1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for expressions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CheckExprLifetime.h"
14#include "TreeTransform.h"
15#include "UsedDeclVisitor.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTLambda.h"
19#include "clang/AST/ASTMutationListener.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/EvaluatedExprVisitor.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/ExprOpenMP.h"
28#include "clang/AST/OperationKinds.h"
29#include "clang/AST/ParentMapContext.h"
30#include "clang/AST/RecursiveASTVisitor.h"
31#include "clang/AST/Type.h"
32#include "clang/AST/TypeLoc.h"
33#include "clang/Basic/Builtins.h"
34#include "clang/Basic/DiagnosticSema.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/Specifiers.h"
38#include "clang/Basic/TargetInfo.h"
39#include "clang/Basic/TypeTraits.h"
40#include "clang/Lex/LiteralSupport.h"
41#include "clang/Lex/Preprocessor.h"
42#include "clang/Sema/AnalysisBasedWarnings.h"
43#include "clang/Sema/DeclSpec.h"
44#include "clang/Sema/DelayedDiagnostic.h"
45#include "clang/Sema/Designator.h"
46#include "clang/Sema/EnterExpressionEvaluationContext.h"
47#include "clang/Sema/Initialization.h"
48#include "clang/Sema/Lookup.h"
49#include "clang/Sema/Overload.h"
50#include "clang/Sema/ParsedTemplate.h"
51#include "clang/Sema/Scope.h"
52#include "clang/Sema/ScopeInfo.h"
53#include "clang/Sema/SemaCUDA.h"
54#include "clang/Sema/SemaFixItUtils.h"
55#include "clang/Sema/SemaInternal.h"
56#include "clang/Sema/SemaObjC.h"
57#include "clang/Sema/SemaOpenMP.h"
58#include "clang/Sema/SemaPseudoObject.h"
59#include "clang/Sema/Template.h"
60#include "llvm/ADT/STLExtras.h"
61#include "llvm/ADT/STLForwardCompat.h"
62#include "llvm/ADT/StringExtras.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/ConvertUTF.h"
65#include "llvm/Support/SaveAndRestore.h"
66#include "llvm/Support/TypeSize.h"
67#include <optional>
68
69using namespace clang;
70using namespace sema;
71
72bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
73 // See if this is an auto-typed variable whose initializer we are parsing.
74 if (ParsingInitForAutoVars.count(Ptr: D))
75 return false;
76
77 // See if this is a deleted function.
78 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) {
79 if (FD->isDeleted())
80 return false;
81
82 // If the function has a deduced return type, and we can't deduce it,
83 // then we can't use it either.
84 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
85 DeduceReturnType(FD, Loc: SourceLocation(), /*Diagnose*/ false))
86 return false;
87
88 // See if this is an aligned allocation/deallocation function that is
89 // unavailable.
90 if (TreatUnavailableAsInvalid &&
91 isUnavailableAlignedAllocationFunction(FD: *FD))
92 return false;
93 }
94
95 // See if this function is unavailable.
96 if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
97 cast<Decl>(Val: CurContext)->getAvailability() != AR_Unavailable)
98 return false;
99
100 if (isa<UnresolvedUsingIfExistsDecl>(Val: D))
101 return false;
102
103 return true;
104}
105
106static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
107 // Warn if this is used but marked unused.
108 if (const auto *A = D->getAttr<UnusedAttr>()) {
109 // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
110 // should diagnose them.
111 if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
112 A->getSemanticSpelling() != UnusedAttr::C23_maybe_unused) {
113 const Decl *DC = cast_or_null<Decl>(Val: S.ObjC().getCurObjCLexicalContext());
114 if (DC && !DC->hasAttr<UnusedAttr>())
115 S.Diag(Loc, DiagID: diag::warn_used_but_marked_unused) << D;
116 }
117 }
118}
119
120void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
121 assert(Decl && Decl->isDeleted());
122
123 if (Decl->isDefaulted()) {
124 // If the method was explicitly defaulted, point at that declaration.
125 if (!Decl->isImplicit())
126 Diag(Loc: Decl->getLocation(), DiagID: diag::note_implicitly_deleted);
127
128 // Try to diagnose why this special member function was implicitly
129 // deleted. This might fail, if that reason no longer applies.
130 DiagnoseDeletedDefaultedFunction(FD: Decl);
131 return;
132 }
133
134 auto *Ctor = dyn_cast<CXXConstructorDecl>(Val: Decl);
135 if (Ctor && Ctor->isInheritingConstructor())
136 return NoteDeletedInheritingConstructor(CD: Ctor);
137
138 Diag(Loc: Decl->getLocation(), DiagID: diag::note_availability_specified_here)
139 << Decl << 1;
140}
141
142/// Determine whether a FunctionDecl was ever declared with an
143/// explicit storage class.
144static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
145 for (auto *I : D->redecls()) {
146 if (I->getStorageClass() != SC_None)
147 return true;
148 }
149 return false;
150}
151
152/// Check whether we're in an extern inline function and referring to a
153/// variable or function with internal linkage (C11 6.7.4p3).
154///
155/// This is only a warning because we used to silently accept this code, but
156/// in many cases it will not behave correctly. This is not enabled in C++ mode
157/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
158/// and so while there may still be user mistakes, most of the time we can't
159/// prove that there are errors.
160static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
161 const NamedDecl *D,
162 SourceLocation Loc) {
163 // This is disabled under C++; there are too many ways for this to fire in
164 // contexts where the warning is a false positive, or where it is technically
165 // correct but benign.
166 if (S.getLangOpts().CPlusPlus)
167 return;
168
169 // Check if this is an inlined function or method.
170 FunctionDecl *Current = S.getCurFunctionDecl();
171 if (!Current)
172 return;
173 if (!Current->isInlined())
174 return;
175 if (!Current->isExternallyVisible())
176 return;
177
178 // Check if the decl has internal linkage.
179 if (D->getFormalLinkage() != Linkage::Internal)
180 return;
181
182 // Downgrade from ExtWarn to Extension if
183 // (1) the supposedly external inline function is in the main file,
184 // and probably won't be included anywhere else.
185 // (2) the thing we're referencing is a pure function.
186 // (3) the thing we're referencing is another inline function.
187 // This last can give us false negatives, but it's better than warning on
188 // wrappers for simple C library functions.
189 const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(Val: D);
190 bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
191 if (!DowngradeWarning && UsedFn)
192 DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
193
194 S.Diag(Loc, DiagID: DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
195 : diag::ext_internal_in_extern_inline)
196 << /*IsVar=*/!UsedFn << D;
197
198 S.MaybeSuggestAddingStaticToDecl(D: Current);
199
200 S.Diag(Loc: D->getCanonicalDecl()->getLocation(), DiagID: diag::note_entity_declared_at)
201 << D;
202}
203
204void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
205 const FunctionDecl *First = Cur->getFirstDecl();
206
207 // Suggest "static" on the function, if possible.
208 if (!hasAnyExplicitStorageClass(D: First)) {
209 SourceLocation DeclBegin = First->getSourceRange().getBegin();
210 Diag(Loc: DeclBegin, DiagID: diag::note_convert_inline_to_static)
211 << Cur << FixItHint::CreateInsertion(InsertionLoc: DeclBegin, Code: "static ");
212 }
213}
214
215bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
216 const ObjCInterfaceDecl *UnknownObjCClass,
217 bool ObjCPropertyAccess,
218 bool AvoidPartialAvailabilityChecks,
219 ObjCInterfaceDecl *ClassReceiver,
220 bool SkipTrailingRequiresClause) {
221 SourceLocation Loc = Locs.front();
222 if (getLangOpts().CPlusPlus && isa<FunctionDecl>(Val: D)) {
223 // If there were any diagnostics suppressed by template argument deduction,
224 // emit them now.
225 auto Pos = SuppressedDiagnostics.find(Val: D->getCanonicalDecl());
226 if (Pos != SuppressedDiagnostics.end()) {
227 for (const PartialDiagnosticAt &Suppressed : Pos->second)
228 Diag(Loc: Suppressed.first, PD: Suppressed.second);
229
230 // Clear out the list of suppressed diagnostics, so that we don't emit
231 // them again for this specialization. However, we don't obsolete this
232 // entry from the table, because we want to avoid ever emitting these
233 // diagnostics again.
234 Pos->second.clear();
235 }
236
237 // C++ [basic.start.main]p3:
238 // The function 'main' shall not be used within a program.
239 if (cast<FunctionDecl>(Val: D)->isMain())
240 Diag(Loc, DiagID: diag::ext_main_used);
241
242 diagnoseUnavailableAlignedAllocation(FD: *cast<FunctionDecl>(Val: D), Loc);
243 }
244
245 // See if this is an auto-typed variable whose initializer we are parsing.
246 if (ParsingInitForAutoVars.count(Ptr: D)) {
247 if (isa<BindingDecl>(Val: D)) {
248 Diag(Loc, DiagID: diag::err_binding_cannot_appear_in_own_initializer)
249 << D->getDeclName();
250 } else {
251 Diag(Loc, DiagID: diag::err_auto_variable_cannot_appear_in_own_initializer)
252 << D->getDeclName() << cast<VarDecl>(Val: D)->getType();
253 }
254 return true;
255 }
256
257 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) {
258 // See if this is a deleted function.
259 if (FD->isDeleted()) {
260 auto *Ctor = dyn_cast<CXXConstructorDecl>(Val: FD);
261 if (Ctor && Ctor->isInheritingConstructor())
262 Diag(Loc, DiagID: diag::err_deleted_inherited_ctor_use)
263 << Ctor->getParent()
264 << Ctor->getInheritedConstructor().getConstructor()->getParent();
265 else {
266 StringLiteral *Msg = FD->getDeletedMessage();
267 Diag(Loc, DiagID: diag::err_deleted_function_use)
268 << (Msg != nullptr) << (Msg ? Msg->getString() : StringRef());
269 }
270 NoteDeletedFunction(Decl: FD);
271 return true;
272 }
273
274 // [expr.prim.id]p4
275 // A program that refers explicitly or implicitly to a function with a
276 // trailing requires-clause whose constraint-expression is not satisfied,
277 // other than to declare it, is ill-formed. [...]
278 //
279 // See if this is a function with constraints that need to be satisfied.
280 // Check this before deducing the return type, as it might instantiate the
281 // definition.
282 if (!SkipTrailingRequiresClause && FD->getTrailingRequiresClause()) {
283 ConstraintSatisfaction Satisfaction;
284 if (CheckFunctionConstraints(FD, Satisfaction, UsageLoc: Loc,
285 /*ForOverloadResolution*/ true))
286 // A diagnostic will have already been generated (non-constant
287 // constraint expression, for example)
288 return true;
289 if (!Satisfaction.IsSatisfied) {
290 Diag(Loc,
291 DiagID: diag::err_reference_to_function_with_unsatisfied_constraints)
292 << D;
293 DiagnoseUnsatisfiedConstraint(Satisfaction);
294 return true;
295 }
296 }
297
298 // If the function has a deduced return type, and we can't deduce it,
299 // then we can't use it either.
300 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
301 DeduceReturnType(FD, Loc))
302 return true;
303
304 if (getLangOpts().CUDA && !CUDA().CheckCall(Loc, Callee: FD))
305 return true;
306
307 }
308
309 if (auto *MD = dyn_cast<CXXMethodDecl>(Val: D)) {
310 // Lambdas are only default-constructible or assignable in C++2a onwards.
311 if (MD->getParent()->isLambda() &&
312 ((isa<CXXConstructorDecl>(Val: MD) &&
313 cast<CXXConstructorDecl>(Val: MD)->isDefaultConstructor()) ||
314 MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
315 Diag(Loc, DiagID: diag::warn_cxx17_compat_lambda_def_ctor_assign)
316 << !isa<CXXConstructorDecl>(Val: MD);
317 }
318 }
319
320 auto getReferencedObjCProp = [](const NamedDecl *D) ->
321 const ObjCPropertyDecl * {
322 if (const auto *MD = dyn_cast<ObjCMethodDecl>(Val: D))
323 return MD->findPropertyDecl();
324 return nullptr;
325 };
326 if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
327 if (diagnoseArgIndependentDiagnoseIfAttrs(ND: ObjCPDecl, Loc))
328 return true;
329 } else if (diagnoseArgIndependentDiagnoseIfAttrs(ND: D, Loc)) {
330 return true;
331 }
332
333 // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
334 // Only the variables omp_in and omp_out are allowed in the combiner.
335 // Only the variables omp_priv and omp_orig are allowed in the
336 // initializer-clause.
337 auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Val: CurContext);
338 if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
339 isa<VarDecl>(Val: D)) {
340 Diag(Loc, DiagID: diag::err_omp_wrong_var_in_declare_reduction)
341 << getCurFunction()->HasOMPDeclareReductionCombiner;
342 Diag(Loc: D->getLocation(), DiagID: diag::note_entity_declared_at) << D;
343 return true;
344 }
345
346 // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
347 // List-items in map clauses on this construct may only refer to the declared
348 // variable var and entities that could be referenced by a procedure defined
349 // at the same location.
350 // [OpenMP 5.2] Also allow iterator declared variables.
351 if (LangOpts.OpenMP && isa<VarDecl>(Val: D) &&
352 !OpenMP().isOpenMPDeclareMapperVarDeclAllowed(VD: cast<VarDecl>(Val: D))) {
353 Diag(Loc, DiagID: diag::err_omp_declare_mapper_wrong_var)
354 << OpenMP().getOpenMPDeclareMapperVarName();
355 Diag(Loc: D->getLocation(), DiagID: diag::note_entity_declared_at) << D;
356 return true;
357 }
358
359 if (const auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(Val: D)) {
360 Diag(Loc, DiagID: diag::err_use_of_empty_using_if_exists);
361 Diag(Loc: EmptyD->getLocation(), DiagID: diag::note_empty_using_if_exists_here);
362 return true;
363 }
364
365 DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
366 AvoidPartialAvailabilityChecks, ClassReceiver);
367
368 DiagnoseUnusedOfDecl(S&: *this, D, Loc);
369
370 diagnoseUseOfInternalDeclInInlineFunction(S&: *this, D, Loc);
371
372 if (D->hasAttr<AvailableOnlyInDefaultEvalMethodAttr>()) {
373 if (getLangOpts().getFPEvalMethod() !=
374 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine &&
375 PP.getLastFPEvalPragmaLocation().isValid() &&
376 PP.getCurrentFPEvalMethod() != getLangOpts().getFPEvalMethod())
377 Diag(Loc: D->getLocation(),
378 DiagID: diag::err_type_available_only_in_default_eval_method)
379 << D->getName();
380 }
381
382 if (auto *VD = dyn_cast<ValueDecl>(Val: D))
383 checkTypeSupport(Ty: VD->getType(), Loc, D: VD);
384
385 if (LangOpts.SYCLIsDevice ||
386 (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice)) {
387 if (!Context.getTargetInfo().isTLSSupported())
388 if (const auto *VD = dyn_cast<VarDecl>(Val: D))
389 if (VD->getTLSKind() != VarDecl::TLS_None)
390 targetDiag(Loc: *Locs.begin(), DiagID: diag::err_thread_unsupported);
391 }
392
393 if (isa<ParmVarDecl>(Val: D) && isa<RequiresExprBodyDecl>(Val: D->getDeclContext()) &&
394 !isUnevaluatedContext()) {
395 // C++ [expr.prim.req.nested] p3
396 // A local parameter shall only appear as an unevaluated operand
397 // (Clause 8) within the constraint-expression.
398 Diag(Loc, DiagID: diag::err_requires_expr_parameter_referenced_in_evaluated_context)
399 << D;
400 Diag(Loc: D->getLocation(), DiagID: diag::note_entity_declared_at) << D;
401 return true;
402 }
403
404 return false;
405}
406
407void Sema::DiagnoseSentinelCalls(const NamedDecl *D, SourceLocation Loc,
408 ArrayRef<Expr *> Args) {
409 const SentinelAttr *Attr = D->getAttr<SentinelAttr>();
410 if (!Attr)
411 return;
412
413 // The number of formal parameters of the declaration.
414 unsigned NumFormalParams;
415
416 // The kind of declaration. This is also an index into a %select in
417 // the diagnostic.
418 enum { CK_Function, CK_Method, CK_Block } CalleeKind;
419
420 if (const auto *MD = dyn_cast<ObjCMethodDecl>(Val: D)) {
421 NumFormalParams = MD->param_size();
422 CalleeKind = CK_Method;
423 } else if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) {
424 NumFormalParams = FD->param_size();
425 CalleeKind = CK_Function;
426 } else if (const auto *VD = dyn_cast<VarDecl>(Val: D)) {
427 QualType Ty = VD->getType();
428 const FunctionType *Fn = nullptr;
429 if (const auto *PtrTy = Ty->getAs<PointerType>()) {
430 Fn = PtrTy->getPointeeType()->getAs<FunctionType>();
431 if (!Fn)
432 return;
433 CalleeKind = CK_Function;
434 } else if (const auto *PtrTy = Ty->getAs<BlockPointerType>()) {
435 Fn = PtrTy->getPointeeType()->castAs<FunctionType>();
436 CalleeKind = CK_Block;
437 } else {
438 return;
439 }
440
441 if (const auto *proto = dyn_cast<FunctionProtoType>(Val: Fn))
442 NumFormalParams = proto->getNumParams();
443 else
444 NumFormalParams = 0;
445 } else {
446 return;
447 }
448
449 // "NullPos" is the number of formal parameters at the end which
450 // effectively count as part of the variadic arguments. This is
451 // useful if you would prefer to not have *any* formal parameters,
452 // but the language forces you to have at least one.
453 unsigned NullPos = Attr->getNullPos();
454 assert((NullPos == 0 || NullPos == 1) && "invalid null position on sentinel");
455 NumFormalParams = (NullPos > NumFormalParams ? 0 : NumFormalParams - NullPos);
456
457 // The number of arguments which should follow the sentinel.
458 unsigned NumArgsAfterSentinel = Attr->getSentinel();
459
460 // If there aren't enough arguments for all the formal parameters,
461 // the sentinel, and the args after the sentinel, complain.
462 if (Args.size() < NumFormalParams + NumArgsAfterSentinel + 1) {
463 Diag(Loc, DiagID: diag::warn_not_enough_argument) << D->getDeclName();
464 Diag(Loc: D->getLocation(), DiagID: diag::note_sentinel_here) << int(CalleeKind);
465 return;
466 }
467
468 // Otherwise, find the sentinel expression.
469 const Expr *SentinelExpr = Args[Args.size() - NumArgsAfterSentinel - 1];
470 if (!SentinelExpr)
471 return;
472 if (SentinelExpr->isValueDependent())
473 return;
474 if (Context.isSentinelNullExpr(E: SentinelExpr))
475 return;
476
477 // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
478 // or 'NULL' if those are actually defined in the context. Only use
479 // 'nil' for ObjC methods, where it's much more likely that the
480 // variadic arguments form a list of object pointers.
481 SourceLocation MissingNilLoc = getLocForEndOfToken(Loc: SentinelExpr->getEndLoc());
482 std::string NullValue;
483 if (CalleeKind == CK_Method && PP.isMacroDefined(Id: "nil"))
484 NullValue = "nil";
485 else if (getLangOpts().CPlusPlus11)
486 NullValue = "nullptr";
487 else if (PP.isMacroDefined(Id: "NULL"))
488 NullValue = "NULL";
489 else
490 NullValue = "(void*) 0";
491
492 if (MissingNilLoc.isInvalid())
493 Diag(Loc, DiagID: diag::warn_missing_sentinel) << int(CalleeKind);
494 else
495 Diag(Loc: MissingNilLoc, DiagID: diag::warn_missing_sentinel)
496 << int(CalleeKind)
497 << FixItHint::CreateInsertion(InsertionLoc: MissingNilLoc, Code: ", " + NullValue);
498 Diag(Loc: D->getLocation(), DiagID: diag::note_sentinel_here)
499 << int(CalleeKind) << Attr->getRange();
500}
501
502SourceRange Sema::getExprRange(Expr *E) const {
503 return E ? E->getSourceRange() : SourceRange();
504}
505
506//===----------------------------------------------------------------------===//
507// Standard Promotions and Conversions
508//===----------------------------------------------------------------------===//
509
510/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
511ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
512 // Handle any placeholder expressions which made it here.
513 if (E->hasPlaceholderType()) {
514 ExprResult result = CheckPlaceholderExpr(E);
515 if (result.isInvalid()) return ExprError();
516 E = result.get();
517 }
518
519 QualType Ty = E->getType();
520 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
521
522 if (Ty->isFunctionType()) {
523 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E->IgnoreParenCasts()))
524 if (auto *FD = dyn_cast<FunctionDecl>(Val: DRE->getDecl()))
525 if (!checkAddressOfFunctionIsAvailable(Function: FD, Complain: Diagnose, Loc: E->getExprLoc()))
526 return ExprError();
527
528 E = ImpCastExprToType(E, Type: Context.getPointerType(T: Ty),
529 CK: CK_FunctionToPointerDecay).get();
530 } else if (Ty->isArrayType()) {
531 // In C90 mode, arrays only promote to pointers if the array expression is
532 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
533 // type 'array of type' is converted to an expression that has type 'pointer
534 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
535 // that has type 'array of type' ...". The relevant change is "an lvalue"
536 // (C90) to "an expression" (C99).
537 //
538 // C++ 4.2p1:
539 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
540 // T" can be converted to an rvalue of type "pointer to T".
541 //
542 if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) {
543 ExprResult Res = ImpCastExprToType(E, Type: Context.getArrayDecayedType(T: Ty),
544 CK: CK_ArrayToPointerDecay);
545 if (Res.isInvalid())
546 return ExprError();
547 E = Res.get();
548 }
549 }
550 return E;
551}
552
553static void CheckForNullPointerDereference(Sema &S, Expr *E) {
554 // Check to see if we are dereferencing a null pointer. If so,
555 // and if not volatile-qualified, this is undefined behavior that the
556 // optimizer will delete, so warn about it. People sometimes try to use this
557 // to get a deterministic trap and are surprised by clang's behavior. This
558 // only handles the pattern "*null", which is a very syntactic check.
559 const auto *UO = dyn_cast<UnaryOperator>(Val: E->IgnoreParenCasts());
560 if (UO && UO->getOpcode() == UO_Deref &&
561 UO->getSubExpr()->getType()->isPointerType()) {
562 const LangAS AS =
563 UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
564 if ((!isTargetAddressSpace(AS) ||
565 (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
566 UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
567 Ctx&: S.Context, NPC: Expr::NPC_ValueDependentIsNotNull) &&
568 !UO->getType().isVolatileQualified()) {
569 S.DiagRuntimeBehavior(Loc: UO->getOperatorLoc(), Statement: UO,
570 PD: S.PDiag(DiagID: diag::warn_indirection_through_null)
571 << UO->getSubExpr()->getSourceRange());
572 S.DiagRuntimeBehavior(Loc: UO->getOperatorLoc(), Statement: UO,
573 PD: S.PDiag(DiagID: diag::note_indirection_through_null));
574 }
575 }
576}
577
578static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
579 SourceLocation AssignLoc,
580 const Expr* RHS) {
581 const ObjCIvarDecl *IV = OIRE->getDecl();
582 if (!IV)
583 return;
584
585 DeclarationName MemberName = IV->getDeclName();
586 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
587 if (!Member || !Member->isStr(Str: "isa"))
588 return;
589
590 const Expr *Base = OIRE->getBase();
591 QualType BaseType = Base->getType();
592 if (OIRE->isArrow())
593 BaseType = BaseType->getPointeeType();
594 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
595 if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
596 ObjCInterfaceDecl *ClassDeclared = nullptr;
597 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(IVarName: Member, ClassDeclared);
598 if (!ClassDeclared->getSuperClass()
599 && (*ClassDeclared->ivar_begin()) == IV) {
600 if (RHS) {
601 NamedDecl *ObjectSetClass =
602 S.LookupSingleName(S: S.TUScope,
603 Name: &S.Context.Idents.get(Name: "object_setClass"),
604 Loc: SourceLocation(), NameKind: S.LookupOrdinaryName);
605 if (ObjectSetClass) {
606 SourceLocation RHSLocEnd = S.getLocForEndOfToken(Loc: RHS->getEndLoc());
607 S.Diag(Loc: OIRE->getExprLoc(), DiagID: diag::warn_objc_isa_assign)
608 << FixItHint::CreateInsertion(InsertionLoc: OIRE->getBeginLoc(),
609 Code: "object_setClass(")
610 << FixItHint::CreateReplacement(
611 RemoveRange: SourceRange(OIRE->getOpLoc(), AssignLoc), Code: ",")
612 << FixItHint::CreateInsertion(InsertionLoc: RHSLocEnd, Code: ")");
613 }
614 else
615 S.Diag(Loc: OIRE->getLocation(), DiagID: diag::warn_objc_isa_assign);
616 } else {
617 NamedDecl *ObjectGetClass =
618 S.LookupSingleName(S: S.TUScope,
619 Name: &S.Context.Idents.get(Name: "object_getClass"),
620 Loc: SourceLocation(), NameKind: S.LookupOrdinaryName);
621 if (ObjectGetClass)
622 S.Diag(Loc: OIRE->getExprLoc(), DiagID: diag::warn_objc_isa_use)
623 << FixItHint::CreateInsertion(InsertionLoc: OIRE->getBeginLoc(),
624 Code: "object_getClass(")
625 << FixItHint::CreateReplacement(
626 RemoveRange: SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), Code: ")");
627 else
628 S.Diag(Loc: OIRE->getLocation(), DiagID: diag::warn_objc_isa_use);
629 }
630 S.Diag(Loc: IV->getLocation(), DiagID: diag::note_ivar_decl);
631 }
632 }
633}
634
635ExprResult Sema::DefaultLvalueConversion(Expr *E) {
636 // Handle any placeholder expressions which made it here.
637 if (E->hasPlaceholderType()) {
638 ExprResult result = CheckPlaceholderExpr(E);
639 if (result.isInvalid()) return ExprError();
640 E = result.get();
641 }
642
643 // C++ [conv.lval]p1:
644 // A glvalue of a non-function, non-array type T can be
645 // converted to a prvalue.
646 if (!E->isGLValue()) return E;
647
648 QualType T = E->getType();
649 assert(!T.isNull() && "r-value conversion on typeless expression?");
650
651 // lvalue-to-rvalue conversion cannot be applied to types that decay to
652 // pointers (i.e. function or array types).
653 if (T->canDecayToPointerType())
654 return E;
655
656 // We don't want to throw lvalue-to-rvalue casts on top of
657 // expressions of certain types in C++.
658 if (getLangOpts().CPlusPlus) {
659 if (T == Context.OverloadTy || T->isRecordType() ||
660 (T->isDependentType() && !T->isAnyPointerType() &&
661 !T->isMemberPointerType()))
662 return E;
663 }
664
665 // The C standard is actually really unclear on this point, and
666 // DR106 tells us what the result should be but not why. It's
667 // generally best to say that void types just doesn't undergo
668 // lvalue-to-rvalue at all. Note that expressions of unqualified
669 // 'void' type are never l-values, but qualified void can be.
670 if (T->isVoidType())
671 return E;
672
673 // OpenCL usually rejects direct accesses to values of 'half' type.
674 if (getLangOpts().OpenCL &&
675 !getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp16", LO: getLangOpts()) &&
676 T->isHalfType()) {
677 Diag(Loc: E->getExprLoc(), DiagID: diag::err_opencl_half_load_store)
678 << 0 << T;
679 return ExprError();
680 }
681
682 CheckForNullPointerDereference(S&: *this, E);
683 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(Val: E->IgnoreParenCasts())) {
684 NamedDecl *ObjectGetClass = LookupSingleName(S: TUScope,
685 Name: &Context.Idents.get(Name: "object_getClass"),
686 Loc: SourceLocation(), NameKind: LookupOrdinaryName);
687 if (ObjectGetClass)
688 Diag(Loc: E->getExprLoc(), DiagID: diag::warn_objc_isa_use)
689 << FixItHint::CreateInsertion(InsertionLoc: OISA->getBeginLoc(), Code: "object_getClass(")
690 << FixItHint::CreateReplacement(
691 RemoveRange: SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), Code: ")");
692 else
693 Diag(Loc: E->getExprLoc(), DiagID: diag::warn_objc_isa_use);
694 }
695 else if (const ObjCIvarRefExpr *OIRE =
696 dyn_cast<ObjCIvarRefExpr>(Val: E->IgnoreParenCasts()))
697 DiagnoseDirectIsaAccess(S&: *this, OIRE, AssignLoc: SourceLocation(), /* Expr*/RHS: nullptr);
698
699 // C++ [conv.lval]p1:
700 // [...] If T is a non-class type, the type of the prvalue is the
701 // cv-unqualified version of T. Otherwise, the type of the
702 // rvalue is T.
703 //
704 // C99 6.3.2.1p2:
705 // If the lvalue has qualified type, the value has the unqualified
706 // version of the type of the lvalue; otherwise, the value has the
707 // type of the lvalue.
708 if (T.hasQualifiers())
709 T = T.getUnqualifiedType();
710
711 // Under the MS ABI, lock down the inheritance model now.
712 if (T->isMemberPointerType() &&
713 Context.getTargetInfo().getCXXABI().isMicrosoft())
714 (void)isCompleteType(Loc: E->getExprLoc(), T);
715
716 ExprResult Res = CheckLValueToRValueConversionOperand(E);
717 if (Res.isInvalid())
718 return Res;
719 E = Res.get();
720
721 // Loading a __weak object implicitly retains the value, so we need a cleanup to
722 // balance that.
723 if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
724 Cleanup.setExprNeedsCleanups(true);
725
726 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
727 Cleanup.setExprNeedsCleanups(true);
728
729 // C++ [conv.lval]p3:
730 // If T is cv std::nullptr_t, the result is a null pointer constant.
731 CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
732 Res = ImplicitCastExpr::Create(Context, T, Kind: CK, Operand: E, BasePath: nullptr, Cat: VK_PRValue,
733 FPO: CurFPFeatureOverrides());
734
735 // C11 6.3.2.1p2:
736 // ... if the lvalue has atomic type, the value has the non-atomic version
737 // of the type of the lvalue ...
738 if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
739 T = Atomic->getValueType().getUnqualifiedType();
740 Res = ImplicitCastExpr::Create(Context, T, Kind: CK_AtomicToNonAtomic, Operand: Res.get(),
741 BasePath: nullptr, Cat: VK_PRValue, FPO: FPOptionsOverride());
742 }
743
744 return Res;
745}
746
747ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
748 ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
749 if (Res.isInvalid())
750 return ExprError();
751 Res = DefaultLvalueConversion(E: Res.get());
752 if (Res.isInvalid())
753 return ExprError();
754 return Res;
755}
756
757ExprResult Sema::CallExprUnaryConversions(Expr *E) {
758 QualType Ty = E->getType();
759 ExprResult Res = E;
760 // Only do implicit cast for a function type, but not for a pointer
761 // to function type.
762 if (Ty->isFunctionType()) {
763 Res = ImpCastExprToType(E, Type: Context.getPointerType(T: Ty),
764 CK: CK_FunctionToPointerDecay);
765 if (Res.isInvalid())
766 return ExprError();
767 }
768 Res = DefaultLvalueConversion(E: Res.get());
769 if (Res.isInvalid())
770 return ExprError();
771 return Res.get();
772}
773
774/// UsualUnaryConversions - Performs various conversions that are common to most
775/// operators (C99 6.3). The conversions of array and function types are
776/// sometimes suppressed. For example, the array->pointer conversion doesn't
777/// apply if the array is an argument to the sizeof or address (&) operators.
778/// In these instances, this routine should *not* be called.
779ExprResult Sema::UsualUnaryConversions(Expr *E) {
780 // First, convert to an r-value.
781 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
782 if (Res.isInvalid())
783 return ExprError();
784 E = Res.get();
785
786 QualType Ty = E->getType();
787 assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
788
789 LangOptions::FPEvalMethodKind EvalMethod = CurFPFeatures.getFPEvalMethod();
790 if (EvalMethod != LangOptions::FEM_Source && Ty->isFloatingType() &&
791 (getLangOpts().getFPEvalMethod() !=
792 LangOptions::FPEvalMethodKind::FEM_UnsetOnCommandLine ||
793 PP.getLastFPEvalPragmaLocation().isValid())) {
794 switch (EvalMethod) {
795 default:
796 llvm_unreachable("Unrecognized float evaluation method");
797 break;
798 case LangOptions::FEM_UnsetOnCommandLine:
799 llvm_unreachable("Float evaluation method should be set by now");
800 break;
801 case LangOptions::FEM_Double:
802 if (Context.getFloatingTypeOrder(LHS: Context.DoubleTy, RHS: Ty) > 0)
803 // Widen the expression to double.
804 return Ty->isComplexType()
805 ? ImpCastExprToType(E,
806 Type: Context.getComplexType(T: Context.DoubleTy),
807 CK: CK_FloatingComplexCast)
808 : ImpCastExprToType(E, Type: Context.DoubleTy, CK: CK_FloatingCast);
809 break;
810 case LangOptions::FEM_Extended:
811 if (Context.getFloatingTypeOrder(LHS: Context.LongDoubleTy, RHS: Ty) > 0)
812 // Widen the expression to long double.
813 return Ty->isComplexType()
814 ? ImpCastExprToType(
815 E, Type: Context.getComplexType(T: Context.LongDoubleTy),
816 CK: CK_FloatingComplexCast)
817 : ImpCastExprToType(E, Type: Context.LongDoubleTy,
818 CK: CK_FloatingCast);
819 break;
820 }
821 }
822
823 // Half FP have to be promoted to float unless it is natively supported
824 if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
825 return ImpCastExprToType(E: Res.get(), Type: Context.FloatTy, CK: CK_FloatingCast);
826
827 // Try to perform integral promotions if the object has a theoretically
828 // promotable type.
829 if (Ty->isIntegralOrUnscopedEnumerationType()) {
830 // C99 6.3.1.1p2:
831 //
832 // The following may be used in an expression wherever an int or
833 // unsigned int may be used:
834 // - an object or expression with an integer type whose integer
835 // conversion rank is less than or equal to the rank of int
836 // and unsigned int.
837 // - A bit-field of type _Bool, int, signed int, or unsigned int.
838 //
839 // If an int can represent all values of the original type, the
840 // value is converted to an int; otherwise, it is converted to an
841 // unsigned int. These are called the integer promotions. All
842 // other types are unchanged by the integer promotions.
843
844 QualType PTy = Context.isPromotableBitField(E);
845 if (!PTy.isNull()) {
846 E = ImpCastExprToType(E, Type: PTy, CK: CK_IntegralCast).get();
847 return E;
848 }
849 if (Context.isPromotableIntegerType(T: Ty)) {
850 QualType PT = Context.getPromotedIntegerType(PromotableType: Ty);
851 E = ImpCastExprToType(E, Type: PT, CK: CK_IntegralCast).get();
852 return E;
853 }
854 }
855 return E;
856}
857
858/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
859/// do not have a prototype. Arguments that have type float or __fp16
860/// are promoted to double. All other argument types are converted by
861/// UsualUnaryConversions().
862ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
863 QualType Ty = E->getType();
864 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
865
866 ExprResult Res = UsualUnaryConversions(E);
867 if (Res.isInvalid())
868 return ExprError();
869 E = Res.get();
870
871 // If this is a 'float' or '__fp16' (CVR qualified or typedef)
872 // promote to double.
873 // Note that default argument promotion applies only to float (and
874 // half/fp16); it does not apply to _Float16.
875 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
876 if (BTy && (BTy->getKind() == BuiltinType::Half ||
877 BTy->getKind() == BuiltinType::Float)) {
878 if (getLangOpts().OpenCL &&
879 !getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp64", LO: getLangOpts())) {
880 if (BTy->getKind() == BuiltinType::Half) {
881 E = ImpCastExprToType(E, Type: Context.FloatTy, CK: CK_FloatingCast).get();
882 }
883 } else {
884 E = ImpCastExprToType(E, Type: Context.DoubleTy, CK: CK_FloatingCast).get();
885 }
886 }
887 if (BTy &&
888 getLangOpts().getExtendIntArgs() ==
889 LangOptions::ExtendArgsKind::ExtendTo64 &&
890 Context.getTargetInfo().supportsExtendIntArgs() && Ty->isIntegerType() &&
891 Context.getTypeSizeInChars(T: BTy) <
892 Context.getTypeSizeInChars(T: Context.LongLongTy)) {
893 E = (Ty->isUnsignedIntegerType())
894 ? ImpCastExprToType(E, Type: Context.UnsignedLongLongTy, CK: CK_IntegralCast)
895 .get()
896 : ImpCastExprToType(E, Type: Context.LongLongTy, CK: CK_IntegralCast).get();
897 assert(8 == Context.getTypeSizeInChars(Context.LongLongTy).getQuantity() &&
898 "Unexpected typesize for LongLongTy");
899 }
900
901 // C++ performs lvalue-to-rvalue conversion as a default argument
902 // promotion, even on class types, but note:
903 // C++11 [conv.lval]p2:
904 // When an lvalue-to-rvalue conversion occurs in an unevaluated
905 // operand or a subexpression thereof the value contained in the
906 // referenced object is not accessed. Otherwise, if the glvalue
907 // has a class type, the conversion copy-initializes a temporary
908 // of type T from the glvalue and the result of the conversion
909 // is a prvalue for the temporary.
910 // FIXME: add some way to gate this entire thing for correctness in
911 // potentially potentially evaluated contexts.
912 if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
913 ExprResult Temp = PerformCopyInitialization(
914 Entity: InitializedEntity::InitializeTemporary(Type: E->getType()),
915 EqualLoc: E->getExprLoc(), Init: E);
916 if (Temp.isInvalid())
917 return ExprError();
918 E = Temp.get();
919 }
920
921 return E;
922}
923
924Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
925 if (Ty->isIncompleteType()) {
926 // C++11 [expr.call]p7:
927 // After these conversions, if the argument does not have arithmetic,
928 // enumeration, pointer, pointer to member, or class type, the program
929 // is ill-formed.
930 //
931 // Since we've already performed array-to-pointer and function-to-pointer
932 // decay, the only such type in C++ is cv void. This also handles
933 // initializer lists as variadic arguments.
934 if (Ty->isVoidType())
935 return VAK_Invalid;
936
937 if (Ty->isObjCObjectType())
938 return VAK_Invalid;
939 return VAK_Valid;
940 }
941
942 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
943 return VAK_Invalid;
944
945 if (Context.getTargetInfo().getTriple().isWasm() &&
946 Ty.isWebAssemblyReferenceType()) {
947 return VAK_Invalid;
948 }
949
950 if (Ty.isCXX98PODType(Context))
951 return VAK_Valid;
952
953 // C++11 [expr.call]p7:
954 // Passing a potentially-evaluated argument of class type (Clause 9)
955 // having a non-trivial copy constructor, a non-trivial move constructor,
956 // or a non-trivial destructor, with no corresponding parameter,
957 // is conditionally-supported with implementation-defined semantics.
958 if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
959 if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
960 if (!Record->hasNonTrivialCopyConstructor() &&
961 !Record->hasNonTrivialMoveConstructor() &&
962 !Record->hasNonTrivialDestructor())
963 return VAK_ValidInCXX11;
964
965 if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
966 return VAK_Valid;
967
968 if (Ty->isObjCObjectType())
969 return VAK_Invalid;
970
971 if (getLangOpts().MSVCCompat)
972 return VAK_MSVCUndefined;
973
974 // FIXME: In C++11, these cases are conditionally-supported, meaning we're
975 // permitted to reject them. We should consider doing so.
976 return VAK_Undefined;
977}
978
979void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
980 // Don't allow one to pass an Objective-C interface to a vararg.
981 const QualType &Ty = E->getType();
982 VarArgKind VAK = isValidVarArgType(Ty);
983
984 // Complain about passing non-POD types through varargs.
985 switch (VAK) {
986 case VAK_ValidInCXX11:
987 DiagRuntimeBehavior(
988 Loc: E->getBeginLoc(), Statement: nullptr,
989 PD: PDiag(DiagID: diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
990 [[fallthrough]];
991 case VAK_Valid:
992 if (Ty->isRecordType()) {
993 // This is unlikely to be what the user intended. If the class has a
994 // 'c_str' member function, the user probably meant to call that.
995 DiagRuntimeBehavior(Loc: E->getBeginLoc(), Statement: nullptr,
996 PD: PDiag(DiagID: diag::warn_pass_class_arg_to_vararg)
997 << Ty << CT << hasCStrMethod(E) << ".c_str()");
998 }
999 break;
1000
1001 case VAK_Undefined:
1002 case VAK_MSVCUndefined:
1003 DiagRuntimeBehavior(Loc: E->getBeginLoc(), Statement: nullptr,
1004 PD: PDiag(DiagID: diag::warn_cannot_pass_non_pod_arg_to_vararg)
1005 << getLangOpts().CPlusPlus11 << Ty << CT);
1006 break;
1007
1008 case VAK_Invalid:
1009 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
1010 Diag(Loc: E->getBeginLoc(),
1011 DiagID: diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
1012 << Ty << CT;
1013 else if (Ty->isObjCObjectType())
1014 DiagRuntimeBehavior(Loc: E->getBeginLoc(), Statement: nullptr,
1015 PD: PDiag(DiagID: diag::err_cannot_pass_objc_interface_to_vararg)
1016 << Ty << CT);
1017 else
1018 Diag(Loc: E->getBeginLoc(), DiagID: diag::err_cannot_pass_to_vararg)
1019 << isa<InitListExpr>(Val: E) << Ty << CT;
1020 break;
1021 }
1022}
1023
1024ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
1025 FunctionDecl *FDecl) {
1026 if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
1027 // Strip the unbridged-cast placeholder expression off, if applicable.
1028 if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
1029 (CT == VariadicMethod ||
1030 (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
1031 E = ObjC().stripARCUnbridgedCast(e: E);
1032
1033 // Otherwise, do normal placeholder checking.
1034 } else {
1035 ExprResult ExprRes = CheckPlaceholderExpr(E);
1036 if (ExprRes.isInvalid())
1037 return ExprError();
1038 E = ExprRes.get();
1039 }
1040 }
1041
1042 ExprResult ExprRes = DefaultArgumentPromotion(E);
1043 if (ExprRes.isInvalid())
1044 return ExprError();
1045
1046 // Copy blocks to the heap.
1047 if (ExprRes.get()->getType()->isBlockPointerType())
1048 maybeExtendBlockObject(E&: ExprRes);
1049
1050 E = ExprRes.get();
1051
1052 // Diagnostics regarding non-POD argument types are
1053 // emitted along with format string checking in Sema::CheckFunctionCall().
1054 if (isValidVarArgType(Ty: E->getType()) == VAK_Undefined) {
1055 // Turn this into a trap.
1056 CXXScopeSpec SS;
1057 SourceLocation TemplateKWLoc;
1058 UnqualifiedId Name;
1059 Name.setIdentifier(Id: PP.getIdentifierInfo(Name: "__builtin_trap"),
1060 IdLoc: E->getBeginLoc());
1061 ExprResult TrapFn = ActOnIdExpression(S: TUScope, SS, TemplateKWLoc, Id&: Name,
1062 /*HasTrailingLParen=*/true,
1063 /*IsAddressOfOperand=*/false);
1064 if (TrapFn.isInvalid())
1065 return ExprError();
1066
1067 ExprResult Call = BuildCallExpr(S: TUScope, Fn: TrapFn.get(), LParenLoc: E->getBeginLoc(),
1068 ArgExprs: std::nullopt, RParenLoc: E->getEndLoc());
1069 if (Call.isInvalid())
1070 return ExprError();
1071
1072 ExprResult Comma =
1073 ActOnBinOp(S: TUScope, TokLoc: E->getBeginLoc(), Kind: tok::comma, LHSExpr: Call.get(), RHSExpr: E);
1074 if (Comma.isInvalid())
1075 return ExprError();
1076 return Comma.get();
1077 }
1078
1079 if (!getLangOpts().CPlusPlus &&
1080 RequireCompleteType(Loc: E->getExprLoc(), T: E->getType(),
1081 DiagID: diag::err_call_incomplete_argument))
1082 return ExprError();
1083
1084 return E;
1085}
1086
1087/// Convert complex integers to complex floats and real integers to
1088/// real floats as required for complex arithmetic. Helper function of
1089/// UsualArithmeticConversions()
1090///
1091/// \return false if the integer expression is an integer type and is
1092/// successfully converted to the (complex) float type.
1093static bool handleComplexIntegerToFloatConversion(Sema &S, ExprResult &IntExpr,
1094 ExprResult &ComplexExpr,
1095 QualType IntTy,
1096 QualType ComplexTy,
1097 bool SkipCast) {
1098 if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1099 if (SkipCast) return false;
1100 if (IntTy->isIntegerType()) {
1101 QualType fpTy = ComplexTy->castAs<ComplexType>()->getElementType();
1102 IntExpr = S.ImpCastExprToType(E: IntExpr.get(), Type: fpTy, CK: CK_IntegralToFloating);
1103 } else {
1104 assert(IntTy->isComplexIntegerType());
1105 IntExpr = S.ImpCastExprToType(E: IntExpr.get(), Type: ComplexTy,
1106 CK: CK_IntegralComplexToFloatingComplex);
1107 }
1108 return false;
1109}
1110
1111// This handles complex/complex, complex/float, or float/complex.
1112// When both operands are complex, the shorter operand is converted to the
1113// type of the longer, and that is the type of the result. This corresponds
1114// to what is done when combining two real floating-point operands.
1115// The fun begins when size promotion occur across type domains.
1116// From H&S 6.3.4: When one operand is complex and the other is a real
1117// floating-point type, the less precise type is converted, within it's
1118// real or complex domain, to the precision of the other type. For example,
1119// when combining a "long double" with a "double _Complex", the
1120// "double _Complex" is promoted to "long double _Complex".
1121static QualType handleComplexFloatConversion(Sema &S, ExprResult &Shorter,
1122 QualType ShorterType,
1123 QualType LongerType,
1124 bool PromotePrecision) {
1125 bool LongerIsComplex = isa<ComplexType>(Val: LongerType.getCanonicalType());
1126 QualType Result =
1127 LongerIsComplex ? LongerType : S.Context.getComplexType(T: LongerType);
1128
1129 if (PromotePrecision) {
1130 if (isa<ComplexType>(Val: ShorterType.getCanonicalType())) {
1131 Shorter =
1132 S.ImpCastExprToType(E: Shorter.get(), Type: Result, CK: CK_FloatingComplexCast);
1133 } else {
1134 if (LongerIsComplex)
1135 LongerType = LongerType->castAs<ComplexType>()->getElementType();
1136 Shorter = S.ImpCastExprToType(E: Shorter.get(), Type: LongerType, CK: CK_FloatingCast);
1137 }
1138 }
1139 return Result;
1140}
1141
1142/// Handle arithmetic conversion with complex types. Helper function of
1143/// UsualArithmeticConversions()
1144static QualType handleComplexConversion(Sema &S, ExprResult &LHS,
1145 ExprResult &RHS, QualType LHSType,
1146 QualType RHSType, bool IsCompAssign) {
1147 // Handle (complex) integer types.
1148 if (!handleComplexIntegerToFloatConversion(S, IntExpr&: RHS, ComplexExpr&: LHS, IntTy: RHSType, ComplexTy: LHSType,
1149 /*SkipCast=*/false))
1150 return LHSType;
1151 if (!handleComplexIntegerToFloatConversion(S, IntExpr&: LHS, ComplexExpr&: RHS, IntTy: LHSType, ComplexTy: RHSType,
1152 /*SkipCast=*/IsCompAssign))
1153 return RHSType;
1154
1155 // Compute the rank of the two types, regardless of whether they are complex.
1156 int Order = S.Context.getFloatingTypeOrder(LHS: LHSType, RHS: RHSType);
1157 if (Order < 0)
1158 // Promote the precision of the LHS if not an assignment.
1159 return handleComplexFloatConversion(S, Shorter&: LHS, ShorterType: LHSType, LongerType: RHSType,
1160 /*PromotePrecision=*/!IsCompAssign);
1161 // Promote the precision of the RHS unless it is already the same as the LHS.
1162 return handleComplexFloatConversion(S, Shorter&: RHS, ShorterType: RHSType, LongerType: LHSType,
1163 /*PromotePrecision=*/Order > 0);
1164}
1165
1166/// Handle arithmetic conversion from integer to float. Helper function
1167/// of UsualArithmeticConversions()
1168static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1169 ExprResult &IntExpr,
1170 QualType FloatTy, QualType IntTy,
1171 bool ConvertFloat, bool ConvertInt) {
1172 if (IntTy->isIntegerType()) {
1173 if (ConvertInt)
1174 // Convert intExpr to the lhs floating point type.
1175 IntExpr = S.ImpCastExprToType(E: IntExpr.get(), Type: FloatTy,
1176 CK: CK_IntegralToFloating);
1177 return FloatTy;
1178 }
1179
1180 // Convert both sides to the appropriate complex float.
1181 assert(IntTy->isComplexIntegerType());
1182 QualType result = S.Context.getComplexType(T: FloatTy);
1183
1184 // _Complex int -> _Complex float
1185 if (ConvertInt)
1186 IntExpr = S.ImpCastExprToType(E: IntExpr.get(), Type: result,
1187 CK: CK_IntegralComplexToFloatingComplex);
1188
1189 // float -> _Complex float
1190 if (ConvertFloat)
1191 FloatExpr = S.ImpCastExprToType(E: FloatExpr.get(), Type: result,
1192 CK: CK_FloatingRealToComplex);
1193
1194 return result;
1195}
1196
1197/// Handle arithmethic conversion with floating point types. Helper
1198/// function of UsualArithmeticConversions()
1199static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1200 ExprResult &RHS, QualType LHSType,
1201 QualType RHSType, bool IsCompAssign) {
1202 bool LHSFloat = LHSType->isRealFloatingType();
1203 bool RHSFloat = RHSType->isRealFloatingType();
1204
1205 // N1169 4.1.4: If one of the operands has a floating type and the other
1206 // operand has a fixed-point type, the fixed-point operand
1207 // is converted to the floating type [...]
1208 if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1209 if (LHSFloat)
1210 RHS = S.ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_FixedPointToFloating);
1211 else if (!IsCompAssign)
1212 LHS = S.ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_FixedPointToFloating);
1213 return LHSFloat ? LHSType : RHSType;
1214 }
1215
1216 // If we have two real floating types, convert the smaller operand
1217 // to the bigger result.
1218 if (LHSFloat && RHSFloat) {
1219 int order = S.Context.getFloatingTypeOrder(LHS: LHSType, RHS: RHSType);
1220 if (order > 0) {
1221 RHS = S.ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_FloatingCast);
1222 return LHSType;
1223 }
1224
1225 assert(order < 0 && "illegal float comparison");
1226 if (!IsCompAssign)
1227 LHS = S.ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_FloatingCast);
1228 return RHSType;
1229 }
1230
1231 if (LHSFloat) {
1232 // Half FP has to be promoted to float unless it is natively supported
1233 if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1234 LHSType = S.Context.FloatTy;
1235
1236 return handleIntToFloatConversion(S, FloatExpr&: LHS, IntExpr&: RHS, FloatTy: LHSType, IntTy: RHSType,
1237 /*ConvertFloat=*/!IsCompAssign,
1238 /*ConvertInt=*/ true);
1239 }
1240 assert(RHSFloat);
1241 return handleIntToFloatConversion(S, FloatExpr&: RHS, IntExpr&: LHS, FloatTy: RHSType, IntTy: LHSType,
1242 /*ConvertFloat=*/ true,
1243 /*ConvertInt=*/!IsCompAssign);
1244}
1245
1246/// Diagnose attempts to convert between __float128, __ibm128 and
1247/// long double if there is no support for such conversion.
1248/// Helper function of UsualArithmeticConversions().
1249static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1250 QualType RHSType) {
1251 // No issue if either is not a floating point type.
1252 if (!LHSType->isFloatingType() || !RHSType->isFloatingType())
1253 return false;
1254
1255 // No issue if both have the same 128-bit float semantics.
1256 auto *LHSComplex = LHSType->getAs<ComplexType>();
1257 auto *RHSComplex = RHSType->getAs<ComplexType>();
1258
1259 QualType LHSElem = LHSComplex ? LHSComplex->getElementType() : LHSType;
1260 QualType RHSElem = RHSComplex ? RHSComplex->getElementType() : RHSType;
1261
1262 const llvm::fltSemantics &LHSSem = S.Context.getFloatTypeSemantics(T: LHSElem);
1263 const llvm::fltSemantics &RHSSem = S.Context.getFloatTypeSemantics(T: RHSElem);
1264
1265 if ((&LHSSem != &llvm::APFloat::PPCDoubleDouble() ||
1266 &RHSSem != &llvm::APFloat::IEEEquad()) &&
1267 (&LHSSem != &llvm::APFloat::IEEEquad() ||
1268 &RHSSem != &llvm::APFloat::PPCDoubleDouble()))
1269 return false;
1270
1271 return true;
1272}
1273
1274typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1275
1276namespace {
1277/// These helper callbacks are placed in an anonymous namespace to
1278/// permit their use as function template parameters.
1279ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1280 return S.ImpCastExprToType(E: op, Type: toType, CK: CK_IntegralCast);
1281}
1282
1283ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1284 return S.ImpCastExprToType(E: op, Type: S.Context.getComplexType(T: toType),
1285 CK: CK_IntegralComplexCast);
1286}
1287}
1288
1289/// Handle integer arithmetic conversions. Helper function of
1290/// UsualArithmeticConversions()
1291template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1292static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1293 ExprResult &RHS, QualType LHSType,
1294 QualType RHSType, bool IsCompAssign) {
1295 // The rules for this case are in C99 6.3.1.8
1296 int order = S.Context.getIntegerTypeOrder(LHS: LHSType, RHS: RHSType);
1297 bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1298 bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1299 if (LHSSigned == RHSSigned) {
1300 // Same signedness; use the higher-ranked type
1301 if (order >= 0) {
1302 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1303 return LHSType;
1304 } else if (!IsCompAssign)
1305 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1306 return RHSType;
1307 } else if (order != (LHSSigned ? 1 : -1)) {
1308 // The unsigned type has greater than or equal rank to the
1309 // signed type, so use the unsigned type
1310 if (RHSSigned) {
1311 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1312 return LHSType;
1313 } else if (!IsCompAssign)
1314 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1315 return RHSType;
1316 } else if (S.Context.getIntWidth(T: LHSType) != S.Context.getIntWidth(T: RHSType)) {
1317 // The two types are different widths; if we are here, that
1318 // means the signed type is larger than the unsigned type, so
1319 // use the signed type.
1320 if (LHSSigned) {
1321 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1322 return LHSType;
1323 } else if (!IsCompAssign)
1324 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1325 return RHSType;
1326 } else {
1327 // The signed type is higher-ranked than the unsigned type,
1328 // but isn't actually any bigger (like unsigned int and long
1329 // on most 32-bit systems). Use the unsigned type corresponding
1330 // to the signed type.
1331 QualType result =
1332 S.Context.getCorrespondingUnsignedType(T: LHSSigned ? LHSType : RHSType);
1333 RHS = (*doRHSCast)(S, RHS.get(), result);
1334 if (!IsCompAssign)
1335 LHS = (*doLHSCast)(S, LHS.get(), result);
1336 return result;
1337 }
1338}
1339
1340/// Handle conversions with GCC complex int extension. Helper function
1341/// of UsualArithmeticConversions()
1342static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1343 ExprResult &RHS, QualType LHSType,
1344 QualType RHSType,
1345 bool IsCompAssign) {
1346 const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1347 const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1348
1349 if (LHSComplexInt && RHSComplexInt) {
1350 QualType LHSEltType = LHSComplexInt->getElementType();
1351 QualType RHSEltType = RHSComplexInt->getElementType();
1352 QualType ScalarType =
1353 handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1354 (S, LHS, RHS, LHSType: LHSEltType, RHSType: RHSEltType, IsCompAssign);
1355
1356 return S.Context.getComplexType(T: ScalarType);
1357 }
1358
1359 if (LHSComplexInt) {
1360 QualType LHSEltType = LHSComplexInt->getElementType();
1361 QualType ScalarType =
1362 handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1363 (S, LHS, RHS, LHSType: LHSEltType, RHSType, IsCompAssign);
1364 QualType ComplexType = S.Context.getComplexType(T: ScalarType);
1365 RHS = S.ImpCastExprToType(E: RHS.get(), Type: ComplexType,
1366 CK: CK_IntegralRealToComplex);
1367
1368 return ComplexType;
1369 }
1370
1371 assert(RHSComplexInt);
1372
1373 QualType RHSEltType = RHSComplexInt->getElementType();
1374 QualType ScalarType =
1375 handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1376 (S, LHS, RHS, LHSType, RHSType: RHSEltType, IsCompAssign);
1377 QualType ComplexType = S.Context.getComplexType(T: ScalarType);
1378
1379 if (!IsCompAssign)
1380 LHS = S.ImpCastExprToType(E: LHS.get(), Type: ComplexType,
1381 CK: CK_IntegralRealToComplex);
1382 return ComplexType;
1383}
1384
1385/// Return the rank of a given fixed point or integer type. The value itself
1386/// doesn't matter, but the values must be increasing with proper increasing
1387/// rank as described in N1169 4.1.1.
1388static unsigned GetFixedPointRank(QualType Ty) {
1389 const auto *BTy = Ty->getAs<BuiltinType>();
1390 assert(BTy && "Expected a builtin type.");
1391
1392 switch (BTy->getKind()) {
1393 case BuiltinType::ShortFract:
1394 case BuiltinType::UShortFract:
1395 case BuiltinType::SatShortFract:
1396 case BuiltinType::SatUShortFract:
1397 return 1;
1398 case BuiltinType::Fract:
1399 case BuiltinType::UFract:
1400 case BuiltinType::SatFract:
1401 case BuiltinType::SatUFract:
1402 return 2;
1403 case BuiltinType::LongFract:
1404 case BuiltinType::ULongFract:
1405 case BuiltinType::SatLongFract:
1406 case BuiltinType::SatULongFract:
1407 return 3;
1408 case BuiltinType::ShortAccum:
1409 case BuiltinType::UShortAccum:
1410 case BuiltinType::SatShortAccum:
1411 case BuiltinType::SatUShortAccum:
1412 return 4;
1413 case BuiltinType::Accum:
1414 case BuiltinType::UAccum:
1415 case BuiltinType::SatAccum:
1416 case BuiltinType::SatUAccum:
1417 return 5;
1418 case BuiltinType::LongAccum:
1419 case BuiltinType::ULongAccum:
1420 case BuiltinType::SatLongAccum:
1421 case BuiltinType::SatULongAccum:
1422 return 6;
1423 default:
1424 if (BTy->isInteger())
1425 return 0;
1426 llvm_unreachable("Unexpected fixed point or integer type");
1427 }
1428}
1429
1430/// handleFixedPointConversion - Fixed point operations between fixed
1431/// point types and integers or other fixed point types do not fall under
1432/// usual arithmetic conversion since these conversions could result in loss
1433/// of precsision (N1169 4.1.4). These operations should be calculated with
1434/// the full precision of their result type (N1169 4.1.6.2.1).
1435static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1436 QualType RHSTy) {
1437 assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&
1438 "Expected at least one of the operands to be a fixed point type");
1439 assert((LHSTy->isFixedPointOrIntegerType() ||
1440 RHSTy->isFixedPointOrIntegerType()) &&
1441 "Special fixed point arithmetic operation conversions are only "
1442 "applied to ints or other fixed point types");
1443
1444 // If one operand has signed fixed-point type and the other operand has
1445 // unsigned fixed-point type, then the unsigned fixed-point operand is
1446 // converted to its corresponding signed fixed-point type and the resulting
1447 // type is the type of the converted operand.
1448 if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1449 LHSTy = S.Context.getCorrespondingSignedFixedPointType(Ty: LHSTy);
1450 else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1451 RHSTy = S.Context.getCorrespondingSignedFixedPointType(Ty: RHSTy);
1452
1453 // The result type is the type with the highest rank, whereby a fixed-point
1454 // conversion rank is always greater than an integer conversion rank; if the
1455 // type of either of the operands is a saturating fixedpoint type, the result
1456 // type shall be the saturating fixed-point type corresponding to the type
1457 // with the highest rank; the resulting value is converted (taking into
1458 // account rounding and overflow) to the precision of the resulting type.
1459 // Same ranks between signed and unsigned types are resolved earlier, so both
1460 // types are either signed or both unsigned at this point.
1461 unsigned LHSTyRank = GetFixedPointRank(Ty: LHSTy);
1462 unsigned RHSTyRank = GetFixedPointRank(Ty: RHSTy);
1463
1464 QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1465
1466 if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1467 ResultTy = S.Context.getCorrespondingSaturatedType(Ty: ResultTy);
1468
1469 return ResultTy;
1470}
1471
1472/// Check that the usual arithmetic conversions can be performed on this pair of
1473/// expressions that might be of enumeration type.
1474static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1475 SourceLocation Loc,
1476 Sema::ArithConvKind ACK) {
1477 // C++2a [expr.arith.conv]p1:
1478 // If one operand is of enumeration type and the other operand is of a
1479 // different enumeration type or a floating-point type, this behavior is
1480 // deprecated ([depr.arith.conv.enum]).
1481 //
1482 // Warn on this in all language modes. Produce a deprecation warning in C++20.
1483 // Eventually we will presumably reject these cases (in C++23 onwards?).
1484 QualType L = LHS->getEnumCoercedType(Ctx: S.Context),
1485 R = RHS->getEnumCoercedType(Ctx: S.Context);
1486 bool LEnum = L->isUnscopedEnumerationType(),
1487 REnum = R->isUnscopedEnumerationType();
1488 bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1489 if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1490 (REnum && L->isFloatingType())) {
1491 S.Diag(Loc, DiagID: S.getLangOpts().CPlusPlus26
1492 ? diag::err_arith_conv_enum_float_cxx26
1493 : S.getLangOpts().CPlusPlus20
1494 ? diag::warn_arith_conv_enum_float_cxx20
1495 : diag::warn_arith_conv_enum_float)
1496 << LHS->getSourceRange() << RHS->getSourceRange() << (int)ACK << LEnum
1497 << L << R;
1498 } else if (!IsCompAssign && LEnum && REnum &&
1499 !S.Context.hasSameUnqualifiedType(T1: L, T2: R)) {
1500 unsigned DiagID;
1501 // In C++ 26, usual arithmetic conversions between 2 different enum types
1502 // are ill-formed.
1503 if (S.getLangOpts().CPlusPlus26)
1504 DiagID = diag::err_conv_mixed_enum_types_cxx26;
1505 else if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1506 !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1507 // If either enumeration type is unnamed, it's less likely that the
1508 // user cares about this, but this situation is still deprecated in
1509 // C++2a. Use a different warning group.
1510 DiagID = S.getLangOpts().CPlusPlus20
1511 ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1512 : diag::warn_arith_conv_mixed_anon_enum_types;
1513 } else if (ACK == Sema::ACK_Conditional) {
1514 // Conditional expressions are separated out because they have
1515 // historically had a different warning flag.
1516 DiagID = S.getLangOpts().CPlusPlus20
1517 ? diag::warn_conditional_mixed_enum_types_cxx20
1518 : diag::warn_conditional_mixed_enum_types;
1519 } else if (ACK == Sema::ACK_Comparison) {
1520 // Comparison expressions are separated out because they have
1521 // historically had a different warning flag.
1522 DiagID = S.getLangOpts().CPlusPlus20
1523 ? diag::warn_comparison_mixed_enum_types_cxx20
1524 : diag::warn_comparison_mixed_enum_types;
1525 } else {
1526 DiagID = S.getLangOpts().CPlusPlus20
1527 ? diag::warn_arith_conv_mixed_enum_types_cxx20
1528 : diag::warn_arith_conv_mixed_enum_types;
1529 }
1530 S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1531 << (int)ACK << L << R;
1532 }
1533}
1534
1535/// UsualArithmeticConversions - Performs various conversions that are common to
1536/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1537/// routine returns the first non-arithmetic type found. The client is
1538/// responsible for emitting appropriate error diagnostics.
1539QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1540 SourceLocation Loc,
1541 ArithConvKind ACK) {
1542 checkEnumArithmeticConversions(S&: *this, LHS: LHS.get(), RHS: RHS.get(), Loc, ACK);
1543
1544 if (ACK != ACK_CompAssign) {
1545 LHS = UsualUnaryConversions(E: LHS.get());
1546 if (LHS.isInvalid())
1547 return QualType();
1548 }
1549
1550 RHS = UsualUnaryConversions(E: RHS.get());
1551 if (RHS.isInvalid())
1552 return QualType();
1553
1554 // For conversion purposes, we ignore any qualifiers.
1555 // For example, "const float" and "float" are equivalent.
1556 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
1557 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
1558
1559 // For conversion purposes, we ignore any atomic qualifier on the LHS.
1560 if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1561 LHSType = AtomicLHS->getValueType();
1562
1563 // If both types are identical, no conversion is needed.
1564 if (Context.hasSameType(T1: LHSType, T2: RHSType))
1565 return Context.getCommonSugaredType(X: LHSType, Y: RHSType);
1566
1567 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1568 // The caller can deal with this (e.g. pointer + int).
1569 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1570 return QualType();
1571
1572 // Apply unary and bitfield promotions to the LHS's type.
1573 QualType LHSUnpromotedType = LHSType;
1574 if (Context.isPromotableIntegerType(T: LHSType))
1575 LHSType = Context.getPromotedIntegerType(PromotableType: LHSType);
1576 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(E: LHS.get());
1577 if (!LHSBitfieldPromoteTy.isNull())
1578 LHSType = LHSBitfieldPromoteTy;
1579 if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1580 LHS = ImpCastExprToType(E: LHS.get(), Type: LHSType, CK: CK_IntegralCast);
1581
1582 // If both types are identical, no conversion is needed.
1583 if (Context.hasSameType(T1: LHSType, T2: RHSType))
1584 return Context.getCommonSugaredType(X: LHSType, Y: RHSType);
1585
1586 // At this point, we have two different arithmetic types.
1587
1588 // Diagnose attempts to convert between __ibm128, __float128 and long double
1589 // where such conversions currently can't be handled.
1590 if (unsupportedTypeConversion(S: *this, LHSType, RHSType))
1591 return QualType();
1592
1593 // Handle complex types first (C99 6.3.1.8p1).
1594 if (LHSType->isComplexType() || RHSType->isComplexType())
1595 return handleComplexConversion(S&: *this, LHS, RHS, LHSType, RHSType,
1596 IsCompAssign: ACK == ACK_CompAssign);
1597
1598 // Now handle "real" floating types (i.e. float, double, long double).
1599 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1600 return handleFloatConversion(S&: *this, LHS, RHS, LHSType, RHSType,
1601 IsCompAssign: ACK == ACK_CompAssign);
1602
1603 // Handle GCC complex int extension.
1604 if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1605 return handleComplexIntConversion(S&: *this, LHS, RHS, LHSType, RHSType,
1606 IsCompAssign: ACK == ACK_CompAssign);
1607
1608 if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1609 return handleFixedPointConversion(S&: *this, LHSTy: LHSType, RHSTy: RHSType);
1610
1611 // Finally, we have two differing integer types.
1612 return handleIntegerConversion<doIntegralCast, doIntegralCast>
1613 (S&: *this, LHS, RHS, LHSType, RHSType, IsCompAssign: ACK == ACK_CompAssign);
1614}
1615
1616//===----------------------------------------------------------------------===//
1617// Semantic Analysis for various Expression Types
1618//===----------------------------------------------------------------------===//
1619
1620
1621ExprResult Sema::ActOnGenericSelectionExpr(
1622 SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1623 bool PredicateIsExpr, void *ControllingExprOrType,
1624 ArrayRef<ParsedType> ArgTypes, ArrayRef<Expr *> ArgExprs) {
1625 unsigned NumAssocs = ArgTypes.size();
1626 assert(NumAssocs == ArgExprs.size());
1627
1628 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1629 for (unsigned i = 0; i < NumAssocs; ++i) {
1630 if (ArgTypes[i])
1631 (void) GetTypeFromParser(Ty: ArgTypes[i], TInfo: &Types[i]);
1632 else
1633 Types[i] = nullptr;
1634 }
1635
1636 // If we have a controlling type, we need to convert it from a parsed type
1637 // into a semantic type and then pass that along.
1638 if (!PredicateIsExpr) {
1639 TypeSourceInfo *ControllingType;
1640 (void)GetTypeFromParser(Ty: ParsedType::getFromOpaquePtr(P: ControllingExprOrType),
1641 TInfo: &ControllingType);
1642 assert(ControllingType && "couldn't get the type out of the parser");
1643 ControllingExprOrType = ControllingType;
1644 }
1645
1646 ExprResult ER = CreateGenericSelectionExpr(
1647 KeyLoc, DefaultLoc, RParenLoc, PredicateIsExpr, ControllingExprOrType,
1648 Types: llvm::ArrayRef(Types, NumAssocs), Exprs: ArgExprs);
1649 delete [] Types;
1650 return ER;
1651}
1652
1653ExprResult Sema::CreateGenericSelectionExpr(
1654 SourceLocation KeyLoc, SourceLocation DefaultLoc, SourceLocation RParenLoc,
1655 bool PredicateIsExpr, void *ControllingExprOrType,
1656 ArrayRef<TypeSourceInfo *> Types, ArrayRef<Expr *> Exprs) {
1657 unsigned NumAssocs = Types.size();
1658 assert(NumAssocs == Exprs.size());
1659 assert(ControllingExprOrType &&
1660 "Must have either a controlling expression or a controlling type");
1661
1662 Expr *ControllingExpr = nullptr;
1663 TypeSourceInfo *ControllingType = nullptr;
1664 if (PredicateIsExpr) {
1665 // Decay and strip qualifiers for the controlling expression type, and
1666 // handle placeholder type replacement. See committee discussion from WG14
1667 // DR423.
