelAttr(S.Context, AL, CM)); |
2896 | } |
2897 | |
2898 | // This is used for `__declspec(code_seg("segname"))` on a decl. |
2899 | // `#pragma code_seg("segname")` uses checkSectionName() instead. |
2900 | static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc, |
2901 | StringRef CodeSegName) { |
2902 | if (llvm::Error E = S.isValidSectionSpecifier(SecName: CodeSegName)) { |
2903 | S.Diag(Loc: LiteralLoc, DiagID: diag::err_attribute_section_invalid_for_target) |
2904 | << toString(E: std::move(E)) << 0 /*'code-seg'*/; |
2905 | return false; |
2906 | } |
2907 | |
2908 | return true; |
2909 | } |
2910 | |
2911 | CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI, |
2912 | StringRef Name) { |
2913 | // Explicit or partial specializations do not inherit |
2914 | // the code_seg attribute from the primary template. |
2915 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
2916 | if (FD->isFunctionTemplateSpecialization()) |
2917 | return nullptr; |
2918 | } |
2919 | if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) { |
2920 | if (ExistingAttr->getName() == Name) |
2921 | return nullptr; |
2922 | Diag(Loc: ExistingAttr->getLocation(), DiagID: diag::warn_mismatched_section) |
2923 | << 0 /*codeseg*/; |
2924 | Diag(Loc: CI.getLoc(), DiagID: diag::note_previous_attribute); |
2925 | return nullptr; |
2926 | } |
2927 | return ::new (Context) CodeSegAttr(Context, CI, Name); |
2928 | } |
2929 | |
2930 | static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2931 | StringRef Str; |
2932 | SourceLocation LiteralLoc; |
2933 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &LiteralLoc)) |
2934 | return; |
2935 | if (!checkCodeSegName(S, LiteralLoc, CodeSegName: Str)) |
2936 | return; |
2937 | if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) { |
2938 | if (!ExistingAttr->isImplicit()) { |
2939 | S.Diag(Loc: AL.getLoc(), |
2940 | DiagID: ExistingAttr->getName() == Str |
2941 | ? diag::warn_duplicate_codeseg_attribute |
2942 | : diag::err_conflicting_codeseg_attribute); |
2943 | return; |
2944 | } |
2945 | D->dropAttr<CodeSegAttr>(); |
2946 | } |
2947 | if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, CI: AL, Name: Str)) |
2948 | D->addAttr(A: CSA); |
2949 | } |
2950 | |
2951 | bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) { |
2952 | enum FirstParam { Unsupported, Duplicate, Unknown }; |
2953 | enum SecondParam { None, CPU, Tune }; |
2954 | enum ThirdParam { Target, TargetClones }; |
2955 | if (AttrStr.contains(Other: "fpmath=" )) |
2956 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
2957 | << Unsupported << None << "fpmath=" << Target; |
2958 | |
2959 | // Diagnose use of tune if target doesn't support it. |
2960 | if (!Context.getTargetInfo().supportsTargetAttributeTune() && |
2961 | AttrStr.contains(Other: "tune=" )) |
2962 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
2963 | << Unsupported << None << "tune=" << Target; |
2964 | |
2965 | ParsedTargetAttr ParsedAttrs = |
2966 | Context.getTargetInfo().parseTargetAttr(Str: AttrStr); |
2967 | |
2968 | if (!ParsedAttrs.CPU.empty() && |
2969 | !Context.getTargetInfo().isValidCPUName(Name: ParsedAttrs.CPU)) |
2970 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
2971 | << Unknown << CPU << ParsedAttrs.CPU << Target; |
2972 | |
2973 | if (!ParsedAttrs.Tune.empty() && |
2974 | !Context.getTargetInfo().isValidCPUName(Name: ParsedAttrs.Tune)) |
2975 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
2976 | << Unknown << Tune << ParsedAttrs.Tune << Target; |
2977 | |
2978 | if (Context.getTargetInfo().getTriple().isRISCV() && |
2979 | ParsedAttrs.Duplicate != "" ) |
2980 | return Diag(Loc: LiteralLoc, DiagID: diag::err_duplicate_target_attribute) |
2981 | << Duplicate << None << ParsedAttrs.Duplicate << Target; |
2982 | |
2983 | if (ParsedAttrs.Duplicate != "" ) |
2984 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
2985 | << Duplicate << None << ParsedAttrs.Duplicate << Target; |
2986 | |
2987 | for (const auto &Feature : ParsedAttrs.Features) { |
2988 | auto CurFeature = StringRef(Feature).drop_front(); // remove + or -. |
2989 | if (!Context.getTargetInfo().isValidFeatureName(Feature: CurFeature)) |
2990 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
2991 | << Unsupported << None << CurFeature << Target; |
2992 | } |
2993 | |
2994 | TargetInfo::BranchProtectionInfo BPI{}; |
2995 | StringRef DiagMsg; |
2996 | if (ParsedAttrs.BranchProtection.empty()) |
2997 | return false; |
2998 | if (!Context.getTargetInfo().validateBranchProtection( |
2999 | Spec: ParsedAttrs.BranchProtection, Arch: ParsedAttrs.CPU, BPI, Err&: DiagMsg)) { |
3000 | if (DiagMsg.empty()) |
3001 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
3002 | << Unsupported << None << "branch-protection" << Target; |
3003 | return Diag(Loc: LiteralLoc, DiagID: diag::err_invalid_branch_protection_spec) |
3004 | << DiagMsg; |
3005 | } |
3006 | if (!DiagMsg.empty()) |
3007 | Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_branch_protection_spec) << DiagMsg; |
3008 | |
3009 | return false; |
3010 | } |
3011 | |
3012 | bool Sema::checkTargetVersionAttr(SourceLocation LiteralLoc, Decl *D, |
3013 | StringRef AttrStr) { |
3014 | enum FirstParam { Unsupported }; |
3015 | enum SecondParam { None }; |
3016 | enum ThirdParam { Target, TargetClones, TargetVersion }; |
3017 | llvm::SmallVector<StringRef, 8> Features; |
3018 | AttrStr.split(A&: Features, Separator: "+" ); |
3019 | for (auto &CurFeature : Features) { |
3020 | CurFeature = CurFeature.trim(); |
3021 | if (CurFeature == "default" ) |
3022 | continue; |
3023 | if (!Context.getTargetInfo().validateCpuSupports(Name: CurFeature)) |
3024 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
3025 | << Unsupported << None << CurFeature << TargetVersion; |
3026 | } |
3027 | return false; |
3028 | } |
3029 | |
3030 | static void handleTargetVersionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3031 | StringRef Str; |
3032 | SourceLocation LiteralLoc; |
3033 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &LiteralLoc) || |
3034 | S.checkTargetVersionAttr(LiteralLoc, D, AttrStr: Str)) |
3035 | return; |
3036 | TargetVersionAttr *NewAttr = |
3037 | ::new (S.Context) TargetVersionAttr(S.Context, AL, Str); |
3038 | D->addAttr(A: NewAttr); |
3039 | } |
3040 | |
3041 | static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3042 | StringRef Str; |
3043 | SourceLocation LiteralLoc; |
3044 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &LiteralLoc) || |
3045 | S.checkTargetAttr(LiteralLoc, AttrStr: Str)) |
3046 | return; |
3047 | |
3048 | TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str); |
3049 | D->addAttr(A: NewAttr); |
3050 | } |
3051 | |
3052 | bool Sema::checkTargetClonesAttrString( |
3053 | SourceLocation LiteralLoc, StringRef Str, const StringLiteral *Literal, |
3054 | Decl *D, bool &HasDefault, bool &HasCommas, bool &HasNotDefault, |
3055 | SmallVectorImpl<SmallString<64>> &StringsBuffer) { |
3056 | enum FirstParam { Unsupported, Duplicate, Unknown }; |
3057 | enum SecondParam { None, CPU, Tune }; |
3058 | enum ThirdParam { Target, TargetClones }; |
3059 | HasCommas = HasCommas || Str.contains(C: ','); |
3060 | const TargetInfo &TInfo = Context.getTargetInfo(); |
3061 | // Warn on empty at the beginning of a string. |
3062 | if (Str.size() == 0) |
3063 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
3064 | << Unsupported << None << "" << TargetClones; |
3065 | |
3066 | std::pair<StringRef, StringRef> Parts = {{}, Str}; |
3067 | while (!Parts.second.empty()) { |
3068 | Parts = Parts.second.split(Separator: ','); |
3069 | StringRef Cur = Parts.first.trim(); |
3070 | SourceLocation CurLoc = |
3071 | Literal->getLocationOfByte(ByteNo: Cur.data() - Literal->getString().data(), |
3072 | SM: getSourceManager(), Features: getLangOpts(), Target: TInfo); |
3073 | |
3074 | bool DefaultIsDupe = false; |
3075 | bool HasCodeGenImpact = false; |
3076 | if (Cur.empty()) |
3077 | return Diag(Loc: CurLoc, DiagID: diag::warn_unsupported_target_attribute) |
3078 | << Unsupported << None << "" << TargetClones; |
3079 | |
3080 | if (TInfo.getTriple().isAArch64()) { |
3081 | // AArch64 target clones specific |
3082 | if (Cur == "default" ) { |
3083 | DefaultIsDupe = HasDefault; |
3084 | HasDefault = true; |
3085 | if (llvm::is_contained(Range&: StringsBuffer, Element: Cur) || DefaultIsDupe) |
3086 | Diag(Loc: CurLoc, DiagID: diag::warn_target_clone_duplicate_options); |
3087 | else |
3088 | StringsBuffer.push_back(Elt: Cur); |
3089 | } else { |
3090 | std::pair<StringRef, StringRef> CurParts = {{}, Cur}; |
3091 | llvm::SmallVector<StringRef, 8> CurFeatures; |
3092 | while (!CurParts.second.empty()) { |
3093 | CurParts = CurParts.second.split(Separator: '+'); |
3094 | StringRef CurFeature = CurParts.first.trim(); |
3095 | if (!TInfo.validateCpuSupports(Name: CurFeature)) { |
3096 | Diag(Loc: CurLoc, DiagID: diag::warn_unsupported_target_attribute) |
3097 | << Unsupported << None << CurFeature << TargetClones; |
3098 | continue; |
3099 | } |
3100 | if (TInfo.doesFeatureAffectCodeGen(Feature: CurFeature)) |
3101 | HasCodeGenImpact = true; |
3102 | CurFeatures.push_back(Elt: CurFeature); |
3103 | } |
3104 | // Canonize TargetClones Attributes |
3105 | llvm::sort(C&: CurFeatures); |
3106 | SmallString<64> Res; |
3107 | for (auto &CurFeat : CurFeatures) { |
3108 | if (!Res.empty()) |
3109 | Res.append(RHS: "+" ); |
3110 | Res.append(RHS: CurFeat); |
3111 | } |
3112 | if (llvm::is_contained(Range&: StringsBuffer, Element: Res) || DefaultIsDupe) |
3113 | Diag(Loc: CurLoc, DiagID: diag::warn_target_clone_duplicate_options); |
3114 | else if (!HasCodeGenImpact) |
3115 | // Ignore features in target_clone attribute that don't impact |
3116 | // code generation |
3117 | Diag(Loc: CurLoc, DiagID: diag::warn_target_clone_no_impact_options); |
3118 | else if (!Res.empty()) { |
3119 | StringsBuffer.push_back(Elt: Res); |
3120 | HasNotDefault = true; |
3121 | } |
3122 | } |
3123 | } else { |
3124 | // Other targets ( currently X86 ) |
3125 | if (Cur.starts_with(Prefix: "arch=" )) { |
3126 | if (!Context.getTargetInfo().isValidCPUName( |
3127 | Name: Cur.drop_front(N: sizeof("arch=" ) - 1))) |
3128 | return Diag(Loc: CurLoc, DiagID: diag::warn_unsupported_target_attribute) |
3129 | << Unsupported << CPU << Cur.drop_front(N: sizeof("arch=" ) - 1) |
3130 | << TargetClones; |
3131 | } else if (Cur == "default" ) { |
3132 | DefaultIsDupe = HasDefault; |
3133 | HasDefault = true; |
3134 | } else if (!Context.getTargetInfo().isValidFeatureName(Feature: Cur)) |
3135 | return Diag(Loc: CurLoc, DiagID: diag::warn_unsupported_target_attribute) |
3136 | << Unsupported << None << Cur << TargetClones; |
3137 | if (llvm::is_contained(Range&: StringsBuffer, Element: Cur) || DefaultIsDupe) |
3138 | Diag(Loc: CurLoc, DiagID: diag::warn_target_clone_duplicate_options); |
3139 | // Note: Add even if there are duplicates, since it changes name mangling. |
3140 | StringsBuffer.push_back(Elt: Cur); |
3141 | } |
3142 | } |
3143 | if (Str.rtrim().ends_with(Suffix: "," )) |
3144 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
3145 | << Unsupported << None << "" << TargetClones; |
3146 | return false; |
3147 | } |
3148 | |
3149 | static void handleTargetClonesAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3150 | if (S.Context.getTargetInfo().getTriple().isAArch64() && |
3151 | !S.Context.getTargetInfo().hasFeature(Feature: "fmv" )) |
3152 | return; |
3153 | |
3154 | // Ensure we don't combine these with themselves, since that causes some |
3155 | // confusing behavior. |
3156 | if (const auto *Other = D->getAttr<TargetClonesAttr>()) { |
3157 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_disallowed_duplicate_attribute) << AL; |
3158 | S.Diag(Loc: Other->getLocation(), DiagID: diag::note_conflicting_attribute); |
3159 | return; |
3160 | } |
3161 | if (checkAttrMutualExclusion<TargetClonesAttr>(S, D, AL)) |
3162 | return; |
3163 | |
3164 | SmallVector<StringRef, 2> Strings; |
3165 | SmallVector<SmallString<64>, 2> StringsBuffer; |
3166 | bool HasCommas = false, HasDefault = false, HasNotDefault = false; |
3167 | |
3168 | for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
3169 | StringRef CurStr; |
3170 | SourceLocation LiteralLoc; |
3171 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: I, Str&: CurStr, ArgLocation: &LiteralLoc) || |
3172 | S.checkTargetClonesAttrString( |
3173 | LiteralLoc, Str: CurStr, |
3174 | Literal: cast<StringLiteral>(Val: AL.getArgAsExpr(Arg: I)->IgnoreParenCasts()), D, |
3175 | HasDefault, HasCommas, HasNotDefault, StringsBuffer)) |
3176 | return; |
3177 | } |
3178 | for (auto &SmallStr : StringsBuffer) |
3179 | Strings.push_back(Elt: SmallStr.str()); |
3180 | |
3181 | if (HasCommas && AL.getNumArgs() > 1) |
3182 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_target_clone_mixed_values); |
3183 | |
3184 | if (S.Context.getTargetInfo().getTriple().isAArch64() && !HasDefault) { |
3185 | // Add default attribute if there is no one |
3186 | HasDefault = true; |
3187 | Strings.push_back(Elt: "default" ); |
3188 | } |
3189 | |
3190 | if (!HasDefault) { |
3191 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_target_clone_must_have_default); |
3192 | return; |
3193 | } |
3194 | |
3195 | // FIXME: We could probably figure out how to get this to work for lambdas |
3196 | // someday. |
3197 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: D)) { |
3198 | if (MD->getParent()->isLambda()) { |
3199 | S.Diag(Loc: D->getLocation(), DiagID: diag::err_multiversion_doesnt_support) |
3200 | << static_cast<unsigned>(MultiVersionKind::TargetClones) |
3201 | << /*Lambda*/ 9; |
3202 | return; |
3203 | } |
3204 | } |
3205 | |
3206 | // No multiversion if we have default version only. |
3207 | if (S.Context.getTargetInfo().getTriple().isAArch64() && !HasNotDefault) |
3208 | return; |
3209 | |
3210 | cast<FunctionDecl>(Val: D)->setIsMultiVersion(); |
3211 | TargetClonesAttr *NewAttr = ::new (S.Context) |
3212 | TargetClonesAttr(S.Context, AL, Strings.data(), Strings.size()); |
3213 | D->addAttr(A: NewAttr); |
3214 | } |
3215 | |
3216 | static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3217 | Expr *E = AL.getArgAsExpr(Arg: 0); |
3218 | uint32_t VecWidth; |
3219 | if (!S.checkUInt32Argument(AI: AL, Expr: E, Val&: VecWidth)) { |
3220 | AL.setInvalid(); |
3221 | return; |
3222 | } |
3223 | |
3224 | MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>(); |
3225 | if (Existing && Existing->getVectorWidth() != VecWidth) { |
3226 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_duplicate_attribute) << AL; |
3227 | return; |
3228 | } |
3229 | |
3230 | D->addAttr(A: ::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth)); |
3231 | } |
3232 | |
3233 | static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3234 | Expr *E = AL.getArgAsExpr(Arg: 0); |
3235 | SourceLocation Loc = E->getExprLoc(); |
3236 | FunctionDecl *FD = nullptr; |
3237 | DeclarationNameInfo NI; |
3238 | |
3239 | // gcc only allows for simple identifiers. Since we support more than gcc, we |
3240 | // will warn the user. |
3241 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) { |
3242 | if (DRE->hasQualifier()) |
3243 | S.Diag(Loc, DiagID: diag::warn_cleanup_ext); |
3244 | FD = dyn_cast<FunctionDecl>(Val: DRE->getDecl()); |
3245 | NI = DRE->getNameInfo(); |
3246 | if (!FD) { |
3247 | S.Diag(Loc, DiagID: diag::err_attribute_cleanup_arg_not_function) << 1 |
3248 | << NI.getName(); |
3249 | return; |
3250 | } |
3251 | } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Val: E)) { |
3252 | if (ULE->hasExplicitTemplateArgs()) |
3253 | S.Diag(Loc, DiagID: diag::warn_cleanup_ext); |
3254 | FD = S.ResolveSingleFunctionTemplateSpecialization(ovl: ULE, Complain: true); |
3255 | NI = ULE->getNameInfo(); |
3256 | if (!FD) { |
3257 | S.Diag(Loc, DiagID: diag::err_attribute_cleanup_arg_not_function) << 2 |
3258 | << NI.getName(); |
3259 | if (ULE->getType() == S.Context.OverloadTy) |
3260 | S.NoteAllOverloadCandidates(E: ULE); |
3261 | return; |
3262 | } |
3263 | } else { |
3264 | S.Diag(Loc, DiagID: diag::err_attribute_cleanup_arg_not_function) << 0; |
3265 | return; |
3266 | } |
3267 | |
3268 | if (FD->getNumParams() != 1) { |
3269 | S.Diag(Loc, DiagID: diag::err_attribute_cleanup_func_must_take_one_arg) |
3270 | << NI.getName(); |
3271 | return; |
3272 | } |
3273 | |
3274 | // We're currently more strict than GCC about what function types we accept. |
3275 | // If this ever proves to be a problem it should be easy to fix. |
3276 | QualType Ty = S.Context.getPointerType(T: cast<VarDecl>(Val: D)->getType()); |
3277 | QualType ParamTy = FD->getParamDecl(i: 0)->getType(); |
3278 | if (S.CheckAssignmentConstraints(Loc: FD->getParamDecl(i: 0)->getLocation(), |
3279 | LHSType: ParamTy, RHSType: Ty) != Sema::Compatible) { |
3280 | S.Diag(Loc, DiagID: diag::err_attribute_cleanup_func_arg_incompatible_type) |
3281 | << NI.getName() << ParamTy << Ty; |
3282 | return; |
3283 | } |
3284 | VarDecl *VD = cast<VarDecl>(Val: D); |
3285 | // Create a reference to the variable declaration. This is a fake/dummy |
3286 | // reference. |
3287 | DeclRefExpr *VariableReference = DeclRefExpr::Create( |
3288 | Context: S.Context, QualifierLoc: NestedNameSpecifierLoc{}, TemplateKWLoc: FD->getLocation(), D: VD, RefersToEnclosingVariableOrCapture: false, |
3289 | NameInfo: DeclarationNameInfo{VD->getDeclName(), VD->getLocation()}, T: VD->getType(), |
3290 | VK: VK_LValue); |
3291 | |
3292 | // Create a unary operator expression that represents taking the address of |
3293 | // the variable. This is a fake/dummy expression. |
3294 | Expr *AddressOfVariable = UnaryOperator::Create( |
3295 | C: S.Context, input: VariableReference, opc: UnaryOperatorKind::UO_AddrOf, |
3296 | type: S.Context.getPointerType(T: VD->getType()), VK: VK_PRValue, OK: OK_Ordinary, l: Loc, |
3297 | CanOverflow: +false, FPFeatures: FPOptionsOverride{}); |
3298 | |
3299 | // Create a function call expression. This is a fake/dummy call expression. |
3300 | CallExpr *FunctionCallExpression = |
3301 | CallExpr::Create(Ctx: S.Context, Fn: E, Args: ArrayRef{AddressOfVariable}, |
3302 | Ty: S.Context.VoidTy, VK: VK_PRValue, RParenLoc: Loc, FPFeatures: FPOptionsOverride{}); |
3303 | |
3304 | if (S.CheckFunctionCall(FDecl: FD, TheCall: FunctionCallExpression, |
3305 | Proto: FD->getType()->getAs<FunctionProtoType>())) { |
3306 | return; |
3307 | } |
3308 | |
3309 | D->addAttr(A: ::new (S.Context) CleanupAttr(S.Context, AL, FD)); |
3310 | } |
3311 | |
3312 | static void handleEnumExtensibilityAttr(Sema &S, Decl *D, |
3313 | const ParsedAttr &AL) { |
3314 | if (!AL.isArgIdent(Arg: 0)) { |
3315 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_n_type) |
3316 | << AL << 0 << AANT_ArgumentIdentifier; |
3317 | return; |
3318 | } |
3319 | |
3320 | EnumExtensibilityAttr::Kind ExtensibilityKind; |
3321 | IdentifierInfo *II = AL.getArgAsIdent(Arg: 0)->Ident; |
3322 | if (!EnumExtensibilityAttr::ConvertStrToKind(Val: II->getName(), |
3323 | Out&: ExtensibilityKind)) { |
3324 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_type_not_supported) << AL << II; |
3325 | return; |
3326 | } |
3327 | |
3328 | D->addAttr(A: ::new (S.Context) |
3329 | EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind)); |
3330 | } |
3331 | |
3332 | /// Handle __attribute__((format_arg((idx)))) attribute based on |
3333 | /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html |
3334 | static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3335 | const Expr *IdxExpr = AL.getArgAsExpr(Arg: 0); |
3336 | ParamIdx Idx; |
3337 | if (!S.checkFunctionOrMethodParameterIndex(D, AI: AL, AttrArgNum: 1, IdxExpr, Idx)) |
3338 | return; |
3339 | |
3340 | // Make sure the format string is really a string. |
3341 | QualType Ty = getFunctionOrMethodParamType(D, Idx: Idx.getASTIndex()); |
3342 | |
3343 | bool NotNSStringTy = !S.ObjC().isNSStringType(T: Ty); |
3344 | if (NotNSStringTy && !S.ObjC().isCFStringType(T: Ty) && |
3345 | (!Ty->isPointerType() || |
3346 | !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) { |
3347 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_format_attribute_not) |
3348 | << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, Idx: 0); |
3349 | return; |
3350 | } |
3351 | Ty = getFunctionOrMethodResultType(D); |
3352 | // replace instancetype with the class type |
3353 | auto Instancetype = S.Context.getObjCInstanceTypeDecl()->getTypeForDecl(); |
3354 | if (Ty->getAs<TypedefType>() == Instancetype) |
3355 | if (auto *OMD = dyn_cast<ObjCMethodDecl>(Val: D)) |
3356 | if (auto *Interface = OMD->getClassInterface()) |
3357 | Ty = S.Context.getObjCObjectPointerType( |
3358 | OIT: QualType(Interface->getTypeForDecl(), 0)); |
3359 | if (!S.ObjC().isNSStringType(T: Ty, /*AllowNSAttributedString=*/true) && |
3360 | !S.ObjC().isCFStringType(T: Ty) && |
3361 | (!Ty->isPointerType() || |
3362 | !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) { |
3363 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_format_attribute_result_not) |
3364 | << (NotNSStringTy ? "string type" : "NSString" ) |
3365 | << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, Idx: 0); |
3366 | return; |
3367 | } |
3368 | |
3369 | D->addAttr(A: ::new (S.Context) FormatArgAttr(S.Context, AL, Idx)); |
3370 | } |
3371 | |
3372 | enum FormatAttrKind { |
3373 | CFStringFormat, |
3374 | NSStringFormat, |
3375 | StrftimeFormat, |
3376 | SupportedFormat, |
3377 | IgnoredFormat, |
3378 | InvalidFormat |
3379 | }; |
3380 | |
3381 | /// getFormatAttrKind - Map from format attribute names to supported format |
3382 | /// types. |
3383 | static FormatAttrKind getFormatAttrKind(StringRef Format) { |
3384 | return llvm::StringSwitch<FormatAttrKind>(Format) |
3385 | // Check for formats that get handled specially. |
3386 | .Case(S: "NSString" , Value: NSStringFormat) |
3387 | .Case(S: "CFString" , Value: CFStringFormat) |
3388 | .Case(S: "strftime" , Value: StrftimeFormat) |
3389 | |
3390 | // Otherwise, check for supported formats. |
3391 | .Cases(S0: "scanf" , S1: "printf" , S2: "printf0" , S3: "strfmon" , Value: SupportedFormat) |
3392 | .Cases(S0: "cmn_err" , S1: "vcmn_err" , S2: "zcmn_err" , Value: SupportedFormat) |
3393 | .Case(S: "kprintf" , Value: SupportedFormat) // OpenBSD. |
3394 | .Case(S: "freebsd_kprintf" , Value: SupportedFormat) // FreeBSD. |
3395 | .Case(S: "os_trace" , Value: SupportedFormat) |
3396 | .Case(S: "os_log" , Value: SupportedFormat) |
3397 | |
3398 | .Cases(S0: "gcc_diag" , S1: "gcc_cdiag" , S2: "gcc_cxxdiag" , S3: "gcc_tdiag" , Value: IgnoredFormat) |
3399 | .Default(Value: InvalidFormat); |
3400 | } |
3401 | |
3402 | /// Handle __attribute__((init_priority(priority))) attributes based on |
3403 | /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html |
3404 | static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3405 | if (!S.getLangOpts().CPlusPlus) { |
3406 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_ignored) << AL; |
3407 | return; |
3408 | } |
3409 | |
3410 | if (S.getLangOpts().HLSL) { |
3411 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_init_priority_unsupported); |
3412 | return; |
3413 | } |
3414 | |
3415 | if (S.getCurFunctionOrMethodDecl()) { |
3416 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_init_priority_object_attr); |
3417 | AL.setInvalid(); |
3418 | return; |
3419 | } |
3420 | QualType T = cast<VarDecl>(Val: D)->getType(); |
3421 | if (S.Context.getAsArrayType(T)) |
3422 | T = S.Context.getBaseElementType(QT: T); |
3423 | if (!T->getAs<RecordType>()) { |
3424 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_init_priority_object_attr); |
3425 | AL.setInvalid(); |
3426 | return; |
3427 | } |
3428 | |
3429 | Expr *E = AL.getArgAsExpr(Arg: 0); |
3430 | uint32_t prioritynum; |
3431 | if (!S.checkUInt32Argument(AI: AL, Expr: E, Val&: prioritynum)) { |
3432 | AL.setInvalid(); |
3433 | return; |
3434 | } |
