1 | //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements semantic analysis for Objective C declarations. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "TypeLocBuilder.h" |
14 | #include "clang/AST/ASTConsumer.h" |
15 | #include "clang/AST/ASTContext.h" |
16 | #include "clang/AST/ASTMutationListener.h" |
17 | #include "clang/AST/DeclObjC.h" |
18 | #include "clang/AST/Expr.h" |
19 | #include "clang/AST/ExprObjC.h" |
20 | #include "clang/AST/RecursiveASTVisitor.h" |
21 | #include "clang/Basic/SourceManager.h" |
22 | #include "clang/Basic/TargetInfo.h" |
23 | #include "clang/Sema/DeclSpec.h" |
24 | #include "clang/Sema/DelayedDiagnostic.h" |
25 | #include "clang/Sema/Initialization.h" |
26 | #include "clang/Sema/Lookup.h" |
27 | #include "clang/Sema/Scope.h" |
28 | #include "clang/Sema/ScopeInfo.h" |
29 | #include "clang/Sema/SemaInternal.h" |
30 | #include "clang/Sema/SemaObjC.h" |
31 | #include "llvm/ADT/DenseMap.h" |
32 | #include "llvm/ADT/DenseSet.h" |
33 | |
34 | using namespace clang; |
35 | |
36 | /// Check whether the given method, which must be in the 'init' |
37 | /// family, is a valid member of that family. |
38 | /// |
39 | /// \param receiverTypeIfCall - if null, check this as if declaring it; |
40 | /// if non-null, check this as if making a call to it with the given |
41 | /// receiver type |
42 | /// |
43 | /// \return true to indicate that there was an error and appropriate |
44 | /// actions were taken |
45 | bool SemaObjC::checkInitMethod(ObjCMethodDecl *method, |
46 | QualType receiverTypeIfCall) { |
47 | ASTContext &Context = getASTContext(); |
48 | if (method->isInvalidDecl()) return true; |
49 | |
50 | // This castAs is safe: methods that don't return an object |
51 | // pointer won't be inferred as inits and will reject an explicit |
52 | // objc_method_family(init). |
53 | |
54 | // We ignore protocols here. Should we? What about Class? |
55 | |
56 | const ObjCObjectType *result = |
57 | method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType(); |
58 | |
59 | if (result->isObjCId()) { |
60 | return false; |
61 | } else if (result->isObjCClass()) { |
62 | // fall through: always an error |
63 | } else { |
64 | ObjCInterfaceDecl *resultClass = result->getInterface(); |
65 | assert(resultClass && "unexpected object type!" ); |
66 | |
67 | // It's okay for the result type to still be a forward declaration |
68 | // if we're checking an interface declaration. |
69 | if (!resultClass->hasDefinition()) { |
70 | if (receiverTypeIfCall.isNull() && |
71 | !isa<ObjCImplementationDecl>(Val: method->getDeclContext())) |
72 | return false; |
73 | |
74 | // Otherwise, we try to compare class types. |
75 | } else { |
76 | // If this method was declared in a protocol, we can't check |
77 | // anything unless we have a receiver type that's an interface. |
78 | const ObjCInterfaceDecl *receiverClass = nullptr; |
79 | if (isa<ObjCProtocolDecl>(Val: method->getDeclContext())) { |
80 | if (receiverTypeIfCall.isNull()) |
81 | return false; |
82 | |
83 | receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>() |
84 | ->getInterfaceDecl(); |
85 | |
86 | // This can be null for calls to e.g. id<Foo>. |
87 | if (!receiverClass) return false; |
88 | } else { |
89 | receiverClass = method->getClassInterface(); |
90 | assert(receiverClass && "method not associated with a class!" ); |
91 | } |
92 | |
93 | // If either class is a subclass of the other, it's fine. |
94 | if (receiverClass->isSuperClassOf(I: resultClass) || |
95 | resultClass->isSuperClassOf(I: receiverClass)) |
96 | return false; |
97 | } |
98 | } |
99 | |
100 | SourceLocation loc = method->getLocation(); |
101 | |
102 | // If we're in a system header, and this is not a call, just make |
103 | // the method unusable. |
104 | if (receiverTypeIfCall.isNull() && |
105 | SemaRef.getSourceManager().isInSystemHeader(Loc: loc)) { |
106 | method->addAttr(A: UnavailableAttr::CreateImplicit(Ctx&: Context, Message: "" , |
107 | ImplicitReason: UnavailableAttr::IR_ARCInitReturnsUnrelated, Range: loc)); |
108 | return true; |
109 | } |
110 | |
111 | // Otherwise, it's an error. |
112 | Diag(Loc: loc, DiagID: diag::err_arc_init_method_unrelated_result_type); |
113 | method->setInvalidDecl(); |
114 | return true; |
115 | } |
116 | |
117 | /// Issue a warning if the parameter of the overridden method is non-escaping |
118 | /// but the parameter of the overriding method is not. |
119 | static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD, |
120 | Sema &S) { |
121 | if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) { |
122 | S.Diag(Loc: NewD->getLocation(), DiagID: diag::warn_overriding_method_missing_noescape); |
123 | S.Diag(Loc: OldD->getLocation(), DiagID: diag::note_overridden_marked_noescape); |
124 | return false; |
125 | } |
126 | |
127 | return true; |
128 | } |
129 | |
130 | /// Produce additional diagnostics if a category conforms to a protocol that |
131 | /// defines a method taking a non-escaping parameter. |
132 | static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD, |
133 | const ObjCCategoryDecl *CD, |
134 | const ObjCProtocolDecl *PD, Sema &S) { |
135 | if (!diagnoseNoescape(NewD, OldD, S)) |
136 | S.Diag(Loc: CD->getLocation(), DiagID: diag::note_cat_conform_to_noescape_prot) |
137 | << CD->IsClassExtension() << PD |
138 | << cast<ObjCMethodDecl>(Val: NewD->getDeclContext()); |
139 | } |
140 | |
141 | void SemaObjC::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod, |
142 | const ObjCMethodDecl *Overridden) { |
143 | ASTContext &Context = getASTContext(); |
144 | if (Overridden->hasRelatedResultType() && |
145 | !NewMethod->hasRelatedResultType()) { |
146 | // This can only happen when the method follows a naming convention that |
147 | // implies a related result type, and the original (overridden) method has |
148 | // a suitable return type, but the new (overriding) method does not have |
149 | // a suitable return type. |
150 | QualType ResultType = NewMethod->getReturnType(); |
151 | SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange(); |
152 | |
153 | // Figure out which class this method is part of, if any. |
154 | ObjCInterfaceDecl *CurrentClass |
155 | = dyn_cast<ObjCInterfaceDecl>(Val: NewMethod->getDeclContext()); |
156 | if (!CurrentClass) { |
157 | DeclContext *DC = NewMethod->getDeclContext(); |
158 | if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(Val: DC)) |
159 | CurrentClass = Cat->getClassInterface(); |
160 | else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(Val: DC)) |
161 | CurrentClass = Impl->getClassInterface(); |
162 | else if (ObjCCategoryImplDecl *CatImpl |
163 | = dyn_cast<ObjCCategoryImplDecl>(Val: DC)) |
164 | CurrentClass = CatImpl->getClassInterface(); |
165 | } |
166 | |
167 | if (CurrentClass) { |
168 | Diag(Loc: NewMethod->getLocation(), |
169 | DiagID: diag::warn_related_result_type_compatibility_class) |
170 | << Context.getObjCInterfaceType(Decl: CurrentClass) |
171 | << ResultType |
172 | << ResultTypeRange; |
173 | } else { |
174 | Diag(Loc: NewMethod->getLocation(), |
175 | DiagID: diag::warn_related_result_type_compatibility_protocol) |
176 | << ResultType |
177 | << ResultTypeRange; |
178 | } |
179 | |
180 | if (ObjCMethodFamily Family = Overridden->getMethodFamily()) |
181 | Diag(Loc: Overridden->getLocation(), |
182 | DiagID: diag::note_related_result_type_family) |
183 | << /*overridden method*/ 0 |
184 | << Family; |
185 | else |
186 | Diag(Loc: Overridden->getLocation(), |
187 | DiagID: diag::note_related_result_type_overridden); |
188 | } |
189 | |
190 | if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() != |
191 | Overridden->hasAttr<NSReturnsRetainedAttr>())) { |
192 | Diag(Loc: NewMethod->getLocation(), |
193 | DiagID: getLangOpts().ObjCAutoRefCount |
194 | ? diag::err_nsreturns_retained_attribute_mismatch |
195 | : diag::warn_nsreturns_retained_attribute_mismatch) |
196 | << 1; |
197 | Diag(Loc: Overridden->getLocation(), DiagID: diag::note_previous_decl) << "method" ; |
198 | } |
199 | if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() != |
200 | Overridden->hasAttr<NSReturnsNotRetainedAttr>())) { |
201 | Diag(Loc: NewMethod->getLocation(), |
202 | DiagID: getLangOpts().ObjCAutoRefCount |
203 | ? diag::err_nsreturns_retained_attribute_mismatch |
204 | : diag::warn_nsreturns_retained_attribute_mismatch) |
205 | << 0; |
206 | Diag(Loc: Overridden->getLocation(), DiagID: diag::note_previous_decl) << "method" ; |
207 | } |
208 | |
209 | ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(), |
210 | oe = Overridden->param_end(); |
211 | for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(), |
212 | ne = NewMethod->param_end(); |
213 | ni != ne && oi != oe; ++ni, ++oi) { |
214 | const ParmVarDecl *oldDecl = (*oi); |
215 | ParmVarDecl *newDecl = (*ni); |
216 | if (newDecl->hasAttr<NSConsumedAttr>() != |
217 | oldDecl->hasAttr<NSConsumedAttr>()) { |
218 | Diag(Loc: newDecl->getLocation(), |
219 | DiagID: getLangOpts().ObjCAutoRefCount |
220 | ? diag::err_nsconsumed_attribute_mismatch |
221 | : diag::warn_nsconsumed_attribute_mismatch); |
222 | Diag(Loc: oldDecl->getLocation(), DiagID: diag::note_previous_decl) << "parameter" ; |
223 | } |
224 | |
225 | diagnoseNoescape(NewD: newDecl, OldD: oldDecl, S&: SemaRef); |
226 | } |
227 | } |
228 | |
229 | /// Check a method declaration for compatibility with the Objective-C |
230 | /// ARC conventions. |
231 | bool SemaObjC::CheckARCMethodDecl(ObjCMethodDecl *method) { |
232 | ASTContext &Context = getASTContext(); |
233 | ObjCMethodFamily family = method->getMethodFamily(); |
234 | switch (family) { |
235 | case OMF_None: |
236 | case OMF_finalize: |
237 | case OMF_retain: |
238 | case OMF_release: |
239 | case OMF_autorelease: |
240 | case OMF_retainCount: |
241 | case OMF_self: |
242 | case OMF_initialize: |
243 | case OMF_performSelector: |
244 | return false; |
245 | |
246 | case OMF_dealloc: |
247 | if (!Context.hasSameType(T1: method->getReturnType(), T2: Context.VoidTy)) { |
248 | SourceRange ResultTypeRange = method->getReturnTypeSourceRange(); |
249 | if (ResultTypeRange.isInvalid()) |
250 | Diag(Loc: method->getLocation(), DiagID: diag::err_dealloc_bad_result_type) |
251 | << method->getReturnType() |
252 | << FixItHint::CreateInsertion(InsertionLoc: method->getSelectorLoc(Index: 0), Code: "(void)" ); |
253 | else |
254 | Diag(Loc: method->getLocation(), DiagID: diag::err_dealloc_bad_result_type) |
255 | << method->getReturnType() |
256 | << FixItHint::CreateReplacement(RemoveRange: ResultTypeRange, Code: "void" ); |
257 | return true; |
258 | } |
259 | return false; |
260 | |
261 | case OMF_init: |
262 | // If the method doesn't obey the init rules, don't bother annotating it. |
263 | if (checkInitMethod(method, receiverTypeIfCall: QualType())) |
264 | return true; |
265 | |
266 | method->addAttr(A: NSConsumesSelfAttr::CreateImplicit(Ctx&: Context)); |
267 | |
268 | // Don't add a second copy of this attribute, but otherwise don't |
269 | // let it be suppressed. |
270 | if (method->hasAttr<NSReturnsRetainedAttr>()) |
271 | return false; |
272 | break; |
273 | |
274 | case OMF_alloc: |
275 | case OMF_copy: |
276 | case OMF_mutableCopy: |
277 | case OMF_new: |
278 | if (method->hasAttr<NSReturnsRetainedAttr>() || |
279 | method->hasAttr<NSReturnsNotRetainedAttr>() || |
280 | method->hasAttr<NSReturnsAutoreleasedAttr>()) |
281 | return false; |
282 | break; |
283 | } |
284 | |
285 | method->addAttr(A: NSReturnsRetainedAttr::CreateImplicit(Ctx&: Context)); |
286 | return false; |
287 | } |
288 | |
289 | static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND, |
290 | SourceLocation ImplLoc) { |
291 | if (!ND) |
292 | return; |
293 | bool IsCategory = false; |
294 | StringRef RealizedPlatform; |
295 | AvailabilityResult Availability = ND->getAvailability( |
296 | /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(), |
297 | RealizedPlatform: &RealizedPlatform); |
298 | if (Availability != AR_Deprecated) { |
299 | if (isa<ObjCMethodDecl>(Val: ND)) { |
300 | if (Availability != AR_Unavailable) |
301 | return; |
302 | if (RealizedPlatform.empty()) |
303 | RealizedPlatform = S.Context.getTargetInfo().getPlatformName(); |
304 | // Warn about implementing unavailable methods, unless the unavailable |
305 | // is for an app extension. |
306 | if (RealizedPlatform.ends_with(Suffix: "_app_extension" )) |
307 | return; |
308 | S.Diag(Loc: ImplLoc, DiagID: diag::warn_unavailable_def); |
309 | S.Diag(Loc: ND->getLocation(), DiagID: diag::note_method_declared_at) |
310 | << ND->getDeclName(); |
311 | return; |
312 | } |
313 | if (const auto *CD = dyn_cast<ObjCCategoryDecl>(Val: ND)) { |
314 | if (!CD->getClassInterface()->isDeprecated()) |
315 | return; |
316 | ND = CD->getClassInterface(); |
317 | IsCategory = true; |
318 | } else |
319 | return; |
320 | } |
321 | S.Diag(Loc: ImplLoc, DiagID: diag::warn_deprecated_def) |
322 | << (isa<ObjCMethodDecl>(Val: ND) |
323 | ? /*Method*/ 0 |
324 | : isa<ObjCCategoryDecl>(Val: ND) || IsCategory ? /*Category*/ 2 |
325 | : /*Class*/ 1); |
326 | if (isa<ObjCMethodDecl>(Val: ND)) |
327 | S.Diag(Loc: ND->getLocation(), DiagID: diag::note_method_declared_at) |
328 | << ND->getDeclName(); |
329 | else |
330 | S.Diag(Loc: ND->getLocation(), DiagID: diag::note_previous_decl) |
331 | << (isa<ObjCCategoryDecl>(Val: ND) ? "category" : "class" ); |
332 | } |
333 | |
334 | /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global |
335 | /// pool. |
336 | void SemaObjC::AddAnyMethodToGlobalPool(Decl *D) { |
337 | ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(Val: D); |
338 | |
339 | // If we don't have a valid method decl, simply return. |
340 | if (!MDecl) |
341 | return; |
342 | if (MDecl->isInstanceMethod()) |
343 | AddInstanceMethodToGlobalPool(Method: MDecl, impl: true); |
344 | else |
345 | AddFactoryMethodToGlobalPool(Method: MDecl, impl: true); |
346 | } |
347 | |
348 | /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer |
349 | /// has explicit ownership attribute; false otherwise. |
350 | static bool |
351 | HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) { |
352 | QualType T = Param->getType(); |
353 | |
354 | if (const PointerType *PT = T->getAs<PointerType>()) { |
355 | T = PT->getPointeeType(); |
356 | } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) { |
357 | T = RT->getPointeeType(); |
358 | } else { |
359 | return true; |
360 | } |
361 | |
362 | // If we have a lifetime qualifier, but it's local, we must have |
363 | // inferred it. So, it is implicit. |
364 | return !T.getLocalQualifiers().hasObjCLifetime(); |
365 | } |
366 | |
367 | /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible |
368 | /// and user declared, in the method definition's AST. |
369 | void SemaObjC::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) { |
370 | ASTContext &Context = getASTContext(); |
371 | SemaRef.ImplicitlyRetainedSelfLocs.clear(); |
372 | assert((SemaRef.getCurMethodDecl() == nullptr) && "Methodparsing confused" ); |
373 | ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(Val: D); |
374 | |
375 | SemaRef.PushExpressionEvaluationContext( |
376 | NewContext: SemaRef.ExprEvalContexts.back().Context); |
377 | |
378 | // If we don't have a valid method decl, simply return. |
379 | if (!MDecl) |
380 | return; |
381 | |
382 | QualType ResultType = MDecl->getReturnType(); |
383 | if (!ResultType->isDependentType() && !ResultType->isVoidType() && |
384 | !MDecl->isInvalidDecl() && |
385 | SemaRef.RequireCompleteType(Loc: MDecl->getLocation(), T: ResultType, |
386 | DiagID: diag::err_func_def_incomplete_result)) |
387 | MDecl->setInvalidDecl(); |
388 | |
389 | // Allow all of Sema to see that we are entering a method definition. |
390 | SemaRef.PushDeclContext(S: FnBodyScope, DC: MDecl); |
391 | SemaRef.PushFunctionScope(); |
392 | |
393 | // Create Decl objects for each parameter, entrring them in the scope for |
394 | // binding to their use. |
395 | |
396 | // Insert the invisible arguments, self and _cmd! |
397 | MDecl->createImplicitParams(Context, ID: MDecl->getClassInterface()); |
398 | |
399 | SemaRef.PushOnScopeChains(D: MDecl->getSelfDecl(), S: FnBodyScope); |
400 | SemaRef.PushOnScopeChains(D: MDecl->getCmdDecl(), S: FnBodyScope); |
401 | |
402 | // The ObjC parser requires parameter names so there's no need to check. |
403 | SemaRef.CheckParmsForFunctionDef(Parameters: MDecl->parameters(), |
404 | /*CheckParameterNames=*/false); |
405 | |
406 | // Introduce all of the other parameters into this scope. |
407 | for (auto *Param : MDecl->parameters()) { |
408 | if (!Param->isInvalidDecl() && getLangOpts().ObjCAutoRefCount && |
409 | !HasExplicitOwnershipAttr(S&: SemaRef, Param)) |
410 | Diag(Loc: Param->getLocation(), DiagID: diag::warn_arc_strong_pointer_objc_pointer) << |
411 | Param->getType(); |
412 | |
413 | if (Param->getIdentifier()) |
414 | SemaRef.PushOnScopeChains(D: Param, S: FnBodyScope); |
415 | } |
416 | |
417 | // In ARC, disallow definition of retain/release/autorelease/retainCount |
418 | if (getLangOpts().ObjCAutoRefCount) { |
419 | switch (MDecl->getMethodFamily()) { |
420 | case OMF_retain: |
421 | case OMF_retainCount: |
422 | case OMF_release: |
423 | case OMF_autorelease: |
424 | Diag(Loc: MDecl->getLocation(), DiagID: diag::err_arc_illegal_method_def) |
425 | << 0 << MDecl->getSelector(); |
426 | break; |
427 | |
428 | case OMF_None: |
429 | case OMF_dealloc: |
430 | case OMF_finalize: |
431 | case OMF_alloc: |
432 | case OMF_init: |
433 | case OMF_mutableCopy: |
434 | case OMF_copy: |
435 | case OMF_new: |
436 | case OMF_self: |
437 | case OMF_initialize: |
438 | case OMF_performSelector: |
439 | break; |
440 | } |
441 | } |
442 | |
443 | // Warn on deprecated methods under -Wdeprecated-implementations, |
444 | // and prepare for warning on missing super calls. |
445 | if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) { |
446 | ObjCMethodDecl *IMD = |
447 | IC->lookupMethod(Sel: MDecl->getSelector(), isInstance: MDecl->isInstanceMethod()); |
448 | |
449 | if (IMD) { |
450 | ObjCImplDecl *ImplDeclOfMethodDef = |
451 | dyn_cast<ObjCImplDecl>(Val: MDecl->getDeclContext()); |
452 | ObjCContainerDecl *ContDeclOfMethodDecl = |
453 | dyn_cast<ObjCContainerDecl>(Val: IMD->getDeclContext()); |
454 | ObjCImplDecl *ImplDeclOfMethodDecl = nullptr; |
455 | if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(Val: ContDeclOfMethodDecl)) |
456 | ImplDeclOfMethodDecl = OID->getImplementation(); |
457 | else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(Val: ContDeclOfMethodDecl)) { |
458 | if (CD->IsClassExtension()) { |
459 | if (ObjCInterfaceDecl *OID = CD->getClassInterface()) |
460 | ImplDeclOfMethodDecl = OID->getImplementation(); |
461 | } else |
462 | ImplDeclOfMethodDecl = CD->getImplementation(); |
463 | } |
464 | // No need to issue deprecated warning if deprecated mehod in class/category |
465 | // is being implemented in its own implementation (no overriding is involved). |
466 | if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef) |
467 | DiagnoseObjCImplementedDeprecations(S&: SemaRef, ND: IMD, ImplLoc: MDecl->getLocation()); |
468 | } |
469 | |
470 | if (MDecl->getMethodFamily() == OMF_init) { |
471 | if (MDecl->isDesignatedInitializerForTheInterface()) { |
472 | SemaRef.getCurFunction()->ObjCIsDesignatedInit = true; |
473 | SemaRef.getCurFunction()->ObjCWarnForNoDesignatedInitChain = |
474 | IC->getSuperClass() != nullptr; |
475 | } else if (IC->hasDesignatedInitializers()) { |
476 | SemaRef.getCurFunction()->ObjCIsSecondaryInit = true; |
477 | SemaRef.getCurFunction()->ObjCWarnForNoInitDelegation = true; |
478 | } |
479 | } |
480 | |
481 | // If this is "dealloc" or "finalize", set some bit here. |
482 | // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false. |
483 | // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set. |
484 | // Only do this if the current class actually has a superclass. |
485 | if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) { |
486 | ObjCMethodFamily Family = MDecl->getMethodFamily(); |
487 | if (Family == OMF_dealloc) { |
488 | if (!(getLangOpts().ObjCAutoRefCount || |
489 | getLangOpts().getGC() == LangOptions::GCOnly)) |
490 | SemaRef.getCurFunction()->ObjCShouldCallSuper = true; |
491 | |
492 | } else if (Family == OMF_finalize) { |
493 | if (Context.getLangOpts().getGC() != LangOptions::NonGC) |
494 | SemaRef.getCurFunction()->ObjCShouldCallSuper = true; |
495 | |
496 | } else { |
497 | const ObjCMethodDecl *SuperMethod = |
498 | SuperClass->lookupMethod(Sel: MDecl->getSelector(), |
499 | isInstance: MDecl->isInstanceMethod()); |
500 | SemaRef.getCurFunction()->ObjCShouldCallSuper = |
501 | (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>()); |
502 | } |
503 | } |
504 | } |
505 | |
506 | // Some function attributes (like OptimizeNoneAttr) need actions before |
507 | // parsing body started. |
508 | SemaRef.applyFunctionAttributesBeforeParsingBody(FD: D); |
509 | } |
510 | |
511 | namespace { |
512 | |
513 | // Callback to only accept typo corrections that are Objective-C classes. |
514 | // If an ObjCInterfaceDecl* is given to the constructor, then the validation |
515 | // function will reject corrections to that class. |
516 | class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback { |
517 | public: |
518 | ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {} |
519 | explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl) |
520 | : CurrentIDecl(IDecl) {} |
521 | |
522 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
523 | ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>(); |
524 | return ID && !declaresSameEntity(D1: ID, D2: CurrentIDecl); |
525 | } |
526 | |
527 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
528 | return std::make_unique<ObjCInterfaceValidatorCCC>(args&: *this); |
529 | } |
530 | |
531 | private: |
532 | ObjCInterfaceDecl *CurrentIDecl; |
533 | }; |
534 | |
535 | } // end anonymous namespace |
536 | |
537 | static void diagnoseUseOfProtocols(Sema &TheSema, |
538 | ObjCContainerDecl *CD, |
539 | ObjCProtocolDecl *const *ProtoRefs, |
540 | unsigned NumProtoRefs, |
541 | const SourceLocation *ProtoLocs) { |
542 | assert(ProtoRefs); |
543 | // Diagnose availability in the context of the ObjC container. |
544 | Sema::ContextRAII SavedContext(TheSema, CD); |
545 | for (unsigned i = 0; i < NumProtoRefs; ++i) { |
546 | (void)TheSema.DiagnoseUseOfDecl(D: ProtoRefs[i], Locs: ProtoLocs[i], |
547 | /*UnknownObjCClass=*/nullptr, |
548 | /*ObjCPropertyAccess=*/false, |
549 | /*AvoidPartialAvailabilityChecks=*/true); |
550 | } |
551 | } |
552 | |
553 | void SemaObjC::ActOnSuperClassOfClassInterface( |
554 | Scope *S, SourceLocation AtInterfaceLoc, ObjCInterfaceDecl *IDecl, |
555 | IdentifierInfo *ClassName, SourceLocation ClassLoc, |
556 | IdentifierInfo *SuperName, SourceLocation SuperLoc, |
557 | ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange) { |
558 | ASTContext &Context = getASTContext(); |
559 | // Check if a different kind of symbol declared in this scope. |
560 | NamedDecl *PrevDecl = SemaRef.LookupSingleName( |
561 | S: SemaRef.TUScope, Name: SuperName, Loc: SuperLoc, NameKind: Sema::LookupOrdinaryName); |
562 | |
563 | if (!PrevDecl) { |
564 | // Try to correct for a typo in the superclass name without correcting |
565 | // to the class we're defining. |
566 | ObjCInterfaceValidatorCCC CCC(IDecl); |
567 | if (TypoCorrection Corrected = SemaRef.CorrectTypo( |
568 | Typo: DeclarationNameInfo(SuperName, SuperLoc), LookupKind: Sema::LookupOrdinaryName, |
569 | S: SemaRef.TUScope, SS: nullptr, CCC, Mode: Sema::CTK_ErrorRecovery)) { |
570 | SemaRef.diagnoseTypo(Correction: Corrected, TypoDiag: PDiag(DiagID: diag::err_undef_superclass_suggest) |
571 | << SuperName << ClassName); |
572 | PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>(); |
573 | } |
574 | } |
575 | |
576 | if (declaresSameEntity(D1: PrevDecl, D2: IDecl)) { |
577 | Diag(Loc: SuperLoc, DiagID: diag::err_recursive_superclass) |
578 | << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); |
579 | IDecl->setEndOfDefinitionLoc(ClassLoc); |
580 | } else { |
581 | ObjCInterfaceDecl *SuperClassDecl = |
582 | dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl); |
583 | QualType SuperClassType; |
584 | |
585 | // Diagnose classes that inherit from deprecated classes. |
586 | if (SuperClassDecl) { |
587 | (void)SemaRef.DiagnoseUseOfDecl(D: SuperClassDecl, Locs: SuperLoc); |
588 | SuperClassType = Context.getObjCInterfaceType(Decl: SuperClassDecl); |
589 | } |
590 | |
591 | if (PrevDecl && !SuperClassDecl) { |
592 | // The previous declaration was not a class decl. Check if we have a |
593 | // typedef. If we do, get the underlying class type. |
594 | if (const TypedefNameDecl *TDecl = |
595 | dyn_cast_or_null<TypedefNameDecl>(Val: PrevDecl)) { |
596 | QualType T = TDecl->getUnderlyingType(); |
597 | if (T->isObjCObjectType()) { |
598 | if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) { |
599 | SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(Val: IDecl); |
600 | SuperClassType = Context.getTypeDeclType(Decl: TDecl); |
601 | |
602 | // This handles the following case: |
603 | // @interface NewI @end |
604 | // typedef NewI DeprI __attribute__((deprecated("blah"))) |
605 | // @interface SI : DeprI /* warn here */ @end |
606 | (void)SemaRef.DiagnoseUseOfDecl( |
607 | D: const_cast<TypedefNameDecl *>(TDecl), Locs: SuperLoc); |
608 | } |
609 | } |
610 | } |
611 | |
612 | // This handles the following case: |
613 | // |
614 | // typedef int SuperClass; |
615 | // @interface MyClass : SuperClass {} @end |
616 | // |
617 | if (!SuperClassDecl) { |
618 | Diag(Loc: SuperLoc, DiagID: diag::err_redefinition_different_kind) << SuperName; |
619 | Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_definition); |
620 | } |
621 | } |
622 | |
623 | if (!isa_and_nonnull<TypedefNameDecl>(Val: PrevDecl)) { |
624 | if (!SuperClassDecl) |
625 | Diag(Loc: SuperLoc, DiagID: diag::err_undef_superclass) |
626 | << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc); |
627 | else if (SemaRef.RequireCompleteType( |
628 | Loc: SuperLoc, T: SuperClassType, DiagID: diag::err_forward_superclass, |
629 | Args: SuperClassDecl->getDeclName(), Args: ClassName, |
630 | Args: SourceRange(AtInterfaceLoc, ClassLoc))) { |
631 | SuperClassDecl = nullptr; |
632 | SuperClassType = QualType(); |
633 | } |
634 | } |
635 | |
636 | if (SuperClassType.isNull()) { |
637 | assert(!SuperClassDecl && "Failed to set SuperClassType?" ); |
638 | return; |
639 | } |
640 | |
641 | // Handle type arguments on the superclass. |
642 | TypeSourceInfo *SuperClassTInfo = nullptr; |
643 | if (!SuperTypeArgs.empty()) { |
644 | TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers( |
645 | S, Loc: SuperLoc, BaseType: SemaRef.CreateParsedType(T: SuperClassType, TInfo: nullptr), |
646 | TypeArgsLAngleLoc: SuperTypeArgsRange.getBegin(), TypeArgs: SuperTypeArgs, |
647 | TypeArgsRAngleLoc: SuperTypeArgsRange.getEnd(), ProtocolLAngleLoc: SourceLocation(), Protocols: {}, ProtocolLocs: {}, |
648 | ProtocolRAngleLoc: SourceLocation()); |
649 | if (!fullSuperClassType.isUsable()) |
650 | return; |
651 | |
652 | SuperClassType = |
653 | SemaRef.GetTypeFromParser(Ty: fullSuperClassType.get(), TInfo: &SuperClassTInfo); |
654 | } |
655 | |
656 | if (!SuperClassTInfo) { |
657 | SuperClassTInfo = Context.getTrivialTypeSourceInfo(T: SuperClassType, |
658 | Loc: SuperLoc); |
659 | } |
660 | |
661 | IDecl->setSuperClass(SuperClassTInfo); |
662 | IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc()); |
663 | } |
664 | } |
665 | |
666 | DeclResult SemaObjC::actOnObjCTypeParam( |
667 | Scope *S, ObjCTypeParamVariance variance, SourceLocation varianceLoc, |
668 | unsigned index, IdentifierInfo *paramName, SourceLocation paramLoc, |
669 | SourceLocation colonLoc, ParsedType parsedTypeBound) { |
670 | ASTContext &Context = getASTContext(); |
671 | // If there was an explicitly-provided type bound, check it. |
672 | TypeSourceInfo *typeBoundInfo = nullptr; |
673 | if (parsedTypeBound) { |
674 | // The type bound can be any Objective-C pointer type. |
675 | QualType typeBound = |
676 | SemaRef.GetTypeFromParser(Ty: parsedTypeBound, TInfo: &typeBoundInfo); |
677 | if (typeBound->isObjCObjectPointerType()) { |
678 | // okay |
679 | } else if (typeBound->isObjCObjectType()) { |
680 | // The user forgot the * on an Objective-C pointer type, e.g., |
681 | // "T : NSView". |
682 | SourceLocation starLoc = |
683 | SemaRef.getLocForEndOfToken(Loc: typeBoundInfo->getTypeLoc().getEndLoc()); |
684 | Diag(Loc: typeBoundInfo->getTypeLoc().getBeginLoc(), |
685 | DiagID: diag::err_objc_type_param_bound_missing_pointer) |
686 | << typeBound << paramName |
687 | << FixItHint::CreateInsertion(InsertionLoc: starLoc, Code: " *" ); |
688 | |
689 | // Create a new type location builder so we can update the type |
690 | // location information we have. |
691 | TypeLocBuilder builder; |
692 | builder.pushFullCopy(L: typeBoundInfo->getTypeLoc()); |
693 | |
694 | // Create the Objective-C pointer type. |
695 | typeBound = Context.getObjCObjectPointerType(OIT: typeBound); |
696 | ObjCObjectPointerTypeLoc newT |
697 | = builder.push<ObjCObjectPointerTypeLoc>(T: typeBound); |
698 | newT.setStarLoc(starLoc); |
699 | |
700 | // Form the new type source information. |
701 | typeBoundInfo = builder.getTypeSourceInfo(Context, T: typeBound); |
702 | } else { |
703 | // Not a valid type bound. |
704 | Diag(Loc: typeBoundInfo->getTypeLoc().getBeginLoc(), |
705 | DiagID: diag::err_objc_type_param_bound_nonobject) |
706 | << typeBound << paramName; |
707 | |
708 | // Forget the bound; we'll default to id later. |
709 | typeBoundInfo = nullptr; |
710 | } |
711 | |
712 | // Type bounds cannot have qualifiers (even indirectly) or explicit |
713 | // nullability. |
714 | if (typeBoundInfo) { |
715 | QualType typeBound = typeBoundInfo->getType(); |
716 | TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc(); |
717 | if (qual || typeBound.hasQualifiers()) { |
718 | bool diagnosed = false; |
719 | SourceRange rangeToRemove; |
720 | if (qual) { |
721 | if (auto attr = qual.getAs<AttributedTypeLoc>()) { |
722 | rangeToRemove = attr.getLocalSourceRange(); |
723 | if (attr.getTypePtr()->getImmediateNullability()) { |
724 | Diag(Loc: attr.getBeginLoc(), |
725 | DiagID: diag::err_objc_type_param_bound_explicit_nullability) |
726 | << paramName << typeBound |
727 | << FixItHint::CreateRemoval(RemoveRange: rangeToRemove); |
728 | diagnosed = true; |
729 | } |
730 | } |
731 | } |
732 | |
733 | if (!diagnosed) { |
734 | Diag(Loc: qual ? qual.getBeginLoc() |
735 | : typeBoundInfo->getTypeLoc().getBeginLoc(), |
736 | DiagID: diag::err_objc_type_param_bound_qualified) |
737 | << paramName << typeBound |
738 | << typeBound.getQualifiers().getAsString() |
739 | << FixItHint::CreateRemoval(RemoveRange: rangeToRemove); |
740 | } |
741 | |
742 | // If the type bound has qualifiers other than CVR, we need to strip |
743 | // them or we'll probably assert later when trying to apply new |
744 | // qualifiers. |
745 | Qualifiers quals = typeBound.getQualifiers(); |
746 | quals.removeCVRQualifiers(); |
747 | if (!quals.empty()) { |
748 | typeBoundInfo = |
749 | Context.getTrivialTypeSourceInfo(T: typeBound.getUnqualifiedType()); |
750 | } |
751 | } |
752 | } |
753 | } |
754 | |
755 | // If there was no explicit type bound (or we removed it due to an error), |
756 | // use 'id' instead. |
757 | if (!typeBoundInfo) { |
758 | colonLoc = SourceLocation(); |
759 | typeBoundInfo = Context.getTrivialTypeSourceInfo(T: Context.getObjCIdType()); |
760 | } |
761 | |
762 | // Create the type parameter. |