1668 EnterExpressionEvaluationContext Unevaluated(
1669 *this, Sema::ExpressionEvaluationContext::Unevaluated);
1670 ExprResult R = DefaultFunctionArrayLvalueConversion(
1671 E: reinterpret_cast<Expr *>(ControllingExprOrType));
1672 if (R.isInvalid())
1673 return ExprError();
1674 ControllingExpr = R.get();
1675 } else {
1676 // The extension form uses the type directly rather than converting it.
1677 ControllingType = reinterpret_cast<TypeSourceInfo *>(ControllingExprOrType);
1678 if (!ControllingType)
1679 return ExprError();
1680 }
1681
1682 bool TypeErrorFound = false,
1683 IsResultDependent = ControllingExpr
1684 ? ControllingExpr->isTypeDependent()
1685 : ControllingType->getType()->isDependentType(),
1686 ContainsUnexpandedParameterPack =
1687 ControllingExpr
1688 ? ControllingExpr->containsUnexpandedParameterPack()
1689 : ControllingType->getType()->containsUnexpandedParameterPack();
1690
1691 // The controlling expression is an unevaluated operand, so side effects are
1692 // likely unintended.
1693 if (!inTemplateInstantiation() && !IsResultDependent && ControllingExpr &&
1694 ControllingExpr->HasSideEffects(Ctx: Context, IncludePossibleEffects: false))
1695 Diag(Loc: ControllingExpr->getExprLoc(),
1696 DiagID: diag::warn_side_effects_unevaluated_context);
1697
1698 for (unsigned i = 0; i < NumAssocs; ++i) {
1699 if (Exprs[i]->containsUnexpandedParameterPack())
1700 ContainsUnexpandedParameterPack = true;
1701
1702 if (Types[i]) {
1703 if (Types[i]->getType()->containsUnexpandedParameterPack())
1704 ContainsUnexpandedParameterPack = true;
1705
1706 if (Types[i]->getType()->isDependentType()) {
1707 IsResultDependent = true;
1708 } else {
1709 // We relax the restriction on use of incomplete types and non-object
1710 // types with the type-based extension of _Generic. Allowing incomplete
1711 // objects means those can be used as "tags" for a type-safe way to map
1712 // to a value. Similarly, matching on function types rather than
1713 // function pointer types can be useful. However, the restriction on VM
1714 // types makes sense to retain as there are open questions about how
1715 // the selection can be made at compile time.
1716 //
1717 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1718 // complete object type other than a variably modified type."
1719 unsigned D = 0;
1720 if (ControllingExpr && Types[i]->getType()->isIncompleteType())
1721 D = diag::err_assoc_type_incomplete;
1722 else if (ControllingExpr && !Types[i]->getType()->isObjectType())
1723 D = diag::err_assoc_type_nonobject;
1724 else if (Types[i]->getType()->isVariablyModifiedType())
1725 D = diag::err_assoc_type_variably_modified;
1726 else if (ControllingExpr) {
1727 // Because the controlling expression undergoes lvalue conversion,
1728 // array conversion, and function conversion, an association which is
1729 // of array type, function type, or is qualified can never be
1730 // reached. We will warn about this so users are less surprised by
1731 // the unreachable association. However, we don't have to handle
1732 // function types; that's not an object type, so it's handled above.
1733 //
1734 // The logic is somewhat different for C++ because C++ has different
1735 // lvalue to rvalue conversion rules than C. [conv.lvalue]p1 says,
1736 // If T is a non-class type, the type of the prvalue is the cv-
1737 // unqualified version of T. Otherwise, the type of the prvalue is T.
1738 // The result of these rules is that all qualified types in an
1739 // association in C are unreachable, and in C++, only qualified non-
1740 // class types are unreachable.
1741 //
1742 // NB: this does not apply when the first operand is a type rather
1743 // than an expression, because the type form does not undergo
1744 // conversion.
1745 unsigned Reason = 0;
1746 QualType QT = Types[i]->getType();
1747 if (QT->isArrayType())
1748 Reason = 1;
1749 else if (QT.hasQualifiers() &&
1750 (!LangOpts.CPlusPlus || !QT->isRecordType()))
1751 Reason = 2;
1752
1753 if (Reason)
1754 Diag(Loc: Types[i]->getTypeLoc().getBeginLoc(),
1755 DiagID: diag::warn_unreachable_association)
1756 << QT << (Reason - 1);
1757 }
1758
1759 if (D != 0) {
1760 Diag(Loc: Types[i]->getTypeLoc().getBeginLoc(), DiagID: D)
1761 << Types[i]->getTypeLoc().getSourceRange()
1762 << Types[i]->getType();
1763 TypeErrorFound = true;
1764 }
1765
1766 // C11 6.5.1.1p2 "No two generic associations in the same generic
1767 // selection shall specify compatible types."
1768 for (unsigned j = i+1; j < NumAssocs; ++j)
1769 if (Types[j] && !Types[j]->getType()->isDependentType() &&
1770 Context.typesAreCompatible(T1: Types[i]->getType(),
1771 T2: Types[j]->getType())) {
1772 Diag(Loc: Types[j]->getTypeLoc().getBeginLoc(),
1773 DiagID: diag::err_assoc_compatible_types)
1774 << Types[j]->getTypeLoc().getSourceRange()
1775 << Types[j]->getType()
1776 << Types[i]->getType();
1777 Diag(Loc: Types[i]->getTypeLoc().getBeginLoc(),
1778 DiagID: diag::note_compat_assoc)
1779 << Types[i]->getTypeLoc().getSourceRange()
1780 << Types[i]->getType();
1781 TypeErrorFound = true;
1782 }
1783 }
1784 }
1785 }
1786 if (TypeErrorFound)
1787 return ExprError();
1788
1789 // If we determined that the generic selection is result-dependent, don't
1790 // try to compute the result expression.
1791 if (IsResultDependent) {
1792 if (ControllingExpr)
1793 return GenericSelectionExpr::Create(Context, GenericLoc: KeyLoc, ControllingExpr,
1794 AssocTypes: Types, AssocExprs: Exprs, DefaultLoc, RParenLoc,
1795 ContainsUnexpandedParameterPack);
1796 return GenericSelectionExpr::Create(Context, GenericLoc: KeyLoc, ControllingType, AssocTypes: Types,
1797 AssocExprs: Exprs, DefaultLoc, RParenLoc,
1798 ContainsUnexpandedParameterPack);
1799 }
1800
1801 SmallVector<unsigned, 1> CompatIndices;
1802 unsigned DefaultIndex = -1U;
1803 // Look at the canonical type of the controlling expression in case it was a
1804 // deduced type like __auto_type. However, when issuing diagnostics, use the
1805 // type the user wrote in source rather than the canonical one.
1806 for (unsigned i = 0; i < NumAssocs; ++i) {
1807 if (!Types[i])
1808 DefaultIndex = i;
1809 else if (ControllingExpr &&
1810 Context.typesAreCompatible(
1811 T1: ControllingExpr->getType().getCanonicalType(),
1812 T2: Types[i]->getType()))
1813 CompatIndices.push_back(Elt: i);
1814 else if (ControllingType &&
1815 Context.typesAreCompatible(
1816 T1: ControllingType->getType().getCanonicalType(),
1817 T2: Types[i]->getType()))
1818 CompatIndices.push_back(Elt: i);
1819 }
1820
1821 auto GetControllingRangeAndType = [](Expr *ControllingExpr,
1822 TypeSourceInfo *ControllingType) {
1823 // We strip parens here because the controlling expression is typically
1824 // parenthesized in macro definitions.
1825 if (ControllingExpr)
1826 ControllingExpr = ControllingExpr->IgnoreParens();
1827
1828 SourceRange SR = ControllingExpr
1829 ? ControllingExpr->getSourceRange()
1830 : ControllingType->getTypeLoc().getSourceRange();
1831 QualType QT = ControllingExpr ? ControllingExpr->getType()
1832 : ControllingType->getType();
1833
1834 return std::make_pair(x&: SR, y&: QT);
1835 };
1836
1837 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1838 // type compatible with at most one of the types named in its generic
1839 // association list."
1840 if (CompatIndices.size() > 1) {
1841 auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1842 SourceRange SR = P.first;
1843 Diag(Loc: SR.getBegin(), DiagID: diag::err_generic_sel_multi_match)
1844 << SR << P.second << (unsigned)CompatIndices.size();
1845 for (unsigned I : CompatIndices) {
1846 Diag(Loc: Types[I]->getTypeLoc().getBeginLoc(),
1847 DiagID: diag::note_compat_assoc)
1848 << Types[I]->getTypeLoc().getSourceRange()
1849 << Types[I]->getType();
1850 }
1851 return ExprError();
1852 }
1853
1854 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1855 // its controlling expression shall have type compatible with exactly one of
1856 // the types named in its generic association list."
1857 if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1858 auto P = GetControllingRangeAndType(ControllingExpr, ControllingType);
1859 SourceRange SR = P.first;
1860 Diag(Loc: SR.getBegin(), DiagID: diag::err_generic_sel_no_match) << SR << P.second;
1861 return ExprError();
1862 }
1863
1864 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1865 // type name that is compatible with the type of the controlling expression,
1866 // then the result expression of the generic selection is the expression
1867 // in that generic association. Otherwise, the result expression of the
1868 // generic selection is the expression in the default generic association."
1869 unsigned ResultIndex =
1870 CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1871
1872 if (ControllingExpr) {
1873 return GenericSelectionExpr::Create(
1874 Context, GenericLoc: KeyLoc, ControllingExpr, AssocTypes: Types, AssocExprs: Exprs, DefaultLoc, RParenLoc,
1875 ContainsUnexpandedParameterPack, ResultIndex);
1876 }
1877 return GenericSelectionExpr::Create(
1878 Context, GenericLoc: KeyLoc, ControllingType, AssocTypes: Types, AssocExprs: Exprs, DefaultLoc, RParenLoc,
1879 ContainsUnexpandedParameterPack, ResultIndex);
1880}
1881
1882static PredefinedIdentKind getPredefinedExprKind(tok::TokenKind Kind) {
1883 switch (Kind) {
1884 default:
1885 llvm_unreachable("unexpected TokenKind");
1886 case tok::kw___func__:
1887 return PredefinedIdentKind::Func; // [C99 6.4.2.2]
1888 case tok::kw___FUNCTION__:
1889 return PredefinedIdentKind::Function;
1890 case tok::kw___FUNCDNAME__:
1891 return PredefinedIdentKind::FuncDName; // [MS]
1892 case tok::kw___FUNCSIG__:
1893 return PredefinedIdentKind::FuncSig; // [MS]
1894 case tok::kw_L__FUNCTION__:
1895 return PredefinedIdentKind::LFunction; // [MS]
1896 case tok::kw_L__FUNCSIG__:
1897 return PredefinedIdentKind::LFuncSig; // [MS]
1898 case tok::kw___PRETTY_FUNCTION__:
1899 return PredefinedIdentKind::PrettyFunction; // [GNU]
1900 }
1901}
1902
1903/// getPredefinedExprDecl - Returns Decl of a given DeclContext that can be used
1904/// to determine the value of a PredefinedExpr. This can be either a
1905/// block, lambda, captured statement, function, otherwise a nullptr.
1906static Decl *getPredefinedExprDecl(DeclContext *DC) {
1907 while (DC && !isa<BlockDecl, CapturedDecl, FunctionDecl, ObjCMethodDecl>(Val: DC))
1908 DC = DC->getParent();
1909 return cast_or_null<Decl>(Val: DC);
1910}
1911
1912/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1913/// location of the token and the offset of the ud-suffix within it.
1914static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1915 unsigned Offset) {
1916 return Lexer::AdvanceToTokenCharacter(TokStart: TokLoc, Characters: Offset, SM: S.getSourceManager(),
1917 LangOpts: S.getLangOpts());
1918}
1919
1920/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1921/// the corresponding cooked (non-raw) literal operator, and build a call to it.
1922static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1923 IdentifierInfo *UDSuffix,
1924 SourceLocation UDSuffixLoc,
1925 ArrayRef<Expr*> Args,
1926 SourceLocation LitEndLoc) {
1927 assert(Args.size() <= 2 && "too many arguments for literal operator");
1928
1929 QualType ArgTy[2];
1930 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1931 ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1932 if (ArgTy[ArgIdx]->isArrayType())
1933 ArgTy[ArgIdx] = S.Context.getArrayDecayedType(T: ArgTy[ArgIdx]);
1934 }
1935
1936 DeclarationName OpName =
1937 S.Context.DeclarationNames.getCXXLiteralOperatorName(II: UDSuffix);
1938 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1939 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1940
1941 LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1942 if (S.LookupLiteralOperator(S: Scope, R, ArgTys: llvm::ArrayRef(ArgTy, Args.size()),
1943 /*AllowRaw*/ false, /*AllowTemplate*/ false,
1944 /*AllowStringTemplatePack*/ AllowStringTemplate: false,
1945 /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1946 return ExprError();
1947
1948 return S.BuildLiteralOperatorCall(R, SuffixInfo&: OpNameInfo, Args, LitEndLoc);
1949}
1950
1951ExprResult Sema::ActOnUnevaluatedStringLiteral(ArrayRef<Token> StringToks) {
1952 // StringToks needs backing storage as it doesn't hold array elements itself
1953 std::vector<Token> ExpandedToks;
1954 if (getLangOpts().MicrosoftExt)
1955 StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(Toks: StringToks);
1956
1957 StringLiteralParser Literal(StringToks, PP,
1958 StringLiteralEvalMethod::Unevaluated);
1959 if (Literal.hadError)
1960 return ExprError();
1961
1962 SmallVector<SourceLocation, 4> StringTokLocs;
1963 for (const Token &Tok : StringToks)
1964 StringTokLocs.push_back(Elt: Tok.getLocation());
1965
1966 StringLiteral *Lit = StringLiteral::Create(
1967 Ctx: Context, Str: Literal.GetString(), Kind: StringLiteralKind::Unevaluated, Pascal: false, Ty: {},
1968 Loc: &StringTokLocs[0], NumConcatenated: StringTokLocs.size());
1969
1970 if (!Literal.getUDSuffix().empty()) {
1971 SourceLocation UDSuffixLoc =
1972 getUDSuffixLoc(S&: *this, TokLoc: StringTokLocs[Literal.getUDSuffixToken()],
1973 Offset: Literal.getUDSuffixOffset());
1974 return ExprError(Diag(Loc: UDSuffixLoc, DiagID: diag::err_invalid_string_udl));
1975 }
1976
1977 return Lit;
1978}
1979
1980std::vector<Token>
1981Sema::ExpandFunctionLocalPredefinedMacros(ArrayRef<Token> Toks) {
1982 // MSVC treats some predefined identifiers (e.g. __FUNCTION__) as function
1983 // local macros that expand to string literals that may be concatenated.
1984 // These macros are expanded here (in Sema), because StringLiteralParser
1985 // (in Lex) doesn't know the enclosing function (because it hasn't been
1986 // parsed yet).
1987 assert(getLangOpts().MicrosoftExt);
1988
1989 // Note: Although function local macros are defined only inside functions,
1990 // we ensure a valid `CurrentDecl` even outside of a function. This allows
1991 // expansion of macros into empty string literals without additional checks.
1992 Decl *CurrentDecl = getPredefinedExprDecl(DC: CurContext);
1993 if (!CurrentDecl)
1994 CurrentDecl = Context.getTranslationUnitDecl();
1995
1996 std::vector<Token> ExpandedToks;
1997 ExpandedToks.reserve(n: Toks.size());
1998 for (const Token &Tok : Toks) {
1999 if (!isFunctionLocalStringLiteralMacro(K: Tok.getKind(), LO: getLangOpts())) {
2000 assert(tok::isStringLiteral(Tok.getKind()));
2001 ExpandedToks.emplace_back(args: Tok);
2002 continue;
2003 }
2004 if (isa<TranslationUnitDecl>(Val: CurrentDecl))
2005 Diag(Loc: Tok.getLocation(), DiagID: diag::ext_predef_outside_function);
2006 // Stringify predefined expression
2007 Diag(Loc: Tok.getLocation(), DiagID: diag::ext_string_literal_from_predefined)
2008 << Tok.getKind();
2009 SmallString<64> Str;
2010 llvm::raw_svector_ostream OS(Str);
2011 Token &Exp = ExpandedToks.emplace_back();
2012 Exp.startToken();
2013 if (Tok.getKind() == tok::kw_L__FUNCTION__ ||
2014 Tok.getKind() == tok::kw_L__FUNCSIG__) {
2015 OS << 'L';
2016 Exp.setKind(tok::wide_string_literal);
2017 } else {
2018 Exp.setKind(tok::string_literal);
2019 }
2020 OS << '"'
2021 << Lexer::Stringify(Str: PredefinedExpr::ComputeName(
2022 IK: getPredefinedExprKind(Kind: Tok.getKind()), CurrentDecl))
2023 << '"';
2024 PP.CreateString(Str: OS.str(), Tok&: Exp, ExpansionLocStart: Tok.getLocation(), ExpansionLocEnd: Tok.getEndLoc());
2025 }
2026 return ExpandedToks;
2027}
2028
2029ExprResult
2030Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
2031 assert(!StringToks.empty() && "Must have at least one string!");
2032
2033 // StringToks needs backing storage as it doesn't hold array elements itself
2034 std::vector<Token> ExpandedToks;
2035 if (getLangOpts().MicrosoftExt)
2036 StringToks = ExpandedToks = ExpandFunctionLocalPredefinedMacros(Toks: StringToks);
2037
2038 StringLiteralParser Literal(StringToks, PP);
2039 if (Literal.hadError)
2040 return ExprError();
2041
2042 SmallVector<SourceLocation, 4> StringTokLocs;
2043 for (const Token &Tok : StringToks)
2044 StringTokLocs.push_back(Elt: Tok.getLocation());
2045
2046 QualType CharTy = Context.CharTy;
2047 StringLiteralKind Kind = StringLiteralKind::Ordinary;
2048 if (Literal.isWide()) {
2049 CharTy = Context.getWideCharType();
2050 Kind = StringLiteralKind::Wide;
2051 } else if (Literal.isUTF8()) {
2052 if (getLangOpts().Char8)
2053 CharTy = Context.Char8Ty;
2054 else if (getLangOpts().C23)
2055 CharTy = Context.UnsignedCharTy;
2056 Kind = StringLiteralKind::UTF8;
2057 } else if (Literal.isUTF16()) {
2058 CharTy = Context.Char16Ty;
2059 Kind = StringLiteralKind::UTF16;
2060 } else if (Literal.isUTF32()) {
2061 CharTy = Context.Char32Ty;
2062 Kind = StringLiteralKind::UTF32;
2063 } else if (Literal.isPascal()) {
2064 CharTy = Context.UnsignedCharTy;
2065 }
2066
2067 // Warn on u8 string literals before C++20 and C23, whose type
2068 // was an array of char before but becomes an array of char8_t.
2069 // In C++20, it cannot be used where a pointer to char is expected.
2070 // In C23, it might have an unexpected value if char was signed.
2071 if (Kind == StringLiteralKind::UTF8 &&
2072 (getLangOpts().CPlusPlus
2073 ? !getLangOpts().CPlusPlus20 && !getLangOpts().Char8
2074 : !getLangOpts().C23)) {
2075 Diag(Loc: StringTokLocs.front(), DiagID: getLangOpts().CPlusPlus
2076 ? diag::warn_cxx20_compat_utf8_string
2077 : diag::warn_c23_compat_utf8_string);
2078
2079 // Create removals for all 'u8' prefixes in the string literal(s). This
2080 // ensures C++20/C23 compatibility (but may change the program behavior when
2081 // built by non-Clang compilers for which the execution character set is
2082 // not always UTF-8).
2083 auto RemovalDiag = PDiag(DiagID: diag::note_cxx20_c23_compat_utf8_string_remove_u8);
2084 SourceLocation RemovalDiagLoc;
2085 for (const Token &Tok : StringToks) {
2086 if (Tok.getKind() == tok::utf8_string_literal) {
2087 if (RemovalDiagLoc.isInvalid())
2088 RemovalDiagLoc = Tok.getLocation();
2089 RemovalDiag << FixItHint::CreateRemoval(RemoveRange: CharSourceRange::getCharRange(
2090 B: Tok.getLocation(),
2091 E: Lexer::AdvanceToTokenCharacter(TokStart: Tok.getLocation(), Characters: 2,
2092 SM: getSourceManager(), LangOpts: getLangOpts())));
2093 }
2094 }
2095 Diag(Loc: RemovalDiagLoc, PD: RemovalDiag);
2096 }
2097
2098 QualType StrTy =
2099 Context.getStringLiteralArrayType(EltTy: CharTy, Length: Literal.GetNumStringChars());
2100
2101 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
2102 StringLiteral *Lit = StringLiteral::Create(Ctx: Context, Str: Literal.GetString(),
2103 Kind, Pascal: Literal.Pascal, Ty: StrTy,
2104 Loc: &StringTokLocs[0],
2105 NumConcatenated: StringTokLocs.size());
2106 if (Literal.getUDSuffix().empty())
2107 return Lit;
2108
2109 // We're building a user-defined literal.
2110 IdentifierInfo *UDSuffix = &Context.Idents.get(Name: Literal.getUDSuffix());
2111 SourceLocation UDSuffixLoc =
2112 getUDSuffixLoc(S&: *this, TokLoc: StringTokLocs[Literal.getUDSuffixToken()],
2113 Offset: Literal.getUDSuffixOffset());
2114
2115 // Make sure we're allowed user-defined literals here.
2116 if (!UDLScope)
2117 return ExprError(Diag(Loc: UDSuffixLoc, DiagID: diag::err_invalid_string_udl));
2118
2119 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
2120 // operator "" X (str, len)
2121 QualType SizeType = Context.getSizeType();
2122
2123 DeclarationName OpName =
2124 Context.DeclarationNames.getCXXLiteralOperatorName(II: UDSuffix);
2125 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
2126 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
2127
2128 QualType ArgTy[] = {
2129 Context.getArrayDecayedType(T: StrTy), SizeType
2130 };
2131
2132 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
2133 switch (LookupLiteralOperator(S: UDLScope, R, ArgTys: ArgTy,
2134 /*AllowRaw*/ false, /*AllowTemplate*/ true,
2135 /*AllowStringTemplatePack*/ AllowStringTemplate: true,
2136 /*DiagnoseMissing*/ true, StringLit: Lit)) {
2137
2138 case LOLR_Cooked: {
2139 llvm::APInt Len(Context.getIntWidth(T: SizeType), Literal.GetNumStringChars());
2140 IntegerLiteral *LenArg = IntegerLiteral::Create(C: Context, V: Len, type: SizeType,
2141 l: StringTokLocs[0]);
2142 Expr *Args[] = { Lit, LenArg };
2143
2144 return BuildLiteralOperatorCall(R, SuffixInfo&: OpNameInfo, Args, LitEndLoc: StringTokLocs.back());
2145 }
2146
2147 case LOLR_Template: {
2148 TemplateArgumentListInfo ExplicitArgs;
2149 TemplateArgument Arg(Lit);
2150 TemplateArgumentLocInfo ArgInfo(Lit);
2151 ExplicitArgs.addArgument(Loc: TemplateArgumentLoc(Arg, ArgInfo));
2152 return BuildLiteralOperatorCall(R, SuffixInfo&: OpNameInfo, Args: std::nullopt,
2153 LitEndLoc: StringTokLocs.back(), ExplicitTemplateArgs: &ExplicitArgs);
2154 }
2155
2156 case LOLR_StringTemplatePack: {
2157 TemplateArgumentListInfo ExplicitArgs;
2158
2159 unsigned CharBits = Context.getIntWidth(T: CharTy);
2160 bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
2161 llvm::APSInt Value(CharBits, CharIsUnsigned);
2162
2163 TemplateArgument TypeArg(CharTy);
2164 TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(T: CharTy));
2165 ExplicitArgs.addArgument(Loc: TemplateArgumentLoc(TypeArg, TypeArgInfo));
2166
2167 for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
2168 Value = Lit->getCodeUnit(i: I);
2169 TemplateArgument Arg(Context, Value, CharTy);
2170 TemplateArgumentLocInfo ArgInfo;
2171 ExplicitArgs.addArgument(Loc: TemplateArgumentLoc(Arg, ArgInfo));
2172 }
2173 return BuildLiteralOperatorCall(R, SuffixInfo&: OpNameInfo, Args: std::nullopt,
2174 LitEndLoc: StringTokLocs.back(), ExplicitTemplateArgs: &ExplicitArgs);
2175 }
2176 case LOLR_Raw:
2177 case LOLR_ErrorNoDiagnostic:
2178 llvm_unreachable("unexpected literal operator lookup result");
2179 case LOLR_Error:
2180 return ExprError();
2181 }
2182 llvm_unreachable("unexpected literal operator lookup result");
2183}
2184
2185DeclRefExpr *
2186Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2187 SourceLocation Loc,
2188 const CXXScopeSpec *SS) {
2189 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
2190 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
2191}
2192
2193DeclRefExpr *
2194Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2195 const DeclarationNameInfo &NameInfo,
2196 const CXXScopeSpec *SS, NamedDecl *FoundD,
2197 SourceLocation TemplateKWLoc,
2198 const TemplateArgumentListInfo *TemplateArgs) {
2199 NestedNameSpecifierLoc NNS =
2200 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
2201 return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
2202 TemplateArgs);
2203}
2204
2205// CUDA/HIP: Check whether a captured reference variable is referencing a
2206// host variable in a device or host device lambda.
2207static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
2208 VarDecl *VD) {
2209 if (!S.getLangOpts().CUDA || !VD->hasInit())
2210 return false;
2211 assert(VD->getType()->isReferenceType());
2212
2213 // Check whether the reference variable is referencing a host variable.
2214 auto *DRE = dyn_cast<DeclRefExpr>(Val: VD->getInit());
2215 if (!DRE)
2216 return false;
2217 auto *Referee = dyn_cast<VarDecl>(Val: DRE->getDecl());
2218 if (!Referee || !Referee->hasGlobalStorage() ||
2219 Referee->hasAttr<CUDADeviceAttr>())
2220 return false;
2221
2222 // Check whether the current function is a device or host device lambda.
2223 // Check whether the reference variable is a capture by getDeclContext()
2224 // since refersToEnclosingVariableOrCapture() is not ready at this point.
2225 auto *MD = dyn_cast_or_null<CXXMethodDecl>(Val: S.CurContext);
2226 if (MD && MD->getParent()->isLambda() &&
2227 MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
2228 VD->getDeclContext() != MD)
2229 return true;
2230
2231 return false;
2232}
2233
2234NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
2235 // A declaration named in an unevaluated operand never constitutes an odr-use.
2236 if (isUnevaluatedContext())
2237 return NOUR_Unevaluated;
2238
2239 // C++2a [basic.def.odr]p4:
2240 // A variable x whose name appears as a potentially-evaluated expression e
2241 // is odr-used by e unless [...] x is a reference that is usable in
2242 // constant expressions.
2243 // CUDA/HIP:
2244 // If a reference variable referencing a host variable is captured in a
2245 // device or host device lambda, the value of the referee must be copied
2246 // to the capture and the reference variable must be treated as odr-use
2247 // since the value of the referee is not known at compile time and must
2248 // be loaded from the captured.
2249 if (VarDecl *VD = dyn_cast<VarDecl>(Val: D)) {
2250 if (VD->getType()->isReferenceType() &&
2251 !(getLangOpts().OpenMP && OpenMP().isOpenMPCapturedDecl(D)) &&
2252 !isCapturingReferenceToHostVarInCUDADeviceLambda(S: *this, VD) &&
2253 VD->isUsableInConstantExpressions(C: Context))
2254 return NOUR_Constant;
2255 }
2256
2257 // All remaining non-variable cases constitute an odr-use. For variables, we
2258 // need to wait and see how the expression is used.
2259 return NOUR_None;
2260}
2261
2262DeclRefExpr *
2263Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2264 const DeclarationNameInfo &NameInfo,
2265 NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2266 SourceLocation TemplateKWLoc,
2267 const TemplateArgumentListInfo *TemplateArgs) {
2268 bool RefersToCapturedVariable = isa<VarDecl, BindingDecl>(Val: D) &&
2269 NeedToCaptureVariable(Var: D, Loc: NameInfo.getLoc());
2270
2271 DeclRefExpr *E = DeclRefExpr::Create(
2272 Context, QualifierLoc: NNS, TemplateKWLoc, D, RefersToEnclosingVariableOrCapture: RefersToCapturedVariable, NameInfo, T: Ty,
2273 VK, FoundD, TemplateArgs, NOUR: getNonOdrUseReasonInCurrentContext(D));
2274 MarkDeclRefReferenced(E);
2275
2276 // C++ [except.spec]p17:
2277 // An exception-specification is considered to be needed when:
2278 // - in an expression, the function is the unique lookup result or
2279 // the selected member of a set of overloaded functions.
2280 //
2281 // We delay doing this until after we've built the function reference and
2282 // marked it as used so that:
2283 // a) if the function is defaulted, we get errors from defining it before /
2284 // instead of errors from computing its exception specification, and
2285 // b) if the function is a defaulted comparison, we can use the body we
2286 // build when defining it as input to the exception specification
2287 // computation rather than computing a new body.
2288 if (const auto *FPT = Ty->getAs<FunctionProtoType>()) {
2289 if (isUnresolvedExceptionSpec(ESpecType: FPT->getExceptionSpecType())) {
2290 if (const auto *NewFPT = ResolveExceptionSpec(Loc: NameInfo.getLoc(), FPT))
2291 E->setType(Context.getQualifiedType(T: NewFPT, Qs: Ty.getQualifiers()));
2292 }
2293 }
2294
2295 if (getLangOpts().ObjCWeak && isa<VarDecl>(Val: D) &&
2296 Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2297 !Diags.isIgnored(DiagID: diag::warn_arc_repeated_use_of_weak, Loc: E->getBeginLoc()))
2298 getCurFunction()->recordUseOfWeak(E);
2299
2300 const auto *FD = dyn_cast<FieldDecl>(Val: D);
2301 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(Val: D))
2302 FD = IFD->getAnonField();
2303 if (FD) {
2304 UnusedPrivateFields.remove(X: FD);
2305 // Just in case we're building an illegal pointer-to-member.
2306 if (FD->isBitField())
2307 E->setObjectKind(OK_BitField);
2308 }
2309
2310 // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2311 // designates a bit-field.
2312 if (const auto *BD = dyn_cast<BindingDecl>(Val: D))
2313 if (const auto *BE = BD->getBinding())
2314 E->setObjectKind(BE->getObjectKind());
2315
2316 return E;
2317}
2318
2319void
2320Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2321 TemplateArgumentListInfo &Buffer,
2322 DeclarationNameInfo &NameInfo,
2323 const TemplateArgumentListInfo *&TemplateArgs) {
2324 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2325 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2326 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2327
2328 ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2329 Id.TemplateId->NumArgs);
2330 translateTemplateArguments(In: TemplateArgsPtr, Out&: Buffer);
2331
2332 TemplateName TName = Id.TemplateId->Template.get();
2333 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2334 NameInfo = Context.getNameForTemplate(Name: TName, NameLoc: TNameLoc);
2335 TemplateArgs = &Buffer;
2336 } else {
2337 NameInfo = GetNameFromUnqualifiedId(Name: Id);
2338 TemplateArgs = nullptr;
2339 }
2340}
2341
2342static void emitEmptyLookupTypoDiagnostic(
2343 const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2344 DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2345 unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2346 DeclContext *Ctx =
2347 SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, EnteringContext: false);
2348 if (!TC) {
2349 // Emit a special diagnostic for failed member lookups.
2350 // FIXME: computing the declaration context might fail here (?)
2351 if (Ctx)
2352 SemaRef.Diag(Loc: TypoLoc, DiagID: diag::err_no_member) << Typo << Ctx
2353 << SS.getRange();
2354 else
2355 SemaRef.Diag(Loc: TypoLoc, DiagID: DiagnosticID) << Typo;
2356 return;
2357 }
2358
2359 std::string CorrectedStr = TC.getAsString(LO: SemaRef.getLangOpts());
2360 bool DroppedSpecifier =
2361 TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2362 unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2363 ? diag::note_implicit_param_decl
2364 : diag::note_previous_decl;
2365 if (!Ctx)
2366 SemaRef.diagnoseTypo(Correction: TC, TypoDiag: SemaRef.PDiag(DiagID: DiagnosticSuggestID) << Typo,
2367 PrevNote: SemaRef.PDiag(DiagID: NoteID));
2368 else
2369 SemaRef.diagnoseTypo(Correction: TC, TypoDiag: SemaRef.PDiag(DiagID: diag::err_no_member_suggest)
2370 << Typo << Ctx << DroppedSpecifier
2371 << SS.getRange(),
2372 PrevNote: SemaRef.PDiag(DiagID: NoteID));
2373}
2374
2375bool Sema::DiagnoseDependentMemberLookup(const LookupResult &R) {
2376 // During a default argument instantiation the CurContext points
2377 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2378 // function parameter list, hence add an explicit check.
2379 bool isDefaultArgument =
2380 !CodeSynthesisContexts.empty() &&
2381 CodeSynthesisContexts.back().Kind ==
2382 CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2383 const auto *CurMethod = dyn_cast<CXXMethodDecl>(Val: CurContext);
2384 bool isInstance = CurMethod && CurMethod->isInstance() &&
2385 R.getNamingClass() == CurMethod->getParent() &&
2386 !isDefaultArgument;
2387
2388 // There are two ways we can find a class-scope declaration during template
2389 // instantiation that we did not find in the template definition: if it is a
2390 // member of a dependent base class, or if it is declared after the point of
2391 // use in the same class. Distinguish these by comparing the class in which
2392 // the member was found to the naming class of the lookup.
2393 unsigned DiagID = diag::err_found_in_dependent_base;
2394 unsigned NoteID = diag::note_member_declared_at;
2395 if (R.getRepresentativeDecl()->getDeclContext()->Equals(DC: R.getNamingClass())) {
2396 DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2397 : diag::err_found_later_in_class;
2398 } else if (getLangOpts().MSVCCompat) {
2399 DiagID = diag::ext_found_in_dependent_base;
2400 NoteID = diag::note_dependent_member_use;
2401 }
2402
2403 if (isInstance) {
2404 // Give a code modification hint to insert 'this->'.
2405 Diag(Loc: R.getNameLoc(), DiagID)
2406 << R.getLookupName()
2407 << FixItHint::CreateInsertion(InsertionLoc: R.getNameLoc(), Code: "this->");
2408 CheckCXXThisCapture(Loc: R.getNameLoc());
2409 } else {
2410 // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2411 // they're not shadowed).