3435 | |
3436 | // Only perform the priority check if the attribute is outside of a system |
3437 | // header. Values <= 100 are reserved for the implementation, and libc++ |
3438 | // benefits from being able to specify values in that range. |
3439 | if ((prioritynum < 101 || prioritynum > 65535) && |
3440 | !S.getSourceManager().isInSystemHeader(Loc: AL.getLoc())) { |
3441 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_out_of_range) |
3442 | << E->getSourceRange() << AL << 101 << 65535; |
3443 | AL.setInvalid(); |
3444 | return; |
3445 | } |
3446 | D->addAttr(A: ::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum)); |
3447 | } |
3448 | |
3449 | ErrorAttr *Sema::mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI, |
3450 | StringRef NewUserDiagnostic) { |
3451 | if (const auto *EA = D->getAttr<ErrorAttr>()) { |
3452 | std::string NewAttr = CI.getNormalizedFullName(); |
3453 | assert((NewAttr == "error" || NewAttr == "warning" ) && |
3454 | "unexpected normalized full name" ); |
3455 | bool Match = (EA->isError() && NewAttr == "error" ) || |
3456 | (EA->isWarning() && NewAttr == "warning" ); |
3457 | if (!Match) { |
3458 | Diag(Loc: EA->getLocation(), DiagID: diag::err_attributes_are_not_compatible) |
3459 | << CI << EA |
3460 | << (CI.isRegularKeywordAttribute() || |
3461 | EA->isRegularKeywordAttribute()); |
3462 | Diag(Loc: CI.getLoc(), DiagID: diag::note_conflicting_attribute); |
3463 | return nullptr; |
3464 | } |
3465 | if (EA->getUserDiagnostic() != NewUserDiagnostic) { |
3466 | Diag(Loc: CI.getLoc(), DiagID: diag::warn_duplicate_attribute) << EA; |
3467 | Diag(Loc: EA->getLoc(), DiagID: diag::note_previous_attribute); |
3468 | } |
3469 | D->dropAttr<ErrorAttr>(); |
3470 | } |
3471 | return ::new (Context) ErrorAttr(Context, CI, NewUserDiagnostic); |
3472 | } |
3473 | |
3474 | FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI, |
3475 | IdentifierInfo *Format, int FormatIdx, |
3476 | int FirstArg) { |
3477 | // Check whether we already have an equivalent format attribute. |
3478 | for (auto *F : D->specific_attrs<FormatAttr>()) { |
3479 | if (F->getType() == Format && |
3480 | F->getFormatIdx() == FormatIdx && |
3481 | F->getFirstArg() == FirstArg) { |
3482 | // If we don't have a valid location for this attribute, adopt the |
3483 | // location. |
3484 | if (F->getLocation().isInvalid()) |
3485 | F->setRange(CI.getRange()); |
3486 | return nullptr; |
3487 | } |
3488 | } |
3489 | |
3490 | return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg); |
3491 | } |
3492 | |
3493 | /// Handle __attribute__((format(type,idx,firstarg))) attributes based on |
3494 | /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html |
3495 | static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3496 | if (!AL.isArgIdent(Arg: 0)) { |
3497 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_n_type) |
3498 | << AL << 1 << AANT_ArgumentIdentifier; |
3499 | return; |
3500 | } |
3501 | |
3502 | // In C++ the implicit 'this' function parameter also counts, and they are |
3503 | // counted from one. |
3504 | bool HasImplicitThisParam = isInstanceMethod(D); |
3505 | unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam; |
3506 | |
3507 | IdentifierInfo *II = AL.getArgAsIdent(Arg: 0)->Ident; |
3508 | StringRef Format = II->getName(); |
3509 | |
3510 | if (normalizeName(AttrName&: Format)) { |
3511 | // If we've modified the string name, we need a new identifier for it. |
3512 | II = &S.Context.Idents.get(Name: Format); |
3513 | } |
3514 | |
3515 | // Check for supported formats. |
3516 | FormatAttrKind Kind = getFormatAttrKind(Format); |
3517 | |
3518 | if (Kind == IgnoredFormat) |
3519 | return; |
3520 | |
3521 | if (Kind == InvalidFormat) { |
3522 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_type_not_supported) |
3523 | << AL << II->getName(); |
3524 | return; |
3525 | } |
3526 | |
3527 | // checks for the 2nd argument |
3528 | Expr *IdxExpr = AL.getArgAsExpr(Arg: 1); |
3529 | uint32_t Idx; |
3530 | if (!S.checkUInt32Argument(AI: AL, Expr: IdxExpr, Val&: Idx, Idx: 2)) |
3531 | return; |
3532 | |
3533 | if (Idx < 1 || Idx > NumArgs) { |
3534 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_out_of_bounds) |
3535 | << AL << 2 << IdxExpr->getSourceRange(); |
3536 | return; |
3537 | } |
3538 | |
3539 | // FIXME: Do we need to bounds check? |
3540 | unsigned ArgIdx = Idx - 1; |
3541 | |
3542 | if (HasImplicitThisParam) { |
3543 | if (ArgIdx == 0) { |
3544 | S.Diag(Loc: AL.getLoc(), |
3545 | DiagID: diag::err_format_attribute_implicit_this_format_string) |
3546 | << IdxExpr->getSourceRange(); |
3547 | return; |
3548 | } |
3549 | ArgIdx--; |
3550 | } |
3551 | |
3552 | // make sure the format string is really a string |
3553 | QualType Ty = getFunctionOrMethodParamType(D, Idx: ArgIdx); |
3554 | |
3555 | if (!S.ObjC().isNSStringType(T: Ty, AllowNSAttributedString: true) && !S.ObjC().isCFStringType(T: Ty) && |
3556 | (!Ty->isPointerType() || |
3557 | !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) { |
3558 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_format_attribute_not) |
3559 | << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, Idx: ArgIdx); |
3560 | return; |
3561 | } |
3562 | |
3563 | // check the 3rd argument |
3564 | Expr *FirstArgExpr = AL.getArgAsExpr(Arg: 2); |
3565 | uint32_t FirstArg; |
3566 | if (!S.checkUInt32Argument(AI: AL, Expr: FirstArgExpr, Val&: FirstArg, Idx: 3)) |
3567 | return; |
3568 | |
3569 | // FirstArg == 0 is is always valid. |
3570 | if (FirstArg != 0) { |
3571 | if (Kind == StrftimeFormat) { |
3572 | // If the kind is strftime, FirstArg must be 0 because strftime does not |
3573 | // use any variadic arguments. |
3574 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_format_strftime_third_parameter) |
3575 | << FirstArgExpr->getSourceRange() |
3576 | << FixItHint::CreateReplacement(RemoveRange: FirstArgExpr->getSourceRange(), Code: "0" ); |
3577 | return; |
3578 | } else if (isFunctionOrMethodVariadic(D)) { |
3579 | // Else, if the function is variadic, then FirstArg must be 0 or the |
3580 | // "position" of the ... parameter. It's unusual to use 0 with variadic |
3581 | // functions, so the fixit proposes the latter. |
3582 | if (FirstArg != NumArgs + 1) { |
3583 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_out_of_bounds) |
3584 | << AL << 3 << FirstArgExpr->getSourceRange() |
3585 | << FixItHint::CreateReplacement(RemoveRange: FirstArgExpr->getSourceRange(), |
3586 | Code: std::to_string(val: NumArgs + 1)); |
3587 | return; |
3588 | } |
3589 | } else { |
3590 | // Inescapable GCC compatibility diagnostic. |
3591 | S.Diag(Loc: D->getLocation(), DiagID: diag::warn_gcc_requires_variadic_function) << AL; |
3592 | if (FirstArg <= Idx) { |
3593 | // Else, the function is not variadic, and FirstArg must be 0 or any |
3594 | // parameter after the format parameter. We don't offer a fixit because |
3595 | // there are too many possible good values. |
3596 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_out_of_bounds) |
3597 | << AL << 3 << FirstArgExpr->getSourceRange(); |
3598 | return; |
3599 | } |
3600 | } |
3601 | } |
3602 | |
3603 | FormatAttr *NewAttr = S.mergeFormatAttr(D, CI: AL, Format: II, FormatIdx: Idx, FirstArg); |
3604 | if (NewAttr) |
3605 | D->addAttr(A: NewAttr); |
3606 | } |
3607 | |
3608 | /// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes. |
3609 | static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3610 | // The index that identifies the callback callee is mandatory. |
3611 | if (AL.getNumArgs() == 0) { |
3612 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_callback_attribute_no_callee) |
3613 | << AL.getRange(); |
3614 | return; |
3615 | } |
3616 | |
3617 | bool HasImplicitThisParam = isInstanceMethod(D); |
3618 | int32_t NumArgs = getFunctionOrMethodNumParams(D); |
3619 | |
3620 | FunctionDecl *FD = D->getAsFunction(); |
3621 | assert(FD && "Expected a function declaration!" ); |
3622 | |
3623 | llvm::StringMap<int> NameIdxMapping; |
3624 | NameIdxMapping["__" ] = -1; |
3625 | |
3626 | NameIdxMapping["this" ] = 0; |
3627 | |
3628 | int Idx = 1; |
3629 | for (const ParmVarDecl *PVD : FD->parameters()) |
3630 | NameIdxMapping[PVD->getName()] = Idx++; |
3631 | |
3632 | auto UnknownName = NameIdxMapping.end(); |
3633 | |
3634 | SmallVector<int, 8> EncodingIndices; |
3635 | for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) { |
3636 | SourceRange SR; |
3637 | int32_t ArgIdx; |
3638 | |
3639 | if (AL.isArgIdent(Arg: I)) { |
3640 | IdentifierLoc *IdLoc = AL.getArgAsIdent(Arg: I); |
3641 | auto It = NameIdxMapping.find(Key: IdLoc->Ident->getName()); |
3642 | if (It == UnknownName) { |
3643 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_callback_attribute_argument_unknown) |
3644 | << IdLoc->Ident << IdLoc->Loc; |
3645 | return; |
3646 | } |
3647 | |
3648 | SR = SourceRange(IdLoc->Loc); |
3649 | ArgIdx = It->second; |
3650 | } else if (AL.isArgExpr(Arg: I)) { |
3651 | Expr *IdxExpr = AL.getArgAsExpr(Arg: I); |
3652 | |
3653 | // If the expression is not parseable as an int32_t we have a problem. |
3654 | if (!S.checkUInt32Argument(AI: AL, Expr: IdxExpr, Val&: (uint32_t &)ArgIdx, Idx: I + 1, |
3655 | StrictlyUnsigned: false)) { |
3656 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_out_of_bounds) |
3657 | << AL << (I + 1) << IdxExpr->getSourceRange(); |
3658 | return; |
3659 | } |
3660 | |
3661 | // Check oob, excluding the special values, 0 and -1. |
3662 | if (ArgIdx < -1 || ArgIdx > NumArgs) { |
3663 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_out_of_bounds) |
3664 | << AL << (I + 1) << IdxExpr->getSourceRange(); |
3665 | return; |
3666 | } |
3667 | |
3668 | SR = IdxExpr->getSourceRange(); |
3669 | } else { |
3670 | llvm_unreachable("Unexpected ParsedAttr argument type!" ); |
3671 | } |
3672 | |
3673 | if (ArgIdx == 0 && !HasImplicitThisParam) { |
3674 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_callback_implicit_this_not_available) |
3675 | << (I + 1) << SR; |
3676 | return; |
3677 | } |
3678 | |
3679 | // Adjust for the case we do not have an implicit "this" parameter. In this |
3680 | // case we decrease all positive values by 1 to get LLVM argument indices. |
3681 | if (!HasImplicitThisParam && ArgIdx > 0) |
3682 | ArgIdx -= 1; |
3683 | |
3684 | EncodingIndices.push_back(Elt: ArgIdx); |
3685 | } |
3686 | |
3687 | int CalleeIdx = EncodingIndices.front(); |
3688 | // Check if the callee index is proper, thus not "this" and not "unknown". |
3689 | // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam" |
3690 | // is false and positive if "HasImplicitThisParam" is true. |
3691 | if (CalleeIdx < (int)HasImplicitThisParam) { |
3692 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_callback_attribute_invalid_callee) |
3693 | << AL.getRange(); |
3694 | return; |
3695 | } |
3696 | |
3697 | // Get the callee type, note the index adjustment as the AST doesn't contain |
3698 | // the this type (which the callee cannot reference anyway!). |
3699 | const Type *CalleeType = |
3700 | getFunctionOrMethodParamType(D, Idx: CalleeIdx - HasImplicitThisParam) |
3701 | .getTypePtr(); |
3702 | if (!CalleeType || !CalleeType->isFunctionPointerType()) { |
3703 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_callback_callee_no_function_type) |
3704 | << AL.getRange(); |
3705 | return; |
3706 | } |
3707 | |
3708 | const Type *CalleeFnType = |
3709 | CalleeType->getPointeeType()->getUnqualifiedDesugaredType(); |
3710 | |
3711 | // TODO: Check the type of the callee arguments. |
3712 | |
3713 | const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(Val: CalleeFnType); |
3714 | if (!CalleeFnProtoType) { |
3715 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_callback_callee_no_function_type) |
3716 | << AL.getRange(); |
3717 | return; |
3718 | } |
3719 | |
3720 | if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) { |
3721 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) |
3722 | << AL << (unsigned)(EncodingIndices.size() - 1); |
3723 | return; |
3724 | } |
3725 | |
3726 | if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) { |
3727 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) |
3728 | << AL << (unsigned)(EncodingIndices.size() - 1); |
3729 | return; |
3730 | } |
3731 | |
3732 | if (CalleeFnProtoType->isVariadic()) { |
3733 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_callback_callee_is_variadic) << AL.getRange(); |
3734 | return; |
3735 | } |
3736 | |
3737 | // Do not allow multiple callback attributes. |
3738 | if (D->hasAttr<CallbackAttr>()) { |
3739 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_callback_attribute_multiple) << AL.getRange(); |
3740 | return; |
3741 | } |
3742 | |
3743 | D->addAttr(A: ::new (S.Context) CallbackAttr( |
3744 | S.Context, AL, EncodingIndices.data(), EncodingIndices.size())); |
3745 | } |
3746 | |
3747 | static bool isFunctionLike(const Type &T) { |
3748 | // Check for explicit function types. |
3749 | // 'called_once' is only supported in Objective-C and it has |
3750 | // function pointers and block pointers. |
3751 | return T.isFunctionPointerType() || T.isBlockPointerType(); |
3752 | } |
3753 | |
3754 | /// Handle 'called_once' attribute. |
3755 | static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3756 | // 'called_once' only applies to parameters representing functions. |
3757 | QualType T = cast<ParmVarDecl>(Val: D)->getType(); |
3758 | |
3759 | if (!isFunctionLike(T: *T)) { |
3760 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_called_once_attribute_wrong_type); |
3761 | return; |
3762 | } |
3763 | |
3764 | D->addAttr(A: ::new (S.Context) CalledOnceAttr(S.Context, AL)); |
3765 | } |
3766 | |
3767 | static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3768 | // Try to find the underlying union declaration. |
3769 | RecordDecl *RD = nullptr; |
3770 | const auto *TD = dyn_cast<TypedefNameDecl>(Val: D); |
3771 | if (TD && TD->getUnderlyingType()->isUnionType()) |
3772 | RD = TD->getUnderlyingType()->getAsUnionType()->getDecl(); |
3773 | else |
3774 | RD = dyn_cast<RecordDecl>(Val: D); |
3775 | |
3776 | if (!RD || !RD->isUnion()) { |
3777 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_wrong_decl_type) |
3778 | << AL << AL.isRegularKeywordAttribute() << ExpectedUnion; |
3779 | return; |
3780 | } |
3781 | |
3782 | if (!RD->isCompleteDefinition()) { |
3783 | if (!RD->isBeingDefined()) |
3784 | S.Diag(Loc: AL.getLoc(), |
3785 | DiagID: diag::warn_transparent_union_attribute_not_definition); |
3786 | return; |
3787 | } |
3788 | |
3789 | RecordDecl::field_iterator Field = RD->field_begin(), |
3790 | FieldEnd = RD->field_end(); |
3791 | if (Field == FieldEnd) { |
3792 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_transparent_union_attribute_zero_fields); |
3793 | return; |
3794 | } |
3795 | |
3796 | FieldDecl *FirstField = *Field; |
3797 | QualType FirstType = FirstField->getType(); |
3798 | if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) { |
3799 | S.Diag(Loc: FirstField->getLocation(), |
3800 | DiagID: diag::warn_transparent_union_attribute_floating) |
3801 | << FirstType->isVectorType() << FirstType; |
3802 | return; |
3803 | } |
3804 | |
3805 | if (FirstType->isIncompleteType()) |
3806 | return; |
3807 | uint64_t FirstSize = S.Context.getTypeSize(T: FirstType); |
3808 | uint64_t FirstAlign = S.Context.getTypeAlign(T: FirstType); |
3809 | for (; Field != FieldEnd; ++Field) { |
3810 | QualType FieldType = Field->getType(); |
3811 | if (FieldType->isIncompleteType()) |
3812 | return; |
3813 | // FIXME: this isn't fully correct; we also need to test whether the |
3814 | // members of the union would all have the same calling convention as the |
3815 | // first member of the union. Checking just the size and alignment isn't |
3816 | // sufficient (consider structs passed on the stack instead of in registers |
3817 | // as an example). |
3818 | if (S.Context.getTypeSize(T: FieldType) != FirstSize || |
3819 | S.Context.getTypeAlign(T: FieldType) > FirstAlign) { |
3820 | // Warn if we drop the attribute. |
3821 | bool isSize = S.Context.getTypeSize(T: FieldType) != FirstSize; |
3822 | unsigned FieldBits = isSize ? S.Context.getTypeSize(T: FieldType) |
3823 | : S.Context.getTypeAlign(T: FieldType); |
3824 | S.Diag(Loc: Field->getLocation(), |
3825 | DiagID: diag::warn_transparent_union_attribute_field_size_align) |
3826 | << isSize << *Field << FieldBits; |
3827 | unsigned FirstBits = isSize ? FirstSize : FirstAlign; |
3828 | S.Diag(Loc: FirstField->getLocation(), |
3829 | DiagID: diag::note_transparent_union_first_field_size_align) |
3830 | << isSize << FirstBits; |
3831 | return; |
3832 | } |
3833 | } |
3834 | |
3835 | RD->addAttr(A: ::new (S.Context) TransparentUnionAttr(S.Context, AL)); |
3836 | } |
3837 | |
3838 | void Sema::AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI, |
3839 | StringRef Str, MutableArrayRef<Expr *> Args) { |
3840 | auto *Attr = AnnotateAttr::Create(Ctx&: Context, Annotation: Str, Args: Args.data(), ArgsSize: Args.size(), CommonInfo: CI); |
3841 | if (ConstantFoldAttrArgs( |
3842 | CI, Args: MutableArrayRef<Expr *>(Attr->args_begin(), Attr->args_end()))) { |
3843 | D->addAttr(A: Attr); |
3844 | } |
3845 | } |
3846 | |
3847 | static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3848 | // Make sure that there is a string literal as the annotation's first |
3849 | // argument. |
3850 | StringRef Str; |
3851 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str)) |
3852 | return; |
3853 | |
3854 | llvm::SmallVector<Expr *, 4> Args; |
3855 | Args.reserve(N: AL.getNumArgs() - 1); |
3856 | for (unsigned Idx = 1; Idx < AL.getNumArgs(); Idx++) { |
3857 | assert(!AL.isArgIdent(Idx)); |
3858 | Args.push_back(Elt: AL.getArgAsExpr(Arg: Idx)); |
3859 | } |
3860 | |
3861 | S.AddAnnotationAttr(D, CI: AL, Str, Args); |
3862 | } |
3863 | |
3864 | static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3865 | S.AddAlignValueAttr(D, CI: AL, E: AL.getArgAsExpr(Arg: 0)); |
3866 | } |
3867 | |
3868 | void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) { |
3869 | AlignValueAttr TmpAttr(Context, CI, E); |
3870 | SourceLocation AttrLoc = CI.getLoc(); |
3871 | |
3872 | QualType T; |
3873 | if (const auto *TD = dyn_cast<TypedefNameDecl>(Val: D)) |
3874 | T = TD->getUnderlyingType(); |
3875 | else if (const auto *VD = dyn_cast<ValueDecl>(Val: D)) |
3876 | T = VD->getType(); |
3877 | else |
3878 | llvm_unreachable("Unknown decl type for align_value" ); |
3879 | |
3880 | if (!T->isDependentType() && !T->isAnyPointerType() && |
3881 | !T->isReferenceType() && !T->isMemberPointerType()) { |
3882 | Diag(Loc: AttrLoc, DiagID: diag::warn_attribute_pointer_or_reference_only) |
3883 | << &TmpAttr << T << D->getSourceRange(); |
3884 | return; |
3885 | } |
3886 | |
3887 | if (!E->isValueDependent()) { |
3888 | llvm::APSInt Alignment; |
3889 | ExprResult ICE = VerifyIntegerConstantExpression( |
3890 | E, Result: &Alignment, DiagID: diag::err_align_value_attribute_argument_not_int); |
3891 | if (ICE.isInvalid()) |
3892 | return; |
3893 | |
3894 | if (!Alignment.isPowerOf2()) { |
3895 | Diag(Loc: AttrLoc, DiagID: diag::err_alignment_not_power_of_two) |
3896 | << E->getSourceRange(); |
3897 | return; |
3898 | } |
3899 | |
3900 | D->addAttr(A: ::new (Context) AlignValueAttr(Context, CI, ICE.get())); |
3901 | return; |
3902 | } |
3903 | |
3904 | // Save dependent expressions in the AST to be instantiated. |
3905 | D->addAttr(A: ::new (Context) AlignValueAttr(Context, CI, E)); |
3906 | } |
3907 | |
3908 | static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3909 | if (AL.hasParsedType()) { |
3910 | const ParsedType &TypeArg = AL.getTypeArg(); |
3911 | TypeSourceInfo *TInfo; |
3912 | (void)S.GetTypeFromParser( |
3913 | Ty: ParsedType::getFromOpaquePtr(P: TypeArg.getAsOpaquePtr()), TInfo: &TInfo); |
3914 | if (AL.isPackExpansion() && |
3915 | !TInfo->getType()->containsUnexpandedParameterPack()) { |
3916 | S.Diag(Loc: AL.getEllipsisLoc(), |
3917 | DiagID: diag::err_pack_expansion_without_parameter_packs); |
3918 | return; |
3919 | } |
3920 | |
3921 | if (!AL.isPackExpansion() && |
3922 | S.DiagnoseUnexpandedParameterPack(Loc: TInfo->getTypeLoc().getBeginLoc(), |
3923 | T: TInfo, UPPC: Sema::UPPC_Expression)) |
3924 | return; |
3925 | |
3926 | S.AddAlignedAttr(D, CI: AL, T: TInfo, IsPackExpansion: AL.isPackExpansion()); |
3927 | return; |
3928 | } |
3929 | |
3930 | // check the attribute arguments. |
3931 | if (AL.getNumArgs() > 1) { |
3932 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) << AL << 1; |
3933 | return; |
3934 | } |
3935 | |
3936 | if (AL.getNumArgs() == 0) { |
3937 | D->addAttr(A: ::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr)); |
3938 | return; |
3939 | } |
3940 | |
3941 | Expr *E = AL.getArgAsExpr(Arg: 0); |
3942 | if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) { |
3943 | S.Diag(Loc: AL.getEllipsisLoc(), |
3944 | DiagID: diag::err_pack_expansion_without_parameter_packs); |
3945 | return; |
3946 | } |
3947 | |
3948 | if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E)) |
3949 | return; |
3950 | |
3951 | S.AddAlignedAttr(D, CI: AL, E, IsPackExpansion: AL.isPackExpansion()); |
3952 | } |
3953 | |
3954 | /// Perform checking of type validity |
3955 | /// |
3956 | /// C++11 [dcl.align]p1: |
3957 | /// An alignment-specifier may be applied to a variable or to a class |
3958 | /// data member, but it shall not be applied to a bit-field, a function |
3959 | /// parameter, the formal parameter of a catch clause, or a variable |
3960 | /// declared with the register storage class specifier. An |
3961 | /// alignment-specifier may also be applied to the declaration of a class |
3962 | /// or enumeration type. |
3963 | /// CWG 2354: |
3964 | /// CWG agreed to remove permission for alignas to be applied to |
3965 | /// enumerations. |
3966 | /// C11 6.7.5/2: |
3967 | /// An alignment attribute shall not be specified in a declaration of |
3968 | /// a typedef, or a bit-field, or a function, or a parameter, or an |
3969 | /// object declared with the register storage-class specifier. |
3970 | static bool validateAlignasAppliedType(Sema &S, Decl *D, |
3971 | const AlignedAttr &Attr, |
3972 | SourceLocation AttrLoc) { |
3973 | int DiagKind = -1; |
3974 | if (isa<ParmVarDecl>(Val: D)) { |
3975 | DiagKind = 0; |
3976 | } else if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
3977 | if (VD->getStorageClass() == SC_Register) |
3978 | DiagKind = 1; |
3979 | if (VD->isExceptionVariable()) |
3980 | DiagKind = 2; |
3981 | } else if (const auto *FD = dyn_cast<FieldDecl>(Val: D)) { |
3982 | if (FD->isBitField()) |
3983 | DiagKind = 3; |
3984 | } else if (const auto *ED = dyn_cast<EnumDecl>(Val: D)) { |
3985 | if (ED->getLangOpts().CPlusPlus) |
3986 | DiagKind = 4; |
3987 | } else if (!isa<TagDecl>(Val: D)) { |
3988 | return S.Diag(Loc: AttrLoc, DiagID: diag::err_attribute_wrong_decl_type) |
3989 | << &Attr << Attr.isRegularKeywordAttribute() |
3990 | << (Attr.isC11() ? ExpectedVariableOrField |
3991 | : ExpectedVariableFieldOrTag); |
3992 | } |
3993 | if (DiagKind != -1) { |
3994 | return S.Diag(Loc: AttrLoc, DiagID: diag::err_alignas_attribute_wrong_decl_type) |
3995 | << &Attr << DiagKind; |
3996 | } |
3997 | return false; |
3998 | } |
3999 | |
4000 | void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, |
4001 | bool IsPackExpansion) { |
4002 | AlignedAttr TmpAttr(Context, CI, true, E); |
4003 | SourceLocation AttrLoc = CI.getLoc(); |
4004 | |
4005 | // C++11 alignas(...) and C11 _Alignas(...) have additional requirements. |
4006 | if (TmpAttr.isAlignas() && |
4007 | validateAlignasAppliedType(S&: *this, D, Attr: TmpAttr, AttrLoc)) |
4008 | return; |
4009 | |
4010 | if (E->isValueDependent()) { |
4011 | // We can't support a dependent alignment on a non-dependent type, |
4012 | // because we have no way to model that a type is "alignment-dependent" |