763 | return ObjCTypeParamDecl::Create(ctx&: Context, dc: SemaRef.CurContext, variance, |
764 | varianceLoc, index, nameLoc: paramLoc, name: paramName, |
765 | colonLoc, boundInfo: typeBoundInfo); |
766 | } |
767 | |
768 | ObjCTypeParamList * |
769 | SemaObjC::actOnObjCTypeParamList(Scope *S, SourceLocation lAngleLoc, |
770 | ArrayRef<Decl *> typeParamsIn, |
771 | SourceLocation rAngleLoc) { |
772 | ASTContext &Context = getASTContext(); |
773 | // We know that the array only contains Objective-C type parameters. |
774 | ArrayRef<ObjCTypeParamDecl *> |
775 | typeParams( |
776 | reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()), |
777 | typeParamsIn.size()); |
778 | |
779 | // Diagnose redeclarations of type parameters. |
780 | // We do this now because Objective-C type parameters aren't pushed into |
781 | // scope until later (after the instance variable block), but we want the |
782 | // diagnostics to occur right after we parse the type parameter list. |
783 | llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams; |
784 | for (auto *typeParam : typeParams) { |
785 | auto known = knownParams.find(Val: typeParam->getIdentifier()); |
786 | if (known != knownParams.end()) { |
787 | Diag(Loc: typeParam->getLocation(), DiagID: diag::err_objc_type_param_redecl) |
788 | << typeParam->getIdentifier() |
789 | << SourceRange(known->second->getLocation()); |
790 | |
791 | typeParam->setInvalidDecl(); |
792 | } else { |
793 | knownParams.insert(KV: std::make_pair(x: typeParam->getIdentifier(), y&: typeParam)); |
794 | |
795 | // Push the type parameter into scope. |
796 | SemaRef.PushOnScopeChains(D: typeParam, S, /*AddToContext=*/false); |
797 | } |
798 | } |
799 | |
800 | // Create the parameter list. |
801 | return ObjCTypeParamList::create(ctx&: Context, lAngleLoc, typeParams, rAngleLoc); |
802 | } |
803 | |
804 | void SemaObjC::popObjCTypeParamList(Scope *S, |
805 | ObjCTypeParamList *typeParamList) { |
806 | for (auto *typeParam : *typeParamList) { |
807 | if (!typeParam->isInvalidDecl()) { |
808 | S->RemoveDecl(D: typeParam); |
809 | SemaRef.IdResolver.RemoveDecl(D: typeParam); |
810 | } |
811 | } |
812 | } |
813 | |
814 | namespace { |
815 | /// The context in which an Objective-C type parameter list occurs, for use |
816 | /// in diagnostics. |
817 | enum class TypeParamListContext { |
818 | ForwardDeclaration, |
819 | Definition, |
820 | Category, |
821 | Extension |
822 | }; |
823 | } // end anonymous namespace |
824 | |
825 | /// Check consistency between two Objective-C type parameter lists, e.g., |
826 | /// between a category/extension and an \@interface or between an \@class and an |
827 | /// \@interface. |
828 | static bool checkTypeParamListConsistency(Sema &S, |
829 | ObjCTypeParamList *prevTypeParams, |
830 | ObjCTypeParamList *newTypeParams, |
831 | TypeParamListContext newContext) { |
832 | // If the sizes don't match, complain about that. |
833 | if (prevTypeParams->size() != newTypeParams->size()) { |
834 | SourceLocation diagLoc; |
835 | if (newTypeParams->size() > prevTypeParams->size()) { |
836 | diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation(); |
837 | } else { |
838 | diagLoc = S.getLocForEndOfToken(Loc: newTypeParams->back()->getEndLoc()); |
839 | } |
840 | |
841 | S.Diag(Loc: diagLoc, DiagID: diag::err_objc_type_param_arity_mismatch) |
842 | << static_cast<unsigned>(newContext) |
843 | << (newTypeParams->size() > prevTypeParams->size()) |
844 | << prevTypeParams->size() |
845 | << newTypeParams->size(); |
846 | |
847 | return true; |
848 | } |
849 | |
850 | // Match up the type parameters. |
851 | for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) { |
852 | ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i]; |
853 | ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i]; |
854 | |
855 | // Check for consistency of the variance. |
856 | if (newTypeParam->getVariance() != prevTypeParam->getVariance()) { |
857 | if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant && |
858 | newContext != TypeParamListContext::Definition) { |
859 | // When the new type parameter is invariant and is not part |
860 | // of the definition, just propagate the variance. |
861 | newTypeParam->setVariance(prevTypeParam->getVariance()); |
862 | } else if (prevTypeParam->getVariance() |
863 | == ObjCTypeParamVariance::Invariant && |
864 | !(isa<ObjCInterfaceDecl>(Val: prevTypeParam->getDeclContext()) && |
865 | cast<ObjCInterfaceDecl>(Val: prevTypeParam->getDeclContext()) |
866 | ->getDefinition() == prevTypeParam->getDeclContext())) { |
867 | // When the old parameter is invariant and was not part of the |
868 | // definition, just ignore the difference because it doesn't |
869 | // matter. |
870 | } else { |
871 | { |
872 | // Diagnose the conflict and update the second declaration. |
873 | SourceLocation diagLoc = newTypeParam->getVarianceLoc(); |
874 | if (diagLoc.isInvalid()) |
875 | diagLoc = newTypeParam->getBeginLoc(); |
876 | |
877 | auto diag = S.Diag(Loc: diagLoc, |
878 | DiagID: diag::err_objc_type_param_variance_conflict) |
879 | << static_cast<unsigned>(newTypeParam->getVariance()) |
880 | << newTypeParam->getDeclName() |
881 | << static_cast<unsigned>(prevTypeParam->getVariance()) |
882 | << prevTypeParam->getDeclName(); |
883 | switch (prevTypeParam->getVariance()) { |
884 | case ObjCTypeParamVariance::Invariant: |
885 | diag << FixItHint::CreateRemoval(RemoveRange: newTypeParam->getVarianceLoc()); |
886 | break; |
887 | |
888 | case ObjCTypeParamVariance::Covariant: |
889 | case ObjCTypeParamVariance::Contravariant: { |
890 | StringRef newVarianceStr |
891 | = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant |
892 | ? "__covariant" |
893 | : "__contravariant" ; |
894 | if (newTypeParam->getVariance() |
895 | == ObjCTypeParamVariance::Invariant) { |
896 | diag << FixItHint::CreateInsertion(InsertionLoc: newTypeParam->getBeginLoc(), |
897 | Code: (newVarianceStr + " " ).str()); |
898 | } else { |
899 | diag << FixItHint::CreateReplacement(RemoveRange: newTypeParam->getVarianceLoc(), |
900 | Code: newVarianceStr); |
901 | } |
902 | } |
903 | } |
904 | } |
905 | |
906 | S.Diag(Loc: prevTypeParam->getLocation(), DiagID: diag::note_objc_type_param_here) |
907 | << prevTypeParam->getDeclName(); |
908 | |
909 | // Override the variance. |
910 | newTypeParam->setVariance(prevTypeParam->getVariance()); |
911 | } |
912 | } |
913 | |
914 | // If the bound types match, there's nothing to do. |
915 | if (S.Context.hasSameType(T1: prevTypeParam->getUnderlyingType(), |
916 | T2: newTypeParam->getUnderlyingType())) |
917 | continue; |
918 | |
919 | // If the new type parameter's bound was explicit, complain about it being |
920 | // different from the original. |
921 | if (newTypeParam->hasExplicitBound()) { |
922 | SourceRange newBoundRange = newTypeParam->getTypeSourceInfo() |
923 | ->getTypeLoc().getSourceRange(); |
924 | S.Diag(Loc: newBoundRange.getBegin(), DiagID: diag::err_objc_type_param_bound_conflict) |
925 | << newTypeParam->getUnderlyingType() |
926 | << newTypeParam->getDeclName() |
927 | << prevTypeParam->hasExplicitBound() |
928 | << prevTypeParam->getUnderlyingType() |
929 | << (newTypeParam->getDeclName() == prevTypeParam->getDeclName()) |
930 | << prevTypeParam->getDeclName() |
931 | << FixItHint::CreateReplacement( |
932 | RemoveRange: newBoundRange, |
933 | Code: prevTypeParam->getUnderlyingType().getAsString( |
934 | Policy: S.Context.getPrintingPolicy())); |
935 | |
936 | S.Diag(Loc: prevTypeParam->getLocation(), DiagID: diag::note_objc_type_param_here) |
937 | << prevTypeParam->getDeclName(); |
938 | |
939 | // Override the new type parameter's bound type with the previous type, |
940 | // so that it's consistent. |
941 | S.Context.adjustObjCTypeParamBoundType(Orig: prevTypeParam, New: newTypeParam); |
942 | continue; |
943 | } |
944 | |
945 | // The new type parameter got the implicit bound of 'id'. That's okay for |
946 | // categories and extensions (overwrite it later), but not for forward |
947 | // declarations and @interfaces, because those must be standalone. |
948 | if (newContext == TypeParamListContext::ForwardDeclaration || |
949 | newContext == TypeParamListContext::Definition) { |
950 | // Diagnose this problem for forward declarations and definitions. |
951 | SourceLocation insertionLoc |
952 | = S.getLocForEndOfToken(Loc: newTypeParam->getLocation()); |
953 | std::string newCode |
954 | = " : " + prevTypeParam->getUnderlyingType().getAsString( |
955 | Policy: S.Context.getPrintingPolicy()); |
956 | S.Diag(Loc: newTypeParam->getLocation(), |
957 | DiagID: diag::err_objc_type_param_bound_missing) |
958 | << prevTypeParam->getUnderlyingType() |
959 | << newTypeParam->getDeclName() |
960 | << (newContext == TypeParamListContext::ForwardDeclaration) |
961 | << FixItHint::CreateInsertion(InsertionLoc: insertionLoc, Code: newCode); |
962 | |
963 | S.Diag(Loc: prevTypeParam->getLocation(), DiagID: diag::note_objc_type_param_here) |
964 | << prevTypeParam->getDeclName(); |
965 | } |
966 | |
967 | // Update the new type parameter's bound to match the previous one. |
968 | S.Context.adjustObjCTypeParamBoundType(Orig: prevTypeParam, New: newTypeParam); |
969 | } |
970 | |
971 | return false; |
972 | } |
973 | |
974 | ObjCInterfaceDecl *SemaObjC::ActOnStartClassInterface( |
975 | Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName, |
976 | SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, |
977 | IdentifierInfo *SuperName, SourceLocation SuperLoc, |
978 | ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange, |
979 | Decl *const *ProtoRefs, unsigned NumProtoRefs, |
980 | const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, |
981 | const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) { |
982 | assert(ClassName && "Missing class identifier" ); |
983 | |
984 | ASTContext &Context = getASTContext(); |
985 | // Check for another declaration kind with the same name. |
986 | NamedDecl *PrevDecl = SemaRef.LookupSingleName( |
987 | S: SemaRef.TUScope, Name: ClassName, Loc: ClassLoc, NameKind: Sema::LookupOrdinaryName, |
988 | Redecl: SemaRef.forRedeclarationInCurContext()); |
989 | |
990 | if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) { |
991 | Diag(Loc: ClassLoc, DiagID: diag::err_redefinition_different_kind) << ClassName; |
992 | Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_definition); |
993 | } |
994 | |
995 | // Create a declaration to describe this @interface. |
996 | ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl); |
997 | |
998 | if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { |
999 | // A previous decl with a different name is because of |
1000 | // @compatibility_alias, for example: |
1001 | // \code |
1002 | // @class NewImage; |
1003 | // @compatibility_alias OldImage NewImage; |
1004 | // \endcode |
1005 | // A lookup for 'OldImage' will return the 'NewImage' decl. |
1006 | // |
1007 | // In such a case use the real declaration name, instead of the alias one, |
1008 | // otherwise we will break IdentifierResolver and redecls-chain invariants. |
1009 | // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl |
1010 | // has been aliased. |
1011 | ClassName = PrevIDecl->getIdentifier(); |
1012 | } |
1013 | |
1014 | // If there was a forward declaration with type parameters, check |
1015 | // for consistency. |
1016 | if (PrevIDecl) { |
1017 | if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) { |
1018 | if (typeParamList) { |
1019 | // Both have type parameter lists; check for consistency. |
1020 | if (checkTypeParamListConsistency(S&: SemaRef, prevTypeParams: prevTypeParamList, |
1021 | newTypeParams: typeParamList, |
1022 | newContext: TypeParamListContext::Definition)) { |
1023 | typeParamList = nullptr; |
1024 | } |
1025 | } else { |
1026 | Diag(Loc: ClassLoc, DiagID: diag::err_objc_parameterized_forward_class_first) |
1027 | << ClassName; |
1028 | Diag(Loc: prevTypeParamList->getLAngleLoc(), DiagID: diag::note_previous_decl) |
1029 | << ClassName; |
1030 | |
1031 | // Clone the type parameter list. |
1032 | SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams; |
1033 | for (auto *typeParam : *prevTypeParamList) { |
1034 | clonedTypeParams.push_back(Elt: ObjCTypeParamDecl::Create( |
1035 | ctx&: Context, dc: SemaRef.CurContext, variance: typeParam->getVariance(), |
1036 | varianceLoc: SourceLocation(), index: typeParam->getIndex(), nameLoc: SourceLocation(), |
1037 | name: typeParam->getIdentifier(), colonLoc: SourceLocation(), |
1038 | boundInfo: Context.getTrivialTypeSourceInfo( |
1039 | T: typeParam->getUnderlyingType()))); |
1040 | } |
1041 | |
1042 | typeParamList = ObjCTypeParamList::create(ctx&: Context, |
1043 | lAngleLoc: SourceLocation(), |
1044 | typeParams: clonedTypeParams, |
1045 | rAngleLoc: SourceLocation()); |
1046 | } |
1047 | } |
1048 | } |
1049 | |
1050 | ObjCInterfaceDecl *IDecl = |
1051 | ObjCInterfaceDecl::Create(C: Context, DC: SemaRef.CurContext, atLoc: AtInterfaceLoc, |
1052 | Id: ClassName, typeParamList, PrevDecl: PrevIDecl, ClassLoc); |
1053 | if (PrevIDecl) { |
1054 | // Class already seen. Was it a definition? |
1055 | if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { |
1056 | if (SkipBody && !SemaRef.hasVisibleDefinition(D: Def)) { |
1057 | SkipBody->CheckSameAsPrevious = true; |
1058 | SkipBody->New = IDecl; |
1059 | SkipBody->Previous = Def; |
1060 | } else { |
1061 | Diag(Loc: AtInterfaceLoc, DiagID: diag::err_duplicate_class_def) |
1062 | << PrevIDecl->getDeclName(); |
1063 | Diag(Loc: Def->getLocation(), DiagID: diag::note_previous_definition); |
1064 | IDecl->setInvalidDecl(); |
1065 | } |
1066 | } |
1067 | } |
1068 | |
1069 | SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: IDecl, AttrList); |
1070 | SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: IDecl); |
1071 | SemaRef.ProcessAPINotes(D: IDecl); |
1072 | |
1073 | // Merge attributes from previous declarations. |
1074 | if (PrevIDecl) |
1075 | SemaRef.mergeDeclAttributes(New: IDecl, Old: PrevIDecl); |
1076 | |
1077 | SemaRef.PushOnScopeChains(D: IDecl, S: SemaRef.TUScope); |
1078 | |
1079 | // Start the definition of this class. If we're in a redefinition case, there |
1080 | // may already be a definition, so we'll end up adding to it. |
1081 | if (SkipBody && SkipBody->CheckSameAsPrevious) |
1082 | IDecl->startDuplicateDefinitionForComparison(); |
1083 | else if (!IDecl->hasDefinition()) |
1084 | IDecl->startDefinition(); |
1085 | |
1086 | if (SuperName) { |
1087 | // Diagnose availability in the context of the @interface. |
1088 | Sema::ContextRAII SavedContext(SemaRef, IDecl); |
1089 | |
1090 | ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl, |
1091 | ClassName, ClassLoc, |
1092 | SuperName, SuperLoc, SuperTypeArgs, |
1093 | SuperTypeArgsRange); |
1094 | } else { // we have a root class. |
1095 | IDecl->setEndOfDefinitionLoc(ClassLoc); |
1096 | } |
1097 | |
1098 | // Check then save referenced protocols. |
1099 | if (NumProtoRefs) { |
1100 | diagnoseUseOfProtocols(TheSema&: SemaRef, CD: IDecl, ProtoRefs: (ObjCProtocolDecl *const *)ProtoRefs, |
1101 | NumProtoRefs, ProtoLocs); |
1102 | IDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs, |
1103 | Locs: ProtoLocs, C&: Context); |
1104 | IDecl->setEndOfDefinitionLoc(EndProtoLoc); |
1105 | } |
1106 | |
1107 | CheckObjCDeclScope(D: IDecl); |
1108 | ActOnObjCContainerStartDefinition(IDecl); |
1109 | return IDecl; |
1110 | } |
1111 | |
1112 | /// ActOnTypedefedProtocols - this action finds protocol list as part of the |
1113 | /// typedef'ed use for a qualified super class and adds them to the list |
1114 | /// of the protocols. |
1115 | void SemaObjC::ActOnTypedefedProtocols( |
1116 | SmallVectorImpl<Decl *> &ProtocolRefs, |
1117 | SmallVectorImpl<SourceLocation> &ProtocolLocs, IdentifierInfo *SuperName, |
1118 | SourceLocation SuperLoc) { |
1119 | if (!SuperName) |
1120 | return; |
1121 | NamedDecl *IDecl = SemaRef.LookupSingleName( |
1122 | S: SemaRef.TUScope, Name: SuperName, Loc: SuperLoc, NameKind: Sema::LookupOrdinaryName); |
1123 | if (!IDecl) |
1124 | return; |
1125 | |
1126 | if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(Val: IDecl)) { |
1127 | QualType T = TDecl->getUnderlyingType(); |
1128 | if (T->isObjCObjectType()) |
1129 | if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) { |
1130 | ProtocolRefs.append(in_start: OPT->qual_begin(), in_end: OPT->qual_end()); |
1131 | // FIXME: Consider whether this should be an invalid loc since the loc |
1132 | // is not actually pointing to a protocol name reference but to the |
1133 | // typedef reference. Note that the base class name loc is also pointing |
1134 | // at the typedef. |
1135 | ProtocolLocs.append(NumInputs: OPT->getNumProtocols(), Elt: SuperLoc); |
1136 | } |
1137 | } |
1138 | } |
1139 | |
1140 | /// ActOnCompatibilityAlias - this action is called after complete parsing of |
1141 | /// a \@compatibility_alias declaration. It sets up the alias relationships. |
1142 | Decl *SemaObjC::ActOnCompatibilityAlias(SourceLocation AtLoc, |
1143 | IdentifierInfo *AliasName, |
1144 | SourceLocation AliasLocation, |
1145 | IdentifierInfo *ClassName, |
1146 | SourceLocation ClassLocation) { |
1147 | ASTContext &Context = getASTContext(); |
1148 | // Look for previous declaration of alias name |
1149 | NamedDecl *ADecl = SemaRef.LookupSingleName( |
1150 | S: SemaRef.TUScope, Name: AliasName, Loc: AliasLocation, NameKind: Sema::LookupOrdinaryName, |
1151 | Redecl: SemaRef.forRedeclarationInCurContext()); |
1152 | if (ADecl) { |
1153 | Diag(Loc: AliasLocation, DiagID: diag::err_conflicting_aliasing_type) << AliasName; |
1154 | Diag(Loc: ADecl->getLocation(), DiagID: diag::note_previous_declaration); |
1155 | return nullptr; |
1156 | } |
1157 | // Check for class declaration |
1158 | NamedDecl *CDeclU = SemaRef.LookupSingleName( |
1159 | S: SemaRef.TUScope, Name: ClassName, Loc: ClassLocation, NameKind: Sema::LookupOrdinaryName, |
1160 | Redecl: SemaRef.forRedeclarationInCurContext()); |
1161 | if (const TypedefNameDecl *TDecl = |
1162 | dyn_cast_or_null<TypedefNameDecl>(Val: CDeclU)) { |
1163 | QualType T = TDecl->getUnderlyingType(); |
1164 | if (T->isObjCObjectType()) { |
1165 | if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) { |
1166 | ClassName = IDecl->getIdentifier(); |
1167 | CDeclU = SemaRef.LookupSingleName( |
1168 | S: SemaRef.TUScope, Name: ClassName, Loc: ClassLocation, NameKind: Sema::LookupOrdinaryName, |
1169 | Redecl: SemaRef.forRedeclarationInCurContext()); |
1170 | } |
1171 | } |
1172 | } |
1173 | ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: CDeclU); |
1174 | if (!CDecl) { |
1175 | Diag(Loc: ClassLocation, DiagID: diag::warn_undef_interface) << ClassName; |
1176 | if (CDeclU) |
1177 | Diag(Loc: CDeclU->getLocation(), DiagID: diag::note_previous_declaration); |
1178 | return nullptr; |
1179 | } |
1180 | |
1181 | // Everything checked out, instantiate a new alias declaration AST. |
1182 | ObjCCompatibleAliasDecl *AliasDecl = ObjCCompatibleAliasDecl::Create( |
1183 | C&: Context, DC: SemaRef.CurContext, L: AtLoc, Id: AliasName, aliasedClass: CDecl); |
1184 | |
1185 | if (!CheckObjCDeclScope(D: AliasDecl)) |
1186 | SemaRef.PushOnScopeChains(D: AliasDecl, S: SemaRef.TUScope); |
1187 | |
1188 | return AliasDecl; |
1189 | } |
1190 | |
1191 | bool SemaObjC::CheckForwardProtocolDeclarationForCircularDependency( |
1192 | IdentifierInfo *PName, SourceLocation &Ploc, SourceLocation PrevLoc, |
1193 | const ObjCList<ObjCProtocolDecl> &PList) { |
1194 | |
1195 | bool res = false; |
1196 | for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(), |
1197 | E = PList.end(); I != E; ++I) { |
1198 | if (ObjCProtocolDecl *PDecl = LookupProtocol(II: (*I)->getIdentifier(), IdLoc: Ploc)) { |
1199 | if (PDecl->getIdentifier() == PName) { |
1200 | Diag(Loc: Ploc, DiagID: diag::err_protocol_has_circular_dependency); |
1201 | Diag(Loc: PrevLoc, DiagID: diag::note_previous_definition); |
1202 | res = true; |
1203 | } |
1204 | |
1205 | if (!PDecl->hasDefinition()) |
1206 | continue; |
1207 | |
1208 | if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc, |
1209 | PrevLoc: PDecl->getLocation(), PList: PDecl->getReferencedProtocols())) |
1210 | res = true; |
1211 | } |
1212 | } |
1213 | return res; |
1214 | } |
1215 | |
1216 | ObjCProtocolDecl *SemaObjC::ActOnStartProtocolInterface( |
1217 | SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName, |
1218 | SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs, |
1219 | const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, |
1220 | const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) { |
1221 | ASTContext &Context = getASTContext(); |
1222 | bool err = false; |
1223 | // FIXME: Deal with AttrList. |
1224 | assert(ProtocolName && "Missing protocol identifier" ); |
1225 | ObjCProtocolDecl *PrevDecl = LookupProtocol( |
1226 | II: ProtocolName, IdLoc: ProtocolLoc, Redecl: SemaRef.forRedeclarationInCurContext()); |
1227 | ObjCProtocolDecl *PDecl = nullptr; |
1228 | if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) { |
1229 | // Create a new protocol that is completely distinct from previous |
1230 | // declarations, and do not make this protocol available for name lookup. |
1231 | // That way, we'll end up completely ignoring the duplicate. |
1232 | // FIXME: Can we turn this into an error? |
1233 | PDecl = ObjCProtocolDecl::Create(C&: Context, DC: SemaRef.CurContext, Id: ProtocolName, |
1234 | nameLoc: ProtocolLoc, atStartLoc: AtProtoInterfaceLoc, |
1235 | /*PrevDecl=*/Def); |
1236 | |
1237 | if (SkipBody && !SemaRef.hasVisibleDefinition(D: Def)) { |
1238 | SkipBody->CheckSameAsPrevious = true; |
1239 | SkipBody->New = PDecl; |
1240 | SkipBody->Previous = Def; |
1241 | } else { |
1242 | // If we already have a definition, complain. |
1243 | Diag(Loc: ProtocolLoc, DiagID: diag::warn_duplicate_protocol_def) << ProtocolName; |
1244 | Diag(Loc: Def->getLocation(), DiagID: diag::note_previous_definition); |
1245 | } |
1246 | |
1247 | // If we are using modules, add the decl to the context in order to |
1248 | // serialize something meaningful. |
1249 | if (getLangOpts().Modules) |
1250 | SemaRef.PushOnScopeChains(D: PDecl, S: SemaRef.TUScope); |
1251 | PDecl->startDuplicateDefinitionForComparison(); |
1252 | } else { |
1253 | if (PrevDecl) { |
1254 | // Check for circular dependencies among protocol declarations. This can |
1255 | // only happen if this protocol was forward-declared. |
1256 | ObjCList<ObjCProtocolDecl> PList; |
1257 | PList.set(InList: (ObjCProtocolDecl *const*)ProtoRefs, Elts: NumProtoRefs, Ctx&: Context); |
1258 | err = CheckForwardProtocolDeclarationForCircularDependency( |
1259 | PName: ProtocolName, Ploc&: ProtocolLoc, PrevLoc: PrevDecl->getLocation(), PList); |
1260 | } |
1261 | |
1262 | // Create the new declaration. |
1263 | PDecl = ObjCProtocolDecl::Create(C&: Context, DC: SemaRef.CurContext, Id: ProtocolName, |
1264 | nameLoc: ProtocolLoc, atStartLoc: AtProtoInterfaceLoc, |
1265 | /*PrevDecl=*/PrevDecl); |
1266 | |
1267 | SemaRef.PushOnScopeChains(D: PDecl, S: SemaRef.TUScope); |
1268 | PDecl->startDefinition(); |
1269 | } |
1270 | |
1271 | SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: PDecl, AttrList); |
1272 | SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: PDecl); |
1273 | SemaRef.ProcessAPINotes(D: PDecl); |
1274 | |
1275 | // Merge attributes from previous declarations. |
1276 | if (PrevDecl) |
1277 | SemaRef.mergeDeclAttributes(New: PDecl, Old: PrevDecl); |
1278 | |
1279 | if (!err && NumProtoRefs ) { |
1280 | /// Check then save referenced protocols. |
1281 | diagnoseUseOfProtocols(TheSema&: SemaRef, CD: PDecl, ProtoRefs: (ObjCProtocolDecl *const *)ProtoRefs, |
1282 | NumProtoRefs, ProtoLocs); |
1283 | PDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs, |
1284 | Locs: ProtoLocs, C&: Context); |
1285 | } |
1286 | |
1287 | CheckObjCDeclScope(D: PDecl); |
1288 | ActOnObjCContainerStartDefinition(IDecl: PDecl); |
1289 | return PDecl; |
1290 | } |
1291 | |
1292 | static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl, |
1293 | ObjCProtocolDecl *&UndefinedProtocol) { |
1294 | if (!PDecl->hasDefinition() || |
1295 | !PDecl->getDefinition()->isUnconditionallyVisible()) { |
1296 | UndefinedProtocol = PDecl; |
1297 | return true; |
1298 | } |
1299 | |
1300 | for (auto *PI : PDecl->protocols()) |
1301 | if (NestedProtocolHasNoDefinition(PDecl: PI, UndefinedProtocol)) { |
1302 | UndefinedProtocol = PI; |
1303 | return true; |
1304 | } |
1305 | return false; |
1306 | } |
1307 | |
1308 | /// FindProtocolDeclaration - This routine looks up protocols and |
1309 | /// issues an error if they are not declared. It returns list of |
1310 | /// protocol declarations in its 'Protocols' argument. |
1311 | void SemaObjC::FindProtocolDeclaration(bool WarnOnDeclarations, |
1312 | bool ForObjCContainer, |
1313 | ArrayRef<IdentifierLocPair> ProtocolId, |
1314 | SmallVectorImpl<Decl *> &Protocols) { |
1315 | for (const IdentifierLocPair &Pair : ProtocolId) { |
1316 | ObjCProtocolDecl *PDecl = LookupProtocol(II: Pair.first, IdLoc: Pair.second); |
1317 | if (!PDecl) { |
1318 | DeclFilterCCC<ObjCProtocolDecl> CCC{}; |
1319 | TypoCorrection Corrected = |
1320 | SemaRef.CorrectTypo(Typo: DeclarationNameInfo(Pair.first, Pair.second), |
1321 | LookupKind: Sema::LookupObjCProtocolName, S: SemaRef.TUScope, |
1322 | SS: nullptr, CCC, Mode: Sema::CTK_ErrorRecovery); |
1323 | if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) |
1324 | SemaRef.diagnoseTypo(Correction: Corrected, |
1325 | TypoDiag: PDiag(DiagID: diag::err_undeclared_protocol_suggest) |
1326 | << Pair.first); |
1327 | } |
1328 | |
1329 | if (!PDecl) { |
1330 | Diag(Loc: Pair.second, DiagID: diag::err_undeclared_protocol) << Pair.first; |
1331 | continue; |
1332 | } |
1333 | // If this is a forward protocol declaration, get its definition. |
1334 | if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition()) |
1335 | PDecl = PDecl->getDefinition(); |
1336 | |
1337 | // For an objc container, delay protocol reference checking until after we |
1338 | // can set the objc decl as the availability context, otherwise check now. |
1339 | if (!ForObjCContainer) { |
1340 | (void)SemaRef.DiagnoseUseOfDecl(D: PDecl, Locs: Pair.second); |
1341 | } |
1342 | |
1343 | // If this is a forward declaration and we are supposed to warn in this |
1344 | // case, do it. |
1345 | // FIXME: Recover nicely in the hidden case. |
1346 | ObjCProtocolDecl *UndefinedProtocol; |
1347 | |
1348 | if (WarnOnDeclarations && |
1349 | NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) { |
1350 | Diag(Loc: Pair.second, DiagID: diag::warn_undef_protocolref) << Pair.first; |
1351 | Diag(Loc: UndefinedProtocol->getLocation(), DiagID: diag::note_protocol_decl_undefined) |
1352 | << UndefinedProtocol; |
1353 | } |
1354 | Protocols.push_back(Elt: PDecl); |
1355 | } |
1356 | } |
1357 | |
1358 | namespace { |
1359 | // Callback to only accept typo corrections that are either |
1360 | // Objective-C protocols or valid Objective-C type arguments. |
1361 | class ObjCTypeArgOrProtocolValidatorCCC final |
1362 | : public CorrectionCandidateCallback { |
1363 | ASTContext &Context; |
1364 | Sema::LookupNameKind LookupKind; |
1365 | public: |
1366 | ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context, |
1367 | Sema::LookupNameKind lookupKind) |
1368 | : Context(context), LookupKind(lookupKind) { } |
1369 | |
1370 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
1371 | // If we're allowed to find protocols and we have a protocol, accept it. |
1372 | if (LookupKind != Sema::LookupOrdinaryName) { |
1373 | if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>()) |
1374 | return true; |
1375 | } |
1376 | |
1377 | // If we're allowed to find type names and we have one, accept it. |
1378 | if (LookupKind != Sema::LookupObjCProtocolName) { |
1379 | // If we have a type declaration, we might accept this result. |
1380 | if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) { |
1381 | // If we found a tag declaration outside of C++, skip it. This |
1382 | // can happy because we look for any name when there is no |
1383 | // bias to protocol or type names. |
1384 | if (isa<RecordDecl>(Val: typeDecl) && !Context.getLangOpts().CPlusPlus) |
1385 | return false; |
1386 | |
1387 | // Make sure the type is something we would accept as a type |
1388 | // argument. |
1389 | auto type = Context.getTypeDeclType(Decl: typeDecl); |
1390 | if (type->isObjCObjectPointerType() || |
1391 | type->isBlockPointerType() || |
1392 | type->isDependentType() || |
1393 | type->isObjCObjectType()) |
1394 | return true; |
1395 | |
1396 | return false; |
1397 | } |
1398 | |
1399 | // If we have an Objective-C class type, accept it; there will |
1400 | // be another fix to add the '*'. |
1401 | if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>()) |
1402 | return true; |
1403 | |
1404 | return false; |
1405 | } |
1406 | |
1407 | return false; |
1408 | } |
1409 | |
1410 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
1411 | return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(args&: *this); |
1412 | } |
1413 | }; |
1414 | } // end anonymous namespace |
1415 | |
1416 | void SemaObjC::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId, |
1417 | SourceLocation ProtocolLoc, |
1418 | IdentifierInfo *TypeArgId, |
1419 | SourceLocation TypeArgLoc, |
1420 | bool SelectProtocolFirst) { |
1421 | Diag(Loc: TypeArgLoc, DiagID: diag::err_objc_type_args_and_protocols) |
1422 | << SelectProtocolFirst << TypeArgId << ProtocolId |
1423 | << SourceRange(ProtocolLoc); |
1424 | } |
1425 | |
1426 | void SemaObjC::actOnObjCTypeArgsOrProtocolQualifiers( |
1427 | Scope *S, ParsedType baseType, SourceLocation lAngleLoc, |
1428 | ArrayRef<IdentifierInfo *> identifiers, |
1429 | ArrayRef<SourceLocation> identifierLocs, SourceLocation rAngleLoc, |
1430 | SourceLocation &typeArgsLAngleLoc, SmallVectorImpl<ParsedType> &typeArgs, |
1431 | SourceLocation &typeArgsRAngleLoc, SourceLocation &protocolLAngleLoc, |
1432 | SmallVectorImpl<Decl *> &protocols, SourceLocation &protocolRAngleLoc, |
1433 | bool warnOnIncompleteProtocols) { |
1434 | ASTContext &Context = getASTContext(); |
1435 | // Local function that updates the declaration specifiers with |
1436 | // protocol information. |
1437 | unsigned numProtocolsResolved = 0; |
1438 | auto resolvedAsProtocols = [&] { |
1439 | assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols" ); |
1440 | |
1441 | // Determine whether the base type is a parameterized class, in |
1442 | // which case we want to warn about typos such as |
1443 | // "NSArray<NSObject>" (that should be NSArray<NSObject *>). |
1444 | ObjCInterfaceDecl *baseClass = nullptr; |
1445 | QualType base = SemaRef.GetTypeFromParser(Ty: baseType, TInfo: nullptr); |
1446 | bool allAreTypeNames = false; |
1447 | SourceLocation firstClassNameLoc; |
1448 | if (!base.isNull()) { |
1449 | if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) { |
1450 | baseClass = objcObjectType->getInterface(); |
1451 | if (baseClass) { |
1452 | if (auto typeParams = baseClass->getTypeParamList()) { |
1453 | if (typeParams->size() == numProtocolsResolved) { |
1454 | // Note that we should be looking for type names, too. |
1455 | allAreTypeNames = true; |
1456 | } |
1457 | } |
1458 | } |
1459 | } |
1460 | } |
1461 | |
1462 | for (unsigned i = 0, n = protocols.size(); i != n; ++i) { |
1463 | ObjCProtocolDecl *&proto |
1464 | = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]); |
1465 | // For an objc container, delay protocol reference checking until after we |
1466 | // can set the objc decl as the availability context, otherwise check now. |