2412 Diag(Loc: R.getNameLoc(), DiagID) << R.getLookupName();
2413 }
2414
2415 for (const NamedDecl *D : R)
2416 Diag(Loc: D->getLocation(), DiagID: NoteID);
2417
2418 // Return true if we are inside a default argument instantiation
2419 // and the found name refers to an instance member function, otherwise
2420 // the caller will try to create an implicit member call and this is wrong
2421 // for default arguments.
2422 //
2423 // FIXME: Is this special case necessary? We could allow the caller to
2424 // diagnose this.
2425 if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2426 Diag(Loc: R.getNameLoc(), DiagID: diag::err_member_call_without_object) << 0;
2427 return true;
2428 }
2429
2430 // Tell the callee to try to recover.
2431 return false;
2432}
2433
2434bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2435 CorrectionCandidateCallback &CCC,
2436 TemplateArgumentListInfo *ExplicitTemplateArgs,
2437 ArrayRef<Expr *> Args, DeclContext *LookupCtx,
2438 TypoExpr **Out) {
2439 DeclarationName Name = R.getLookupName();
2440
2441 unsigned diagnostic = diag::err_undeclared_var_use;
2442 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2443 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2444 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2445 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2446 diagnostic = diag::err_undeclared_use;
2447 diagnostic_suggest = diag::err_undeclared_use_suggest;
2448 }
2449
2450 // If the original lookup was an unqualified lookup, fake an
2451 // unqualified lookup. This is useful when (for example) the
2452 // original lookup would not have found something because it was a
2453 // dependent name.
2454 DeclContext *DC =
2455 LookupCtx ? LookupCtx : (SS.isEmpty() ? CurContext : nullptr);
2456 while (DC) {
2457 if (isa<CXXRecordDecl>(Val: DC)) {
2458 LookupQualifiedName(R, LookupCtx: DC);
2459
2460 if (!R.empty()) {
2461 // Don't give errors about ambiguities in this lookup.
2462 R.suppressDiagnostics();
2463
2464 // If there's a best viable function among the results, only mention
2465 // that one in the notes.
2466 OverloadCandidateSet Candidates(R.getNameLoc(),
2467 OverloadCandidateSet::CSK_Normal);
2468 AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, CandidateSet&: Candidates);
2469 OverloadCandidateSet::iterator Best;
2470 if (Candidates.BestViableFunction(S&: *this, Loc: R.getNameLoc(), Best) ==
2471 OR_Success) {
2472 R.clear();
2473 R.addDecl(D: Best->FoundDecl.getDecl(), AS: Best->FoundDecl.getAccess());
2474 R.resolveKind();
2475 }
2476
2477 return DiagnoseDependentMemberLookup(R);
2478 }
2479
2480 R.clear();
2481 }
2482
2483 DC = DC->getLookupParent();
2484 }
2485
2486 // We didn't find anything, so try to correct for a typo.
2487 TypoCorrection Corrected;
2488 if (S && Out) {
2489 SourceLocation TypoLoc = R.getNameLoc();
2490 assert(!ExplicitTemplateArgs &&
2491 "Diagnosing an empty lookup with explicit template args!");
2492 *Out = CorrectTypoDelayed(
2493 Typo: R.getLookupNameInfo(), LookupKind: R.getLookupKind(), S, SS: &SS, CCC,
2494 TDG: [=](const TypoCorrection &TC) {
2495 emitEmptyLookupTypoDiagnostic(TC, SemaRef&: *this, SS, Typo: Name, TypoLoc, Args,
2496 DiagnosticID: diagnostic, DiagnosticSuggestID: diagnostic_suggest);
2497 },
2498 TRC: nullptr, Mode: CTK_ErrorRecovery, MemberContext: LookupCtx);
2499 if (*Out)
2500 return true;
2501 } else if (S && (Corrected =
2502 CorrectTypo(Typo: R.getLookupNameInfo(), LookupKind: R.getLookupKind(), S,
2503 SS: &SS, CCC, Mode: CTK_ErrorRecovery, MemberContext: LookupCtx))) {
2504 std::string CorrectedStr(Corrected.getAsString(LO: getLangOpts()));
2505 bool DroppedSpecifier =
2506 Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2507 R.setLookupName(Corrected.getCorrection());
2508
2509 bool AcceptableWithRecovery = false;
2510 bool AcceptableWithoutRecovery = false;
2511 NamedDecl *ND = Corrected.getFoundDecl();
2512 if (ND) {
2513 if (Corrected.isOverloaded()) {
2514 OverloadCandidateSet OCS(R.getNameLoc(),
2515 OverloadCandidateSet::CSK_Normal);
2516 OverloadCandidateSet::iterator Best;
2517 for (NamedDecl *CD : Corrected) {
2518 if (FunctionTemplateDecl *FTD =
2519 dyn_cast<FunctionTemplateDecl>(Val: CD))
2520 AddTemplateOverloadCandidate(
2521 FunctionTemplate: FTD, FoundDecl: DeclAccessPair::make(D: FTD, AS: AS_none), ExplicitTemplateArgs,
2522 Args, CandidateSet&: OCS);
2523 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: CD))
2524 if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2525 AddOverloadCandidate(Function: FD, FoundDecl: DeclAccessPair::make(D: FD, AS: AS_none),
2526 Args, CandidateSet&: OCS);
2527 }
2528 switch (OCS.BestViableFunction(S&: *this, Loc: R.getNameLoc(), Best)) {
2529 case OR_Success:
2530 ND = Best->FoundDecl;
2531 Corrected.setCorrectionDecl(ND);
2532 break;
2533 default:
2534 // FIXME: Arbitrarily pick the first declaration for the note.
2535 Corrected.setCorrectionDecl(ND);
2536 break;
2537 }
2538 }
2539 R.addDecl(D: ND);
2540 if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2541 CXXRecordDecl *Record = nullptr;
2542 if (Corrected.getCorrectionSpecifier()) {
2543 const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2544 Record = Ty->getAsCXXRecordDecl();
2545 }
2546 if (!Record)
2547 Record = cast<CXXRecordDecl>(
2548 Val: ND->getDeclContext()->getRedeclContext());
2549 R.setNamingClass(Record);
2550 }
2551
2552 auto *UnderlyingND = ND->getUnderlyingDecl();
2553 AcceptableWithRecovery = isa<ValueDecl>(Val: UnderlyingND) ||
2554 isa<FunctionTemplateDecl>(Val: UnderlyingND);
2555 // FIXME: If we ended up with a typo for a type name or
2556 // Objective-C class name, we're in trouble because the parser
2557 // is in the wrong place to recover. Suggest the typo
2558 // correction, but don't make it a fix-it since we're not going
2559 // to recover well anyway.
2560 AcceptableWithoutRecovery = isa<TypeDecl>(Val: UnderlyingND) ||
2561 getAsTypeTemplateDecl(D: UnderlyingND) ||
2562 isa<ObjCInterfaceDecl>(Val: UnderlyingND);
2563 } else {
2564 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2565 // because we aren't able to recover.
2566 AcceptableWithoutRecovery = true;
2567 }
2568
2569 if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2570 unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2571 ? diag::note_implicit_param_decl
2572 : diag::note_previous_decl;
2573 if (SS.isEmpty())
2574 diagnoseTypo(Correction: Corrected, TypoDiag: PDiag(DiagID: diagnostic_suggest) << Name,
2575 PrevNote: PDiag(DiagID: NoteID), ErrorRecovery: AcceptableWithRecovery);
2576 else
2577 diagnoseTypo(Correction: Corrected, TypoDiag: PDiag(DiagID: diag::err_no_member_suggest)
2578 << Name << computeDeclContext(SS, EnteringContext: false)
2579 << DroppedSpecifier << SS.getRange(),
2580 PrevNote: PDiag(DiagID: NoteID), ErrorRecovery: AcceptableWithRecovery);
2581
2582 // Tell the callee whether to try to recover.
2583 return !AcceptableWithRecovery;
2584 }
2585 }
2586 R.clear();
2587
2588 // Emit a special diagnostic for failed member lookups.
2589 // FIXME: computing the declaration context might fail here (?)
2590 if (!SS.isEmpty()) {
2591 Diag(Loc: R.getNameLoc(), DiagID: diag::err_no_member)
2592 << Name << computeDeclContext(SS, EnteringContext: false)
2593 << SS.getRange();
2594 return true;
2595 }
2596
2597 // Give up, we can't recover.
2598 Diag(Loc: R.getNameLoc(), DiagID: diagnostic) << Name;
2599 return true;
2600}
2601
2602/// In Microsoft mode, if we are inside a template class whose parent class has
2603/// dependent base classes, and we can't resolve an unqualified identifier, then
2604/// assume the identifier is a member of a dependent base class. We can only
2605/// recover successfully in static methods, instance methods, and other contexts
2606/// where 'this' is available. This doesn't precisely match MSVC's
2607/// instantiation model, but it's close enough.
2608static Expr *
2609recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2610 DeclarationNameInfo &NameInfo,
2611 SourceLocation TemplateKWLoc,
2612 const TemplateArgumentListInfo *TemplateArgs) {
2613 // Only try to recover from lookup into dependent bases in static methods or
2614 // contexts where 'this' is available.
2615 QualType ThisType = S.getCurrentThisType();
2616 const CXXRecordDecl *RD = nullptr;
2617 if (!ThisType.isNull())
2618 RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2619 else if (auto *MD = dyn_cast<CXXMethodDecl>(Val: S.CurContext))
2620 RD = MD->getParent();
2621 if (!RD || !RD->hasDefinition() || !RD->hasAnyDependentBases())
2622 return nullptr;
2623
2624 // Diagnose this as unqualified lookup into a dependent base class. If 'this'
2625 // is available, suggest inserting 'this->' as a fixit.
2626 SourceLocation Loc = NameInfo.getLoc();
2627 auto DB = S.Diag(Loc, DiagID: diag::ext_undeclared_unqual_id_with_dependent_base);
2628 DB << NameInfo.getName() << RD;
2629
2630 if (!ThisType.isNull()) {
2631 DB << FixItHint::CreateInsertion(InsertionLoc: Loc, Code: "this->");
2632 return CXXDependentScopeMemberExpr::Create(
2633 Ctx: Context, /*This=*/Base: nullptr, BaseType: ThisType, /*IsArrow=*/true,
2634 /*Op=*/OperatorLoc: SourceLocation(), QualifierLoc: NestedNameSpecifierLoc(), TemplateKWLoc,
2635 /*FirstQualifierFoundInScope=*/nullptr, MemberNameInfo: NameInfo, TemplateArgs);
2636 }
2637
2638 // Synthesize a fake NNS that points to the derived class. This will
2639 // perform name lookup during template instantiation.
2640 CXXScopeSpec SS;
2641 auto *NNS =
2642 NestedNameSpecifier::Create(Context, Prefix: nullptr, Template: true, T: RD->getTypeForDecl());
2643 SS.MakeTrivial(Context, Qualifier: NNS, R: SourceRange(Loc, Loc));
2644 return DependentScopeDeclRefExpr::Create(
2645 Context, QualifierLoc: SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2646 TemplateArgs);
2647}
2648
2649ExprResult
2650Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2651 SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2652 bool HasTrailingLParen, bool IsAddressOfOperand,
2653 CorrectionCandidateCallback *CCC,
2654 bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2655 assert(!(IsAddressOfOperand && HasTrailingLParen) &&
2656 "cannot be direct & operand and have a trailing lparen");
2657 if (SS.isInvalid())
2658 return ExprError();
2659
2660 TemplateArgumentListInfo TemplateArgsBuffer;
2661
2662 // Decompose the UnqualifiedId into the following data.
2663 DeclarationNameInfo NameInfo;
2664 const TemplateArgumentListInfo *TemplateArgs;
2665 DecomposeUnqualifiedId(Id, Buffer&: TemplateArgsBuffer, NameInfo, TemplateArgs);
2666
2667 DeclarationName Name = NameInfo.getName();
2668 IdentifierInfo *II = Name.getAsIdentifierInfo();
2669 SourceLocation NameLoc = NameInfo.getLoc();
2670
2671 if (II && II->isEditorPlaceholder()) {
2672 // FIXME: When typed placeholders are supported we can create a typed
2673 // placeholder expression node.
2674 return ExprError();
2675 }
2676
2677 // This specially handles arguments of attributes appertains to a type of C
2678 // struct field such that the name lookup within a struct finds the member
2679 // name, which is not the case for other contexts in C.
2680 if (isAttrContext() && !getLangOpts().CPlusPlus && S->isClassScope()) {
2681 // See if this is reference to a field of struct.
2682 LookupResult R(*this, NameInfo, LookupMemberName);
2683 // LookupName handles a name lookup from within anonymous struct.
2684 if (LookupName(R, S)) {
2685 if (auto *VD = dyn_cast<ValueDecl>(Val: R.getFoundDecl())) {
2686 QualType type = VD->getType().getNonReferenceType();
2687 // This will eventually be translated into MemberExpr upon
2688 // the use of instantiated struct fields.
2689 return BuildDeclRefExpr(D: VD, Ty: type, VK: VK_LValue, Loc: NameLoc);
2690 }
2691 }
2692 }
2693
2694 // Perform the required lookup.
2695 LookupResult R(*this, NameInfo,
2696 (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2697 ? LookupObjCImplicitSelfParam
2698 : LookupOrdinaryName);
2699 if (TemplateKWLoc.isValid() || TemplateArgs) {
2700 // Lookup the template name again to correctly establish the context in
2701 // which it was found. This is really unfortunate as we already did the
2702 // lookup to determine that it was a template name in the first place. If
2703 // this becomes a performance hit, we can work harder to preserve those
2704 // results until we get here but it's likely not worth it.
2705 AssumedTemplateKind AssumedTemplate;
2706 if (LookupTemplateName(R, S, SS, /*ObjectType=*/QualType(),
2707 /*EnteringContext=*/false, RequiredTemplate: TemplateKWLoc,
2708 ATK: &AssumedTemplate))
2709 return ExprError();
2710
2711 if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2712 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2713 isAddressOfOperand: IsAddressOfOperand, TemplateArgs);
2714 } else {
2715 bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2716 LookupParsedName(R, S, SS: &SS, /*ObjectType=*/QualType(),
2717 /*AllowBuiltinCreation=*/!IvarLookupFollowUp);
2718
2719 // If the result might be in a dependent base class, this is a dependent
2720 // id-expression.
2721 if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2722 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2723 isAddressOfOperand: IsAddressOfOperand, TemplateArgs);
2724
2725 // If this reference is in an Objective-C method, then we need to do
2726 // some special Objective-C lookup, too.
2727 if (IvarLookupFollowUp) {
2728 ExprResult E(ObjC().LookupInObjCMethod(LookUp&: R, S, II, AllowBuiltinCreation: true));
2729 if (E.isInvalid())
2730 return ExprError();
2731
2732 if (Expr *Ex = E.getAs<Expr>())
2733 return Ex;
2734 }
2735 }
2736
2737 if (R.isAmbiguous())
2738 return ExprError();
2739
2740 // This could be an implicitly declared function reference if the language
2741 // mode allows it as a feature.
2742 if (R.empty() && HasTrailingLParen && II &&
2743 getLangOpts().implicitFunctionsAllowed()) {
2744 NamedDecl *D = ImplicitlyDefineFunction(Loc: NameLoc, II&: *II, S);
2745 if (D) R.addDecl(D);
2746 }
2747
2748 // Determine whether this name might be a candidate for
2749 // argument-dependent lookup.
2750 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2751
2752 if (R.empty() && !ADL) {
2753 if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2754 if (Expr *E = recoverFromMSUnqualifiedLookup(S&: *this, Context, NameInfo,
2755 TemplateKWLoc, TemplateArgs))
2756 return E;
2757 }
2758
2759 // Don't diagnose an empty lookup for inline assembly.
2760 if (IsInlineAsmIdentifier)
2761 return ExprError();
2762
2763 // If this name wasn't predeclared and if this is not a function
2764 // call, diagnose the problem.
2765 TypoExpr *TE = nullptr;
2766 DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2767 : nullptr);
2768 DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2769 assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
2770 "Typo correction callback misconfigured");
2771 if (CCC) {
2772 // Make sure the callback knows what the typo being diagnosed is.
2773 CCC->setTypoName(II);
2774 if (SS.isValid())
2775 CCC->setTypoNNS(SS.getScopeRep());
2776 }
2777 // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2778 // a template name, but we happen to have always already looked up the name
2779 // before we get here if it must be a template name.
2780 if (DiagnoseEmptyLookup(S, SS, R, CCC&: CCC ? *CCC : DefaultValidator, ExplicitTemplateArgs: nullptr,
2781 Args: std::nullopt, LookupCtx: nullptr, Out: &TE)) {
2782 if (TE && KeywordReplacement) {
2783 auto &State = getTypoExprState(TE);
2784 auto BestTC = State.Consumer->getNextCorrection();
2785 if (BestTC.isKeyword()) {
2786 auto *II = BestTC.getCorrectionAsIdentifierInfo();
2787 if (State.DiagHandler)
2788 State.DiagHandler(BestTC);
2789 KeywordReplacement->startToken();
2790 KeywordReplacement->setKind(II->getTokenID());
2791 KeywordReplacement->setIdentifierInfo(II);
2792 KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2793 // Clean up the state associated with the TypoExpr, since it has
2794 // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2795 clearDelayedTypo(TE);
2796 // Signal that a correction to a keyword was performed by returning a
2797 // valid-but-null ExprResult.
2798 return (Expr*)nullptr;
2799 }
2800 State.Consumer->resetCorrectionStream();
2801 }
2802 return TE ? TE : ExprError();
2803 }
2804
2805 assert(!R.empty() &&
2806 "DiagnoseEmptyLookup returned false but added no results");
2807
2808 // If we found an Objective-C instance variable, let
2809 // LookupInObjCMethod build the appropriate expression to
2810 // reference the ivar.
2811 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2812 R.clear();
2813 ExprResult E(ObjC().LookupInObjCMethod(LookUp&: R, S, II: Ivar->getIdentifier()));
2814 // In a hopelessly buggy code, Objective-C instance variable
2815 // lookup fails and no expression will be built to reference it.
2816 if (!E.isInvalid() && !E.get())
2817 return ExprError();
2818 return E;
2819 }
2820 }
2821
2822 // This is guaranteed from this point on.
2823 assert(!R.empty() || ADL);
2824
2825 // Check whether this might be a C++ implicit instance member access.
2826 // C++ [class.mfct.non-static]p3:
2827 // When an id-expression that is not part of a class member access
2828 // syntax and not used to form a pointer to member is used in the
2829 // body of a non-static member function of class X, if name lookup
2830 // resolves the name in the id-expression to a non-static non-type
2831 // member of some class C, the id-expression is transformed into a
2832 // class member access expression using (*this) as the
2833 // postfix-expression to the left of the . operator.
2834 //
2835 // But we don't actually need to do this for '&' operands if R
2836 // resolved to a function or overloaded function set, because the
2837 // expression is ill-formed if it actually works out to be a
2838 // non-static member function:
2839 //
2840 // C++ [expr.ref]p4:
2841 // Otherwise, if E1.E2 refers to a non-static member function. . .
2842 // [t]he expression can be used only as the left-hand operand of a
2843 // member function call.
2844 //
2845 // There are other safeguards against such uses, but it's important
2846 // to get this right here so that we don't end up making a
2847 // spuriously dependent expression if we're inside a dependent
2848 // instance method.
2849 if (isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand))
2850 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs,
2851 S);
2852
2853 if (TemplateArgs || TemplateKWLoc.isValid()) {
2854
2855 // In C++1y, if this is a variable template id, then check it
2856 // in BuildTemplateIdExpr().
2857 // The single lookup result must be a variable template declaration.
2858 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2859 Id.TemplateId->Kind == TNK_Var_template) {
2860 assert(R.getAsSingle<VarTemplateDecl>() &&
2861 "There should only be one declaration found.");
2862 }
2863
2864 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL: ADL, TemplateArgs);
2865 }
2866
2867 return BuildDeclarationNameExpr(SS, R, NeedsADL: ADL);
2868}
2869
2870ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2871 CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2872 bool IsAddressOfOperand, TypeSourceInfo **RecoveryTSI) {
2873 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2874 LookupParsedName(R, /*S=*/nullptr, SS: &SS, /*ObjectType=*/QualType());
2875
2876 if (R.isAmbiguous())
2877 return ExprError();
2878
2879 if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid())
2880 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2881 NameInfo, /*TemplateArgs=*/nullptr);
2882
2883 if (R.empty()) {
2884 // Don't diagnose problems with invalid record decl, the secondary no_member
2885 // diagnostic during template instantiation is likely bogus, e.g. if a class
2886 // is invalid because it's derived from an invalid base class, then missing
2887 // members were likely supposed to be inherited.
2888 DeclContext *DC = computeDeclContext(SS);
2889 if (const auto *CD = dyn_cast<CXXRecordDecl>(Val: DC))
2890 if (CD->isInvalidDecl())
2891 return ExprError();
2892 Diag(Loc: NameInfo.getLoc(), DiagID: diag::err_no_member)
2893 << NameInfo.getName() << DC << SS.getRange();
2894 return ExprError();
2895 }
2896
2897 if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2898 // Diagnose a missing typename if this resolved unambiguously to a type in
2899 // a dependent context. If we can recover with a type, downgrade this to
2900 // a warning in Microsoft compatibility mode.
2901 unsigned DiagID = diag::err_typename_missing;
2902 if (RecoveryTSI && getLangOpts().MSVCCompat)
2903 DiagID = diag::ext_typename_missing;
2904 SourceLocation Loc = SS.getBeginLoc();
2905 auto D = Diag(Loc, DiagID);
2906 D << SS.getScopeRep() << NameInfo.getName().getAsString()
2907 << SourceRange(Loc, NameInfo.getEndLoc());
2908
2909 // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2910 // context.
2911 if (!RecoveryTSI)
2912 return ExprError();
2913
2914 // Only issue the fixit if we're prepared to recover.
2915 D << FixItHint::CreateInsertion(InsertionLoc: Loc, Code: "typename ");
2916
2917 // Recover by pretending this was an elaborated type.
2918 QualType Ty = Context.getTypeDeclType(Decl: TD);
2919 TypeLocBuilder TLB;
2920 TLB.pushTypeSpec(T: Ty).setNameLoc(NameInfo.getLoc());
2921
2922 QualType ET = getElaboratedType(Keyword: ElaboratedTypeKeyword::None, SS, T: Ty);
2923 ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(T: ET);
2924 QTL.setElaboratedKeywordLoc(SourceLocation());
2925 QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2926
2927 *RecoveryTSI = TLB.getTypeSourceInfo(Context, T: ET);
2928
2929 return ExprEmpty();
2930 }
2931
2932 // If necessary, build an implicit class member access.
2933 if (isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand))
2934 return BuildPossibleImplicitMemberExpr(SS,
2935 /*TemplateKWLoc=*/SourceLocation(),
2936 R, /*TemplateArgs=*/nullptr,
2937 /*S=*/nullptr);
2938
2939 return BuildDeclarationNameExpr(SS, R, /*ADL=*/NeedsADL: false);
2940}
2941
2942ExprResult
2943Sema::PerformObjectMemberConversion(Expr *From,
2944 NestedNameSpecifier *Qualifier,
2945 NamedDecl *FoundDecl,
2946 NamedDecl *Member) {
2947 const auto *RD = dyn_cast<CXXRecordDecl>(Val: Member->getDeclContext());
2948 if (!RD)
2949 return From;
2950
2951 QualType DestRecordType;
2952 QualType DestType;
2953 QualType FromRecordType;
2954 QualType FromType = From->getType();
2955 bool PointerConversions = false;
2956 if (isa<FieldDecl>(Val: Member)) {
2957 DestRecordType = Context.getCanonicalType(T: Context.getTypeDeclType(Decl: RD));
2958 auto FromPtrType = FromType->getAs<PointerType>();
2959 DestRecordType = Context.getAddrSpaceQualType(
2960 T: DestRecordType, AddressSpace: FromPtrType
2961 ? FromType->getPointeeType().getAddressSpace()
2962 : FromType.getAddressSpace());
2963
2964 if (FromPtrType) {
2965 DestType = Context.getPointerType(T: DestRecordType);
2966 FromRecordType = FromPtrType->getPointeeType();
2967 PointerConversions = true;
2968 } else {
2969 DestType = DestRecordType;
2970 FromRecordType = FromType;
2971 }
2972 } else if (const auto *Method = dyn_cast<CXXMethodDecl>(Val: Member)) {
2973 if (!Method->isImplicitObjectMemberFunction())
2974 return From;
2975
2976 DestType = Method->getThisType().getNonReferenceType();
2977 DestRecordType = Method->getFunctionObjectParameterType();
2978
2979 if (FromType->getAs<PointerType>()) {
2980 FromRecordType = FromType->getPointeeType();
2981 PointerConversions = true;
2982 } else {
2983 FromRecordType = FromType;
2984 DestType = DestRecordType;
2985 }
2986
2987 LangAS FromAS = FromRecordType.getAddressSpace();
2988 LangAS DestAS = DestRecordType.getAddressSpace();
2989 if (FromAS != DestAS) {
2990 QualType FromRecordTypeWithoutAS =
2991 Context.removeAddrSpaceQualType(T: FromRecordType);
2992 QualType FromTypeWithDestAS =
2993 Context.getAddrSpaceQualType(T: FromRecordTypeWithoutAS, AddressSpace: DestAS);
2994 if (PointerConversions)
2995 FromTypeWithDestAS = Context.getPointerType(T: FromTypeWithDestAS);
2996 From = ImpCastExprToType(E: From, Type: FromTypeWithDestAS,
2997 CK: CK_AddressSpaceConversion, VK: From->getValueKind())
2998 .get();
2999 }
3000 } else {
3001 // No conversion necessary.
3002 return From;
3003 }
3004
3005 if (DestType->isDependentType() || FromType->isDependentType())
3006 return From;
3007
3008 // If the unqualified types are the same, no conversion is necessary.
3009 if (Context.hasSameUnqualifiedType(T1: FromRecordType, T2: DestRecordType))
3010 return From;
3011
3012 SourceRange FromRange = From->getSourceRange();
3013 SourceLocation FromLoc = FromRange.getBegin();
3014
3015 ExprValueKind VK = From->getValueKind();
3016
3017 // C++ [class.member.lookup]p8:
3018 // [...] Ambiguities can often be resolved by qualifying a name with its
3019 // class name.
3020 //
3021 // If the member was a qualified name and the qualified referred to a
3022 // specific base subobject type, we'll cast to that intermediate type
3023 // first and then to the object in which the member is declared. That allows
3024 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3025 //
3026 // class Base { public: int x; };
3027 // class Derived1 : public Base { };
3028 // class Derived2 : public Base { };
3029 // class VeryDerived : public Derived1, public Derived2 { void f(); };
3030 //
3031 // void VeryDerived::f() {
3032 // x = 17; // error: ambiguous base subobjects
3033 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
3034 // }
3035 if (Qualifier && Qualifier->getAsType()) {
3036 QualType QType = QualType(Qualifier->getAsType(), 0);
3037 assert(QType->isRecordType() && "lookup done with non-record type");
3038
3039 QualType QRecordType = QualType(QType->castAs<RecordType>(), 0);
3040
3041 // In C++98, the qualifier type doesn't actually have to be a base
3042 // type of the object type, in which case we just ignore it.
3043 // Otherwise build the appropriate casts.
3044 if (IsDerivedFrom(Loc: FromLoc, Derived: FromRecordType, Base: QRecordType)) {
3045 CXXCastPath BasePath;
3046 if (CheckDerivedToBaseConversion(Derived: FromRecordType, Base: QRecordType,
3047 Loc: FromLoc, Range: FromRange, BasePath: &BasePath))
3048 return ExprError();
3049
3050 if (PointerConversions)
3051 QType = Context.getPointerType(T: QType);
3052 From = ImpCastExprToType(E: From, Type: QType, CK: CK_UncheckedDerivedToBase,
3053 VK, BasePath: &BasePath).get();
3054
3055 FromType = QType;
3056 FromRecordType = QRecordType;
3057
3058 // If the qualifier type was the same as the destination type,
3059 // we're done.
3060 if (Context.hasSameUnqualifiedType(T1: FromRecordType, T2: DestRecordType))
3061 return From;
3062 }
3063 }
3064
3065 CXXCastPath BasePath;
3066 if (CheckDerivedToBaseConversion(Derived: FromRecordType, Base: DestRecordType,
3067 Loc: FromLoc, Range: FromRange, BasePath: &BasePath,
3068 /*IgnoreAccess=*/true))
3069 return ExprError();
3070
3071 return ImpCastExprToType(E: From, Type: DestType, CK: CK_UncheckedDerivedToBase,
3072 VK, BasePath: &BasePath);
3073}
3074
3075bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3076 const LookupResult &R,
3077 bool HasTrailingLParen) {
3078 // Only when used directly as the postfix-expression of a call.
3079 if (!HasTrailingLParen)
3080 return false;
3081
3082 // Never if a scope specifier was provided.
3083 if (SS.isNotEmpty())
3084 return false;
3085
3086 // Only in C++ or ObjC++.
3087 if (!getLangOpts().CPlusPlus)
3088 return false;
3089
3090 // Turn off ADL when we find certain kinds of declarations during
3091 // normal lookup:
3092 for (const NamedDecl *D : R) {
3093 // C++0x [basic.lookup.argdep]p3:
3094 // -- a declaration of a class member
3095 // Since using decls preserve this property, we check this on the
3096 // original decl.
3097 if (D->isCXXClassMember())
3098 return false;
3099
3100 // C++0x [basic.lookup.argdep]p3:
3101 // -- a block-scope function declaration that is not a
3102 // using-declaration
3103 // NOTE: we also trigger this for function templates (in fact, we
3104 // don't check the decl type at all, since all other decl types
3105 // turn off ADL anyway).
3106 if (isa<UsingShadowDecl>(Val: D))
3107 D = cast<UsingShadowDecl>(Val: D)->getTargetDecl();
3108 else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3109 return false;
3110
3111 // C++0x [basic.lookup.argdep]p3:
3112 // -- a declaration that is neither a function or a function
3113 // template
3114 // And also for builtin functions.
3115 if (const auto *FDecl = dyn_cast<FunctionDecl>(Val: D)) {
3116 // But also builtin functions.
3117 if (FDecl->getBuiltinID() && FDecl->isImplicit())
3118 return false;
3119 } else if (!isa<FunctionTemplateDecl>(Val: D))
3120 return false;
3121 }
3122
3123 return true;
3124}
3125
3126
3127/// Diagnoses obvious problems with the use of the given declaration
3128/// as an expression. This is only actually called for lookups that
3129/// were not overloaded, and it doesn't promise that the declaration
3130/// will in fact be used.
3131static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D,
3132 bool AcceptInvalid) {
3133 if (D->isInvalidDecl() && !AcceptInvalid)
3134 return true;
3135
3136 if (isa<TypedefNameDecl>(Val: D)) {
3137 S.Diag(Loc, DiagID: diag::err_unexpected_typedef) << D->getDeclName();
3138 return true;
3139 }
3140
3141 if (isa<ObjCInterfaceDecl>(Val: D)) {
3142 S.Diag(Loc, DiagID: diag::err_unexpected_interface) << D->getDeclName();
3143 return true;
3144 }
3145
3146 if (isa<NamespaceDecl>(Val: D)) {
3147 S.Diag(Loc, DiagID: diag::err_unexpected_namespace) << D->getDeclName();
3148 return true;
3149 }
3150
3151 return false;
3152}
3153
3154// Certain multiversion types should be treated as overloaded even when there is
3155// only one result.
3156static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3157 assert(R.isSingleResult() && "Expected only a single result");
3158 const auto *FD = dyn_cast<FunctionDecl>(Val: R.getFoundDecl());
3159 return FD &&
3160 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3161}
3162
3163ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3164 LookupResult &R, bool NeedsADL,
3165 bool AcceptInvalidDecl) {
3166 // If this is a single, fully-resolved result and we don't need ADL,
3167 // just build an ordinary singleton decl ref.
3168 if (!NeedsADL && R.isSingleResult() &&
3169 !R.getAsSingle<FunctionTemplateDecl>() &&
3170 !ShouldLookupResultBeMultiVersionOverload(R))
3171 return BuildDeclarationNameExpr(SS, NameInfo: R.getLookupNameInfo(), D: R.getFoundDecl(),
3172 FoundD: R.getRepresentativeDecl(), TemplateArgs: nullptr,
3173 AcceptInvalidDecl);
3174
3175 // We only need to check the declaration if there's exactly one
3176 // result, because in the overloaded case the results can only be
3177 // functions and function templates.
3178 if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3179 CheckDeclInExpr(S&: *this, Loc: R.getNameLoc(), D: R.getFoundDecl(),
3180 AcceptInvalid: AcceptInvalidDecl))
3181 return ExprError();
3182
3183 // Otherwise, just build an unresolved lookup expression. Suppress
3184 // any lookup-related diagnostics; we'll hash these out later, when
3185 // we've picked a target.
3186 R.suppressDiagnostics();
3187
3188 UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create(
3189 Context, NamingClass: R.getNamingClass(), QualifierLoc: SS.getWithLocInContext(Context),
3190 NameInfo: R.getLookupNameInfo(), RequiresADL: NeedsADL, Begin: R.begin(), End: R.end(),
3191 /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false);
3192
3193 return ULE;
3194}
3195
3196static void diagnoseUncapturableValueReferenceOrBinding(Sema &S,
3197 SourceLocation loc,
3198 ValueDecl *var);
3199
3200ExprResult Sema::BuildDeclarationNameExpr(
3201 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3202 NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3203 bool AcceptInvalidDecl) {
3204 assert(D && "Cannot refer to a NULL declaration");
3205 assert(!isa<FunctionTemplateDecl>(D) &&
3206 "Cannot refer unambiguously to a function template");
3207
3208 SourceLocation Loc = NameInfo.getLoc();
3209 if (CheckDeclInExpr(S&: *this, Loc, D, AcceptInvalid: AcceptInvalidDecl)) {
3210 // Recovery from invalid cases (e.g. D is an invalid Decl).
3211 // We use the dependent type for the RecoveryExpr to prevent bogus follow-up
3212 // diagnostics, as invalid decls use int as a fallback type.
3213 return CreateRecoveryExpr(Begin: NameInfo.getBeginLoc(), End: NameInfo.getEndLoc(), SubExprs: {});
3214 }
3215
3216 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(Val: D)) {
3217 // Specifically diagnose references to class templates that are missing
3218 // a template argument list.
3219 diagnoseMissingTemplateArguments(SS, /*TemplateKeyword=*/false, TD, Loc);
3220 return ExprError();
3221 }
3222
3223 // Make sure that we're referring to a value.