4013 | // but not dependent in any other way. |
4014 | if (const auto *TND = dyn_cast<TypedefNameDecl>(Val: D)) { |
4015 | if (!TND->getUnderlyingType()->isDependentType()) { |
4016 | Diag(Loc: AttrLoc, DiagID: diag::err_alignment_dependent_typedef_name) |
4017 | << E->getSourceRange(); |
4018 | return; |
4019 | } |
4020 | } |
4021 | |
4022 | // Save dependent expressions in the AST to be instantiated. |
4023 | AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E); |
4024 | AA->setPackExpansion(IsPackExpansion); |
4025 | D->addAttr(A: AA); |
4026 | return; |
4027 | } |
4028 | |
4029 | // FIXME: Cache the number on the AL object? |
4030 | llvm::APSInt Alignment; |
4031 | ExprResult ICE = VerifyIntegerConstantExpression( |
4032 | E, Result: &Alignment, DiagID: diag::err_aligned_attribute_argument_not_int); |
4033 | if (ICE.isInvalid()) |
4034 | return; |
4035 | |
4036 | uint64_t MaximumAlignment = Sema::MaximumAlignment; |
4037 | if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF()) |
4038 | MaximumAlignment = std::min(a: MaximumAlignment, b: uint64_t(8192)); |
4039 | if (Alignment > MaximumAlignment) { |
4040 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_aligned_too_great) |
4041 | << MaximumAlignment << E->getSourceRange(); |
4042 | return; |
4043 | } |
4044 | |
4045 | uint64_t AlignVal = Alignment.getZExtValue(); |
4046 | // C++11 [dcl.align]p2: |
4047 | // -- if the constant expression evaluates to zero, the alignment |
4048 | // specifier shall have no effect |
4049 | // C11 6.7.5p6: |
4050 | // An alignment specification of zero has no effect. |
4051 | if (!(TmpAttr.isAlignas() && !Alignment)) { |
4052 | if (!llvm::isPowerOf2_64(Value: AlignVal)) { |
4053 | Diag(Loc: AttrLoc, DiagID: diag::err_alignment_not_power_of_two) |
4054 | << E->getSourceRange(); |
4055 | return; |
4056 | } |
4057 | } |
4058 | |
4059 | const auto *VD = dyn_cast<VarDecl>(Val: D); |
4060 | if (VD) { |
4061 | unsigned MaxTLSAlign = |
4062 | Context.toCharUnitsFromBits(BitSize: Context.getTargetInfo().getMaxTLSAlign()) |
4063 | .getQuantity(); |
4064 | if (MaxTLSAlign && AlignVal > MaxTLSAlign && |
4065 | VD->getTLSKind() != VarDecl::TLS_None) { |
4066 | Diag(Loc: VD->getLocation(), DiagID: diag::err_tls_var_aligned_over_maximum) |
4067 | << (unsigned)AlignVal << VD << MaxTLSAlign; |
4068 | return; |
4069 | } |
4070 | } |
4071 | |
4072 | // On AIX, an aligned attribute can not decrease the alignment when applied |
4073 | // to a variable declaration with vector type. |
4074 | if (VD && Context.getTargetInfo().getTriple().isOSAIX()) { |
4075 | const Type *Ty = VD->getType().getTypePtr(); |
4076 | if (Ty->isVectorType() && AlignVal < 16) { |
4077 | Diag(Loc: VD->getLocation(), DiagID: diag::warn_aligned_attr_underaligned) |
4078 | << VD->getType() << 16; |
4079 | return; |
4080 | } |
4081 | } |
4082 | |
4083 | AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get()); |
4084 | AA->setPackExpansion(IsPackExpansion); |
4085 | AA->setCachedAlignmentValue( |
4086 | static_cast<unsigned>(AlignVal * Context.getCharWidth())); |
4087 | D->addAttr(A: AA); |
4088 | } |
4089 | |
4090 | void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, |
4091 | TypeSourceInfo *TS, bool IsPackExpansion) { |
4092 | AlignedAttr TmpAttr(Context, CI, false, TS); |
4093 | SourceLocation AttrLoc = CI.getLoc(); |
4094 | |
4095 | // C++11 alignas(...) and C11 _Alignas(...) have additional requirements. |
4096 | if (TmpAttr.isAlignas() && |
4097 | validateAlignasAppliedType(S&: *this, D, Attr: TmpAttr, AttrLoc)) |
4098 | return; |
4099 | |
4100 | if (TS->getType()->isDependentType()) { |
4101 | // We can't support a dependent alignment on a non-dependent type, |
4102 | // because we have no way to model that a type is "type-dependent" |
4103 | // but not dependent in any other way. |
4104 | if (const auto *TND = dyn_cast<TypedefNameDecl>(Val: D)) { |
4105 | if (!TND->getUnderlyingType()->isDependentType()) { |
4106 | Diag(Loc: AttrLoc, DiagID: diag::err_alignment_dependent_typedef_name) |
4107 | << TS->getTypeLoc().getSourceRange(); |
4108 | return; |
4109 | } |
4110 | } |
4111 | |
4112 | AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS); |
4113 | AA->setPackExpansion(IsPackExpansion); |
4114 | D->addAttr(A: AA); |
4115 | return; |
4116 | } |
4117 | |
4118 | const auto *VD = dyn_cast<VarDecl>(Val: D); |
4119 | unsigned AlignVal = TmpAttr.getAlignment(Ctx&: Context); |
4120 | // On AIX, an aligned attribute can not decrease the alignment when applied |
4121 | // to a variable declaration with vector type. |
4122 | if (VD && Context.getTargetInfo().getTriple().isOSAIX()) { |
4123 | const Type *Ty = VD->getType().getTypePtr(); |
4124 | if (Ty->isVectorType() && |
4125 | Context.toCharUnitsFromBits(BitSize: AlignVal).getQuantity() < 16) { |
4126 | Diag(Loc: VD->getLocation(), DiagID: diag::warn_aligned_attr_underaligned) |
4127 | << VD->getType() << 16; |
4128 | return; |
4129 | } |
4130 | } |
4131 | |
4132 | AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS); |
4133 | AA->setPackExpansion(IsPackExpansion); |
4134 | AA->setCachedAlignmentValue(AlignVal); |
4135 | D->addAttr(A: AA); |
4136 | } |
4137 | |
4138 | void Sema::CheckAlignasUnderalignment(Decl *D) { |
4139 | assert(D->hasAttrs() && "no attributes on decl" ); |
4140 | |
4141 | QualType UnderlyingTy, DiagTy; |
4142 | if (const auto *VD = dyn_cast<ValueDecl>(Val: D)) { |
4143 | UnderlyingTy = DiagTy = VD->getType(); |
4144 | } else { |
4145 | UnderlyingTy = DiagTy = Context.getTagDeclType(Decl: cast<TagDecl>(Val: D)); |
4146 | if (const auto *ED = dyn_cast<EnumDecl>(Val: D)) |
4147 | UnderlyingTy = ED->getIntegerType(); |
4148 | } |
4149 | if (DiagTy->isDependentType() || DiagTy->isIncompleteType()) |
4150 | return; |
4151 | |
4152 | // C++11 [dcl.align]p5, C11 6.7.5/4: |
4153 | // The combined effect of all alignment attributes in a declaration shall |
4154 | // not specify an alignment that is less strict than the alignment that |
4155 | // would otherwise be required for the entity being declared. |
4156 | AlignedAttr *AlignasAttr = nullptr; |
4157 | AlignedAttr *LastAlignedAttr = nullptr; |
4158 | unsigned Align = 0; |
4159 | for (auto *I : D->specific_attrs<AlignedAttr>()) { |
4160 | if (I->isAlignmentDependent()) |
4161 | return; |
4162 | if (I->isAlignas()) |
4163 | AlignasAttr = I; |
4164 | Align = std::max(a: Align, b: I->getAlignment(Ctx&: Context)); |
4165 | LastAlignedAttr = I; |
4166 | } |
4167 | |
4168 | if (Align && DiagTy->isSizelessType()) { |
4169 | Diag(Loc: LastAlignedAttr->getLocation(), DiagID: diag::err_attribute_sizeless_type) |
4170 | << LastAlignedAttr << DiagTy; |
4171 | } else if (AlignasAttr && Align) { |
4172 | CharUnits RequestedAlign = Context.toCharUnitsFromBits(BitSize: Align); |
4173 | CharUnits NaturalAlign = Context.getTypeAlignInChars(T: UnderlyingTy); |
4174 | if (NaturalAlign > RequestedAlign) |
4175 | Diag(Loc: AlignasAttr->getLocation(), DiagID: diag::err_alignas_underaligned) |
4176 | << DiagTy << (unsigned)NaturalAlign.getQuantity(); |
4177 | } |
4178 | } |
4179 | |
4180 | bool Sema::checkMSInheritanceAttrOnDefinition( |
4181 | CXXRecordDecl *RD, SourceRange Range, bool BestCase, |
4182 | MSInheritanceModel ExplicitModel) { |
4183 | assert(RD->hasDefinition() && "RD has no definition!" ); |
4184 | |
4185 | // We may not have seen base specifiers or any virtual methods yet. We will |
4186 | // have to wait until the record is defined to catch any mismatches. |
4187 | if (!RD->getDefinition()->isCompleteDefinition()) |
4188 | return false; |
4189 | |
4190 | // The unspecified model never matches what a definition could need. |
4191 | if (ExplicitModel == MSInheritanceModel::Unspecified) |
4192 | return false; |
4193 | |
4194 | if (BestCase) { |
4195 | if (RD->calculateInheritanceModel() == ExplicitModel) |
4196 | return false; |
4197 | } else { |
4198 | if (RD->calculateInheritanceModel() <= ExplicitModel) |
4199 | return false; |
4200 | } |
4201 | |
4202 | Diag(Loc: Range.getBegin(), DiagID: diag::err_mismatched_ms_inheritance) |
4203 | << 0 /*definition*/; |
4204 | Diag(Loc: RD->getDefinition()->getLocation(), DiagID: diag::note_defined_here) << RD; |
4205 | return true; |
4206 | } |
4207 | |
4208 | /// parseModeAttrArg - Parses attribute mode string and returns parsed type |
4209 | /// attribute. |
4210 | static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth, |
4211 | bool &IntegerMode, bool &ComplexMode, |
4212 | FloatModeKind &ExplicitType) { |
4213 | IntegerMode = true; |
4214 | ComplexMode = false; |
4215 | ExplicitType = FloatModeKind::NoFloat; |
4216 | switch (Str.size()) { |
4217 | case 2: |
4218 | switch (Str[0]) { |
4219 | case 'Q': |
4220 | DestWidth = 8; |
4221 | break; |
4222 | case 'H': |
4223 | DestWidth = 16; |
4224 | break; |
4225 | case 'S': |
4226 | DestWidth = 32; |
4227 | break; |
4228 | case 'D': |
4229 | DestWidth = 64; |
4230 | break; |
4231 | case 'X': |
4232 | DestWidth = 96; |
4233 | break; |
4234 | case 'K': // KFmode - IEEE quad precision (__float128) |
4235 | ExplicitType = FloatModeKind::Float128; |
4236 | DestWidth = Str[1] == 'I' ? 0 : 128; |
4237 | break; |
4238 | case 'T': |
4239 | ExplicitType = FloatModeKind::LongDouble; |
4240 | DestWidth = 128; |
4241 | break; |
4242 | case 'I': |
4243 | ExplicitType = FloatModeKind::Ibm128; |
4244 | DestWidth = Str[1] == 'I' ? 0 : 128; |
4245 | break; |
4246 | } |
4247 | if (Str[1] == 'F') { |
4248 | IntegerMode = false; |
4249 | } else if (Str[1] == 'C') { |
4250 | IntegerMode = false; |
4251 | ComplexMode = true; |
4252 | } else if (Str[1] != 'I') { |
4253 | DestWidth = 0; |
4254 | } |
4255 | break; |
4256 | case 4: |
4257 | // FIXME: glibc uses 'word' to define register_t; this is narrower than a |
4258 | // pointer on PIC16 and other embedded platforms. |
4259 | if (Str == "word" ) |
4260 | DestWidth = S.Context.getTargetInfo().getRegisterWidth(); |
4261 | else if (Str == "byte" ) |
4262 | DestWidth = S.Context.getTargetInfo().getCharWidth(); |
4263 | break; |
4264 | case 7: |
4265 | if (Str == "pointer" ) |
4266 | DestWidth = S.Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default); |
4267 | break; |
4268 | case 11: |
4269 | if (Str == "unwind_word" ) |
4270 | DestWidth = S.Context.getTargetInfo().getUnwindWordWidth(); |
4271 | break; |
4272 | } |
4273 | } |
4274 | |
4275 | /// handleModeAttr - This attribute modifies the width of a decl with primitive |
4276 | /// type. |
4277 | /// |
4278 | /// Despite what would be logical, the mode attribute is a decl attribute, not a |
4279 | /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be |
4280 | /// HImode, not an intermediate pointer. |
4281 | static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4282 | // This attribute isn't documented, but glibc uses it. It changes |
4283 | // the width of an int or unsigned int to the specified size. |
4284 | if (!AL.isArgIdent(Arg: 0)) { |
4285 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
4286 | << AL << AANT_ArgumentIdentifier; |
4287 | return; |
4288 | } |
4289 | |
4290 | IdentifierInfo *Name = AL.getArgAsIdent(Arg: 0)->Ident; |
4291 | |
4292 | S.AddModeAttr(D, CI: AL, Name); |
4293 | } |
4294 | |
4295 | void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI, |
4296 | IdentifierInfo *Name, bool InInstantiation) { |
4297 | StringRef Str = Name->getName(); |
4298 | normalizeName(AttrName&: Str); |
4299 | SourceLocation AttrLoc = CI.getLoc(); |
4300 | |
4301 | unsigned DestWidth = 0; |
4302 | bool IntegerMode = true; |
4303 | bool ComplexMode = false; |
4304 | FloatModeKind ExplicitType = FloatModeKind::NoFloat; |
4305 | llvm::APInt VectorSize(64, 0); |
4306 | if (Str.size() >= 4 && Str[0] == 'V') { |
4307 | // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2). |
4308 | size_t StrSize = Str.size(); |
4309 | size_t VectorStringLength = 0; |
4310 | while ((VectorStringLength + 1) < StrSize && |
4311 | isdigit(Str[VectorStringLength + 1])) |
4312 | ++VectorStringLength; |
4313 | if (VectorStringLength && |
4314 | !Str.substr(Start: 1, N: VectorStringLength).getAsInteger(Radix: 10, Result&: VectorSize) && |
4315 | VectorSize.isPowerOf2()) { |
4316 | parseModeAttrArg(S&: *this, Str: Str.substr(Start: VectorStringLength + 1), DestWidth, |
4317 | IntegerMode, ComplexMode, ExplicitType); |
4318 | // Avoid duplicate warning from template instantiation. |
4319 | if (!InInstantiation) |
4320 | Diag(Loc: AttrLoc, DiagID: diag::warn_vector_mode_deprecated); |
4321 | } else { |
4322 | VectorSize = 0; |
4323 | } |
4324 | } |
4325 | |
4326 | if (!VectorSize) |
4327 | parseModeAttrArg(S&: *this, Str, DestWidth, IntegerMode, ComplexMode, |
4328 | ExplicitType); |
4329 | |
4330 | // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t |
4331 | // and friends, at least with glibc. |
4332 | // FIXME: Make sure floating-point mappings are accurate |
4333 | // FIXME: Support XF and TF types |
4334 | if (!DestWidth) { |
4335 | Diag(Loc: AttrLoc, DiagID: diag::err_machine_mode) << 0 /*Unknown*/ << Name; |
4336 | return; |
4337 | } |
4338 | |
4339 | QualType OldTy; |
4340 | if (const auto *TD = dyn_cast<TypedefNameDecl>(Val: D)) |
4341 | OldTy = TD->getUnderlyingType(); |
4342 | else if (const auto *ED = dyn_cast<EnumDecl>(Val: D)) { |
4343 | // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'. |
4344 | // Try to get type from enum declaration, default to int. |
4345 | OldTy = ED->getIntegerType(); |
4346 | if (OldTy.isNull()) |
4347 | OldTy = Context.IntTy; |
4348 | } else |
4349 | OldTy = cast<ValueDecl>(Val: D)->getType(); |
4350 | |
4351 | if (OldTy->isDependentType()) { |
4352 | D->addAttr(A: ::new (Context) ModeAttr(Context, CI, Name)); |
4353 | return; |
4354 | } |
4355 | |
4356 | // Base type can also be a vector type (see PR17453). |
4357 | // Distinguish between base type and base element type. |
4358 | QualType OldElemTy = OldTy; |
4359 | if (const auto *VT = OldTy->getAs<VectorType>()) |
4360 | OldElemTy = VT->getElementType(); |
4361 | |
4362 | // GCC allows 'mode' attribute on enumeration types (even incomplete), except |
4363 | // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete |
4364 | // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected. |
4365 | if ((isa<EnumDecl>(Val: D) || OldElemTy->getAs<EnumType>()) && |
4366 | VectorSize.getBoolValue()) { |
4367 | Diag(Loc: AttrLoc, DiagID: diag::err_enum_mode_vector_type) << Name << CI.getRange(); |
4368 | return; |
4369 | } |
4370 | bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() && |
4371 | !OldElemTy->isBitIntType()) || |
4372 | OldElemTy->getAs<EnumType>(); |
4373 | |
4374 | if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() && |
4375 | !IntegralOrAnyEnumType) |
4376 | Diag(Loc: AttrLoc, DiagID: diag::err_mode_not_primitive); |
4377 | else if (IntegerMode) { |
4378 | if (!IntegralOrAnyEnumType) |
4379 | Diag(Loc: AttrLoc, DiagID: diag::err_mode_wrong_type); |
4380 | } else if (ComplexMode) { |
4381 | if (!OldElemTy->isComplexType()) |
4382 | Diag(Loc: AttrLoc, DiagID: diag::err_mode_wrong_type); |
4383 | } else { |
4384 | if (!OldElemTy->isFloatingType()) |
4385 | Diag(Loc: AttrLoc, DiagID: diag::err_mode_wrong_type); |
4386 | } |
4387 | |
4388 | QualType NewElemTy; |
4389 | |
4390 | if (IntegerMode) |
4391 | NewElemTy = Context.getIntTypeForBitwidth(DestWidth, |
4392 | Signed: OldElemTy->isSignedIntegerType()); |
4393 | else |
4394 | NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitType); |
4395 | |
4396 | if (NewElemTy.isNull()) { |
4397 | // Only emit diagnostic on host for 128-bit mode attribute |
4398 | if (!(DestWidth == 128 && getLangOpts().CUDAIsDevice)) |
4399 | Diag(Loc: AttrLoc, DiagID: diag::err_machine_mode) << 1 /*Unsupported*/ << Name; |
4400 | return; |
4401 | } |
4402 | |
4403 | if (ComplexMode) { |
4404 | NewElemTy = Context.getComplexType(T: NewElemTy); |
4405 | } |
4406 | |
4407 | QualType NewTy = NewElemTy; |
4408 | if (VectorSize.getBoolValue()) { |
4409 | NewTy = Context.getVectorType(VectorType: NewTy, NumElts: VectorSize.getZExtValue(), |
4410 | VecKind: VectorKind::Generic); |
4411 | } else if (const auto *OldVT = OldTy->getAs<VectorType>()) { |
4412 | // Complex machine mode does not support base vector types. |
4413 | if (ComplexMode) { |
4414 | Diag(Loc: AttrLoc, DiagID: diag::err_complex_mode_vector_type); |
4415 | return; |
4416 | } |
4417 | unsigned NumElements = Context.getTypeSize(T: OldElemTy) * |
4418 | OldVT->getNumElements() / |
4419 | Context.getTypeSize(T: NewElemTy); |
4420 | NewTy = |
4421 | Context.getVectorType(VectorType: NewElemTy, NumElts: NumElements, VecKind: OldVT->getVectorKind()); |
4422 | } |
4423 | |
4424 | if (NewTy.isNull()) { |
4425 | Diag(Loc: AttrLoc, DiagID: diag::err_mode_wrong_type); |
4426 | return; |
4427 | } |
4428 | |
4429 | // Install the new type. |
4430 | if (auto *TD = dyn_cast<TypedefNameDecl>(Val: D)) |
4431 | TD->setModedTypeSourceInfo(unmodedTSI: TD->getTypeSourceInfo(), modedTy: NewTy); |
4432 | else if (auto *ED = dyn_cast<EnumDecl>(Val: D)) |
4433 | ED->setIntegerType(NewTy); |
4434 | else |
4435 | cast<ValueDecl>(Val: D)->setType(NewTy); |
4436 | |
4437 | D->addAttr(A: ::new (Context) ModeAttr(Context, CI, Name)); |
4438 | } |
4439 | |
4440 | static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4441 | D->addAttr(A: ::new (S.Context) NoDebugAttr(S.Context, AL)); |
4442 | } |
4443 | |
4444 | AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D, |
4445 | const AttributeCommonInfo &CI, |
4446 | const IdentifierInfo *Ident) { |
4447 | if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) { |
4448 | Diag(Loc: CI.getLoc(), DiagID: diag::warn_attribute_ignored) << Ident; |
4449 | Diag(Loc: Optnone->getLocation(), DiagID: diag::note_conflicting_attribute); |
4450 | return nullptr; |
4451 | } |
4452 | |
4453 | if (D->hasAttr<AlwaysInlineAttr>()) |
4454 | return nullptr; |
4455 | |
4456 | return ::new (Context) AlwaysInlineAttr(Context, CI); |
4457 | } |
4458 | |
4459 | InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D, |
4460 | const ParsedAttr &AL) { |
4461 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
4462 | // Attribute applies to Var but not any subclass of it (like ParmVar, |
4463 | // ImplicitParm or VarTemplateSpecialization). |
4464 | if (VD->getKind() != Decl::Var) { |
4465 | Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_wrong_decl_type) |
4466 | << AL << AL.isRegularKeywordAttribute() |
4467 | << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass |
4468 | : ExpectedVariableOrFunction); |
4469 | return nullptr; |
4470 | } |
4471 | // Attribute does not apply to non-static local variables. |
4472 | if (VD->hasLocalStorage()) { |
4473 | Diag(Loc: VD->getLocation(), DiagID: diag::warn_internal_linkage_local_storage); |
4474 | return nullptr; |
4475 | } |
4476 | } |
4477 | |
4478 | return ::new (Context) InternalLinkageAttr(Context, AL); |
4479 | } |
4480 | InternalLinkageAttr * |
4481 | Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) { |
4482 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
4483 | // Attribute applies to Var but not any subclass of it (like ParmVar, |
4484 | // ImplicitParm or VarTemplateSpecialization). |
4485 | if (VD->getKind() != Decl::Var) { |
4486 | Diag(Loc: AL.getLocation(), DiagID: diag::warn_attribute_wrong_decl_type) |
4487 | << &AL << AL.isRegularKeywordAttribute() |
4488 | << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass |
4489 | : ExpectedVariableOrFunction); |
4490 | return nullptr; |
4491 | } |
4492 | // Attribute does not apply to non-static local variables. |
4493 | if (VD->hasLocalStorage()) { |
4494 | Diag(Loc: VD->getLocation(), DiagID: diag::warn_internal_linkage_local_storage); |
4495 | return nullptr; |
4496 | } |
4497 | } |
4498 | |
4499 | return ::new (Context) InternalLinkageAttr(Context, AL); |
4500 | } |
4501 | |
4502 | MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) { |
4503 | if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) { |
4504 | Diag(Loc: CI.getLoc(), DiagID: diag::warn_attribute_ignored) << "'minsize'" ; |
4505 | Diag(Loc: Optnone->getLocation(), DiagID: diag::note_conflicting_attribute); |
4506 | return nullptr; |
4507 | } |
4508 | |
4509 | if (D->hasAttr<MinSizeAttr>()) |
4510 | return nullptr; |
4511 | |
4512 | return ::new (Context) MinSizeAttr(Context, CI); |
4513 | } |
4514 | |
4515 | OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D, |
4516 | const AttributeCommonInfo &CI) { |
4517 | if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) { |
4518 | Diag(Loc: Inline->getLocation(), DiagID: diag::warn_attribute_ignored) << Inline; |
4519 | Diag(Loc: CI.getLoc(), DiagID: diag::note_conflicting_attribute); |
4520 | D->dropAttr<AlwaysInlineAttr>(); |
4521 | } |
4522 | if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) { |
4523 | Diag(Loc: MinSize->getLocation(), DiagID: diag::warn_attribute_ignored) << MinSize; |
4524 | Diag(Loc: CI.getLoc(), DiagID: diag::note_conflicting_attribute); |
4525 | D->dropAttr<MinSizeAttr>(); |
4526 | } |
4527 | |
4528 | if (D->hasAttr<OptimizeNoneAttr>()) |
4529 | return nullptr; |
4530 | |
4531 | return ::new (Context) OptimizeNoneAttr(Context, CI); |
4532 | } |
4533 | |
4534 | static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4535 | if (AlwaysInlineAttr *Inline = |
4536 | S.mergeAlwaysInlineAttr(D, CI: AL, Ident: AL.getAttrName())) |
4537 | D->addAttr(A: Inline); |
4538 | } |
4539 | |
4540 | static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4541 | if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, CI: AL)) |
4542 | D->addAttr(A: MinSize); |
4543 | } |
4544 | |
4545 | static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4546 | if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, CI: AL)) |
4547 | D->addAttr(A: Optnone); |
4548 | } |
4549 | |
4550 | static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4551 | const auto *VD = cast<VarDecl>(Val: D); |
4552 | if (VD->hasLocalStorage()) { |
4553 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_cuda_nonstatic_constdev); |
4554 | return; |
4555 | } |
4556 | // constexpr variable may already get an implicit constant attr, which should |
4557 | // be replaced by the explicit constant attr. |
4558 | if (auto *A = D->getAttr<CUDAConstantAttr>()) { |
4559 | if (!A->isImplicit()) |
4560 | return; |
4561 | D->dropAttr<CUDAConstantAttr>(); |
4562 | } |
4563 | D->addAttr(A: ::new (S.Context) CUDAConstantAttr(S.Context, AL)); |
4564 | } |
4565 | |
4566 | static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4567 | const auto *VD = cast<VarDecl>(Val: D); |
4568 | // extern __shared__ is only allowed on arrays with no length (e.g. |
4569 | // "int x[]"). |
4570 | if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() && |
4571 | !isa<IncompleteArrayType>(Val: VD->getType())) { |
4572 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_cuda_extern_shared) << VD; |
4573 | return; |
4574 | } |
4575 | if (S.getLangOpts().CUDA && VD->hasLocalStorage() && |
4576 | S.CUDA().DiagIfHostCode(Loc: AL.getLoc(), DiagID: diag::err_cuda_host_shared) |
4577 | << llvm::to_underlying(E: S.CUDA().CurrentTarget())) |
4578 | return; |
4579 | D->addAttr(A: ::new (S.Context) CUDASharedAttr(S.Context, AL)); |
4580 | } |
4581 | |
4582 | static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4583 | const auto *FD = cast<FunctionDecl>(Val: D); |
4584 | if (!FD->getReturnType()->isVoidType() && |
4585 | !FD->getReturnType()->getAs<AutoType>() && |
4586 | !FD->getReturnType()->isInstantiationDependentType()) { |
4587 | SourceRange RTRange = FD->getReturnTypeSourceRange(); |
4588 | S.Diag(Loc: FD->getTypeSpecStartLoc(), DiagID: diag::err_kern_type_not_void_return) |
4589 | << FD->getType() |
4590 | << (RTRange.isValid() ? FixItHint::CreateReplacement(RemoveRange: RTRange, Code: "void" ) |
4591 | : FixItHint()); |
4592 | return; |
4593 | } |
4594 | if (const auto *Method = dyn_cast<CXXMethodDecl>(Val: FD)) { |
4595 | if (Method->isInstance()) { |