1467 | if (!warnOnIncompleteProtocols) { |
1468 | (void)SemaRef.DiagnoseUseOfDecl(D: proto, Locs: identifierLocs[i]); |
1469 | } |
1470 | |
1471 | // If this is a forward protocol declaration, get its definition. |
1472 | if (!proto->isThisDeclarationADefinition() && proto->getDefinition()) |
1473 | proto = proto->getDefinition(); |
1474 | |
1475 | // If this is a forward declaration and we are supposed to warn in this |
1476 | // case, do it. |
1477 | // FIXME: Recover nicely in the hidden case. |
1478 | ObjCProtocolDecl *forwardDecl = nullptr; |
1479 | if (warnOnIncompleteProtocols && |
1480 | NestedProtocolHasNoDefinition(PDecl: proto, UndefinedProtocol&: forwardDecl)) { |
1481 | Diag(Loc: identifierLocs[i], DiagID: diag::warn_undef_protocolref) |
1482 | << proto->getDeclName(); |
1483 | Diag(Loc: forwardDecl->getLocation(), DiagID: diag::note_protocol_decl_undefined) |
1484 | << forwardDecl; |
1485 | } |
1486 | |
1487 | // If everything this far has been a type name (and we care |
1488 | // about such things), check whether this name refers to a type |
1489 | // as well. |
1490 | if (allAreTypeNames) { |
1491 | if (auto *decl = |
1492 | SemaRef.LookupSingleName(S, Name: identifiers[i], Loc: identifierLocs[i], |
1493 | NameKind: Sema::LookupOrdinaryName)) { |
1494 | if (isa<ObjCInterfaceDecl>(Val: decl)) { |
1495 | if (firstClassNameLoc.isInvalid()) |
1496 | firstClassNameLoc = identifierLocs[i]; |
1497 | } else if (!isa<TypeDecl>(Val: decl)) { |
1498 | // Not a type. |
1499 | allAreTypeNames = false; |
1500 | } |
1501 | } else { |
1502 | allAreTypeNames = false; |
1503 | } |
1504 | } |
1505 | } |
1506 | |
1507 | // All of the protocols listed also have type names, and at least |
1508 | // one is an Objective-C class name. Check whether all of the |
1509 | // protocol conformances are declared by the base class itself, in |
1510 | // which case we warn. |
1511 | if (allAreTypeNames && firstClassNameLoc.isValid()) { |
1512 | llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols; |
1513 | Context.CollectInheritedProtocols(CDecl: baseClass, Protocols&: knownProtocols); |
1514 | bool allProtocolsDeclared = true; |
1515 | for (auto *proto : protocols) { |
1516 | if (knownProtocols.count(Ptr: static_cast<ObjCProtocolDecl *>(proto)) == 0) { |
1517 | allProtocolsDeclared = false; |
1518 | break; |
1519 | } |
1520 | } |
1521 | |
1522 | if (allProtocolsDeclared) { |
1523 | Diag(Loc: firstClassNameLoc, DiagID: diag::warn_objc_redundant_qualified_class_type) |
1524 | << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc) |
1525 | << FixItHint::CreateInsertion( |
1526 | InsertionLoc: SemaRef.getLocForEndOfToken(Loc: firstClassNameLoc), Code: " *" ); |
1527 | } |
1528 | } |
1529 | |
1530 | protocolLAngleLoc = lAngleLoc; |
1531 | protocolRAngleLoc = rAngleLoc; |
1532 | assert(protocols.size() == identifierLocs.size()); |
1533 | }; |
1534 | |
1535 | // Attempt to resolve all of the identifiers as protocols. |
1536 | for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { |
1537 | ObjCProtocolDecl *proto = LookupProtocol(II: identifiers[i], IdLoc: identifierLocs[i]); |
1538 | protocols.push_back(Elt: proto); |
1539 | if (proto) |
1540 | ++numProtocolsResolved; |
1541 | } |
1542 | |
1543 | // If all of the names were protocols, these were protocol qualifiers. |
1544 | if (numProtocolsResolved == identifiers.size()) |
1545 | return resolvedAsProtocols(); |
1546 | |
1547 | // Attempt to resolve all of the identifiers as type names or |
1548 | // Objective-C class names. The latter is technically ill-formed, |
1549 | // but is probably something like \c NSArray<NSView *> missing the |
1550 | // \c*. |
1551 | typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl; |
1552 | SmallVector<TypeOrClassDecl, 4> typeDecls; |
1553 | unsigned numTypeDeclsResolved = 0; |
1554 | for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { |
1555 | NamedDecl *decl = SemaRef.LookupSingleName( |
1556 | S, Name: identifiers[i], Loc: identifierLocs[i], NameKind: Sema::LookupOrdinaryName); |
1557 | if (!decl) { |
1558 | typeDecls.push_back(Elt: TypeOrClassDecl()); |
1559 | continue; |
1560 | } |
1561 | |
1562 | if (auto typeDecl = dyn_cast<TypeDecl>(Val: decl)) { |
1563 | typeDecls.push_back(Elt: typeDecl); |
1564 | ++numTypeDeclsResolved; |
1565 | continue; |
1566 | } |
1567 | |
1568 | if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(Val: decl)) { |
1569 | typeDecls.push_back(Elt: objcClass); |
1570 | ++numTypeDeclsResolved; |
1571 | continue; |
1572 | } |
1573 | |
1574 | typeDecls.push_back(Elt: TypeOrClassDecl()); |
1575 | } |
1576 | |
1577 | AttributeFactory attrFactory; |
1578 | |
1579 | // Local function that forms a reference to the given type or |
1580 | // Objective-C class declaration. |
1581 | auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc) |
1582 | -> TypeResult { |
1583 | // Form declaration specifiers. They simply refer to the type. |
1584 | DeclSpec DS(attrFactory); |
1585 | const char* prevSpec; // unused |
1586 | unsigned diagID; // unused |
1587 | QualType type; |
1588 | if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>()) |
1589 | type = Context.getTypeDeclType(Decl: actualTypeDecl); |
1590 | else |
1591 | type = Context.getObjCInterfaceType(Decl: typeDecl.get<ObjCInterfaceDecl *>()); |
1592 | TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(T: type, Loc: loc); |
1593 | ParsedType parsedType = SemaRef.CreateParsedType(T: type, TInfo: parsedTSInfo); |
1594 | DS.SetTypeSpecType(T: DeclSpec::TST_typename, Loc: loc, PrevSpec&: prevSpec, DiagID&: diagID, |
1595 | Rep: parsedType, Policy: Context.getPrintingPolicy()); |
1596 | // Use the identifier location for the type source range. |
1597 | DS.SetRangeStart(loc); |
1598 | DS.SetRangeEnd(loc); |
1599 | |
1600 | // Form the declarator. |
1601 | Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName); |
1602 | |
1603 | // If we have a typedef of an Objective-C class type that is missing a '*', |
1604 | // add the '*'. |
1605 | if (type->getAs<ObjCInterfaceType>()) { |
1606 | SourceLocation starLoc = SemaRef.getLocForEndOfToken(Loc: loc); |
1607 | D.AddTypeInfo(TI: DeclaratorChunk::getPointer(/*TypeQuals=*/0, Loc: starLoc, |
1608 | ConstQualLoc: SourceLocation(), |
1609 | VolatileQualLoc: SourceLocation(), |
1610 | RestrictQualLoc: SourceLocation(), |
1611 | AtomicQualLoc: SourceLocation(), |
1612 | UnalignedQualLoc: SourceLocation()), |
1613 | EndLoc: starLoc); |
1614 | |
1615 | // Diagnose the missing '*'. |
1616 | Diag(Loc: loc, DiagID: diag::err_objc_type_arg_missing_star) |
1617 | << type |
1618 | << FixItHint::CreateInsertion(InsertionLoc: starLoc, Code: " *" ); |
1619 | } |
1620 | |
1621 | // Convert this to a type. |
1622 | return SemaRef.ActOnTypeName(D); |
1623 | }; |
1624 | |
1625 | // Local function that updates the declaration specifiers with |
1626 | // type argument information. |
1627 | auto resolvedAsTypeDecls = [&] { |
1628 | // We did not resolve these as protocols. |
1629 | protocols.clear(); |
1630 | |
1631 | assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl" ); |
1632 | // Map type declarations to type arguments. |
1633 | for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { |
1634 | // Map type reference to a type. |
1635 | TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]); |
1636 | if (!type.isUsable()) { |
1637 | typeArgs.clear(); |
1638 | return; |
1639 | } |
1640 | |
1641 | typeArgs.push_back(Elt: type.get()); |
1642 | } |
1643 | |
1644 | typeArgsLAngleLoc = lAngleLoc; |
1645 | typeArgsRAngleLoc = rAngleLoc; |
1646 | }; |
1647 | |
1648 | // If all of the identifiers can be resolved as type names or |
1649 | // Objective-C class names, we have type arguments. |
1650 | if (numTypeDeclsResolved == identifiers.size()) |
1651 | return resolvedAsTypeDecls(); |
1652 | |
1653 | // Error recovery: some names weren't found, or we have a mix of |
1654 | // type and protocol names. Go resolve all of the unresolved names |
1655 | // and complain if we can't find a consistent answer. |
1656 | Sema::LookupNameKind lookupKind = Sema::LookupAnyName; |
1657 | for (unsigned i = 0, n = identifiers.size(); i != n; ++i) { |
1658 | // If we already have a protocol or type. Check whether it is the |
1659 | // right thing. |
1660 | if (protocols[i] || typeDecls[i]) { |
1661 | // If we haven't figured out whether we want types or protocols |
1662 | // yet, try to figure it out from this name. |
1663 | if (lookupKind == Sema::LookupAnyName) { |
1664 | // If this name refers to both a protocol and a type (e.g., \c |
1665 | // NSObject), don't conclude anything yet. |
1666 | if (protocols[i] && typeDecls[i]) |
1667 | continue; |
1668 | |
1669 | // Otherwise, let this name decide whether we'll be correcting |
1670 | // toward types or protocols. |
1671 | lookupKind = protocols[i] ? Sema::LookupObjCProtocolName |
1672 | : Sema::LookupOrdinaryName; |
1673 | continue; |
1674 | } |
1675 | |
1676 | // If we want protocols and we have a protocol, there's nothing |
1677 | // more to do. |
1678 | if (lookupKind == Sema::LookupObjCProtocolName && protocols[i]) |
1679 | continue; |
1680 | |
1681 | // If we want types and we have a type declaration, there's |
1682 | // nothing more to do. |
1683 | if (lookupKind == Sema::LookupOrdinaryName && typeDecls[i]) |
1684 | continue; |
1685 | |
1686 | // We have a conflict: some names refer to protocols and others |
1687 | // refer to types. |
1688 | DiagnoseTypeArgsAndProtocols(ProtocolId: identifiers[0], ProtocolLoc: identifierLocs[0], |
1689 | TypeArgId: identifiers[i], TypeArgLoc: identifierLocs[i], |
1690 | SelectProtocolFirst: protocols[i] != nullptr); |
1691 | |
1692 | protocols.clear(); |
1693 | typeArgs.clear(); |
1694 | return; |
1695 | } |
1696 | |
1697 | // Perform typo correction on the name. |
1698 | ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind); |
1699 | TypoCorrection corrected = SemaRef.CorrectTypo( |
1700 | Typo: DeclarationNameInfo(identifiers[i], identifierLocs[i]), LookupKind: lookupKind, S, |
1701 | SS: nullptr, CCC, Mode: Sema::CTK_ErrorRecovery); |
1702 | if (corrected) { |
1703 | // Did we find a protocol? |
1704 | if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) { |
1705 | SemaRef.diagnoseTypo(Correction: corrected, |
1706 | TypoDiag: PDiag(DiagID: diag::err_undeclared_protocol_suggest) |
1707 | << identifiers[i]); |
1708 | lookupKind = Sema::LookupObjCProtocolName; |
1709 | protocols[i] = proto; |
1710 | ++numProtocolsResolved; |
1711 | continue; |
1712 | } |
1713 | |
1714 | // Did we find a type? |
1715 | if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) { |
1716 | SemaRef.diagnoseTypo(Correction: corrected, |
1717 | TypoDiag: PDiag(DiagID: diag::err_unknown_typename_suggest) |
1718 | << identifiers[i]); |
1719 | lookupKind = Sema::LookupOrdinaryName; |
1720 | typeDecls[i] = typeDecl; |
1721 | ++numTypeDeclsResolved; |
1722 | continue; |
1723 | } |
1724 | |
1725 | // Did we find an Objective-C class? |
1726 | if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { |
1727 | SemaRef.diagnoseTypo(Correction: corrected, |
1728 | TypoDiag: PDiag(DiagID: diag::err_unknown_type_or_class_name_suggest) |
1729 | << identifiers[i] << true); |
1730 | lookupKind = Sema::LookupOrdinaryName; |
1731 | typeDecls[i] = objcClass; |
1732 | ++numTypeDeclsResolved; |
1733 | continue; |
1734 | } |
1735 | } |
1736 | |
1737 | // We couldn't find anything. |
1738 | Diag(Loc: identifierLocs[i], |
1739 | DiagID: (lookupKind == Sema::LookupAnyName ? diag::err_objc_type_arg_missing |
1740 | : lookupKind == Sema::LookupObjCProtocolName |
1741 | ? diag::err_undeclared_protocol |
1742 | : diag::err_unknown_typename)) |
1743 | << identifiers[i]; |
1744 | protocols.clear(); |
1745 | typeArgs.clear(); |
1746 | return; |
1747 | } |
1748 | |
1749 | // If all of the names were (corrected to) protocols, these were |
1750 | // protocol qualifiers. |
1751 | if (numProtocolsResolved == identifiers.size()) |
1752 | return resolvedAsProtocols(); |
1753 | |
1754 | // Otherwise, all of the names were (corrected to) types. |
1755 | assert(numTypeDeclsResolved == identifiers.size() && "Not all types?" ); |
1756 | return resolvedAsTypeDecls(); |
1757 | } |
1758 | |
1759 | /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of |
1760 | /// a class method in its extension. |
1761 | /// |
1762 | void SemaObjC::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT, |
1763 | ObjCInterfaceDecl *ID) { |
1764 | if (!ID) |
1765 | return; // Possibly due to previous error |
1766 | |
1767 | llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap; |
1768 | for (auto *MD : ID->methods()) |
1769 | MethodMap[MD->getSelector()] = MD; |
1770 | |
1771 | if (MethodMap.empty()) |
1772 | return; |
1773 | for (const auto *Method : CAT->methods()) { |
1774 | const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()]; |
1775 | if (PrevMethod && |
1776 | (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) && |
1777 | !MatchTwoMethodDeclarations(Method, PrevMethod)) { |
1778 | Diag(Loc: Method->getLocation(), DiagID: diag::err_duplicate_method_decl) |
1779 | << Method->getDeclName(); |
1780 | Diag(Loc: PrevMethod->getLocation(), DiagID: diag::note_previous_declaration); |
1781 | } |
1782 | } |
1783 | } |
1784 | |
1785 | /// ActOnForwardProtocolDeclaration - Handle \@protocol foo; |
1786 | SemaObjC::DeclGroupPtrTy SemaObjC::ActOnForwardProtocolDeclaration( |
1787 | SourceLocation AtProtocolLoc, ArrayRef<IdentifierLocPair> IdentList, |
1788 | const ParsedAttributesView &attrList) { |
1789 | ASTContext &Context = getASTContext(); |
1790 | SmallVector<Decl *, 8> DeclsInGroup; |
1791 | for (const IdentifierLocPair &IdentPair : IdentList) { |
1792 | IdentifierInfo *Ident = IdentPair.first; |
1793 | ObjCProtocolDecl *PrevDecl = LookupProtocol( |
1794 | II: Ident, IdLoc: IdentPair.second, Redecl: SemaRef.forRedeclarationInCurContext()); |
1795 | ObjCProtocolDecl *PDecl = |
1796 | ObjCProtocolDecl::Create(C&: Context, DC: SemaRef.CurContext, Id: Ident, |
1797 | nameLoc: IdentPair.second, atStartLoc: AtProtocolLoc, PrevDecl); |
1798 | |
1799 | SemaRef.PushOnScopeChains(D: PDecl, S: SemaRef.TUScope); |
1800 | CheckObjCDeclScope(D: PDecl); |
1801 | |
1802 | SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: PDecl, AttrList: attrList); |
1803 | SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: PDecl); |
1804 | |
1805 | if (PrevDecl) |
1806 | SemaRef.mergeDeclAttributes(New: PDecl, Old: PrevDecl); |
1807 | |
1808 | DeclsInGroup.push_back(Elt: PDecl); |
1809 | } |
1810 | |
1811 | return SemaRef.BuildDeclaratorGroup(Group: DeclsInGroup); |
1812 | } |
1813 | |
1814 | ObjCCategoryDecl *SemaObjC::ActOnStartCategoryInterface( |
1815 | SourceLocation AtInterfaceLoc, const IdentifierInfo *ClassName, |
1816 | SourceLocation ClassLoc, ObjCTypeParamList *typeParamList, |
1817 | const IdentifierInfo *CategoryName, SourceLocation CategoryLoc, |
1818 | Decl *const *ProtoRefs, unsigned NumProtoRefs, |
1819 | const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc, |
1820 | const ParsedAttributesView &AttrList) { |
1821 | ASTContext &Context = getASTContext(); |
1822 | ObjCCategoryDecl *CDecl; |
1823 | ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(Id&: ClassName, IdLoc: ClassLoc, TypoCorrection: true); |
1824 | |
1825 | /// Check that class of this category is already completely declared. |
1826 | |
1827 | if (!IDecl || |
1828 | SemaRef.RequireCompleteType(Loc: ClassLoc, T: Context.getObjCInterfaceType(Decl: IDecl), |
1829 | DiagID: diag::err_category_forward_interface, |
1830 | Args: CategoryName == nullptr)) { |
1831 | // Create an invalid ObjCCategoryDecl to serve as context for |
1832 | // the enclosing method declarations. We mark the decl invalid |
1833 | // to make it clear that this isn't a valid AST. |
1834 | CDecl = ObjCCategoryDecl::Create(C&: Context, DC: SemaRef.CurContext, |
1835 | AtLoc: AtInterfaceLoc, ClassNameLoc: ClassLoc, CategoryNameLoc: CategoryLoc, |
1836 | Id: CategoryName, IDecl, typeParamList); |
1837 | CDecl->setInvalidDecl(); |
1838 | SemaRef.CurContext->addDecl(D: CDecl); |
1839 | |
1840 | if (!IDecl) |
1841 | Diag(Loc: ClassLoc, DiagID: diag::err_undef_interface) << ClassName; |
1842 | ActOnObjCContainerStartDefinition(IDecl: CDecl); |
1843 | return CDecl; |
1844 | } |
1845 | |
1846 | if (!CategoryName && IDecl->getImplementation()) { |
1847 | Diag(Loc: ClassLoc, DiagID: diag::err_class_extension_after_impl) << ClassName; |
1848 | Diag(Loc: IDecl->getImplementation()->getLocation(), |
1849 | DiagID: diag::note_implementation_declared); |
1850 | } |
1851 | |
1852 | if (CategoryName) { |
1853 | /// Check for duplicate interface declaration for this category |
1854 | if (ObjCCategoryDecl *Previous |
1855 | = IDecl->FindCategoryDeclaration(CategoryId: CategoryName)) { |
1856 | // Class extensions can be declared multiple times, categories cannot. |
1857 | Diag(Loc: CategoryLoc, DiagID: diag::warn_dup_category_def) |
1858 | << ClassName << CategoryName; |
1859 | Diag(Loc: Previous->getLocation(), DiagID: diag::note_previous_definition); |
1860 | } |
1861 | } |
1862 | |
1863 | // If we have a type parameter list, check it. |
1864 | if (typeParamList) { |
1865 | if (auto prevTypeParamList = IDecl->getTypeParamList()) { |
1866 | if (checkTypeParamListConsistency( |
1867 | S&: SemaRef, prevTypeParams: prevTypeParamList, newTypeParams: typeParamList, |
1868 | newContext: CategoryName ? TypeParamListContext::Category |
1869 | : TypeParamListContext::Extension)) |
1870 | typeParamList = nullptr; |
1871 | } else { |
1872 | Diag(Loc: typeParamList->getLAngleLoc(), |
1873 | DiagID: diag::err_objc_parameterized_category_nonclass) |
1874 | << (CategoryName != nullptr) |
1875 | << ClassName |
1876 | << typeParamList->getSourceRange(); |
1877 | |
1878 | typeParamList = nullptr; |
1879 | } |
1880 | } |
1881 | |
1882 | CDecl = ObjCCategoryDecl::Create(C&: Context, DC: SemaRef.CurContext, AtLoc: AtInterfaceLoc, |
1883 | ClassNameLoc: ClassLoc, CategoryNameLoc: CategoryLoc, Id: CategoryName, IDecl, |
1884 | typeParamList); |
1885 | // FIXME: PushOnScopeChains? |
1886 | SemaRef.CurContext->addDecl(D: CDecl); |
1887 | |
1888 | // Process the attributes before looking at protocols to ensure that the |
1889 | // availability attribute is attached to the category to provide availability |
1890 | // checking for protocol uses. |
1891 | SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: CDecl, AttrList); |
1892 | SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: CDecl); |
1893 | |
1894 | if (NumProtoRefs) { |
1895 | diagnoseUseOfProtocols(TheSema&: SemaRef, CD: CDecl, ProtoRefs: (ObjCProtocolDecl *const *)ProtoRefs, |
1896 | NumProtoRefs, ProtoLocs); |
1897 | CDecl->setProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, Num: NumProtoRefs, |
1898 | Locs: ProtoLocs, C&: Context); |
1899 | // Protocols in the class extension belong to the class. |
1900 | if (CDecl->IsClassExtension()) |
1901 | IDecl->mergeClassExtensionProtocolList(List: (ObjCProtocolDecl*const*)ProtoRefs, |
1902 | Num: NumProtoRefs, C&: Context); |
1903 | } |
1904 | |
1905 | CheckObjCDeclScope(D: CDecl); |
1906 | ActOnObjCContainerStartDefinition(IDecl: CDecl); |
1907 | return CDecl; |
1908 | } |
1909 | |
1910 | /// ActOnStartCategoryImplementation - Perform semantic checks on the |
1911 | /// category implementation declaration and build an ObjCCategoryImplDecl |
1912 | /// object. |
1913 | ObjCCategoryImplDecl *SemaObjC::ActOnStartCategoryImplementation( |
1914 | SourceLocation AtCatImplLoc, const IdentifierInfo *ClassName, |
1915 | SourceLocation ClassLoc, const IdentifierInfo *CatName, |
1916 | SourceLocation CatLoc, const ParsedAttributesView &Attrs) { |
1917 | ASTContext &Context = getASTContext(); |
1918 | ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(Id&: ClassName, IdLoc: ClassLoc, TypoCorrection: true); |
1919 | ObjCCategoryDecl *CatIDecl = nullptr; |
1920 | if (IDecl && IDecl->hasDefinition()) { |
1921 | CatIDecl = IDecl->FindCategoryDeclaration(CategoryId: CatName); |
1922 | if (!CatIDecl) { |
1923 | // Category @implementation with no corresponding @interface. |
1924 | // Create and install one. |
1925 | CatIDecl = |
1926 | ObjCCategoryDecl::Create(C&: Context, DC: SemaRef.CurContext, AtLoc: AtCatImplLoc, |
1927 | ClassNameLoc: ClassLoc, CategoryNameLoc: CatLoc, Id: CatName, IDecl, |
1928 | /*typeParamList=*/nullptr); |
1929 | CatIDecl->setImplicit(); |
1930 | } |
1931 | } |
1932 | |
1933 | ObjCCategoryImplDecl *CDecl = |
1934 | ObjCCategoryImplDecl::Create(C&: Context, DC: SemaRef.CurContext, Id: CatName, classInterface: IDecl, |
1935 | nameLoc: ClassLoc, atStartLoc: AtCatImplLoc, CategoryNameLoc: CatLoc); |
1936 | /// Check that class of this category is already completely declared. |
1937 | if (!IDecl) { |
1938 | Diag(Loc: ClassLoc, DiagID: diag::err_undef_interface) << ClassName; |
1939 | CDecl->setInvalidDecl(); |
1940 | } else if (SemaRef.RequireCompleteType(Loc: ClassLoc, |
1941 | T: Context.getObjCInterfaceType(Decl: IDecl), |
1942 | DiagID: diag::err_undef_interface)) { |
1943 | CDecl->setInvalidDecl(); |
1944 | } |
1945 | |
1946 | SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: CDecl, AttrList: Attrs); |
1947 | SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: CDecl); |
1948 | |
1949 | // FIXME: PushOnScopeChains? |
1950 | SemaRef.CurContext->addDecl(D: CDecl); |
1951 | |
1952 | // If the interface has the objc_runtime_visible attribute, we |
1953 | // cannot implement a category for it. |
1954 | if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) { |
1955 | Diag(Loc: ClassLoc, DiagID: diag::err_objc_runtime_visible_category) |
1956 | << IDecl->getDeclName(); |
1957 | } |
1958 | |
1959 | /// Check that CatName, category name, is not used in another implementation. |
1960 | if (CatIDecl) { |
1961 | if (CatIDecl->getImplementation()) { |
1962 | Diag(Loc: ClassLoc, DiagID: diag::err_dup_implementation_category) << ClassName |
1963 | << CatName; |
1964 | Diag(Loc: CatIDecl->getImplementation()->getLocation(), |
1965 | DiagID: diag::note_previous_definition); |
1966 | CDecl->setInvalidDecl(); |
1967 | } else { |
1968 | CatIDecl->setImplementation(CDecl); |
1969 | // Warn on implementating category of deprecated class under |
1970 | // -Wdeprecated-implementations flag. |
1971 | DiagnoseObjCImplementedDeprecations(S&: SemaRef, ND: CatIDecl, |
1972 | ImplLoc: CDecl->getLocation()); |
1973 | } |
1974 | } |
1975 | |
1976 | CheckObjCDeclScope(D: CDecl); |
1977 | ActOnObjCContainerStartDefinition(IDecl: CDecl); |
1978 | return CDecl; |
1979 | } |
1980 | |
1981 | ObjCImplementationDecl *SemaObjC::ActOnStartClassImplementation( |
1982 | SourceLocation AtClassImplLoc, const IdentifierInfo *ClassName, |
1983 | SourceLocation ClassLoc, const IdentifierInfo *SuperClassname, |
1984 | SourceLocation SuperClassLoc, const ParsedAttributesView &Attrs) { |
1985 | ASTContext &Context = getASTContext(); |
1986 | ObjCInterfaceDecl *IDecl = nullptr; |
1987 | // Check for another declaration kind with the same name. |
1988 | NamedDecl *PrevDecl = SemaRef.LookupSingleName( |
1989 | S: SemaRef.TUScope, Name: ClassName, Loc: ClassLoc, NameKind: Sema::LookupOrdinaryName, |
1990 | Redecl: SemaRef.forRedeclarationInCurContext()); |
1991 | if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) { |
1992 | Diag(Loc: ClassLoc, DiagID: diag::err_redefinition_different_kind) << ClassName; |
1993 | Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_definition); |
1994 | } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl))) { |
1995 | // FIXME: This will produce an error if the definition of the interface has |
1996 | // been imported from a module but is not visible. |
1997 | SemaRef.RequireCompleteType(Loc: ClassLoc, T: Context.getObjCInterfaceType(Decl: IDecl), |
1998 | DiagID: diag::warn_undef_interface); |
1999 | } else { |
2000 | // We did not find anything with the name ClassName; try to correct for |
2001 | // typos in the class name. |
2002 | ObjCInterfaceValidatorCCC CCC{}; |
2003 | TypoCorrection Corrected = SemaRef.CorrectTypo( |
2004 | Typo: DeclarationNameInfo(ClassName, ClassLoc), LookupKind: Sema::LookupOrdinaryName, |
2005 | S: SemaRef.TUScope, SS: nullptr, CCC, Mode: Sema::CTK_NonError); |
2006 | if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) { |
2007 | // Suggest the (potentially) correct interface name. Don't provide a |
2008 | // code-modification hint or use the typo name for recovery, because |
2009 | // this is just a warning. The program may actually be correct. |
2010 | SemaRef.diagnoseTypo( |
2011 | Correction: Corrected, TypoDiag: PDiag(DiagID: diag::warn_undef_interface_suggest) << ClassName, |
2012 | /*ErrorRecovery*/ false); |
2013 | } else { |
2014 | Diag(Loc: ClassLoc, DiagID: diag::warn_undef_interface) << ClassName; |
2015 | } |
2016 | } |
2017 | |
2018 | // Check that super class name is valid class name |
2019 | ObjCInterfaceDecl *SDecl = nullptr; |
2020 | if (SuperClassname) { |
2021 | // Check if a different kind of symbol declared in this scope. |
2022 | PrevDecl = |
2023 | SemaRef.LookupSingleName(S: SemaRef.TUScope, Name: SuperClassname, Loc: SuperClassLoc, |
2024 | NameKind: Sema::LookupOrdinaryName); |
2025 | if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) { |
2026 | Diag(Loc: SuperClassLoc, DiagID: diag::err_redefinition_different_kind) |
2027 | << SuperClassname; |
2028 | Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_definition); |
2029 | } else { |
2030 | SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl); |
2031 | if (SDecl && !SDecl->hasDefinition()) |
2032 | SDecl = nullptr; |
2033 | if (!SDecl) |
2034 | Diag(Loc: SuperClassLoc, DiagID: diag::err_undef_superclass) |
2035 | << SuperClassname << ClassName; |
2036 | else if (IDecl && !declaresSameEntity(D1: IDecl->getSuperClass(), D2: SDecl)) { |
2037 | // This implementation and its interface do not have the same |
2038 | // super class. |
2039 | Diag(Loc: SuperClassLoc, DiagID: diag::err_conflicting_super_class) |
2040 | << SDecl->getDeclName(); |
2041 | Diag(Loc: SDecl->getLocation(), DiagID: diag::note_previous_definition); |
2042 | } |
2043 | } |
2044 | } |
2045 | |
2046 | if (!IDecl) { |
2047 | // Legacy case of @implementation with no corresponding @interface. |
2048 | // Build, chain & install the interface decl into the identifier. |
2049 | |
2050 | // FIXME: Do we support attributes on the @implementation? If so we should |
2051 | // copy them over. |
2052 | IDecl = |
2053 | ObjCInterfaceDecl::Create(C: Context, DC: SemaRef.CurContext, atLoc: AtClassImplLoc, |
2054 | Id: ClassName, /*typeParamList=*/nullptr, |
2055 | /*PrevDecl=*/nullptr, ClassLoc, isInternal: true); |
2056 | SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: IDecl); |
2057 | IDecl->startDefinition(); |
2058 | if (SDecl) { |
2059 | IDecl->setSuperClass(Context.getTrivialTypeSourceInfo( |
2060 | T: Context.getObjCInterfaceType(Decl: SDecl), |
2061 | Loc: SuperClassLoc)); |
2062 | IDecl->setEndOfDefinitionLoc(SuperClassLoc); |
2063 | } else { |
2064 | IDecl->setEndOfDefinitionLoc(ClassLoc); |
2065 | } |
2066 | |
2067 | SemaRef.PushOnScopeChains(D: IDecl, S: SemaRef.TUScope); |
2068 | } else { |
2069 | // Mark the interface as being completed, even if it was just as |
2070 | // @class ....; |
2071 | // declaration; the user cannot reopen it. |
2072 | if (!IDecl->hasDefinition()) |
2073 | IDecl->startDefinition(); |
2074 | } |
2075 | |
2076 | ObjCImplementationDecl *IMPDecl = |
2077 | ObjCImplementationDecl::Create(C&: Context, DC: SemaRef.CurContext, classInterface: IDecl, superDecl: SDecl, |
2078 | nameLoc: ClassLoc, atStartLoc: AtClassImplLoc, superLoc: SuperClassLoc); |
2079 | |
2080 | SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: IMPDecl, AttrList: Attrs); |
2081 | SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: IMPDecl); |
2082 | |
2083 | if (CheckObjCDeclScope(D: IMPDecl)) { |
2084 | ActOnObjCContainerStartDefinition(IDecl: IMPDecl); |
2085 | return IMPDecl; |
2086 | } |
2087 | |
2088 | // Check that there is no duplicate implementation of this class. |
2089 | if (IDecl->getImplementation()) { |
2090 | // FIXME: Don't leak everything! |
2091 | Diag(Loc: ClassLoc, DiagID: diag::err_dup_implementation_class) << ClassName; |
2092 | Diag(Loc: IDecl->getImplementation()->getLocation(), |
2093 | DiagID: diag::note_previous_definition); |
2094 | IMPDecl->setInvalidDecl(); |
2095 | } else { // add it to the list. |
2096 | IDecl->setImplementation(IMPDecl); |
2097 | SemaRef.PushOnScopeChains(D: IMPDecl, S: SemaRef.TUScope); |
2098 | // Warn on implementating deprecated class under |
2099 | // -Wdeprecated-implementations flag. |
2100 | DiagnoseObjCImplementedDeprecations(S&: SemaRef, ND: IDecl, ImplLoc: IMPDecl->getLocation()); |
2101 | } |
2102 | |
2103 | // If the superclass has the objc_runtime_visible attribute, we |
2104 | // cannot implement a subclass of it. |
2105 | if (IDecl->getSuperClass() && |
2106 | IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) { |
2107 | Diag(Loc: ClassLoc, DiagID: diag::err_objc_runtime_visible_subclass) |
2108 | << IDecl->getDeclName() |
2109 | << IDecl->getSuperClass()->getDeclName(); |
2110 | } |
2111 | |
2112 | ActOnObjCContainerStartDefinition(IDecl: IMPDecl); |
2113 | return IMPDecl; |
2114 | } |
2115 | |
2116 | SemaObjC::DeclGroupPtrTy |
2117 | SemaObjC::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, |
2118 | ArrayRef<Decl *> Decls) { |
2119 | SmallVector<Decl *, 64> DeclsInGroup; |
2120 | DeclsInGroup.reserve(N: Decls.size() + 1); |
2121 | |
2122 | for (unsigned i = 0, e = Decls.size(); i != e; ++i) { |
2123 | Decl *Dcl = Decls[i]; |
2124 | if (!Dcl) |
2125 | continue; |
2126 | if (Dcl->getDeclContext()->isFileContext()) |
2127 | Dcl->setTopLevelDeclInObjCContainer(); |
2128 | DeclsInGroup.push_back(Elt: Dcl); |
2129 | } |
2130 | |
2131 | DeclsInGroup.push_back(Elt: ObjCImpDecl); |
2132 | |
2133 | return SemaRef.BuildDeclaratorGroup(Group: DeclsInGroup); |
2134 | } |
2135 | |
2136 | void SemaObjC::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl, |
2137 | ObjCIvarDecl **ivars, unsigned numIvars, |
2138 | SourceLocation RBrace) { |
2139 | assert(ImpDecl && "missing implementation decl" ); |
2140 | ASTContext &Context = getASTContext(); |
2141 | ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface(); |
2142 | if (!IDecl) |
2143 | return; |
2144 | /// Check case of non-existing \@interface decl. |
2145 | /// (legacy objective-c \@implementation decl without an \@interface decl). |
2146 | /// Add implementations's ivar to the synthesize class's ivar list. |
2147 | if (IDecl->isImplicitInterfaceDecl()) { |
2148 | IDecl->setEndOfDefinitionLoc(RBrace); |
2149 | // Add ivar's to class's DeclContext. |
2150 | for (unsigned i = 0, e = numIvars; i != e; ++i) { |
2151 | ivars[i]->setLexicalDeclContext(ImpDecl); |
2152 | // In a 'fragile' runtime the ivar was added to the implicit |
2153 | // ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is |
2154 | // only in the ObjCImplementationDecl. In the non-fragile case the ivar |
2155 | // therefore also needs to be propagated to the ObjCInterfaceDecl. |
2156 | if (!getLangOpts().ObjCRuntime.isFragile()) |
2157 | IDecl->makeDeclVisibleInContext(D: ivars[i]); |
2158 | ImpDecl->addDecl(D: ivars[i]); |
2159 | } |
2160 | |
2161 | return; |
2162 | } |
2163 | // If implementation has empty ivar list, just return. |
2164 | if (numIvars == 0) |
2165 | return; |
2166 | |
2167 | assert(ivars && "missing @implementation ivars" ); |
2168 | if (getLangOpts().ObjCRuntime.isNonFragile()) { |
2169 | if (ImpDecl->getSuperClass()) |
2170 | Diag(Loc: ImpDecl->getLocation(), DiagID: diag::warn_on_superclass_use); |