3224 if (!isa<ValueDecl, UnresolvedUsingIfExistsDecl>(Val: D)) {
3225 Diag(Loc, DiagID: diag::err_ref_non_value) << D << SS.getRange();
3226 Diag(Loc: D->getLocation(), DiagID: diag::note_declared_at);
3227 return ExprError();
3228 }
3229
3230 // Check whether this declaration can be used. Note that we suppress
3231 // this check when we're going to perform argument-dependent lookup
3232 // on this function name, because this might not be the function
3233 // that overload resolution actually selects.
3234 if (DiagnoseUseOfDecl(D, Locs: Loc))
3235 return ExprError();
3236
3237 auto *VD = cast<ValueDecl>(Val: D);
3238
3239 // Only create DeclRefExpr's for valid Decl's.
3240 if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3241 return ExprError();
3242
3243 // Handle members of anonymous structs and unions. If we got here,
3244 // and the reference is to a class member indirect field, then this
3245 // must be the subject of a pointer-to-member expression.
3246 if (auto *IndirectField = dyn_cast<IndirectFieldDecl>(Val: VD);
3247 IndirectField && !IndirectField->isCXXClassMember())
3248 return BuildAnonymousStructUnionMemberReference(SS, nameLoc: NameInfo.getLoc(),
3249 indirectField: IndirectField);
3250
3251 QualType type = VD->getType();
3252 if (type.isNull())
3253 return ExprError();
3254 ExprValueKind valueKind = VK_PRValue;
3255
3256 // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3257 // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3258 // is expanded by some outer '...' in the context of the use.
3259 type = type.getNonPackExpansionType();
3260
3261 switch (D->getKind()) {
3262 // Ignore all the non-ValueDecl kinds.
3263#define ABSTRACT_DECL(kind)
3264#define VALUE(type, base)
3265#define DECL(type, base) case Decl::type:
3266#include "clang/AST/DeclNodes.inc"
3267 llvm_unreachable("invalid value decl kind");
3268
3269 // These shouldn't make it here.
3270 case Decl::ObjCAtDefsField:
3271 llvm_unreachable("forming non-member reference to ivar?");
3272
3273 // Enum constants are always r-values and never references.
3274 // Unresolved using declarations are dependent.
3275 case Decl::EnumConstant:
3276 case Decl::UnresolvedUsingValue:
3277 case Decl::OMPDeclareReduction:
3278 case Decl::OMPDeclareMapper:
3279 valueKind = VK_PRValue;
3280 break;
3281
3282 // Fields and indirect fields that got here must be for
3283 // pointer-to-member expressions; we just call them l-values for
3284 // internal consistency, because this subexpression doesn't really
3285 // exist in the high-level semantics.
3286 case Decl::Field:
3287 case Decl::IndirectField:
3288 case Decl::ObjCIvar:
3289 assert((getLangOpts().CPlusPlus || isAttrContext()) &&
3290 "building reference to field in C?");
3291
3292 // These can't have reference type in well-formed programs, but
3293 // for internal consistency we do this anyway.
3294 type = type.getNonReferenceType();
3295 valueKind = VK_LValue;
3296 break;
3297
3298 // Non-type template parameters are either l-values or r-values
3299 // depending on the type.
3300 case Decl::NonTypeTemplateParm: {
3301 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3302 type = reftype->getPointeeType();
3303 valueKind = VK_LValue; // even if the parameter is an r-value reference
3304 break;
3305 }
3306
3307 // [expr.prim.id.unqual]p2:
3308 // If the entity is a template parameter object for a template
3309 // parameter of type T, the type of the expression is const T.
3310 // [...] The expression is an lvalue if the entity is a [...] template
3311 // parameter object.
3312 if (type->isRecordType()) {
3313 type = type.getUnqualifiedType().withConst();
3314 valueKind = VK_LValue;
3315 break;
3316 }
3317
3318 // For non-references, we need to strip qualifiers just in case
3319 // the template parameter was declared as 'const int' or whatever.
3320 valueKind = VK_PRValue;
3321 type = type.getUnqualifiedType();
3322 break;
3323 }
3324
3325 case Decl::Var:
3326 case Decl::VarTemplateSpecialization:
3327 case Decl::VarTemplatePartialSpecialization:
3328 case Decl::Decomposition:
3329 case Decl::OMPCapturedExpr:
3330 // In C, "extern void blah;" is valid and is an r-value.
3331 if (!getLangOpts().CPlusPlus && !type.hasQualifiers() &&
3332 type->isVoidType()) {
3333 valueKind = VK_PRValue;
3334 break;
3335 }
3336 [[fallthrough]];
3337
3338 case Decl::ImplicitParam:
3339 case Decl::ParmVar: {
3340 // These are always l-values.
3341 valueKind = VK_LValue;
3342 type = type.getNonReferenceType();
3343
3344 // FIXME: Does the addition of const really only apply in
3345 // potentially-evaluated contexts? Since the variable isn't actually
3346 // captured in an unevaluated context, it seems that the answer is no.
3347 if (!isUnevaluatedContext()) {
3348 QualType CapturedType = getCapturedDeclRefType(Var: cast<VarDecl>(Val: VD), Loc);
3349 if (!CapturedType.isNull())
3350 type = CapturedType;
3351 }
3352
3353 break;
3354 }
3355
3356 case Decl::Binding:
3357 // These are always lvalues.
3358 valueKind = VK_LValue;
3359 type = type.getNonReferenceType();
3360 break;
3361
3362 case Decl::Function: {
3363 if (unsigned BID = cast<FunctionDecl>(Val: VD)->getBuiltinID()) {
3364 if (!Context.BuiltinInfo.isDirectlyAddressable(ID: BID)) {
3365 type = Context.BuiltinFnTy;
3366 valueKind = VK_PRValue;
3367 break;
3368 }
3369 }
3370
3371 const FunctionType *fty = type->castAs<FunctionType>();
3372
3373 // If we're referring to a function with an __unknown_anytype
3374 // result type, make the entire expression __unknown_anytype.
3375 if (fty->getReturnType() == Context.UnknownAnyTy) {
3376 type = Context.UnknownAnyTy;
3377 valueKind = VK_PRValue;
3378 break;
3379 }
3380
3381 // Functions are l-values in C++.
3382 if (getLangOpts().CPlusPlus) {
3383 valueKind = VK_LValue;
3384 break;
3385 }
3386
3387 // C99 DR 316 says that, if a function type comes from a
3388 // function definition (without a prototype), that type is only
3389 // used for checking compatibility. Therefore, when referencing
3390 // the function, we pretend that we don't have the full function
3391 // type.
3392 if (!cast<FunctionDecl>(Val: VD)->hasPrototype() && isa<FunctionProtoType>(Val: fty))
3393 type = Context.getFunctionNoProtoType(ResultTy: fty->getReturnType(),
3394 Info: fty->getExtInfo());
3395
3396 // Functions are r-values in C.
3397 valueKind = VK_PRValue;
3398 break;
3399 }
3400
3401 case Decl::CXXDeductionGuide:
3402 llvm_unreachable("building reference to deduction guide");
3403
3404 case Decl::MSProperty:
3405 case Decl::MSGuid:
3406 case Decl::TemplateParamObject:
3407 // FIXME: Should MSGuidDecl and template parameter objects be subject to
3408 // capture in OpenMP, or duplicated between host and device?
3409 valueKind = VK_LValue;
3410 break;
3411
3412 case Decl::UnnamedGlobalConstant:
3413 valueKind = VK_LValue;
3414 break;
3415
3416 case Decl::CXXMethod:
3417 // If we're referring to a method with an __unknown_anytype
3418 // result type, make the entire expression __unknown_anytype.
3419 // This should only be possible with a type written directly.
3420 if (const FunctionProtoType *proto =
3421 dyn_cast<FunctionProtoType>(Val: VD->getType()))
3422 if (proto->getReturnType() == Context.UnknownAnyTy) {
3423 type = Context.UnknownAnyTy;
3424 valueKind = VK_PRValue;
3425 break;
3426 }
3427
3428 // C++ methods are l-values if static, r-values if non-static.
3429 if (cast<CXXMethodDecl>(Val: VD)->isStatic()) {
3430 valueKind = VK_LValue;
3431 break;
3432 }
3433 [[fallthrough]];
3434
3435 case Decl::CXXConversion:
3436 case Decl::CXXDestructor:
3437 case Decl::CXXConstructor:
3438 valueKind = VK_PRValue;
3439 break;
3440 }
3441
3442 auto *E =
3443 BuildDeclRefExpr(D: VD, Ty: type, VK: valueKind, NameInfo, SS: &SS, FoundD,
3444 /*FIXME: TemplateKWLoc*/ TemplateKWLoc: SourceLocation(), TemplateArgs);
3445 // Clang AST consumers assume a DeclRefExpr refers to a valid decl. We
3446 // wrap a DeclRefExpr referring to an invalid decl with a dependent-type
3447 // RecoveryExpr to avoid follow-up semantic analysis (thus prevent bogus
3448 // diagnostics).
3449 if (VD->isInvalidDecl() && E)
3450 return CreateRecoveryExpr(Begin: E->getBeginLoc(), End: E->getEndLoc(), SubExprs: {E});
3451 return E;
3452}
3453
3454static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3455 SmallString<32> &Target) {
3456 Target.resize(N: CharByteWidth * (Source.size() + 1));
3457 char *ResultPtr = &Target[0];
3458 const llvm::UTF8 *ErrorPtr;
3459 bool success =
3460 llvm::ConvertUTF8toWide(WideCharWidth: CharByteWidth, Source, ResultPtr, ErrorPtr);
3461 (void)success;
3462 assert(success);
3463 Target.resize(N: ResultPtr - &Target[0]);
3464}
3465
3466ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3467 PredefinedIdentKind IK) {
3468 Decl *currentDecl = getPredefinedExprDecl(DC: CurContext);
3469 if (!currentDecl) {
3470 Diag(Loc, DiagID: diag::ext_predef_outside_function);
3471 currentDecl = Context.getTranslationUnitDecl();
3472 }
3473
3474 QualType ResTy;
3475 StringLiteral *SL = nullptr;
3476 if (cast<DeclContext>(Val: currentDecl)->isDependentContext())
3477 ResTy = Context.DependentTy;
3478 else {
3479 // Pre-defined identifiers are of type char[x], where x is the length of
3480 // the string.
3481 bool ForceElaboratedPrinting =
3482 IK == PredefinedIdentKind::Function && getLangOpts().MSVCCompat;
3483 auto Str =
3484 PredefinedExpr::ComputeName(IK, CurrentDecl: currentDecl, ForceElaboratedPrinting);
3485 unsigned Length = Str.length();
3486
3487 llvm::APInt LengthI(32, Length + 1);
3488 if (IK == PredefinedIdentKind::LFunction ||
3489 IK == PredefinedIdentKind::LFuncSig) {
3490 ResTy =
3491 Context.adjustStringLiteralBaseType(StrLTy: Context.WideCharTy.withConst());
3492 SmallString<32> RawChars;
3493 ConvertUTF8ToWideString(CharByteWidth: Context.getTypeSizeInChars(T: ResTy).getQuantity(),
3494 Source: Str, Target&: RawChars);
3495 ResTy = Context.getConstantArrayType(EltTy: ResTy, ArySize: LengthI, SizeExpr: nullptr,
3496 ASM: ArraySizeModifier::Normal,
3497 /*IndexTypeQuals*/ 0);
3498 SL = StringLiteral::Create(Ctx: Context, Str: RawChars, Kind: StringLiteralKind::Wide,
3499 /*Pascal*/ false, Ty: ResTy, Loc);
3500 } else {
3501 ResTy = Context.adjustStringLiteralBaseType(StrLTy: Context.CharTy.withConst());
3502 ResTy = Context.getConstantArrayType(EltTy: ResTy, ArySize: LengthI, SizeExpr: nullptr,
3503 ASM: ArraySizeModifier::Normal,
3504 /*IndexTypeQuals*/ 0);
3505 SL = StringLiteral::Create(Ctx: Context, Str, Kind: StringLiteralKind::Ordinary,
3506 /*Pascal*/ false, Ty: ResTy, Loc);
3507 }
3508 }
3509
3510 return PredefinedExpr::Create(Ctx: Context, L: Loc, FNTy: ResTy, IK, IsTransparent: LangOpts.MicrosoftExt,
3511 SL);
3512}
3513
3514ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3515 return BuildPredefinedExpr(Loc, IK: getPredefinedExprKind(Kind));
3516}
3517
3518ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3519 SmallString<16> CharBuffer;
3520 bool Invalid = false;
3521 StringRef ThisTok = PP.getSpelling(Tok, Buffer&: CharBuffer, Invalid: &Invalid);
3522 if (Invalid)
3523 return ExprError();
3524
3525 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3526 PP, Tok.getKind());
3527 if (Literal.hadError())
3528 return ExprError();
3529
3530 QualType Ty;
3531 if (Literal.isWide())
3532 Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3533 else if (Literal.isUTF8() && getLangOpts().C23)
3534 Ty = Context.UnsignedCharTy; // u8'x' -> unsigned char in C23
3535 else if (Literal.isUTF8() && getLangOpts().Char8)
3536 Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3537 else if (Literal.isUTF16())
3538 Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3539 else if (Literal.isUTF32())
3540 Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3541 else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3542 Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
3543 else
3544 Ty = Context.CharTy; // 'x' -> char in C++;
3545 // u8'x' -> char in C11-C17 and in C++ without char8_t.
3546
3547 CharacterLiteralKind Kind = CharacterLiteralKind::Ascii;
3548 if (Literal.isWide())
3549 Kind = CharacterLiteralKind::Wide;
3550 else if (Literal.isUTF16())
3551 Kind = CharacterLiteralKind::UTF16;
3552 else if (Literal.isUTF32())
3553 Kind = CharacterLiteralKind::UTF32;
3554 else if (Literal.isUTF8())
3555 Kind = CharacterLiteralKind::UTF8;
3556
3557 Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3558 Tok.getLocation());
3559
3560 if (Literal.getUDSuffix().empty())
3561 return Lit;
3562
3563 // We're building a user-defined literal.
3564 IdentifierInfo *UDSuffix = &Context.Idents.get(Name: Literal.getUDSuffix());
3565 SourceLocation UDSuffixLoc =
3566 getUDSuffixLoc(S&: *this, TokLoc: Tok.getLocation(), Offset: Literal.getUDSuffixOffset());
3567
3568 // Make sure we're allowed user-defined literals here.
3569 if (!UDLScope)
3570 return ExprError(Diag(Loc: UDSuffixLoc, DiagID: diag::err_invalid_character_udl));
3571
3572 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3573 // operator "" X (ch)
3574 return BuildCookedLiteralOperatorCall(S&: *this, Scope: UDLScope, UDSuffix, UDSuffixLoc,
3575 Args: Lit, LitEndLoc: Tok.getLocation());
3576}
3577
3578ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3579 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3580 return IntegerLiteral::Create(C: Context, V: llvm::APInt(IntSize, Val),
3581 type: Context.IntTy, l: Loc);
3582}
3583
3584static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3585 QualType Ty, SourceLocation Loc) {
3586 const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(T: Ty);
3587
3588 using llvm::APFloat;
3589 APFloat Val(Format);
3590
3591 llvm::RoundingMode RM = S.CurFPFeatures.getRoundingMode();
3592 if (RM == llvm::RoundingMode::Dynamic)
3593 RM = llvm::RoundingMode::NearestTiesToEven;
3594 APFloat::opStatus result = Literal.GetFloatValue(Result&: Val, RM);
3595
3596 // Overflow is always an error, but underflow is only an error if
3597 // we underflowed to zero (APFloat reports denormals as underflow).
3598 if ((result & APFloat::opOverflow) ||
3599 ((result & APFloat::opUnderflow) && Val.isZero())) {
3600 unsigned diagnostic;
3601 SmallString<20> buffer;
3602 if (result & APFloat::opOverflow) {
3603 diagnostic = diag::warn_float_overflow;
3604 APFloat::getLargest(Sem: Format).toString(Str&: buffer);
3605 } else {
3606 diagnostic = diag::warn_float_underflow;
3607 APFloat::getSmallest(Sem: Format).toString(Str&: buffer);
3608 }
3609
3610 S.Diag(Loc, DiagID: diagnostic) << Ty << buffer.str();
3611 }
3612
3613 bool isExact = (result == APFloat::opOK);
3614 return FloatingLiteral::Create(C: S.Context, V: Val, isexact: isExact, Type: Ty, L: Loc);
3615}
3616
3617bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc, bool AllowZero) {
3618 assert(E && "Invalid expression");
3619
3620 if (E->isValueDependent())
3621 return false;
3622
3623 QualType QT = E->getType();
3624 if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3625 Diag(Loc: E->getExprLoc(), DiagID: diag::err_pragma_loop_invalid_argument_type) << QT;
3626 return true;
3627 }
3628
3629 llvm::APSInt ValueAPS;
3630 ExprResult R = VerifyIntegerConstantExpression(E, Result: &ValueAPS);
3631
3632 if (R.isInvalid())
3633 return true;
3634
3635 // GCC allows the value of unroll count to be 0.
3636 // https://gcc.gnu.org/onlinedocs/gcc/Loop-Specific-Pragmas.html says
3637 // "The values of 0 and 1 block any unrolling of the loop."
3638 // The values doesn't have to be strictly positive in '#pragma GCC unroll' and
3639 // '#pragma unroll' cases.
3640 bool ValueIsPositive =
3641 AllowZero ? ValueAPS.isNonNegative() : ValueAPS.isStrictlyPositive();
3642 if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3643 Diag(Loc: E->getExprLoc(), DiagID: diag::err_requires_positive_value)
3644 << toString(I: ValueAPS, Radix: 10) << ValueIsPositive;
3645 return true;
3646 }
3647
3648 return false;
3649}
3650
3651ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3652 // Fast path for a single digit (which is quite common). A single digit
3653 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3654 if (Tok.getLength() == 1 || Tok.getKind() == tok::binary_data) {
3655 const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3656 return ActOnIntegerConstant(Loc: Tok.getLocation(), Val);
3657 }
3658
3659 SmallString<128> SpellingBuffer;
3660 // NumericLiteralParser wants to overread by one character. Add padding to
3661 // the buffer in case the token is copied to the buffer. If getSpelling()
3662 // returns a StringRef to the memory buffer, it should have a null char at
3663 // the EOF, so it is also safe.
3664 SpellingBuffer.resize(N: Tok.getLength() + 1);
3665
3666 // Get the spelling of the token, which eliminates trigraphs, etc.
3667 bool Invalid = false;
3668 StringRef TokSpelling = PP.getSpelling(Tok, Buffer&: SpellingBuffer, Invalid: &Invalid);
3669 if (Invalid)
3670 return ExprError();
3671
3672 NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3673 PP.getSourceManager(), PP.getLangOpts(),
3674 PP.getTargetInfo(), PP.getDiagnostics());
3675 if (Literal.hadError)
3676 return ExprError();
3677
3678 if (Literal.hasUDSuffix()) {
3679 // We're building a user-defined literal.
3680 const IdentifierInfo *UDSuffix = &Context.Idents.get(Name: Literal.getUDSuffix());
3681 SourceLocation UDSuffixLoc =
3682 getUDSuffixLoc(S&: *this, TokLoc: Tok.getLocation(), Offset: Literal.getUDSuffixOffset());
3683
3684 // Make sure we're allowed user-defined literals here.
3685 if (!UDLScope)
3686 return ExprError(Diag(Loc: UDSuffixLoc, DiagID: diag::err_invalid_numeric_udl));
3687
3688 QualType CookedTy;
3689 if (Literal.isFloatingLiteral()) {
3690 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3691 // long double, the literal is treated as a call of the form
3692 // operator "" X (f L)
3693 CookedTy = Context.LongDoubleTy;
3694 } else {
3695 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3696 // unsigned long long, the literal is treated as a call of the form
3697 // operator "" X (n ULL)
3698 CookedTy = Context.UnsignedLongLongTy;
3699 }
3700
3701 DeclarationName OpName =
3702 Context.DeclarationNames.getCXXLiteralOperatorName(II: UDSuffix);
3703 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3704 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3705
3706 SourceLocation TokLoc = Tok.getLocation();
3707
3708 // Perform literal operator lookup to determine if we're building a raw
3709 // literal or a cooked one.
3710 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3711 switch (LookupLiteralOperator(S: UDLScope, R, ArgTys: CookedTy,
3712 /*AllowRaw*/ true, /*AllowTemplate*/ true,
3713 /*AllowStringTemplatePack*/ AllowStringTemplate: false,
3714 /*DiagnoseMissing*/ !Literal.isImaginary)) {
3715 case LOLR_ErrorNoDiagnostic:
3716 // Lookup failure for imaginary constants isn't fatal, there's still the
3717 // GNU extension producing _Complex types.
3718 break;
3719 case LOLR_Error:
3720 return ExprError();
3721 case LOLR_Cooked: {
3722 Expr *Lit;
3723 if (Literal.isFloatingLiteral()) {
3724 Lit = BuildFloatingLiteral(S&: *this, Literal, Ty: CookedTy, Loc: Tok.getLocation());
3725 } else {
3726 llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3727 if (Literal.GetIntegerValue(Val&: ResultVal))
3728 Diag(Loc: Tok.getLocation(), DiagID: diag::err_integer_literal_too_large)
3729 << /* Unsigned */ 1;
3730 Lit = IntegerLiteral::Create(C: Context, V: ResultVal, type: CookedTy,
3731 l: Tok.getLocation());
3732 }
3733 return BuildLiteralOperatorCall(R, SuffixInfo&: OpNameInfo, Args: Lit, LitEndLoc: TokLoc);
3734 }
3735
3736 case LOLR_Raw: {
3737 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3738 // literal is treated as a call of the form
3739 // operator "" X ("n")
3740 unsigned Length = Literal.getUDSuffixOffset();
3741 QualType StrTy = Context.getConstantArrayType(
3742 EltTy: Context.adjustStringLiteralBaseType(StrLTy: Context.CharTy.withConst()),
3743 ArySize: llvm::APInt(32, Length + 1), SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0);
3744 Expr *Lit =
3745 StringLiteral::Create(Ctx: Context, Str: StringRef(TokSpelling.data(), Length),
3746 Kind: StringLiteralKind::Ordinary,
3747 /*Pascal*/ false, Ty: StrTy, Loc: &TokLoc, NumConcatenated: 1);
3748 return BuildLiteralOperatorCall(R, SuffixInfo&: OpNameInfo, Args: Lit, LitEndLoc: TokLoc);
3749 }
3750
3751 case LOLR_Template: {
3752 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3753 // template), L is treated as a call fo the form
3754 // operator "" X <'c1', 'c2', ... 'ck'>()
3755 // where n is the source character sequence c1 c2 ... ck.
3756 TemplateArgumentListInfo ExplicitArgs;
3757 unsigned CharBits = Context.getIntWidth(T: Context.CharTy);
3758 bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3759 llvm::APSInt Value(CharBits, CharIsUnsigned);
3760 for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3761 Value = TokSpelling[I];
3762 TemplateArgument Arg(Context, Value, Context.CharTy);
3763 TemplateArgumentLocInfo ArgInfo;
3764 ExplicitArgs.addArgument(Loc: TemplateArgumentLoc(Arg, ArgInfo));
3765 }
3766 return BuildLiteralOperatorCall(R, SuffixInfo&: OpNameInfo, Args: std::nullopt, LitEndLoc: TokLoc,
3767 ExplicitTemplateArgs: &ExplicitArgs);
3768 }
3769 case LOLR_StringTemplatePack:
3770 llvm_unreachable("unexpected literal operator lookup result");
3771 }
3772 }
3773
3774 Expr *Res;
3775
3776 if (Literal.isFixedPointLiteral()) {
3777 QualType Ty;
3778
3779 if (Literal.isAccum) {
3780 if (Literal.isHalf) {
3781 Ty = Context.ShortAccumTy;
3782 } else if (Literal.isLong) {
3783 Ty = Context.LongAccumTy;
3784 } else {
3785 Ty = Context.AccumTy;
3786 }
3787 } else if (Literal.isFract) {
3788 if (Literal.isHalf) {
3789 Ty = Context.ShortFractTy;
3790 } else if (Literal.isLong) {
3791 Ty = Context.LongFractTy;
3792 } else {
3793 Ty = Context.FractTy;
3794 }
3795 }
3796
3797 if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(T: Ty);
3798
3799 bool isSigned = !Literal.isUnsigned;
3800 unsigned scale = Context.getFixedPointScale(Ty);
3801 unsigned bit_width = Context.getTypeInfo(T: Ty).Width;
3802
3803 llvm::APInt Val(bit_width, 0, isSigned);
3804 bool Overflowed = Literal.GetFixedPointValue(StoreVal&: Val, Scale: scale);
3805 bool ValIsZero = Val.isZero() && !Overflowed;
3806
3807 auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3808 if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3809 // Clause 6.4.4 - The value of a constant shall be in the range of
3810 // representable values for its type, with exception for constants of a
3811 // fract type with a value of exactly 1; such a constant shall denote
3812 // the maximal value for the type.
3813 --Val;
3814 else if (Val.ugt(RHS: MaxVal) || Overflowed)
3815 Diag(Loc: Tok.getLocation(), DiagID: diag::err_too_large_for_fixed_point);
3816
3817 Res = FixedPointLiteral::CreateFromRawInt(C: Context, V: Val, type: Ty,
3818 l: Tok.getLocation(), Scale: scale);
3819 } else if (Literal.isFloatingLiteral()) {
3820 QualType Ty;
3821 if (Literal.isHalf){
3822 if (getLangOpts().HLSL ||
3823 getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp16", LO: getLangOpts()))
3824 Ty = Context.HalfTy;
3825 else {
3826 Diag(Loc: Tok.getLocation(), DiagID: diag::err_half_const_requires_fp16);
3827 return ExprError();
3828 }
3829 } else if (Literal.isFloat)
3830 Ty = Context.FloatTy;
3831 else if (Literal.isLong)
3832 Ty = !getLangOpts().HLSL ? Context.LongDoubleTy : Context.DoubleTy;
3833 else if (Literal.isFloat16)
3834 Ty = Context.Float16Ty;
3835 else if (Literal.isFloat128)
3836 Ty = Context.Float128Ty;
3837 else if (getLangOpts().HLSL)
3838 Ty = Context.FloatTy;
3839 else
3840 Ty = Context.DoubleTy;
3841
3842 Res = BuildFloatingLiteral(S&: *this, Literal, Ty, Loc: Tok.getLocation());
3843
3844 if (Ty == Context.DoubleTy) {
3845 if (getLangOpts().SinglePrecisionConstants) {
3846 if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
3847 Res = ImpCastExprToType(E: Res, Type: Context.FloatTy, CK: CK_FloatingCast).get();
3848 }
3849 } else if (getLangOpts().OpenCL && !getOpenCLOptions().isAvailableOption(
3850 Ext: "cl_khr_fp64", LO: getLangOpts())) {
3851 // Impose single-precision float type when cl_khr_fp64 is not enabled.
3852 Diag(Loc: Tok.getLocation(), DiagID: diag::warn_double_const_requires_fp64)
3853 << (getLangOpts().getOpenCLCompatibleVersion() >= 300);
3854 Res = ImpCastExprToType(E: Res, Type: Context.FloatTy, CK: CK_FloatingCast).get();
3855 }
3856 }
3857 } else if (!Literal.isIntegerLiteral()) {
3858 return ExprError();
3859 } else {
3860 QualType Ty;
3861
3862 // 'z/uz' literals are a C++23 feature.
3863 if (Literal.isSizeT)
3864 Diag(Loc: Tok.getLocation(), DiagID: getLangOpts().CPlusPlus
3865 ? getLangOpts().CPlusPlus23
3866 ? diag::warn_cxx20_compat_size_t_suffix
3867 : diag::ext_cxx23_size_t_suffix
3868 : diag::err_cxx23_size_t_suffix);
3869
3870 // 'wb/uwb' literals are a C23 feature. We support _BitInt as a type in C++,
3871 // but we do not currently support the suffix in C++ mode because it's not
3872 // entirely clear whether WG21 will prefer this suffix to return a library
3873 // type such as std::bit_int instead of returning a _BitInt. '__wb/__uwb'
3874 // literals are a C++ extension.
3875 if (Literal.isBitInt)
3876 PP.Diag(Loc: Tok.getLocation(),
3877 DiagID: getLangOpts().CPlusPlus ? diag::ext_cxx_bitint_suffix
3878 : getLangOpts().C23 ? diag::warn_c23_compat_bitint_suffix
3879 : diag::ext_c23_bitint_suffix);
3880
3881 // Get the value in the widest-possible width. What is "widest" depends on
3882 // whether the literal is a bit-precise integer or not. For a bit-precise
3883 // integer type, try to scan the source to determine how many bits are
3884 // needed to represent the value. This may seem a bit expensive, but trying
3885 // to get the integer value from an overly-wide APInt is *extremely*
3886 // expensive, so the naive approach of assuming
3887 // llvm::IntegerType::MAX_INT_BITS is a big performance hit.
3888 unsigned BitsNeeded =
3889 Literal.isBitInt ? llvm::APInt::getSufficientBitsNeeded(
3890 Str: Literal.getLiteralDigits(), Radix: Literal.getRadix())
3891 : Context.getTargetInfo().getIntMaxTWidth();
3892 llvm::APInt ResultVal(BitsNeeded, 0);
3893
3894 if (Literal.GetIntegerValue(Val&: ResultVal)) {
3895 // If this value didn't fit into uintmax_t, error and force to ull.
3896 Diag(Loc: Tok.getLocation(), DiagID: diag::err_integer_literal_too_large)
3897 << /* Unsigned */ 1;
3898 Ty = Context.UnsignedLongLongTy;
3899 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
3900 "long long is not intmax_t?");
3901 } else {
3902 // If this value fits into a ULL, try to figure out what else it fits into
3903 // according to the rules of C99 6.4.4.1p5.
3904
3905 // Octal, Hexadecimal, and integers with a U suffix are allowed to
3906 // be an unsigned int.
3907 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3908
3909 // HLSL doesn't really have `long` or `long long`. We support the `ll`
3910 // suffix for portability of code with C++, but both `l` and `ll` are
3911 // 64-bit integer types, and we want the type of `1l` and `1ll` to be the
3912 // same.
3913 if (getLangOpts().HLSL && !Literal.isLong && Literal.isLongLong) {
3914 Literal.isLong = true;
3915 Literal.isLongLong = false;
3916 }
3917
3918 // Check from smallest to largest, picking the smallest type we can.
3919 unsigned Width = 0;
3920
3921 // Microsoft specific integer suffixes are explicitly sized.
3922 if (Literal.MicrosoftInteger) {
3923 if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3924 Width = 8;
3925 Ty = Context.CharTy;
3926 } else {
3927 Width = Literal.MicrosoftInteger;
3928 Ty = Context.getIntTypeForBitwidth(DestWidth: Width,
3929 /*Signed=*/!Literal.isUnsigned);
3930 }
3931 }
3932
3933 // Bit-precise integer literals are automagically-sized based on the
3934 // width required by the literal.
3935 if (Literal.isBitInt) {
3936 // The signed version has one more bit for the sign value. There are no
3937 // zero-width bit-precise integers, even if the literal value is 0.
3938 Width = std::max(a: ResultVal.getActiveBits(), b: 1u) +
3939 (Literal.isUnsigned ? 0u : 1u);
3940
3941 // Diagnose if the width of the constant is larger than BITINT_MAXWIDTH,
3942 // and reset the type to the largest supported width.
3943 unsigned int MaxBitIntWidth =
3944 Context.getTargetInfo().getMaxBitIntWidth();
3945 if (Width > MaxBitIntWidth) {
3946 Diag(Loc: Tok.getLocation(), DiagID: diag::err_integer_literal_too_large)
3947 << Literal.isUnsigned;
3948 Width = MaxBitIntWidth;
3949 }
3950
3951 // Reset the result value to the smaller APInt and select the correct
3952 // type to be used. Note, we zext even for signed values because the
3953 // literal itself is always an unsigned value (a preceeding - is a
3954 // unary operator, not part of the literal).
3955 ResultVal = ResultVal.zextOrTrunc(width: Width);
3956 Ty = Context.getBitIntType(Unsigned: Literal.isUnsigned, NumBits: Width);
3957 }
3958
3959 // Check C++23 size_t literals.
3960 if (Literal.isSizeT) {
3961 assert(!Literal.MicrosoftInteger &&
3962 "size_t literals can't be Microsoft literals");
3963 unsigned SizeTSize = Context.getTargetInfo().getTypeWidth(
3964 T: Context.getTargetInfo().getSizeType());
3965
3966 // Does it fit in size_t?
3967 if (ResultVal.isIntN(N: SizeTSize)) {
3968 // Does it fit in ssize_t?
3969 if (!Literal.isUnsigned && ResultVal[SizeTSize - 1] == 0)
3970 Ty = Context.getSignedSizeType();
3971 else if (AllowUnsigned)
3972 Ty = Context.getSizeType();
3973 Width = SizeTSize;
3974 }
3975 }
3976
3977 if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong &&
3978 !Literal.isSizeT) {
3979 // Are int/unsigned possibilities?
3980 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3981
3982 // Does it fit in a unsigned int?
3983 if (ResultVal.isIntN(N: IntSize)) {
3984 // Does it fit in a signed int?
3985 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3986 Ty = Context.IntTy;
3987 else if (AllowUnsigned)
3988 Ty = Context.UnsignedIntTy;
3989 Width = IntSize;
3990 }
3991 }
3992
3993 // Are long/unsigned long possibilities?
3994 if (Ty.isNull() && !Literal.isLongLong && !Literal.isSizeT) {
3995 unsigned LongSize = Context.getTargetInfo().getLongWidth();
3996
3997 // Does it fit in a unsigned long?
3998 if (ResultVal.isIntN(N: LongSize)) {
3999 // Does it fit in a signed long?
4000 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
4001 Ty = Context.LongTy;
4002 else if (AllowUnsigned)
4003 Ty = Context.UnsignedLongTy;
4004 // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
4005 // is compatible.
4006 else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
4007 const unsigned LongLongSize =
4008 Context.getTargetInfo().getLongLongWidth();
4009 Diag(Loc: Tok.getLocation(),
4010 DiagID: getLangOpts().CPlusPlus
4011 ? Literal.isLong
4012 ? diag::warn_old_implicitly_unsigned_long_cxx
4013 : /*C++98 UB*/ diag::
4014 ext_old_implicitly_unsigned_long_cxx
4015 : diag::warn_old_implicitly_unsigned_long)
4016 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
4017 : /*will be ill-formed*/ 1);
4018 Ty = Context.UnsignedLongTy;
4019 }
4020 Width = LongSize;
4021 }
4022 }
4023
4024 // Check long long if needed.
4025 if (Ty.isNull() && !Literal.isSizeT) {
4026 unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
4027
4028 // Does it fit in a unsigned long long?
4029 if (ResultVal.isIntN(N: LongLongSize)) {
4030 // Does it fit in a signed long long?
4031 // To be compatible with MSVC, hex integer literals ending with the
4032 // LL or i64 suffix are always signed in Microsoft mode.