4596 | S.Diag(Loc: Method->getBeginLoc(), DiagID: diag::err_kern_is_nonstatic_method) |
4597 | << Method; |
4598 | return; |
4599 | } |
4600 | S.Diag(Loc: Method->getBeginLoc(), DiagID: diag::warn_kern_is_method) << Method; |
4601 | } |
4602 | // Only warn for "inline" when compiling for host, to cut down on noise. |
4603 | if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice) |
4604 | S.Diag(Loc: FD->getBeginLoc(), DiagID: diag::warn_kern_is_inline) << FD; |
4605 | |
4606 | if (AL.getKind() == ParsedAttr::AT_NVPTXKernel) |
4607 | D->addAttr(A: ::new (S.Context) NVPTXKernelAttr(S.Context, AL)); |
4608 | else |
4609 | D->addAttr(A: ::new (S.Context) CUDAGlobalAttr(S.Context, AL)); |
4610 | // In host compilation the kernel is emitted as a stub function, which is |
4611 | // a helper function for launching the kernel. The instructions in the helper |
4612 | // function has nothing to do with the source code of the kernel. Do not emit |
4613 | // debug info for the stub function to avoid confusing the debugger. |
4614 | if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice) |
4615 | D->addAttr(A: NoDebugAttr::CreateImplicit(Ctx&: S.Context)); |
4616 | } |
4617 | |
4618 | static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4619 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
4620 | if (VD->hasLocalStorage()) { |
4621 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_cuda_nonstatic_constdev); |
4622 | return; |
4623 | } |
4624 | } |
4625 | |
4626 | if (auto *A = D->getAttr<CUDADeviceAttr>()) { |
4627 | if (!A->isImplicit()) |
4628 | return; |
4629 | D->dropAttr<CUDADeviceAttr>(); |
4630 | } |
4631 | D->addAttr(A: ::new (S.Context) CUDADeviceAttr(S.Context, AL)); |
4632 | } |
4633 | |
4634 | static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4635 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
4636 | if (VD->hasLocalStorage()) { |
4637 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_cuda_nonstatic_constdev); |
4638 | return; |
4639 | } |
4640 | } |
4641 | if (!D->hasAttr<HIPManagedAttr>()) |
4642 | D->addAttr(A: ::new (S.Context) HIPManagedAttr(S.Context, AL)); |
4643 | if (!D->hasAttr<CUDADeviceAttr>()) |
4644 | D->addAttr(A: CUDADeviceAttr::CreateImplicit(Ctx&: S.Context)); |
4645 | } |
4646 | |
4647 | static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4648 | const auto *Fn = cast<FunctionDecl>(Val: D); |
4649 | if (!Fn->isInlineSpecified()) { |
4650 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_gnu_inline_attribute_requires_inline); |
4651 | return; |
4652 | } |
4653 | |
4654 | if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern) |
4655 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_gnu_inline_cplusplus_without_extern); |
4656 | |
4657 | D->addAttr(A: ::new (S.Context) GNUInlineAttr(S.Context, AL)); |
4658 | } |
4659 | |
4660 | static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4661 | if (hasDeclarator(D)) return; |
4662 | |
4663 | // Diagnostic is emitted elsewhere: here we store the (valid) AL |
4664 | // in the Decl node for syntactic reasoning, e.g., pretty-printing. |
4665 | CallingConv CC; |
4666 | if (S.CheckCallingConvAttr( |
4667 | attr: AL, CC, /*FD*/ nullptr, |
4668 | CFT: S.CUDA().IdentifyTarget(D: dyn_cast<FunctionDecl>(Val: D)))) |
4669 | return; |
4670 | |
4671 | if (!isa<ObjCMethodDecl>(Val: D)) { |
4672 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_wrong_decl_type) |
4673 | << AL << AL.isRegularKeywordAttribute() << ExpectedFunctionOrMethod; |
4674 | return; |
4675 | } |
4676 | |
4677 | switch (AL.getKind()) { |
4678 | case ParsedAttr::AT_FastCall: |
4679 | D->addAttr(A: ::new (S.Context) FastCallAttr(S.Context, AL)); |
4680 | return; |
4681 | case ParsedAttr::AT_StdCall: |
4682 | D->addAttr(A: ::new (S.Context) StdCallAttr(S.Context, AL)); |
4683 | return; |
4684 | case ParsedAttr::AT_ThisCall: |
4685 | D->addAttr(A: ::new (S.Context) ThisCallAttr(S.Context, AL)); |
4686 | return; |
4687 | case ParsedAttr::AT_CDecl: |
4688 | D->addAttr(A: ::new (S.Context) CDeclAttr(S.Context, AL)); |
4689 | return; |
4690 | case ParsedAttr::AT_Pascal: |
4691 | D->addAttr(A: ::new (S.Context) PascalAttr(S.Context, AL)); |
4692 | return; |
4693 | case ParsedAttr::AT_SwiftCall: |
4694 | D->addAttr(A: ::new (S.Context) SwiftCallAttr(S.Context, AL)); |
4695 | return; |
4696 | case ParsedAttr::AT_SwiftAsyncCall: |
4697 | D->addAttr(A: ::new (S.Context) SwiftAsyncCallAttr(S.Context, AL)); |
4698 | return; |
4699 | case ParsedAttr::AT_VectorCall: |
4700 | D->addAttr(A: ::new (S.Context) VectorCallAttr(S.Context, AL)); |
4701 | return; |
4702 | case ParsedAttr::AT_MSABI: |
4703 | D->addAttr(A: ::new (S.Context) MSABIAttr(S.Context, AL)); |
4704 | return; |
4705 | case ParsedAttr::AT_SysVABI: |
4706 | D->addAttr(A: ::new (S.Context) SysVABIAttr(S.Context, AL)); |
4707 | return; |
4708 | case ParsedAttr::AT_RegCall: |
4709 | D->addAttr(A: ::new (S.Context) RegCallAttr(S.Context, AL)); |
4710 | return; |
4711 | case ParsedAttr::AT_Pcs: { |
4712 | PcsAttr::PCSType PCS; |
4713 | switch (CC) { |
4714 | case CC_AAPCS: |
4715 | PCS = PcsAttr::AAPCS; |
4716 | break; |
4717 | case CC_AAPCS_VFP: |
4718 | PCS = PcsAttr::AAPCS_VFP; |
4719 | break; |
4720 | default: |
4721 | llvm_unreachable("unexpected calling convention in pcs attribute" ); |
4722 | } |
4723 | |
4724 | D->addAttr(A: ::new (S.Context) PcsAttr(S.Context, AL, PCS)); |
4725 | return; |
4726 | } |
4727 | case ParsedAttr::AT_AArch64VectorPcs: |
4728 | D->addAttr(A: ::new (S.Context) AArch64VectorPcsAttr(S.Context, AL)); |
4729 | return; |
4730 | case ParsedAttr::AT_AArch64SVEPcs: |
4731 | D->addAttr(A: ::new (S.Context) AArch64SVEPcsAttr(S.Context, AL)); |
4732 | return; |
4733 | case ParsedAttr::AT_AMDGPUKernelCall: |
4734 | D->addAttr(A: ::new (S.Context) AMDGPUKernelCallAttr(S.Context, AL)); |
4735 | return; |
4736 | case ParsedAttr::AT_IntelOclBicc: |
4737 | D->addAttr(A: ::new (S.Context) IntelOclBiccAttr(S.Context, AL)); |
4738 | return; |
4739 | case ParsedAttr::AT_PreserveMost: |
4740 | D->addAttr(A: ::new (S.Context) PreserveMostAttr(S.Context, AL)); |
4741 | return; |
4742 | case ParsedAttr::AT_PreserveAll: |
4743 | D->addAttr(A: ::new (S.Context) PreserveAllAttr(S.Context, AL)); |
4744 | return; |
4745 | case ParsedAttr::AT_M68kRTD: |
4746 | D->addAttr(A: ::new (S.Context) M68kRTDAttr(S.Context, AL)); |
4747 | return; |
4748 | case ParsedAttr::AT_PreserveNone: |
4749 | D->addAttr(A: ::new (S.Context) PreserveNoneAttr(S.Context, AL)); |
4750 | return; |
4751 | case ParsedAttr::AT_RISCVVectorCC: |
4752 | D->addAttr(A: ::new (S.Context) RISCVVectorCCAttr(S.Context, AL)); |
4753 | return; |
4754 | default: |
4755 | llvm_unreachable("unexpected attribute kind" ); |
4756 | } |
4757 | } |
4758 | |
4759 | static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4760 | if (AL.getAttributeSpellingListIndex() == SuppressAttr::CXX11_gsl_suppress) { |
4761 | // Suppression attribute with GSL spelling requires at least 1 argument. |
4762 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
4763 | return; |
4764 | } |
4765 | |
4766 | std::vector<StringRef> DiagnosticIdentifiers; |
4767 | for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
4768 | StringRef RuleName; |
4769 | |
4770 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: I, Str&: RuleName, ArgLocation: nullptr)) |
4771 | return; |
4772 | |
4773 | DiagnosticIdentifiers.push_back(x: RuleName); |
4774 | } |
4775 | D->addAttr(A: ::new (S.Context) |
4776 | SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(), |
4777 | DiagnosticIdentifiers.size())); |
4778 | } |
4779 | |
4780 | static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4781 | TypeSourceInfo *DerefTypeLoc = nullptr; |
4782 | QualType ParmType; |
4783 | if (AL.hasParsedType()) { |
4784 | ParmType = S.GetTypeFromParser(Ty: AL.getTypeArg(), TInfo: &DerefTypeLoc); |
4785 | |
4786 | unsigned SelectIdx = ~0U; |
4787 | if (ParmType->isReferenceType()) |
4788 | SelectIdx = 0; |
4789 | else if (ParmType->isArrayType()) |
4790 | SelectIdx = 1; |
4791 | |
4792 | if (SelectIdx != ~0U) { |
4793 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_invalid_argument) |
4794 | << SelectIdx << AL; |
4795 | return; |
4796 | } |
4797 | } |
4798 | |
4799 | // To check if earlier decl attributes do not conflict the newly parsed ones |
4800 | // we always add (and check) the attribute to the canonical decl. We need |
4801 | // to repeat the check for attribute mutual exclusion because we're attaching |
4802 | // all of the attributes to the canonical declaration rather than the current |
4803 | // declaration. |
4804 | D = D->getCanonicalDecl(); |
4805 | if (AL.getKind() == ParsedAttr::AT_Owner) { |
4806 | if (checkAttrMutualExclusion<PointerAttr>(S, D, AL)) |
4807 | return; |
4808 | if (const auto *OAttr = D->getAttr<OwnerAttr>()) { |
4809 | const Type *ExistingDerefType = OAttr->getDerefTypeLoc() |
4810 | ? OAttr->getDerefType().getTypePtr() |
4811 | : nullptr; |
4812 | if (ExistingDerefType != ParmType.getTypePtrOrNull()) { |
4813 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attributes_are_not_compatible) |
4814 | << AL << OAttr |
4815 | << (AL.isRegularKeywordAttribute() || |
4816 | OAttr->isRegularKeywordAttribute()); |
4817 | S.Diag(Loc: OAttr->getLocation(), DiagID: diag::note_conflicting_attribute); |
4818 | } |
4819 | return; |
4820 | } |
4821 | for (Decl *Redecl : D->redecls()) { |
4822 | Redecl->addAttr(A: ::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc)); |
4823 | } |
4824 | } else { |
4825 | if (checkAttrMutualExclusion<OwnerAttr>(S, D, AL)) |
4826 | return; |
4827 | if (const auto *PAttr = D->getAttr<PointerAttr>()) { |
4828 | const Type *ExistingDerefType = PAttr->getDerefTypeLoc() |
4829 | ? PAttr->getDerefType().getTypePtr() |
4830 | : nullptr; |
4831 | if (ExistingDerefType != ParmType.getTypePtrOrNull()) { |
4832 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attributes_are_not_compatible) |
4833 | << AL << PAttr |
4834 | << (AL.isRegularKeywordAttribute() || |
4835 | PAttr->isRegularKeywordAttribute()); |
4836 | S.Diag(Loc: PAttr->getLocation(), DiagID: diag::note_conflicting_attribute); |
4837 | } |
4838 | return; |
4839 | } |
4840 | for (Decl *Redecl : D->redecls()) { |
4841 | Redecl->addAttr(A: ::new (S.Context) |
4842 | PointerAttr(S.Context, AL, DerefTypeLoc)); |
4843 | } |
4844 | } |
4845 | } |
4846 | |
4847 | static void handleRandomizeLayoutAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4848 | if (checkAttrMutualExclusion<NoRandomizeLayoutAttr>(S, D, AL)) |
4849 | return; |
4850 | if (!D->hasAttr<RandomizeLayoutAttr>()) |
4851 | D->addAttr(A: ::new (S.Context) RandomizeLayoutAttr(S.Context, AL)); |
4852 | } |
4853 | |
4854 | static void handleNoRandomizeLayoutAttr(Sema &S, Decl *D, |
4855 | const ParsedAttr &AL) { |
4856 | if (checkAttrMutualExclusion<RandomizeLayoutAttr>(S, D, AL)) |
4857 | return; |
4858 | if (!D->hasAttr<NoRandomizeLayoutAttr>()) |
4859 | D->addAttr(A: ::new (S.Context) NoRandomizeLayoutAttr(S.Context, AL)); |
4860 | } |
4861 | |
4862 | bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC, |
4863 | const FunctionDecl *FD, |
4864 | CUDAFunctionTarget CFT) { |
4865 | if (Attrs.isInvalid()) |
4866 | return true; |
4867 | |
4868 | if (Attrs.hasProcessingCache()) { |
4869 | CC = (CallingConv) Attrs.getProcessingCache(); |
4870 | return false; |
4871 | } |
4872 | |
4873 | unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0; |
4874 | if (!Attrs.checkExactlyNumArgs(S&: *this, Num: ReqArgs)) { |
4875 | Attrs.setInvalid(); |
4876 | return true; |
4877 | } |
4878 | |
4879 | // TODO: diagnose uses of these conventions on the wrong target. |
4880 | switch (Attrs.getKind()) { |
4881 | case ParsedAttr::AT_CDecl: |
4882 | CC = CC_C; |
4883 | break; |
4884 | case ParsedAttr::AT_FastCall: |
4885 | CC = CC_X86FastCall; |
4886 | break; |
4887 | case ParsedAttr::AT_StdCall: |
4888 | CC = CC_X86StdCall; |
4889 | break; |
4890 | case ParsedAttr::AT_ThisCall: |
4891 | CC = CC_X86ThisCall; |
4892 | break; |
4893 | case ParsedAttr::AT_Pascal: |
4894 | CC = CC_X86Pascal; |
4895 | break; |
4896 | case ParsedAttr::AT_SwiftCall: |
4897 | CC = CC_Swift; |
4898 | break; |
4899 | case ParsedAttr::AT_SwiftAsyncCall: |
4900 | CC = CC_SwiftAsync; |
4901 | break; |
4902 | case ParsedAttr::AT_VectorCall: |
4903 | CC = CC_X86VectorCall; |
4904 | break; |
4905 | case ParsedAttr::AT_AArch64VectorPcs: |
4906 | CC = CC_AArch64VectorCall; |
4907 | break; |
4908 | case ParsedAttr::AT_AArch64SVEPcs: |
4909 | CC = CC_AArch64SVEPCS; |
4910 | break; |
4911 | case ParsedAttr::AT_AMDGPUKernelCall: |
4912 | CC = CC_AMDGPUKernelCall; |
4913 | break; |
4914 | case ParsedAttr::AT_RegCall: |
4915 | CC = CC_X86RegCall; |
4916 | break; |
4917 | case ParsedAttr::AT_MSABI: |
4918 | CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C : |
4919 | CC_Win64; |
4920 | break; |
4921 | case ParsedAttr::AT_SysVABI: |
4922 | CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV : |
4923 | CC_C; |
4924 | break; |
4925 | case ParsedAttr::AT_Pcs: { |
4926 | StringRef StrRef; |
4927 | if (!checkStringLiteralArgumentAttr(AL: Attrs, ArgNum: 0, Str&: StrRef)) { |
4928 | Attrs.setInvalid(); |
4929 | return true; |
4930 | } |
4931 | if (StrRef == "aapcs" ) { |
4932 | CC = CC_AAPCS; |
4933 | break; |
4934 | } else if (StrRef == "aapcs-vfp" ) { |
4935 | CC = CC_AAPCS_VFP; |
4936 | break; |
4937 | } |
4938 | |
4939 | Attrs.setInvalid(); |
4940 | Diag(Loc: Attrs.getLoc(), DiagID: diag::err_invalid_pcs); |
4941 | return true; |
4942 | } |
4943 | case ParsedAttr::AT_IntelOclBicc: |
4944 | CC = CC_IntelOclBicc; |
4945 | break; |
4946 | case ParsedAttr::AT_PreserveMost: |
4947 | CC = CC_PreserveMost; |
4948 | break; |
4949 | case ParsedAttr::AT_PreserveAll: |
4950 | CC = CC_PreserveAll; |
4951 | break; |
4952 | case ParsedAttr::AT_M68kRTD: |
4953 | CC = CC_M68kRTD; |
4954 | break; |
4955 | case ParsedAttr::AT_PreserveNone: |
4956 | CC = CC_PreserveNone; |
4957 | break; |
4958 | case ParsedAttr::AT_RISCVVectorCC: |
4959 | CC = CC_RISCVVectorCall; |
4960 | break; |
4961 | default: llvm_unreachable("unexpected attribute kind" ); |
4962 | } |
4963 | |
4964 | TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK; |
4965 | const TargetInfo &TI = Context.getTargetInfo(); |
4966 | // CUDA functions may have host and/or device attributes which indicate |
4967 | // their targeted execution environment, therefore the calling convention |
4968 | // of functions in CUDA should be checked against the target deduced based |
4969 | // on their host/device attributes. |
4970 | if (LangOpts.CUDA) { |
4971 | auto *Aux = Context.getAuxTargetInfo(); |
4972 | assert(FD || CFT != CUDAFunctionTarget::InvalidTarget); |
4973 | auto CudaTarget = FD ? CUDA().IdentifyTarget(D: FD) : CFT; |
4974 | bool CheckHost = false, CheckDevice = false; |
4975 | switch (CudaTarget) { |
4976 | case CUDAFunctionTarget::HostDevice: |
4977 | CheckHost = true; |
4978 | CheckDevice = true; |
4979 | break; |
4980 | case CUDAFunctionTarget::Host: |
4981 | CheckHost = true; |
4982 | break; |
4983 | case CUDAFunctionTarget::Device: |
4984 | case CUDAFunctionTarget::Global: |
4985 | CheckDevice = true; |
4986 | break; |
4987 | case CUDAFunctionTarget::InvalidTarget: |
4988 | llvm_unreachable("unexpected cuda target" ); |
4989 | } |
4990 | auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI; |
4991 | auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux; |
4992 | if (CheckHost && HostTI) |
4993 | A = HostTI->checkCallingConvention(CC); |
4994 | if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI) |
4995 | A = DeviceTI->checkCallingConvention(CC); |
4996 | } else { |
4997 | A = TI.checkCallingConvention(CC); |
4998 | } |
4999 | |
5000 | switch (A) { |
5001 | case TargetInfo::CCCR_OK: |
5002 | break; |
5003 | |
5004 | case TargetInfo::CCCR_Ignore: |
5005 | // Treat an ignored convention as if it was an explicit C calling convention |
5006 | // attribute. For example, __stdcall on Win x64 functions as __cdecl, so |
5007 | // that command line flags that change the default convention to |
5008 | // __vectorcall don't affect declarations marked __stdcall. |
5009 | CC = CC_C; |
5010 | break; |
5011 | |
5012 | case TargetInfo::CCCR_Error: |
5013 | Diag(Loc: Attrs.getLoc(), DiagID: diag::error_cconv_unsupported) |
5014 | << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget; |
5015 | break; |
5016 | |
5017 | case TargetInfo::CCCR_Warning: { |
5018 | Diag(Loc: Attrs.getLoc(), DiagID: diag::warn_cconv_unsupported) |
5019 | << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget; |
5020 | |
5021 | // This convention is not valid for the target. Use the default function or |
5022 | // method calling convention. |
5023 | bool IsCXXMethod = false, IsVariadic = false; |
5024 | if (FD) { |
5025 | IsCXXMethod = FD->isCXXInstanceMember(); |
5026 | IsVariadic = FD->isVariadic(); |
5027 | } |
5028 | CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod); |
5029 | break; |
5030 | } |
5031 | } |
5032 | |
5033 | Attrs.setProcessingCache((unsigned) CC); |
5034 | return false; |
5035 | } |
5036 | |
5037 | bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) { |
5038 | if (AL.isInvalid()) |
5039 | return true; |
5040 | |
5041 | if (!AL.checkExactlyNumArgs(S&: *this, Num: 1)) { |
5042 | AL.setInvalid(); |
5043 | return true; |
5044 | } |
5045 | |
5046 | uint32_t NP; |
5047 | Expr *NumParamsExpr = AL.getArgAsExpr(Arg: 0); |
5048 | if (!checkUInt32Argument(AI: AL, Expr: NumParamsExpr, Val&: NP)) { |
5049 | AL.setInvalid(); |
5050 | return true; |
5051 | } |
5052 | |
5053 | if (Context.getTargetInfo().getRegParmMax() == 0) { |
5054 | Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_regparm_wrong_platform) |
5055 | << NumParamsExpr->getSourceRange(); |
5056 | AL.setInvalid(); |
5057 | return true; |
5058 | } |
5059 | |
5060 | numParams = NP; |
5061 | if (numParams > Context.getTargetInfo().getRegParmMax()) { |
5062 | Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_regparm_invalid_number) |
5063 | << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange(); |
5064 | AL.setInvalid(); |
5065 | return true; |
5066 | } |
5067 | |
5068 | return false; |
5069 | } |
5070 | |
5071 | // Helper to get OffloadArch. |
5072 | static OffloadArch getOffloadArch(const TargetInfo &TI) { |
5073 | if (!TI.getTriple().isNVPTX()) |
5074 | llvm_unreachable("getOffloadArch is only valid for NVPTX triple" ); |
5075 | auto &TO = TI.getTargetOpts(); |
5076 | return StringToOffloadArch(S: TO.CPU); |
5077 | } |
5078 | |
5079 | // Checks whether an argument of launch_bounds attribute is |
5080 | // acceptable, performs implicit conversion to Rvalue, and returns |
5081 | // non-nullptr Expr result on success. Otherwise, it returns nullptr |
5082 | // and may output an error. |
5083 | static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E, |
5084 | const CUDALaunchBoundsAttr &AL, |
5085 | const unsigned Idx) { |
5086 | if (S.DiagnoseUnexpandedParameterPack(E)) |
5087 | return nullptr; |
5088 | |
5089 | // Accept template arguments for now as they depend on something else. |
5090 | // We'll get to check them when they eventually get instantiated. |
5091 | if (E->isValueDependent()) |
5092 | return E; |
5093 | |
5094 | std::optional<llvm::APSInt> I = llvm::APSInt(64); |
5095 | if (!(I = E->getIntegerConstantExpr(Ctx: S.Context))) { |
5096 | S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_attribute_argument_n_type) |
5097 | << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange(); |
5098 | return nullptr; |
5099 | } |
5100 | // Make sure we can fit it in 32 bits. |
5101 | if (!I->isIntN(N: 32)) { |
5102 | S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_ice_too_large) |
5103 | << toString(I: *I, Radix: 10, Signed: false) << 32 << /* Unsigned */ 1; |
5104 | return nullptr; |
5105 | } |
5106 | if (*I < 0) |
5107 | S.Diag(Loc: E->getExprLoc(), DiagID: diag::warn_attribute_argument_n_negative) |
5108 | << &AL << Idx << E->getSourceRange(); |
5109 | |
5110 | // We may need to perform implicit conversion of the argument. |
5111 | InitializedEntity Entity = InitializedEntity::InitializeParameter( |
5112 | Context&: S.Context, Type: S.Context.getConstType(T: S.Context.IntTy), /*consume*/ Consumed: false); |
5113 | ExprResult ValArg = S.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: E); |
5114 | assert(!ValArg.isInvalid() && |
5115 | "Unexpected PerformCopyInitialization() failure." ); |
5116 | |
5117 | return ValArg.getAs<Expr>(); |
5118 | } |
5119 | |
5120 | CUDALaunchBoundsAttr * |
5121 | Sema::CreateLaunchBoundsAttr(const AttributeCommonInfo &CI, Expr *MaxThreads, |
5122 | Expr *MinBlocks, Expr *MaxBlocks) { |
5123 | CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks, MaxBlocks); |
5124 | MaxThreads = makeLaunchBoundsArgExpr(S&: *this, E: MaxThreads, AL: TmpAttr, Idx: 0); |
5125 | if (!MaxThreads) |
5126 | return nullptr; |
5127 | |
5128 | if (MinBlocks) { |
5129 | MinBlocks = makeLaunchBoundsArgExpr(S&: *this, E: MinBlocks, AL: TmpAttr, Idx: 1); |
5130 | if (!MinBlocks) |
5131 | return nullptr; |
5132 | } |
5133 | |
5134 | if (MaxBlocks) { |
5135 | // '.maxclusterrank' ptx directive requires .target sm_90 or higher. |
5136 | auto SM = getOffloadArch(TI: Context.getTargetInfo()); |
5137 | if (SM == OffloadArch::UNKNOWN || SM < OffloadArch::SM_90) { |
5138 | Diag(Loc: MaxBlocks->getBeginLoc(), DiagID: diag::warn_cuda_maxclusterrank_sm_90) |
5139 | << OffloadArchToString(A: SM) << CI << MaxBlocks->getSourceRange(); |
5140 | // Ignore it by setting MaxBlocks to null; |
5141 | MaxBlocks = nullptr; |
5142 | } else { |
5143 | MaxBlocks = makeLaunchBoundsArgExpr(S&: *this, E: MaxBlocks, AL: TmpAttr, Idx: 2); |
5144 | if (!MaxBlocks) |
5145 | return nullptr; |
5146 | } |
5147 | } |
5148 | |
5149 | return ::new (Context) |
5150 | CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks, MaxBlocks); |
5151 | } |
5152 | |
5153 | void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI, |
5154 | Expr *MaxThreads, Expr *MinBlocks, |
5155 | Expr *MaxBlocks) { |
5156 | if (auto *Attr = CreateLaunchBoundsAttr(CI, MaxThreads, MinBlocks, MaxBlocks)) |
5157 | D->addAttr(A: Attr); |
5158 | } |
5159 | |
5160 | static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5161 | if (!AL.checkAtLeastNumArgs(S, Num: 1) || !AL.checkAtMostNumArgs(S, Num: 3)) |
5162 | return; |
5163 | |
5164 | S.AddLaunchBoundsAttr(D, CI: AL, MaxThreads: AL.getArgAsExpr(Arg: 0), |
5165 | MinBlocks: AL.getNumArgs() > 1 ? AL.getArgAsExpr(Arg: 1) : nullptr, |
5166 | MaxBlocks: AL.getNumArgs() > 2 ? AL.getArgAsExpr(Arg: 2) : nullptr); |
5167 | } |
5168 | |
5169 | static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D, |
5170 | const ParsedAttr &AL) { |
5171 | if (!AL.isArgIdent(Arg: 0)) { |
5172 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_n_type) |
5173 | << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier; |
5174 | return; |
5175 | } |
5176 | |
5177 | ParamIdx ArgumentIdx; |
5178 | if (!S.checkFunctionOrMethodParameterIndex(D, AI: AL, AttrArgNum: 2, IdxExpr: AL.getArgAsExpr(Arg: 1), |
5179 | Idx&: ArgumentIdx)) |
5180 | return; |
5181 | |
5182 | ParamIdx TypeTagIdx; |
5183 | if (!S.checkFunctionOrMethodParameterIndex(D, AI: AL, AttrArgNum: 3, IdxExpr: AL.getArgAsExpr(Arg: 2), |
5184 | Idx&: TypeTagIdx)) |
5185 | return; |
5186 | |
5187 | bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag" ; |
5188 | if (IsPointer) { |
5189 | // Ensure that buffer has a pointer type. |
5190 | unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex(); |
5191 | if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) || |
5192 | !getFunctionOrMethodParamType(D, Idx: ArgumentIdxAST)->isPointerType()) |
5193 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_pointers_only) << AL << 0; |
5194 | } |
5195 | |
5196 | D->addAttr(A: ::new (S.Context) ArgumentWithTypeTagAttr( |
5197 | S.Context, AL, AL.getArgAsIdent(Arg: 0)->Ident, ArgumentIdx, TypeTagIdx, |