2171 | for (unsigned i = 0; i < numIvars; i++) { |
2172 | ObjCIvarDecl* ImplIvar = ivars[i]; |
2173 | if (const ObjCIvarDecl *ClsIvar = |
2174 | IDecl->getIvarDecl(Id: ImplIvar->getIdentifier())) { |
2175 | Diag(Loc: ImplIvar->getLocation(), DiagID: diag::err_duplicate_ivar_declaration); |
2176 | Diag(Loc: ClsIvar->getLocation(), DiagID: diag::note_previous_definition); |
2177 | continue; |
2178 | } |
2179 | // Check class extensions (unnamed categories) for duplicate ivars. |
2180 | for (const auto *CDecl : IDecl->visible_extensions()) { |
2181 | if (const ObjCIvarDecl *ClsExtIvar = |
2182 | CDecl->getIvarDecl(Id: ImplIvar->getIdentifier())) { |
2183 | Diag(Loc: ImplIvar->getLocation(), DiagID: diag::err_duplicate_ivar_declaration); |
2184 | Diag(Loc: ClsExtIvar->getLocation(), DiagID: diag::note_previous_definition); |
2185 | continue; |
2186 | } |
2187 | } |
2188 | // Instance ivar to Implementation's DeclContext. |
2189 | ImplIvar->setLexicalDeclContext(ImpDecl); |
2190 | IDecl->makeDeclVisibleInContext(D: ImplIvar); |
2191 | ImpDecl->addDecl(D: ImplIvar); |
2192 | } |
2193 | return; |
2194 | } |
2195 | // Check interface's Ivar list against those in the implementation. |
2196 | // names and types must match. |
2197 | // |
2198 | unsigned j = 0; |
2199 | ObjCInterfaceDecl::ivar_iterator |
2200 | IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end(); |
2201 | for (; numIvars > 0 && IVI != IVE; ++IVI) { |
2202 | ObjCIvarDecl* ImplIvar = ivars[j++]; |
2203 | ObjCIvarDecl* ClsIvar = *IVI; |
2204 | assert (ImplIvar && "missing implementation ivar" ); |
2205 | assert (ClsIvar && "missing class ivar" ); |
2206 | |
2207 | // First, make sure the types match. |
2208 | if (!Context.hasSameType(T1: ImplIvar->getType(), T2: ClsIvar->getType())) { |
2209 | Diag(Loc: ImplIvar->getLocation(), DiagID: diag::err_conflicting_ivar_type) |
2210 | << ImplIvar->getIdentifier() |
2211 | << ImplIvar->getType() << ClsIvar->getType(); |
2212 | Diag(Loc: ClsIvar->getLocation(), DiagID: diag::note_previous_definition); |
2213 | } else if (ImplIvar->isBitField() && ClsIvar->isBitField() && |
2214 | ImplIvar->getBitWidthValue(Ctx: Context) != |
2215 | ClsIvar->getBitWidthValue(Ctx: Context)) { |
2216 | Diag(Loc: ImplIvar->getBitWidth()->getBeginLoc(), |
2217 | DiagID: diag::err_conflicting_ivar_bitwidth) |
2218 | << ImplIvar->getIdentifier(); |
2219 | Diag(Loc: ClsIvar->getBitWidth()->getBeginLoc(), |
2220 | DiagID: diag::note_previous_definition); |
2221 | } |
2222 | // Make sure the names are identical. |
2223 | if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { |
2224 | Diag(Loc: ImplIvar->getLocation(), DiagID: diag::err_conflicting_ivar_name) |
2225 | << ImplIvar->getIdentifier() << ClsIvar->getIdentifier(); |
2226 | Diag(Loc: ClsIvar->getLocation(), DiagID: diag::note_previous_definition); |
2227 | } |
2228 | --numIvars; |
2229 | } |
2230 | |
2231 | if (numIvars > 0) |
2232 | Diag(Loc: ivars[j]->getLocation(), DiagID: diag::err_inconsistent_ivar_count); |
2233 | else if (IVI != IVE) |
2234 | Diag(Loc: IVI->getLocation(), DiagID: diag::err_inconsistent_ivar_count); |
2235 | } |
2236 | |
2237 | static bool shouldWarnUndefinedMethod(const ObjCMethodDecl *M) { |
2238 | // No point warning no definition of method which is 'unavailable'. |
2239 | return M->getAvailability() != AR_Unavailable; |
2240 | } |
2241 | |
2242 | static void WarnUndefinedMethod(Sema &S, ObjCImplDecl *Impl, |
2243 | ObjCMethodDecl *method, bool &IncompleteImpl, |
2244 | unsigned DiagID, |
2245 | NamedDecl *NeededFor = nullptr) { |
2246 | if (!shouldWarnUndefinedMethod(M: method)) |
2247 | return; |
2248 | |
2249 | // FIXME: For now ignore 'IncompleteImpl'. |
2250 | // Previously we grouped all unimplemented methods under a single |
2251 | // warning, but some users strongly voiced that they would prefer |
2252 | // separate warnings. We will give that approach a try, as that |
2253 | // matches what we do with protocols. |
2254 | { |
2255 | const SemaBase::SemaDiagnosticBuilder &B = |
2256 | S.Diag(Loc: Impl->getLocation(), DiagID); |
2257 | B << method; |
2258 | if (NeededFor) |
2259 | B << NeededFor; |
2260 | |
2261 | // Add an empty definition at the end of the @implementation. |
2262 | std::string FixItStr; |
2263 | llvm::raw_string_ostream Out(FixItStr); |
2264 | method->print(Out, Policy: Impl->getASTContext().getPrintingPolicy()); |
2265 | Out << " {\n}\n\n" ; |
2266 | |
2267 | SourceLocation Loc = Impl->getAtEndRange().getBegin(); |
2268 | B << FixItHint::CreateInsertion(InsertionLoc: Loc, Code: FixItStr); |
2269 | } |
2270 | |
2271 | // Issue a note to the original declaration. |
2272 | SourceLocation MethodLoc = method->getBeginLoc(); |
2273 | if (MethodLoc.isValid()) |
2274 | S.Diag(Loc: MethodLoc, DiagID: diag::note_method_declared_at) << method; |
2275 | } |
2276 | |
2277 | /// Determines if type B can be substituted for type A. Returns true if we can |
2278 | /// guarantee that anything that the user will do to an object of type A can |
2279 | /// also be done to an object of type B. This is trivially true if the two |
2280 | /// types are the same, or if B is a subclass of A. It becomes more complex |
2281 | /// in cases where protocols are involved. |
2282 | /// |
2283 | /// Object types in Objective-C describe the minimum requirements for an |
2284 | /// object, rather than providing a complete description of a type. For |
2285 | /// example, if A is a subclass of B, then B* may refer to an instance of A. |
2286 | /// The principle of substitutability means that we may use an instance of A |
2287 | /// anywhere that we may use an instance of B - it will implement all of the |
2288 | /// ivars of B and all of the methods of B. |
2289 | /// |
2290 | /// This substitutability is important when type checking methods, because |
2291 | /// the implementation may have stricter type definitions than the interface. |
2292 | /// The interface specifies minimum requirements, but the implementation may |
2293 | /// have more accurate ones. For example, a method may privately accept |
2294 | /// instances of B, but only publish that it accepts instances of A. Any |
2295 | /// object passed to it will be type checked against B, and so will implicitly |
2296 | /// by a valid A*. Similarly, a method may return a subclass of the class that |
2297 | /// it is declared as returning. |
2298 | /// |
2299 | /// This is most important when considering subclassing. A method in a |
2300 | /// subclass must accept any object as an argument that its superclass's |
2301 | /// implementation accepts. It may, however, accept a more general type |
2302 | /// without breaking substitutability (i.e. you can still use the subclass |
2303 | /// anywhere that you can use the superclass, but not vice versa). The |
2304 | /// converse requirement applies to return types: the return type for a |
2305 | /// subclass method must be a valid object of the kind that the superclass |
2306 | /// advertises, but it may be specified more accurately. This avoids the need |
2307 | /// for explicit down-casting by callers. |
2308 | /// |
2309 | /// Note: This is a stricter requirement than for assignment. |
2310 | static bool isObjCTypeSubstitutable(ASTContext &Context, |
2311 | const ObjCObjectPointerType *A, |
2312 | const ObjCObjectPointerType *B, |
2313 | bool rejectId) { |
2314 | // Reject a protocol-unqualified id. |
2315 | if (rejectId && B->isObjCIdType()) return false; |
2316 | |
2317 | // If B is a qualified id, then A must also be a qualified id and it must |
2318 | // implement all of the protocols in B. It may not be a qualified class. |
2319 | // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a |
2320 | // stricter definition so it is not substitutable for id<A>. |
2321 | if (B->isObjCQualifiedIdType()) { |
2322 | return A->isObjCQualifiedIdType() && |
2323 | Context.ObjCQualifiedIdTypesAreCompatible(LHS: A, RHS: B, ForCompare: false); |
2324 | } |
2325 | |
2326 | /* |
2327 | // id is a special type that bypasses type checking completely. We want a |
2328 | // warning when it is used in one place but not another. |
2329 | if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false; |
2330 | |
2331 | |
2332 | // If B is a qualified id, then A must also be a qualified id (which it isn't |
2333 | // if we've got this far) |
2334 | if (B->isObjCQualifiedIdType()) return false; |
2335 | */ |
2336 | |
2337 | // Now we know that A and B are (potentially-qualified) class types. The |
2338 | // normal rules for assignment apply. |
2339 | return Context.canAssignObjCInterfaces(LHSOPT: A, RHSOPT: B); |
2340 | } |
2341 | |
2342 | static SourceRange getTypeRange(TypeSourceInfo *TSI) { |
2343 | return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange()); |
2344 | } |
2345 | |
2346 | /// Determine whether two set of Objective-C declaration qualifiers conflict. |
2347 | static bool objcModifiersConflict(Decl::ObjCDeclQualifier x, |
2348 | Decl::ObjCDeclQualifier y) { |
2349 | return (x & ~Decl::OBJC_TQ_CSNullability) != |
2350 | (y & ~Decl::OBJC_TQ_CSNullability); |
2351 | } |
2352 | |
2353 | static bool CheckMethodOverrideReturn(Sema &S, |
2354 | ObjCMethodDecl *MethodImpl, |
2355 | ObjCMethodDecl *MethodDecl, |
2356 | bool IsProtocolMethodDecl, |
2357 | bool IsOverridingMode, |
2358 | bool Warn) { |
2359 | if (IsProtocolMethodDecl && |
2360 | objcModifiersConflict(x: MethodDecl->getObjCDeclQualifier(), |
2361 | y: MethodImpl->getObjCDeclQualifier())) { |
2362 | if (Warn) { |
2363 | S.Diag(Loc: MethodImpl->getLocation(), |
2364 | DiagID: (IsOverridingMode |
2365 | ? diag::warn_conflicting_overriding_ret_type_modifiers |
2366 | : diag::warn_conflicting_ret_type_modifiers)) |
2367 | << MethodImpl->getDeclName() |
2368 | << MethodImpl->getReturnTypeSourceRange(); |
2369 | S.Diag(Loc: MethodDecl->getLocation(), DiagID: diag::note_previous_declaration) |
2370 | << MethodDecl->getReturnTypeSourceRange(); |
2371 | } |
2372 | else |
2373 | return false; |
2374 | } |
2375 | if (Warn && IsOverridingMode && |
2376 | !isa<ObjCImplementationDecl>(Val: MethodImpl->getDeclContext()) && |
2377 | !S.Context.hasSameNullabilityTypeQualifier(SubT: MethodImpl->getReturnType(), |
2378 | SuperT: MethodDecl->getReturnType(), |
2379 | IsParam: false)) { |
2380 | auto nullabilityMethodImpl = *MethodImpl->getReturnType()->getNullability(); |
2381 | auto nullabilityMethodDecl = *MethodDecl->getReturnType()->getNullability(); |
2382 | S.Diag(Loc: MethodImpl->getLocation(), |
2383 | DiagID: diag::warn_conflicting_nullability_attr_overriding_ret_types) |
2384 | << DiagNullabilityKind(nullabilityMethodImpl, |
2385 | ((MethodImpl->getObjCDeclQualifier() & |
2386 | Decl::OBJC_TQ_CSNullability) != 0)) |
2387 | << DiagNullabilityKind(nullabilityMethodDecl, |
2388 | ((MethodDecl->getObjCDeclQualifier() & |
2389 | Decl::OBJC_TQ_CSNullability) != 0)); |
2390 | S.Diag(Loc: MethodDecl->getLocation(), DiagID: diag::note_previous_declaration); |
2391 | } |
2392 | |
2393 | if (S.Context.hasSameUnqualifiedType(T1: MethodImpl->getReturnType(), |
2394 | T2: MethodDecl->getReturnType())) |
2395 | return true; |
2396 | if (!Warn) |
2397 | return false; |
2398 | |
2399 | unsigned DiagID = |
2400 | IsOverridingMode ? diag::warn_conflicting_overriding_ret_types |
2401 | : diag::warn_conflicting_ret_types; |
2402 | |
2403 | // Mismatches between ObjC pointers go into a different warning |
2404 | // category, and sometimes they're even completely explicitly allowed. |
2405 | if (const ObjCObjectPointerType *ImplPtrTy = |
2406 | MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) { |
2407 | if (const ObjCObjectPointerType *IfacePtrTy = |
2408 | MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) { |
2409 | // Allow non-matching return types as long as they don't violate |
2410 | // the principle of substitutability. Specifically, we permit |
2411 | // return types that are subclasses of the declared return type, |
2412 | // or that are more-qualified versions of the declared type. |
2413 | if (isObjCTypeSubstitutable(Context&: S.Context, A: IfacePtrTy, B: ImplPtrTy, rejectId: false)) |
2414 | return false; |
2415 | |
2416 | DiagID = |
2417 | IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types |
2418 | : diag::warn_non_covariant_ret_types; |
2419 | } |
2420 | } |
2421 | |
2422 | S.Diag(Loc: MethodImpl->getLocation(), DiagID) |
2423 | << MethodImpl->getDeclName() << MethodDecl->getReturnType() |
2424 | << MethodImpl->getReturnType() |
2425 | << MethodImpl->getReturnTypeSourceRange(); |
2426 | S.Diag(Loc: MethodDecl->getLocation(), DiagID: IsOverridingMode |
2427 | ? diag::note_previous_declaration |
2428 | : diag::note_previous_definition) |
2429 | << MethodDecl->getReturnTypeSourceRange(); |
2430 | return false; |
2431 | } |
2432 | |
2433 | static bool CheckMethodOverrideParam(Sema &S, |
2434 | ObjCMethodDecl *MethodImpl, |
2435 | ObjCMethodDecl *MethodDecl, |
2436 | ParmVarDecl *ImplVar, |
2437 | ParmVarDecl *IfaceVar, |
2438 | bool IsProtocolMethodDecl, |
2439 | bool IsOverridingMode, |
2440 | bool Warn) { |
2441 | if (IsProtocolMethodDecl && |
2442 | objcModifiersConflict(x: ImplVar->getObjCDeclQualifier(), |
2443 | y: IfaceVar->getObjCDeclQualifier())) { |
2444 | if (Warn) { |
2445 | if (IsOverridingMode) |
2446 | S.Diag(Loc: ImplVar->getLocation(), |
2447 | DiagID: diag::warn_conflicting_overriding_param_modifiers) |
2448 | << getTypeRange(TSI: ImplVar->getTypeSourceInfo()) |
2449 | << MethodImpl->getDeclName(); |
2450 | else S.Diag(Loc: ImplVar->getLocation(), |
2451 | DiagID: diag::warn_conflicting_param_modifiers) |
2452 | << getTypeRange(TSI: ImplVar->getTypeSourceInfo()) |
2453 | << MethodImpl->getDeclName(); |
2454 | S.Diag(Loc: IfaceVar->getLocation(), DiagID: diag::note_previous_declaration) |
2455 | << getTypeRange(TSI: IfaceVar->getTypeSourceInfo()); |
2456 | } |
2457 | else |
2458 | return false; |
2459 | } |
2460 | |
2461 | QualType ImplTy = ImplVar->getType(); |
2462 | QualType IfaceTy = IfaceVar->getType(); |
2463 | if (Warn && IsOverridingMode && |
2464 | !isa<ObjCImplementationDecl>(Val: MethodImpl->getDeclContext()) && |
2465 | !S.Context.hasSameNullabilityTypeQualifier(SubT: ImplTy, SuperT: IfaceTy, IsParam: true)) { |
2466 | S.Diag(Loc: ImplVar->getLocation(), |
2467 | DiagID: diag::warn_conflicting_nullability_attr_overriding_param_types) |
2468 | << DiagNullabilityKind(*ImplTy->getNullability(), |
2469 | ((ImplVar->getObjCDeclQualifier() & |
2470 | Decl::OBJC_TQ_CSNullability) != 0)) |
2471 | << DiagNullabilityKind(*IfaceTy->getNullability(), |
2472 | ((IfaceVar->getObjCDeclQualifier() & |
2473 | Decl::OBJC_TQ_CSNullability) != 0)); |
2474 | S.Diag(Loc: IfaceVar->getLocation(), DiagID: diag::note_previous_declaration); |
2475 | } |
2476 | if (S.Context.hasSameUnqualifiedType(T1: ImplTy, T2: IfaceTy)) |
2477 | return true; |
2478 | |
2479 | if (!Warn) |
2480 | return false; |
2481 | unsigned DiagID = |
2482 | IsOverridingMode ? diag::warn_conflicting_overriding_param_types |
2483 | : diag::warn_conflicting_param_types; |
2484 | |
2485 | // Mismatches between ObjC pointers go into a different warning |
2486 | // category, and sometimes they're even completely explicitly allowed.. |
2487 | if (const ObjCObjectPointerType *ImplPtrTy = |
2488 | ImplTy->getAs<ObjCObjectPointerType>()) { |
2489 | if (const ObjCObjectPointerType *IfacePtrTy = |
2490 | IfaceTy->getAs<ObjCObjectPointerType>()) { |
2491 | // Allow non-matching argument types as long as they don't |
2492 | // violate the principle of substitutability. Specifically, the |
2493 | // implementation must accept any objects that the superclass |
2494 | // accepts, however it may also accept others. |
2495 | if (isObjCTypeSubstitutable(Context&: S.Context, A: ImplPtrTy, B: IfacePtrTy, rejectId: true)) |
2496 | return false; |
2497 | |
2498 | DiagID = |
2499 | IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types |
2500 | : diag::warn_non_contravariant_param_types; |
2501 | } |
2502 | } |
2503 | |
2504 | S.Diag(Loc: ImplVar->getLocation(), DiagID) |
2505 | << getTypeRange(TSI: ImplVar->getTypeSourceInfo()) |
2506 | << MethodImpl->getDeclName() << IfaceTy << ImplTy; |
2507 | S.Diag(Loc: IfaceVar->getLocation(), |
2508 | DiagID: (IsOverridingMode ? diag::note_previous_declaration |
2509 | : diag::note_previous_definition)) |
2510 | << getTypeRange(TSI: IfaceVar->getTypeSourceInfo()); |
2511 | return false; |
2512 | } |
2513 | |
2514 | /// In ARC, check whether the conventional meanings of the two methods |
2515 | /// match. If they don't, it's a hard error. |
2516 | static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl, |
2517 | ObjCMethodDecl *decl) { |
2518 | ObjCMethodFamily implFamily = impl->getMethodFamily(); |
2519 | ObjCMethodFamily declFamily = decl->getMethodFamily(); |
2520 | if (implFamily == declFamily) return false; |
2521 | |
2522 | // Since conventions are sorted by selector, the only possibility is |
2523 | // that the types differ enough to cause one selector or the other |
2524 | // to fall out of the family. |
2525 | assert(implFamily == OMF_None || declFamily == OMF_None); |
2526 | |
2527 | // No further diagnostics required on invalid declarations. |
2528 | if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true; |
2529 | |
2530 | const ObjCMethodDecl *unmatched = impl; |
2531 | ObjCMethodFamily family = declFamily; |
2532 | unsigned errorID = diag::err_arc_lost_method_convention; |
2533 | unsigned noteID = diag::note_arc_lost_method_convention; |
2534 | if (declFamily == OMF_None) { |
2535 | unmatched = decl; |
2536 | family = implFamily; |
2537 | errorID = diag::err_arc_gained_method_convention; |
2538 | noteID = diag::note_arc_gained_method_convention; |
2539 | } |
2540 | |
2541 | // Indexes into a %select clause in the diagnostic. |
2542 | enum FamilySelector { |
2543 | F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new |
2544 | }; |
2545 | FamilySelector familySelector = FamilySelector(); |
2546 | |
2547 | switch (family) { |
2548 | case OMF_None: llvm_unreachable("logic error, no method convention" ); |
2549 | case OMF_retain: |
2550 | case OMF_release: |
2551 | case OMF_autorelease: |
2552 | case OMF_dealloc: |
2553 | case OMF_finalize: |
2554 | case OMF_retainCount: |
2555 | case OMF_self: |
2556 | case OMF_initialize: |
2557 | case OMF_performSelector: |
2558 | // Mismatches for these methods don't change ownership |
2559 | // conventions, so we don't care. |
2560 | return false; |
2561 | |
2562 | case OMF_init: familySelector = F_init; break; |
2563 | case OMF_alloc: familySelector = F_alloc; break; |
2564 | case OMF_copy: familySelector = F_copy; break; |
2565 | case OMF_mutableCopy: familySelector = F_mutableCopy; break; |
2566 | case OMF_new: familySelector = F_new; break; |
2567 | } |
2568 | |
2569 | enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn }; |
2570 | ReasonSelector reasonSelector; |
2571 | |
2572 | // The only reason these methods don't fall within their families is |
2573 | // due to unusual result types. |
2574 | if (unmatched->getReturnType()->isObjCObjectPointerType()) { |
2575 | reasonSelector = R_UnrelatedReturn; |
2576 | } else { |
2577 | reasonSelector = R_NonObjectReturn; |
2578 | } |
2579 | |
2580 | S.Diag(Loc: impl->getLocation(), DiagID: errorID) << int(familySelector) << int(reasonSelector); |
2581 | S.Diag(Loc: decl->getLocation(), DiagID: noteID) << int(familySelector) << int(reasonSelector); |
2582 | |
2583 | return true; |
2584 | } |
2585 | |
2586 | void SemaObjC::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl, |
2587 | ObjCMethodDecl *MethodDecl, |
2588 | bool IsProtocolMethodDecl) { |
2589 | if (getLangOpts().ObjCAutoRefCount && |
2590 | checkMethodFamilyMismatch(S&: SemaRef, impl: ImpMethodDecl, decl: MethodDecl)) |
2591 | return; |
2592 | |
2593 | CheckMethodOverrideReturn(S&: SemaRef, MethodImpl: ImpMethodDecl, MethodDecl, |
2594 | IsProtocolMethodDecl, IsOverridingMode: false, Warn: true); |
2595 | |
2596 | for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), |
2597 | IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), |
2598 | EF = MethodDecl->param_end(); |
2599 | IM != EM && IF != EF; ++IM, ++IF) { |
2600 | CheckMethodOverrideParam(S&: SemaRef, MethodImpl: ImpMethodDecl, MethodDecl, ImplVar: *IM, IfaceVar: *IF, |
2601 | IsProtocolMethodDecl, IsOverridingMode: false, Warn: true); |
2602 | } |
2603 | |
2604 | if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) { |
2605 | Diag(Loc: ImpMethodDecl->getLocation(), |
2606 | DiagID: diag::warn_conflicting_variadic); |
2607 | Diag(Loc: MethodDecl->getLocation(), DiagID: diag::note_previous_declaration); |
2608 | } |
2609 | } |
2610 | |
2611 | void SemaObjC::CheckConflictingOverridingMethod(ObjCMethodDecl *Method, |
2612 | ObjCMethodDecl *Overridden, |
2613 | bool IsProtocolMethodDecl) { |
2614 | |
2615 | CheckMethodOverrideReturn(S&: SemaRef, MethodImpl: Method, MethodDecl: Overridden, IsProtocolMethodDecl, |
2616 | IsOverridingMode: true, Warn: true); |
2617 | |
2618 | for (ObjCMethodDecl::param_iterator IM = Method->param_begin(), |
2619 | IF = Overridden->param_begin(), EM = Method->param_end(), |
2620 | EF = Overridden->param_end(); |
2621 | IM != EM && IF != EF; ++IM, ++IF) { |
2622 | CheckMethodOverrideParam(S&: SemaRef, MethodImpl: Method, MethodDecl: Overridden, ImplVar: *IM, IfaceVar: *IF, |
2623 | IsProtocolMethodDecl, IsOverridingMode: true, Warn: true); |
2624 | } |
2625 | |
2626 | if (Method->isVariadic() != Overridden->isVariadic()) { |
2627 | Diag(Loc: Method->getLocation(), |
2628 | DiagID: diag::warn_conflicting_overriding_variadic); |
2629 | Diag(Loc: Overridden->getLocation(), DiagID: diag::note_previous_declaration); |
2630 | } |
2631 | } |
2632 | |
2633 | /// WarnExactTypedMethods - This routine issues a warning if method |
2634 | /// implementation declaration matches exactly that of its declaration. |
2635 | void SemaObjC::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl, |
2636 | ObjCMethodDecl *MethodDecl, |
2637 | bool IsProtocolMethodDecl) { |
2638 | ASTContext &Context = getASTContext(); |
2639 | // don't issue warning when protocol method is optional because primary |
2640 | // class is not required to implement it and it is safe for protocol |
2641 | // to implement it. |
2642 | if (MethodDecl->getImplementationControl() == |
2643 | ObjCImplementationControl::Optional) |
2644 | return; |
2645 | // don't issue warning when primary class's method is |
2646 | // deprecated/unavailable. |
2647 | if (MethodDecl->hasAttr<UnavailableAttr>() || |
2648 | MethodDecl->hasAttr<DeprecatedAttr>()) |
2649 | return; |
2650 | |
2651 | bool match = CheckMethodOverrideReturn(S&: SemaRef, MethodImpl: ImpMethodDecl, MethodDecl, |
2652 | IsProtocolMethodDecl, IsOverridingMode: false, Warn: false); |
2653 | if (match) |
2654 | for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(), |
2655 | IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(), |
2656 | EF = MethodDecl->param_end(); |
2657 | IM != EM && IF != EF; ++IM, ++IF) { |
2658 | match = CheckMethodOverrideParam(S&: SemaRef, MethodImpl: ImpMethodDecl, MethodDecl, ImplVar: *IM, |
2659 | IfaceVar: *IF, IsProtocolMethodDecl, IsOverridingMode: false, Warn: false); |
2660 | if (!match) |
2661 | break; |
2662 | } |
2663 | if (match) |
2664 | match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic()); |
2665 | if (match) |
2666 | match = !(MethodDecl->isClassMethod() && |
2667 | MethodDecl->getSelector() == GetNullarySelector(name: "load" , Ctx&: Context)); |
2668 | |
2669 | if (match) { |
2670 | Diag(Loc: ImpMethodDecl->getLocation(), |
2671 | DiagID: diag::warn_category_method_impl_match); |
2672 | Diag(Loc: MethodDecl->getLocation(), DiagID: diag::note_method_declared_at) |
2673 | << MethodDecl->getDeclName(); |
2674 | } |
2675 | } |
2676 | |
2677 | /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely |
2678 | /// improve the efficiency of selector lookups and type checking by associating |
2679 | /// with each protocol / interface / category the flattened instance tables. If |
2680 | /// we used an immutable set to keep the table then it wouldn't add significant |
2681 | /// memory cost and it would be handy for lookups. |
2682 | |
2683 | typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet; |
2684 | typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet; |
2685 | |
2686 | static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl, |
2687 | ProtocolNameSet &PNS) { |
2688 | if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) |
2689 | PNS.insert(V: PDecl->getIdentifier()); |
2690 | for (const auto *PI : PDecl->protocols()) |
2691 | findProtocolsWithExplicitImpls(PDecl: PI, PNS); |
2692 | } |
2693 | |
2694 | /// Recursively populates a set with all conformed protocols in a class |
2695 | /// hierarchy that have the 'objc_protocol_requires_explicit_implementation' |
2696 | /// attribute. |
2697 | static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super, |
2698 | ProtocolNameSet &PNS) { |
2699 | if (!Super) |
2700 | return; |
2701 | |
2702 | for (const auto *I : Super->all_referenced_protocols()) |
2703 | findProtocolsWithExplicitImpls(PDecl: I, PNS); |
2704 | |
2705 | findProtocolsWithExplicitImpls(Super: Super->getSuperClass(), PNS); |
2706 | } |
2707 | |
2708 | /// CheckProtocolMethodDefs - This routine checks unimplemented methods |
2709 | /// Declared in protocol, and those referenced by it. |
2710 | static void CheckProtocolMethodDefs( |
2711 | Sema &S, ObjCImplDecl *Impl, ObjCProtocolDecl *PDecl, bool &IncompleteImpl, |
2712 | const SemaObjC::SelectorSet &InsMap, const SemaObjC::SelectorSet &ClsMap, |
2713 | ObjCContainerDecl *CDecl, LazyProtocolNameSet &ProtocolsExplictImpl) { |
2714 | ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: CDecl); |
2715 | ObjCInterfaceDecl *IDecl = C ? C->getClassInterface() |
2716 | : dyn_cast<ObjCInterfaceDecl>(Val: CDecl); |
2717 | assert (IDecl && "CheckProtocolMethodDefs - IDecl is null" ); |
2718 | |
2719 | ObjCInterfaceDecl *Super = IDecl->getSuperClass(); |
2720 | ObjCInterfaceDecl *NSIDecl = nullptr; |
2721 | |
2722 | // If this protocol is marked 'objc_protocol_requires_explicit_implementation' |
2723 | // then we should check if any class in the super class hierarchy also |
2724 | // conforms to this protocol, either directly or via protocol inheritance. |
2725 | // If so, we can skip checking this protocol completely because we |
2726 | // know that a parent class already satisfies this protocol. |
2727 | // |
2728 | // Note: we could generalize this logic for all protocols, and merely |
2729 | // add the limit on looking at the super class chain for just |
2730 | // specially marked protocols. This may be a good optimization. This |
2731 | // change is restricted to 'objc_protocol_requires_explicit_implementation' |
2732 | // protocols for now for controlled evaluation. |
2733 | if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) { |
2734 | if (!ProtocolsExplictImpl) { |
2735 | ProtocolsExplictImpl.reset(p: new ProtocolNameSet); |
2736 | findProtocolsWithExplicitImpls(Super, PNS&: *ProtocolsExplictImpl); |
2737 | } |
2738 | if (ProtocolsExplictImpl->contains(V: PDecl->getIdentifier())) |
2739 | return; |
2740 | |
2741 | // If no super class conforms to the protocol, we should not search |
2742 | // for methods in the super class to implicitly satisfy the protocol. |
2743 | Super = nullptr; |
2744 | } |
2745 | |
2746 | if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) { |
2747 | // check to see if class implements forwardInvocation method and objects |
2748 | // of this class are derived from 'NSProxy' so that to forward requests |
2749 | // from one object to another. |
2750 | // Under such conditions, which means that every method possible is |
2751 | // implemented in the class, we should not issue "Method definition not |
2752 | // found" warnings. |
2753 | // FIXME: Use a general GetUnarySelector method for this. |
2754 | const IdentifierInfo *II = &S.Context.Idents.get(Name: "forwardInvocation" ); |
2755 | Selector fISelector = S.Context.Selectors.getSelector(NumArgs: 1, IIV: &II); |
2756 | if (InsMap.count(Ptr: fISelector)) |
2757 | // Is IDecl derived from 'NSProxy'? If so, no instance methods |
2758 | // need be implemented in the implementation. |
2759 | NSIDecl = IDecl->lookupInheritedClass(ICName: &S.Context.Idents.get(Name: "NSProxy" )); |
2760 | } |
2761 | |
2762 | // If this is a forward protocol declaration, get its definition. |
2763 | if (!PDecl->isThisDeclarationADefinition() && |
2764 | PDecl->getDefinition()) |
2765 | PDecl = PDecl->getDefinition(); |
2766 | |
2767 | // If a method lookup fails locally we still need to look and see if |
2768 | // the method was implemented by a base class or an inherited |
2769 | // protocol. This lookup is slow, but occurs rarely in correct code |
2770 | // and otherwise would terminate in a warning. |
2771 | |
2772 | // check unimplemented instance methods. |
2773 | if (!NSIDecl) |
2774 | for (auto *method : PDecl->instance_methods()) { |
2775 | if (method->getImplementationControl() != |
2776 | ObjCImplementationControl::Optional && |
2777 | !method->isPropertyAccessor() && |
2778 | !InsMap.count(Ptr: method->getSelector()) && |
2779 | (!Super || !Super->lookupMethod( |
2780 | Sel: method->getSelector(), isInstance: true /* instance */, |
2781 | shallowCategoryLookup: false /* shallowCategory */, followSuper: true /* followsSuper */, |
2782 | C: nullptr /* category */))) { |
2783 | // If a method is not implemented in the category implementation but |
2784 | // has been declared in its primary class, superclass, |
2785 | // or in one of their protocols, no need to issue the warning. |
2786 | // This is because method will be implemented in the primary class |
2787 | // or one of its super class implementation. |
2788 | |
2789 | // Ugly, but necessary. Method declared in protocol might have |
2790 | // have been synthesized due to a property declared in the class which |
2791 | // uses the protocol. |
2792 | if (ObjCMethodDecl *MethodInClass = IDecl->lookupMethod( |
2793 | Sel: method->getSelector(), isInstance: true /* instance */, |
2794 | shallowCategoryLookup: true /* shallowCategoryLookup */, followSuper: false /* followSuper */)) |
2795 | if (C || MethodInClass->isPropertyAccessor()) |
2796 | continue; |
2797 | unsigned DIAG = diag::warn_unimplemented_protocol_method; |
2798 | if (!S.Diags.isIgnored(DiagID: DIAG, Loc: Impl->getLocation())) { |
2799 | WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DiagID: DIAG, NeededFor: PDecl); |
2800 | } |
2801 | } |
2802 | } |
2803 | // check unimplemented class methods |
2804 | for (auto *method : PDecl->class_methods()) { |
2805 | if (method->getImplementationControl() != |
2806 | ObjCImplementationControl::Optional && |
2807 | !ClsMap.count(Ptr: method->getSelector()) && |
2808 | (!Super || !Super->lookupMethod( |
2809 | Sel: method->getSelector(), isInstance: false /* class method */, |
2810 | shallowCategoryLookup: false /* shallowCategoryLookup */, |
2811 | followSuper: true /* followSuper */, C: nullptr /* category */))) { |
2812 | // See above comment for instance method lookups. |
2813 | if (C && IDecl->lookupMethod(Sel: method->getSelector(), |
2814 | isInstance: false /* class */, |
2815 | shallowCategoryLookup: true /* shallowCategoryLookup */, |
2816 | followSuper: false /* followSuper */)) |
2817 | continue; |
2818 | |
2819 | unsigned DIAG = diag::warn_unimplemented_protocol_method; |
2820 | if (!S.Diags.isIgnored(DiagID: DIAG, Loc: Impl->getLocation())) { |
2821 | WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DiagID: DIAG, NeededFor: PDecl); |
2822 | } |