4033 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
4034 (getLangOpts().MSVCCompat && Literal.isLongLong)))
4035 Ty = Context.LongLongTy;
4036 else if (AllowUnsigned)
4037 Ty = Context.UnsignedLongLongTy;
4038 Width = LongLongSize;
4039
4040 // 'long long' is a C99 or C++11 feature, whether the literal
4041 // explicitly specified 'long long' or we needed the extra width.
4042 if (getLangOpts().CPlusPlus)
4043 Diag(Loc: Tok.getLocation(), DiagID: getLangOpts().CPlusPlus11
4044 ? diag::warn_cxx98_compat_longlong
4045 : diag::ext_cxx11_longlong);
4046 else if (!getLangOpts().C99)
4047 Diag(Loc: Tok.getLocation(), DiagID: diag::ext_c99_longlong);
4048 }
4049 }
4050
4051 // If we still couldn't decide a type, we either have 'size_t' literal
4052 // that is out of range, or a decimal literal that does not fit in a
4053 // signed long long and has no U suffix.
4054 if (Ty.isNull()) {
4055 if (Literal.isSizeT)
4056 Diag(Loc: Tok.getLocation(), DiagID: diag::err_size_t_literal_too_large)
4057 << Literal.isUnsigned;
4058 else
4059 Diag(Loc: Tok.getLocation(),
4060 DiagID: diag::ext_integer_literal_too_large_for_signed);
4061 Ty = Context.UnsignedLongLongTy;
4062 Width = Context.getTargetInfo().getLongLongWidth();
4063 }
4064
4065 if (ResultVal.getBitWidth() != Width)
4066 ResultVal = ResultVal.trunc(width: Width);
4067 }
4068 Res = IntegerLiteral::Create(C: Context, V: ResultVal, type: Ty, l: Tok.getLocation());
4069 }
4070
4071 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
4072 if (Literal.isImaginary) {
4073 Res = new (Context) ImaginaryLiteral(Res,
4074 Context.getComplexType(T: Res->getType()));
4075
4076 Diag(Loc: Tok.getLocation(), DiagID: diag::ext_imaginary_constant);
4077 }
4078 return Res;
4079}
4080
4081ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
4082 assert(E && "ActOnParenExpr() missing expr");
4083 QualType ExprTy = E->getType();
4084 if (getLangOpts().ProtectParens && CurFPFeatures.getAllowFPReassociate() &&
4085 !E->isLValue() && ExprTy->hasFloatingRepresentation())
4086 return BuildBuiltinCallExpr(Loc: R, Id: Builtin::BI__arithmetic_fence, CallArgs: E);
4087 return new (Context) ParenExpr(L, R, E);
4088}
4089
4090static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
4091 SourceLocation Loc,
4092 SourceRange ArgRange) {
4093 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
4094 // scalar or vector data type argument..."
4095 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4096 // type (C99 6.2.5p18) or void.
4097 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4098 S.Diag(Loc, DiagID: diag::err_vecstep_non_scalar_vector_type)
4099 << T << ArgRange;
4100 return true;
4101 }
4102
4103 assert((T->isVoidType() || !T->isIncompleteType()) &&
4104 "Scalar types should always be complete");
4105 return false;
4106}
4107
4108static bool CheckVectorElementsTraitOperandType(Sema &S, QualType T,
4109 SourceLocation Loc,
4110 SourceRange ArgRange) {
4111 // builtin_vectorelements supports both fixed-sized and scalable vectors.
4112 if (!T->isVectorType() && !T->isSizelessVectorType())
4113 return S.Diag(Loc, DiagID: diag::err_builtin_non_vector_type)
4114 << ""
4115 << "__builtin_vectorelements" << T << ArgRange;
4116
4117 return false;
4118}
4119
4120static bool checkPtrAuthTypeDiscriminatorOperandType(Sema &S, QualType T,
4121 SourceLocation Loc,
4122 SourceRange ArgRange) {
4123 if (S.checkPointerAuthEnabled(Loc, Range: ArgRange))
4124 return true;
4125
4126 if (!T->isFunctionType() && !T->isFunctionPointerType() &&
4127 !T->isFunctionReferenceType() && !T->isMemberFunctionPointerType()) {
4128 S.Diag(Loc, DiagID: diag::err_ptrauth_type_disc_undiscriminated) << T << ArgRange;
4129 return true;
4130 }
4131
4132 return false;
4133}
4134
4135static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4136 SourceLocation Loc,
4137 SourceRange ArgRange,
4138 UnaryExprOrTypeTrait TraitKind) {
4139 // Invalid types must be hard errors for SFINAE in C++.
4140 if (S.LangOpts.CPlusPlus)
4141 return true;
4142
4143 // C99 6.5.3.4p1:
4144 if (T->isFunctionType() &&
4145 (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4146 TraitKind == UETT_PreferredAlignOf)) {
4147 // sizeof(function)/alignof(function) is allowed as an extension.
4148 S.Diag(Loc, DiagID: diag::ext_sizeof_alignof_function_type)
4149 << getTraitSpelling(T: TraitKind) << ArgRange;
4150 return false;
4151 }
4152
4153 // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4154 // this is an error (OpenCL v1.1 s6.3.k)
4155 if (T->isVoidType()) {
4156 unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4157 : diag::ext_sizeof_alignof_void_type;
4158 S.Diag(Loc, DiagID) << getTraitSpelling(T: TraitKind) << ArgRange;
4159 return false;
4160 }
4161
4162 return true;
4163}
4164
4165static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4166 SourceLocation Loc,
4167 SourceRange ArgRange,
4168 UnaryExprOrTypeTrait TraitKind) {
4169 // Reject sizeof(interface) and sizeof(interface<proto>) if the
4170 // runtime doesn't allow it.
4171 if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4172 S.Diag(Loc, DiagID: diag::err_sizeof_nonfragile_interface)
4173 << T << (TraitKind == UETT_SizeOf)
4174 << ArgRange;
4175 return true;
4176 }
4177
4178 return false;
4179}
4180
4181/// Check whether E is a pointer from a decayed array type (the decayed
4182/// pointer type is equal to T) and emit a warning if it is.
4183static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4184 const Expr *E) {
4185 // Don't warn if the operation changed the type.
4186 if (T != E->getType())
4187 return;
4188
4189 // Now look for array decays.
4190 const auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E);
4191 if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4192 return;
4193
4194 S.Diag(Loc, DiagID: diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4195 << ICE->getType()
4196 << ICE->getSubExpr()->getType();
4197}
4198
4199bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4200 UnaryExprOrTypeTrait ExprKind) {
4201 QualType ExprTy = E->getType();
4202 assert(!ExprTy->isReferenceType());
4203
4204 bool IsUnevaluatedOperand =
4205 (ExprKind == UETT_SizeOf || ExprKind == UETT_DataSizeOf ||
4206 ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4207 ExprKind == UETT_VecStep);
4208 if (IsUnevaluatedOperand) {
4209 ExprResult Result = CheckUnevaluatedOperand(E);
4210 if (Result.isInvalid())
4211 return true;
4212 E = Result.get();
4213 }
4214
4215 // The operand for sizeof and alignof is in an unevaluated expression context,
4216 // so side effects could result in unintended consequences.
4217 // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4218 // used to build SFINAE gadgets.
4219 // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4220 if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4221 !E->isInstantiationDependent() &&
4222 !E->getType()->isVariableArrayType() &&
4223 E->HasSideEffects(Ctx: Context, IncludePossibleEffects: false))
4224 Diag(Loc: E->getExprLoc(), DiagID: diag::warn_side_effects_unevaluated_context);
4225
4226 if (ExprKind == UETT_VecStep)
4227 return CheckVecStepTraitOperandType(S&: *this, T: ExprTy, Loc: E->getExprLoc(),
4228 ArgRange: E->getSourceRange());
4229
4230 if (ExprKind == UETT_VectorElements)
4231 return CheckVectorElementsTraitOperandType(S&: *this, T: ExprTy, Loc: E->getExprLoc(),
4232 ArgRange: E->getSourceRange());
4233
4234 // Explicitly list some types as extensions.
4235 if (!CheckExtensionTraitOperandType(S&: *this, T: ExprTy, Loc: E->getExprLoc(),
4236 ArgRange: E->getSourceRange(), TraitKind: ExprKind))
4237 return false;
4238
4239 // WebAssembly tables are always illegal operands to unary expressions and
4240 // type traits.
4241 if (Context.getTargetInfo().getTriple().isWasm() &&
4242 E->getType()->isWebAssemblyTableType()) {
4243 Diag(Loc: E->getExprLoc(), DiagID: diag::err_wasm_table_invalid_uett_operand)
4244 << getTraitSpelling(T: ExprKind);
4245 return true;
4246 }
4247
4248 // 'alignof' applied to an expression only requires the base element type of
4249 // the expression to be complete. 'sizeof' requires the expression's type to
4250 // be complete (and will attempt to complete it if it's an array of unknown
4251 // bound).
4252 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4253 if (RequireCompleteSizedType(
4254 Loc: E->getExprLoc(), T: Context.getBaseElementType(QT: E->getType()),
4255 DiagID: diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4256 Args: getTraitSpelling(T: ExprKind), Args: E->getSourceRange()))
4257 return true;
4258 } else {
4259 if (RequireCompleteSizedExprType(
4260 E, DiagID: diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4261 Args: getTraitSpelling(T: ExprKind), Args: E->getSourceRange()))
4262 return true;
4263 }
4264
4265 // Completing the expression's type may have changed it.
4266 ExprTy = E->getType();
4267 assert(!ExprTy->isReferenceType());
4268
4269 if (ExprTy->isFunctionType()) {
4270 Diag(Loc: E->getExprLoc(), DiagID: diag::err_sizeof_alignof_function_type)
4271 << getTraitSpelling(T: ExprKind) << E->getSourceRange();
4272 return true;
4273 }
4274
4275 if (CheckObjCTraitOperandConstraints(S&: *this, T: ExprTy, Loc: E->getExprLoc(),
4276 ArgRange: E->getSourceRange(), TraitKind: ExprKind))
4277 return true;
4278
4279 if (ExprKind == UETT_SizeOf) {
4280 if (const auto *DeclRef = dyn_cast<DeclRefExpr>(Val: E->IgnoreParens())) {
4281 if (const auto *PVD = dyn_cast<ParmVarDecl>(Val: DeclRef->getFoundDecl())) {
4282 QualType OType = PVD->getOriginalType();
4283 QualType Type = PVD->getType();
4284 if (Type->isPointerType() && OType->isArrayType()) {
4285 Diag(Loc: E->getExprLoc(), DiagID: diag::warn_sizeof_array_param)
4286 << Type << OType;
4287 Diag(Loc: PVD->getLocation(), DiagID: diag::note_declared_at);
4288 }
4289 }
4290 }
4291
4292 // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4293 // decays into a pointer and returns an unintended result. This is most
4294 // likely a typo for "sizeof(array) op x".
4295 if (const auto *BO = dyn_cast<BinaryOperator>(Val: E->IgnoreParens())) {
4296 warnOnSizeofOnArrayDecay(S&: *this, Loc: BO->getOperatorLoc(), T: BO->getType(),
4297 E: BO->getLHS());
4298 warnOnSizeofOnArrayDecay(S&: *this, Loc: BO->getOperatorLoc(), T: BO->getType(),
4299 E: BO->getRHS());
4300 }
4301 }
4302
4303 return false;
4304}
4305
4306static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4307 // Cannot know anything else if the expression is dependent.
4308 if (E->isTypeDependent())
4309 return false;
4310
4311 if (E->getObjectKind() == OK_BitField) {
4312 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_sizeof_alignof_typeof_bitfield)
4313 << 1 << E->getSourceRange();
4314 return true;
4315 }
4316
4317 ValueDecl *D = nullptr;
4318 Expr *Inner = E->IgnoreParens();
4319 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Inner)) {
4320 D = DRE->getDecl();
4321 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Val: Inner)) {
4322 D = ME->getMemberDecl();
4323 }
4324
4325 // If it's a field, require the containing struct to have a
4326 // complete definition so that we can compute the layout.
4327 //
4328 // This can happen in C++11 onwards, either by naming the member
4329 // in a way that is not transformed into a member access expression
4330 // (in an unevaluated operand, for instance), or by naming the member
4331 // in a trailing-return-type.
4332 //
4333 // For the record, since __alignof__ on expressions is a GCC
4334 // extension, GCC seems to permit this but always gives the
4335 // nonsensical answer 0.
4336 //
4337 // We don't really need the layout here --- we could instead just
4338 // directly check for all the appropriate alignment-lowing
4339 // attributes --- but that would require duplicating a lot of
4340 // logic that just isn't worth duplicating for such a marginal
4341 // use-case.
4342 if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(Val: D)) {
4343 // Fast path this check, since we at least know the record has a
4344 // definition if we can find a member of it.
4345 if (!FD->getParent()->isCompleteDefinition()) {
4346 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_alignof_member_of_incomplete_type)
4347 << E->getSourceRange();
4348 return true;
4349 }
4350
4351 // Otherwise, if it's a field, and the field doesn't have
4352 // reference type, then it must have a complete type (or be a
4353 // flexible array member, which we explicitly want to
4354 // white-list anyway), which makes the following checks trivial.
4355 if (!FD->getType()->isReferenceType())
4356 return false;
4357 }
4358
4359 return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4360}
4361
4362bool Sema::CheckVecStepExpr(Expr *E) {
4363 E = E->IgnoreParens();
4364
4365 // Cannot know anything else if the expression is dependent.
4366 if (E->isTypeDependent())
4367 return false;
4368
4369 return CheckUnaryExprOrTypeTraitOperand(E, ExprKind: UETT_VecStep);
4370}
4371
4372static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4373 CapturingScopeInfo *CSI) {
4374 assert(T->isVariablyModifiedType());
4375 assert(CSI != nullptr);
4376
4377 // We're going to walk down into the type and look for VLA expressions.
4378 do {
4379 const Type *Ty = T.getTypePtr();
4380 switch (Ty->getTypeClass()) {
4381#define TYPE(Class, Base)
4382#define ABSTRACT_TYPE(Class, Base)
4383#define NON_CANONICAL_TYPE(Class, Base)
4384#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4385#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4386#include "clang/AST/TypeNodes.inc"
4387 T = QualType();
4388 break;
4389 // These types are never variably-modified.
4390 case Type::Builtin:
4391 case Type::Complex:
4392 case Type::Vector:
4393 case Type::ExtVector:
4394 case Type::ConstantMatrix:
4395 case Type::Record:
4396 case Type::Enum:
4397 case Type::TemplateSpecialization:
4398 case Type::ObjCObject:
4399 case Type::ObjCInterface:
4400 case Type::ObjCObjectPointer:
4401 case Type::ObjCTypeParam:
4402 case Type::Pipe:
4403 case Type::BitInt:
4404 llvm_unreachable("type class is never variably-modified!");
4405 case Type::Elaborated:
4406 T = cast<ElaboratedType>(Val: Ty)->getNamedType();
4407 break;
4408 case Type::Adjusted:
4409 T = cast<AdjustedType>(Val: Ty)->getOriginalType();
4410 break;
4411 case Type::Decayed:
4412 T = cast<DecayedType>(Val: Ty)->getPointeeType();
4413 break;
4414 case Type::ArrayParameter:
4415 T = cast<ArrayParameterType>(Val: Ty)->getElementType();
4416 break;
4417 case Type::Pointer:
4418 T = cast<PointerType>(Val: Ty)->getPointeeType();
4419 break;
4420 case Type::BlockPointer:
4421 T = cast<BlockPointerType>(Val: Ty)->getPointeeType();
4422 break;
4423 case Type::LValueReference:
4424 case Type::RValueReference:
4425 T = cast<ReferenceType>(Val: Ty)->getPointeeType();
4426 break;
4427 case Type::MemberPointer:
4428 T = cast<MemberPointerType>(Val: Ty)->getPointeeType();
4429 break;
4430 case Type::ConstantArray:
4431 case Type::IncompleteArray:
4432 // Losing element qualification here is fine.
4433 T = cast<ArrayType>(Val: Ty)->getElementType();
4434 break;
4435 case Type::VariableArray: {
4436 // Losing element qualification here is fine.
4437 const VariableArrayType *VAT = cast<VariableArrayType>(Val: Ty);
4438
4439 // Unknown size indication requires no size computation.
4440 // Otherwise, evaluate and record it.
4441 auto Size = VAT->getSizeExpr();
4442 if (Size && !CSI->isVLATypeCaptured(VAT) &&
4443 (isa<CapturedRegionScopeInfo>(Val: CSI) || isa<LambdaScopeInfo>(Val: CSI)))
4444 CSI->addVLATypeCapture(Loc: Size->getExprLoc(), VLAType: VAT, CaptureType: Context.getSizeType());
4445
4446 T = VAT->getElementType();
4447 break;
4448 }
4449 case Type::FunctionProto:
4450 case Type::FunctionNoProto:
4451 T = cast<FunctionType>(Val: Ty)->getReturnType();
4452 break;
4453 case Type::Paren:
4454 case Type::TypeOf:
4455 case Type::UnaryTransform:
4456 case Type::Attributed:
4457 case Type::BTFTagAttributed:
4458 case Type::SubstTemplateTypeParm:
4459 case Type::MacroQualified:
4460 case Type::CountAttributed:
4461 // Keep walking after single level desugaring.
4462 T = T.getSingleStepDesugaredType(Context);
4463 break;
4464 case Type::Typedef:
4465 T = cast<TypedefType>(Val: Ty)->desugar();
4466 break;
4467 case Type::Decltype:
4468 T = cast<DecltypeType>(Val: Ty)->desugar();
4469 break;
4470 case Type::PackIndexing:
4471 T = cast<PackIndexingType>(Val: Ty)->desugar();
4472 break;
4473 case Type::Using:
4474 T = cast<UsingType>(Val: Ty)->desugar();
4475 break;
4476 case Type::Auto:
4477 case Type::DeducedTemplateSpecialization:
4478 T = cast<DeducedType>(Val: Ty)->getDeducedType();
4479 break;
4480 case Type::TypeOfExpr:
4481 T = cast<TypeOfExprType>(Val: Ty)->getUnderlyingExpr()->getType();
4482 break;
4483 case Type::Atomic:
4484 T = cast<AtomicType>(Val: Ty)->getValueType();
4485 break;
4486 }
4487 } while (!T.isNull() && T->isVariablyModifiedType());
4488}
4489
4490bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4491 SourceLocation OpLoc,
4492 SourceRange ExprRange,
4493 UnaryExprOrTypeTrait ExprKind,
4494 StringRef KWName) {
4495 if (ExprType->isDependentType())
4496 return false;
4497
4498 // C++ [expr.sizeof]p2:
4499 // When applied to a reference or a reference type, the result
4500 // is the size of the referenced type.
4501 // C++11 [expr.alignof]p3:
4502 // When alignof is applied to a reference type, the result
4503 // shall be the alignment of the referenced type.
4504 if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4505 ExprType = Ref->getPointeeType();
4506
4507 // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4508 // When alignof or _Alignof is applied to an array type, the result
4509 // is the alignment of the element type.
4510 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4511 ExprKind == UETT_OpenMPRequiredSimdAlign) {
4512 // If the trait is 'alignof' in C before C2y, the ability to apply the
4513 // trait to an incomplete array is an extension.
4514 if (ExprKind == UETT_AlignOf && !getLangOpts().CPlusPlus &&
4515 ExprType->isIncompleteArrayType())
4516 Diag(Loc: OpLoc, DiagID: getLangOpts().C2y
4517 ? diag::warn_c2y_compat_alignof_incomplete_array
4518 : diag::ext_c2y_alignof_incomplete_array);
4519 ExprType = Context.getBaseElementType(QT: ExprType);
4520 }
4521
4522 if (ExprKind == UETT_VecStep)
4523 return CheckVecStepTraitOperandType(S&: *this, T: ExprType, Loc: OpLoc, ArgRange: ExprRange);
4524
4525 if (ExprKind == UETT_VectorElements)
4526 return CheckVectorElementsTraitOperandType(S&: *this, T: ExprType, Loc: OpLoc,
4527 ArgRange: ExprRange);
4528
4529 if (ExprKind == UETT_PtrAuthTypeDiscriminator)
4530 return checkPtrAuthTypeDiscriminatorOperandType(S&: *this, T: ExprType, Loc: OpLoc,
4531 ArgRange: ExprRange);
4532
4533 // Explicitly list some types as extensions.
4534 if (!CheckExtensionTraitOperandType(S&: *this, T: ExprType, Loc: OpLoc, ArgRange: ExprRange,
4535 TraitKind: ExprKind))
4536 return false;
4537
4538 if (RequireCompleteSizedType(
4539 Loc: OpLoc, T: ExprType, DiagID: diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4540 Args: KWName, Args: ExprRange))
4541 return true;
4542
4543 if (ExprType->isFunctionType()) {
4544 Diag(Loc: OpLoc, DiagID: diag::err_sizeof_alignof_function_type) << KWName << ExprRange;
4545 return true;
4546 }
4547
4548 // WebAssembly tables are always illegal operands to unary expressions and
4549 // type traits.
4550 if (Context.getTargetInfo().getTriple().isWasm() &&
4551 ExprType->isWebAssemblyTableType()) {
4552 Diag(Loc: OpLoc, DiagID: diag::err_wasm_table_invalid_uett_operand)
4553 << getTraitSpelling(T: ExprKind);
4554 return true;
4555 }
4556
4557 if (CheckObjCTraitOperandConstraints(S&: *this, T: ExprType, Loc: OpLoc, ArgRange: ExprRange,
4558 TraitKind: ExprKind))
4559 return true;
4560
4561 if (ExprType->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4562 if (auto *TT = ExprType->getAs<TypedefType>()) {
4563 for (auto I = FunctionScopes.rbegin(),
4564 E = std::prev(x: FunctionScopes.rend());
4565 I != E; ++I) {
4566 auto *CSI = dyn_cast<CapturingScopeInfo>(Val: *I);
4567 if (CSI == nullptr)
4568 break;
4569 DeclContext *DC = nullptr;
4570 if (auto *LSI = dyn_cast<LambdaScopeInfo>(Val: CSI))
4571 DC = LSI->CallOperator;
4572 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(Val: CSI))
4573 DC = CRSI->TheCapturedDecl;
4574 else if (auto *BSI = dyn_cast<BlockScopeInfo>(Val: CSI))
4575 DC = BSI->TheDecl;
4576 if (DC) {
4577 if (DC->containsDecl(D: TT->getDecl()))
4578 break;
4579 captureVariablyModifiedType(Context, T: ExprType, CSI);
4580 }
4581 }
4582 }
4583 }
4584
4585 return false;
4586}
4587
4588ExprResult Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4589 SourceLocation OpLoc,
4590 UnaryExprOrTypeTrait ExprKind,
4591 SourceRange R) {
4592 if (!TInfo)
4593 return ExprError();
4594
4595 QualType T = TInfo->getType();
4596
4597 if (!T->isDependentType() &&
4598 CheckUnaryExprOrTypeTraitOperand(ExprType: T, OpLoc, ExprRange: R, ExprKind,
4599 KWName: getTraitSpelling(T: ExprKind)))
4600 return ExprError();
4601
4602 // Adds overload of TransformToPotentiallyEvaluated for TypeSourceInfo to
4603 // properly deal with VLAs in nested calls of sizeof and typeof.
4604 if (isUnevaluatedContext() && ExprKind == UETT_SizeOf &&
4605 TInfo->getType()->isVariablyModifiedType())
4606 TInfo = TransformToPotentiallyEvaluated(TInfo);
4607
4608 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4609 return new (Context) UnaryExprOrTypeTraitExpr(
4610 ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4611}
4612
4613ExprResult
4614Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4615 UnaryExprOrTypeTrait ExprKind) {
4616 ExprResult PE = CheckPlaceholderExpr(E);
4617 if (PE.isInvalid())
4618 return ExprError();
4619
4620 E = PE.get();
4621
4622 // Verify that the operand is valid.
4623 bool isInvalid = false;
4624 if (E->isTypeDependent()) {
4625 // Delay type-checking for type-dependent expressions.
4626 } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4627 isInvalid = CheckAlignOfExpr(S&: *this, E, ExprKind);
4628 } else if (ExprKind == UETT_VecStep) {
4629 isInvalid = CheckVecStepExpr(E);
4630 } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4631 Diag(Loc: E->getExprLoc(), DiagID: diag::err_openmp_default_simd_align_expr);
4632 isInvalid = true;
4633 } else if (E->refersToBitField()) { // C99 6.5.3.4p1.
4634 Diag(Loc: E->getExprLoc(), DiagID: diag::err_sizeof_alignof_typeof_bitfield) << 0;
4635 isInvalid = true;
4636 } else if (ExprKind == UETT_VectorElements) {
4637 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, ExprKind: UETT_VectorElements);
4638 } else {
4639 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, ExprKind: UETT_SizeOf);
4640 }
4641
4642 if (isInvalid)
4643 return ExprError();
4644
4645 if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4646 PE = TransformToPotentiallyEvaluated(E);
4647 if (PE.isInvalid()) return ExprError();
4648 E = PE.get();
4649 }
4650
4651 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4652 return new (Context) UnaryExprOrTypeTraitExpr(
4653 ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4654}
4655
4656ExprResult
4657Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4658 UnaryExprOrTypeTrait ExprKind, bool IsType,
4659 void *TyOrEx, SourceRange ArgRange) {
4660 // If error parsing type, ignore.
4661 if (!TyOrEx) return ExprError();
4662
4663 if (IsType) {
4664 TypeSourceInfo *TInfo;
4665 (void) GetTypeFromParser(Ty: ParsedType::getFromOpaquePtr(P: TyOrEx), TInfo: &TInfo);
4666 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, R: ArgRange);
4667 }
4668
4669 Expr *ArgEx = (Expr *)TyOrEx;
4670 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(E: ArgEx, OpLoc, ExprKind);
4671 return Result;
4672}
4673
4674bool Sema::CheckAlignasTypeArgument(StringRef KWName, TypeSourceInfo *TInfo,
4675 SourceLocation OpLoc, SourceRange R) {
4676 if (!TInfo)
4677 return true;
4678 return CheckUnaryExprOrTypeTraitOperand(ExprType: TInfo->getType(), OpLoc, ExprRange: R,
4679 ExprKind: UETT_AlignOf, KWName);
4680}
4681
4682bool Sema::ActOnAlignasTypeArgument(StringRef KWName, ParsedType Ty,
4683 SourceLocation OpLoc, SourceRange R) {
4684 TypeSourceInfo *TInfo;
4685 (void)GetTypeFromParser(Ty: ParsedType::getFromOpaquePtr(P: Ty.getAsOpaquePtr()),
4686 TInfo: &TInfo);
4687 return CheckAlignasTypeArgument(KWName, TInfo, OpLoc, R);
4688}
4689
4690static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4691 bool IsReal) {
4692 if (V.get()->isTypeDependent())
4693 return S.Context.DependentTy;
4694
4695 // _Real and _Imag are only l-values for normal l-values.
4696 if (V.get()->getObjectKind() != OK_Ordinary) {
4697 V = S.DefaultLvalueConversion(E: V.get());
4698 if (V.isInvalid())
4699 return QualType();
4700 }
4701
4702 // These operators return the element type of a complex type.
4703 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4704 return CT->getElementType();
4705
4706 // Otherwise they pass through real integer and floating point types here.
4707 if (V.get()->getType()->isArithmeticType())
4708 return V.get()->getType();
4709
4710 // Test for placeholders.
4711 ExprResult PR = S.CheckPlaceholderExpr(E: V.get());
4712 if (PR.isInvalid()) return QualType();
4713 if (PR.get() != V.get()) {
4714 V = PR;
4715 return CheckRealImagOperand(S, V, Loc, IsReal);
4716 }
4717
4718 // Reject anything else.
4719 S.Diag(Loc, DiagID: diag::err_realimag_invalid_type) << V.get()->getType()
4720 << (IsReal ? "__real" : "__imag");
4721 return QualType();
4722}
4723
4724
4725
4726ExprResult
4727Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4728 tok::TokenKind Kind, Expr *Input) {
4729 UnaryOperatorKind Opc;
4730 switch (Kind) {
4731 default: llvm_unreachable("Unknown unary op!");
4732 case tok::plusplus: Opc = UO_PostInc; break;
4733 case tok::minusminus: Opc = UO_PostDec; break;
4734 }
4735
4736 // Since this might is a postfix expression, get rid of ParenListExprs.
4737 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, ME: Input);
4738 if (Result.isInvalid()) return ExprError();
4739 Input = Result.get();
4740
4741 return BuildUnaryOp(S, OpLoc, Opc, Input);
4742}
4743
4744/// Diagnose if arithmetic on the given ObjC pointer is illegal.
4745///
4746/// \return true on error
4747static bool checkArithmeticOnObjCPointer(Sema &S,
4748 SourceLocation opLoc,
4749 Expr *op) {
4750 assert(op->getType()->isObjCObjectPointerType());
4751 if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4752 !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4753 return false;
4754
4755 S.Diag(Loc: opLoc, DiagID: diag::err_arithmetic_nonfragile_interface)
4756 << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4757 << op->getSourceRange();
4758 return true;
4759}
4760
4761static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4762 auto *BaseNoParens = Base->IgnoreParens();
4763 if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(Val: BaseNoParens))
4764 return MSProp->getPropertyDecl()->getType()->isArrayType();
4765 return isa<MSPropertySubscriptExpr>(Val: BaseNoParens);
4766}
4767
4768// Returns the type used for LHS[RHS], given one of LHS, RHS is type-dependent.
4769// Typically this is DependentTy, but can sometimes be more precise.
4770//
4771// There are cases when we could determine a non-dependent type:
4772// - LHS and RHS may have non-dependent types despite being type-dependent
4773// (e.g. unbounded array static members of the current instantiation)
4774// - one may be a dependent-sized array with known element type
4775// - one may be a dependent-typed valid index (enum in current instantiation)
4776//
4777// We *always* return a dependent type, in such cases it is DependentTy.
4778// This avoids creating type-dependent expressions with non-dependent types.
4779// FIXME: is this important to avoid? See https://reviews.llvm.org/D107275
4780static QualType getDependentArraySubscriptType(Expr *LHS, Expr *RHS,
4781 const ASTContext &Ctx) {
4782 assert(LHS->isTypeDependent() || RHS->isTypeDependent());
4783 QualType LTy = LHS->getType(), RTy = RHS->getType();
4784 QualType Result = Ctx.DependentTy;
4785 if (RTy->isIntegralOrUnscopedEnumerationType()) {
4786 if (const PointerType *PT = LTy->getAs<PointerType>())
4787 Result = PT->getPointeeType();
4788 else if (const ArrayType *AT = LTy->getAsArrayTypeUnsafe())
4789 Result = AT->getElementType();
4790 } else if (LTy->isIntegralOrUnscopedEnumerationType()) {
4791 if (const PointerType *PT = RTy->getAs<PointerType>())
4792 Result = PT->getPointeeType();
4793 else if (const ArrayType *AT = RTy->getAsArrayTypeUnsafe())
4794 Result = AT->getElementType();
4795 }
4796 // Ensure we return a dependent type.
4797 return Result->isDependentType() ? Result : Ctx.DependentTy;
4798}
4799
4800ExprResult Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base,
4801 SourceLocation lbLoc,
4802 MultiExprArg ArgExprs,
4803 SourceLocation rbLoc) {
4804
4805 if (base && !base->getType().isNull() &&
4806 base->hasPlaceholderType(K: BuiltinType::ArraySection)) {
4807 auto *AS = cast<ArraySectionExpr>(Val: base);
4808 if (AS->isOMPArraySection())
4809 return OpenMP().ActOnOMPArraySectionExpr(
4810 Base: base, LBLoc: lbLoc, LowerBound: ArgExprs.front(), ColonLocFirst: SourceLocation(), ColonLocSecond: SourceLocation(),
4811 /*Length*/ nullptr,
4812 /*Stride=*/nullptr, RBLoc: rbLoc);
4813
4814 return OpenACC().ActOnArraySectionExpr(Base: base, LBLoc: lbLoc, LowerBound: ArgExprs.front(),
4815 ColonLocFirst: SourceLocation(), /*Length*/ nullptr,
4816 RBLoc: rbLoc);
4817 }
4818
4819 // Since this might be a postfix expression, get rid of ParenListExprs.
4820 if (isa<ParenListExpr>(Val: base)) {
4821 ExprResult result = MaybeConvertParenListExprToParenExpr(S, ME: base);
4822 if (result.isInvalid())
4823 return ExprError();
4824 base = result.get();
4825 }
4826
4827 // Check if base and idx form a MatrixSubscriptExpr.
4828 //
4829 // Helper to check for comma expressions, which are not allowed as indices for
4830 // matrix subscript expressions.
4831 auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
4832 if (isa<BinaryOperator>(Val: E) && cast<BinaryOperator>(Val: E)->isCommaOp()) {
4833 Diag(Loc: E->getExprLoc(), DiagID: diag::err_matrix_subscript_comma)
4834 << SourceRange(base->getBeginLoc(), rbLoc);
4835 return true;
4836 }
4837 return false;
4838 };
4839 // The matrix subscript operator ([][])is considered a single operator.
4840 // Separating the index expressions by parenthesis is not allowed.
4841 if (base && !base->getType().isNull() &&
4842 base->hasPlaceholderType(K: BuiltinType::IncompleteMatrixIdx) &&
4843 !isa<MatrixSubscriptExpr>(Val: base)) {
4844 Diag(Loc: base->getExprLoc(), DiagID: diag::err_matrix_separate_incomplete_index)
4845 << SourceRange(base->getBeginLoc(), rbLoc);
4846 return ExprError();
4847 }
4848 // If the base is a MatrixSubscriptExpr, try to create a new
4849 // MatrixSubscriptExpr.
4850 auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(Val: base);
4851 if (matSubscriptE) {
4852 assert(ArgExprs.size() == 1);
4853 if (CheckAndReportCommaError(ArgExprs.front()))
4854 return ExprError();
4855
4856 assert(matSubscriptE->isIncomplete() &&
4857 "base has to be an incomplete matrix subscript");
4858 return CreateBuiltinMatrixSubscriptExpr(Base: matSubscriptE->getBase(),
4859 RowIdx: matSubscriptE->getRowIdx(),
4860 ColumnIdx: ArgExprs.front(), RBLoc: rbLoc);
4861 }
4862 if (base->getType()->isWebAssemblyTableType()) {
4863 Diag(Loc: base->getExprLoc(), DiagID: diag::err_wasm_table_art)
4864 << SourceRange(base->getBeginLoc(), rbLoc) << 3;
4865 return ExprError();
4866 }
4867
4868 // Handle any non-overload placeholder types in the base and index
4869 // expressions. We can't handle overloads here because the other
4870 // operand might be an overloadable type, in which case the overload
4871 // resolution for the operator overload should get the first crack
4872 // at the overload.