5198 | IsPointer)); |
5199 | } |
5200 | |
5201 | static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D, |
5202 | const ParsedAttr &AL) { |
5203 | if (!AL.isArgIdent(Arg: 0)) { |
5204 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_n_type) |
5205 | << AL << 1 << AANT_ArgumentIdentifier; |
5206 | return; |
5207 | } |
5208 | |
5209 | if (!AL.checkExactlyNumArgs(S, Num: 1)) |
5210 | return; |
5211 | |
5212 | if (!isa<VarDecl>(Val: D)) { |
5213 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_decl_type) |
5214 | << AL << AL.isRegularKeywordAttribute() << ExpectedVariable; |
5215 | return; |
5216 | } |
5217 | |
5218 | IdentifierInfo *PointerKind = AL.getArgAsIdent(Arg: 0)->Ident; |
5219 | TypeSourceInfo *MatchingCTypeLoc = nullptr; |
5220 | S.GetTypeFromParser(Ty: AL.getMatchingCType(), TInfo: &MatchingCTypeLoc); |
5221 | assert(MatchingCTypeLoc && "no type source info for attribute argument" ); |
5222 | |
5223 | D->addAttr(A: ::new (S.Context) TypeTagForDatatypeAttr( |
5224 | S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(), |
5225 | AL.getMustBeNull())); |
5226 | } |
5227 | |
5228 | static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5229 | ParamIdx ArgCount; |
5230 | |
5231 | if (!S.checkFunctionOrMethodParameterIndex(D, AI: AL, AttrArgNum: 1, IdxExpr: AL.getArgAsExpr(Arg: 0), |
5232 | Idx&: ArgCount, |
5233 | CanIndexImplicitThis: true /* CanIndexImplicitThis */)) |
5234 | return; |
5235 | |
5236 | // ArgCount isn't a parameter index [0;n), it's a count [1;n] |
5237 | D->addAttr(A: ::new (S.Context) |
5238 | XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex())); |
5239 | } |
5240 | |
5241 | static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D, |
5242 | const ParsedAttr &AL) { |
5243 | if (S.Context.getTargetInfo().getTriple().isOSAIX()) { |
5244 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_aix_attr_unsupported) << AL; |
5245 | return; |
5246 | } |
5247 | uint32_t Count = 0, Offset = 0; |
5248 | if (!S.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: Count, Idx: 0, StrictlyUnsigned: true)) |
5249 | return; |
5250 | if (AL.getNumArgs() == 2) { |
5251 | Expr *Arg = AL.getArgAsExpr(Arg: 1); |
5252 | if (!S.checkUInt32Argument(AI: AL, Expr: Arg, Val&: Offset, Idx: 1, StrictlyUnsigned: true)) |
5253 | return; |
5254 | if (Count < Offset) { |
5255 | S.Diag(Loc: S.getAttrLoc(AL), DiagID: diag::err_attribute_argument_out_of_range) |
5256 | << &AL << 0 << Count << Arg->getBeginLoc(); |
5257 | return; |
5258 | } |
5259 | } |
5260 | D->addAttr(A: ::new (S.Context) |
5261 | PatchableFunctionEntryAttr(S.Context, AL, Count, Offset)); |
5262 | } |
5263 | |
5264 | static void handleBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5265 | if (!AL.isArgIdent(Arg: 0)) { |
5266 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_n_type) |
5267 | << AL << 1 << AANT_ArgumentIdentifier; |
5268 | return; |
5269 | } |
5270 | |
5271 | IdentifierInfo *Ident = AL.getArgAsIdent(Arg: 0)->Ident; |
5272 | unsigned BuiltinID = Ident->getBuiltinID(); |
5273 | StringRef AliasName = cast<FunctionDecl>(Val: D)->getIdentifier()->getName(); |
5274 | |
5275 | bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); |
5276 | bool IsARM = S.Context.getTargetInfo().getTriple().isARM(); |
5277 | bool IsRISCV = S.Context.getTargetInfo().getTriple().isRISCV(); |
5278 | bool IsHLSL = S.Context.getLangOpts().HLSL; |
5279 | if ((IsAArch64 && !S.ARM().SveAliasValid(BuiltinID, AliasName)) || |
5280 | (IsARM && !S.ARM().MveAliasValid(BuiltinID, AliasName) && |
5281 | !S.ARM().CdeAliasValid(BuiltinID, AliasName)) || |
5282 | (IsRISCV && !S.RISCV().isAliasValid(BuiltinID, AliasName)) || |
5283 | (!IsAArch64 && !IsARM && !IsRISCV && !IsHLSL)) { |
5284 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_builtin_alias) << AL; |
5285 | return; |
5286 | } |
5287 | |
5288 | D->addAttr(A: ::new (S.Context) BuiltinAliasAttr(S.Context, AL, Ident)); |
5289 | } |
5290 | |
5291 | static void handleNullableTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5292 | if (AL.isUsedAsTypeAttr()) |
5293 | return; |
5294 | |
5295 | if (auto *CRD = dyn_cast<CXXRecordDecl>(Val: D); |
5296 | !CRD || !(CRD->isClass() || CRD->isStruct())) { |
5297 | S.Diag(Loc: AL.getRange().getBegin(), DiagID: diag::err_attribute_wrong_decl_type_str) |
5298 | << AL << AL.isRegularKeywordAttribute() << "classes" ; |
5299 | return; |
5300 | } |
5301 | |
5302 | handleSimpleAttribute<TypeNullableAttr>(S, D, CI: AL); |
5303 | } |
5304 | |
5305 | static void handlePreferredTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5306 | if (!AL.hasParsedType()) { |
5307 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) << AL << 1; |
5308 | return; |
5309 | } |
5310 | |
5311 | TypeSourceInfo *ParmTSI = nullptr; |
5312 | QualType QT = S.GetTypeFromParser(Ty: AL.getTypeArg(), TInfo: &ParmTSI); |
5313 | assert(ParmTSI && "no type source info for attribute argument" ); |
5314 | S.RequireCompleteType(Loc: ParmTSI->getTypeLoc().getBeginLoc(), T: QT, |
5315 | DiagID: diag::err_incomplete_type); |
5316 | |
5317 | D->addAttr(A: ::new (S.Context) PreferredTypeAttr(S.Context, AL, ParmTSI)); |
5318 | } |
5319 | |
5320 | //===----------------------------------------------------------------------===// |
5321 | // Microsoft specific attribute handlers. |
5322 | //===----------------------------------------------------------------------===// |
5323 | |
5324 | UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI, |
5325 | StringRef UuidAsWritten, MSGuidDecl *GuidDecl) { |
5326 | if (const auto *UA = D->getAttr<UuidAttr>()) { |
5327 | if (declaresSameEntity(D1: UA->getGuidDecl(), D2: GuidDecl)) |
5328 | return nullptr; |
5329 | if (!UA->getGuid().empty()) { |
5330 | Diag(Loc: UA->getLocation(), DiagID: diag::err_mismatched_uuid); |
5331 | Diag(Loc: CI.getLoc(), DiagID: diag::note_previous_uuid); |
5332 | D->dropAttr<UuidAttr>(); |
5333 | } |
5334 | } |
5335 | |
5336 | return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl); |
5337 | } |
5338 | |
5339 | static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5340 | if (!S.LangOpts.CPlusPlus) { |
5341 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_not_supported_in_lang) |
5342 | << AL << AttributeLangSupport::C; |
5343 | return; |
5344 | } |
5345 | |
5346 | StringRef OrigStrRef; |
5347 | SourceLocation LiteralLoc; |
5348 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: OrigStrRef, ArgLocation: &LiteralLoc)) |
5349 | return; |
5350 | |
5351 | // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or |
5352 | // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former. |
5353 | StringRef StrRef = OrigStrRef; |
5354 | if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}') |
5355 | StrRef = StrRef.drop_front().drop_back(); |
5356 | |
5357 | // Validate GUID length. |
5358 | if (StrRef.size() != 36) { |
5359 | S.Diag(Loc: LiteralLoc, DiagID: diag::err_attribute_uuid_malformed_guid); |
5360 | return; |
5361 | } |
5362 | |
5363 | for (unsigned i = 0; i < 36; ++i) { |
5364 | if (i == 8 || i == 13 || i == 18 || i == 23) { |
5365 | if (StrRef[i] != '-') { |
5366 | S.Diag(Loc: LiteralLoc, DiagID: diag::err_attribute_uuid_malformed_guid); |
5367 | return; |
5368 | } |
5369 | } else if (!isHexDigit(c: StrRef[i])) { |
5370 | S.Diag(Loc: LiteralLoc, DiagID: diag::err_attribute_uuid_malformed_guid); |
5371 | return; |
5372 | } |
5373 | } |
5374 | |
5375 | // Convert to our parsed format and canonicalize. |
5376 | MSGuidDecl::Parts Parsed; |
5377 | StrRef.substr(Start: 0, N: 8).getAsInteger(Radix: 16, Result&: Parsed.Part1); |
5378 | StrRef.substr(Start: 9, N: 4).getAsInteger(Radix: 16, Result&: Parsed.Part2); |
5379 | StrRef.substr(Start: 14, N: 4).getAsInteger(Radix: 16, Result&: Parsed.Part3); |
5380 | for (unsigned i = 0; i != 8; ++i) |
5381 | StrRef.substr(Start: 19 + 2 * i + (i >= 2 ? 1 : 0), N: 2) |
5382 | .getAsInteger(Radix: 16, Result&: Parsed.Part4And5[i]); |
5383 | MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parts: Parsed); |
5384 | |
5385 | // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's |
5386 | // the only thing in the [] list, the [] too), and add an insertion of |
5387 | // __declspec(uuid(...)). But sadly, neither the SourceLocs of the commas |
5388 | // separating attributes nor of the [ and the ] are in the AST. |
5389 | // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc" |
5390 | // on cfe-dev. |
5391 | if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling. |
5392 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_atl_uuid_deprecated); |
5393 | |
5394 | UuidAttr *UA = S.mergeUuidAttr(D, CI: AL, UuidAsWritten: OrigStrRef, GuidDecl: Guid); |
5395 | if (UA) |
5396 | D->addAttr(A: UA); |
5397 | } |
5398 | |
5399 | static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5400 | if (!S.LangOpts.CPlusPlus) { |
5401 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_not_supported_in_lang) |
5402 | << AL << AttributeLangSupport::C; |
5403 | return; |
5404 | } |
5405 | MSInheritanceAttr *IA = S.mergeMSInheritanceAttr( |
5406 | D, CI: AL, /*BestCase=*/true, Model: (MSInheritanceModel)AL.getSemanticSpelling()); |
5407 | if (IA) { |
5408 | D->addAttr(A: IA); |
5409 | S.Consumer.AssignInheritanceModel(RD: cast<CXXRecordDecl>(Val: D)); |
5410 | } |
5411 | } |
5412 | |
5413 | static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5414 | const auto *VD = cast<VarDecl>(Val: D); |
5415 | if (!S.Context.getTargetInfo().isTLSSupported()) { |
5416 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_thread_unsupported); |
5417 | return; |
5418 | } |
5419 | if (VD->getTSCSpec() != TSCS_unspecified) { |
5420 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_declspec_thread_on_thread_variable); |
5421 | return; |
5422 | } |
5423 | if (VD->hasLocalStorage()) { |
5424 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_thread_non_global) << "__declspec(thread)" ; |
5425 | return; |
5426 | } |
5427 | D->addAttr(A: ::new (S.Context) ThreadAttr(S.Context, AL)); |
5428 | } |
5429 | |
5430 | static void handleMSConstexprAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5431 | if (!S.getLangOpts().isCompatibleWithMSVC(MajorVersion: LangOptions::MSVC2022_3)) { |
5432 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_unknown_attribute_ignored) |
5433 | << AL << AL.getRange(); |
5434 | return; |
5435 | } |
5436 | auto *FD = cast<FunctionDecl>(Val: D); |
5437 | if (FD->isConstexprSpecified() || FD->isConsteval()) { |
5438 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_ms_constexpr_cannot_be_applied) |
5439 | << FD->isConsteval() << FD; |
5440 | return; |
5441 | } |
5442 | if (auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
5443 | if (!S.getLangOpts().CPlusPlus20 && MD->isVirtual()) { |
5444 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_ms_constexpr_cannot_be_applied) |
5445 | << /*virtual*/ 2 << MD; |
5446 | return; |
5447 | } |
5448 | } |
5449 | D->addAttr(A: ::new (S.Context) MSConstexprAttr(S.Context, AL)); |
5450 | } |
5451 | |
5452 | static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5453 | SmallVector<StringRef, 4> Tags; |
5454 | for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
5455 | StringRef Tag; |
5456 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: I, Str&: Tag)) |
5457 | return; |
5458 | Tags.push_back(Elt: Tag); |
5459 | } |
5460 | |
5461 | if (const auto *NS = dyn_cast<NamespaceDecl>(Val: D)) { |
5462 | if (!NS->isInline()) { |
5463 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attr_abi_tag_namespace) << 0; |
5464 | return; |
5465 | } |
5466 | if (NS->isAnonymousNamespace()) { |
5467 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attr_abi_tag_namespace) << 1; |
5468 | return; |
5469 | } |
5470 | if (AL.getNumArgs() == 0) |
5471 | Tags.push_back(Elt: NS->getName()); |
5472 | } else if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
5473 | return; |
5474 | |
5475 | // Store tags sorted and without duplicates. |
5476 | llvm::sort(C&: Tags); |
5477 | Tags.erase(CS: std::unique(first: Tags.begin(), last: Tags.end()), CE: Tags.end()); |
5478 | |
5479 | D->addAttr(A: ::new (S.Context) |
5480 | AbiTagAttr(S.Context, AL, Tags.data(), Tags.size())); |
5481 | } |
5482 | |
5483 | static bool hasBTFDeclTagAttr(Decl *D, StringRef Tag) { |
5484 | for (const auto *I : D->specific_attrs<BTFDeclTagAttr>()) { |
5485 | if (I->getBTFDeclTag() == Tag) |
5486 | return true; |
5487 | } |
5488 | return false; |
5489 | } |
5490 | |
5491 | static void handleBTFDeclTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5492 | StringRef Str; |
5493 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str)) |
5494 | return; |
5495 | if (hasBTFDeclTagAttr(D, Tag: Str)) |
5496 | return; |
5497 | |
5498 | D->addAttr(A: ::new (S.Context) BTFDeclTagAttr(S.Context, AL, Str)); |
5499 | } |
5500 | |
5501 | BTFDeclTagAttr *Sema::mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL) { |
5502 | if (hasBTFDeclTagAttr(D, Tag: AL.getBTFDeclTag())) |
5503 | return nullptr; |
5504 | return ::new (Context) BTFDeclTagAttr(Context, AL, AL.getBTFDeclTag()); |
5505 | } |
5506 | |
5507 | static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5508 | // Dispatch the interrupt attribute based on the current target. |
5509 | switch (S.Context.getTargetInfo().getTriple().getArch()) { |
5510 | case llvm::Triple::msp430: |
5511 | S.MSP430().handleInterruptAttr(D, AL); |
5512 | break; |
5513 | case llvm::Triple::mipsel: |
5514 | case llvm::Triple::mips: |
5515 | S.MIPS().handleInterruptAttr(D, AL); |
5516 | break; |
5517 | case llvm::Triple::m68k: |
5518 | S.M68k().handleInterruptAttr(D, AL); |
5519 | break; |
5520 | case llvm::Triple::x86: |
5521 | case llvm::Triple::x86_64: |
5522 | S.X86().handleAnyInterruptAttr(D, AL); |
5523 | break; |
5524 | case llvm::Triple::avr: |
5525 | S.AVR().handleInterruptAttr(D, AL); |
5526 | break; |
5527 | case llvm::Triple::riscv32: |
5528 | case llvm::Triple::riscv64: |
5529 | S.RISCV().handleInterruptAttr(D, AL); |
5530 | break; |
5531 | default: |
5532 | S.ARM().handleInterruptAttr(D, AL); |
5533 | break; |
5534 | } |
5535 | } |
5536 | |
5537 | static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) { |
5538 | uint32_t Version; |
5539 | Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(Arg: 0)); |
5540 | if (!S.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: Version)) |
5541 | return; |
5542 | |
5543 | // TODO: Investigate what happens with the next major version of MSVC. |
5544 | if (Version != LangOptions::MSVC2015 / 100) { |
5545 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_out_of_bounds) |
5546 | << AL << Version << VersionExpr->getSourceRange(); |
5547 | return; |
5548 | } |
5549 | |
5550 | // The attribute expects a "major" version number like 19, but new versions of |
5551 | // MSVC have moved to updating the "minor", or less significant numbers, so we |
5552 | // have to multiply by 100 now. |
5553 | Version *= 100; |
5554 | |
5555 | D->addAttr(A: ::new (S.Context) LayoutVersionAttr(S.Context, AL, Version)); |
5556 | } |
5557 | |
5558 | DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, |
5559 | const AttributeCommonInfo &CI) { |
5560 | if (D->hasAttr<DLLExportAttr>()) { |
5561 | Diag(Loc: CI.getLoc(), DiagID: diag::warn_attribute_ignored) << "'dllimport'" ; |
5562 | return nullptr; |
5563 | } |
5564 | |
5565 | if (D->hasAttr<DLLImportAttr>()) |
5566 | return nullptr; |
5567 | |
5568 | return ::new (Context) DLLImportAttr(Context, CI); |
5569 | } |
5570 | |
5571 | DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, |
5572 | const AttributeCommonInfo &CI) { |
5573 | if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) { |
5574 | Diag(Loc: Import->getLocation(), DiagID: diag::warn_attribute_ignored) << Import; |
5575 | D->dropAttr<DLLImportAttr>(); |
5576 | } |
5577 | |
5578 | if (D->hasAttr<DLLExportAttr>()) |
5579 | return nullptr; |
5580 | |
5581 | return ::new (Context) DLLExportAttr(Context, CI); |
5582 | } |
5583 | |
5584 | static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) { |
5585 | if (isa<ClassTemplatePartialSpecializationDecl>(Val: D) && |
5586 | (S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) { |
5587 | S.Diag(Loc: A.getRange().getBegin(), DiagID: diag::warn_attribute_ignored) << A; |
5588 | return; |
5589 | } |
5590 | |
5591 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
5592 | if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport && |
5593 | !(S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) { |
5594 | // MinGW doesn't allow dllimport on inline functions. |
5595 | S.Diag(Loc: A.getRange().getBegin(), DiagID: diag::warn_attribute_ignored_on_inline) |
5596 | << A; |
5597 | return; |
5598 | } |
5599 | } |
5600 | |
5601 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: D)) { |
5602 | if ((S.Context.getTargetInfo().shouldDLLImportComdatSymbols()) && |
5603 | MD->getParent()->isLambda()) { |
5604 | S.Diag(Loc: A.getRange().getBegin(), DiagID: diag::err_attribute_dll_lambda) << A; |
5605 | return; |
5606 | } |
5607 | } |
5608 | |
5609 | Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport |
5610 | ? (Attr *)S.mergeDLLExportAttr(D, CI: A) |
5611 | : (Attr *)S.mergeDLLImportAttr(D, CI: A); |
5612 | if (NewAttr) |
5613 | D->addAttr(A: NewAttr); |
5614 | } |
5615 | |
5616 | MSInheritanceAttr * |
5617 | Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI, |
5618 | bool BestCase, |
5619 | MSInheritanceModel Model) { |
5620 | if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) { |
5621 | if (IA->getInheritanceModel() == Model) |
5622 | return nullptr; |
5623 | Diag(Loc: IA->getLocation(), DiagID: diag::err_mismatched_ms_inheritance) |
5624 | << 1 /*previous declaration*/; |
5625 | Diag(Loc: CI.getLoc(), DiagID: diag::note_previous_ms_inheritance); |
5626 | D->dropAttr<MSInheritanceAttr>(); |
5627 | } |
5628 | |
5629 | auto *RD = cast<CXXRecordDecl>(Val: D); |
5630 | if (RD->hasDefinition()) { |
5631 | if (checkMSInheritanceAttrOnDefinition(RD, Range: CI.getRange(), BestCase, |
5632 | ExplicitModel: Model)) { |
5633 | return nullptr; |
5634 | } |
5635 | } else { |
5636 | if (isa<ClassTemplatePartialSpecializationDecl>(Val: RD)) { |
5637 | Diag(Loc: CI.getLoc(), DiagID: diag::warn_ignored_ms_inheritance) |
5638 | << 1 /*partial specialization*/; |
5639 | return nullptr; |
5640 | } |
5641 | if (RD->getDescribedClassTemplate()) { |
5642 | Diag(Loc: CI.getLoc(), DiagID: diag::warn_ignored_ms_inheritance) |
5643 | << 0 /*primary template*/; |
5644 | return nullptr; |
5645 | } |
5646 | } |
5647 | |
5648 | return ::new (Context) MSInheritanceAttr(Context, CI, BestCase); |
5649 | } |
5650 | |
5651 | static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5652 | // The capability attributes take a single string parameter for the name of |
5653 | // the capability they represent. The lockable attribute does not take any |
5654 | // parameters. However, semantically, both attributes represent the same |
5655 | // concept, and so they use the same semantic attribute. Eventually, the |
5656 | // lockable attribute will be removed. |
5657 | // |
5658 | // For backward compatibility, any capability which has no specified string |
5659 | // literal will be considered a "mutex." |
5660 | StringRef N("mutex" ); |
5661 | SourceLocation LiteralLoc; |
5662 | if (AL.getKind() == ParsedAttr::AT_Capability && |
5663 | !S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: N, ArgLocation: &LiteralLoc)) |
5664 | return; |
5665 | |
5666 | D->addAttr(A: ::new (S.Context) CapabilityAttr(S.Context, AL, N)); |
5667 | } |
5668 | |
5669 | static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5670 | SmallVector<Expr*, 1> Args; |
5671 | if (!checkLockFunAttrCommon(S, D, AL, Args)) |
5672 | return; |
5673 | |
5674 | D->addAttr(A: ::new (S.Context) |
5675 | AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size())); |
5676 | } |
5677 | |
5678 | static void handleAcquireCapabilityAttr(Sema &S, Decl *D, |
5679 | const ParsedAttr &AL) { |
5680 | SmallVector<Expr*, 1> Args; |
5681 | if (!checkLockFunAttrCommon(S, D, AL, Args)) |
5682 | return; |
5683 | |
5684 | D->addAttr(A: ::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(), |
5685 | Args.size())); |
5686 | } |
5687 | |
5688 | static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D, |
5689 | const ParsedAttr &AL) { |
5690 | SmallVector<Expr*, 2> Args; |
5691 | if (!checkTryLockFunAttrCommon(S, D, AL, Args)) |
5692 | return; |
5693 | |
5694 | D->addAttr(A: ::new (S.Context) TryAcquireCapabilityAttr( |
5695 | S.Context, AL, AL.getArgAsExpr(Arg: 0), Args.data(), Args.size())); |
5696 | } |
5697 | |
5698 | static void handleReleaseCapabilityAttr(Sema &S, Decl *D, |
5699 | const ParsedAttr &AL) { |
5700 | // Check that all arguments are lockable objects. |
5701 | SmallVector<Expr *, 1> Args; |
5702 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args, Sidx: 0, ParamIdxOk: true); |
5703 | |
5704 | D->addAttr(A: ::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(), |
5705 | Args.size())); |
5706 | } |
5707 | |
5708 | static void handleRequiresCapabilityAttr(Sema &S, Decl *D, |
5709 | const ParsedAttr &AL) { |
5710 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
5711 | return; |
5712 | |
5713 | // check that all arguments are lockable objects |
5714 | SmallVector<Expr*, 1> Args; |
5715 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
5716 | if (Args.empty()) |
5717 | return; |
5718 | |
5719 | RequiresCapabilityAttr *RCA = ::new (S.Context) |
5720 | RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size()); |
5721 | |
5722 | D->addAttr(A: RCA); |
5723 | } |
5724 | |
5725 | static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5726 | if (const auto *NSD = dyn_cast<NamespaceDecl>(Val: D)) { |
5727 | if (NSD->isAnonymousNamespace()) { |
5728 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_deprecated_anonymous_namespace); |
5729 | // Do not want to attach the attribute to the namespace because that will |
5730 | // cause confusing diagnostic reports for uses of declarations within the |
5731 | // namespace. |
5732 | return; |
5733 | } |
5734 | } else if (isa<UsingDecl, UnresolvedUsingTypenameDecl, |
5735 | UnresolvedUsingValueDecl>(Val: D)) { |
5736 | S.Diag(Loc: AL.getRange().getBegin(), DiagID: diag::warn_deprecated_ignored_on_using) |
5737 | << AL; |
5738 | return; |
5739 | } |
5740 | |
5741 | // Handle the cases where the attribute has a text message. |
5742 | StringRef Str, Replacement; |
5743 | if (AL.isArgExpr(Arg: 0) && AL.getArgAsExpr(Arg: 0) && |
5744 | !S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str)) |
5745 | return; |
5746 | |
5747 | // Support a single optional message only for Declspec and [[]] spellings. |
5748 | if (AL.isDeclspecAttribute() || AL.isStandardAttributeSyntax()) |
5749 | AL.checkAtMostNumArgs(S, Num: 1); |
5750 | else if (AL.isArgExpr(Arg: 1) && AL.getArgAsExpr(Arg: 1) && |
5751 | !S.checkStringLiteralArgumentAttr(AL, ArgNum: 1, Str&: Replacement)) |
5752 | return; |
5753 | |
5754 | if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope()) |
5755 | S.Diag(Loc: AL.getLoc(), DiagID: diag::ext_cxx14_attr) << AL; |
5756 | |
5757 | D->addAttr(A: ::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement)); |
5758 | } |
5759 | |
5760 | static bool isGlobalVar(const Decl *D) { |
5761 | if (const auto *S = dyn_cast<VarDecl>(Val: D)) |
5762 | return S->hasGlobalStorage(); |
5763 | return false; |
5764 | } |
5765 | |
5766 | static bool isSanitizerAttributeAllowedOnGlobals(StringRef Sanitizer) { |
5767 | return Sanitizer == "address" || Sanitizer == "hwaddress" || |
5768 | Sanitizer == "memtag" ; |
5769 | } |
5770 | |
5771 | static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5772 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
5773 | return; |
5774 | |
5775 | std::vector<StringRef> Sanitizers; |
5776 | |