2823 | } |
2824 | } |
2825 | // Check on this protocols's referenced protocols, recursively. |
2826 | for (auto *PI : PDecl->protocols()) |
2827 | CheckProtocolMethodDefs(S, Impl, PDecl: PI, IncompleteImpl, InsMap, ClsMap, CDecl, |
2828 | ProtocolsExplictImpl); |
2829 | } |
2830 | |
2831 | /// MatchAllMethodDeclarations - Check methods declared in interface |
2832 | /// or protocol against those declared in their implementations. |
2833 | /// |
2834 | void SemaObjC::MatchAllMethodDeclarations( |
2835 | const SelectorSet &InsMap, const SelectorSet &ClsMap, |
2836 | SelectorSet &InsMapSeen, SelectorSet &ClsMapSeen, ObjCImplDecl *IMPDecl, |
2837 | ObjCContainerDecl *CDecl, bool &IncompleteImpl, bool ImmediateClass, |
2838 | bool WarnCategoryMethodImpl) { |
2839 | // Check and see if instance methods in class interface have been |
2840 | // implemented in the implementation class. If so, their types match. |
2841 | for (auto *I : CDecl->instance_methods()) { |
2842 | if (!InsMapSeen.insert(Ptr: I->getSelector()).second) |
2843 | continue; |
2844 | if (!I->isPropertyAccessor() && |
2845 | !InsMap.count(Ptr: I->getSelector())) { |
2846 | if (ImmediateClass) |
2847 | WarnUndefinedMethod(S&: SemaRef, Impl: IMPDecl, method: I, IncompleteImpl, |
2848 | DiagID: diag::warn_undef_method_impl); |
2849 | continue; |
2850 | } else { |
2851 | ObjCMethodDecl *ImpMethodDecl = |
2852 | IMPDecl->getInstanceMethod(Sel: I->getSelector()); |
2853 | assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) && |
2854 | "Expected to find the method through lookup as well" ); |
2855 | // ImpMethodDecl may be null as in a @dynamic property. |
2856 | if (ImpMethodDecl) { |
2857 | // Skip property accessor function stubs. |
2858 | if (ImpMethodDecl->isSynthesizedAccessorStub()) |
2859 | continue; |
2860 | if (!WarnCategoryMethodImpl) |
2861 | WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl: I, |
2862 | IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl)); |
2863 | else if (!I->isPropertyAccessor()) |
2864 | WarnExactTypedMethods(ImpMethodDecl, MethodDecl: I, IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl)); |
2865 | } |
2866 | } |
2867 | } |
2868 | |
2869 | // Check and see if class methods in class interface have been |
2870 | // implemented in the implementation class. If so, their types match. |
2871 | for (auto *I : CDecl->class_methods()) { |
2872 | if (!ClsMapSeen.insert(Ptr: I->getSelector()).second) |
2873 | continue; |
2874 | if (!I->isPropertyAccessor() && |
2875 | !ClsMap.count(Ptr: I->getSelector())) { |
2876 | if (ImmediateClass) |
2877 | WarnUndefinedMethod(S&: SemaRef, Impl: IMPDecl, method: I, IncompleteImpl, |
2878 | DiagID: diag::warn_undef_method_impl); |
2879 | } else { |
2880 | ObjCMethodDecl *ImpMethodDecl = |
2881 | IMPDecl->getClassMethod(Sel: I->getSelector()); |
2882 | assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) && |
2883 | "Expected to find the method through lookup as well" ); |
2884 | // ImpMethodDecl may be null as in a @dynamic property. |
2885 | if (ImpMethodDecl) { |
2886 | // Skip property accessor function stubs. |
2887 | if (ImpMethodDecl->isSynthesizedAccessorStub()) |
2888 | continue; |
2889 | if (!WarnCategoryMethodImpl) |
2890 | WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl: I, |
2891 | IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl)); |
2892 | else if (!I->isPropertyAccessor()) |
2893 | WarnExactTypedMethods(ImpMethodDecl, MethodDecl: I, IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: CDecl)); |
2894 | } |
2895 | } |
2896 | } |
2897 | |
2898 | if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (Val: CDecl)) { |
2899 | // Also, check for methods declared in protocols inherited by |
2900 | // this protocol. |
2901 | for (auto *PI : PD->protocols()) |
2902 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
2903 | IMPDecl, CDecl: PI, IncompleteImpl, ImmediateClass: false, |
2904 | WarnCategoryMethodImpl); |
2905 | } |
2906 | |
2907 | if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (Val: CDecl)) { |
2908 | // when checking that methods in implementation match their declaration, |
2909 | // i.e. when WarnCategoryMethodImpl is false, check declarations in class |
2910 | // extension; as well as those in categories. |
2911 | if (!WarnCategoryMethodImpl) { |
2912 | for (auto *Cat : I->visible_categories()) |
2913 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
2914 | IMPDecl, CDecl: Cat, IncompleteImpl, |
2915 | ImmediateClass: ImmediateClass && Cat->IsClassExtension(), |
2916 | WarnCategoryMethodImpl); |
2917 | } else { |
2918 | // Also methods in class extensions need be looked at next. |
2919 | for (auto *Ext : I->visible_extensions()) |
2920 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
2921 | IMPDecl, CDecl: Ext, IncompleteImpl, ImmediateClass: false, |
2922 | WarnCategoryMethodImpl); |
2923 | } |
2924 | |
2925 | // Check for any implementation of a methods declared in protocol. |
2926 | for (auto *PI : I->all_referenced_protocols()) |
2927 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
2928 | IMPDecl, CDecl: PI, IncompleteImpl, ImmediateClass: false, |
2929 | WarnCategoryMethodImpl); |
2930 | |
2931 | // FIXME. For now, we are not checking for exact match of methods |
2932 | // in category implementation and its primary class's super class. |
2933 | if (!WarnCategoryMethodImpl && I->getSuperClass()) |
2934 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
2935 | IMPDecl, |
2936 | CDecl: I->getSuperClass(), IncompleteImpl, ImmediateClass: false); |
2937 | } |
2938 | } |
2939 | |
2940 | /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in |
2941 | /// category matches with those implemented in its primary class and |
2942 | /// warns each time an exact match is found. |
2943 | void SemaObjC::CheckCategoryVsClassMethodMatches( |
2944 | ObjCCategoryImplDecl *CatIMPDecl) { |
2945 | // Get category's primary class. |
2946 | ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl(); |
2947 | if (!CatDecl) |
2948 | return; |
2949 | ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface(); |
2950 | if (!IDecl) |
2951 | return; |
2952 | ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass(); |
2953 | SelectorSet InsMap, ClsMap; |
2954 | |
2955 | for (const auto *I : CatIMPDecl->instance_methods()) { |
2956 | Selector Sel = I->getSelector(); |
2957 | // When checking for methods implemented in the category, skip over |
2958 | // those declared in category class's super class. This is because |
2959 | // the super class must implement the method. |
2960 | if (SuperIDecl && SuperIDecl->lookupMethod(Sel, isInstance: true)) |
2961 | continue; |
2962 | InsMap.insert(Ptr: Sel); |
2963 | } |
2964 | |
2965 | for (const auto *I : CatIMPDecl->class_methods()) { |
2966 | Selector Sel = I->getSelector(); |
2967 | if (SuperIDecl && SuperIDecl->lookupMethod(Sel, isInstance: false)) |
2968 | continue; |
2969 | ClsMap.insert(Ptr: Sel); |
2970 | } |
2971 | if (InsMap.empty() && ClsMap.empty()) |
2972 | return; |
2973 | |
2974 | SelectorSet InsMapSeen, ClsMapSeen; |
2975 | bool IncompleteImpl = false; |
2976 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
2977 | IMPDecl: CatIMPDecl, CDecl: IDecl, |
2978 | IncompleteImpl, ImmediateClass: false, |
2979 | WarnCategoryMethodImpl: true /*WarnCategoryMethodImpl*/); |
2980 | } |
2981 | |
2982 | void SemaObjC::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl *IMPDecl, |
2983 | ObjCContainerDecl *CDecl, |
2984 | bool IncompleteImpl) { |
2985 | SelectorSet InsMap; |
2986 | // Check and see if instance methods in class interface have been |
2987 | // implemented in the implementation class. |
2988 | for (const auto *I : IMPDecl->instance_methods()) |
2989 | InsMap.insert(Ptr: I->getSelector()); |
2990 | |
2991 | // Add the selectors for getters/setters of @dynamic properties. |
2992 | for (const auto *PImpl : IMPDecl->property_impls()) { |
2993 | // We only care about @dynamic implementations. |
2994 | if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic) |
2995 | continue; |
2996 | |
2997 | const auto *P = PImpl->getPropertyDecl(); |
2998 | if (!P) continue; |
2999 | |
3000 | InsMap.insert(Ptr: P->getGetterName()); |
3001 | if (!P->getSetterName().isNull()) |
3002 | InsMap.insert(Ptr: P->getSetterName()); |
3003 | } |
3004 | |
3005 | // Check and see if properties declared in the interface have either 1) |
3006 | // an implementation or 2) there is a @synthesize/@dynamic implementation |
3007 | // of the property in the @implementation. |
3008 | if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(Val: CDecl)) { |
3009 | bool SynthesizeProperties = getLangOpts().ObjCDefaultSynthProperties && |
3010 | getLangOpts().ObjCRuntime.isNonFragile() && |
3011 | !IDecl->isObjCRequiresPropertyDefs(); |
3012 | DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties); |
3013 | } |
3014 | |
3015 | // Diagnose null-resettable synthesized setters. |
3016 | diagnoseNullResettableSynthesizedSetters(impDecl: IMPDecl); |
3017 | |
3018 | SelectorSet ClsMap; |
3019 | for (const auto *I : IMPDecl->class_methods()) |
3020 | ClsMap.insert(Ptr: I->getSelector()); |
3021 | |
3022 | // Check for type conflict of methods declared in a class/protocol and |
3023 | // its implementation; if any. |
3024 | SelectorSet InsMapSeen, ClsMapSeen; |
3025 | MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen, |
3026 | IMPDecl, CDecl, |
3027 | IncompleteImpl, ImmediateClass: true); |
3028 | |
3029 | // check all methods implemented in category against those declared |
3030 | // in its primary class. |
3031 | if (ObjCCategoryImplDecl *CatDecl = |
3032 | dyn_cast<ObjCCategoryImplDecl>(Val: IMPDecl)) |
3033 | CheckCategoryVsClassMethodMatches(CatIMPDecl: CatDecl); |
3034 | |
3035 | // Check the protocol list for unimplemented methods in the @implementation |
3036 | // class. |
3037 | // Check and see if class methods in class interface have been |
3038 | // implemented in the implementation class. |
3039 | |
3040 | LazyProtocolNameSet ExplicitImplProtocols; |
3041 | |
3042 | if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (Val: CDecl)) { |
3043 | for (auto *PI : I->all_referenced_protocols()) |
3044 | CheckProtocolMethodDefs(S&: SemaRef, Impl: IMPDecl, PDecl: PI, IncompleteImpl, InsMap, |
3045 | ClsMap, CDecl: I, ProtocolsExplictImpl&: ExplicitImplProtocols); |
3046 | } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: CDecl)) { |
3047 | // For extended class, unimplemented methods in its protocols will |
3048 | // be reported in the primary class. |
3049 | if (!C->IsClassExtension()) { |
3050 | for (auto *P : C->protocols()) |
3051 | CheckProtocolMethodDefs(S&: SemaRef, Impl: IMPDecl, PDecl: P, IncompleteImpl, InsMap, |
3052 | ClsMap, CDecl, ProtocolsExplictImpl&: ExplicitImplProtocols); |
3053 | DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, |
3054 | /*SynthesizeProperties=*/false); |
3055 | } |
3056 | } else |
3057 | llvm_unreachable("invalid ObjCContainerDecl type." ); |
3058 | } |
3059 | |
3060 | SemaObjC::DeclGroupPtrTy SemaObjC::ActOnForwardClassDeclaration( |
3061 | SourceLocation AtClassLoc, IdentifierInfo **IdentList, |
3062 | SourceLocation *IdentLocs, ArrayRef<ObjCTypeParamList *> TypeParamLists, |
3063 | unsigned NumElts) { |
3064 | ASTContext &Context = getASTContext(); |
3065 | SmallVector<Decl *, 8> DeclsInGroup; |
3066 | for (unsigned i = 0; i != NumElts; ++i) { |
3067 | // Check for another declaration kind with the same name. |
3068 | NamedDecl *PrevDecl = SemaRef.LookupSingleName( |
3069 | S: SemaRef.TUScope, Name: IdentList[i], Loc: IdentLocs[i], NameKind: Sema::LookupOrdinaryName, |
3070 | Redecl: SemaRef.forRedeclarationInCurContext()); |
3071 | if (PrevDecl && !isa<ObjCInterfaceDecl>(Val: PrevDecl)) { |
3072 | // GCC apparently allows the following idiom: |
3073 | // |
3074 | // typedef NSObject < XCElementTogglerP > XCElementToggler; |
3075 | // @class XCElementToggler; |
3076 | // |
3077 | // Here we have chosen to ignore the forward class declaration |
3078 | // with a warning. Since this is the implied behavior. |
3079 | TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(Val: PrevDecl); |
3080 | if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) { |
3081 | Diag(Loc: AtClassLoc, DiagID: diag::err_redefinition_different_kind) << IdentList[i]; |
3082 | Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_definition); |
3083 | } else { |
3084 | // a forward class declaration matching a typedef name of a class refers |
3085 | // to the underlying class. Just ignore the forward class with a warning |
3086 | // as this will force the intended behavior which is to lookup the |
3087 | // typedef name. |
3088 | if (isa<ObjCObjectType>(Val: TDD->getUnderlyingType())) { |
3089 | Diag(Loc: AtClassLoc, DiagID: diag::warn_forward_class_redefinition) |
3090 | << IdentList[i]; |
3091 | Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_definition); |
3092 | continue; |
3093 | } |
3094 | } |
3095 | } |
3096 | |
3097 | // Create a declaration to describe this forward declaration. |
3098 | ObjCInterfaceDecl *PrevIDecl |
3099 | = dyn_cast_or_null<ObjCInterfaceDecl>(Val: PrevDecl); |
3100 | |
3101 | IdentifierInfo *ClassName = IdentList[i]; |
3102 | if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) { |
3103 | // A previous decl with a different name is because of |
3104 | // @compatibility_alias, for example: |
3105 | // \code |
3106 | // @class NewImage; |
3107 | // @compatibility_alias OldImage NewImage; |
3108 | // \endcode |
3109 | // A lookup for 'OldImage' will return the 'NewImage' decl. |
3110 | // |
3111 | // In such a case use the real declaration name, instead of the alias one, |
3112 | // otherwise we will break IdentifierResolver and redecls-chain invariants. |
3113 | // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl |
3114 | // has been aliased. |
3115 | ClassName = PrevIDecl->getIdentifier(); |
3116 | } |
3117 | |
3118 | // If this forward declaration has type parameters, compare them with the |
3119 | // type parameters of the previous declaration. |
3120 | ObjCTypeParamList *TypeParams = TypeParamLists[i]; |
3121 | if (PrevIDecl && TypeParams) { |
3122 | if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) { |
3123 | // Check for consistency with the previous declaration. |
3124 | if (checkTypeParamListConsistency( |
3125 | S&: SemaRef, prevTypeParams: PrevTypeParams, newTypeParams: TypeParams, |
3126 | newContext: TypeParamListContext::ForwardDeclaration)) { |
3127 | TypeParams = nullptr; |
3128 | } |
3129 | } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) { |
3130 | // The @interface does not have type parameters. Complain. |
3131 | Diag(Loc: IdentLocs[i], DiagID: diag::err_objc_parameterized_forward_class) |
3132 | << ClassName |
3133 | << TypeParams->getSourceRange(); |
3134 | Diag(Loc: Def->getLocation(), DiagID: diag::note_defined_here) |
3135 | << ClassName; |
3136 | |
3137 | TypeParams = nullptr; |
3138 | } |
3139 | } |
3140 | |
3141 | ObjCInterfaceDecl *IDecl = ObjCInterfaceDecl::Create( |
3142 | C: Context, DC: SemaRef.CurContext, atLoc: AtClassLoc, Id: ClassName, typeParamList: TypeParams, |
3143 | PrevDecl: PrevIDecl, ClassLoc: IdentLocs[i]); |
3144 | IDecl->setAtEndRange(IdentLocs[i]); |
3145 | |
3146 | if (PrevIDecl) |
3147 | SemaRef.mergeDeclAttributes(New: IDecl, Old: PrevIDecl); |
3148 | |
3149 | SemaRef.PushOnScopeChains(D: IDecl, S: SemaRef.TUScope); |
3150 | CheckObjCDeclScope(D: IDecl); |
3151 | DeclsInGroup.push_back(Elt: IDecl); |
3152 | } |
3153 | |
3154 | return SemaRef.BuildDeclaratorGroup(Group: DeclsInGroup); |
3155 | } |
3156 | |
3157 | static bool tryMatchRecordTypes(ASTContext &Context, |
3158 | SemaObjC::MethodMatchStrategy strategy, |
3159 | const Type *left, const Type *right); |
3160 | |
3161 | static bool matchTypes(ASTContext &Context, |
3162 | SemaObjC::MethodMatchStrategy strategy, QualType leftQT, |
3163 | QualType rightQT) { |
3164 | const Type *left = |
3165 | Context.getCanonicalType(T: leftQT).getUnqualifiedType().getTypePtr(); |
3166 | const Type *right = |
3167 | Context.getCanonicalType(T: rightQT).getUnqualifiedType().getTypePtr(); |
3168 | |
3169 | if (left == right) return true; |
3170 | |
3171 | // If we're doing a strict match, the types have to match exactly. |
3172 | if (strategy == SemaObjC::MMS_strict) |
3173 | return false; |
3174 | |
3175 | if (left->isIncompleteType() || right->isIncompleteType()) return false; |
3176 | |
3177 | // Otherwise, use this absurdly complicated algorithm to try to |
3178 | // validate the basic, low-level compatibility of the two types. |
3179 | |
3180 | // As a minimum, require the sizes and alignments to match. |
3181 | TypeInfo LeftTI = Context.getTypeInfo(T: left); |
3182 | TypeInfo RightTI = Context.getTypeInfo(T: right); |
3183 | if (LeftTI.Width != RightTI.Width) |
3184 | return false; |
3185 | |
3186 | if (LeftTI.Align != RightTI.Align) |
3187 | return false; |
3188 | |
3189 | // Consider all the kinds of non-dependent canonical types: |
3190 | // - functions and arrays aren't possible as return and parameter types |
3191 | |
3192 | // - vector types of equal size can be arbitrarily mixed |
3193 | if (isa<VectorType>(Val: left)) return isa<VectorType>(Val: right); |
3194 | if (isa<VectorType>(Val: right)) return false; |
3195 | |
3196 | // - references should only match references of identical type |
3197 | // - structs, unions, and Objective-C objects must match more-or-less |
3198 | // exactly |
3199 | // - everything else should be a scalar |
3200 | if (!left->isScalarType() || !right->isScalarType()) |
3201 | return tryMatchRecordTypes(Context, strategy, left, right); |
3202 | |
3203 | // Make scalars agree in kind, except count bools as chars, and group |
3204 | // all non-member pointers together. |
3205 | Type::ScalarTypeKind leftSK = left->getScalarTypeKind(); |
3206 | Type::ScalarTypeKind rightSK = right->getScalarTypeKind(); |
3207 | if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral; |
3208 | if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral; |
3209 | if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer) |
3210 | leftSK = Type::STK_ObjCObjectPointer; |
3211 | if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer) |
3212 | rightSK = Type::STK_ObjCObjectPointer; |
3213 | |
3214 | // Note that data member pointers and function member pointers don't |
3215 | // intermix because of the size differences. |
3216 | |
3217 | return (leftSK == rightSK); |
3218 | } |
3219 | |
3220 | static bool tryMatchRecordTypes(ASTContext &Context, |
3221 | SemaObjC::MethodMatchStrategy strategy, |
3222 | const Type *lt, const Type *rt) { |
3223 | assert(lt && rt && lt != rt); |
3224 | |
3225 | if (!isa<RecordType>(Val: lt) || !isa<RecordType>(Val: rt)) return false; |
3226 | RecordDecl *left = cast<RecordType>(Val: lt)->getDecl(); |
3227 | RecordDecl *right = cast<RecordType>(Val: rt)->getDecl(); |
3228 | |
3229 | // Require union-hood to match. |
3230 | if (left->isUnion() != right->isUnion()) return false; |
3231 | |
3232 | // Require an exact match if either is non-POD. |
3233 | if ((isa<CXXRecordDecl>(Val: left) && !cast<CXXRecordDecl>(Val: left)->isPOD()) || |
3234 | (isa<CXXRecordDecl>(Val: right) && !cast<CXXRecordDecl>(Val: right)->isPOD())) |
3235 | return false; |
3236 | |
3237 | // Require size and alignment to match. |
3238 | TypeInfo LeftTI = Context.getTypeInfo(T: lt); |
3239 | TypeInfo RightTI = Context.getTypeInfo(T: rt); |
3240 | if (LeftTI.Width != RightTI.Width) |
3241 | return false; |
3242 | |
3243 | if (LeftTI.Align != RightTI.Align) |
3244 | return false; |
3245 | |
3246 | // Require fields to match. |
3247 | RecordDecl::field_iterator li = left->field_begin(), le = left->field_end(); |
3248 | RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end(); |
3249 | for (; li != le && ri != re; ++li, ++ri) { |
3250 | if (!matchTypes(Context, strategy, leftQT: li->getType(), rightQT: ri->getType())) |
3251 | return false; |
3252 | } |
3253 | return (li == le && ri == re); |
3254 | } |
3255 | |
3256 | /// MatchTwoMethodDeclarations - Checks that two methods have matching type and |
3257 | /// returns true, or false, accordingly. |
3258 | /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons |
3259 | bool SemaObjC::MatchTwoMethodDeclarations(const ObjCMethodDecl *left, |
3260 | const ObjCMethodDecl *right, |
3261 | MethodMatchStrategy strategy) { |
3262 | ASTContext &Context = getASTContext(); |
3263 | if (!matchTypes(Context, strategy, leftQT: left->getReturnType(), |
3264 | rightQT: right->getReturnType())) |
3265 | return false; |
3266 | |
3267 | // If either is hidden, it is not considered to match. |
3268 | if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible()) |
3269 | return false; |
3270 | |
3271 | if (left->isDirectMethod() != right->isDirectMethod()) |
3272 | return false; |
3273 | |
3274 | if (getLangOpts().ObjCAutoRefCount && |
3275 | (left->hasAttr<NSReturnsRetainedAttr>() |
3276 | != right->hasAttr<NSReturnsRetainedAttr>() || |
3277 | left->hasAttr<NSConsumesSelfAttr>() |
3278 | != right->hasAttr<NSConsumesSelfAttr>())) |
3279 | return false; |
3280 | |
3281 | ObjCMethodDecl::param_const_iterator |
3282 | li = left->param_begin(), le = left->param_end(), ri = right->param_begin(), |
3283 | re = right->param_end(); |
3284 | |
3285 | for (; li != le && ri != re; ++li, ++ri) { |
3286 | assert(ri != right->param_end() && "Param mismatch" ); |
3287 | const ParmVarDecl *lparm = *li, *rparm = *ri; |
3288 | |
3289 | if (!matchTypes(Context, strategy, leftQT: lparm->getType(), rightQT: rparm->getType())) |
3290 | return false; |
3291 | |
3292 | if (getLangOpts().ObjCAutoRefCount && |
3293 | lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>()) |
3294 | return false; |
3295 | } |
3296 | return true; |
3297 | } |
3298 | |
3299 | static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method, |
3300 | ObjCMethodDecl *MethodInList) { |
3301 | auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Val: Method->getDeclContext()); |
3302 | auto *MethodInListProtocol = |
3303 | dyn_cast<ObjCProtocolDecl>(Val: MethodInList->getDeclContext()); |
3304 | // If this method belongs to a protocol but the method in list does not, or |
3305 | // vice versa, we say the context is not the same. |
3306 | if ((MethodProtocol && !MethodInListProtocol) || |
3307 | (!MethodProtocol && MethodInListProtocol)) |
3308 | return false; |
3309 | |
3310 | if (MethodProtocol && MethodInListProtocol) |
3311 | return true; |
3312 | |
3313 | ObjCInterfaceDecl *MethodInterface = Method->getClassInterface(); |
3314 | ObjCInterfaceDecl *MethodInListInterface = |
3315 | MethodInList->getClassInterface(); |
3316 | return MethodInterface == MethodInListInterface; |
3317 | } |
3318 | |
3319 | void SemaObjC::addMethodToGlobalList(ObjCMethodList *List, |
3320 | ObjCMethodDecl *Method) { |
3321 | // Record at the head of the list whether there were 0, 1, or >= 2 methods |
3322 | // inside categories. |
3323 | if (ObjCCategoryDecl *CD = |
3324 | dyn_cast<ObjCCategoryDecl>(Val: Method->getDeclContext())) |
3325 | if (!CD->IsClassExtension() && List->getBits() < 2) |
3326 | List->setBits(List->getBits() + 1); |
3327 | |
3328 | // If the list is empty, make it a singleton list. |
3329 | if (List->getMethod() == nullptr) { |
3330 | List->setMethod(Method); |
3331 | List->setNext(nullptr); |
3332 | return; |
3333 | } |
3334 | |
3335 | // We've seen a method with this name, see if we have already seen this type |
3336 | // signature. |
3337 | ObjCMethodList *Previous = List; |
3338 | ObjCMethodList *ListWithSameDeclaration = nullptr; |
3339 | for (; List; Previous = List, List = List->getNext()) { |
3340 | // If we are building a module, keep all of the methods. |
3341 | if (getLangOpts().isCompilingModule()) |
3342 | continue; |
3343 | |
3344 | bool SameDeclaration = MatchTwoMethodDeclarations(left: Method, |
3345 | right: List->getMethod()); |
3346 | // Looking for method with a type bound requires the correct context exists. |
3347 | // We need to insert a method into the list if the context is different. |
3348 | // If the method's declaration matches the list |
3349 | // a> the method belongs to a different context: we need to insert it, in |
3350 | // order to emit the availability message, we need to prioritize over |
3351 | // availability among the methods with the same declaration. |
3352 | // b> the method belongs to the same context: there is no need to insert a |
3353 | // new entry. |
3354 | // If the method's declaration does not match the list, we insert it to the |
3355 | // end. |
3356 | if (!SameDeclaration || |
3357 | !isMethodContextSameForKindofLookup(Method, MethodInList: List->getMethod())) { |
3358 | // Even if two method types do not match, we would like to say |
3359 | // there is more than one declaration so unavailability/deprecated |
3360 | // warning is not too noisy. |
3361 | if (!Method->isDefined()) |
3362 | List->setHasMoreThanOneDecl(true); |
3363 | |
3364 | // For methods with the same declaration, the one that is deprecated |
3365 | // should be put in the front for better diagnostics. |
3366 | if (Method->isDeprecated() && SameDeclaration && |
3367 | !ListWithSameDeclaration && !List->getMethod()->isDeprecated()) |
3368 | ListWithSameDeclaration = List; |
3369 | |
3370 | if (Method->isUnavailable() && SameDeclaration && |
3371 | !ListWithSameDeclaration && |
3372 | List->getMethod()->getAvailability() < AR_Deprecated) |
3373 | ListWithSameDeclaration = List; |
3374 | continue; |
3375 | } |
3376 | |
3377 | ObjCMethodDecl *PrevObjCMethod = List->getMethod(); |
3378 | |
3379 | // Propagate the 'defined' bit. |
3380 | if (Method->isDefined()) |
3381 | PrevObjCMethod->setDefined(true); |
3382 | else { |
3383 | // Objective-C doesn't allow an @interface for a class after its |
3384 | // @implementation. So if Method is not defined and there already is |
3385 | // an entry for this type signature, Method has to be for a different |
3386 | // class than PrevObjCMethod. |
3387 | List->setHasMoreThanOneDecl(true); |
3388 | } |
3389 | |
3390 | // If a method is deprecated, push it in the global pool. |
3391 | // This is used for better diagnostics. |
3392 | if (Method->isDeprecated()) { |
3393 | if (!PrevObjCMethod->isDeprecated()) |
3394 | List->setMethod(Method); |
3395 | } |
3396 | // If the new method is unavailable, push it into global pool |
3397 | // unless previous one is deprecated. |
3398 | if (Method->isUnavailable()) { |
3399 | if (PrevObjCMethod->getAvailability() < AR_Deprecated) |
3400 | List->setMethod(Method); |
3401 | } |
3402 | |
3403 | return; |
3404 | } |
3405 | |
3406 | // We have a new signature for an existing method - add it. |
3407 | // This is extremely rare. Only 1% of Cocoa selectors are "overloaded". |
3408 | ObjCMethodList *Mem = SemaRef.BumpAlloc.Allocate<ObjCMethodList>(); |
3409 | |
3410 | // We insert it right before ListWithSameDeclaration. |
3411 | if (ListWithSameDeclaration) { |
3412 | auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration); |
3413 | // FIXME: should we clear the other bits in ListWithSameDeclaration? |
3414 | ListWithSameDeclaration->setMethod(Method); |
3415 | ListWithSameDeclaration->setNext(List); |
3416 | return; |
3417 | } |
3418 | |
3419 | Previous->setNext(new (Mem) ObjCMethodList(Method)); |
3420 | } |
3421 | |
3422 | /// Read the contents of the method pool for a given selector from |
3423 | /// external storage. |
3424 | void SemaObjC::ReadMethodPool(Selector Sel) { |
3425 | assert(SemaRef.ExternalSource && "We need an external AST source" ); |
3426 | SemaRef.ExternalSource->ReadMethodPool(Sel); |
3427 | } |
3428 | |
3429 | void SemaObjC::updateOutOfDateSelector(Selector Sel) { |
3430 | if (!SemaRef.ExternalSource) |
3431 | return; |
3432 | SemaRef.ExternalSource->updateOutOfDateSelector(Sel); |
3433 | } |
3434 | |
3435 | void SemaObjC::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl, |
3436 | bool instance) { |
3437 | // Ignore methods of invalid containers. |
3438 | if (cast<Decl>(Val: Method->getDeclContext())->isInvalidDecl()) |
3439 | return; |
3440 | |
3441 | if (SemaRef.ExternalSource) |
3442 | ReadMethodPool(Sel: Method->getSelector()); |
3443 | |
3444 | GlobalMethodPool::iterator Pos = MethodPool.find(Sel: Method->getSelector()); |
3445 | if (Pos == MethodPool.end()) |
3446 | Pos = MethodPool |
3447 | .insert(Val: std::make_pair(x: Method->getSelector(), |
3448 | y: GlobalMethodPool::Lists())) |
3449 | .first; |
3450 | |
3451 | Method->setDefined(impl); |
3452 | |
3453 | ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second; |
3454 | addMethodToGlobalList(List: &Entry, Method); |
3455 | } |
3456 | |
3457 | /// Determines if this is an "acceptable" loose mismatch in the global |
3458 | /// method pool. This exists mostly as a hack to get around certain |
3459 | /// global mismatches which we can't afford to make warnings / errors. |
3460 | /// Really, what we want is a way to take a method out of the global |
3461 | /// method pool. |
3462 | static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen, |
3463 | ObjCMethodDecl *other) { |
3464 | if (!chosen->isInstanceMethod()) |
3465 | return false; |
3466 | |
3467 | if (chosen->isDirectMethod() != other->isDirectMethod()) |
3468 | return false; |
3469 | |
3470 | Selector sel = chosen->getSelector(); |
3471 | if (!sel.isUnarySelector() || sel.getNameForSlot(argIndex: 0) != "length" ) |
3472 | return false; |
3473 | |
3474 | // Don't complain about mismatches for -length if the method we |
3475 | // chose has an integral result type. |
3476 | return (chosen->getReturnType()->isIntegerType()); |
3477 | } |
3478 | |
3479 | /// Return true if the given method is wthin the type bound. |
3480 | static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method, |
3481 | const ObjCObjectType *TypeBound) { |
3482 | if (!TypeBound) |
3483 | return true; |
3484 | |
3485 | if (TypeBound->isObjCId()) |
3486 | // FIXME: should we handle the case of bounding to id<A, B> differently? |
3487 | return true; |
3488 | |
3489 | auto *BoundInterface = TypeBound->getInterface(); |
3490 | assert(BoundInterface && "unexpected object type!" ); |
3491 | |
3492 | // Check if the Method belongs to a protocol. We should allow any method |
3493 | // defined in any protocol, because any subclass could adopt the protocol. |
3494 | auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Val: Method->getDeclContext()); |
3495 | if (MethodProtocol) { |
3496 | return true; |
3497 | } |
3498 | |
3499 | // If the Method belongs to a class, check if it belongs to the class |
3500 | // hierarchy of the class bound. |
3501 | if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) { |
3502 | // We allow methods declared within classes that are part of the hierarchy |
3503 | // of the class bound (superclass of, subclass of, or the same as the class |
3504 | // bound). |
3505 | return MethodInterface == BoundInterface || |
3506 | MethodInterface->isSuperClassOf(I: BoundInterface) || |
3507 | BoundInterface->isSuperClassOf(I: MethodInterface); |
3508 | } |
3509 | llvm_unreachable("unknown method context" ); |
3510 | } |
3511 | |
3512 | /// We first select the type of the method: Instance or Factory, then collect |
3513 | /// all methods with that type. |
3514 | bool SemaObjC::CollectMultipleMethodsInGlobalPool( |
3515 | Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods, |
3516 | bool InstanceFirst, bool CheckTheOther, const ObjCObjectType *TypeBound) { |
3517 | if (SemaRef.ExternalSource) |
3518 | ReadMethodPool(Sel); |
3519 | |
3520 | GlobalMethodPool::iterator Pos = MethodPool.find(Sel); |