4873 bool IsMSPropertySubscript = false;
4874 if (base->getType()->isNonOverloadPlaceholderType()) {
4875 IsMSPropertySubscript = isMSPropertySubscriptExpr(S&: *this, Base: base);
4876 if (!IsMSPropertySubscript) {
4877 ExprResult result = CheckPlaceholderExpr(E: base);
4878 if (result.isInvalid())
4879 return ExprError();
4880 base = result.get();
4881 }
4882 }
4883
4884 // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
4885 if (base->getType()->isMatrixType()) {
4886 assert(ArgExprs.size() == 1);
4887 if (CheckAndReportCommaError(ArgExprs.front()))
4888 return ExprError();
4889
4890 return CreateBuiltinMatrixSubscriptExpr(Base: base, RowIdx: ArgExprs.front(), ColumnIdx: nullptr,
4891 RBLoc: rbLoc);
4892 }
4893
4894 if (ArgExprs.size() == 1 && getLangOpts().CPlusPlus20) {
4895 Expr *idx = ArgExprs[0];
4896 if ((isa<BinaryOperator>(Val: idx) && cast<BinaryOperator>(Val: idx)->isCommaOp()) ||
4897 (isa<CXXOperatorCallExpr>(Val: idx) &&
4898 cast<CXXOperatorCallExpr>(Val: idx)->getOperator() == OO_Comma)) {
4899 Diag(Loc: idx->getExprLoc(), DiagID: diag::warn_deprecated_comma_subscript)
4900 << SourceRange(base->getBeginLoc(), rbLoc);
4901 }
4902 }
4903
4904 if (ArgExprs.size() == 1 &&
4905 ArgExprs[0]->getType()->isNonOverloadPlaceholderType()) {
4906 ExprResult result = CheckPlaceholderExpr(E: ArgExprs[0]);
4907 if (result.isInvalid())
4908 return ExprError();
4909 ArgExprs[0] = result.get();
4910 } else {
4911 if (CheckArgsForPlaceholders(args: ArgExprs))
4912 return ExprError();
4913 }
4914
4915 // Build an unanalyzed expression if either operand is type-dependent.
4916 if (getLangOpts().CPlusPlus && ArgExprs.size() == 1 &&
4917 (base->isTypeDependent() ||
4918 Expr::hasAnyTypeDependentArguments(Exprs: ArgExprs)) &&
4919 !isa<PackExpansionExpr>(Val: ArgExprs[0])) {
4920 return new (Context) ArraySubscriptExpr(
4921 base, ArgExprs.front(),
4922 getDependentArraySubscriptType(LHS: base, RHS: ArgExprs.front(), Ctx: getASTContext()),
4923 VK_LValue, OK_Ordinary, rbLoc);
4924 }
4925
4926 // MSDN, property (C++)
4927 // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4928 // This attribute can also be used in the declaration of an empty array in a
4929 // class or structure definition. For example:
4930 // __declspec(property(get=GetX, put=PutX)) int x[];
4931 // The above statement indicates that x[] can be used with one or more array
4932 // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4933 // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4934 if (IsMSPropertySubscript) {
4935 assert(ArgExprs.size() == 1);
4936 // Build MS property subscript expression if base is MS property reference
4937 // or MS property subscript.
4938 return new (Context)
4939 MSPropertySubscriptExpr(base, ArgExprs.front(), Context.PseudoObjectTy,
4940 VK_LValue, OK_Ordinary, rbLoc);
4941 }
4942
4943 // Use C++ overloaded-operator rules if either operand has record
4944 // type. The spec says to do this if either type is *overloadable*,
4945 // but enum types can't declare subscript operators or conversion
4946 // operators, so there's nothing interesting for overload resolution
4947 // to do if there aren't any record types involved.
4948 //
4949 // ObjC pointers have their own subscripting logic that is not tied
4950 // to overload resolution and so should not take this path.
4951 if (getLangOpts().CPlusPlus && !base->getType()->isObjCObjectPointerType() &&
4952 ((base->getType()->isRecordType() ||
4953 (ArgExprs.size() != 1 || isa<PackExpansionExpr>(Val: ArgExprs[0]) ||
4954 ArgExprs[0]->getType()->isRecordType())))) {
4955 return CreateOverloadedArraySubscriptExpr(LLoc: lbLoc, RLoc: rbLoc, Base: base, Args: ArgExprs);
4956 }
4957
4958 ExprResult Res =
4959 CreateBuiltinArraySubscriptExpr(Base: base, LLoc: lbLoc, Idx: ArgExprs.front(), RLoc: rbLoc);
4960
4961 if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Val: Res.get()))
4962 CheckSubscriptAccessOfNoDeref(E: cast<ArraySubscriptExpr>(Val: Res.get()));
4963
4964 return Res;
4965}
4966
4967ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
4968 InitializedEntity Entity = InitializedEntity::InitializeTemporary(Type: Ty);
4969 InitializationKind Kind =
4970 InitializationKind::CreateCopy(InitLoc: E->getBeginLoc(), EqualLoc: SourceLocation());
4971 InitializationSequence InitSeq(*this, Entity, Kind, E);
4972 return InitSeq.Perform(S&: *this, Entity, Kind, Args: E);
4973}
4974
4975ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
4976 Expr *ColumnIdx,
4977 SourceLocation RBLoc) {
4978 ExprResult BaseR = CheckPlaceholderExpr(E: Base);
4979 if (BaseR.isInvalid())
4980 return BaseR;
4981 Base = BaseR.get();
4982
4983 ExprResult RowR = CheckPlaceholderExpr(E: RowIdx);
4984 if (RowR.isInvalid())
4985 return RowR;
4986 RowIdx = RowR.get();
4987
4988 if (!ColumnIdx)
4989 return new (Context) MatrixSubscriptExpr(
4990 Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
4991
4992 // Build an unanalyzed expression if any of the operands is type-dependent.
4993 if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
4994 ColumnIdx->isTypeDependent())
4995 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
4996 Context.DependentTy, RBLoc);
4997
4998 ExprResult ColumnR = CheckPlaceholderExpr(E: ColumnIdx);
4999 if (ColumnR.isInvalid())
5000 return ColumnR;
5001 ColumnIdx = ColumnR.get();
5002
5003 // Check that IndexExpr is an integer expression. If it is a constant
5004 // expression, check that it is less than Dim (= the number of elements in the
5005 // corresponding dimension).
5006 auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
5007 bool IsColumnIdx) -> Expr * {
5008 if (!IndexExpr->getType()->isIntegerType() &&
5009 !IndexExpr->isTypeDependent()) {
5010 Diag(Loc: IndexExpr->getBeginLoc(), DiagID: diag::err_matrix_index_not_integer)
5011 << IsColumnIdx;
5012 return nullptr;
5013 }
5014
5015 if (std::optional<llvm::APSInt> Idx =
5016 IndexExpr->getIntegerConstantExpr(Ctx: Context)) {
5017 if ((*Idx < 0 || *Idx >= Dim)) {
5018 Diag(Loc: IndexExpr->getBeginLoc(), DiagID: diag::err_matrix_index_outside_range)
5019 << IsColumnIdx << Dim;
5020 return nullptr;
5021 }
5022 }
5023
5024 ExprResult ConvExpr =
5025 tryConvertExprToType(E: IndexExpr, Ty: Context.getSizeType());
5026 assert(!ConvExpr.isInvalid() &&
5027 "should be able to convert any integer type to size type");
5028 return ConvExpr.get();
5029 };
5030
5031 auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
5032 RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
5033 ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
5034 if (!RowIdx || !ColumnIdx)
5035 return ExprError();
5036
5037 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
5038 MTy->getElementType(), RBLoc);
5039}
5040
5041void Sema::CheckAddressOfNoDeref(const Expr *E) {
5042 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5043 const Expr *StrippedExpr = E->IgnoreParenImpCasts();
5044
5045 // For expressions like `&(*s).b`, the base is recorded and what should be
5046 // checked.
5047 const MemberExpr *Member = nullptr;
5048 while ((Member = dyn_cast<MemberExpr>(Val: StrippedExpr)) && !Member->isArrow())
5049 StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
5050
5051 LastRecord.PossibleDerefs.erase(Ptr: StrippedExpr);
5052}
5053
5054void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
5055 if (isUnevaluatedContext())
5056 return;
5057
5058 QualType ResultTy = E->getType();
5059 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
5060
5061 // Bail if the element is an array since it is not memory access.
5062 if (isa<ArrayType>(Val: ResultTy))
5063 return;
5064
5065 if (ResultTy->hasAttr(AK: attr::NoDeref)) {
5066 LastRecord.PossibleDerefs.insert(Ptr: E);
5067 return;
5068 }
5069
5070 // Check if the base type is a pointer to a member access of a struct
5071 // marked with noderef.
5072 const Expr *Base = E->getBase();
5073 QualType BaseTy = Base->getType();
5074 if (!(isa<ArrayType>(Val: BaseTy) || isa<PointerType>(Val: BaseTy)))
5075 // Not a pointer access
5076 return;
5077
5078 const MemberExpr *Member = nullptr;
5079 while ((Member = dyn_cast<MemberExpr>(Val: Base->IgnoreParenCasts())) &&
5080 Member->isArrow())
5081 Base = Member->getBase();
5082
5083 if (const auto *Ptr = dyn_cast<PointerType>(Val: Base->getType())) {
5084 if (Ptr->getPointeeType()->hasAttr(AK: attr::NoDeref))
5085 LastRecord.PossibleDerefs.insert(Ptr: E);
5086 }
5087}
5088
5089ExprResult
5090Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5091 Expr *Idx, SourceLocation RLoc) {
5092 Expr *LHSExp = Base;
5093 Expr *RHSExp = Idx;
5094
5095 ExprValueKind VK = VK_LValue;
5096 ExprObjectKind OK = OK_Ordinary;
5097
5098 // Per C++ core issue 1213, the result is an xvalue if either operand is
5099 // a non-lvalue array, and an lvalue otherwise.
5100 if (getLangOpts().CPlusPlus11) {
5101 for (auto *Op : {LHSExp, RHSExp}) {
5102 Op = Op->IgnoreImplicit();
5103 if (Op->getType()->isArrayType() && !Op->isLValue())
5104 VK = VK_XValue;
5105 }
5106 }
5107
5108 // Perform default conversions.
5109 if (!LHSExp->getType()->isSubscriptableVectorType()) {
5110 ExprResult Result = DefaultFunctionArrayLvalueConversion(E: LHSExp);
5111 if (Result.isInvalid())
5112 return ExprError();
5113 LHSExp = Result.get();
5114 }
5115 ExprResult Result = DefaultFunctionArrayLvalueConversion(E: RHSExp);
5116 if (Result.isInvalid())
5117 return ExprError();
5118 RHSExp = Result.get();
5119
5120 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5121
5122 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5123 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5124 // in the subscript position. As a result, we need to derive the array base
5125 // and index from the expression types.
5126 Expr *BaseExpr, *IndexExpr;
5127 QualType ResultType;
5128 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5129 BaseExpr = LHSExp;
5130 IndexExpr = RHSExp;
5131 ResultType =
5132 getDependentArraySubscriptType(LHS: LHSExp, RHS: RHSExp, Ctx: getASTContext());
5133 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5134 BaseExpr = LHSExp;
5135 IndexExpr = RHSExp;
5136 ResultType = PTy->getPointeeType();
5137 } else if (const ObjCObjectPointerType *PTy =
5138 LHSTy->getAs<ObjCObjectPointerType>()) {
5139 BaseExpr = LHSExp;
5140 IndexExpr = RHSExp;
5141
5142 // Use custom logic if this should be the pseudo-object subscript
5143 // expression.
5144 if (!LangOpts.isSubscriptPointerArithmetic())
5145 return ObjC().BuildObjCSubscriptExpression(RB: RLoc, BaseExpr, IndexExpr,
5146 getterMethod: nullptr, setterMethod: nullptr);
5147
5148 ResultType = PTy->getPointeeType();
5149 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5150 // Handle the uncommon case of "123[Ptr]".
5151 BaseExpr = RHSExp;
5152 IndexExpr = LHSExp;
5153 ResultType = PTy->getPointeeType();
5154 } else if (const ObjCObjectPointerType *PTy =
5155 RHSTy->getAs<ObjCObjectPointerType>()) {
5156 // Handle the uncommon case of "123[Ptr]".
5157 BaseExpr = RHSExp;
5158 IndexExpr = LHSExp;
5159 ResultType = PTy->getPointeeType();
5160 if (!LangOpts.isSubscriptPointerArithmetic()) {
5161 Diag(Loc: LLoc, DiagID: diag::err_subscript_nonfragile_interface)
5162 << ResultType << BaseExpr->getSourceRange();
5163 return ExprError();
5164 }
5165 } else if (LHSTy->isSubscriptableVectorType()) {
5166 if (LHSTy->isBuiltinType() &&
5167 LHSTy->getAs<BuiltinType>()->isSveVLSBuiltinType()) {
5168 const BuiltinType *BTy = LHSTy->getAs<BuiltinType>();
5169 if (BTy->isSVEBool())
5170 return ExprError(Diag(Loc: LLoc, DiagID: diag::err_subscript_svbool_t)
5171 << LHSExp->getSourceRange()
5172 << RHSExp->getSourceRange());
5173 ResultType = BTy->getSveEltType(Ctx: Context);
5174 } else {
5175 const VectorType *VTy = LHSTy->getAs<VectorType>();
5176 ResultType = VTy->getElementType();
5177 }
5178 BaseExpr = LHSExp; // vectors: V[123]
5179 IndexExpr = RHSExp;
5180 // We apply C++ DR1213 to vector subscripting too.
5181 if (getLangOpts().CPlusPlus11 && LHSExp->isPRValue()) {
5182 ExprResult Materialized = TemporaryMaterializationConversion(E: LHSExp);
5183 if (Materialized.isInvalid())
5184 return ExprError();
5185 LHSExp = Materialized.get();
5186 }
5187 VK = LHSExp->getValueKind();
5188 if (VK != VK_PRValue)
5189 OK = OK_VectorComponent;
5190
5191 QualType BaseType = BaseExpr->getType();
5192 Qualifiers BaseQuals = BaseType.getQualifiers();
5193 Qualifiers MemberQuals = ResultType.getQualifiers();
5194 Qualifiers Combined = BaseQuals + MemberQuals;
5195 if (Combined != MemberQuals)
5196 ResultType = Context.getQualifiedType(T: ResultType, Qs: Combined);
5197 } else if (LHSTy->isArrayType()) {
5198 // If we see an array that wasn't promoted by
5199 // DefaultFunctionArrayLvalueConversion, it must be an array that
5200 // wasn't promoted because of the C90 rule that doesn't
5201 // allow promoting non-lvalue arrays. Warn, then
5202 // force the promotion here.
5203 Diag(Loc: LHSExp->getBeginLoc(), DiagID: diag::ext_subscript_non_lvalue)
5204 << LHSExp->getSourceRange();
5205 LHSExp = ImpCastExprToType(E: LHSExp, Type: Context.getArrayDecayedType(T: LHSTy),
5206 CK: CK_ArrayToPointerDecay).get();
5207 LHSTy = LHSExp->getType();
5208
5209 BaseExpr = LHSExp;
5210 IndexExpr = RHSExp;
5211 ResultType = LHSTy->castAs<PointerType>()->getPointeeType();
5212 } else if (RHSTy->isArrayType()) {
5213 // Same as previous, except for 123[f().a] case
5214 Diag(Loc: RHSExp->getBeginLoc(), DiagID: diag::ext_subscript_non_lvalue)
5215 << RHSExp->getSourceRange();
5216 RHSExp = ImpCastExprToType(E: RHSExp, Type: Context.getArrayDecayedType(T: RHSTy),
5217 CK: CK_ArrayToPointerDecay).get();
5218 RHSTy = RHSExp->getType();
5219
5220 BaseExpr = RHSExp;
5221 IndexExpr = LHSExp;
5222 ResultType = RHSTy->castAs<PointerType>()->getPointeeType();
5223 } else {
5224 return ExprError(Diag(Loc: LLoc, DiagID: diag::err_typecheck_subscript_value)
5225 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5226 }
5227 // C99 6.5.2.1p1
5228 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
5229 return ExprError(Diag(Loc: LLoc, DiagID: diag::err_typecheck_subscript_not_integer)
5230 << IndexExpr->getSourceRange());
5231
5232 if ((IndexExpr->getType()->isSpecificBuiltinType(K: BuiltinType::Char_S) ||
5233 IndexExpr->getType()->isSpecificBuiltinType(K: BuiltinType::Char_U)) &&
5234 !IndexExpr->isTypeDependent()) {
5235 std::optional<llvm::APSInt> IntegerContantExpr =
5236 IndexExpr->getIntegerConstantExpr(Ctx: getASTContext());
5237 if (!IntegerContantExpr.has_value() ||
5238 IntegerContantExpr.value().isNegative())
5239 Diag(Loc: LLoc, DiagID: diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
5240 }
5241
5242 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5243 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5244 // type. Note that Functions are not objects, and that (in C99 parlance)
5245 // incomplete types are not object types.
5246 if (ResultType->isFunctionType()) {
5247 Diag(Loc: BaseExpr->getBeginLoc(), DiagID: diag::err_subscript_function_type)
5248 << ResultType << BaseExpr->getSourceRange();
5249 return ExprError();
5250 }
5251
5252 if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
5253 // GNU extension: subscripting on pointer to void
5254 Diag(Loc: LLoc, DiagID: diag::ext_gnu_subscript_void_type)
5255 << BaseExpr->getSourceRange();
5256
5257 // C forbids expressions of unqualified void type from being l-values.
5258 // See IsCForbiddenLValueType.
5259 if (!ResultType.hasQualifiers())
5260 VK = VK_PRValue;
5261 } else if (!ResultType->isDependentType() &&
5262 !ResultType.isWebAssemblyReferenceType() &&
5263 RequireCompleteSizedType(
5264 Loc: LLoc, T: ResultType,
5265 DiagID: diag::err_subscript_incomplete_or_sizeless_type, Args: BaseExpr))
5266 return ExprError();
5267
5268 assert(VK == VK_PRValue || LangOpts.CPlusPlus ||
5269 !ResultType.isCForbiddenLValueType());
5270
5271 if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
5272 FunctionScopes.size() > 1) {
5273 if (auto *TT =
5274 LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
5275 for (auto I = FunctionScopes.rbegin(),
5276 E = std::prev(x: FunctionScopes.rend());
5277 I != E; ++I) {
5278 auto *CSI = dyn_cast<CapturingScopeInfo>(Val: *I);
5279 if (CSI == nullptr)
5280 break;
5281 DeclContext *DC = nullptr;
5282 if (auto *LSI = dyn_cast<LambdaScopeInfo>(Val: CSI))
5283 DC = LSI->CallOperator;
5284 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(Val: CSI))
5285 DC = CRSI->TheCapturedDecl;
5286 else if (auto *BSI = dyn_cast<BlockScopeInfo>(Val: CSI))
5287 DC = BSI->TheDecl;
5288 if (DC) {
5289 if (DC->containsDecl(D: TT->getDecl()))
5290 break;
5291 captureVariablyModifiedType(
5292 Context, T: LHSExp->IgnoreParenImpCasts()->getType(), CSI);
5293 }
5294 }
5295 }
5296 }
5297
5298 return new (Context)
5299 ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
5300}
5301
5302bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5303 ParmVarDecl *Param, Expr *RewrittenInit,
5304 bool SkipImmediateInvocations) {
5305 if (Param->hasUnparsedDefaultArg()) {
5306 assert(!RewrittenInit && "Should not have a rewritten init expression yet");
5307 // If we've already cleared out the location for the default argument,
5308 // that means we're parsing it right now.
5309 if (!UnparsedDefaultArgLocs.count(Val: Param)) {
5310 Diag(Loc: Param->getBeginLoc(), DiagID: diag::err_recursive_default_argument) << FD;
5311 Diag(Loc: CallLoc, DiagID: diag::note_recursive_default_argument_used_here);
5312 Param->setInvalidDecl();
5313 return true;
5314 }
5315
5316 Diag(Loc: CallLoc, DiagID: diag::err_use_of_default_argument_to_function_declared_later)
5317 << FD << cast<CXXRecordDecl>(Val: FD->getDeclContext());
5318 Diag(Loc: UnparsedDefaultArgLocs[Param],
5319 DiagID: diag::note_default_argument_declared_here);
5320 return true;
5321 }
5322
5323 if (Param->hasUninstantiatedDefaultArg()) {
5324 assert(!RewrittenInit && "Should not have a rewitten init expression yet");
5325 if (InstantiateDefaultArgument(CallLoc, FD, Param))
5326 return true;
5327 }
5328
5329 Expr *Init = RewrittenInit ? RewrittenInit : Param->getInit();
5330 assert(Init && "default argument but no initializer?");
5331
5332 // If the default expression creates temporaries, we need to
5333 // push them to the current stack of expression temporaries so they'll
5334 // be properly destroyed.
5335 // FIXME: We should really be rebuilding the default argument with new
5336 // bound temporaries; see the comment in PR5810.
5337 // We don't need to do that with block decls, though, because
5338 // blocks in default argument expression can never capture anything.
5339 if (auto *InitWithCleanup = dyn_cast<ExprWithCleanups>(Val: Init)) {
5340 // Set the "needs cleanups" bit regardless of whether there are
5341 // any explicit objects.
5342 Cleanup.setExprNeedsCleanups(InitWithCleanup->cleanupsHaveSideEffects());
5343 // Append all the objects to the cleanup list. Right now, this
5344 // should always be a no-op, because blocks in default argument
5345 // expressions should never be able to capture anything.
5346 assert(!InitWithCleanup->getNumObjects() &&
5347 "default argument expression has capturing blocks?");
5348 }
5349 // C++ [expr.const]p15.1:
5350 // An expression or conversion is in an immediate function context if it is
5351 // potentially evaluated and [...] its innermost enclosing non-block scope
5352 // is a function parameter scope of an immediate function.
5353 EnterExpressionEvaluationContext EvalContext(
5354 *this,
5355 FD->isImmediateFunction()
5356 ? ExpressionEvaluationContext::ImmediateFunctionContext
5357 : ExpressionEvaluationContext::PotentiallyEvaluated,
5358 Param);
5359 ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
5360 SkipImmediateInvocations;
5361 runWithSufficientStackSpace(Loc: CallLoc, Fn: [&] {
5362 MarkDeclarationsReferencedInExpr(E: Init, /*SkipLocalVariables=*/true);
5363 });
5364 return false;
5365}
5366
5367struct ImmediateCallVisitor : public RecursiveASTVisitor<ImmediateCallVisitor> {
5368 const ASTContext &Context;
5369 ImmediateCallVisitor(const ASTContext &Ctx) : Context(Ctx) {}
5370
5371 bool HasImmediateCalls = false;
5372 bool shouldVisitImplicitCode() const { return true; }
5373
5374 bool VisitCallExpr(CallExpr *E) {
5375 if (const FunctionDecl *FD = E->getDirectCallee())
5376 HasImmediateCalls |= FD->isImmediateFunction();
5377 return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(S: E);
5378 }
5379
5380 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
5381 if (const FunctionDecl *FD = E->getConstructor())
5382 HasImmediateCalls |= FD->isImmediateFunction();
5383 return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(S: E);
5384 }
5385
5386 // SourceLocExpr are not immediate invocations
5387 // but CXXDefaultInitExpr/CXXDefaultArgExpr containing a SourceLocExpr
5388 // need to be rebuilt so that they refer to the correct SourceLocation and
5389 // DeclContext.
5390 bool VisitSourceLocExpr(SourceLocExpr *E) {
5391 HasImmediateCalls = true;
5392 return RecursiveASTVisitor<ImmediateCallVisitor>::VisitStmt(S: E);
5393 }
5394
5395 // A nested lambda might have parameters with immediate invocations
5396 // in their default arguments.
5397 // The compound statement is not visited (as it does not constitute a
5398 // subexpression).
5399 // FIXME: We should consider visiting and transforming captures
5400 // with init expressions.
5401 bool VisitLambdaExpr(LambdaExpr *E) {
5402 return VisitCXXMethodDecl(D: E->getCallOperator());
5403 }
5404
5405 bool VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
5406 return TraverseStmt(S: E->getExpr());
5407 }
5408
5409 bool VisitCXXDefaultInitExpr(CXXDefaultInitExpr *E) {
5410 return TraverseStmt(S: E->getExpr());
5411 }
5412};
5413
5414struct EnsureImmediateInvocationInDefaultArgs
5415 : TreeTransform<EnsureImmediateInvocationInDefaultArgs> {
5416 EnsureImmediateInvocationInDefaultArgs(Sema &SemaRef)
5417 : TreeTransform(SemaRef) {}
5418
5419 // Lambda can only have immediate invocations in the default
5420 // args of their parameters, which is transformed upon calling the closure.
5421 // The body is not a subexpression, so we have nothing to do.
5422 // FIXME: Immediate calls in capture initializers should be transformed.
5423 ExprResult TransformLambdaExpr(LambdaExpr *E) { return E; }
5424 ExprResult TransformBlockExpr(BlockExpr *E) { return E; }
5425
5426 // Make sure we don't rebuild the this pointer as it would
5427 // cause it to incorrectly point it to the outermost class
5428 // in the case of nested struct initialization.
5429 ExprResult TransformCXXThisExpr(CXXThisExpr *E) { return E; }
5430
5431 // Rewrite to source location to refer to the context in which they are used.
5432 ExprResult TransformSourceLocExpr(SourceLocExpr *E) {
5433 DeclContext *DC = E->getParentContext();
5434 if (DC == SemaRef.CurContext)
5435 return E;
5436
5437 // FIXME: During instantiation, because the rebuild of defaults arguments
5438 // is not always done in the context of the template instantiator,
5439 // we run the risk of producing a dependent source location
5440 // that would never be rebuilt.
5441 // This usually happens during overload resolution, or in contexts
5442 // where the value of the source location does not matter.
5443 // However, we should find a better way to deal with source location
5444 // of function templates.
5445 if (!SemaRef.CurrentInstantiationScope ||
5446 !SemaRef.CurContext->isDependentContext() || DC->isDependentContext())
5447 DC = SemaRef.CurContext;
5448
5449 return getDerived().RebuildSourceLocExpr(
5450 Kind: E->getIdentKind(), ResultTy: E->getType(), BuiltinLoc: E->getBeginLoc(), RPLoc: E->getEndLoc(), ParentContext: DC);
5451 }
5452};
5453
5454ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5455 FunctionDecl *FD, ParmVarDecl *Param,
5456 Expr *Init) {
5457 assert(Param->hasDefaultArg() && "can't build nonexistent default arg");
5458
5459 bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
5460 bool InLifetimeExtendingContext = isInLifetimeExtendingContext();
5461 std::optional<ExpressionEvaluationContextRecord::InitializationContext>
5462 InitializationContext =
5463 OutermostDeclarationWithDelayedImmediateInvocations();
5464 if (!InitializationContext.has_value())
5465 InitializationContext.emplace(args&: CallLoc, args&: Param, args&: CurContext);
5466
5467 if (!Init && !Param->hasUnparsedDefaultArg()) {
5468 // Mark that we are replacing a default argument first.
5469 // If we are instantiating a template we won't have to
5470 // retransform immediate calls.
5471 // C++ [expr.const]p15.1:
5472 // An expression or conversion is in an immediate function context if it
5473 // is potentially evaluated and [...] its innermost enclosing non-block
5474 // scope is a function parameter scope of an immediate function.
5475 EnterExpressionEvaluationContext EvalContext(
5476 *this,
5477 FD->isImmediateFunction()
5478 ? ExpressionEvaluationContext::ImmediateFunctionContext
5479 : ExpressionEvaluationContext::PotentiallyEvaluated,
5480 Param);
5481
5482 if (Param->hasUninstantiatedDefaultArg()) {
5483 if (InstantiateDefaultArgument(CallLoc, FD, Param))
5484 return ExprError();
5485 }
5486 // CWG2631
5487 // An immediate invocation that is not evaluated where it appears is
5488 // evaluated and checked for whether it is a constant expression at the
5489 // point where the enclosing initializer is used in a function call.
5490 ImmediateCallVisitor V(getASTContext());
5491 if (!NestedDefaultChecking)
5492 V.TraverseDecl(D: Param);
5493
5494 // Rewrite the call argument that was created from the corresponding
5495 // parameter's default argument.
5496 if (V.HasImmediateCalls || InLifetimeExtendingContext) {
5497 if (V.HasImmediateCalls)
5498 ExprEvalContexts.back().DelayedDefaultInitializationContext = {
5499 CallLoc, Param, CurContext};
5500 // Pass down lifetime extending flag, and collect temporaries in
5501 // CreateMaterializeTemporaryExpr when we rewrite the call argument.
5502 keepInLifetimeExtendingContext();
5503 EnsureImmediateInvocationInDefaultArgs Immediate(*this);
5504 ExprResult Res;
5505 runWithSufficientStackSpace(Loc: CallLoc, Fn: [&] {
5506 Res = Immediate.TransformInitializer(Init: Param->getInit(),
5507 /*NotCopy=*/NotCopyInit: false);
5508 });
5509 if (Res.isInvalid())
5510 return ExprError();
5511 Res = ConvertParamDefaultArgument(Param, DefaultArg: Res.get(),
5512 EqualLoc: Res.get()->getBeginLoc());
5513 if (Res.isInvalid())
5514 return ExprError();
5515 Init = Res.get();
5516 }
5517 }
5518
5519 if (CheckCXXDefaultArgExpr(
5520 CallLoc, FD, Param, RewrittenInit: Init,
5521 /*SkipImmediateInvocations=*/NestedDefaultChecking))
5522 return ExprError();
5523
5524 return CXXDefaultArgExpr::Create(C: Context, Loc: InitializationContext->Loc, Param,
5525 RewrittenExpr: Init, UsedContext: InitializationContext->Context);
5526}
5527
5528ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
5529 assert(Field->hasInClassInitializer());
5530
5531 // If we might have already tried and failed to instantiate, don't try again.
5532 if (Field->isInvalidDecl())
5533 return ExprError();
5534
5535 CXXThisScopeRAII This(*this, Field->getParent(), Qualifiers());
5536
5537 auto *ParentRD = cast<CXXRecordDecl>(Val: Field->getParent());
5538
5539 std::optional<ExpressionEvaluationContextRecord::InitializationContext>
5540 InitializationContext =
5541 OutermostDeclarationWithDelayedImmediateInvocations();
5542 if (!InitializationContext.has_value())
5543 InitializationContext.emplace(args&: Loc, args&: Field, args&: CurContext);
5544
5545 Expr *Init = nullptr;
5546
5547 bool NestedDefaultChecking = isCheckingDefaultArgumentOrInitializer();
5548
5549 EnterExpressionEvaluationContext EvalContext(
5550 *this, ExpressionEvaluationContext::PotentiallyEvaluated, Field);
5551
5552 if (!Field->getInClassInitializer()) {
5553 // Maybe we haven't instantiated the in-class initializer. Go check the
5554 // pattern FieldDecl to see if it has one.
5555 if (isTemplateInstantiation(Kind: ParentRD->getTemplateSpecializationKind())) {
5556 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
5557 DeclContext::lookup_result Lookup =
5558 ClassPattern->lookup(Name: Field->getDeclName());
5559
5560 FieldDecl *Pattern = nullptr;
5561 for (auto *L : Lookup) {
5562 if ((Pattern = dyn_cast<FieldDecl>(Val: L)))
5563 break;
5564 }
5565 assert(Pattern && "We must have set the Pattern!");
5566 if (!Pattern->hasInClassInitializer() ||
5567 InstantiateInClassInitializer(PointOfInstantiation: Loc, Instantiation: Field, Pattern,
5568 TemplateArgs: getTemplateInstantiationArgs(D: Field))) {
5569 Field->setInvalidDecl();
5570 return ExprError();
5571 }
5572 }
5573 }
5574
5575 // CWG2631
5576 // An immediate invocation that is not evaluated where it appears is
5577 // evaluated and checked for whether it is a constant expression at the
5578 // point where the enclosing initializer is used in a [...] a constructor
5579 // definition, or an aggregate initialization.
5580 ImmediateCallVisitor V(getASTContext());
5581 if (!NestedDefaultChecking)
5582 V.TraverseDecl(D: Field);
5583 if (V.HasImmediateCalls) {
5584 ExprEvalContexts.back().DelayedDefaultInitializationContext = {Loc, Field,
5585 CurContext};
5586 ExprEvalContexts.back().IsCurrentlyCheckingDefaultArgumentOrInitializer =
5587 NestedDefaultChecking;
5588
5589 EnsureImmediateInvocationInDefaultArgs Immediate(*this);
5590 ExprResult Res;
5591 runWithSufficientStackSpace(Loc, Fn: [&] {
5592 Res = Immediate.TransformInitializer(Init: Field->getInClassInitializer(),
5593 /*CXXDirectInit=*/NotCopyInit: false);
5594 });
5595 if (!Res.isInvalid())
5596 Res = ConvertMemberDefaultInitExpression(FD: Field, InitExpr: Res.get(), InitLoc: Loc);
5597 if (Res.isInvalid()) {
5598 Field->setInvalidDecl();
5599 return ExprError();
5600 }
5601 Init = Res.get();
5602 }
5603
5604 if (Field->getInClassInitializer()) {
5605 Expr *E = Init ? Init : Field->getInClassInitializer();
5606 if (!NestedDefaultChecking)
5607 runWithSufficientStackSpace(Loc, Fn: [&] {
5608 MarkDeclarationsReferencedInExpr(E, /*SkipLocalVariables=*/false);
5609 });
5610 // C++11 [class.base.init]p7:
5611 // The initialization of each base and member constitutes a
5612 // full-expression.
5613 ExprResult Res = ActOnFinishFullExpr(Expr: E, /*DiscardedValue=*/false);
5614 if (Res.isInvalid()) {
5615 Field->setInvalidDecl();
5616 return ExprError();
5617 }
5618 Init = Res.get();
5619
5620 return CXXDefaultInitExpr::Create(Ctx: Context, Loc: InitializationContext->Loc,
5621 Field, UsedContext: InitializationContext->Context,
5622 RewrittenInitExpr: Init);
5623 }
5624
5625 // DR1351:
5626 // If the brace-or-equal-initializer of a non-static data member
5627 // invokes a defaulted default constructor of its class or of an
5628 // enclosing class in a potentially evaluated subexpression, the
5629 // program is ill-formed.
5630 //
5631 // This resolution is unworkable: the exception specification of the
5632 // default constructor can be needed in an unevaluated context, in
5633 // particular, in the operand of a noexcept-expression, and we can be
5634 // unable to compute an exception specification for an enclosed class.
5635 //
5636 // Any attempt to resolve the exception specification of a defaulted default
5637 // constructor before the initializer is lexically complete will ultimately
5638 // come here at which point we can diagnose it.