5777 | for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
5778 | StringRef SanitizerName; |
5779 | SourceLocation LiteralLoc; |
5780 | |
5781 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: I, Str&: SanitizerName, ArgLocation: &LiteralLoc)) |
5782 | return; |
5783 | |
5784 | if (parseSanitizerValue(Value: SanitizerName, /*AllowGroups=*/true) == |
5785 | SanitizerMask() && |
5786 | SanitizerName != "coverage" ) |
5787 | S.Diag(Loc: LiteralLoc, DiagID: diag::warn_unknown_sanitizer_ignored) << SanitizerName; |
5788 | else if (isGlobalVar(D) && !isSanitizerAttributeAllowedOnGlobals(Sanitizer: SanitizerName)) |
5789 | S.Diag(Loc: D->getLocation(), DiagID: diag::warn_attribute_type_not_supported_global) |
5790 | << AL << SanitizerName; |
5791 | Sanitizers.push_back(x: SanitizerName); |
5792 | } |
5793 | |
5794 | D->addAttr(A: ::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(), |
5795 | Sanitizers.size())); |
5796 | } |
5797 | |
5798 | static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D, |
5799 | const ParsedAttr &AL) { |
5800 | StringRef AttrName = AL.getAttrName()->getName(); |
5801 | normalizeName(AttrName); |
5802 | StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName) |
5803 | .Case(S: "no_address_safety_analysis" , Value: "address" ) |
5804 | .Case(S: "no_sanitize_address" , Value: "address" ) |
5805 | .Case(S: "no_sanitize_thread" , Value: "thread" ) |
5806 | .Case(S: "no_sanitize_memory" , Value: "memory" ); |
5807 | if (isGlobalVar(D) && SanitizerName != "address" ) |
5808 | S.Diag(Loc: D->getLocation(), DiagID: diag::err_attribute_wrong_decl_type) |
5809 | << AL << AL.isRegularKeywordAttribute() << ExpectedFunction; |
5810 | |
5811 | // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a |
5812 | // NoSanitizeAttr object; but we need to calculate the correct spelling list |
5813 | // index rather than incorrectly assume the index for NoSanitizeSpecificAttr |
5814 | // has the same spellings as the index for NoSanitizeAttr. We don't have a |
5815 | // general way to "translate" between the two, so this hack attempts to work |
5816 | // around the issue with hard-coded indices. This is critical for calling |
5817 | // getSpelling() or prettyPrint() on the resulting semantic attribute object |
5818 | // without failing assertions. |
5819 | unsigned TranslatedSpellingIndex = 0; |
5820 | if (AL.isStandardAttributeSyntax()) |
5821 | TranslatedSpellingIndex = 1; |
5822 | |
5823 | AttributeCommonInfo Info = AL; |
5824 | Info.setAttributeSpellingListIndex(TranslatedSpellingIndex); |
5825 | D->addAttr(A: ::new (S.Context) |
5826 | NoSanitizeAttr(S.Context, Info, &SanitizerName, 1)); |
5827 | } |
5828 | |
5829 | static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5830 | if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL)) |
5831 | D->addAttr(A: Internal); |
5832 | } |
5833 | |
5834 | static void handleZeroCallUsedRegsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5835 | // Check that the argument is a string literal. |
5836 | StringRef KindStr; |
5837 | SourceLocation LiteralLoc; |
5838 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: KindStr, ArgLocation: &LiteralLoc)) |
5839 | return; |
5840 | |
5841 | ZeroCallUsedRegsAttr::ZeroCallUsedRegsKind Kind; |
5842 | if (!ZeroCallUsedRegsAttr::ConvertStrToZeroCallUsedRegsKind(Val: KindStr, Out&: Kind)) { |
5843 | S.Diag(Loc: LiteralLoc, DiagID: diag::warn_attribute_type_not_supported) |
5844 | << AL << KindStr; |
5845 | return; |
5846 | } |
5847 | |
5848 | D->dropAttr<ZeroCallUsedRegsAttr>(); |
5849 | D->addAttr(A: ZeroCallUsedRegsAttr::Create(Ctx&: S.Context, ZeroCallUsedRegs: Kind, CommonInfo: AL)); |
5850 | } |
5851 | |
5852 | static void handleCountedByAttrField(Sema &S, Decl *D, const ParsedAttr &AL) { |
5853 | auto *FD = dyn_cast<FieldDecl>(Val: D); |
5854 | assert(FD); |
5855 | |
5856 | auto *CountExpr = AL.getArgAsExpr(Arg: 0); |
5857 | if (!CountExpr) |
5858 | return; |
5859 | |
5860 | bool CountInBytes; |
5861 | bool OrNull; |
5862 | switch (AL.getKind()) { |
5863 | case ParsedAttr::AT_CountedBy: |
5864 | CountInBytes = false; |
5865 | OrNull = false; |
5866 | break; |
5867 | case ParsedAttr::AT_CountedByOrNull: |
5868 | CountInBytes = false; |
5869 | OrNull = true; |
5870 | break; |
5871 | case ParsedAttr::AT_SizedBy: |
5872 | CountInBytes = true; |
5873 | OrNull = false; |
5874 | break; |
5875 | case ParsedAttr::AT_SizedByOrNull: |
5876 | CountInBytes = true; |
5877 | OrNull = true; |
5878 | break; |
5879 | default: |
5880 | llvm_unreachable("unexpected counted_by family attribute" ); |
5881 | } |
5882 | |
5883 | llvm::SmallVector<TypeCoupledDeclRefInfo, 1> Decls; |
5884 | if (S.CheckCountedByAttrOnField(FD, E: CountExpr, Decls, CountInBytes, OrNull)) |
5885 | return; |
5886 | |
5887 | QualType CAT = S.BuildCountAttributedArrayOrPointerType( |
5888 | WrappedTy: FD->getType(), CountExpr, CountInBytes, OrNull); |
5889 | FD->setType(CAT); |
5890 | } |
5891 | |
5892 | static void handleFunctionReturnThunksAttr(Sema &S, Decl *D, |
5893 | const ParsedAttr &AL) { |
5894 | StringRef KindStr; |
5895 | SourceLocation LiteralLoc; |
5896 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: KindStr, ArgLocation: &LiteralLoc)) |
5897 | return; |
5898 | |
5899 | FunctionReturnThunksAttr::Kind Kind; |
5900 | if (!FunctionReturnThunksAttr::ConvertStrToKind(Val: KindStr, Out&: Kind)) { |
5901 | S.Diag(Loc: LiteralLoc, DiagID: diag::warn_attribute_type_not_supported) |
5902 | << AL << KindStr; |
5903 | return; |
5904 | } |
5905 | // FIXME: it would be good to better handle attribute merging rather than |
5906 | // silently replacing the existing attribute, so long as it does not break |
5907 | // the expected codegen tests. |
5908 | D->dropAttr<FunctionReturnThunksAttr>(); |
5909 | D->addAttr(A: FunctionReturnThunksAttr::Create(Ctx&: S.Context, ThunkType: Kind, CommonInfo: AL)); |
5910 | } |
5911 | |
5912 | static void handleAvailableOnlyInDefaultEvalMethod(Sema &S, Decl *D, |
5913 | const ParsedAttr &AL) { |
5914 | assert(isa<TypedefNameDecl>(D) && "This attribute only applies to a typedef" ); |
5915 | handleSimpleAttribute<AvailableOnlyInDefaultEvalMethodAttr>(S, D, CI: AL); |
5916 | } |
5917 | |
5918 | static void handleNoMergeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5919 | auto *VDecl = dyn_cast<VarDecl>(Val: D); |
5920 | if (VDecl && !VDecl->isFunctionPointerType()) { |
5921 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_ignored_non_function_pointer) |
5922 | << AL << VDecl; |
5923 | return; |
5924 | } |
5925 | D->addAttr(A: NoMergeAttr::Create(Ctx&: S.Context, CommonInfo: AL)); |
5926 | } |
5927 | |
5928 | static void handleNoUniqueAddressAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5929 | D->addAttr(A: NoUniqueAddressAttr::Create(Ctx&: S.Context, CommonInfo: AL)); |
5930 | } |
5931 | |
5932 | static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) { |
5933 | if (!cast<VarDecl>(Val: D)->hasGlobalStorage()) { |
5934 | S.Diag(Loc: D->getLocation(), DiagID: diag::err_destroy_attr_on_non_static_var) |
5935 | << (A.getKind() == ParsedAttr::AT_AlwaysDestroy); |
5936 | return; |
5937 | } |
5938 | |
5939 | if (A.getKind() == ParsedAttr::AT_AlwaysDestroy) |
5940 | handleSimpleAttribute<AlwaysDestroyAttr>(S, D, CI: A); |
5941 | else |
5942 | handleSimpleAttribute<NoDestroyAttr>(S, D, CI: A); |
5943 | } |
5944 | |
5945 | static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5946 | assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic && |
5947 | "uninitialized is only valid on automatic duration variables" ); |
5948 | D->addAttr(A: ::new (S.Context) UninitializedAttr(S.Context, AL)); |
5949 | } |
5950 | |
5951 | static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5952 | // Check that the return type is a `typedef int kern_return_t` or a typedef |
5953 | // around it, because otherwise MIG convention checks make no sense. |
5954 | // BlockDecl doesn't store a return type, so it's annoying to check, |
5955 | // so let's skip it for now. |
5956 | if (!isa<BlockDecl>(Val: D)) { |
5957 | QualType T = getFunctionOrMethodResultType(D); |
5958 | bool IsKernReturnT = false; |
5959 | while (const auto *TT = T->getAs<TypedefType>()) { |
5960 | IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t" ); |
5961 | T = TT->desugar(); |
5962 | } |
5963 | if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) { |
5964 | S.Diag(Loc: D->getBeginLoc(), |
5965 | DiagID: diag::warn_mig_server_routine_does_not_return_kern_return_t); |
5966 | return; |
5967 | } |
5968 | } |
5969 | |
5970 | handleSimpleAttribute<MIGServerRoutineAttr>(S, D, CI: AL); |
5971 | } |
5972 | |
5973 | static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5974 | // Warn if the return type is not a pointer or reference type. |
5975 | if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
5976 | QualType RetTy = FD->getReturnType(); |
5977 | if (!RetTy->isPointerType() && !RetTy->isReferenceType()) { |
5978 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_declspec_allocator_nonpointer) |
5979 | << AL.getRange() << RetTy; |
5980 | return; |
5981 | } |
5982 | } |
5983 | |
5984 | handleSimpleAttribute<MSAllocatorAttr>(S, D, CI: AL); |
5985 | } |
5986 | |
5987 | static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5988 | if (AL.isUsedAsTypeAttr()) |
5989 | return; |
5990 | // Warn if the parameter is definitely not an output parameter. |
5991 | if (const auto *PVD = dyn_cast<ParmVarDecl>(Val: D)) { |
5992 | if (PVD->getType()->isIntegerType()) { |
5993 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_output_parameter) |
5994 | << AL.getRange(); |
5995 | return; |
5996 | } |
5997 | } |
5998 | StringRef Argument; |
5999 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: Argument)) |
6000 | return; |
6001 | D->addAttr(A: AcquireHandleAttr::Create(Ctx&: S.Context, HandleType: Argument, CommonInfo: AL)); |
6002 | } |
6003 | |
6004 | template<typename Attr> |
6005 | static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6006 | StringRef Argument; |
6007 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: Argument)) |
6008 | return; |
6009 | D->addAttr(A: Attr::Create(S.Context, Argument, AL)); |
6010 | } |
6011 | |
6012 | template<typename Attr> |
6013 | static void handleUnsafeBufferUsage(Sema &S, Decl *D, const ParsedAttr &AL) { |
6014 | D->addAttr(A: Attr::Create(S.Context, AL)); |
6015 | } |
6016 | |
6017 | static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6018 | // The guard attribute takes a single identifier argument. |
6019 | |
6020 | if (!AL.isArgIdent(Arg: 0)) { |
6021 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
6022 | << AL << AANT_ArgumentIdentifier; |
6023 | return; |
6024 | } |
6025 | |
6026 | CFGuardAttr::GuardArg Arg; |
6027 | IdentifierInfo *II = AL.getArgAsIdent(Arg: 0)->Ident; |
6028 | if (!CFGuardAttr::ConvertStrToGuardArg(Val: II->getName(), Out&: Arg)) { |
6029 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_type_not_supported) << AL << II; |
6030 | return; |
6031 | } |
6032 | |
6033 | D->addAttr(A: ::new (S.Context) CFGuardAttr(S.Context, AL, Arg)); |
6034 | } |
6035 | |
6036 | |
6037 | template <typename AttrTy> |
6038 | static const AttrTy *findEnforceTCBAttrByName(Decl *D, StringRef Name) { |
6039 | auto Attrs = D->specific_attrs<AttrTy>(); |
6040 | auto I = llvm::find_if(Attrs, |
6041 | [Name](const AttrTy *A) { |
6042 | return A->getTCBName() == Name; |
6043 | }); |
6044 | return I == Attrs.end() ? nullptr : *I; |
6045 | } |
6046 | |
6047 | template <typename AttrTy, typename ConflictingAttrTy> |
6048 | static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6049 | StringRef Argument; |
6050 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: Argument)) |
6051 | return; |
6052 | |
6053 | // A function cannot be have both regular and leaf membership in the same TCB. |
6054 | if (const ConflictingAttrTy *ConflictingAttr = |
6055 | findEnforceTCBAttrByName<ConflictingAttrTy>(D, Argument)) { |
6056 | // We could attach a note to the other attribute but in this case |
6057 | // there's no need given how the two are very close to each other. |
6058 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_tcb_conflicting_attributes) |
6059 | << AL.getAttrName()->getName() << ConflictingAttr->getAttrName()->getName() |
6060 | << Argument; |
6061 | |
6062 | // Error recovery: drop the non-leaf attribute so that to suppress |
6063 | // all future warnings caused by erroneous attributes. The leaf attribute |
6064 | // needs to be kept because it can only suppresses warnings, not cause them. |
6065 | D->dropAttr<EnforceTCBAttr>(); |
6066 | return; |
6067 | } |
6068 | |
6069 | D->addAttr(A: AttrTy::Create(S.Context, Argument, AL)); |
6070 | } |
6071 | |
6072 | template <typename AttrTy, typename ConflictingAttrTy> |
6073 | static AttrTy *mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL) { |
6074 | // Check if the new redeclaration has different leaf-ness in the same TCB. |
6075 | StringRef TCBName = AL.getTCBName(); |
6076 | if (const ConflictingAttrTy *ConflictingAttr = |
6077 | findEnforceTCBAttrByName<ConflictingAttrTy>(D, TCBName)) { |
6078 | S.Diag(ConflictingAttr->getLoc(), diag::err_tcb_conflicting_attributes) |
6079 | << ConflictingAttr->getAttrName()->getName() |
6080 | << AL.getAttrName()->getName() << TCBName; |
6081 | |
6082 | // Add a note so that the user could easily find the conflicting attribute. |
6083 | S.Diag(AL.getLoc(), diag::note_conflicting_attribute); |
6084 | |
6085 | // More error recovery. |
6086 | D->dropAttr<EnforceTCBAttr>(); |
6087 | return nullptr; |
6088 | } |
6089 | |
6090 | ASTContext &Context = S.getASTContext(); |
6091 | return ::new(Context) AttrTy(Context, AL, AL.getTCBName()); |
6092 | } |
6093 | |
6094 | EnforceTCBAttr *Sema::mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL) { |
6095 | return mergeEnforceTCBAttrImpl<EnforceTCBAttr, EnforceTCBLeafAttr>( |
6096 | S&: *this, D, AL); |
6097 | } |
6098 | |
6099 | EnforceTCBLeafAttr *Sema::mergeEnforceTCBLeafAttr( |
6100 | Decl *D, const EnforceTCBLeafAttr &AL) { |
6101 | return mergeEnforceTCBAttrImpl<EnforceTCBLeafAttr, EnforceTCBAttr>( |
6102 | S&: *this, D, AL); |
6103 | } |
6104 | |
6105 | static void handleVTablePointerAuthentication(Sema &S, Decl *D, |
6106 | const ParsedAttr &AL) { |
6107 | CXXRecordDecl *Decl = cast<CXXRecordDecl>(Val: D); |
6108 | const uint32_t NumArgs = AL.getNumArgs(); |
6109 | if (NumArgs > 4) { |
6110 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_too_many_arguments) << AL << 4; |
6111 | AL.setInvalid(); |
6112 | } |
6113 | |
6114 | if (NumArgs == 0) { |
6115 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_too_few_arguments) << AL; |
6116 | AL.setInvalid(); |
6117 | return; |
6118 | } |
6119 | |
6120 | if (D->getAttr<VTablePointerAuthenticationAttr>()) { |
6121 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_duplicated_vtable_pointer_auth) << Decl; |
6122 | AL.setInvalid(); |
6123 | } |
6124 | |
6125 | auto KeyType = VTablePointerAuthenticationAttr::VPtrAuthKeyType::DefaultKey; |
6126 | if (AL.isArgIdent(Arg: 0)) { |
6127 | IdentifierLoc *IL = AL.getArgAsIdent(Arg: 0); |
6128 | if (!VTablePointerAuthenticationAttr::ConvertStrToVPtrAuthKeyType( |
6129 | Val: IL->Ident->getName(), Out&: KeyType)) { |
6130 | S.Diag(Loc: IL->Loc, DiagID: diag::err_invalid_authentication_key) << IL->Ident; |
6131 | AL.setInvalid(); |
6132 | } |
6133 | if (KeyType == VTablePointerAuthenticationAttr::DefaultKey && |
6134 | !S.getLangOpts().PointerAuthCalls) { |
6135 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_no_default_vtable_pointer_auth) << 0; |
6136 | AL.setInvalid(); |
6137 | } |
6138 | } else { |
6139 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
6140 | << AL << AANT_ArgumentIdentifier; |
6141 | return; |
6142 | } |
6143 | |
6144 | auto AddressDiversityMode = VTablePointerAuthenticationAttr:: |
6145 | AddressDiscriminationMode::DefaultAddressDiscrimination; |
6146 | if (AL.getNumArgs() > 1) { |
6147 | if (AL.isArgIdent(Arg: 1)) { |
6148 | IdentifierLoc *IL = AL.getArgAsIdent(Arg: 1); |
6149 | if (!VTablePointerAuthenticationAttr:: |
6150 | ConvertStrToAddressDiscriminationMode(Val: IL->Ident->getName(), |
6151 | Out&: AddressDiversityMode)) { |
6152 | S.Diag(Loc: IL->Loc, DiagID: diag::err_invalid_address_discrimination) << IL->Ident; |
6153 | AL.setInvalid(); |
6154 | } |
6155 | if (AddressDiversityMode == |
6156 | VTablePointerAuthenticationAttr::DefaultAddressDiscrimination && |
6157 | !S.getLangOpts().PointerAuthCalls) { |
6158 | S.Diag(Loc: IL->Loc, DiagID: diag::err_no_default_vtable_pointer_auth) << 1; |
6159 | AL.setInvalid(); |
6160 | } |
6161 | } else { |
6162 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
6163 | << AL << AANT_ArgumentIdentifier; |
6164 | } |
6165 | } |
6166 | |
6167 | auto ED = VTablePointerAuthenticationAttr::ExtraDiscrimination:: |
6168 | DefaultExtraDiscrimination; |
6169 | if (AL.getNumArgs() > 2) { |
6170 | if (AL.isArgIdent(Arg: 2)) { |
6171 | IdentifierLoc *IL = AL.getArgAsIdent(Arg: 2); |
6172 | if (!VTablePointerAuthenticationAttr::ConvertStrToExtraDiscrimination( |
6173 | Val: IL->Ident->getName(), Out&: ED)) { |
6174 | S.Diag(Loc: IL->Loc, DiagID: diag::err_invalid_extra_discrimination) << IL->Ident; |
6175 | AL.setInvalid(); |
6176 | } |
6177 | if (ED == VTablePointerAuthenticationAttr::DefaultExtraDiscrimination && |
6178 | !S.getLangOpts().PointerAuthCalls) { |
6179 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_no_default_vtable_pointer_auth) << 2; |
6180 | AL.setInvalid(); |
6181 | } |
6182 | } else { |
6183 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
6184 | << AL << AANT_ArgumentIdentifier; |
6185 | } |
6186 | } |
6187 | |
6188 | uint32_t CustomDiscriminationValue = 0; |
6189 | if (ED == VTablePointerAuthenticationAttr::CustomDiscrimination) { |
6190 | if (NumArgs < 4) { |
6191 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_missing_custom_discrimination) << AL << 4; |
6192 | AL.setInvalid(); |
6193 | return; |
6194 | } |
6195 | if (NumArgs > 4) { |
6196 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_too_many_arguments) << AL << 4; |
6197 | AL.setInvalid(); |
6198 | } |
6199 | |
6200 | if (!AL.isArgExpr(Arg: 3) || !S.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 3), |
6201 | Val&: CustomDiscriminationValue)) { |
6202 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_invalid_custom_discrimination); |
6203 | AL.setInvalid(); |
6204 | } |
6205 | } else if (NumArgs > 3) { |
6206 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_too_many_arguments) << AL << 3; |
6207 | AL.setInvalid(); |
6208 | } |
6209 | |
6210 | Decl->addAttr(A: ::new (S.Context) VTablePointerAuthenticationAttr( |
6211 | S.Context, AL, KeyType, AddressDiversityMode, ED, |
6212 | CustomDiscriminationValue)); |
6213 | } |
6214 | |
6215 | //===----------------------------------------------------------------------===// |
6216 | // Top Level Sema Entry Points |
6217 | //===----------------------------------------------------------------------===// |
6218 | |
6219 | // Returns true if the attribute must delay setting its arguments until after |
6220 | // template instantiation, and false otherwise. |
6221 | static bool MustDelayAttributeArguments(const ParsedAttr &AL) { |
6222 | // Only attributes that accept expression parameter packs can delay arguments. |
6223 | if (!AL.acceptsExprPack()) |
6224 | return false; |
6225 | |
6226 | bool AttrHasVariadicArg = AL.hasVariadicArg(); |
6227 | unsigned AttrNumArgs = AL.getNumArgMembers(); |
6228 | for (size_t I = 0; I < std::min(a: AL.getNumArgs(), b: AttrNumArgs); ++I) { |
6229 | bool IsLastAttrArg = I == (AttrNumArgs - 1); |
6230 | // If the argument is the last argument and it is variadic it can contain |
6231 | // any expression. |
6232 | if (IsLastAttrArg && AttrHasVariadicArg) |
6233 | return false; |
6234 | Expr *E = AL.getArgAsExpr(Arg: I); |
6235 | bool ArgMemberCanHoldExpr = AL.isParamExpr(N: I); |
6236 | // If the expression is a pack expansion then arguments must be delayed |
6237 | // unless the argument is an expression and it is the last argument of the |
6238 | // attribute. |
6239 | if (isa<PackExpansionExpr>(Val: E)) |
6240 | return !(IsLastAttrArg && ArgMemberCanHoldExpr); |
6241 | // Last case is if the expression is value dependent then it must delay |
6242 | // arguments unless the corresponding argument is able to hold the |
6243 | // expression. |
6244 | if (E->isValueDependent() && !ArgMemberCanHoldExpr) |
6245 | return true; |
6246 | } |
6247 | return false; |
6248 | } |
6249 | |
6250 | /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if |
6251 | /// the attribute applies to decls. If the attribute is a type attribute, just |
6252 | /// silently ignore it if a GNU attribute. |
6253 | static void |
6254 | ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, const ParsedAttr &AL, |
6255 | const Sema::ProcessDeclAttributeOptions &Options) { |
6256 | if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) |
6257 | return; |
6258 | |
6259 | // Ignore C++11 attributes on declarator chunks: they appertain to the type |
6260 | // instead. Note, isCXX11Attribute() will look at whether the attribute is |
6261 | // [[]] or alignas, while isC23Attribute() will only look at [[]]. This is |
6262 | // important for ensuring that alignas in C23 is properly handled on a |
6263 | // structure member declaration because it is a type-specifier-qualifier in |
6264 | // C but still applies to the declaration rather than the type. |
6265 | if ((S.getLangOpts().CPlusPlus ? AL.isCXX11Attribute() |
6266 | : AL.isC23Attribute()) && |
6267 | !Options.IncludeCXX11Attributes) |
6268 | return; |
6269 | |
6270 | // Unknown attributes are automatically warned on. Target-specific attributes |
6271 | // which do not apply to the current target architecture are treated as |
6272 | // though they were unknown attributes. |
6273 | if (AL.getKind() == ParsedAttr::UnknownAttribute || |
6274 | !AL.existsInTarget(Target: S.Context.getTargetInfo())) { |
6275 | S.Diag(Loc: AL.getLoc(), |
6276 | DiagID: AL.isRegularKeywordAttribute() |
6277 | ? (unsigned)diag::err_keyword_not_supported_on_target |
6278 | : AL.isDeclspecAttribute() |
6279 | ? (unsigned)diag::warn_unhandled_ms_attribute_ignored |
6280 | : (unsigned)diag::warn_unknown_attribute_ignored) |
6281 | << AL << AL.getRange(); |
6282 | return; |
6283 | } |
6284 | |
6285 | // Check if argument population must delayed to after template instantiation. |
6286 | bool MustDelayArgs = MustDelayAttributeArguments(AL); |
6287 | |
6288 | // Argument number check must be skipped if arguments are delayed. |
6289 | if (S.checkCommonAttributeFeatures(D, A: AL, SkipArgCountCheck: MustDelayArgs)) |
6290 | return; |
6291 | |
6292 | if (MustDelayArgs) { |
6293 | AL.handleAttrWithDelayedArgs(S, D); |
6294 | return; |
6295 | } |
6296 | |
6297 | switch (AL.getKind()) { |
6298 | default: |
6299 | if (AL.getInfo().handleDeclAttribute(S, D, Attr: AL) != ParsedAttrInfo::NotHandled) |
6300 | break; |
6301 | if (!AL.isStmtAttr()) { |
6302 | assert(AL.isTypeAttr() && "Non-type attribute not handled" ); |
6303 | } |
6304 | if (AL.isTypeAttr()) { |
6305 | if (Options.IgnoreTypeAttributes) |
6306 | break; |
6307 | if (!AL.isStandardAttributeSyntax() && !AL.isRegularKeywordAttribute()) { |
6308 | // Non-[[]] type attributes are handled in processTypeAttrs(); silently |
6309 | // move on. |
6310 | break; |
6311 | } |
6312 | |
6313 | // According to the C and C++ standards, we should never see a |
6314 | // [[]] type attribute on a declaration. However, we have in the past |
6315 | // allowed some type attributes to "slide" to the `DeclSpec`, so we need |
6316 | // to continue to support this legacy behavior. We only do this, however, |
6317 | // if |
6318 | // - we actually have a `DeclSpec`, i.e. if we're looking at a |
6319 | // `DeclaratorDecl`, or |
6320 | // - we are looking at an alias-declaration, where historically we have |