3521 | if (Pos == MethodPool.end()) |
3522 | return false; |
3523 | |
3524 | // Gather the non-hidden methods. |
3525 | ObjCMethodList &MethList = InstanceFirst ? Pos->second.first : |
3526 | Pos->second.second; |
3527 | for (ObjCMethodList *M = &MethList; M; M = M->getNext()) |
3528 | if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) { |
3529 | if (FilterMethodsByTypeBound(Method: M->getMethod(), TypeBound)) |
3530 | Methods.push_back(Elt: M->getMethod()); |
3531 | } |
3532 | |
3533 | // Return if we find any method with the desired kind. |
3534 | if (!Methods.empty()) |
3535 | return Methods.size() > 1; |
3536 | |
3537 | if (!CheckTheOther) |
3538 | return false; |
3539 | |
3540 | // Gather the other kind. |
3541 | ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second : |
3542 | Pos->second.first; |
3543 | for (ObjCMethodList *M = &MethList2; M; M = M->getNext()) |
3544 | if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) { |
3545 | if (FilterMethodsByTypeBound(Method: M->getMethod(), TypeBound)) |
3546 | Methods.push_back(Elt: M->getMethod()); |
3547 | } |
3548 | |
3549 | return Methods.size() > 1; |
3550 | } |
3551 | |
3552 | bool SemaObjC::AreMultipleMethodsInGlobalPool( |
3553 | Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R, |
3554 | bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) { |
3555 | // Diagnose finding more than one method in global pool. |
3556 | SmallVector<ObjCMethodDecl *, 4> FilteredMethods; |
3557 | FilteredMethods.push_back(Elt: BestMethod); |
3558 | |
3559 | for (auto *M : Methods) |
3560 | if (M != BestMethod && !M->hasAttr<UnavailableAttr>()) |
3561 | FilteredMethods.push_back(Elt: M); |
3562 | |
3563 | if (FilteredMethods.size() > 1) |
3564 | DiagnoseMultipleMethodInGlobalPool(Methods&: FilteredMethods, Sel, R, |
3565 | receiverIdOrClass); |
3566 | |
3567 | GlobalMethodPool::iterator Pos = MethodPool.find(Sel); |
3568 | // Test for no method in the pool which should not trigger any warning by |
3569 | // caller. |
3570 | if (Pos == MethodPool.end()) |
3571 | return true; |
3572 | ObjCMethodList &MethList = |
3573 | BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second; |
3574 | return MethList.hasMoreThanOneDecl(); |
3575 | } |
3576 | |
3577 | ObjCMethodDecl *SemaObjC::LookupMethodInGlobalPool(Selector Sel, SourceRange R, |
3578 | bool receiverIdOrClass, |
3579 | bool instance) { |
3580 | if (SemaRef.ExternalSource) |
3581 | ReadMethodPool(Sel); |
3582 | |
3583 | GlobalMethodPool::iterator Pos = MethodPool.find(Sel); |
3584 | if (Pos == MethodPool.end()) |
3585 | return nullptr; |
3586 | |
3587 | // Gather the non-hidden methods. |
3588 | ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second; |
3589 | SmallVector<ObjCMethodDecl *, 4> Methods; |
3590 | for (ObjCMethodList *M = &MethList; M; M = M->getNext()) { |
3591 | if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) |
3592 | return M->getMethod(); |
3593 | } |
3594 | return nullptr; |
3595 | } |
3596 | |
3597 | void SemaObjC::DiagnoseMultipleMethodInGlobalPool( |
3598 | SmallVectorImpl<ObjCMethodDecl *> &Methods, Selector Sel, SourceRange R, |
3599 | bool receiverIdOrClass) { |
3600 | // We found multiple methods, so we may have to complain. |
3601 | bool issueDiagnostic = false, issueError = false; |
3602 | |
3603 | // We support a warning which complains about *any* difference in |
3604 | // method signature. |
3605 | bool strictSelectorMatch = |
3606 | receiverIdOrClass && |
3607 | !getDiagnostics().isIgnored(DiagID: diag::warn_strict_multiple_method_decl, |
3608 | Loc: R.getBegin()); |
3609 | if (strictSelectorMatch) { |
3610 | for (unsigned I = 1, N = Methods.size(); I != N; ++I) { |
3611 | if (!MatchTwoMethodDeclarations(left: Methods[0], right: Methods[I], strategy: MMS_strict)) { |
3612 | issueDiagnostic = true; |
3613 | break; |
3614 | } |
3615 | } |
3616 | } |
3617 | |
3618 | // If we didn't see any strict differences, we won't see any loose |
3619 | // differences. In ARC, however, we also need to check for loose |
3620 | // mismatches, because most of them are errors. |
3621 | if (!strictSelectorMatch || |
3622 | (issueDiagnostic && getLangOpts().ObjCAutoRefCount)) |
3623 | for (unsigned I = 1, N = Methods.size(); I != N; ++I) { |
3624 | // This checks if the methods differ in type mismatch. |
3625 | if (!MatchTwoMethodDeclarations(left: Methods[0], right: Methods[I], strategy: MMS_loose) && |
3626 | !isAcceptableMethodMismatch(chosen: Methods[0], other: Methods[I])) { |
3627 | issueDiagnostic = true; |
3628 | if (getLangOpts().ObjCAutoRefCount) |
3629 | issueError = true; |
3630 | break; |
3631 | } |
3632 | } |
3633 | |
3634 | if (issueDiagnostic) { |
3635 | if (issueError) |
3636 | Diag(Loc: R.getBegin(), DiagID: diag::err_arc_multiple_method_decl) << Sel << R; |
3637 | else if (strictSelectorMatch) |
3638 | Diag(Loc: R.getBegin(), DiagID: diag::warn_strict_multiple_method_decl) << Sel << R; |
3639 | else |
3640 | Diag(Loc: R.getBegin(), DiagID: diag::warn_multiple_method_decl) << Sel << R; |
3641 | |
3642 | Diag(Loc: Methods[0]->getBeginLoc(), |
3643 | DiagID: issueError ? diag::note_possibility : diag::note_using) |
3644 | << Methods[0]->getSourceRange(); |
3645 | for (unsigned I = 1, N = Methods.size(); I != N; ++I) { |
3646 | Diag(Loc: Methods[I]->getBeginLoc(), DiagID: diag::note_also_found) |
3647 | << Methods[I]->getSourceRange(); |
3648 | } |
3649 | } |
3650 | } |
3651 | |
3652 | ObjCMethodDecl *SemaObjC::LookupImplementedMethodInGlobalPool(Selector Sel) { |
3653 | GlobalMethodPool::iterator Pos = MethodPool.find(Sel); |
3654 | if (Pos == MethodPool.end()) |
3655 | return nullptr; |
3656 | |
3657 | GlobalMethodPool::Lists &Methods = Pos->second; |
3658 | for (const ObjCMethodList *Method = &Methods.first; Method; |
3659 | Method = Method->getNext()) |
3660 | if (Method->getMethod() && |
3661 | (Method->getMethod()->isDefined() || |
3662 | Method->getMethod()->isPropertyAccessor())) |
3663 | return Method->getMethod(); |
3664 | |
3665 | for (const ObjCMethodList *Method = &Methods.second; Method; |
3666 | Method = Method->getNext()) |
3667 | if (Method->getMethod() && |
3668 | (Method->getMethod()->isDefined() || |
3669 | Method->getMethod()->isPropertyAccessor())) |
3670 | return Method->getMethod(); |
3671 | return nullptr; |
3672 | } |
3673 | |
3674 | static void |
3675 | HelperSelectorsForTypoCorrection( |
3676 | SmallVectorImpl<const ObjCMethodDecl *> &BestMethod, |
3677 | StringRef Typo, const ObjCMethodDecl * Method) { |
3678 | const unsigned MaxEditDistance = 1; |
3679 | unsigned BestEditDistance = MaxEditDistance + 1; |
3680 | std::string MethodName = Method->getSelector().getAsString(); |
3681 | |
3682 | unsigned MinPossibleEditDistance = abs(x: (int)MethodName.size() - (int)Typo.size()); |
3683 | if (MinPossibleEditDistance > 0 && |
3684 | Typo.size() / MinPossibleEditDistance < 1) |
3685 | return; |
3686 | unsigned EditDistance = Typo.edit_distance(Other: MethodName, AllowReplacements: true, MaxEditDistance); |
3687 | if (EditDistance > MaxEditDistance) |
3688 | return; |
3689 | if (EditDistance == BestEditDistance) |
3690 | BestMethod.push_back(Elt: Method); |
3691 | else if (EditDistance < BestEditDistance) { |
3692 | BestMethod.clear(); |
3693 | BestMethod.push_back(Elt: Method); |
3694 | } |
3695 | } |
3696 | |
3697 | static bool HelperIsMethodInObjCType(Sema &S, Selector Sel, |
3698 | QualType ObjectType) { |
3699 | if (ObjectType.isNull()) |
3700 | return true; |
3701 | if (S.ObjC().LookupMethodInObjectType(Sel, Ty: ObjectType, |
3702 | IsInstance: true /*Instance method*/)) |
3703 | return true; |
3704 | return S.ObjC().LookupMethodInObjectType(Sel, Ty: ObjectType, |
3705 | IsInstance: false /*Class method*/) != nullptr; |
3706 | } |
3707 | |
3708 | const ObjCMethodDecl * |
3709 | SemaObjC::SelectorsForTypoCorrection(Selector Sel, QualType ObjectType) { |
3710 | unsigned NumArgs = Sel.getNumArgs(); |
3711 | SmallVector<const ObjCMethodDecl *, 8> Methods; |
3712 | bool ObjectIsId = true, ObjectIsClass = true; |
3713 | if (ObjectType.isNull()) |
3714 | ObjectIsId = ObjectIsClass = false; |
3715 | else if (!ObjectType->isObjCObjectPointerType()) |
3716 | return nullptr; |
3717 | else if (const ObjCObjectPointerType *ObjCPtr = |
3718 | ObjectType->getAsObjCInterfacePointerType()) { |
3719 | ObjectType = QualType(ObjCPtr->getInterfaceType(), 0); |
3720 | ObjectIsId = ObjectIsClass = false; |
3721 | } |
3722 | else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType()) |
3723 | ObjectIsClass = false; |
3724 | else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType()) |
3725 | ObjectIsId = false; |
3726 | else |
3727 | return nullptr; |
3728 | |
3729 | for (GlobalMethodPool::iterator b = MethodPool.begin(), |
3730 | e = MethodPool.end(); b != e; b++) { |
3731 | // instance methods |
3732 | for (ObjCMethodList *M = &b->second.first; M; M=M->getNext()) |
3733 | if (M->getMethod() && |
3734 | (M->getMethod()->getSelector().getNumArgs() == NumArgs) && |
3735 | (M->getMethod()->getSelector() != Sel)) { |
3736 | if (ObjectIsId) |
3737 | Methods.push_back(Elt: M->getMethod()); |
3738 | else if (!ObjectIsClass && |
3739 | HelperIsMethodInObjCType( |
3740 | S&: SemaRef, Sel: M->getMethod()->getSelector(), ObjectType)) |
3741 | Methods.push_back(Elt: M->getMethod()); |
3742 | } |
3743 | // class methods |
3744 | for (ObjCMethodList *M = &b->second.second; M; M=M->getNext()) |
3745 | if (M->getMethod() && |
3746 | (M->getMethod()->getSelector().getNumArgs() == NumArgs) && |
3747 | (M->getMethod()->getSelector() != Sel)) { |
3748 | if (ObjectIsClass) |
3749 | Methods.push_back(Elt: M->getMethod()); |
3750 | else if (!ObjectIsId && |
3751 | HelperIsMethodInObjCType( |
3752 | S&: SemaRef, Sel: M->getMethod()->getSelector(), ObjectType)) |
3753 | Methods.push_back(Elt: M->getMethod()); |
3754 | } |
3755 | } |
3756 | |
3757 | SmallVector<const ObjCMethodDecl *, 8> SelectedMethods; |
3758 | for (unsigned i = 0, e = Methods.size(); i < e; i++) { |
3759 | HelperSelectorsForTypoCorrection(BestMethod&: SelectedMethods, |
3760 | Typo: Sel.getAsString(), Method: Methods[i]); |
3761 | } |
3762 | return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr; |
3763 | } |
3764 | |
3765 | /// DiagnoseDuplicateIvars - |
3766 | /// Check for duplicate ivars in the entire class at the start of |
3767 | /// \@implementation. This becomes necessary because class extension can |
3768 | /// add ivars to a class in random order which will not be known until |
3769 | /// class's \@implementation is seen. |
3770 | void SemaObjC::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID, |
3771 | ObjCInterfaceDecl *SID) { |
3772 | for (auto *Ivar : ID->ivars()) { |
3773 | if (Ivar->isInvalidDecl()) |
3774 | continue; |
3775 | if (IdentifierInfo *II = Ivar->getIdentifier()) { |
3776 | ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(IVarName: II); |
3777 | if (prevIvar) { |
3778 | Diag(Loc: Ivar->getLocation(), DiagID: diag::err_duplicate_member) << II; |
3779 | Diag(Loc: prevIvar->getLocation(), DiagID: diag::note_previous_declaration); |
3780 | Ivar->setInvalidDecl(); |
3781 | } |
3782 | } |
3783 | } |
3784 | } |
3785 | |
3786 | /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled. |
3787 | static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) { |
3788 | if (S.getLangOpts().ObjCWeak) return; |
3789 | |
3790 | for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin(); |
3791 | ivar; ivar = ivar->getNextIvar()) { |
3792 | if (ivar->isInvalidDecl()) continue; |
3793 | if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { |
3794 | if (S.getLangOpts().ObjCWeakRuntime) { |
3795 | S.Diag(Loc: ivar->getLocation(), DiagID: diag::err_arc_weak_disabled); |
3796 | } else { |
3797 | S.Diag(Loc: ivar->getLocation(), DiagID: diag::err_arc_weak_no_runtime); |
3798 | } |
3799 | } |
3800 | } |
3801 | } |
3802 | |
3803 | /// Diagnose attempts to use flexible array member with retainable object type. |
3804 | static void DiagnoseRetainableFlexibleArrayMember(Sema &S, |
3805 | ObjCInterfaceDecl *ID) { |
3806 | if (!S.getLangOpts().ObjCAutoRefCount) |
3807 | return; |
3808 | |
3809 | for (auto ivar = ID->all_declared_ivar_begin(); ivar; |
3810 | ivar = ivar->getNextIvar()) { |
3811 | if (ivar->isInvalidDecl()) |
3812 | continue; |
3813 | QualType IvarTy = ivar->getType(); |
3814 | if (IvarTy->isIncompleteArrayType() && |
3815 | (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) && |
3816 | IvarTy->isObjCLifetimeType()) { |
3817 | S.Diag(Loc: ivar->getLocation(), DiagID: diag::err_flexible_array_arc_retainable); |
3818 | ivar->setInvalidDecl(); |
3819 | } |
3820 | } |
3821 | } |
3822 | |
3823 | SemaObjC::ObjCContainerKind SemaObjC::getObjCContainerKind() const { |
3824 | switch (SemaRef.CurContext->getDeclKind()) { |
3825 | case Decl::ObjCInterface: |
3826 | return SemaObjC::OCK_Interface; |
3827 | case Decl::ObjCProtocol: |
3828 | return SemaObjC::OCK_Protocol; |
3829 | case Decl::ObjCCategory: |
3830 | if (cast<ObjCCategoryDecl>(Val: SemaRef.CurContext)->IsClassExtension()) |
3831 | return SemaObjC::OCK_ClassExtension; |
3832 | return SemaObjC::OCK_Category; |
3833 | case Decl::ObjCImplementation: |
3834 | return SemaObjC::OCK_Implementation; |
3835 | case Decl::ObjCCategoryImpl: |
3836 | return SemaObjC::OCK_CategoryImplementation; |
3837 | |
3838 | default: |
3839 | return SemaObjC::OCK_None; |
3840 | } |
3841 | } |
3842 | |
3843 | static bool IsVariableSizedType(QualType T) { |
3844 | if (T->isIncompleteArrayType()) |
3845 | return true; |
3846 | const auto *RecordTy = T->getAs<RecordType>(); |
3847 | return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember()); |
3848 | } |
3849 | |
3850 | static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) { |
3851 | ObjCInterfaceDecl *IntfDecl = nullptr; |
3852 | ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range( |
3853 | x: ObjCInterfaceDecl::ivar_iterator(), y: ObjCInterfaceDecl::ivar_iterator()); |
3854 | if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(Val: OCD))) { |
3855 | Ivars = IntfDecl->ivars(); |
3856 | } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(Val: OCD)) { |
3857 | IntfDecl = ImplDecl->getClassInterface(); |
3858 | Ivars = ImplDecl->ivars(); |
3859 | } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(Val: OCD)) { |
3860 | if (CategoryDecl->IsClassExtension()) { |
3861 | IntfDecl = CategoryDecl->getClassInterface(); |
3862 | Ivars = CategoryDecl->ivars(); |
3863 | } |
3864 | } |
3865 | |
3866 | // Check if variable sized ivar is in interface and visible to subclasses. |
3867 | if (!isa<ObjCInterfaceDecl>(Val: OCD)) { |
3868 | for (auto *ivar : Ivars) { |
3869 | if (!ivar->isInvalidDecl() && IsVariableSizedType(T: ivar->getType())) { |
3870 | S.Diag(Loc: ivar->getLocation(), DiagID: diag::warn_variable_sized_ivar_visibility) |
3871 | << ivar->getDeclName() << ivar->getType(); |
3872 | } |
3873 | } |
3874 | } |
3875 | |
3876 | // Subsequent checks require interface decl. |
3877 | if (!IntfDecl) |
3878 | return; |
3879 | |
3880 | // Check if variable sized ivar is followed by another ivar. |
3881 | for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar; |
3882 | ivar = ivar->getNextIvar()) { |
3883 | if (ivar->isInvalidDecl() || !ivar->getNextIvar()) |
3884 | continue; |
3885 | QualType IvarTy = ivar->getType(); |
3886 | bool IsInvalidIvar = false; |
3887 | if (IvarTy->isIncompleteArrayType()) { |
3888 | S.Diag(Loc: ivar->getLocation(), DiagID: diag::err_flexible_array_not_at_end) |
3889 | << ivar->getDeclName() << IvarTy |
3890 | << llvm::to_underlying(E: TagTypeKind::Class); // Use "class" for Obj-C. |
3891 | IsInvalidIvar = true; |
3892 | } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) { |
3893 | if (RecordTy->getDecl()->hasFlexibleArrayMember()) { |
3894 | S.Diag(Loc: ivar->getLocation(), |
3895 | DiagID: diag::err_objc_variable_sized_type_not_at_end) |
3896 | << ivar->getDeclName() << IvarTy; |
3897 | IsInvalidIvar = true; |
3898 | } |
3899 | } |
3900 | if (IsInvalidIvar) { |
3901 | S.Diag(Loc: ivar->getNextIvar()->getLocation(), |
3902 | DiagID: diag::note_next_ivar_declaration) |
3903 | << ivar->getNextIvar()->getSynthesize(); |
3904 | ivar->setInvalidDecl(); |
3905 | } |
3906 | } |
3907 | |
3908 | // Check if ObjC container adds ivars after variable sized ivar in superclass. |
3909 | // Perform the check only if OCD is the first container to declare ivars to |
3910 | // avoid multiple warnings for the same ivar. |
3911 | ObjCIvarDecl *FirstIvar = |
3912 | (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin(); |
3913 | if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) { |
3914 | const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass(); |
3915 | while (SuperClass && SuperClass->ivar_empty()) |
3916 | SuperClass = SuperClass->getSuperClass(); |
3917 | if (SuperClass) { |
3918 | auto IvarIter = SuperClass->ivar_begin(); |
3919 | std::advance(i&: IvarIter, n: SuperClass->ivar_size() - 1); |
3920 | const ObjCIvarDecl *LastIvar = *IvarIter; |
3921 | if (IsVariableSizedType(T: LastIvar->getType())) { |
3922 | S.Diag(Loc: FirstIvar->getLocation(), |
3923 | DiagID: diag::warn_superclass_variable_sized_type_not_at_end) |
3924 | << FirstIvar->getDeclName() << LastIvar->getDeclName() |
3925 | << LastIvar->getType() << SuperClass->getDeclName(); |
3926 | S.Diag(Loc: LastIvar->getLocation(), DiagID: diag::note_entity_declared_at) |
3927 | << LastIvar->getDeclName(); |
3928 | } |
3929 | } |
3930 | } |
3931 | } |
3932 | |
3933 | static void DiagnoseCategoryDirectMembersProtocolConformance( |
3934 | Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl); |
3935 | |
3936 | static void DiagnoseCategoryDirectMembersProtocolConformance( |
3937 | Sema &S, ObjCCategoryDecl *CDecl, |
3938 | const llvm::iterator_range<ObjCProtocolList::iterator> &Protocols) { |
3939 | for (auto *PI : Protocols) |
3940 | DiagnoseCategoryDirectMembersProtocolConformance(S, PDecl: PI, CDecl); |
3941 | } |
3942 | |
3943 | static void DiagnoseCategoryDirectMembersProtocolConformance( |
3944 | Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl) { |
3945 | if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition()) |
3946 | PDecl = PDecl->getDefinition(); |
3947 | |
3948 | llvm::SmallVector<const Decl *, 4> DirectMembers; |
3949 | const auto *IDecl = CDecl->getClassInterface(); |
3950 | for (auto *MD : PDecl->methods()) { |
3951 | if (!MD->isPropertyAccessor()) { |
3952 | if (const auto *CMD = |
3953 | IDecl->getMethod(Sel: MD->getSelector(), isInstance: MD->isInstanceMethod())) { |
3954 | if (CMD->isDirectMethod()) |
3955 | DirectMembers.push_back(Elt: CMD); |
3956 | } |
3957 | } |
3958 | } |
3959 | for (auto *PD : PDecl->properties()) { |
3960 | if (const auto *CPD = IDecl->FindPropertyVisibleInPrimaryClass( |
3961 | PropertyId: PD->getIdentifier(), |
3962 | QueryKind: PD->isClassProperty() |
3963 | ? ObjCPropertyQueryKind::OBJC_PR_query_class |
3964 | : ObjCPropertyQueryKind::OBJC_PR_query_instance)) { |
3965 | if (CPD->isDirectProperty()) |
3966 | DirectMembers.push_back(Elt: CPD); |
3967 | } |
3968 | } |
3969 | if (!DirectMembers.empty()) { |
3970 | S.Diag(Loc: CDecl->getLocation(), DiagID: diag::err_objc_direct_protocol_conformance) |
3971 | << CDecl->IsClassExtension() << CDecl << PDecl << IDecl; |
3972 | for (const auto *MD : DirectMembers) |
3973 | S.Diag(Loc: MD->getLocation(), DiagID: diag::note_direct_member_here); |
3974 | return; |
3975 | } |
3976 | |
3977 | // Check on this protocols's referenced protocols, recursively. |
3978 | DiagnoseCategoryDirectMembersProtocolConformance(S, CDecl, |
3979 | Protocols: PDecl->protocols()); |
3980 | } |
3981 | |
3982 | // Note: For class/category implementations, allMethods is always null. |
3983 | Decl *SemaObjC::ActOnAtEnd(Scope *S, SourceRange AtEnd, |
3984 | ArrayRef<Decl *> allMethods, |
3985 | ArrayRef<DeclGroupPtrTy> allTUVars) { |
3986 | ASTContext &Context = getASTContext(); |
3987 | if (getObjCContainerKind() == SemaObjC::OCK_None) |
3988 | return nullptr; |
3989 | |
3990 | assert(AtEnd.isValid() && "Invalid location for '@end'" ); |
3991 | |
3992 | auto *OCD = cast<ObjCContainerDecl>(Val: SemaRef.CurContext); |
3993 | Decl *ClassDecl = OCD; |
3994 | |
3995 | bool isInterfaceDeclKind = |
3996 | isa<ObjCInterfaceDecl>(Val: ClassDecl) || isa<ObjCCategoryDecl>(Val: ClassDecl) |
3997 | || isa<ObjCProtocolDecl>(Val: ClassDecl); |
3998 | bool checkIdenticalMethods = isa<ObjCImplementationDecl>(Val: ClassDecl); |
3999 | |
4000 | // Make synthesized accessor stub functions visible. |
4001 | // ActOnPropertyImplDecl() creates them as not visible in case |
4002 | // they are overridden by an explicit method that is encountered |
4003 | // later. |
4004 | if (auto *OID = dyn_cast<ObjCImplementationDecl>(Val: SemaRef.CurContext)) { |
4005 | for (auto *PropImpl : OID->property_impls()) { |
4006 | if (auto *Getter = PropImpl->getGetterMethodDecl()) |
4007 | if (Getter->isSynthesizedAccessorStub()) |
4008 | OID->addDecl(D: Getter); |
4009 | if (auto *Setter = PropImpl->getSetterMethodDecl()) |
4010 | if (Setter->isSynthesizedAccessorStub()) |
4011 | OID->addDecl(D: Setter); |
4012 | } |
4013 | } |
4014 | |
4015 | // FIXME: Remove these and use the ObjCContainerDecl/DeclContext. |
4016 | llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap; |
4017 | llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap; |
4018 | |
4019 | for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) { |
4020 | ObjCMethodDecl *Method = |
4021 | cast_or_null<ObjCMethodDecl>(Val: allMethods[i]); |
4022 | |
4023 | if (!Method) continue; // Already issued a diagnostic. |
4024 | if (Method->isInstanceMethod()) { |
4025 | /// Check for instance method of the same name with incompatible types |
4026 | const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()]; |
4027 | bool match = PrevMethod ? MatchTwoMethodDeclarations(left: Method, right: PrevMethod) |
4028 | : false; |
4029 | if ((isInterfaceDeclKind && PrevMethod && !match) |
4030 | || (checkIdenticalMethods && match)) { |
4031 | Diag(Loc: Method->getLocation(), DiagID: diag::err_duplicate_method_decl) |
4032 | << Method->getDeclName(); |
4033 | Diag(Loc: PrevMethod->getLocation(), DiagID: diag::note_previous_declaration); |
4034 | Method->setInvalidDecl(); |
4035 | } else { |
4036 | if (PrevMethod) { |
4037 | Method->setAsRedeclaration(PrevMethod); |
4038 | if (!Context.getSourceManager().isInSystemHeader( |
4039 | Loc: Method->getLocation())) |
4040 | Diag(Loc: Method->getLocation(), DiagID: diag::warn_duplicate_method_decl) |
4041 | << Method->getDeclName(); |
4042 | Diag(Loc: PrevMethod->getLocation(), DiagID: diag::note_previous_declaration); |
4043 | } |
4044 | InsMap[Method->getSelector()] = Method; |
4045 | /// The following allows us to typecheck messages to "id". |
4046 | AddInstanceMethodToGlobalPool(Method); |
4047 | } |
4048 | } else { |
4049 | /// Check for class method of the same name with incompatible types |
4050 | const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()]; |
4051 | bool match = PrevMethod ? MatchTwoMethodDeclarations(left: Method, right: PrevMethod) |
4052 | : false; |
4053 | if ((isInterfaceDeclKind && PrevMethod && !match) |
4054 | || (checkIdenticalMethods && match)) { |
4055 | Diag(Loc: Method->getLocation(), DiagID: diag::err_duplicate_method_decl) |
4056 | << Method->getDeclName(); |
4057 | Diag(Loc: PrevMethod->getLocation(), DiagID: diag::note_previous_declaration); |
4058 | Method->setInvalidDecl(); |
4059 | } else { |
4060 | if (PrevMethod) { |
4061 | Method->setAsRedeclaration(PrevMethod); |
4062 | if (!Context.getSourceManager().isInSystemHeader( |
4063 | Loc: Method->getLocation())) |
4064 | Diag(Loc: Method->getLocation(), DiagID: diag::warn_duplicate_method_decl) |
4065 | << Method->getDeclName(); |
4066 | Diag(Loc: PrevMethod->getLocation(), DiagID: diag::note_previous_declaration); |
4067 | } |
4068 | ClsMap[Method->getSelector()] = Method; |
4069 | AddFactoryMethodToGlobalPool(Method); |
4070 | } |
4071 | } |
4072 | } |
4073 | if (isa<ObjCInterfaceDecl>(Val: ClassDecl)) { |
4074 | // Nothing to do here. |
4075 | } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(Val: ClassDecl)) { |
4076 | // Categories are used to extend the class by declaring new methods. |
4077 | // By the same token, they are also used to add new properties. No |
4078 | // need to compare the added property to those in the class. |
4079 | |
4080 | if (C->IsClassExtension()) { |
4081 | ObjCInterfaceDecl *CCPrimary = C->getClassInterface(); |
4082 | DiagnoseClassExtensionDupMethods(CAT: C, ID: CCPrimary); |
4083 | } |
4084 | |
4085 | DiagnoseCategoryDirectMembersProtocolConformance(S&: SemaRef, CDecl: C, |
4086 | Protocols: C->protocols()); |
4087 | } |
4088 | if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(Val: ClassDecl)) { |
4089 | if (CDecl->getIdentifier()) |
4090 | // ProcessPropertyDecl is responsible for diagnosing conflicts with any |
4091 | // user-defined setter/getter. It also synthesizes setter/getter methods |
4092 | // and adds them to the DeclContext and global method pools. |
4093 | for (auto *I : CDecl->properties()) |
4094 | ProcessPropertyDecl(property: I); |
4095 | CDecl->setAtEndRange(AtEnd); |
4096 | } |
4097 | if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(Val: ClassDecl)) { |
4098 | IC->setAtEndRange(AtEnd); |
4099 | if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) { |
4100 | // Any property declared in a class extension might have user |
4101 | // declared setter or getter in current class extension or one |
4102 | // of the other class extensions. Mark them as synthesized as |
4103 | // property will be synthesized when property with same name is |
4104 | // seen in the @implementation. |
4105 | for (const auto *Ext : IDecl->visible_extensions()) { |
4106 | for (const auto *Property : Ext->instance_properties()) { |
4107 | // Skip over properties declared @dynamic |
4108 | if (const ObjCPropertyImplDecl *PIDecl |
4109 | = IC->FindPropertyImplDecl(propertyId: Property->getIdentifier(), |
4110 | queryKind: Property->getQueryKind())) |
4111 | if (PIDecl->getPropertyImplementation() |
4112 | == ObjCPropertyImplDecl::Dynamic) |
4113 | continue; |
4114 | |
4115 | for (const auto *Ext : IDecl->visible_extensions()) { |
4116 | if (ObjCMethodDecl *GetterMethod = |
4117 | Ext->getInstanceMethod(Sel: Property->getGetterName())) |
4118 | GetterMethod->setPropertyAccessor(true); |
4119 | if (!Property->isReadOnly()) |
4120 | if (ObjCMethodDecl *SetterMethod |
4121 | = Ext->getInstanceMethod(Sel: Property->getSetterName())) |
4122 | SetterMethod->setPropertyAccessor(true); |
4123 | } |
4124 | } |
4125 | } |
4126 | ImplMethodsVsClassMethods(S, IMPDecl: IC, CDecl: IDecl); |
4127 | AtomicPropertySetterGetterRules(IMPDecl: IC, IDecl); |
4128 | DiagnoseOwningPropertyGetterSynthesis(D: IC); |
4129 | DiagnoseUnusedBackingIvarInAccessor(S, ImplD: IC); |
4130 | if (IDecl->hasDesignatedInitializers()) |
4131 | DiagnoseMissingDesignatedInitOverrides(ImplD: IC, IFD: IDecl); |
4132 | DiagnoseWeakIvars(S&: SemaRef, ID: IC); |
4133 | DiagnoseRetainableFlexibleArrayMember(S&: SemaRef, ID: IDecl); |
4134 | |
4135 | bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>(); |
4136 | if (IDecl->getSuperClass() == nullptr) { |
4137 | // This class has no superclass, so check that it has been marked with |
4138 | // __attribute((objc_root_class)). |
4139 | if (!HasRootClassAttr) { |
4140 | SourceLocation DeclLoc(IDecl->getLocation()); |
4141 | SourceLocation SuperClassLoc(SemaRef.getLocForEndOfToken(Loc: DeclLoc)); |
4142 | Diag(Loc: DeclLoc, DiagID: diag::warn_objc_root_class_missing) |
4143 | << IDecl->getIdentifier(); |
4144 | // See if NSObject is in the current scope, and if it is, suggest |
4145 | // adding " : NSObject " to the class declaration. |
4146 | NamedDecl *IF = SemaRef.LookupSingleName( |
4147 | S: SemaRef.TUScope, Name: NSAPIObj->getNSClassId(K: NSAPI::ClassId_NSObject), |
4148 | Loc: DeclLoc, NameKind: Sema::LookupOrdinaryName); |
4149 | ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(Val: IF); |
4150 | if (NSObjectDecl && NSObjectDecl->getDefinition()) { |
4151 | Diag(Loc: SuperClassLoc, DiagID: diag::note_objc_needs_superclass) |
4152 | << FixItHint::CreateInsertion(InsertionLoc: SuperClassLoc, Code: " : NSObject " ); |
4153 | } else { |
4154 | Diag(Loc: SuperClassLoc, DiagID: diag::note_objc_needs_superclass); |
4155 | } |
4156 | } |
4157 | } else if (HasRootClassAttr) { |
4158 | // Complain that only root classes may have this attribute. |
4159 | Diag(Loc: IDecl->getLocation(), DiagID: diag::err_objc_root_class_subclass); |
4160 | } |
4161 | |
4162 | if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) { |
4163 | // An interface can subclass another interface with a |
4164 | // objc_subclassing_restricted attribute when it has that attribute as |
4165 | // well (because of interfaces imported from Swift). Therefore we have |
4166 | // to check if we can subclass in the implementation as well. |
4167 | if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() && |
4168 | Super->hasAttr<ObjCSubclassingRestrictedAttr>()) { |
4169 | Diag(Loc: IC->getLocation(), DiagID: diag::err_restricted_superclass_mismatch); |
4170 | Diag(Loc: Super->getLocation(), DiagID: diag::note_class_declared); |
4171 | } |
4172 | } |
4173 | |
4174 | if (IDecl->hasAttr<ObjCClassStubAttr>()) |
4175 | Diag(Loc: IC->getLocation(), DiagID: diag::err_implementation_of_class_stub); |
4176 | |
4177 | if (getLangOpts().ObjCRuntime.isNonFragile()) { |
4178 | while (IDecl->getSuperClass()) { |
4179 | DiagnoseDuplicateIvars(ID: IDecl, SID: IDecl->getSuperClass()); |
4180 | IDecl = IDecl->getSuperClass(); |
4181 | } |
4182 | } |
4183 | } |
4184 | SetIvarInitializers(IC); |
4185 | } else if (ObjCCategoryImplDecl* CatImplClass = |
4186 | dyn_cast<ObjCCategoryImplDecl>(Val: ClassDecl)) { |
4187 | CatImplClass->setAtEndRange(AtEnd); |
4188 | |
4189 | // Find category interface decl and then check that all methods declared |
4190 | // in this interface are implemented in the category @implementation. |
4191 | if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) { |
4192 | if (ObjCCategoryDecl *Cat |
4193 | = IDecl->FindCategoryDeclaration(CategoryId: CatImplClass->getIdentifier())) { |
4194 | ImplMethodsVsClassMethods(S, IMPDecl: CatImplClass, CDecl: Cat); |
4195 | } |
4196 | } |
4197 | } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(Val: ClassDecl)) { |
4198 | if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) { |
4199 | if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() && |
4200 | Super->hasAttr<ObjCSubclassingRestrictedAttr>()) { |
4201 | Diag(Loc: IntfDecl->getLocation(), DiagID: diag::err_restricted_superclass_mismatch); |
4202 | Diag(Loc: Super->getLocation(), DiagID: diag::note_class_declared); |
4203 | } |
4204 | } |
4205 | |
4206 | if (IntfDecl->hasAttr<ObjCClassStubAttr>() && |
4207 | !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>()) |
4208 | Diag(Loc: IntfDecl->getLocation(), DiagID: diag::err_class_stub_subclassing_mismatch); |
4209 | } |
4210 | DiagnoseVariableSizedIvars(S&: SemaRef, OCD); |
4211 | if (isInterfaceDeclKind) { |
4212 | // Reject invalid vardecls. |
4213 | for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { |
4214 | DeclGroupRef DG = allTUVars[i].get(); |
4215 | for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) |
4216 | if (VarDecl *VDecl = dyn_cast<VarDecl>(Val: *I)) { |
4217 | if (!VDecl->hasExternalStorage()) |
4218 | Diag(Loc: VDecl->getLocation(), DiagID: diag::err_objc_var_decl_inclass); |
4219 | } |
4220 | } |
4221 | } |
4222 | ActOnObjCContainerFinishDefinition(); |
4223 | |