6321 | // allowed type attributes after the identifier to slide to the type. |
6322 | if (AL.slidesFromDeclToDeclSpecLegacyBehavior() && |
6323 | isa<DeclaratorDecl, TypeAliasDecl>(Val: D)) { |
6324 | // Suggest moving the attribute to the type instead, but only for our |
6325 | // own vendor attributes; moving other vendors' attributes might hurt |
6326 | // portability. |
6327 | if (AL.isClangScope()) { |
6328 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_type_attribute_deprecated_on_decl) |
6329 | << AL << D->getLocation(); |
6330 | } |
6331 | |
6332 | // Allow this type attribute to be handled in processTypeAttrs(); |
6333 | // silently move on. |
6334 | break; |
6335 | } |
6336 | |
6337 | if (AL.getKind() == ParsedAttr::AT_Regparm) { |
6338 | // `regparm` is a special case: It's a type attribute but we still want |
6339 | // to treat it as if it had been written on the declaration because that |
6340 | // way we'll be able to handle it directly in `processTypeAttr()`. |
6341 | // If we treated `regparm` it as if it had been written on the |
6342 | // `DeclSpec`, the logic in `distributeFunctionTypeAttrFromDeclSepc()` |
6343 | // would try to move it to the declarator, but that doesn't work: We |
6344 | // can't remove the attribute from the list of declaration attributes |
6345 | // because it might be needed by other declarators in the same |
6346 | // declaration. |
6347 | break; |
6348 | } |
6349 | |
6350 | if (AL.getKind() == ParsedAttr::AT_VectorSize) { |
6351 | // `vector_size` is a special case: It's a type attribute semantically, |
6352 | // but GCC expects the [[]] syntax to be written on the declaration (and |
6353 | // warns that the attribute has no effect if it is placed on the |
6354 | // decl-specifier-seq). |
6355 | // Silently move on and allow the attribute to be handled in |
6356 | // processTypeAttr(). |
6357 | break; |
6358 | } |
6359 | |
6360 | if (AL.getKind() == ParsedAttr::AT_NoDeref) { |
6361 | // FIXME: `noderef` currently doesn't work correctly in [[]] syntax. |
6362 | // See https://github.com/llvm/llvm-project/issues/55790 for details. |
6363 | // We allow processTypeAttrs() to emit a warning and silently move on. |
6364 | break; |
6365 | } |
6366 | } |
6367 | // N.B., ClangAttrEmitter.cpp emits a diagnostic helper that ensures a |
6368 | // statement attribute is not written on a declaration, but this code is |
6369 | // needed for type attributes as well as statement attributes in Attr.td |
6370 | // that do not list any subjects. |
6371 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_invalid_on_decl) |
6372 | << AL << AL.isRegularKeywordAttribute() << D->getLocation(); |
6373 | break; |
6374 | case ParsedAttr::AT_Interrupt: |
6375 | handleInterruptAttr(S, D, AL); |
6376 | break; |
6377 | case ParsedAttr::AT_X86ForceAlignArgPointer: |
6378 | S.X86().handleForceAlignArgPointerAttr(D, AL); |
6379 | break; |
6380 | case ParsedAttr::AT_ReadOnlyPlacement: |
6381 | handleSimpleAttribute<ReadOnlyPlacementAttr>(S, D, CI: AL); |
6382 | break; |
6383 | case ParsedAttr::AT_DLLExport: |
6384 | case ParsedAttr::AT_DLLImport: |
6385 | handleDLLAttr(S, D, A: AL); |
6386 | break; |
6387 | case ParsedAttr::AT_AMDGPUFlatWorkGroupSize: |
6388 | S.AMDGPU().handleAMDGPUFlatWorkGroupSizeAttr(D, AL); |
6389 | break; |
6390 | case ParsedAttr::AT_AMDGPUWavesPerEU: |
6391 | S.AMDGPU().handleAMDGPUWavesPerEUAttr(D, AL); |
6392 | break; |
6393 | case ParsedAttr::AT_AMDGPUNumSGPR: |
6394 | S.AMDGPU().handleAMDGPUNumSGPRAttr(D, AL); |
6395 | break; |
6396 | case ParsedAttr::AT_AMDGPUNumVGPR: |
6397 | S.AMDGPU().handleAMDGPUNumVGPRAttr(D, AL); |
6398 | break; |
6399 | case ParsedAttr::AT_AMDGPUMaxNumWorkGroups: |
6400 | S.AMDGPU().handleAMDGPUMaxNumWorkGroupsAttr(D, AL); |
6401 | break; |
6402 | case ParsedAttr::AT_AVRSignal: |
6403 | S.AVR().handleSignalAttr(D, AL); |
6404 | break; |
6405 | case ParsedAttr::AT_BPFPreserveAccessIndex: |
6406 | S.BPF().handlePreserveAccessIndexAttr(D, AL); |
6407 | break; |
6408 | case ParsedAttr::AT_BPFPreserveStaticOffset: |
6409 | handleSimpleAttribute<BPFPreserveStaticOffsetAttr>(S, D, CI: AL); |
6410 | break; |
6411 | case ParsedAttr::AT_BTFDeclTag: |
6412 | handleBTFDeclTagAttr(S, D, AL); |
6413 | break; |
6414 | case ParsedAttr::AT_WebAssemblyExportName: |
6415 | S.Wasm().handleWebAssemblyExportNameAttr(D, AL); |
6416 | break; |
6417 | case ParsedAttr::AT_WebAssemblyImportModule: |
6418 | S.Wasm().handleWebAssemblyImportModuleAttr(D, AL); |
6419 | break; |
6420 | case ParsedAttr::AT_WebAssemblyImportName: |
6421 | S.Wasm().handleWebAssemblyImportNameAttr(D, AL); |
6422 | break; |
6423 | case ParsedAttr::AT_IBOutlet: |
6424 | S.ObjC().handleIBOutlet(D, AL); |
6425 | break; |
6426 | case ParsedAttr::AT_IBOutletCollection: |
6427 | S.ObjC().handleIBOutletCollection(D, AL); |
6428 | break; |
6429 | case ParsedAttr::AT_IFunc: |
6430 | handleIFuncAttr(S, D, AL); |
6431 | break; |
6432 | case ParsedAttr::AT_Alias: |
6433 | handleAliasAttr(S, D, AL); |
6434 | break; |
6435 | case ParsedAttr::AT_Aligned: |
6436 | handleAlignedAttr(S, D, AL); |
6437 | break; |
6438 | case ParsedAttr::AT_AlignValue: |
6439 | handleAlignValueAttr(S, D, AL); |
6440 | break; |
6441 | case ParsedAttr::AT_AllocSize: |
6442 | handleAllocSizeAttr(S, D, AL); |
6443 | break; |
6444 | case ParsedAttr::AT_AlwaysInline: |
6445 | handleAlwaysInlineAttr(S, D, AL); |
6446 | break; |
6447 | case ParsedAttr::AT_AnalyzerNoReturn: |
6448 | handleAnalyzerNoReturnAttr(S, D, AL); |
6449 | break; |
6450 | case ParsedAttr::AT_TLSModel: |
6451 | handleTLSModelAttr(S, D, AL); |
6452 | break; |
6453 | case ParsedAttr::AT_Annotate: |
6454 | handleAnnotateAttr(S, D, AL); |
6455 | break; |
6456 | case ParsedAttr::AT_Availability: |
6457 | handleAvailabilityAttr(S, D, AL); |
6458 | break; |
6459 | case ParsedAttr::AT_CarriesDependency: |
6460 | handleDependencyAttr(S, Scope: scope, D, AL); |
6461 | break; |
6462 | case ParsedAttr::AT_CPUDispatch: |
6463 | case ParsedAttr::AT_CPUSpecific: |
6464 | handleCPUSpecificAttr(S, D, AL); |
6465 | break; |
6466 | case ParsedAttr::AT_Common: |
6467 | handleCommonAttr(S, D, AL); |
6468 | break; |
6469 | case ParsedAttr::AT_CUDAConstant: |
6470 | handleConstantAttr(S, D, AL); |
6471 | break; |
6472 | case ParsedAttr::AT_PassObjectSize: |
6473 | handlePassObjectSizeAttr(S, D, AL); |
6474 | break; |
6475 | case ParsedAttr::AT_Constructor: |
6476 | handleConstructorAttr(S, D, AL); |
6477 | break; |
6478 | case ParsedAttr::AT_Deprecated: |
6479 | handleDeprecatedAttr(S, D, AL); |
6480 | break; |
6481 | case ParsedAttr::AT_Destructor: |
6482 | handleDestructorAttr(S, D, AL); |
6483 | break; |
6484 | case ParsedAttr::AT_EnableIf: |
6485 | handleEnableIfAttr(S, D, AL); |
6486 | break; |
6487 | case ParsedAttr::AT_Error: |
6488 | handleErrorAttr(S, D, AL); |
6489 | break; |
6490 | case ParsedAttr::AT_ExcludeFromExplicitInstantiation: |
6491 | handleExcludeFromExplicitInstantiationAttr(S, D, AL); |
6492 | break; |
6493 | case ParsedAttr::AT_DiagnoseIf: |
6494 | handleDiagnoseIfAttr(S, D, AL); |
6495 | break; |
6496 | case ParsedAttr::AT_DiagnoseAsBuiltin: |
6497 | handleDiagnoseAsBuiltinAttr(S, D, AL); |
6498 | break; |
6499 | case ParsedAttr::AT_NoBuiltin: |
6500 | handleNoBuiltinAttr(S, D, AL); |
6501 | break; |
6502 | case ParsedAttr::AT_ExtVectorType: |
6503 | handleExtVectorTypeAttr(S, D, AL); |
6504 | break; |
6505 | case ParsedAttr::AT_ExternalSourceSymbol: |
6506 | handleExternalSourceSymbolAttr(S, D, AL); |
6507 | break; |
6508 | case ParsedAttr::AT_MinSize: |
6509 | handleMinSizeAttr(S, D, AL); |
6510 | break; |
6511 | case ParsedAttr::AT_OptimizeNone: |
6512 | handleOptimizeNoneAttr(S, D, AL); |
6513 | break; |
6514 | case ParsedAttr::AT_EnumExtensibility: |
6515 | handleEnumExtensibilityAttr(S, D, AL); |
6516 | break; |
6517 | case ParsedAttr::AT_SYCLKernel: |
6518 | S.SYCL().handleKernelAttr(D, AL); |
6519 | break; |
6520 | case ParsedAttr::AT_SYCLSpecialClass: |
6521 | handleSimpleAttribute<SYCLSpecialClassAttr>(S, D, CI: AL); |
6522 | break; |
6523 | case ParsedAttr::AT_Format: |
6524 | handleFormatAttr(S, D, AL); |
6525 | break; |
6526 | case ParsedAttr::AT_FormatArg: |
6527 | handleFormatArgAttr(S, D, AL); |
6528 | break; |
6529 | case ParsedAttr::AT_Callback: |
6530 | handleCallbackAttr(S, D, AL); |
6531 | break; |
6532 | case ParsedAttr::AT_CalledOnce: |
6533 | handleCalledOnceAttr(S, D, AL); |
6534 | break; |
6535 | case ParsedAttr::AT_NVPTXKernel: |
6536 | case ParsedAttr::AT_CUDAGlobal: |
6537 | handleGlobalAttr(S, D, AL); |
6538 | break; |
6539 | case ParsedAttr::AT_CUDADevice: |
6540 | handleDeviceAttr(S, D, AL); |
6541 | break; |
6542 | case ParsedAttr::AT_HIPManaged: |
6543 | handleManagedAttr(S, D, AL); |
6544 | break; |
6545 | case ParsedAttr::AT_GNUInline: |
6546 | handleGNUInlineAttr(S, D, AL); |
6547 | break; |
6548 | case ParsedAttr::AT_CUDALaunchBounds: |
6549 | handleLaunchBoundsAttr(S, D, AL); |
6550 | break; |
6551 | case ParsedAttr::AT_Restrict: |
6552 | handleRestrictAttr(S, D, AL); |
6553 | break; |
6554 | case ParsedAttr::AT_Mode: |
6555 | handleModeAttr(S, D, AL); |
6556 | break; |
6557 | case ParsedAttr::AT_NonNull: |
6558 | if (auto *PVD = dyn_cast<ParmVarDecl>(Val: D)) |
6559 | handleNonNullAttrParameter(S, D: PVD, AL); |
6560 | else |
6561 | handleNonNullAttr(S, D, AL); |
6562 | break; |
6563 | case ParsedAttr::AT_ReturnsNonNull: |
6564 | handleReturnsNonNullAttr(S, D, AL); |
6565 | break; |
6566 | case ParsedAttr::AT_NoEscape: |
6567 | handleNoEscapeAttr(S, D, AL); |
6568 | break; |
6569 | case ParsedAttr::AT_MaybeUndef: |
6570 | handleSimpleAttribute<MaybeUndefAttr>(S, D, CI: AL); |
6571 | break; |
6572 | case ParsedAttr::AT_AssumeAligned: |
6573 | handleAssumeAlignedAttr(S, D, AL); |
6574 | break; |
6575 | case ParsedAttr::AT_AllocAlign: |
6576 | handleAllocAlignAttr(S, D, AL); |
6577 | break; |
6578 | case ParsedAttr::AT_Ownership: |
6579 | handleOwnershipAttr(S, D, AL); |
6580 | break; |
6581 | case ParsedAttr::AT_Naked: |
6582 | handleNakedAttr(S, D, AL); |
6583 | break; |
6584 | case ParsedAttr::AT_NoReturn: |
6585 | handleNoReturnAttr(S, D, Attrs: AL); |
6586 | break; |
6587 | case ParsedAttr::AT_CXX11NoReturn: |
6588 | handleStandardNoReturnAttr(S, D, A: AL); |
6589 | break; |
6590 | case ParsedAttr::AT_AnyX86NoCfCheck: |
6591 | handleNoCfCheckAttr(S, D, Attrs: AL); |
6592 | break; |
6593 | case ParsedAttr::AT_NoThrow: |
6594 | if (!AL.isUsedAsTypeAttr()) |
6595 | handleSimpleAttribute<NoThrowAttr>(S, D, CI: AL); |
6596 | break; |
6597 | case ParsedAttr::AT_CUDAShared: |
6598 | handleSharedAttr(S, D, AL); |
6599 | break; |
6600 | case ParsedAttr::AT_VecReturn: |
6601 | handleVecReturnAttr(S, D, AL); |
6602 | break; |
6603 | case ParsedAttr::AT_ObjCOwnership: |
6604 | S.ObjC().handleOwnershipAttr(D, AL); |
6605 | break; |
6606 | case ParsedAttr::AT_ObjCPreciseLifetime: |
6607 | S.ObjC().handlePreciseLifetimeAttr(D, AL); |
6608 | break; |
6609 | case ParsedAttr::AT_ObjCReturnsInnerPointer: |
6610 | S.ObjC().handleReturnsInnerPointerAttr(D, Attrs: AL); |
6611 | break; |
6612 | case ParsedAttr::AT_ObjCRequiresSuper: |
6613 | S.ObjC().handleRequiresSuperAttr(D, Attrs: AL); |
6614 | break; |
6615 | case ParsedAttr::AT_ObjCBridge: |
6616 | S.ObjC().handleBridgeAttr(D, AL); |
6617 | break; |
6618 | case ParsedAttr::AT_ObjCBridgeMutable: |
6619 | S.ObjC().handleBridgeMutableAttr(D, AL); |
6620 | break; |
6621 | case ParsedAttr::AT_ObjCBridgeRelated: |
6622 | S.ObjC().handleBridgeRelatedAttr(D, AL); |
6623 | break; |
6624 | case ParsedAttr::AT_ObjCDesignatedInitializer: |
6625 | S.ObjC().handleDesignatedInitializer(D, AL); |
6626 | break; |
6627 | case ParsedAttr::AT_ObjCRuntimeName: |
6628 | S.ObjC().handleRuntimeName(D, AL); |
6629 | break; |
6630 | case ParsedAttr::AT_ObjCBoxable: |
6631 | S.ObjC().handleBoxable(D, AL); |
6632 | break; |
6633 | case ParsedAttr::AT_NSErrorDomain: |
6634 | S.ObjC().handleNSErrorDomain(D, Attr: AL); |
6635 | break; |
6636 | case ParsedAttr::AT_CFConsumed: |
6637 | case ParsedAttr::AT_NSConsumed: |
6638 | case ParsedAttr::AT_OSConsumed: |
6639 | S.ObjC().AddXConsumedAttr(D, CI: AL, |
6640 | K: S.ObjC().parsedAttrToRetainOwnershipKind(AL), |
6641 | /*IsTemplateInstantiation=*/false); |
6642 | break; |
6643 | case ParsedAttr::AT_OSReturnsRetainedOnZero: |
6644 | handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnZeroAttr>( |
6645 | S, D, CI: AL, PassesCheck: S.ObjC().isValidOSObjectOutParameter(D), |
6646 | DiagID: diag::warn_ns_attribute_wrong_parameter_type, |
6647 | /*Extra Args=*/ExtraArgs: AL, /*pointer-to-OSObject-pointer*/ ExtraArgs: 3, ExtraArgs: AL.getRange()); |
6648 | break; |
6649 | case ParsedAttr::AT_OSReturnsRetainedOnNonZero: |
6650 | handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnNonZeroAttr>( |
6651 | S, D, CI: AL, PassesCheck: S.ObjC().isValidOSObjectOutParameter(D), |
6652 | DiagID: diag::warn_ns_attribute_wrong_parameter_type, |
6653 | /*Extra Args=*/ExtraArgs: AL, /*pointer-to-OSObject-poointer*/ ExtraArgs: 3, ExtraArgs: AL.getRange()); |
6654 | break; |
6655 | case ParsedAttr::AT_NSReturnsAutoreleased: |
6656 | case ParsedAttr::AT_NSReturnsNotRetained: |
6657 | case ParsedAttr::AT_NSReturnsRetained: |
6658 | case ParsedAttr::AT_CFReturnsNotRetained: |
6659 | case ParsedAttr::AT_CFReturnsRetained: |
6660 | case ParsedAttr::AT_OSReturnsNotRetained: |
6661 | case ParsedAttr::AT_OSReturnsRetained: |
6662 | S.ObjC().handleXReturnsXRetainedAttr(D, AL); |
6663 | break; |
6664 | case ParsedAttr::AT_WorkGroupSizeHint: |
6665 | handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL); |
6666 | break; |
6667 | case ParsedAttr::AT_ReqdWorkGroupSize: |
6668 | handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL); |
6669 | break; |
6670 | case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize: |
6671 | S.OpenCL().handleSubGroupSize(D, AL); |
6672 | break; |
6673 | case ParsedAttr::AT_VecTypeHint: |
6674 | handleVecTypeHint(S, D, AL); |
6675 | break; |
6676 | case ParsedAttr::AT_InitPriority: |
6677 | handleInitPriorityAttr(S, D, AL); |
6678 | break; |
6679 | case ParsedAttr::AT_Packed: |
6680 | handlePackedAttr(S, D, AL); |
6681 | break; |
6682 | case ParsedAttr::AT_PreferredName: |
6683 | handlePreferredName(S, D, AL); |
6684 | break; |
6685 | case ParsedAttr::AT_Section: |
6686 | handleSectionAttr(S, D, AL); |
6687 | break; |
6688 | case ParsedAttr::AT_CodeModel: |
6689 | handleCodeModelAttr(S, D, AL); |
6690 | break; |
6691 | case ParsedAttr::AT_RandomizeLayout: |
6692 | handleRandomizeLayoutAttr(S, D, AL); |
6693 | break; |
6694 | case ParsedAttr::AT_NoRandomizeLayout: |
6695 | handleNoRandomizeLayoutAttr(S, D, AL); |
6696 | break; |
6697 | case ParsedAttr::AT_CodeSeg: |
6698 | handleCodeSegAttr(S, D, AL); |
6699 | break; |
6700 | case ParsedAttr::AT_Target: |
6701 | handleTargetAttr(S, D, AL); |
6702 | break; |
6703 | case ParsedAttr::AT_TargetVersion: |
6704 | handleTargetVersionAttr(S, D, AL); |
6705 | break; |
6706 | case ParsedAttr::AT_TargetClones: |
6707 | handleTargetClonesAttr(S, D, AL); |
6708 | break; |
6709 | case ParsedAttr::AT_MinVectorWidth: |
6710 | handleMinVectorWidthAttr(S, D, AL); |
6711 | break; |
6712 | case ParsedAttr::AT_Unavailable: |
6713 | handleAttrWithMessage<UnavailableAttr>(S, D, AL); |
6714 | break; |
6715 | case ParsedAttr::AT_OMPAssume: |
6716 | S.OpenMP().handleOMPAssumeAttr(D, AL); |
6717 | break; |
6718 | case ParsedAttr::AT_ObjCDirect: |
6719 | S.ObjC().handleDirectAttr(D, AL); |
6720 | break; |
6721 | case ParsedAttr::AT_ObjCDirectMembers: |
6722 | S.ObjC().handleDirectMembersAttr(D, AL); |
6723 | handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, CI: AL); |
6724 | break; |
6725 | case ParsedAttr::AT_ObjCExplicitProtocolImpl: |
6726 | S.ObjC().handleSuppresProtocolAttr(D, AL); |
6727 | break; |
6728 | case ParsedAttr::AT_Unused: |
6729 | handleUnusedAttr(S, D, AL); |
6730 | break; |
6731 | case ParsedAttr::AT_Visibility: |
6732 | handleVisibilityAttr(S, D, AL, isTypeVisibility: false); |
6733 | break; |
6734 | case ParsedAttr::AT_TypeVisibility: |
6735 | handleVisibilityAttr(S, D, AL, isTypeVisibility: true); |
6736 | break; |
6737 | case ParsedAttr::AT_WarnUnusedResult: |
6738 | handleWarnUnusedResult(S, D, AL); |
6739 | break; |
6740 | case ParsedAttr::AT_WeakRef: |
6741 | handleWeakRefAttr(S, D, AL); |
6742 | break; |
6743 | case ParsedAttr::AT_WeakImport: |
6744 | handleWeakImportAttr(S, D, AL); |
6745 | break; |
6746 | case ParsedAttr::AT_TransparentUnion: |
6747 | handleTransparentUnionAttr(S, D, AL); |
6748 | break; |
6749 | case ParsedAttr::AT_ObjCMethodFamily: |
6750 | S.ObjC().handleMethodFamilyAttr(D, AL); |
6751 | break; |
6752 | case ParsedAttr::AT_ObjCNSObject: |
6753 | S.ObjC().handleNSObject(D, AL); |
6754 | break; |
6755 | case ParsedAttr::AT_ObjCIndependentClass: |
6756 | S.ObjC().handleIndependentClass(D, AL); |
6757 | break; |
6758 | case ParsedAttr::AT_Blocks: |
6759 | S.ObjC().handleBlocksAttr(D, AL); |
6760 | break; |
6761 | case ParsedAttr::AT_Sentinel: |
6762 | handleSentinelAttr(S, D, AL); |
6763 | break; |
6764 | case ParsedAttr::AT_Cleanup: |
6765 | handleCleanupAttr(S, D, AL); |
6766 | break; |
6767 | case ParsedAttr::AT_NoDebug: |
6768 | handleNoDebugAttr(S, D, AL); |
6769 | break; |
6770 | case ParsedAttr::AT_CmseNSEntry: |
6771 | S.ARM().handleCmseNSEntryAttr(D, AL); |
6772 | break; |
6773 | case ParsedAttr::AT_StdCall: |
6774 | case ParsedAttr::AT_CDecl: |
6775 | case ParsedAttr::AT_FastCall: |
6776 | case ParsedAttr::AT_ThisCall: |
6777 | case ParsedAttr::AT_Pascal: |
6778 | case ParsedAttr::AT_RegCall: |
6779 | case ParsedAttr::AT_SwiftCall: |
6780 | case ParsedAttr::AT_SwiftAsyncCall: |
6781 | case ParsedAttr::AT_VectorCall: |
6782 | case ParsedAttr::AT_MSABI: |
6783 | case ParsedAttr::AT_SysVABI: |
6784 | case ParsedAttr::AT_Pcs: |
6785 | case ParsedAttr::AT_IntelOclBicc: |
6786 | case ParsedAttr::AT_PreserveMost: |
6787 | case ParsedAttr::AT_PreserveAll: |
6788 | case ParsedAttr::AT_AArch64VectorPcs: |
6789 | case ParsedAttr::AT_AArch64SVEPcs: |
6790 | case ParsedAttr::AT_AMDGPUKernelCall: |
6791 | case ParsedAttr::AT_M68kRTD: |
6792 | case ParsedAttr::AT_PreserveNone: |
6793 | case ParsedAttr::AT_RISCVVectorCC: |
6794 | handleCallConvAttr(S, D, AL); |
6795 | break; |
6796 | case ParsedAttr::AT_Suppress: |
6797 | handleSuppressAttr(S, D, AL); |
6798 | break; |
6799 | case ParsedAttr::AT_Owner: |
6800 | case ParsedAttr::AT_Pointer: |
6801 | handleLifetimeCategoryAttr(S, D, AL); |
6802 | break; |
6803 | case ParsedAttr::AT_OpenCLAccess: |
6804 | S.OpenCL().handleAccessAttr(D, AL); |
6805 | break; |
6806 | case ParsedAttr::AT_OpenCLNoSVM: |
6807 | S.OpenCL().handleNoSVMAttr(D, AL); |
6808 | break; |
6809 | case ParsedAttr::AT_SwiftContext: |
6810 | S.Swift().AddParameterABIAttr(D, CI: AL, abi: ParameterABI::SwiftContext); |
6811 | break; |
6812 | case ParsedAttr::AT_SwiftAsyncContext: |
6813 | S.Swift().AddParameterABIAttr(D, CI: AL, abi: ParameterABI::SwiftAsyncContext); |
6814 | break; |
6815 | case ParsedAttr::AT_SwiftErrorResult: |
6816 | S.Swift().AddParameterABIAttr(D, CI: AL, abi: ParameterABI::SwiftErrorResult); |
6817 | break; |
6818 | case ParsedAttr::AT_SwiftIndirectResult: |
6819 | S.Swift().AddParameterABIAttr(D, CI: AL, abi: ParameterABI::SwiftIndirectResult); |
6820 | break; |
6821 | case ParsedAttr::AT_InternalLinkage: |
6822 | handleInternalLinkageAttr(S, D, AL); |
6823 | break; |
6824 | case ParsedAttr::AT_ZeroCallUsedRegs: |
6825 | handleZeroCallUsedRegsAttr(S, D, AL); |
6826 | break; |
6827 | case ParsedAttr::AT_FunctionReturnThunks: |
6828 | handleFunctionReturnThunksAttr(S, D, AL); |
6829 | break; |
6830 | case ParsedAttr::AT_NoMerge: |
6831 | handleNoMergeAttr(S, D, AL); |
6832 | break; |
6833 | case ParsedAttr::AT_NoUniqueAddress: |
6834 | handleNoUniqueAddressAttr(S, D, AL); |
6835 | break; |
6836 | |
6837 | case ParsedAttr::AT_AvailableOnlyInDefaultEvalMethod: |
6838 | handleAvailableOnlyInDefaultEvalMethod(S, D, AL); |
6839 | break; |
6840 | |
6841 | case ParsedAttr::AT_CountedBy: |
6842 | case ParsedAttr::AT_CountedByOrNull: |
6843 | case ParsedAttr::AT_SizedBy: |
6844 | case ParsedAttr::AT_SizedByOrNull: |
6845 | handleCountedByAttrField(S, D, AL); |
6846 | break; |
6847 | |
6848 | // Microsoft attributes: |
6849 | case ParsedAttr::AT_LayoutVersion: |
6850 | handleLayoutVersion(S, D, AL); |
6851 | break; |
6852 | case ParsedAttr::AT_Uuid: |
6853 | handleUuidAttr(S, D, AL); |
6854 | break; |
6855 | case ParsedAttr::AT_MSInheritance: |
6856 | handleMSInheritanceAttr(S, D, AL); |
6857 | break; |
6858 | case ParsedAttr::AT_Thread: |
6859 | handleDeclspecThreadAttr(S, D, AL); |
6860 | break; |
6861 | case ParsedAttr::AT_MSConstexpr: |
6862 | handleMSConstexprAttr(S, D, AL); |
6863 | break; |
6864 | case ParsedAttr::AT_HybridPatchable: |
6865 | handleSimpleAttribute<HybridPatchableAttr>(S, D, CI: AL); |
6866 | break; |
6867 | |
6868 | // HLSL attributes: |
6869 | case ParsedAttr::AT_HLSLNumThreads: |
6870 | S.HLSL().handleNumThreadsAttr(D, AL); |
6871 | break; |
6872 | case ParsedAttr::AT_HLSLSV_GroupIndex: |
6873 | handleSimpleAttribute<HLSLSV_GroupIndexAttr>(S, D, CI: AL); |
6874 | break; |
6875 | case ParsedAttr::AT_HLSLSV_DispatchThreadID: |
6876 | S.HLSL().handleSV_DispatchThreadIDAttr(D, AL); |
6877 | break; |
6878 | case ParsedAttr::AT_HLSLPackOffset: |
6879 | S.HLSL().handlePackOffsetAttr(D, AL); |
6880 | break; |
6881 | case ParsedAttr::AT_HLSLShader: |
6882 | S.HLSL().handleShaderAttr(D, AL); |
6883 | break; |
6884 | case ParsedAttr::AT_HLSLResourceBinding: |
6885 | S.HLSL().handleResourceBindingAttr(D, AL); |
6886 | break; |
6887 | case ParsedAttr::AT_HLSLResourceClass: |
6888 | S.HLSL().handleResourceClassAttr(D, AL); |
6889 | break; |
6890 | case ParsedAttr::AT_HLSLParamModifier: |
6891 | S.HLSL().handleParamModifierAttr(D, AL); |
6892 | break; |
6893 | |
6894 | case ParsedAttr::AT_AbiTag: |
6895 | handleAbiTagAttr(S, D, AL); |
6896 | break; |
6897 | case ParsedAttr::AT_CFGuard: |
6898 | handleCFGuardAttr(S, D, AL); |
6899 | break; |
6900 | |
6901 | // Thread safety attributes: |
6902 | case ParsedAttr::AT_AssertExclusiveLock: |
6903 | handleAssertExclusiveLockAttr(S, D, AL); |
6904 | break; |
6905 | case ParsedAttr::AT_AssertSharedLock: |
6906 | handleAssertSharedLockAttr(S, D, AL); |
6907 | break; |
6908 | case ParsedAttr::AT_PtGuardedVar: |
6909 | handlePtGuardedVarAttr(S, D, AL); |
6910 | break; |
6911 | case ParsedAttr::AT_NoSanitize: |
6912 | handleNoSanitizeAttr(S, D, AL); |
6913 | break; |
6914 | case ParsedAttr::AT_NoSanitizeSpecific: |
6915 | handleNoSanitizeSpecificAttr(S, D, AL); |
6916 | break; |
6917 | case ParsedAttr::AT_GuardedBy: |
6918 | handleGuardedByAttr(S, D, AL); |
6919 | break; |
6920 | case ParsedAttr::AT_PtGuardedBy: |
6921 | handlePtGuardedByAttr(S, D, AL); |
6922 | break; |
6923 | case ParsedAttr::AT_ExclusiveTrylockFunction: |
6924 | handleExclusiveTrylockFunctionAttr(S, D, AL); |
6925 | break; |
6926 | case ParsedAttr::AT_LockReturned: |
6927 | handleLockReturnedAttr(S, D, AL); |
6928 | break; |
6929 | case ParsedAttr::AT_LocksExcluded: |
6930 | handleLocksExcludedAttr(S, D, AL); |
6931 | break; |
6932 | case ParsedAttr::AT_SharedTrylockFunction: |
6933 | handleSharedTrylockFunctionAttr(S, D, AL); |
6934 | break; |
6935 | case ParsedAttr::AT_AcquiredBefore: |
6936 | handleAcquiredBeforeAttr(S, D, AL); |
6937 | break; |
6938 | case ParsedAttr::AT_AcquiredAfter: |
6939 | handleAcquiredAfterAttr(S, D, AL); |
6940 | break; |
6941 | |
6942 | // Capability analysis attributes. |
6943 | case ParsedAttr::AT_Capability: |
6944 | case ParsedAttr::AT_Lockable: |
6945 | handleCapabilityAttr(S, D, AL); |
6946 | break; |
6947 | case ParsedAttr::AT_RequiresCapability: |
6948 | handleRequiresCapabilityAttr(S, D, AL); |
6949 | break; |
6950 | |
6951 | case ParsedAttr::AT_AssertCapability: |
6952 | handleAssertCapabilityAttr(S, D, AL); |
6953 | break; |
6954 | case ParsedAttr::AT_AcquireCapability: |
6955 | handleAcquireCapabilityAttr(S, D, AL); |
6956 | break; |
6957 | case ParsedAttr::AT_ReleaseCapability: |
6958 | handleReleaseCapabilityAttr(S, D, AL); |
6959 | break; |
6960 | case ParsedAttr::AT_TryAcquireCapability: |
6961 | handleTryAcquireCapabilityAttr(S, D, AL); |
6962 | break; |
6963 | |
6964 | // Consumed analysis attributes. |
6965 | case ParsedAttr::AT_Consumable: |
6966 | handleConsumableAttr(S, D, AL); |
6967 | break; |
6968 | case ParsedAttr::AT_CallableWhen: |
6969 | handleCallableWhenAttr(S, D, AL); |
6970 | break; |
6971 | case ParsedAttr::AT_ParamTypestate: |
6972 | handleParamTypestateAttr(S, D, AL); |
6973 | break; |
6974 | case ParsedAttr::AT_ReturnTypestate: |
6975 | handleReturnTypestateAttr(S, D, AL); |
6976 | break; |
6977 | case ParsedAttr::AT_SetTypestate: |
6978 | handleSetTypestateAttr(S, D, AL); |
6979 | break; |
6980 | case ParsedAttr::AT_TestTypestate: |
6981 | handleTestTypestateAttr(S, D, AL); |
6982 | break; |
6983 | |
6984 | // Type safety attributes. |
6985 | case ParsedAttr::AT_ArgumentWithTypeTag: |
6986 | handleArgumentWithTypeTagAttr(S, D, AL); |
6987 | break; |
6988 | case ParsedAttr::AT_TypeTagForDatatype: |
6989 | handleTypeTagForDatatypeAttr(S, D, AL); |
6990 | break; |
6991 | |
6992 | // Swift attributes. |
6993 | case ParsedAttr::AT_SwiftAsyncName: |
6994 | S.Swift().handleAsyncName(D, AL); |
6995 | break; |
6996 | case ParsedAttr::AT_SwiftAttr: |
6997 | S.Swift().handleAttrAttr(D, AL); |
6998 | break; |
6999 | case ParsedAttr::AT_SwiftBridge: |
7000 | S.Swift().handleBridge(D, AL); |
7001 | break; |
7002 | case ParsedAttr::AT_SwiftError: |
7003 | S.Swift().handleError(D, AL); |
7004 | break; |
7005 | case ParsedAttr::AT_SwiftName: |
7006 | S.Swift().handleName(D, AL); |
7007 | break; |
7008 | case ParsedAttr::AT_SwiftNewType: |
7009 | S.Swift().handleNewType(D, AL); |
7010 | break; |
7011 | case ParsedAttr::AT_SwiftAsync: |
7012 | S.Swift().handleAsyncAttr(D, AL); |
7013 | break; |
7014 | case ParsedAttr::AT_SwiftAsyncError: |
7015 | S.Swift().handleAsyncError(D, AL); |
7016 | break; |
7017 | |
7018 | // XRay attributes. |
7019 | case ParsedAttr::AT_XRayLogArgs: |
7020 | handleXRayLogArgsAttr(S, D, AL); |
7021 | break; |
7022 | |
7023 | case ParsedAttr::AT_PatchableFunctionEntry: |
7024 | handlePatchableFunctionEntryAttr(S, D, AL); |
7025 | break; |
7026 | |
7027 | case ParsedAttr::AT_AlwaysDestroy: |
7028 | case ParsedAttr::AT_NoDestroy: |
7029 | handleDestroyAttr(S, D, A: AL); |
7030 | break; |
7031 | |
7032 | case ParsedAttr::AT_Uninitialized: |
7033 | handleUninitializedAttr(S, D, AL); |
7034 | break; |
7035 | |
7036 | case ParsedAttr::AT_ObjCExternallyRetained: |
7037 | S.ObjC().handleExternallyRetainedAttr(D, AL); |
7038 | break; |
7039 | |
7040 | case ParsedAttr::AT_MIGServerRoutine: |
7041 | handleMIGServerRoutineAttr(S, D, AL); |
7042 | break; |
7043 | |
7044 | case ParsedAttr::AT_MSAllocator: |
7045 | handleMSAllocatorAttr(S, D, AL); |
7046 | break; |
7047 | |
7048 | case ParsedAttr::AT_ArmBuiltinAlias: |
7049 | S.ARM().handleBuiltinAliasAttr(D, AL); |
7050 | break; |
7051 | |
7052 | case ParsedAttr::AT_ArmLocallyStreaming: |
7053 | handleSimpleAttribute<ArmLocallyStreamingAttr>(S, D, CI: AL); |
7054 | break; |
7055 | |
7056 | case ParsedAttr::AT_ArmNew: |
7057 | S.ARM().handleNewAttr(D, AL); |
7058 | break; |
7059 | |
7060 | case ParsedAttr::AT_AcquireHandle: |
7061 | handleAcquireHandleAttr(S, D, AL); |
7062 | break; |
7063 | |
7064 | case ParsedAttr::AT_ReleaseHandle: |
7065 | handleHandleAttr<ReleaseHandleAttr>(S, D, AL); |
7066 | break; |
7067 | |
7068 | case ParsedAttr::AT_UnsafeBufferUsage: |
7069 | handleUnsafeBufferUsage<UnsafeBufferUsageAttr>(S, D, AL); |
7070 | break; |
7071 | |
7072 | case ParsedAttr::AT_UseHandle: |
7073 | handleHandleAttr<UseHandleAttr>(S, D, AL); |
7074 | break; |
7075 | |
7076 | case ParsedAttr::AT_EnforceTCB: |
7077 | handleEnforceTCBAttr<EnforceTCBAttr, EnforceTCBLeafAttr>(S, D, AL); |
7078 | break; |
7079 | |
7080 | case ParsedAttr::AT_EnforceTCBLeaf: |
7081 | handleEnforceTCBAttr<EnforceTCBLeafAttr, EnforceTCBAttr>(S, D, AL); |
7082 | break; |
7083 | |
7084 | case ParsedAttr::AT_BuiltinAlias: |
7085 | handleBuiltinAliasAttr(S, D, AL); |
7086 | break; |
7087 | |
7088 | case ParsedAttr::AT_PreferredType: |
7089 | handlePreferredTypeAttr(S, D, AL); |
7090 | break; |
7091 | |
7092 | case ParsedAttr::AT_UsingIfExists: |
7093 | handleSimpleAttribute<UsingIfExistsAttr>(S, D, CI: AL); |
7094 | break; |
7095 | |
7096 | case ParsedAttr::AT_TypeNullable: |
7097 | handleNullableTypeAttr(S, D, AL); |
7098 | break; |
7099 | |
7100 | case ParsedAttr::AT_VTablePointerAuthentication: |
7101 | handleVTablePointerAuthentication(S, D, AL); |
7102 | break; |
7103 | } |
7104 | } |
7105 | |
7106 | void Sema::ProcessDeclAttributeList( |
7107 | Scope *S, Decl *D, const ParsedAttributesView &AttrList, |
7108 | const ProcessDeclAttributeOptions &Options) { |
7109 | if (AttrList.empty()) |
7110 | return; |
7111 | |
7112 | for (const ParsedAttr &AL : AttrList) |
7113 | ProcessDeclAttribute(S&: *this, scope: S, D, AL, Options); |
7114 | |
7115 | // FIXME: We should be able to handle these cases in TableGen. |
7116 | // GCC accepts |
7117 | // static int a9 __attribute__((weakref)); |
7118 | // but that looks really pointless. We reject it. |
7119 | if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) { |
7120 | Diag(Loc: AttrList.begin()->getLoc(), DiagID: diag::err_attribute_weakref_without_alias) |
7121 | << cast<NamedDecl>(Val: D); |
7122 | D->dropAttr<WeakRefAttr>(); |
7123 | return; |
7124 | } |
7125 | |
7126 | // FIXME: We should be able to handle this in TableGen as well. It would be |
7127 | // good to have a way to specify "these attributes must appear as a group", |
7128 | // for these. Additionally, it would be good to have a way to specify "these |
7129 | // attribute must never appear as a group" for attributes like cold and hot. |
7130 | if (!D->hasAttr<OpenCLKernelAttr>()) { |
7131 | // These attributes cannot be applied to a non-kernel function. |
7132 | if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) { |
7133 | // FIXME: This emits a different error message than |
7134 | // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction. |
7135 | Diag(Loc: D->getLocation(), DiagID: diag::err_opencl_kernel_attr) << A; |
7136 | D->setInvalidDecl(); |
7137 | } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) { |
7138 | Diag(Loc: D->getLocation(), DiagID: diag::err_opencl_kernel_attr) << A; |
7139 | D->setInvalidDecl(); |
7140 | } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) { |
7141 | Diag(Loc: D->getLocation(), DiagID: diag::err_opencl_kernel_attr) << A; |
7142 | D->setInvalidDecl(); |
7143 | } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { |
7144 | Diag(Loc: D->getLocation(), DiagID: diag::err_opencl_kernel_attr) << A; |
7145 | D->setInvalidDecl(); |
7146 | } else if (!D->hasAttr<CUDAGlobalAttr>()) { |
7147 | if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) { |
7148 | Diag(Loc: D->getLocation(), DiagID: diag::err_attribute_wrong_decl_type) |
7149 | << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction; |
7150 | D->setInvalidDecl(); |
7151 | } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) { |
7152 | Diag(Loc: D->getLocation(), DiagID: diag::err_attribute_wrong_decl_type) |
7153 | << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction; |
7154 | D->setInvalidDecl(); |
7155 | } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) { |
7156 | Diag(Loc: D->getLocation(), DiagID: diag::err_attribute_wrong_decl_type) |
7157 | << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction; |
7158 | D->setInvalidDecl(); |
7159 | } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) { |
7160 | Diag(Loc: D->getLocation(), DiagID: diag::err_attribute_wrong_decl_type) |
7161 | << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction; |
7162 | D->setInvalidDecl(); |
7163 | } |
7164 | } |
7165 | } |
7166 | |
7167 | // Do this check after processing D's attributes because the attribute |
7168 | // objc_method_family can change whether the given method is in the init |
7169 | // family, and it can be applied after objc_designated_initializer. This is a |
7170 | // bit of a hack, but we need it to be compatible with versions of clang that |
7171 | // processed the attribute list in the wrong order. |
7172 | if (D->hasAttr<ObjCDesignatedInitializerAttr>() && |
7173 | cast<ObjCMethodDecl>(Val: D)->getMethodFamily() != OMF_init) { |
7174 | Diag(Loc: D->getLocation(), DiagID: diag::err_designated_init_attr_non_init); |
7175 | D->dropAttr<ObjCDesignatedInitializerAttr>(); |
7176 | } |
7177 | } |
7178 | |
7179 | void Sema::ProcessDeclAttributeDelayed(Decl *D, |
7180 | const ParsedAttributesView &AttrList) { |
7181 | for (const ParsedAttr &AL : AttrList) |
7182 | if (AL.getKind() == ParsedAttr::AT_TransparentUnion) { |
7183 | handleTransparentUnionAttr(S&: *this, D, AL); |
7184 | break; |
7185 | } |
7186 | |
7187 | // For BPFPreserveAccessIndexAttr, we want to populate the attributes |
7188 | // to fields and inner records as well. |
7189 | if (D && D->hasAttr<BPFPreserveAccessIndexAttr>()) |
7190 | BPF().handlePreserveAIRecord(RD: cast<RecordDecl>(Val: D)); |
7191 | } |
7192 | |
7193 | bool Sema::ProcessAccessDeclAttributeList( |
7194 | AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) { |
7195 | for (const ParsedAttr &AL : AttrList) { |
7196 | if (AL.getKind() == ParsedAttr::AT_Annotate) { |
7197 | ProcessDeclAttribute(S&: *this, scope: nullptr, D: ASDecl, AL, |
7198 | Options: ProcessDeclAttributeOptions()); |
7199 | } else { |
7200 | Diag(Loc: AL.getLoc(), DiagID: diag::err_only_annotate_after_access_spec); |
7201 | return true; |
7202 | } |
7203 | } |
7204 | return false; |
7205 | } |
7206 | |
7207 | /// checkUnusedDeclAttributes - Check a list of attributes to see if it |
7208 | /// contains any decl attributes that we should warn about. |
7209 | static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) { |
7210 | for (const ParsedAttr &AL : A) { |
7211 | // Only warn if the attribute is an unignored, non-type attribute. |
7212 | if (AL.isUsedAsTypeAttr() || AL.isInvalid()) |
7213 | continue; |
7214 | if (AL.getKind() == ParsedAttr::IgnoredAttribute) |
7215 | continue; |
7216 | |
7217 | if (AL.getKind() == ParsedAttr::UnknownAttribute) { |
7218 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_unknown_attribute_ignored) |
7219 | << AL << AL.getRange(); |
7220 | } else { |
7221 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_not_on_decl) << AL |
7222 | << AL.getRange(); |
7223 | } |
7224 | } |
7225 | } |
7226 | |
7227 | void Sema::checkUnusedDeclAttributes(Declarator &D) { |
7228 | ::checkUnusedDeclAttributes(S&: *this, A: D.getDeclarationAttributes()); |
7229 | ::checkUnusedDeclAttributes(S&: *this, A: D.getDeclSpec().getAttributes()); |
7230 | ::checkUnusedDeclAttributes(S&: *this, A: D.getAttributes()); |
7231 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) |
7232 | ::checkUnusedDeclAttributes(S&: *this, A: D.getTypeObject(i).getAttrs()); |
7233 | } |
7234 | |
7235 | NamedDecl *Sema::DeclClonePragmaWeak(NamedDecl *ND, const IdentifierInfo *II, |
7236 | SourceLocation Loc) { |
7237 | assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND)); |
7238 | NamedDecl *NewD = nullptr; |
7239 | if (auto *FD = dyn_cast<FunctionDecl>(Val: ND)) { |
7240 | FunctionDecl *NewFD; |
7241 | // FIXME: Missing call to CheckFunctionDeclaration(). |
7242 | // FIXME: Mangling? |
7243 | // FIXME: Is the qualifier info correct? |
7244 | // FIXME: Is the DeclContext correct? |
7245 | NewFD = FunctionDecl::Create( |
7246 | C&: FD->getASTContext(), DC: FD->getDeclContext(), StartLoc: Loc, NLoc: Loc, |
7247 | N: DeclarationName(II), T: FD->getType(), TInfo: FD->getTypeSourceInfo(), SC: SC_None, |
7248 | UsesFPIntrin: getCurFPFeatures().isFPConstrained(), isInlineSpecified: false /*isInlineSpecified*/, |
7249 | hasWrittenPrototype: FD->hasPrototype(), ConstexprKind: ConstexprSpecKind::Unspecified, |
7250 | TrailingRequiresClause: FD->getTrailingRequiresClause()); |
7251 | NewD = NewFD; |
7252 | |
7253 | if (FD->getQualifier()) |
7254 | NewFD->setQualifierInfo(FD->getQualifierLoc()); |
7255 | |
7256 | // Fake up parameter variables; they are declared as if this were |
7257 | // a typedef. |
7258 | QualType FDTy = FD->getType(); |
7259 | if (const auto *FT = FDTy->getAs<FunctionProtoType>()) { |
7260 | SmallVector<ParmVarDecl*, 16> Params; |
7261 | for (const auto &AI : FT->param_types()) { |
7262 | ParmVarDecl *Param = BuildParmVarDeclForTypedef(DC: NewFD, Loc, T: AI); |
7263 | Param->setScopeInfo(scopeDepth: 0, parameterIndex: Params.size()); |
7264 | Params.push_back(Elt: Param); |
7265 | } |
7266 | NewFD->setParams(Params); |
7267 | } |
7268 | } else if (auto *VD = dyn_cast<VarDecl>(Val: ND)) { |
7269 | NewD = VarDecl::Create(C&: VD->getASTContext(), DC: VD->getDeclContext(), |
7270 | StartLoc: VD->getInnerLocStart(), IdLoc: VD->getLocation(), Id: II, |
7271 | T: VD->getType(), TInfo: VD->getTypeSourceInfo(), |
7272 | S: VD->getStorageClass()); |
7273 | if (VD->getQualifier()) |
7274 | cast<VarDecl>(Val: NewD)->setQualifierInfo(VD->getQualifierLoc()); |
7275 | } |
7276 | return NewD; |
7277 | } |
7278 | |
7279 | void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, const WeakInfo &W) { |
7280 | if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...)) |
7281 | IdentifierInfo *NDId = ND->getIdentifier(); |
7282 | NamedDecl *NewD = DeclClonePragmaWeak(ND, II: W.getAlias(), Loc: W.getLocation()); |
7283 | NewD->addAttr( |
7284 | A: AliasAttr::CreateImplicit(Ctx&: Context, Aliasee: NDId->getName(), Range: W.getLocation())); |
7285 | NewD->addAttr(A: WeakAttr::CreateImplicit(Ctx&: Context, Range: W.getLocation())); |
7286 | WeakTopLevelDecl.push_back(Elt: NewD); |
7287 | // FIXME: "hideous" code from Sema::LazilyCreateBuiltin |
7288 | // to insert Decl at TU scope, sorry. |
7289 | DeclContext *SavedContext = CurContext; |
7290 | CurContext = Context.getTranslationUnitDecl(); |
7291 | NewD->setDeclContext(CurContext); |
7292 | NewD->setLexicalDeclContext(CurContext); |
7293 | PushOnScopeChains(D: NewD, S); |
7294 | CurContext = SavedContext; |
7295 | } else { // just add weak to existing |
7296 | ND->addAttr(A: WeakAttr::CreateImplicit(Ctx&: Context, Range: W.getLocation())); |
7297 | } |
7298 | } |
7299 | |
7300 | void Sema::ProcessPragmaWeak(Scope *S, Decl *D) { |
7301 | // It's valid to "forward-declare" #pragma weak, in which case we |
7302 | // have to do this. |
7303 | LoadExternalWeakUndeclaredIdentifiers(); |
7304 | if (WeakUndeclaredIdentifiers.empty()) |
7305 | return; |
7306 | NamedDecl *ND = nullptr; |
7307 | if (auto *VD = dyn_cast<VarDecl>(Val: D)) |
7308 | if (VD->isExternC()) |
7309 | ND = VD; |
7310 | if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
7311 | if (FD->isExternC()) |
7312 | ND = FD; |
7313 | if (!ND) |
7314 | return; |
7315 | if (IdentifierInfo *Id = ND->getIdentifier()) { |
7316 | auto I = WeakUndeclaredIdentifiers.find(Key: Id); |
7317 | if (I != WeakUndeclaredIdentifiers.end()) { |
7318 | auto &WeakInfos = I->second; |
7319 | for (const auto &W : WeakInfos) |
7320 | DeclApplyPragmaWeak(S, ND, W); |
7321 | std::remove_reference_t<decltype(WeakInfos)> EmptyWeakInfos; |
7322 | WeakInfos.swap(RHS&: EmptyWeakInfos); |
7323 | } |
7324 | } |
7325 | } |
7326 | |
7327 | /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in |
7328 | /// it, apply them to D. This is a bit tricky because PD can have attributes |
7329 | /// specified in many different places, and we need to find and apply them all. |
7330 | void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) { |
7331 | // Ordering of attributes can be important, so we take care to process |
7332 | // attributes in the order in which they appeared in the source code. |
7333 | |
7334 | auto ProcessAttributesWithSliding = |
7335 | [&](const ParsedAttributesView &Src, |
7336 | const ProcessDeclAttributeOptions &Options) { |
7337 | ParsedAttributesView NonSlidingAttrs; |
7338 | for (ParsedAttr &AL : Src) { |
7339 | // FIXME: this sliding is specific to standard attributes and should |
7340 | // eventually be deprecated and removed as those are not intended to |
7341 | // slide to anything. |
7342 | if ((AL.isStandardAttributeSyntax() || AL.isAlignas()) && |
7343 | AL.slidesFromDeclToDeclSpecLegacyBehavior()) { |
7344 | // Skip processing the attribute, but do check if it appertains to |
7345 | // the declaration. This is needed for the `MatrixType` attribute, |
7346 | // which, despite being a type attribute, defines a `SubjectList` |
7347 | // that only allows it to be used on typedef declarations. |
7348 | AL.diagnoseAppertainsTo(S&: *this, D); |
7349 | } else { |
7350 | NonSlidingAttrs.addAtEnd(newAttr: &AL); |
7351 | } |
7352 | } |
7353 | ProcessDeclAttributeList(S, D, AttrList: NonSlidingAttrs, Options); |
7354 | }; |
7355 | |
7356 | // First, process attributes that appeared on the declaration itself (but |
7357 | // only if they don't have the legacy behavior of "sliding" to the DeclSepc). |
7358 | ProcessAttributesWithSliding(PD.getDeclarationAttributes(), {}); |
7359 | |
7360 | // Apply decl attributes from the DeclSpec if present. |
7361 | ProcessAttributesWithSliding(PD.getDeclSpec().getAttributes(), |
7362 | ProcessDeclAttributeOptions() |
7363 | .WithIncludeCXX11Attributes(Val: false) |
7364 | .WithIgnoreTypeAttributes(Val: true)); |
7365 | |
7366 | // Walk the declarator structure, applying decl attributes that were in a type |
7367 | // position to the decl itself. This handles cases like: |
7368 | // int *__attr__(x)** D; |
7369 | // when X is a decl attribute. |
7370 | for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) { |
7371 | ProcessDeclAttributeList(S, D, AttrList: PD.getTypeObject(i).getAttrs(), |
7372 | Options: ProcessDeclAttributeOptions() |
7373 | .WithIncludeCXX11Attributes(Val: false) |
7374 | .WithIgnoreTypeAttributes(Val: true)); |
7375 | } |
7376 | |
7377 | // Finally, apply any attributes on the decl itself. |
7378 | ProcessDeclAttributeList(S, D, AttrList: PD.getAttributes()); |
7379 | |
7380 | // Apply additional attributes specified by '#pragma clang attribute'. |
7381 | AddPragmaAttributes(S, D); |
7382 | |
7383 | // Look for API notes that map to attributes. |
7384 | ProcessAPINotes(D); |
7385 | } |
7386 | |
7387 | /// Is the given declaration allowed to use a forbidden type? |
7388 | /// If so, it'll still be annotated with an attribute that makes it |
7389 | /// illegal to actually use. |
7390 | static bool isForbiddenTypeAllowed(Sema &S, Decl *D, |
7391 | const DelayedDiagnostic &diag, |
7392 | UnavailableAttr::ImplicitReason &reason) { |
7393 | // Private ivars are always okay. Unfortunately, people don't |
7394 | // always properly make their ivars private, even in system headers. |
7395 | // Plus we need to make fields okay, too. |
7396 | if (!isa<FieldDecl>(Val: D) && !isa<ObjCPropertyDecl>(Val: D) && |
7397 | !isa<FunctionDecl>(Val: D)) |
7398 | return false; |
7399 | |
7400 | // Silently accept unsupported uses of __weak in both user and system |
7401 | // declarations when it's been disabled, for ease of integration with |
7402 | // -fno-objc-arc files. We do have to take some care against attempts |
7403 | // to define such things; for now, we've only done that for ivars |
7404 | // and properties. |
7405 | if ((isa<ObjCIvarDecl>(Val: D) || isa<ObjCPropertyDecl>(Val: D))) { |
7406 | if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled || |
7407 | diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) { |
7408 | reason = UnavailableAttr::IR_ForbiddenWeak; |
7409 | return true; |
7410 | } |
7411 | } |
7412 | |
7413 | // Allow all sorts of things in system headers. |
7414 | if (S.Context.getSourceManager().isInSystemHeader(Loc: D->getLocation())) { |
7415 | // Currently, all the failures dealt with this way are due to ARC |
7416 | // restrictions. |
7417 | reason = UnavailableAttr::IR_ARCForbiddenType; |
7418 | return true; |
7419 | } |
7420 | |
7421 | return false; |
7422 | } |
7423 | |
7424 | /// Handle a delayed forbidden-type diagnostic. |
7425 | static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD, |
7426 | Decl *D) { |
7427 | auto Reason = UnavailableAttr::IR_None; |
7428 | if (D && isForbiddenTypeAllowed(S, D, diag: DD, reason&: Reason)) { |
7429 | assert(Reason && "didn't set reason?" ); |
7430 | D->addAttr(A: UnavailableAttr::CreateImplicit(Ctx&: S.Context, Message: "" , ImplicitReason: Reason, Range: DD.Loc)); |
7431 | return; |
7432 | } |
7433 | if (S.getLangOpts().ObjCAutoRefCount) |
7434 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
7435 | // FIXME: we may want to suppress diagnostics for all |
7436 | // kind of forbidden type messages on unavailable functions. |
7437 | if (FD->hasAttr<UnavailableAttr>() && |
7438 | DD.getForbiddenTypeDiagnostic() == |
7439 | diag::err_arc_array_param_no_ownership) { |
7440 | DD.Triggered = true; |
7441 | return; |
7442 | } |
7443 | } |
7444 | |
7445 | S.Diag(Loc: DD.Loc, DiagID: DD.getForbiddenTypeDiagnostic()) |
7446 | << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument(); |
7447 | DD.Triggered = true; |
7448 | } |
7449 | |
7450 | |
7451 | void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) { |
7452 | assert(DelayedDiagnostics.getCurrentPool()); |
7453 | DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool(); |
7454 | DelayedDiagnostics.popWithoutEmitting(state); |
7455 | |
7456 | // When delaying diagnostics to run in the context of a parsed |
7457 | // declaration, we only want to actually emit anything if parsing |
7458 | // succeeds. |
7459 | if (!decl) return; |
7460 | |
7461 | // We emit all the active diagnostics in this pool or any of its |
7462 | // parents. In general, we'll get one pool for the decl spec |
7463 | // and a child pool for each declarator; in a decl group like: |
7464 | // deprecated_typedef foo, *bar, baz(); |
7465 | // only the declarator pops will be passed decls. This is correct; |
7466 | // we really do need to consider delayed diagnostics from the decl spec |
7467 | // for each of the different declarations. |
7468 | const DelayedDiagnosticPool *pool = &poppedPool; |
7469 | do { |
7470 | bool AnyAccessFailures = false; |
7471 | for (DelayedDiagnosticPool::pool_iterator |
7472 | i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) { |
7473 | // This const_cast is a bit lame. Really, Triggered should be mutable. |
7474 | DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i); |
7475 | if (diag.Triggered) |
7476 | continue; |
7477 | |
7478 | switch (diag.Kind) { |
7479 | case DelayedDiagnostic::Availability: |
7480 | // Don't bother giving deprecation/unavailable diagnostics if |
7481 | // the decl is invalid. |
7482 | if (!decl->isInvalidDecl()) |
7483 | handleDelayedAvailabilityCheck(DD&: diag, Ctx: decl); |
7484 | break; |
7485 | |
7486 | case DelayedDiagnostic::Access: |
7487 | // Only produce one access control diagnostic for a structured binding |
7488 | // declaration: we don't need to tell the user that all the fields are |
7489 | // inaccessible one at a time. |
7490 | if (AnyAccessFailures && isa<DecompositionDecl>(Val: decl)) |
7491 | continue; |
7492 | HandleDelayedAccessCheck(DD&: diag, Ctx: decl); |
7493 | if (diag.Triggered) |
7494 | AnyAccessFailures = true; |
7495 | break; |
7496 | |
7497 | case DelayedDiagnostic::ForbiddenType: |
7498 | handleDelayedForbiddenType(S&: *this, DD&: diag, D: decl); |
7499 | break; |
7500 | } |
7501 | } |
7502 | } while ((pool = pool->getParent())); |
7503 | } |
7504 | |
7505 | void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) { |
7506 | DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool(); |
7507 | assert(curPool && "re-emitting in undelayed context not supported" ); |
7508 | curPool->steal(pool); |
7509 | } |
7510 | |