4224 | for (unsigned i = 0, e = allTUVars.size(); i != e; i++) { |
4225 | DeclGroupRef DG = allTUVars[i].get(); |
4226 | for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I) |
4227 | (*I)->setTopLevelDeclInObjCContainer(); |
4228 | SemaRef.Consumer.HandleTopLevelDeclInObjCContainer(D: DG); |
4229 | } |
4230 | |
4231 | SemaRef.ActOnDocumentableDecl(D: ClassDecl); |
4232 | return ClassDecl; |
4233 | } |
4234 | |
4235 | /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for |
4236 | /// objective-c's type qualifier from the parser version of the same info. |
4237 | static Decl::ObjCDeclQualifier |
4238 | CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) { |
4239 | return (Decl::ObjCDeclQualifier) (unsigned) PQTVal; |
4240 | } |
4241 | |
4242 | /// Check whether the declared result type of the given Objective-C |
4243 | /// method declaration is compatible with the method's class. |
4244 | /// |
4245 | static SemaObjC::ResultTypeCompatibilityKind |
4246 | CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method, |
4247 | ObjCInterfaceDecl *CurrentClass) { |
4248 | QualType ResultType = Method->getReturnType(); |
4249 | |
4250 | // If an Objective-C method inherits its related result type, then its |
4251 | // declared result type must be compatible with its own class type. The |
4252 | // declared result type is compatible if: |
4253 | if (const ObjCObjectPointerType *ResultObjectType |
4254 | = ResultType->getAs<ObjCObjectPointerType>()) { |
4255 | // - it is id or qualified id, or |
4256 | if (ResultObjectType->isObjCIdType() || |
4257 | ResultObjectType->isObjCQualifiedIdType()) |
4258 | return SemaObjC::RTC_Compatible; |
4259 | |
4260 | if (CurrentClass) { |
4261 | if (ObjCInterfaceDecl *ResultClass |
4262 | = ResultObjectType->getInterfaceDecl()) { |
4263 | // - it is the same as the method's class type, or |
4264 | if (declaresSameEntity(D1: CurrentClass, D2: ResultClass)) |
4265 | return SemaObjC::RTC_Compatible; |
4266 | |
4267 | // - it is a superclass of the method's class type |
4268 | if (ResultClass->isSuperClassOf(I: CurrentClass)) |
4269 | return SemaObjC::RTC_Compatible; |
4270 | } |
4271 | } else { |
4272 | // Any Objective-C pointer type might be acceptable for a protocol |
4273 | // method; we just don't know. |
4274 | return SemaObjC::RTC_Unknown; |
4275 | } |
4276 | } |
4277 | |
4278 | return SemaObjC::RTC_Incompatible; |
4279 | } |
4280 | |
4281 | namespace { |
4282 | /// A helper class for searching for methods which a particular method |
4283 | /// overrides. |
4284 | class OverrideSearch { |
4285 | public: |
4286 | const ObjCMethodDecl *Method; |
4287 | llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden; |
4288 | bool Recursive; |
4289 | |
4290 | public: |
4291 | OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) { |
4292 | Selector selector = method->getSelector(); |
4293 | |
4294 | // Bypass this search if we've never seen an instance/class method |
4295 | // with this selector before. |
4296 | SemaObjC::GlobalMethodPool::iterator it = |
4297 | S.ObjC().MethodPool.find(Sel: selector); |
4298 | if (it == S.ObjC().MethodPool.end()) { |
4299 | if (!S.getExternalSource()) return; |
4300 | S.ObjC().ReadMethodPool(Sel: selector); |
4301 | |
4302 | it = S.ObjC().MethodPool.find(Sel: selector); |
4303 | if (it == S.ObjC().MethodPool.end()) |
4304 | return; |
4305 | } |
4306 | const ObjCMethodList &list = |
4307 | method->isInstanceMethod() ? it->second.first : it->second.second; |
4308 | if (!list.getMethod()) return; |
4309 | |
4310 | const ObjCContainerDecl *container |
4311 | = cast<ObjCContainerDecl>(Val: method->getDeclContext()); |
4312 | |
4313 | // Prevent the search from reaching this container again. This is |
4314 | // important with categories, which override methods from the |
4315 | // interface and each other. |
4316 | if (const ObjCCategoryDecl *Category = |
4317 | dyn_cast<ObjCCategoryDecl>(Val: container)) { |
4318 | searchFromContainer(container); |
4319 | if (const ObjCInterfaceDecl *Interface = Category->getClassInterface()) |
4320 | searchFromContainer(container: Interface); |
4321 | } else { |
4322 | searchFromContainer(container); |
4323 | } |
4324 | } |
4325 | |
4326 | typedef decltype(Overridden)::iterator iterator; |
4327 | iterator begin() const { return Overridden.begin(); } |
4328 | iterator end() const { return Overridden.end(); } |
4329 | |
4330 | private: |
4331 | void searchFromContainer(const ObjCContainerDecl *container) { |
4332 | if (container->isInvalidDecl()) return; |
4333 | |
4334 | switch (container->getDeclKind()) { |
4335 | #define OBJCCONTAINER(type, base) \ |
4336 | case Decl::type: \ |
4337 | searchFrom(cast<type##Decl>(container)); \ |
4338 | break; |
4339 | #define ABSTRACT_DECL(expansion) |
4340 | #define DECL(type, base) \ |
4341 | case Decl::type: |
4342 | #include "clang/AST/DeclNodes.inc" |
4343 | llvm_unreachable("not an ObjC container!" ); |
4344 | } |
4345 | } |
4346 | |
4347 | void searchFrom(const ObjCProtocolDecl *protocol) { |
4348 | if (!protocol->hasDefinition()) |
4349 | return; |
4350 | |
4351 | // A method in a protocol declaration overrides declarations from |
4352 | // referenced ("parent") protocols. |
4353 | search(protocols: protocol->getReferencedProtocols()); |
4354 | } |
4355 | |
4356 | void searchFrom(const ObjCCategoryDecl *category) { |
4357 | // A method in a category declaration overrides declarations from |
4358 | // the main class and from protocols the category references. |
4359 | // The main class is handled in the constructor. |
4360 | search(protocols: category->getReferencedProtocols()); |
4361 | } |
4362 | |
4363 | void searchFrom(const ObjCCategoryImplDecl *impl) { |
4364 | // A method in a category definition that has a category |
4365 | // declaration overrides declarations from the category |
4366 | // declaration. |
4367 | if (ObjCCategoryDecl *category = impl->getCategoryDecl()) { |
4368 | search(container: category); |
4369 | if (ObjCInterfaceDecl *Interface = category->getClassInterface()) |
4370 | search(container: Interface); |
4371 | |
4372 | // Otherwise it overrides declarations from the class. |
4373 | } else if (const auto *Interface = impl->getClassInterface()) { |
4374 | search(container: Interface); |
4375 | } |
4376 | } |
4377 | |
4378 | void searchFrom(const ObjCInterfaceDecl *iface) { |
4379 | // A method in a class declaration overrides declarations from |
4380 | if (!iface->hasDefinition()) |
4381 | return; |
4382 | |
4383 | // - categories, |
4384 | for (auto *Cat : iface->known_categories()) |
4385 | search(container: Cat); |
4386 | |
4387 | // - the super class, and |
4388 | if (ObjCInterfaceDecl *super = iface->getSuperClass()) |
4389 | search(container: super); |
4390 | |
4391 | // - any referenced protocols. |
4392 | search(protocols: iface->getReferencedProtocols()); |
4393 | } |
4394 | |
4395 | void searchFrom(const ObjCImplementationDecl *impl) { |
4396 | // A method in a class implementation overrides declarations from |
4397 | // the class interface. |
4398 | if (const auto *Interface = impl->getClassInterface()) |
4399 | search(container: Interface); |
4400 | } |
4401 | |
4402 | void search(const ObjCProtocolList &protocols) { |
4403 | for (const auto *Proto : protocols) |
4404 | search(container: Proto); |
4405 | } |
4406 | |
4407 | void search(const ObjCContainerDecl *container) { |
4408 | // Check for a method in this container which matches this selector. |
4409 | ObjCMethodDecl *meth = container->getMethod(Sel: Method->getSelector(), |
4410 | isInstance: Method->isInstanceMethod(), |
4411 | /*AllowHidden=*/true); |
4412 | |
4413 | // If we find one, record it and bail out. |
4414 | if (meth) { |
4415 | Overridden.insert(X: meth); |
4416 | return; |
4417 | } |
4418 | |
4419 | // Otherwise, search for methods that a hypothetical method here |
4420 | // would have overridden. |
4421 | |
4422 | // Note that we're now in a recursive case. |
4423 | Recursive = true; |
4424 | |
4425 | searchFromContainer(container); |
4426 | } |
4427 | }; |
4428 | } // end anonymous namespace |
4429 | |
4430 | void SemaObjC::CheckObjCMethodDirectOverrides(ObjCMethodDecl *method, |
4431 | ObjCMethodDecl *overridden) { |
4432 | if (overridden->isDirectMethod()) { |
4433 | const auto *attr = overridden->getAttr<ObjCDirectAttr>(); |
4434 | Diag(Loc: method->getLocation(), DiagID: diag::err_objc_override_direct_method); |
4435 | Diag(Loc: attr->getLocation(), DiagID: diag::note_previous_declaration); |
4436 | } else if (method->isDirectMethod()) { |
4437 | const auto *attr = method->getAttr<ObjCDirectAttr>(); |
4438 | Diag(Loc: attr->getLocation(), DiagID: diag::err_objc_direct_on_override) |
4439 | << isa<ObjCProtocolDecl>(Val: overridden->getDeclContext()); |
4440 | Diag(Loc: overridden->getLocation(), DiagID: diag::note_previous_declaration); |
4441 | } |
4442 | } |
4443 | |
4444 | void SemaObjC::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod, |
4445 | ObjCInterfaceDecl *CurrentClass, |
4446 | ResultTypeCompatibilityKind RTC) { |
4447 | ASTContext &Context = getASTContext(); |
4448 | if (!ObjCMethod) |
4449 | return; |
4450 | auto IsMethodInCurrentClass = [CurrentClass](const ObjCMethodDecl *M) { |
4451 | // Checking canonical decl works across modules. |
4452 | return M->getClassInterface()->getCanonicalDecl() == |
4453 | CurrentClass->getCanonicalDecl(); |
4454 | }; |
4455 | // Search for overridden methods and merge information down from them. |
4456 | OverrideSearch overrides(SemaRef, ObjCMethod); |
4457 | // Keep track if the method overrides any method in the class's base classes, |
4458 | // its protocols, or its categories' protocols; we will keep that info |
4459 | // in the ObjCMethodDecl. |
4460 | // For this info, a method in an implementation is not considered as |
4461 | // overriding the same method in the interface or its categories. |
4462 | bool hasOverriddenMethodsInBaseOrProtocol = false; |
4463 | for (ObjCMethodDecl *overridden : overrides) { |
4464 | if (!hasOverriddenMethodsInBaseOrProtocol) { |
4465 | if (isa<ObjCProtocolDecl>(Val: overridden->getDeclContext()) || |
4466 | !IsMethodInCurrentClass(overridden) || overridden->isOverriding()) { |
4467 | CheckObjCMethodDirectOverrides(method: ObjCMethod, overridden); |
4468 | hasOverriddenMethodsInBaseOrProtocol = true; |
4469 | } else if (isa<ObjCImplDecl>(Val: ObjCMethod->getDeclContext())) { |
4470 | // OverrideSearch will return as "overridden" the same method in the |
4471 | // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to |
4472 | // check whether a category of a base class introduced a method with the |
4473 | // same selector, after the interface method declaration. |
4474 | // To avoid unnecessary lookups in the majority of cases, we use the |
4475 | // extra info bits in GlobalMethodPool to check whether there were any |
4476 | // category methods with this selector. |
4477 | GlobalMethodPool::iterator It = |
4478 | MethodPool.find(Sel: ObjCMethod->getSelector()); |
4479 | if (It != MethodPool.end()) { |
4480 | ObjCMethodList &List = |
4481 | ObjCMethod->isInstanceMethod()? It->second.first: It->second.second; |
4482 | unsigned CategCount = List.getBits(); |
4483 | if (CategCount > 0) { |
4484 | // If the method is in a category we'll do lookup if there were at |
4485 | // least 2 category methods recorded, otherwise only one will do. |
4486 | if (CategCount > 1 || |
4487 | !isa<ObjCCategoryImplDecl>(Val: overridden->getDeclContext())) { |
4488 | OverrideSearch overrides(SemaRef, overridden); |
4489 | for (ObjCMethodDecl *SuperOverridden : overrides) { |
4490 | if (isa<ObjCProtocolDecl>(Val: SuperOverridden->getDeclContext()) || |
4491 | !IsMethodInCurrentClass(SuperOverridden)) { |
4492 | CheckObjCMethodDirectOverrides(method: ObjCMethod, overridden: SuperOverridden); |
4493 | hasOverriddenMethodsInBaseOrProtocol = true; |
4494 | overridden->setOverriding(true); |
4495 | break; |
4496 | } |
4497 | } |
4498 | } |
4499 | } |
4500 | } |
4501 | } |
4502 | } |
4503 | |
4504 | // Propagate down the 'related result type' bit from overridden methods. |
4505 | if (RTC != SemaObjC::RTC_Incompatible && overridden->hasRelatedResultType()) |
4506 | ObjCMethod->setRelatedResultType(); |
4507 | |
4508 | // Then merge the declarations. |
4509 | SemaRef.mergeObjCMethodDecls(New: ObjCMethod, Old: overridden); |
4510 | |
4511 | if (ObjCMethod->isImplicit() && overridden->isImplicit()) |
4512 | continue; // Conflicting properties are detected elsewhere. |
4513 | |
4514 | // Check for overriding methods |
4515 | if (isa<ObjCInterfaceDecl>(Val: ObjCMethod->getDeclContext()) || |
4516 | isa<ObjCImplementationDecl>(Val: ObjCMethod->getDeclContext())) |
4517 | CheckConflictingOverridingMethod(Method: ObjCMethod, Overridden: overridden, |
4518 | IsProtocolMethodDecl: isa<ObjCProtocolDecl>(Val: overridden->getDeclContext())); |
4519 | |
4520 | if (CurrentClass && overridden->getDeclContext() != CurrentClass && |
4521 | isa<ObjCInterfaceDecl>(Val: overridden->getDeclContext()) && |
4522 | !overridden->isImplicit() /* not meant for properties */) { |
4523 | ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(), |
4524 | E = ObjCMethod->param_end(); |
4525 | ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(), |
4526 | PrevE = overridden->param_end(); |
4527 | for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) { |
4528 | assert(PrevI != overridden->param_end() && "Param mismatch" ); |
4529 | QualType T1 = Context.getCanonicalType(T: (*ParamI)->getType()); |
4530 | QualType T2 = Context.getCanonicalType(T: (*PrevI)->getType()); |
4531 | // If type of argument of method in this class does not match its |
4532 | // respective argument type in the super class method, issue warning; |
4533 | if (!Context.typesAreCompatible(T1, T2)) { |
4534 | Diag(Loc: (*ParamI)->getLocation(), DiagID: diag::ext_typecheck_base_super) |
4535 | << T1 << T2; |
4536 | Diag(Loc: overridden->getLocation(), DiagID: diag::note_previous_declaration); |
4537 | break; |
4538 | } |
4539 | } |
4540 | } |
4541 | } |
4542 | |
4543 | ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol); |
4544 | } |
4545 | |
4546 | /// Merge type nullability from for a redeclaration of the same entity, |
4547 | /// producing the updated type of the redeclared entity. |
4548 | static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc, |
4549 | QualType type, |
4550 | bool usesCSKeyword, |
4551 | SourceLocation prevLoc, |
4552 | QualType prevType, |
4553 | bool prevUsesCSKeyword) { |
4554 | // Determine the nullability of both types. |
4555 | auto nullability = type->getNullability(); |
4556 | auto prevNullability = prevType->getNullability(); |
4557 | |
4558 | // Easy case: both have nullability. |
4559 | if (nullability.has_value() == prevNullability.has_value()) { |
4560 | // Neither has nullability; continue. |
4561 | if (!nullability) |
4562 | return type; |
4563 | |
4564 | // The nullabilities are equivalent; do nothing. |
4565 | if (*nullability == *prevNullability) |
4566 | return type; |
4567 | |
4568 | // Complain about mismatched nullability. |
4569 | S.Diag(Loc: loc, DiagID: diag::err_nullability_conflicting) |
4570 | << DiagNullabilityKind(*nullability, usesCSKeyword) |
4571 | << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword); |
4572 | return type; |
4573 | } |
4574 | |
4575 | // If it's the redeclaration that has nullability, don't change anything. |
4576 | if (nullability) |
4577 | return type; |
4578 | |
4579 | // Otherwise, provide the result with the same nullability. |
4580 | return S.Context.getAttributedType( |
4581 | attrKind: AttributedType::getNullabilityAttrKind(kind: *prevNullability), |
4582 | modifiedType: type, equivalentType: type); |
4583 | } |
4584 | |
4585 | /// Merge information from the declaration of a method in the \@interface |
4586 | /// (or a category/extension) into the corresponding method in the |
4587 | /// @implementation (for a class or category). |
4588 | static void mergeInterfaceMethodToImpl(Sema &S, |
4589 | ObjCMethodDecl *method, |
4590 | ObjCMethodDecl *prevMethod) { |
4591 | // Merge the objc_requires_super attribute. |
4592 | if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() && |
4593 | !method->hasAttr<ObjCRequiresSuperAttr>()) { |
4594 | // merge the attribute into implementation. |
4595 | method->addAttr( |
4596 | A: ObjCRequiresSuperAttr::CreateImplicit(Ctx&: S.Context, |
4597 | Range: method->getLocation())); |
4598 | } |
4599 | |
4600 | // Merge nullability of the result type. |
4601 | QualType newReturnType |
4602 | = mergeTypeNullabilityForRedecl( |
4603 | S, loc: method->getReturnTypeSourceRange().getBegin(), |
4604 | type: method->getReturnType(), |
4605 | usesCSKeyword: method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability, |
4606 | prevLoc: prevMethod->getReturnTypeSourceRange().getBegin(), |
4607 | prevType: prevMethod->getReturnType(), |
4608 | prevUsesCSKeyword: prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability); |
4609 | method->setReturnType(newReturnType); |
4610 | |
4611 | // Handle each of the parameters. |
4612 | unsigned numParams = method->param_size(); |
4613 | unsigned numPrevParams = prevMethod->param_size(); |
4614 | for (unsigned i = 0, n = std::min(a: numParams, b: numPrevParams); i != n; ++i) { |
4615 | ParmVarDecl *param = method->param_begin()[i]; |
4616 | ParmVarDecl *prevParam = prevMethod->param_begin()[i]; |
4617 | |
4618 | // Merge nullability. |
4619 | QualType newParamType |
4620 | = mergeTypeNullabilityForRedecl( |
4621 | S, loc: param->getLocation(), type: param->getType(), |
4622 | usesCSKeyword: param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability, |
4623 | prevLoc: prevParam->getLocation(), prevType: prevParam->getType(), |
4624 | prevUsesCSKeyword: prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability); |
4625 | param->setType(newParamType); |
4626 | } |
4627 | } |
4628 | |
4629 | /// Verify that the method parameters/return value have types that are supported |
4630 | /// by the x86 target. |
4631 | static void checkObjCMethodX86VectorTypes(Sema &SemaRef, |
4632 | const ObjCMethodDecl *Method) { |
4633 | assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == |
4634 | llvm::Triple::x86 && |
4635 | "x86-specific check invoked for a different target" ); |
4636 | SourceLocation Loc; |
4637 | QualType T; |
4638 | for (const ParmVarDecl *P : Method->parameters()) { |
4639 | if (P->getType()->isVectorType()) { |
4640 | Loc = P->getBeginLoc(); |
4641 | T = P->getType(); |
4642 | break; |
4643 | } |
4644 | } |
4645 | if (Loc.isInvalid()) { |
4646 | if (Method->getReturnType()->isVectorType()) { |
4647 | Loc = Method->getReturnTypeSourceRange().getBegin(); |
4648 | T = Method->getReturnType(); |
4649 | } else |
4650 | return; |
4651 | } |
4652 | |
4653 | // Vector parameters/return values are not supported by objc_msgSend on x86 in |
4654 | // iOS < 9 and macOS < 10.11. |
4655 | const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple(); |
4656 | VersionTuple AcceptedInVersion; |
4657 | if (Triple.getOS() == llvm::Triple::IOS) |
4658 | AcceptedInVersion = VersionTuple(/*Major=*/9); |
4659 | else if (Triple.isMacOSX()) |
4660 | AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11); |
4661 | else |
4662 | return; |
4663 | if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >= |
4664 | AcceptedInVersion) |
4665 | return; |
4666 | SemaRef.Diag(Loc, DiagID: diag::err_objc_method_unsupported_param_ret_type) |
4667 | << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1 |
4668 | : /*parameter*/ 0) |
4669 | << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9" ); |
4670 | } |
4671 | |
4672 | static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) { |
4673 | if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() && |
4674 | CD->hasAttr<ObjCDirectMembersAttr>()) { |
4675 | Method->addAttr( |
4676 | A: ObjCDirectAttr::CreateImplicit(Ctx&: S.Context, Range: Method->getLocation())); |
4677 | } |
4678 | } |
4679 | |
4680 | static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl, |
4681 | ObjCMethodDecl *Method, |
4682 | ObjCImplDecl *ImpDecl = nullptr) { |
4683 | auto Sel = Method->getSelector(); |
4684 | bool isInstance = Method->isInstanceMethod(); |
4685 | bool diagnosed = false; |
4686 | |
4687 | auto diagClash = [&](const ObjCMethodDecl *IMD) { |
4688 | if (diagnosed || IMD->isImplicit()) |
4689 | return; |
4690 | if (Method->isDirectMethod() || IMD->isDirectMethod()) { |
4691 | S.Diag(Loc: Method->getLocation(), DiagID: diag::err_objc_direct_duplicate_decl) |
4692 | << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod() |
4693 | << Method->getDeclName(); |
4694 | S.Diag(Loc: IMD->getLocation(), DiagID: diag::note_previous_declaration); |
4695 | diagnosed = true; |
4696 | } |
4697 | }; |
4698 | |
4699 | // Look for any other declaration of this method anywhere we can see in this |
4700 | // compilation unit. |
4701 | // |
4702 | // We do not use IDecl->lookupMethod() because we have specific needs: |
4703 | // |
4704 | // - we absolutely do not need to walk protocols, because |
4705 | // diag::err_objc_direct_on_protocol has already been emitted |
4706 | // during parsing if there's a conflict, |
4707 | // |
4708 | // - when we do not find a match in a given @interface container, |
4709 | // we need to attempt looking it up in the @implementation block if the |
4710 | // translation unit sees it to find more clashes. |
4711 | |
4712 | if (auto *IMD = IDecl->getMethod(Sel, isInstance)) |
4713 | diagClash(IMD); |
4714 | else if (auto *Impl = IDecl->getImplementation()) |
4715 | if (Impl != ImpDecl) |
4716 | if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance)) |
4717 | diagClash(IMD); |
4718 | |
4719 | for (const auto *Cat : IDecl->visible_categories()) |
4720 | if (auto *IMD = Cat->getMethod(Sel, isInstance)) |
4721 | diagClash(IMD); |
4722 | else if (auto CatImpl = Cat->getImplementation()) |
4723 | if (CatImpl != ImpDecl) |
4724 | if (auto *IMD = Cat->getMethod(Sel, isInstance)) |
4725 | diagClash(IMD); |
4726 | } |
4727 | |
4728 | Decl *SemaObjC::ActOnMethodDeclaration( |
4729 | Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc, |
4730 | tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType, |
4731 | ArrayRef<SourceLocation> SelectorLocs, Selector Sel, |
4732 | // optional arguments. The number of types/arguments is obtained |
4733 | // from the Sel.getNumArgs(). |
4734 | ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo, |
4735 | unsigned CNumArgs, // c-style args |
4736 | const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind, |
4737 | bool isVariadic, bool MethodDefinition) { |
4738 | ASTContext &Context = getASTContext(); |
4739 | // Make sure we can establish a context for the method. |
4740 | if (!SemaRef.CurContext->isObjCContainer()) { |
4741 | Diag(Loc: MethodLoc, DiagID: diag::err_missing_method_context); |
4742 | return nullptr; |
4743 | } |
4744 | |
4745 | Decl *ClassDecl = cast<ObjCContainerDecl>(Val: SemaRef.CurContext); |
4746 | QualType resultDeclType; |
4747 | |
4748 | bool HasRelatedResultType = false; |
4749 | TypeSourceInfo *ReturnTInfo = nullptr; |
4750 | if (ReturnType) { |
4751 | resultDeclType = SemaRef.GetTypeFromParser(Ty: ReturnType, TInfo: &ReturnTInfo); |
4752 | |
4753 | if (SemaRef.CheckFunctionReturnType(T: resultDeclType, Loc: MethodLoc)) |
4754 | return nullptr; |
4755 | |
4756 | QualType bareResultType = resultDeclType; |
4757 | (void)AttributedType::stripOuterNullability(T&: bareResultType); |
4758 | HasRelatedResultType = (bareResultType == Context.getObjCInstanceType()); |
4759 | } else { // get the type for "id". |
4760 | resultDeclType = Context.getObjCIdType(); |
4761 | Diag(Loc: MethodLoc, DiagID: diag::warn_missing_method_return_type) |
4762 | << FixItHint::CreateInsertion(InsertionLoc: SelectorLocs.front(), Code: "(id)" ); |
4763 | } |
4764 | |
4765 | ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create( |
4766 | C&: Context, beginLoc: MethodLoc, endLoc: EndLoc, SelInfo: Sel, T: resultDeclType, ReturnTInfo, |
4767 | contextDecl: SemaRef.CurContext, isInstance: MethodType == tok::minus, isVariadic, |
4768 | /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false, |
4769 | /*isImplicitlyDeclared=*/false, /*isDefined=*/false, |
4770 | impControl: MethodDeclKind == tok::objc_optional |
4771 | ? ObjCImplementationControl::Optional |
4772 | : ObjCImplementationControl::Required, |
4773 | HasRelatedResultType); |
4774 | |
4775 | SmallVector<ParmVarDecl*, 16> Params; |
4776 | |
4777 | for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) { |
4778 | QualType ArgType; |
4779 | TypeSourceInfo *DI; |
4780 | |
4781 | if (!ArgInfo[i].Type) { |
4782 | ArgType = Context.getObjCIdType(); |
4783 | DI = nullptr; |
4784 | } else { |
4785 | ArgType = SemaRef.GetTypeFromParser(Ty: ArgInfo[i].Type, TInfo: &DI); |
4786 | } |
4787 | |
4788 | LookupResult R(SemaRef, ArgInfo[i].Name, ArgInfo[i].NameLoc, |
4789 | Sema::LookupOrdinaryName, |
4790 | SemaRef.forRedeclarationInCurContext()); |
4791 | SemaRef.LookupName(R, S); |
4792 | if (R.isSingleResult()) { |
4793 | NamedDecl *PrevDecl = R.getFoundDecl(); |
4794 | if (S->isDeclScope(D: PrevDecl)) { |
4795 | Diag(Loc: ArgInfo[i].NameLoc, |
4796 | DiagID: (MethodDefinition ? diag::warn_method_param_redefinition |
4797 | : diag::warn_method_param_declaration)) |
4798 | << ArgInfo[i].Name; |
4799 | Diag(Loc: PrevDecl->getLocation(), |
4800 | DiagID: diag::note_previous_declaration); |
4801 | } |
4802 | } |
4803 | |
4804 | SourceLocation StartLoc = DI |
4805 | ? DI->getTypeLoc().getBeginLoc() |
4806 | : ArgInfo[i].NameLoc; |
4807 | |
4808 | ParmVarDecl *Param = |
4809 | SemaRef.CheckParameter(DC: ObjCMethod, StartLoc, NameLoc: ArgInfo[i].NameLoc, |
4810 | Name: ArgInfo[i].Name, T: ArgType, TSInfo: DI, SC: SC_None); |
4811 | |
4812 | Param->setObjCMethodScopeInfo(i); |
4813 | |
4814 | Param->setObjCDeclQualifier( |
4815 | CvtQTToAstBitMask(PQTVal: ArgInfo[i].DeclSpec.getObjCDeclQualifier())); |
4816 | |
4817 | // Apply the attributes to the parameter. |
4818 | SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: Param, |
4819 | AttrList: ArgInfo[i].ArgAttrs); |
4820 | SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: Param); |
4821 | SemaRef.ProcessAPINotes(D: Param); |
4822 | |
4823 | if (Param->hasAttr<BlocksAttr>()) { |
4824 | Diag(Loc: Param->getLocation(), DiagID: diag::err_block_on_nonlocal); |
4825 | Param->setInvalidDecl(); |
4826 | } |
4827 | S->AddDecl(D: Param); |
4828 | SemaRef.IdResolver.AddDecl(D: Param); |
4829 | |
4830 | Params.push_back(Elt: Param); |
4831 | } |
4832 | |
4833 | for (unsigned i = 0, e = CNumArgs; i != e; ++i) { |
4834 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: CParamInfo[i].Param); |
4835 | QualType ArgType = Param->getType(); |
4836 | if (ArgType.isNull()) |
4837 | ArgType = Context.getObjCIdType(); |
4838 | else |
4839 | // Perform the default array/function conversions (C99 6.7.5.3p[7,8]). |
4840 | ArgType = Context.getAdjustedParameterType(T: ArgType); |
4841 | |
4842 | Param->setDeclContext(ObjCMethod); |
4843 | Params.push_back(Elt: Param); |
4844 | } |
4845 | |
4846 | ObjCMethod->setMethodParams(C&: Context, Params, SelLocs: SelectorLocs); |
4847 | ObjCMethod->setObjCDeclQualifier( |
4848 | CvtQTToAstBitMask(PQTVal: ReturnQT.getObjCDeclQualifier())); |
4849 | |
4850 | SemaRef.ProcessDeclAttributeList(S: SemaRef.TUScope, D: ObjCMethod, AttrList); |
4851 | SemaRef.AddPragmaAttributes(S: SemaRef.TUScope, D: ObjCMethod); |
4852 | SemaRef.ProcessAPINotes(D: ObjCMethod); |
4853 | |
4854 | // Add the method now. |
4855 | const ObjCMethodDecl *PrevMethod = nullptr; |
4856 | if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(Val: ClassDecl)) { |
4857 | if (MethodType == tok::minus) { |
4858 | PrevMethod = ImpDecl->getInstanceMethod(Sel); |
4859 | ImpDecl->addInstanceMethod(method: ObjCMethod); |
4860 | } else { |
4861 | PrevMethod = ImpDecl->getClassMethod(Sel); |
4862 | ImpDecl->addClassMethod(method: ObjCMethod); |
4863 | } |
4864 | |
4865 | // If this method overrides a previous @synthesize declaration, |
4866 | // register it with the property. Linear search through all |
4867 | // properties here, because the autosynthesized stub hasn't been |
4868 | // made visible yet, so it can be overridden by a later |
4869 | // user-specified implementation. |
4870 | for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) { |
4871 | if (auto *Setter = PropertyImpl->getSetterMethodDecl()) |
4872 | if (Setter->getSelector() == Sel && |
4873 | Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) { |
4874 | assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected" ); |
4875 | PropertyImpl->setSetterMethodDecl(ObjCMethod); |
4876 | } |
4877 | if (auto *Getter = PropertyImpl->getGetterMethodDecl()) |
4878 | if (Getter->getSelector() == Sel && |
4879 | Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) { |
4880 | assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected" ); |
4881 | PropertyImpl->setGetterMethodDecl(ObjCMethod); |
4882 | break; |
4883 | } |
4884 | } |
4885 | |
4886 | // A method is either tagged direct explicitly, or inherits it from its |
4887 | // canonical declaration. |
4888 | // |
4889 | // We have to do the merge upfront and not in mergeInterfaceMethodToImpl() |
4890 | // because IDecl->lookupMethod() returns more possible matches than just |
4891 | // the canonical declaration. |
4892 | if (!ObjCMethod->isDirectMethod()) { |
4893 | const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl(); |
4894 | if (CanonicalMD->isDirectMethod()) { |
4895 | const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>(); |
4896 | ObjCMethod->addAttr( |
4897 | A: ObjCDirectAttr::CreateImplicit(Ctx&: Context, Range: attr->getLocation())); |
4898 | } |
4899 | } |
4900 | |
4901 | // Merge information from the @interface declaration into the |
4902 | // @implementation. |
4903 | if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) { |
4904 | if (auto *IMD = IDecl->lookupMethod(Sel: ObjCMethod->getSelector(), |
4905 | isInstance: ObjCMethod->isInstanceMethod())) { |
4906 | mergeInterfaceMethodToImpl(S&: SemaRef, method: ObjCMethod, prevMethod: IMD); |
4907 | |
4908 | // The Idecl->lookupMethod() above will find declarations for ObjCMethod |
4909 | // in one of these places: |
4910 | // |
4911 | // (1) the canonical declaration in an @interface container paired |
4912 | // with the ImplDecl, |
4913 | // (2) non canonical declarations in @interface not paired with the |
4914 | // ImplDecl for the same Class, |
4915 | // (3) any superclass container. |
4916 | // |
4917 | // Direct methods only allow for canonical declarations in the matching |
4918 | // container (case 1). |
4919 | // |
4920 | // Direct methods overriding a superclass declaration (case 3) is |
4921 | // handled during overrides checks in CheckObjCMethodOverrides(). |
4922 | // |
4923 | // We deal with same-class container mismatches (Case 2) here. |
4924 | if (IDecl == IMD->getClassInterface()) { |
4925 | auto diagContainerMismatch = [&] { |
4926 | int decl = 0, impl = 0; |
4927 | |
4928 | if (auto *Cat = dyn_cast<ObjCCategoryDecl>(Val: IMD->getDeclContext())) |
4929 | decl = Cat->IsClassExtension() ? 1 : 2; |
4930 | |
4931 | if (isa<ObjCCategoryImplDecl>(Val: ImpDecl)) |
4932 | impl = 1 + (decl != 0); |
4933 | |
4934 | Diag(Loc: ObjCMethod->getLocation(), |
4935 | DiagID: diag::err_objc_direct_impl_decl_mismatch) |
4936 | << decl << impl; |
4937 | Diag(Loc: IMD->getLocation(), DiagID: diag::note_previous_declaration); |
4938 | }; |
4939 | |
4940 | if (ObjCMethod->isDirectMethod()) { |
4941 | const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>(); |
4942 | if (ObjCMethod->getCanonicalDecl() != IMD) { |
4943 | diagContainerMismatch(); |
4944 | } else if (!IMD->isDirectMethod()) { |
4945 | Diag(Loc: attr->getLocation(), DiagID: diag::err_objc_direct_missing_on_decl); |
4946 | Diag(Loc: IMD->getLocation(), DiagID: diag::note_previous_declaration); |
4947 | } |
4948 | } else if (IMD->isDirectMethod()) { |
4949 | const auto *attr = IMD->getAttr<ObjCDirectAttr>(); |
4950 | if (ObjCMethod->getCanonicalDecl() != IMD) { |
4951 | diagContainerMismatch(); |
4952 | } else { |
4953 | ObjCMethod->addAttr( |
4954 | A: ObjCDirectAttr::CreateImplicit(Ctx&: Context, Range: attr->getLocation())); |
4955 | } |
4956 | } |
4957 | } |
4958 | |
4959 | // Warn about defining -dealloc in a category. |
4960 | if (isa<ObjCCategoryImplDecl>(Val: ImpDecl) && IMD->isOverriding() && |
4961 | ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) { |
4962 | Diag(Loc: ObjCMethod->getLocation(), DiagID: diag::warn_dealloc_in_category) |
4963 | << ObjCMethod->getDeclName(); |
4964 | } |
4965 | } else { |
4966 | mergeObjCDirectMembers(S&: SemaRef, CD: ClassDecl, Method: ObjCMethod); |
4967 | checkObjCDirectMethodClashes(S&: SemaRef, IDecl, Method: ObjCMethod, ImpDecl); |
4968 | } |
4969 | |
4970 | // Warn if a method declared in a protocol to which a category or |
4971 | // extension conforms is non-escaping and the implementation's method is |
4972 | // escaping. |
4973 | for (auto *C : IDecl->visible_categories()) |
4974 | for (auto &P : C->protocols()) |
4975 | if (auto *IMD = P->lookupMethod(Sel: ObjCMethod->getSelector(), |
4976 | isInstance: ObjCMethod->isInstanceMethod())) { |
4977 | assert(ObjCMethod->parameters().size() == |
4978 | IMD->parameters().size() && |
4979 | "Methods have different number of parameters" ); |
4980 | auto OI = IMD->param_begin(), OE = IMD->param_end(); |
4981 | auto NI = ObjCMethod->param_begin(); |
4982 | for (; OI != OE; ++OI, ++NI) |
4983 | diagnoseNoescape(NewD: *NI, OldD: *OI, CD: C, PD: P, S&: SemaRef); |
4984 | } |
4985 | } |
4986 | } else { |
4987 | if (!isa<ObjCProtocolDecl>(Val: ClassDecl)) { |
4988 | mergeObjCDirectMembers(S&: SemaRef, CD: ClassDecl, Method: ObjCMethod); |
4989 | |
4990 | ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(Val: ClassDecl); |
4991 | if (!IDecl) |
4992 | IDecl = cast<ObjCCategoryDecl>(Val: ClassDecl)->getClassInterface(); |
4993 | // For valid code, we should always know the primary interface |
4994 | // declaration by now, however for invalid code we'll keep parsing |
4995 | // but we won't find the primary interface and IDecl will be nil. |
4996 | if (IDecl) |
4997 | checkObjCDirectMethodClashes(S&: SemaRef, IDecl, Method: ObjCMethod); |
4998 | } |
4999 | |
5000 | cast<DeclContext>(Val: ClassDecl)->addDecl(D: ObjCMethod); |
5001 | } |
5002 | |
5003 | if (PrevMethod) { |
5004 | // You can never have two method definitions with the same name. |
5005 | Diag(Loc: ObjCMethod->getLocation(), DiagID: diag::err_duplicate_method_decl) |
5006 | << ObjCMethod->getDeclName(); |
5007 | Diag(Loc: PrevMethod->getLocation(), DiagID: diag::note_previous_declaration); |
5008 | ObjCMethod->setInvalidDecl(); |
5009 | return ObjCMethod; |
5010 | } |
5011 | |
5012 | // If this Objective-C method does not have a related result type, but we |
5013 | // are allowed to infer related result types, try to do so based on the |
5014 | // method family. |
5015 | ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(Val: ClassDecl); |
5016 | if (!CurrentClass) { |
5017 | if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(Val: ClassDecl)) |
5018 | CurrentClass = Cat->getClassInterface(); |
5019 | else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(Val: ClassDecl)) |
5020 | CurrentClass = Impl->getClassInterface(); |
5021 | else if (ObjCCategoryImplDecl *CatImpl |
5022 | = dyn_cast<ObjCCategoryImplDecl>(Val: ClassDecl)) |
5023 | CurrentClass = CatImpl->getClassInterface(); |
5024 | } |
5025 | |
5026 | ResultTypeCompatibilityKind RTC = |
5027 | CheckRelatedResultTypeCompatibility(S&: SemaRef, Method: ObjCMethod, CurrentClass); |
5028 | |
5029 | CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC); |
5030 | |
5031 | bool ARCError = false; |
5032 | if (getLangOpts().ObjCAutoRefCount) |
5033 | ARCError = CheckARCMethodDecl(method: ObjCMethod); |
5034 | |
5035 | // Infer the related result type when possible. |
5036 | if (!ARCError && RTC == SemaObjC::RTC_Compatible && |
5037 | !ObjCMethod->hasRelatedResultType() && |
5038 | getLangOpts().ObjCInferRelatedResultType) { |
5039 | bool InferRelatedResultType = false; |
5040 | switch (ObjCMethod->getMethodFamily()) { |
5041 | case OMF_None: |
5042 | case OMF_copy: |
5043 | case OMF_dealloc: |
5044 | case OMF_finalize: |
5045 | case OMF_mutableCopy: |
5046 | case OMF_release: |
5047 | case OMF_retainCount: |
5048 | case OMF_initialize: |
5049 | case OMF_performSelector: |
5050 | break; |
5051 | |
5052 | case OMF_alloc: |
5053 | case OMF_new: |
5054 | InferRelatedResultType = ObjCMethod->isClassMethod(); |
5055 | break; |
5056 | |
5057 | case OMF_init: |
5058 | case OMF_autorelease: |
5059 | case OMF_retain: |
5060 | case OMF_self: |
5061 | InferRelatedResultType = ObjCMethod->isInstanceMethod(); |
5062 | break; |
5063 | } |
5064 | |
5065 | if (InferRelatedResultType && |
5066 | !ObjCMethod->getReturnType()->isObjCIndependentClassType()) |
5067 | ObjCMethod->setRelatedResultType(); |
5068 | } |
5069 | |
5070 | if (MethodDefinition && |
5071 | Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) |
5072 | checkObjCMethodX86VectorTypes(SemaRef, Method: ObjCMethod); |
5073 | |
5074 | // + load method cannot have availability attributes. It get called on |
5075 | // startup, so it has to have the availability of the deployment target. |
5076 | if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) { |
5077 | if (ObjCMethod->isClassMethod() && |
5078 | ObjCMethod->getSelector().getAsString() == "load" ) { |
5079 | Diag(Loc: attr->getLocation(), DiagID: diag::warn_availability_on_static_initializer) |
5080 | << 0; |
5081 | ObjCMethod->dropAttr<AvailabilityAttr>(); |
5082 | } |
5083 | } |
5084 | |
5085 | // Insert the invisible arguments, self and _cmd! |
5086 | ObjCMethod->createImplicitParams(Context, ID: ObjCMethod->getClassInterface()); |
5087 | |
5088 | SemaRef.ActOnDocumentableDecl(D: ObjCMethod); |
5089 | |
5090 | return ObjCMethod; |
5091 | } |
5092 | |
5093 | bool SemaObjC::CheckObjCDeclScope(Decl *D) { |
5094 | // Following is also an error. But it is caused by a missing @end |
5095 | // and diagnostic is issued elsewhere. |
5096 | if (isa<ObjCContainerDecl>(Val: SemaRef.CurContext->getRedeclContext())) |
5097 | return false; |
5098 | |
5099 | // If we switched context to translation unit while we are still lexically in |
5100 | // an objc container, it means the parser missed emitting an error. |
5101 | if (isa<TranslationUnitDecl>( |
5102 | Val: SemaRef.getCurLexicalContext()->getRedeclContext())) |
5103 | return false; |
5104 | |
5105 | Diag(Loc: D->getLocation(), DiagID: diag::err_objc_decls_may_only_appear_in_global_scope); |
5106 | D->setInvalidDecl(); |
5107 | |
5108 | return true; |
5109 | } |
5110 | |
5111 | /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the |
5112 | /// instance variables of ClassName into Decls. |
5113 | void SemaObjC::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart, |
5114 | const IdentifierInfo *ClassName, |
5115 | SmallVectorImpl<Decl *> &Decls) { |
5116 | ASTContext &Context = getASTContext(); |
5117 | // Check that ClassName is a valid class |
5118 | ObjCInterfaceDecl *Class = getObjCInterfaceDecl(Id&: ClassName, IdLoc: DeclStart); |
5119 | if (!Class) { |
5120 | Diag(Loc: DeclStart, DiagID: diag::err_undef_interface) << ClassName; |
5121 | return; |
5122 | } |
5123 | if (getLangOpts().ObjCRuntime.isNonFragile()) { |
5124 | Diag(Loc: DeclStart, DiagID: diag::err_atdef_nonfragile_interface); |
5125 | return; |
5126 | } |
5127 | |
5128 | // Collect the instance variables |
5129 | SmallVector<const ObjCIvarDecl*, 32> Ivars; |
5130 | Context.DeepCollectObjCIvars(OI: Class, leafClass: true, Ivars); |
5131 | // For each ivar, create a fresh ObjCAtDefsFieldDecl. |
5132 | for (unsigned i = 0; i < Ivars.size(); i++) { |
5133 | const FieldDecl* ID = Ivars[i]; |
5134 | RecordDecl *Record = dyn_cast<RecordDecl>(Val: TagD); |
5135 | Decl *FD = ObjCAtDefsFieldDecl::Create(C&: Context, DC: Record, |
5136 | /*FIXME: StartL=*/StartLoc: ID->getLocation(), |
5137 | IdLoc: ID->getLocation(), |
5138 | Id: ID->getIdentifier(), T: ID->getType(), |
5139 | BW: ID->getBitWidth()); |
5140 | Decls.push_back(Elt: FD); |
5141 | } |
5142 | |
5143 | // Introduce all of these fields into the appropriate scope. |
5144 | for (SmallVectorImpl<Decl*>::iterator D = Decls.begin(); |
5145 | D != Decls.end(); ++D) { |
5146 | FieldDecl *FD = cast<FieldDecl>(Val: *D); |
5147 | if (getLangOpts().CPlusPlus) |
5148 | SemaRef.PushOnScopeChains(D: FD, S); |
5149 | else if (RecordDecl *Record = dyn_cast<RecordDecl>(Val: TagD)) |
5150 | Record->addDecl(D: FD); |
5151 | } |
5152 | } |
5153 | |
5154 | /// Build a type-check a new Objective-C exception variable declaration. |
5155 | VarDecl *SemaObjC::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T, |
5156 | SourceLocation StartLoc, |
5157 | SourceLocation IdLoc, |
5158 | const IdentifierInfo *Id, |
5159 | bool Invalid) { |
5160 | ASTContext &Context = getASTContext(); |
5161 | // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage |
5162 | // duration shall not be qualified by an address-space qualifier." |
5163 | // Since all parameters have automatic store duration, they can not have |
5164 | // an address space. |
5165 | if (T.getAddressSpace() != LangAS::Default) { |
5166 | Diag(Loc: IdLoc, DiagID: diag::err_arg_with_address_space); |
5167 | Invalid = true; |
5168 | } |
5169 | |
5170 | // An @catch parameter must be an unqualified object pointer type; |
5171 | // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"? |
5172 | if (Invalid) { |
5173 | // Don't do any further checking. |
5174 | } else if (T->isDependentType()) { |
5175 | // Okay: we don't know what this type will instantiate to. |
5176 | } else if (T->isObjCQualifiedIdType()) { |
5177 | Invalid = true; |
5178 | Diag(Loc: IdLoc, DiagID: diag::err_illegal_qualifiers_on_catch_parm); |
5179 | } else if (T->isObjCIdType()) { |
5180 | // Okay: we don't know what this type will instantiate to. |
5181 | } else if (!T->isObjCObjectPointerType()) { |
5182 | Invalid = true; |
5183 | Diag(Loc: IdLoc, DiagID: diag::err_catch_param_not_objc_type); |
5184 | } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) { |
5185 | Invalid = true; |
5186 | Diag(Loc: IdLoc, DiagID: diag::err_catch_param_not_objc_type); |
5187 | } |
5188 | |
5189 | VarDecl *New = VarDecl::Create(C&: Context, DC: SemaRef.CurContext, StartLoc, IdLoc, |
5190 | Id, T, TInfo, S: SC_None); |
5191 | New->setExceptionVariable(true); |
5192 | |
5193 | // In ARC, infer 'retaining' for variables of retainable type. |
5194 | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(decl: New)) |
5195 | Invalid = true; |
5196 | |
5197 | if (Invalid) |
5198 | New->setInvalidDecl(); |
5199 | return New; |
5200 | } |
5201 | |
5202 | Decl *SemaObjC::ActOnObjCExceptionDecl(Scope *S, Declarator &D) { |
5203 | const DeclSpec &DS = D.getDeclSpec(); |
5204 | |
5205 | // We allow the "register" storage class on exception variables because |
5206 | // GCC did, but we drop it completely. Any other storage class is an error. |
5207 | if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { |
5208 | Diag(Loc: DS.getStorageClassSpecLoc(), DiagID: diag::warn_register_objc_catch_parm) |
5209 | << FixItHint::CreateRemoval(RemoveRange: SourceRange(DS.getStorageClassSpecLoc())); |
5210 | } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { |
5211 | Diag(Loc: DS.getStorageClassSpecLoc(), DiagID: diag::err_storage_spec_on_catch_parm) |
5212 | << DeclSpec::getSpecifierName(S: SCS); |
5213 | } |
5214 | if (DS.isInlineSpecified()) |
5215 | Diag(Loc: DS.getInlineSpecLoc(), DiagID: diag::err_inline_non_function) |
5216 | << getLangOpts().CPlusPlus17; |
5217 | if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) |
5218 | Diag(Loc: D.getDeclSpec().getThreadStorageClassSpecLoc(), |
5219 | DiagID: diag::err_invalid_thread) |
5220 | << DeclSpec::getSpecifierName(S: TSCS); |
5221 | D.getMutableDeclSpec().ClearStorageClassSpecs(); |
5222 | |
5223 | SemaRef.DiagnoseFunctionSpecifiers(DS: D.getDeclSpec()); |
5224 | |
5225 | // Check that there are no default arguments inside the type of this |
5226 | // exception object (C++ only). |
5227 | if (getLangOpts().CPlusPlus) |
5228 | SemaRef.CheckExtraCXXDefaultArguments(D); |
5229 | |
5230 | TypeSourceInfo *TInfo = SemaRef.GetTypeForDeclarator(D); |
5231 | QualType ExceptionType = TInfo->getType(); |
5232 | |
5233 | VarDecl *New = BuildObjCExceptionDecl(TInfo, T: ExceptionType, |
5234 | StartLoc: D.getSourceRange().getBegin(), |
5235 | IdLoc: D.getIdentifierLoc(), |
5236 | Id: D.getIdentifier(), |
5237 | Invalid: D.isInvalidType()); |
5238 | |
5239 | // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). |
5240 | if (D.getCXXScopeSpec().isSet()) { |
5241 | Diag(Loc: D.getIdentifierLoc(), DiagID: diag::err_qualified_objc_catch_parm) |
5242 | << D.getCXXScopeSpec().getRange(); |
5243 | New->setInvalidDecl(); |
5244 | } |
5245 | |
5246 | // Add the parameter declaration into this scope. |
5247 | S->AddDecl(D: New); |
5248 | if (D.getIdentifier()) |
5249 | SemaRef.IdResolver.AddDecl(D: New); |
5250 | |
5251 | SemaRef.ProcessDeclAttributes(S, D: New, PD: D); |
5252 | |
5253 | if (New->hasAttr<BlocksAttr>()) |
5254 | Diag(Loc: New->getLocation(), DiagID: diag::err_block_on_nonlocal); |
5255 | return New; |
5256 | } |
5257 | |
5258 | /// CollectIvarsToConstructOrDestruct - Collect those ivars which require |
5259 | /// initialization. |
5260 | void SemaObjC::CollectIvarsToConstructOrDestruct( |
5261 | ObjCInterfaceDecl *OI, SmallVectorImpl<ObjCIvarDecl *> &Ivars) { |
5262 | ASTContext &Context = getASTContext(); |
5263 | for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv; |
5264 | Iv= Iv->getNextIvar()) { |
5265 | QualType QT = Context.getBaseElementType(QT: Iv->getType()); |
5266 | if (QT->isRecordType()) |
5267 | Ivars.push_back(Elt: Iv); |
5268 | } |
5269 | } |
5270 | |
5271 | void SemaObjC::DiagnoseUseOfUnimplementedSelectors() { |
5272 | ASTContext &Context = getASTContext(); |
5273 | // Load referenced selectors from the external source. |
5274 | if (SemaRef.ExternalSource) { |
5275 | SmallVector<std::pair<Selector, SourceLocation>, 4> Sels; |
5276 | SemaRef.ExternalSource->ReadReferencedSelectors(Sels); |
5277 | for (unsigned I = 0, N = Sels.size(); I != N; ++I) |
5278 | ReferencedSelectors[Sels[I].first] = Sels[I].second; |
5279 | } |
5280 | |
5281 | // Warning will be issued only when selector table is |
5282 | // generated (which means there is at lease one implementation |
5283 | // in the TU). This is to match gcc's behavior. |
5284 | if (ReferencedSelectors.empty() || |
5285 | !Context.AnyObjCImplementation()) |
5286 | return; |
5287 | for (auto &SelectorAndLocation : ReferencedSelectors) { |
5288 | Selector Sel = SelectorAndLocation.first; |
5289 | SourceLocation Loc = SelectorAndLocation.second; |
5290 | if (!LookupImplementedMethodInGlobalPool(Sel)) |
5291 | Diag(Loc, DiagID: diag::warn_unimplemented_selector) << Sel; |
5292 | } |
5293 | } |
5294 | |
5295 | ObjCIvarDecl * |
5296 | SemaObjC::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method, |
5297 | const ObjCPropertyDecl *&PDecl) const { |
5298 | if (Method->isClassMethod()) |
5299 | return nullptr; |
5300 | const ObjCInterfaceDecl *IDecl = Method->getClassInterface(); |
5301 | if (!IDecl) |
5302 | return nullptr; |
5303 | Method = IDecl->lookupMethod(Sel: Method->getSelector(), /*isInstance=*/true, |
5304 | /*shallowCategoryLookup=*/false, |
5305 | /*followSuper=*/false); |
5306 | if (!Method || !Method->isPropertyAccessor()) |
5307 | return nullptr; |
5308 | if ((PDecl = Method->findPropertyDecl())) |
5309 | if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) { |
5310 | // property backing ivar must belong to property's class |
5311 | // or be a private ivar in class's implementation. |
5312 | // FIXME. fix the const-ness issue. |
5313 | IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable( |
5314 | IVarName: IV->getIdentifier()); |
5315 | return IV; |
5316 | } |
5317 | return nullptr; |
5318 | } |
5319 | |
5320 | namespace { |
5321 | /// Used by SemaObjC::DiagnoseUnusedBackingIvarInAccessor to check if a property |
5322 | /// accessor references the backing ivar. |
5323 | class UnusedBackingIvarChecker |
5324 | : public RecursiveASTVisitor<UnusedBackingIvarChecker> { |
5325 | public: |
5326 | Sema &S; |
5327 | const ObjCMethodDecl *Method; |
5328 | const ObjCIvarDecl *IvarD; |
5329 | bool AccessedIvar; |
5330 | bool InvokedSelfMethod; |
5331 | |
5332 | UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method, |
5333 | const ObjCIvarDecl *IvarD) |
5334 | : S(S), Method(Method), IvarD(IvarD), AccessedIvar(false), |
5335 | InvokedSelfMethod(false) { |
5336 | assert(IvarD); |
5337 | } |
5338 | |
5339 | bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { |
5340 | if (E->getDecl() == IvarD) { |
5341 | AccessedIvar = true; |
5342 | return false; |
5343 | } |
5344 | return true; |
5345 | } |
5346 | |
5347 | bool VisitObjCMessageExpr(ObjCMessageExpr *E) { |
5348 | if (E->getReceiverKind() == ObjCMessageExpr::Instance && |
5349 | S.ObjC().isSelfExpr(RExpr: E->getInstanceReceiver(), Method)) { |
5350 | InvokedSelfMethod = true; |
5351 | } |
5352 | return true; |
5353 | } |
5354 | }; |
5355 | } // end anonymous namespace |
5356 | |
5357 | void SemaObjC::DiagnoseUnusedBackingIvarInAccessor( |
5358 | Scope *S, const ObjCImplementationDecl *ImplD) { |
5359 | if (S->hasUnrecoverableErrorOccurred()) |
5360 | return; |
5361 | |
5362 | for (const auto *CurMethod : ImplD->instance_methods()) { |
5363 | unsigned DIAG = diag::warn_unused_property_backing_ivar; |
5364 | SourceLocation Loc = CurMethod->getLocation(); |
5365 | if (getDiagnostics().isIgnored(DiagID: DIAG, Loc)) |
5366 | continue; |
5367 | |
5368 | const ObjCPropertyDecl *PDecl; |
5369 | const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(Method: CurMethod, PDecl); |
5370 | if (!IV) |
5371 | continue; |
5372 | |
5373 | if (CurMethod->isSynthesizedAccessorStub()) |
5374 | continue; |
5375 | |
5376 | UnusedBackingIvarChecker Checker(SemaRef, CurMethod, IV); |
5377 | Checker.TraverseStmt(S: CurMethod->getBody()); |
5378 | if (Checker.AccessedIvar) |
5379 | continue; |
5380 | |
5381 | // Do not issue this warning if backing ivar is used somewhere and accessor |
5382 | // implementation makes a self call. This is to prevent false positive in |
5383 | // cases where the ivar is accessed by another method that the accessor |
5384 | // delegates to. |
5385 | if (!IV->isReferenced() || !Checker.InvokedSelfMethod) { |
5386 | Diag(Loc, DiagID: DIAG) << IV; |
5387 | Diag(Loc: PDecl->getLocation(), DiagID: diag::note_property_declare); |
5388 | } |
5389 | } |
5390 | } |
5391 | |
5392 | QualType SemaObjC::AdjustParameterTypeForObjCAutoRefCount( |
5393 | QualType T, SourceLocation NameLoc, TypeSourceInfo *TSInfo) { |
5394 | ASTContext &Context = getASTContext(); |
5395 | // In ARC, infer a lifetime qualifier for appropriate parameter types. |
5396 | if (!getLangOpts().ObjCAutoRefCount || |
5397 | T.getObjCLifetime() != Qualifiers::OCL_None || !T->isObjCLifetimeType()) |
5398 | return T; |
5399 | |
5400 | Qualifiers::ObjCLifetime Lifetime; |
5401 | |
5402 | // Special cases for arrays: |
5403 | // - if it's const, use __unsafe_unretained |
5404 | // - otherwise, it's an error |
5405 | if (T->isArrayType()) { |
5406 | if (!T.isConstQualified()) { |
5407 | if (SemaRef.DelayedDiagnostics.shouldDelayDiagnostics()) |
5408 | SemaRef.DelayedDiagnostics.add( |
5409 | diag: sema::DelayedDiagnostic::makeForbiddenType( |
5410 | loc: NameLoc, diagnostic: diag::err_arc_array_param_no_ownership, type: T, argument: false)); |
5411 | else |
5412 | Diag(Loc: NameLoc, DiagID: diag::err_arc_array_param_no_ownership) |
5413 | << TSInfo->getTypeLoc().getSourceRange(); |
5414 | } |
5415 | Lifetime = Qualifiers::OCL_ExplicitNone; |
5416 | } else { |
5417 | Lifetime = T->getObjCARCImplicitLifetime(); |
5418 | } |
5419 | T = Context.getLifetimeQualifiedType(type: T, lifetime: Lifetime); |
5420 | |
5421 | return T; |
5422 | } |
5423 | |
5424 | ObjCInterfaceDecl *SemaObjC::getObjCInterfaceDecl(const IdentifierInfo *&Id, |
5425 | SourceLocation IdLoc, |
5426 | bool DoTypoCorrection) { |
5427 | // The third "scope" argument is 0 since we aren't enabling lazy built-in |
5428 | // creation from this context. |
5429 | NamedDecl *IDecl = SemaRef.LookupSingleName(S: SemaRef.TUScope, Name: Id, Loc: IdLoc, |
5430 | NameKind: Sema::LookupOrdinaryName); |
5431 | |
5432 | if (!IDecl && DoTypoCorrection) { |
5433 | // Perform typo correction at the given location, but only if we |
5434 | // find an Objective-C class name. |
5435 | DeclFilterCCC<ObjCInterfaceDecl> CCC{}; |
5436 | if (TypoCorrection C = SemaRef.CorrectTypo( |
5437 | Typo: DeclarationNameInfo(Id, IdLoc), LookupKind: Sema::LookupOrdinaryName, |
5438 | S: SemaRef.TUScope, SS: nullptr, CCC, Mode: Sema::CTK_ErrorRecovery)) { |
5439 | SemaRef.diagnoseTypo(Correction: C, TypoDiag: PDiag(DiagID: diag::err_undef_interface_suggest) << Id); |
5440 | IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>(); |
5441 | Id = IDecl->getIdentifier(); |
5442 | } |
5443 | } |
5444 | ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(Val: IDecl); |
5445 | // This routine must always return a class definition, if any. |
5446 | if (Def && Def->getDefinition()) |
5447 | Def = Def->getDefinition(); |
5448 | return Def; |
5449 | } |
5450 | |
5451 | bool SemaObjC::inferObjCARCLifetime(ValueDecl *decl) { |
5452 | ASTContext &Context = getASTContext(); |
5453 | QualType type = decl->getType(); |
5454 | Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); |
5455 | if (lifetime == Qualifiers::OCL_Autoreleasing) { |
5456 | // Various kinds of declaration aren't allowed to be __autoreleasing. |
5457 | unsigned kind = -1U; |
5458 | if (VarDecl *var = dyn_cast<VarDecl>(Val: decl)) { |
5459 | if (var->hasAttr<BlocksAttr>()) |
5460 | kind = 0; // __block |
5461 | else if (!var->hasLocalStorage()) |
5462 | kind = 1; // global |
5463 | } else if (isa<ObjCIvarDecl>(Val: decl)) { |
5464 | kind = 3; // ivar |
5465 | } else if (isa<FieldDecl>(Val: decl)) { |
5466 | kind = 2; // field |
5467 | } |
5468 | |
5469 | if (kind != -1U) { |
5470 | Diag(Loc: decl->getLocation(), DiagID: diag::err_arc_autoreleasing_var) << kind; |
5471 | } |
5472 | } else if (lifetime == Qualifiers::OCL_None) { |
5473 | // Try to infer lifetime. |
5474 | if (!type->isObjCLifetimeType()) |
5475 | return false; |
5476 | |
5477 | lifetime = type->getObjCARCImplicitLifetime(); |
5478 | type = Context.getLifetimeQualifiedType(type, lifetime); |
5479 | decl->setType(type); |
5480 | } |
5481 | |
5482 | if (VarDecl *var = dyn_cast<VarDecl>(Val: decl)) { |
5483 | // Thread-local variables cannot have lifetime. |
5484 | if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone && |
5485 | var->getTLSKind()) { |
5486 | Diag(Loc: var->getLocation(), DiagID: diag::err_arc_thread_ownership) |
5487 | << var->getType(); |
5488 | return true; |
5489 | } |
5490 | } |
5491 | |
5492 | return false; |
5493 | } |
5494 | |
5495 | ObjCContainerDecl *SemaObjC::getObjCDeclContext() const { |
5496 | return (dyn_cast_or_null<ObjCContainerDecl>(Val: SemaRef.CurContext)); |
5497 | } |
5498 | |
5499 | void SemaObjC::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) { |
5500 | if (!getLangOpts().CPlusPlus) |
5501 | return; |
5502 | if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) { |
5503 | ASTContext &Context = getASTContext(); |
5504 | SmallVector<ObjCIvarDecl *, 8> ivars; |
5505 | CollectIvarsToConstructOrDestruct(OI: OID, Ivars&: ivars); |
5506 | if (ivars.empty()) |
5507 | return; |
5508 | SmallVector<CXXCtorInitializer *, 32> AllToInit; |
5509 | for (unsigned i = 0; i < ivars.size(); i++) { |
5510 | FieldDecl *Field = ivars[i]; |
5511 | if (Field->isInvalidDecl()) |
5512 | continue; |
5513 | |
5514 | CXXCtorInitializer *Member; |
5515 | InitializedEntity InitEntity = InitializedEntity::InitializeMember(Member: Field); |
5516 | InitializationKind InitKind = |
5517 | InitializationKind::CreateDefault(InitLoc: ObjCImplementation->getLocation()); |
5518 | |
5519 | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, |
5520 | std::nullopt); |
5521 | ExprResult MemberInit = |
5522 | InitSeq.Perform(S&: SemaRef, Entity: InitEntity, Kind: InitKind, Args: std::nullopt); |
5523 | MemberInit = SemaRef.MaybeCreateExprWithCleanups(SubExpr: MemberInit); |
5524 | // Note, MemberInit could actually come back empty if no initialization |
5525 | // is required (e.g., because it would call a trivial default constructor) |
5526 | if (!MemberInit.get() || MemberInit.isInvalid()) |
5527 | continue; |
5528 | |
5529 | Member = new (Context) |
5530 | CXXCtorInitializer(Context, Field, SourceLocation(), SourceLocation(), |
5531 | MemberInit.getAs<Expr>(), SourceLocation()); |
5532 | AllToInit.push_back(Elt: Member); |
5533 | |
5534 | // Be sure that the destructor is accessible and is marked as referenced. |
5535 | if (const RecordType *RecordTy = |
5536 | Context.getBaseElementType(QT: Field->getType()) |
5537 | ->getAs<RecordType>()) { |
5538 | CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RecordTy->getDecl()); |
5539 | if (CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Class: RD)) { |
5540 | SemaRef.MarkFunctionReferenced(Loc: Field->getLocation(), Func: Destructor); |
5541 | SemaRef.CheckDestructorAccess( |
5542 | Loc: Field->getLocation(), Dtor: Destructor, |
5543 | PDiag: PDiag(DiagID: diag::err_access_dtor_ivar) |
5544 | << Context.getBaseElementType(QT: Field->getType())); |
5545 | } |
5546 | } |
5547 | } |
5548 | ObjCImplementation->setIvarInitializers(C&: Context, initializers: AllToInit.data(), |
5549 | numInitializers: AllToInit.size()); |
5550 | } |
5551 | } |
5552 | |
5553 | /// TranslateIvarVisibility - Translate visibility from a token ID to an |
5554 | /// AST enum value. |
5555 | static ObjCIvarDecl::AccessControl |
5556 | TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { |
5557 | switch (ivarVisibility) { |
5558 | default: |
5559 | llvm_unreachable("Unknown visitibility kind" ); |
5560 | case tok::objc_private: |
5561 | return ObjCIvarDecl::Private; |
5562 | case tok::objc_public: |
5563 | return ObjCIvarDecl::Public; |
5564 | case tok::objc_protected: |
5565 | return ObjCIvarDecl::Protected; |
5566 | case tok::objc_package: |
5567 | return ObjCIvarDecl::Package; |
5568 | } |
5569 | } |
5570 | |
5571 | /// ActOnIvar - Each ivar field of an objective-c class is passed into this |
5572 | /// in order to create an IvarDecl object for it. |
5573 | Decl *SemaObjC::ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D, |
5574 | Expr *BitWidth, tok::ObjCKeywordKind Visibility) { |
5575 | |
5576 | const IdentifierInfo *II = D.getIdentifier(); |
5577 | SourceLocation Loc = DeclStart; |
5578 | if (II) |
5579 | Loc = D.getIdentifierLoc(); |
5580 | |
5581 | // FIXME: Unnamed fields can be handled in various different ways, for |
5582 | // example, unnamed unions inject all members into the struct namespace! |
5583 | |
5584 | TypeSourceInfo *TInfo = SemaRef.GetTypeForDeclarator(D); |
5585 | QualType T = TInfo->getType(); |
5586 | |
5587 | if (BitWidth) { |
5588 | // 6.7.2.1p3, 6.7.2.1p4 |
5589 | BitWidth = |
5590 | SemaRef.VerifyBitField(FieldLoc: Loc, FieldName: II, FieldTy: T, /*IsMsStruct*/ false, BitWidth) |
5591 | .get(); |
5592 | if (!BitWidth) |
5593 | D.setInvalidType(); |
5594 | } else { |
5595 | // Not a bitfield. |
5596 | |
5597 | // validate II. |
5598 | } |
5599 | if (T->isReferenceType()) { |
5600 | Diag(Loc, DiagID: diag::err_ivar_reference_type); |
5601 | D.setInvalidType(); |
5602 | } |
5603 | // C99 6.7.2.1p8: A member of a structure or union may have any type other |
5604 | // than a variably modified type. |
5605 | else if (T->isVariablyModifiedType()) { |
5606 | if (!SemaRef.tryToFixVariablyModifiedVarType( |
5607 | TInfo, T, Loc, FailedFoldDiagID: diag::err_typecheck_ivar_variable_size)) |
5608 | D.setInvalidType(); |
5609 | } |
5610 | |
5611 | // Get the visibility (access control) for this ivar. |
5612 | ObjCIvarDecl::AccessControl ac = Visibility != tok::objc_not_keyword |
5613 | ? TranslateIvarVisibility(ivarVisibility: Visibility) |
5614 | : ObjCIvarDecl::None; |
5615 | // Must set ivar's DeclContext to its enclosing interface. |
5616 | ObjCContainerDecl *EnclosingDecl = |
5617 | cast<ObjCContainerDecl>(Val: SemaRef.CurContext); |
5618 | if (!EnclosingDecl || EnclosingDecl->isInvalidDecl()) |
5619 | return nullptr; |
5620 | ObjCContainerDecl *EnclosingContext; |
5621 | if (ObjCImplementationDecl *IMPDecl = |
5622 | dyn_cast<ObjCImplementationDecl>(Val: EnclosingDecl)) { |
5623 | if (getLangOpts().ObjCRuntime.isFragile()) { |
5624 | // Case of ivar declared in an implementation. Context is that of its |
5625 | // class. |
5626 | EnclosingContext = IMPDecl->getClassInterface(); |
5627 | assert(EnclosingContext && "Implementation has no class interface!" ); |
5628 | } else |
5629 | EnclosingContext = EnclosingDecl; |
5630 | } else { |
5631 | if (ObjCCategoryDecl *CDecl = dyn_cast<ObjCCategoryDecl>(Val: EnclosingDecl)) { |
5632 | if (getLangOpts().ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) { |
5633 | Diag(Loc, DiagID: diag::err_misplaced_ivar) << CDecl->IsClassExtension(); |
5634 | return nullptr; |
5635 | } |
5636 | } |
5637 | EnclosingContext = EnclosingDecl; |
5638 | } |
5639 | |
5640 | // Construct the decl. |
5641 | ObjCIvarDecl *NewID = |
5642 | ObjCIvarDecl::Create(C&: getASTContext(), DC: EnclosingContext, StartLoc: DeclStart, IdLoc: Loc, |
5643 | Id: II, T, TInfo, ac, BW: BitWidth); |
5644 | |
5645 | if (T->containsErrors()) |
5646 | NewID->setInvalidDecl(); |
5647 | |
5648 | if (II) { |
5649 | NamedDecl *PrevDecl = |
5650 | SemaRef.LookupSingleName(S, Name: II, Loc, NameKind: Sema::LookupMemberName, |
5651 | Redecl: RedeclarationKind::ForVisibleRedeclaration); |
5652 | if (PrevDecl && SemaRef.isDeclInScope(D: PrevDecl, Ctx: EnclosingContext, S) && |
5653 | !isa<TagDecl>(Val: PrevDecl)) { |
5654 | Diag(Loc, DiagID: diag::err_duplicate_member) << II; |
5655 | Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_declaration); |
5656 | NewID->setInvalidDecl(); |
5657 | } |
5658 | } |
5659 | |
5660 | // Process attributes attached to the ivar. |
5661 | SemaRef.ProcessDeclAttributes(S, D: NewID, PD: D); |
5662 | |
5663 | if (D.isInvalidType()) |
5664 | NewID->setInvalidDecl(); |
5665 | |
5666 | // In ARC, infer 'retaining' for ivars of retainable type. |
5667 | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(decl: NewID)) |
5668 | NewID->setInvalidDecl(); |
5669 | |
5670 | if (D.getDeclSpec().isModulePrivateSpecified()) |
5671 | NewID->setModulePrivate(); |
5672 | |
5673 | if (II) { |
5674 | // FIXME: When interfaces are DeclContexts, we'll need to add |
5675 | // these to the interface. |
5676 | S->AddDecl(D: NewID); |
5677 | SemaRef.IdResolver.AddDecl(D: NewID); |
5678 | } |
5679 | |
5680 | if (getLangOpts().ObjCRuntime.isNonFragile() && !NewID->isInvalidDecl() && |
5681 | isa<ObjCInterfaceDecl>(Val: EnclosingDecl)) |
5682 | Diag(Loc, DiagID: diag::warn_ivars_in_interface); |
5683 | |
5684 | return NewID; |
5685 | } |
5686 | |