5639 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
5640 Diag(Loc, DiagID: diag::err_default_member_initializer_not_yet_parsed)
5641 << OutermostClass << Field;
5642 Diag(Loc: Field->getEndLoc(),
5643 DiagID: diag::note_default_member_initializer_not_yet_parsed);
5644 // Recover by marking the field invalid, unless we're in a SFINAE context.
5645 if (!isSFINAEContext())
5646 Field->setInvalidDecl();
5647 return ExprError();
5648}
5649
5650Sema::VariadicCallType
5651Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
5652 Expr *Fn) {
5653 if (Proto && Proto->isVariadic()) {
5654 if (isa_and_nonnull<CXXConstructorDecl>(Val: FDecl))
5655 return VariadicConstructor;
5656 else if (Fn && Fn->getType()->isBlockPointerType())
5657 return VariadicBlock;
5658 else if (FDecl) {
5659 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Val: FDecl))
5660 if (Method->isInstance())
5661 return VariadicMethod;
5662 } else if (Fn && Fn->getType() == Context.BoundMemberTy)
5663 return VariadicMethod;
5664 return VariadicFunction;
5665 }
5666 return VariadicDoesNotApply;
5667}
5668
5669namespace {
5670class FunctionCallCCC final : public FunctionCallFilterCCC {
5671public:
5672 FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
5673 unsigned NumArgs, MemberExpr *ME)
5674 : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
5675 FunctionName(FuncName) {}
5676
5677 bool ValidateCandidate(const TypoCorrection &candidate) override {
5678 if (!candidate.getCorrectionSpecifier() ||
5679 candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
5680 return false;
5681 }
5682
5683 return FunctionCallFilterCCC::ValidateCandidate(candidate);
5684 }
5685
5686 std::unique_ptr<CorrectionCandidateCallback> clone() override {
5687 return std::make_unique<FunctionCallCCC>(args&: *this);
5688 }
5689
5690private:
5691 const IdentifierInfo *const FunctionName;
5692};
5693}
5694
5695static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
5696 FunctionDecl *FDecl,
5697 ArrayRef<Expr *> Args) {
5698 MemberExpr *ME = dyn_cast<MemberExpr>(Val: Fn);
5699 DeclarationName FuncName = FDecl->getDeclName();
5700 SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
5701
5702 FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
5703 if (TypoCorrection Corrected = S.CorrectTypo(
5704 Typo: DeclarationNameInfo(FuncName, NameLoc), LookupKind: Sema::LookupOrdinaryName,
5705 S: S.getScopeForContext(Ctx: S.CurContext), SS: nullptr, CCC,
5706 Mode: Sema::CTK_ErrorRecovery)) {
5707 if (NamedDecl *ND = Corrected.getFoundDecl()) {
5708 if (Corrected.isOverloaded()) {
5709 OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
5710 OverloadCandidateSet::iterator Best;
5711 for (NamedDecl *CD : Corrected) {
5712 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: CD))
5713 S.AddOverloadCandidate(Function: FD, FoundDecl: DeclAccessPair::make(D: FD, AS: AS_none), Args,
5714 CandidateSet&: OCS);
5715 }
5716 switch (OCS.BestViableFunction(S, Loc: NameLoc, Best)) {
5717 case OR_Success:
5718 ND = Best->FoundDecl;
5719 Corrected.setCorrectionDecl(ND);
5720 break;
5721 default:
5722 break;
5723 }
5724 }
5725 ND = ND->getUnderlyingDecl();
5726 if (isa<ValueDecl>(Val: ND) || isa<FunctionTemplateDecl>(Val: ND))
5727 return Corrected;
5728 }
5729 }
5730 return TypoCorrection();
5731}
5732
5733// [C++26][[expr.unary.op]/p4
5734// A pointer to member is only formed when an explicit &
5735// is used and its operand is a qualified-id not enclosed in parentheses.
5736static bool isParenthetizedAndQualifiedAddressOfExpr(Expr *Fn) {
5737 if (!isa<ParenExpr>(Val: Fn))
5738 return false;
5739
5740 Fn = Fn->IgnoreParens();
5741
5742 auto *UO = dyn_cast<UnaryOperator>(Val: Fn);
5743 if (!UO || UO->getOpcode() != clang::UO_AddrOf)
5744 return false;
5745 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: UO->getSubExpr()->IgnoreParens())) {
5746 return DRE->hasQualifier();
5747 }
5748 if (auto *OVL = dyn_cast<OverloadExpr>(Val: UO->getSubExpr()->IgnoreParens()))
5749 return OVL->getQualifier();
5750 return false;
5751}
5752
5753bool
5754Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5755 FunctionDecl *FDecl,
5756 const FunctionProtoType *Proto,
5757 ArrayRef<Expr *> Args,
5758 SourceLocation RParenLoc,
5759 bool IsExecConfig) {
5760 // Bail out early if calling a builtin with custom typechecking.
5761 if (FDecl)
5762 if (unsigned ID = FDecl->getBuiltinID())
5763 if (Context.BuiltinInfo.hasCustomTypechecking(ID))
5764 return false;
5765
5766 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
5767 // assignment, to the types of the corresponding parameter, ...
5768
5769 bool AddressOf = isParenthetizedAndQualifiedAddressOfExpr(Fn);
5770 bool HasExplicitObjectParameter =
5771 !AddressOf && FDecl && FDecl->hasCXXExplicitFunctionObjectParameter();
5772 unsigned ExplicitObjectParameterOffset = HasExplicitObjectParameter ? 1 : 0;
5773 unsigned NumParams = Proto->getNumParams();
5774 bool Invalid = false;
5775 unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
5776 unsigned FnKind = Fn->getType()->isBlockPointerType()
5777 ? 1 /* block */
5778 : (IsExecConfig ? 3 /* kernel function (exec config) */
5779 : 0 /* function */);
5780
5781 // If too few arguments are available (and we don't have default
5782 // arguments for the remaining parameters), don't make the call.
5783 if (Args.size() < NumParams) {
5784 if (Args.size() < MinArgs) {
5785 TypoCorrection TC;
5786 if (FDecl && (TC = TryTypoCorrectionForCall(S&: *this, Fn, FDecl, Args))) {
5787 unsigned diag_id =
5788 MinArgs == NumParams && !Proto->isVariadic()
5789 ? diag::err_typecheck_call_too_few_args_suggest
5790 : diag::err_typecheck_call_too_few_args_at_least_suggest;
5791 diagnoseTypo(
5792 Correction: TC, TypoDiag: PDiag(DiagID: diag_id)
5793 << FnKind << MinArgs - ExplicitObjectParameterOffset
5794 << static_cast<unsigned>(Args.size()) -
5795 ExplicitObjectParameterOffset
5796 << HasExplicitObjectParameter << TC.getCorrectionRange());
5797 } else if (MinArgs - ExplicitObjectParameterOffset == 1 && FDecl &&
5798 FDecl->getParamDecl(i: ExplicitObjectParameterOffset)
5799 ->getDeclName())
5800 Diag(Loc: RParenLoc,
5801 DiagID: MinArgs == NumParams && !Proto->isVariadic()
5802 ? diag::err_typecheck_call_too_few_args_one
5803 : diag::err_typecheck_call_too_few_args_at_least_one)
5804 << FnKind << FDecl->getParamDecl(i: ExplicitObjectParameterOffset)
5805 << HasExplicitObjectParameter << Fn->getSourceRange();
5806 else
5807 Diag(Loc: RParenLoc, DiagID: MinArgs == NumParams && !Proto->isVariadic()
5808 ? diag::err_typecheck_call_too_few_args
5809 : diag::err_typecheck_call_too_few_args_at_least)
5810 << FnKind << MinArgs - ExplicitObjectParameterOffset
5811 << static_cast<unsigned>(Args.size()) -
5812 ExplicitObjectParameterOffset
5813 << HasExplicitObjectParameter << Fn->getSourceRange();
5814
5815 // Emit the location of the prototype.
5816 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5817 Diag(Loc: FDecl->getLocation(), DiagID: diag::note_callee_decl)
5818 << FDecl << FDecl->getParametersSourceRange();
5819
5820 return true;
5821 }
5822 // We reserve space for the default arguments when we create
5823 // the call expression, before calling ConvertArgumentsForCall.
5824 assert((Call->getNumArgs() == NumParams) &&
5825 "We should have reserved space for the default arguments before!");
5826 }
5827
5828 // If too many are passed and not variadic, error on the extras and drop
5829 // them.
5830 if (Args.size() > NumParams) {
5831 if (!Proto->isVariadic()) {
5832 TypoCorrection TC;
5833 if (FDecl && (TC = TryTypoCorrectionForCall(S&: *this, Fn, FDecl, Args))) {
5834 unsigned diag_id =
5835 MinArgs == NumParams && !Proto->isVariadic()
5836 ? diag::err_typecheck_call_too_many_args_suggest
5837 : diag::err_typecheck_call_too_many_args_at_most_suggest;
5838 diagnoseTypo(
5839 Correction: TC, TypoDiag: PDiag(DiagID: diag_id)
5840 << FnKind << NumParams - ExplicitObjectParameterOffset
5841 << static_cast<unsigned>(Args.size()) -
5842 ExplicitObjectParameterOffset
5843 << HasExplicitObjectParameter << TC.getCorrectionRange());
5844 } else if (NumParams - ExplicitObjectParameterOffset == 1 && FDecl &&
5845 FDecl->getParamDecl(i: ExplicitObjectParameterOffset)
5846 ->getDeclName())
5847 Diag(Loc: Args[NumParams]->getBeginLoc(),
5848 DiagID: MinArgs == NumParams
5849 ? diag::err_typecheck_call_too_many_args_one
5850 : diag::err_typecheck_call_too_many_args_at_most_one)
5851 << FnKind << FDecl->getParamDecl(i: ExplicitObjectParameterOffset)
5852 << static_cast<unsigned>(Args.size()) -
5853 ExplicitObjectParameterOffset
5854 << HasExplicitObjectParameter << Fn->getSourceRange()
5855 << SourceRange(Args[NumParams]->getBeginLoc(),
5856 Args.back()->getEndLoc());
5857 else
5858 Diag(Loc: Args[NumParams]->getBeginLoc(),
5859 DiagID: MinArgs == NumParams
5860 ? diag::err_typecheck_call_too_many_args
5861 : diag::err_typecheck_call_too_many_args_at_most)
5862 << FnKind << NumParams - ExplicitObjectParameterOffset
5863 << static_cast<unsigned>(Args.size()) -
5864 ExplicitObjectParameterOffset
5865 << HasExplicitObjectParameter << Fn->getSourceRange()
5866 << SourceRange(Args[NumParams]->getBeginLoc(),
5867 Args.back()->getEndLoc());
5868
5869 // Emit the location of the prototype.
5870 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5871 Diag(Loc: FDecl->getLocation(), DiagID: diag::note_callee_decl)
5872 << FDecl << FDecl->getParametersSourceRange();
5873
5874 // This deletes the extra arguments.
5875 Call->shrinkNumArgs(NewNumArgs: NumParams);
5876 return true;
5877 }
5878 }
5879 SmallVector<Expr *, 8> AllArgs;
5880 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
5881
5882 Invalid = GatherArgumentsForCall(CallLoc: Call->getBeginLoc(), FDecl, Proto, FirstParam: 0, Args,
5883 AllArgs, CallType);
5884 if (Invalid)
5885 return true;
5886 unsigned TotalNumArgs = AllArgs.size();
5887 for (unsigned i = 0; i < TotalNumArgs; ++i)
5888 Call->setArg(Arg: i, ArgExpr: AllArgs[i]);
5889
5890 Call->computeDependence();
5891 return false;
5892}
5893
5894bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
5895 const FunctionProtoType *Proto,
5896 unsigned FirstParam, ArrayRef<Expr *> Args,
5897 SmallVectorImpl<Expr *> &AllArgs,
5898 VariadicCallType CallType, bool AllowExplicit,
5899 bool IsListInitialization) {
5900 unsigned NumParams = Proto->getNumParams();
5901 bool Invalid = false;
5902 size_t ArgIx = 0;
5903 // Continue to check argument types (even if we have too few/many args).
5904 for (unsigned i = FirstParam; i < NumParams; i++) {
5905 QualType ProtoArgType = Proto->getParamType(i);
5906
5907 Expr *Arg;
5908 ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
5909 if (ArgIx < Args.size()) {
5910 Arg = Args[ArgIx++];
5911
5912 if (RequireCompleteType(Loc: Arg->getBeginLoc(), T: ProtoArgType,
5913 DiagID: diag::err_call_incomplete_argument, Args: Arg))
5914 return true;
5915
5916 // Strip the unbridged-cast placeholder expression off, if applicable.
5917 bool CFAudited = false;
5918 if (Arg->getType() == Context.ARCUnbridgedCastTy &&
5919 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5920 (!Param || !Param->hasAttr<CFConsumedAttr>()))
5921 Arg = ObjC().stripARCUnbridgedCast(e: Arg);
5922 else if (getLangOpts().ObjCAutoRefCount &&
5923 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5924 (!Param || !Param->hasAttr<CFConsumedAttr>()))
5925 CFAudited = true;
5926
5927 if (Proto->getExtParameterInfo(I: i).isNoEscape() &&
5928 ProtoArgType->isBlockPointerType())
5929 if (auto *BE = dyn_cast<BlockExpr>(Val: Arg->IgnoreParenNoopCasts(Ctx: Context)))
5930 BE->getBlockDecl()->setDoesNotEscape();
5931
5932 InitializedEntity Entity =
5933 Param ? InitializedEntity::InitializeParameter(Context, Parm: Param,
5934 Type: ProtoArgType)
5935 : InitializedEntity::InitializeParameter(
5936 Context, Type: ProtoArgType, Consumed: Proto->isParamConsumed(I: i));
5937
5938 // Remember that parameter belongs to a CF audited API.
5939 if (CFAudited)
5940 Entity.setParameterCFAudited();
5941
5942 ExprResult ArgE = PerformCopyInitialization(
5943 Entity, EqualLoc: SourceLocation(), Init: Arg, TopLevelOfInitList: IsListInitialization, AllowExplicit);
5944 if (ArgE.isInvalid())
5945 return true;
5946
5947 Arg = ArgE.getAs<Expr>();
5948 } else {
5949 assert(Param && "can't use default arguments without a known callee");
5950
5951 ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FD: FDecl, Param);
5952 if (ArgExpr.isInvalid())
5953 return true;
5954
5955 Arg = ArgExpr.getAs<Expr>();
5956 }
5957
5958 // Check for array bounds violations for each argument to the call. This
5959 // check only triggers warnings when the argument isn't a more complex Expr
5960 // with its own checking, such as a BinaryOperator.
5961 CheckArrayAccess(E: Arg);
5962
5963 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
5964 CheckStaticArrayArgument(CallLoc, Param, ArgExpr: Arg);
5965
5966 AllArgs.push_back(Elt: Arg);
5967 }
5968
5969 // If this is a variadic call, handle args passed through "...".
5970 if (CallType != VariadicDoesNotApply) {
5971 // Assume that extern "C" functions with variadic arguments that
5972 // return __unknown_anytype aren't *really* variadic.
5973 if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
5974 FDecl->isExternC()) {
5975 for (Expr *A : Args.slice(N: ArgIx)) {
5976 QualType paramType; // ignored
5977 ExprResult arg = checkUnknownAnyArg(callLoc: CallLoc, result: A, paramType);
5978 Invalid |= arg.isInvalid();
5979 AllArgs.push_back(Elt: arg.get());
5980 }
5981
5982 // Otherwise do argument promotion, (C99 6.5.2.2p7).
5983 } else {
5984 for (Expr *A : Args.slice(N: ArgIx)) {
5985 ExprResult Arg = DefaultVariadicArgumentPromotion(E: A, CT: CallType, FDecl);
5986 Invalid |= Arg.isInvalid();
5987 AllArgs.push_back(Elt: Arg.get());
5988 }
5989 }
5990
5991 // Check for array bounds violations.
5992 for (Expr *A : Args.slice(N: ArgIx))
5993 CheckArrayAccess(E: A);
5994 }
5995 return Invalid;
5996}
5997
5998static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
5999 TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
6000 if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
6001 TL = DTL.getOriginalLoc();
6002 if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
6003 S.Diag(Loc: PVD->getLocation(), DiagID: diag::note_callee_static_array)
6004 << ATL.getLocalSourceRange();
6005}
6006
6007void
6008Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
6009 ParmVarDecl *Param,
6010 const Expr *ArgExpr) {
6011 // Static array parameters are not supported in C++.
6012 if (!Param || getLangOpts().CPlusPlus)
6013 return;
6014
6015 QualType OrigTy = Param->getOriginalType();
6016
6017 const ArrayType *AT = Context.getAsArrayType(T: OrigTy);
6018 if (!AT || AT->getSizeModifier() != ArraySizeModifier::Static)
6019 return;
6020
6021 if (ArgExpr->isNullPointerConstant(Ctx&: Context,
6022 NPC: Expr::NPC_NeverValueDependent)) {
6023 Diag(Loc: CallLoc, DiagID: diag::warn_null_arg) << ArgExpr->getSourceRange();
6024 DiagnoseCalleeStaticArrayParam(S&: *this, PVD: Param);
6025 return;
6026 }
6027
6028 const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(Val: AT);
6029 if (!CAT)
6030 return;
6031
6032 const ConstantArrayType *ArgCAT =
6033 Context.getAsConstantArrayType(T: ArgExpr->IgnoreParenCasts()->getType());
6034 if (!ArgCAT)
6035 return;
6036
6037 if (getASTContext().hasSameUnqualifiedType(T1: CAT->getElementType(),
6038 T2: ArgCAT->getElementType())) {
6039 if (ArgCAT->getSize().ult(RHS: CAT->getSize())) {
6040 Diag(Loc: CallLoc, DiagID: diag::warn_static_array_too_small)
6041 << ArgExpr->getSourceRange() << (unsigned)ArgCAT->getZExtSize()
6042 << (unsigned)CAT->getZExtSize() << 0;
6043 DiagnoseCalleeStaticArrayParam(S&: *this, PVD: Param);
6044 }
6045 return;
6046 }
6047
6048 std::optional<CharUnits> ArgSize =
6049 getASTContext().getTypeSizeInCharsIfKnown(Ty: ArgCAT);
6050 std::optional<CharUnits> ParmSize =
6051 getASTContext().getTypeSizeInCharsIfKnown(Ty: CAT);
6052 if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6053 Diag(Loc: CallLoc, DiagID: diag::warn_static_array_too_small)
6054 << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6055 << (unsigned)ParmSize->getQuantity() << 1;
6056 DiagnoseCalleeStaticArrayParam(S&: *this, PVD: Param);
6057 }
6058}
6059
6060/// Given a function expression of unknown-any type, try to rebuild it
6061/// to have a function type.
6062static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6063
6064/// Is the given type a placeholder that we need to lower out
6065/// immediately during argument processing?
6066static bool isPlaceholderToRemoveAsArg(QualType type) {
6067 // Placeholders are never sugared.
6068 const BuiltinType *placeholder = dyn_cast<BuiltinType>(Val&: type);
6069 if (!placeholder) return false;
6070
6071 switch (placeholder->getKind()) {
6072 // Ignore all the non-placeholder types.
6073#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6074 case BuiltinType::Id:
6075#include "clang/Basic/OpenCLImageTypes.def"
6076#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6077 case BuiltinType::Id:
6078#include "clang/Basic/OpenCLExtensionTypes.def"
6079 // In practice we'll never use this, since all SVE types are sugared
6080 // via TypedefTypes rather than exposed directly as BuiltinTypes.
6081#define SVE_TYPE(Name, Id, SingletonId) \
6082 case BuiltinType::Id:
6083#include "clang/Basic/AArch64SVEACLETypes.def"
6084#define PPC_VECTOR_TYPE(Name, Id, Size) \
6085 case BuiltinType::Id:
6086#include "clang/Basic/PPCTypes.def"
6087#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6088#include "clang/Basic/RISCVVTypes.def"
6089#define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6090#include "clang/Basic/WebAssemblyReferenceTypes.def"
6091#define AMDGPU_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6092#include "clang/Basic/AMDGPUTypes.def"
6093#define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6094#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6095#include "clang/AST/BuiltinTypes.def"
6096 return false;
6097
6098 case BuiltinType::UnresolvedTemplate:
6099 // We cannot lower out overload sets; they might validly be resolved
6100 // by the call machinery.
6101 case BuiltinType::Overload:
6102 return false;
6103
6104 // Unbridged casts in ARC can be handled in some call positions and
6105 // should be left in place.
6106 case BuiltinType::ARCUnbridgedCast:
6107 return false;
6108
6109 // Pseudo-objects should be converted as soon as possible.
6110 case BuiltinType::PseudoObject:
6111 return true;
6112
6113 // The debugger mode could theoretically but currently does not try
6114 // to resolve unknown-typed arguments based on known parameter types.
6115 case BuiltinType::UnknownAny:
6116 return true;
6117
6118 // These are always invalid as call arguments and should be reported.
6119 case BuiltinType::BoundMember:
6120 case BuiltinType::BuiltinFn:
6121 case BuiltinType::IncompleteMatrixIdx:
6122 case BuiltinType::ArraySection:
6123 case BuiltinType::OMPArrayShaping:
6124 case BuiltinType::OMPIterator:
6125 return true;
6126
6127 }
6128 llvm_unreachable("bad builtin type kind");
6129}
6130
6131bool Sema::CheckArgsForPlaceholders(MultiExprArg args) {
6132 // Apply this processing to all the arguments at once instead of
6133 // dying at the first failure.
6134 bool hasInvalid = false;
6135 for (size_t i = 0, e = args.size(); i != e; i++) {
6136 if (isPlaceholderToRemoveAsArg(type: args[i]->getType())) {
6137 ExprResult result = CheckPlaceholderExpr(E: args[i]);
6138 if (result.isInvalid()) hasInvalid = true;
6139 else args[i] = result.get();
6140 }
6141 }
6142 return hasInvalid;
6143}
6144
6145/// If a builtin function has a pointer argument with no explicit address
6146/// space, then it should be able to accept a pointer to any address
6147/// space as input. In order to do this, we need to replace the
6148/// standard builtin declaration with one that uses the same address space
6149/// as the call.
6150///
6151/// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6152/// it does not contain any pointer arguments without
6153/// an address space qualifer. Otherwise the rewritten
6154/// FunctionDecl is returned.
6155/// TODO: Handle pointer return types.
6156static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6157 FunctionDecl *FDecl,
6158 MultiExprArg ArgExprs) {
6159
6160 QualType DeclType = FDecl->getType();
6161 const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Val&: DeclType);
6162
6163 if (!Context.BuiltinInfo.hasPtrArgsOrResult(ID: FDecl->getBuiltinID()) || !FT ||
6164 ArgExprs.size() < FT->getNumParams())
6165 return nullptr;
6166
6167 bool NeedsNewDecl = false;
6168 unsigned i = 0;
6169 SmallVector<QualType, 8> OverloadParams;
6170
6171 for (QualType ParamType : FT->param_types()) {
6172
6173 // Convert array arguments to pointer to simplify type lookup.
6174 ExprResult ArgRes =
6175 Sema->DefaultFunctionArrayLvalueConversion(E: ArgExprs[i++]);
6176 if (ArgRes.isInvalid())
6177 return nullptr;
6178 Expr *Arg = ArgRes.get();
6179 QualType ArgType = Arg->getType();
6180 if (!ParamType->isPointerType() || ParamType.hasAddressSpace() ||
6181 !ArgType->isPointerType() ||
6182 !ArgType->getPointeeType().hasAddressSpace() ||
6183 isPtrSizeAddressSpace(AS: ArgType->getPointeeType().getAddressSpace())) {
6184 OverloadParams.push_back(Elt: ParamType);
6185 continue;
6186 }
6187
6188 QualType PointeeType = ParamType->getPointeeType();
6189 if (PointeeType.hasAddressSpace())
6190 continue;
6191
6192 NeedsNewDecl = true;
6193 LangAS AS = ArgType->getPointeeType().getAddressSpace();
6194
6195 PointeeType = Context.getAddrSpaceQualType(T: PointeeType, AddressSpace: AS);
6196 OverloadParams.push_back(Elt: Context.getPointerType(T: PointeeType));
6197 }
6198
6199 if (!NeedsNewDecl)
6200 return nullptr;
6201
6202 FunctionProtoType::ExtProtoInfo EPI;
6203 EPI.Variadic = FT->isVariadic();
6204 QualType OverloadTy = Context.getFunctionType(ResultTy: FT->getReturnType(),
6205 Args: OverloadParams, EPI);
6206 DeclContext *Parent = FDecl->getParent();
6207 FunctionDecl *OverloadDecl = FunctionDecl::Create(
6208 C&: Context, DC: Parent, StartLoc: FDecl->getLocation(), NLoc: FDecl->getLocation(),
6209 N: FDecl->getIdentifier(), T: OverloadTy,
6210 /*TInfo=*/nullptr, SC: SC_Extern, UsesFPIntrin: Sema->getCurFPFeatures().isFPConstrained(),
6211 isInlineSpecified: false,
6212 /*hasPrototype=*/hasWrittenPrototype: true);
6213 SmallVector<ParmVarDecl*, 16> Params;
6214 FT = cast<FunctionProtoType>(Val&: OverloadTy);
6215 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6216 QualType ParamType = FT->getParamType(i);
6217 ParmVarDecl *Parm =
6218 ParmVarDecl::Create(C&: Context, DC: OverloadDecl, StartLoc: SourceLocation(),
6219 IdLoc: SourceLocation(), Id: nullptr, T: ParamType,
6220 /*TInfo=*/nullptr, S: SC_None, DefArg: nullptr);
6221 Parm->setScopeInfo(scopeDepth: 0, parameterIndex: i);
6222 Params.push_back(Elt: Parm);
6223 }
6224 OverloadDecl->setParams(Params);
6225 Sema->mergeDeclAttributes(New: OverloadDecl, Old: FDecl);
6226 return OverloadDecl;
6227}
6228
6229static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6230 FunctionDecl *Callee,
6231 MultiExprArg ArgExprs) {
6232 // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6233 // similar attributes) really don't like it when functions are called with an
6234 // invalid number of args.
6235 if (S.TooManyArguments(NumParams: Callee->getNumParams(), NumArgs: ArgExprs.size(),
6236 /*PartialOverloading=*/false) &&
6237 !Callee->isVariadic())
6238 return;
6239 if (Callee->getMinRequiredArguments() > ArgExprs.size())
6240 return;
6241
6242 if (const EnableIfAttr *Attr =
6243 S.CheckEnableIf(Function: Callee, CallLoc: Fn->getBeginLoc(), Args: ArgExprs, MissingImplicitThis: true)) {
6244 S.Diag(Loc: Fn->getBeginLoc(),
6245 DiagID: isa<CXXMethodDecl>(Val: Callee)
6246 ? diag::err_ovl_no_viable_member_function_in_call
6247 : diag::err_ovl_no_viable_function_in_call)
6248 << Callee << Callee->getSourceRange();
6249 S.Diag(Loc: Callee->getLocation(),
6250 DiagID: diag::note_ovl_candidate_disabled_by_function_cond_attr)
6251 << Attr->getCond()->getSourceRange() << Attr->getMessage();
6252 return;
6253 }
6254}
6255
6256static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6257 const UnresolvedMemberExpr *const UME, Sema &S) {
6258
6259 const auto GetFunctionLevelDCIfCXXClass =
6260 [](Sema &S) -> const CXXRecordDecl * {
6261 const DeclContext *const DC = S.getFunctionLevelDeclContext();
6262 if (!DC || !DC->getParent())
6263 return nullptr;
6264
6265 // If the call to some member function was made from within a member
6266 // function body 'M' return return 'M's parent.
6267 if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: DC))
6268 return MD->getParent()->getCanonicalDecl();
6269 // else the call was made from within a default member initializer of a
6270 // class, so return the class.
6271 if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: DC))
6272 return RD->getCanonicalDecl();
6273 return nullptr;
6274 };
6275 // If our DeclContext is neither a member function nor a class (in the
6276 // case of a lambda in a default member initializer), we can't have an
6277 // enclosing 'this'.
6278
6279 const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
6280 if (!CurParentClass)
6281 return false;
6282
6283 // The naming class for implicit member functions call is the class in which
6284 // name lookup starts.
6285 const CXXRecordDecl *const NamingClass =
6286 UME->getNamingClass()->getCanonicalDecl();
6287 assert(NamingClass && "Must have naming class even for implicit access");
6288
6289 // If the unresolved member functions were found in a 'naming class' that is
6290 // related (either the same or derived from) to the class that contains the
6291 // member function that itself contained the implicit member access.
6292
6293 return CurParentClass == NamingClass ||
6294 CurParentClass->isDerivedFrom(Base: NamingClass);
6295}
6296
6297static void
6298tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6299 Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
6300
6301 if (!UME)
6302 return;
6303
6304 LambdaScopeInfo *const CurLSI = S.getCurLambda();
6305 // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
6306 // already been captured, or if this is an implicit member function call (if
6307 // it isn't, an attempt to capture 'this' should already have been made).
6308 if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
6309 !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
6310 return;
6311
6312 // Check if the naming class in which the unresolved members were found is
6313 // related (same as or is a base of) to the enclosing class.
6314
6315 if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
6316 return;
6317
6318
6319 DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
6320 // If the enclosing function is not dependent, then this lambda is
6321 // capture ready, so if we can capture this, do so.
6322 if (!EnclosingFunctionCtx->isDependentContext()) {
6323 // If the current lambda and all enclosing lambdas can capture 'this' -
6324 // then go ahead and capture 'this' (since our unresolved overload set
6325 // contains at least one non-static member function).
6326 if (!S.CheckCXXThisCapture(Loc: CallLoc, /*Explcit*/ Explicit: false, /*Diagnose*/ BuildAndDiagnose: false))
6327 S.CheckCXXThisCapture(Loc: CallLoc);
6328 } else if (S.CurContext->isDependentContext()) {
6329 // ... since this is an implicit member reference, that might potentially
6330 // involve a 'this' capture, mark 'this' for potential capture in
6331 // enclosing lambdas.
6332 if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
6333 CurLSI->addPotentialThisCapture(Loc: CallLoc);
6334 }
6335}
6336
6337// Once a call is fully resolved, warn for unqualified calls to specific
6338// C++ standard functions, like move and forward.
6339static void DiagnosedUnqualifiedCallsToStdFunctions(Sema &S,
6340 const CallExpr *Call) {
6341 // We are only checking unary move and forward so exit early here.
6342 if (Call->getNumArgs() != 1)
6343 return;
6344
6345 const Expr *E = Call->getCallee()->IgnoreParenImpCasts();
6346 if (!E || isa<UnresolvedLookupExpr>(Val: E))
6347 return;
6348 const DeclRefExpr *DRE = dyn_cast_if_present<DeclRefExpr>(Val: E);
6349 if (!DRE || !DRE->getLocation().isValid())
6350 return;
6351
6352 if (DRE->getQualifier())
6353 return;
6354
6355 const FunctionDecl *FD = Call->getDirectCallee();
6356 if (!FD)
6357 return;
6358
6359 // Only warn for some functions deemed more frequent or problematic.
6360 unsigned BuiltinID = FD->getBuiltinID();
6361 if (BuiltinID != Builtin::BImove && BuiltinID != Builtin::BIforward)
6362 return;
6363
6364 S.Diag(Loc: DRE->getLocation(), DiagID: diag::warn_unqualified_call_to_std_cast_function)
6365 << FD->getQualifiedNameAsString()
6366 << FixItHint::CreateInsertion(InsertionLoc: DRE->getLocation(), Code: "std::");
6367}
6368
6369ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6370 MultiExprArg ArgExprs, SourceLocation RParenLoc,
6371 Expr *ExecConfig) {
6372 ExprResult Call =
6373 BuildCallExpr(S: Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6374 /*IsExecConfig=*/false, /*AllowRecovery=*/true);
6375 if (Call.isInvalid())
6376 return Call;
6377
6378 // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
6379 // language modes.
6380 if (const auto *ULE = dyn_cast<UnresolvedLookupExpr>(Val: Fn);
6381 ULE && ULE->hasExplicitTemplateArgs() &&
6382 ULE->decls_begin() == ULE->decls_end()) {
6383 Diag(Loc: Fn->getExprLoc(), DiagID: getLangOpts().CPlusPlus20
6384 ? diag::warn_cxx17_compat_adl_only_template_id
6385 : diag::ext_adl_only_template_id)
6386 << ULE->getName();
6387 }
6388
6389 if (LangOpts.OpenMP)
6390 Call = OpenMP().ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
6391 ExecConfig);
6392 if (LangOpts.CPlusPlus) {
6393 if (const auto *CE = dyn_cast<CallExpr>(Val: Call.get()))
6394 DiagnosedUnqualifiedCallsToStdFunctions(S&: *this, Call: CE);
6395
6396 // If we previously found that the id-expression of this call refers to a
6397 // consteval function but the call is dependent, we should not treat is an
6398 // an invalid immediate call.
6399 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: Fn->IgnoreParens());
6400 DRE && Call.get()->isValueDependent()) {
6401 currentEvaluationContext().ReferenceToConsteval.erase(Ptr: DRE);
6402 }
6403 }
6404 return Call;
6405}
6406
6407ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6408 MultiExprArg ArgExprs, SourceLocation RParenLoc,
6409 Expr *ExecConfig, bool IsExecConfig,
6410 bool AllowRecovery) {
6411 // Since this might be a postfix expression, get rid of ParenListExprs.
6412 ExprResult Result = MaybeConvertParenListExprToParenExpr(S: Scope, ME: Fn);
6413 if (Result.isInvalid()) return ExprError();
6414 Fn = Result.get();
6415
6416 if (CheckArgsForPlaceholders(args: ArgExprs))
6417 return ExprError();
6418
6419 if (getLangOpts().CPlusPlus) {
6420 // If this is a pseudo-destructor expression, build the call immediately.
6421 if (isa<CXXPseudoDestructorExpr>(Val: Fn)) {
6422 if (!ArgExprs.empty()) {
6423 // Pseudo-destructor calls should not have any arguments.
6424 Diag(Loc: Fn->getBeginLoc(), DiagID: diag::err_pseudo_dtor_call_with_args)
6425 << FixItHint::CreateRemoval(
6426 RemoveRange: SourceRange(ArgExprs.front()->getBeginLoc(),
6427 ArgExprs.back()->getEndLoc()));
6428 }
6429
6430 return CallExpr::Create(Ctx: Context, Fn, /*Args=*/{}, Ty: Context.VoidTy,
6431 VK: VK_PRValue, RParenLoc, FPFeatures: CurFPFeatureOverrides());
6432 }
6433 if (Fn->getType() == Context.PseudoObjectTy) {
6434 ExprResult result = CheckPlaceholderExpr(E: Fn);
6435 if (result.isInvalid()) return ExprError();
6436 Fn = result.get();
6437 }
6438
6439 // Determine whether this is a dependent call inside a C++ template,
6440 // in which case we won't do any semantic analysis now.
6441 if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(Exprs: ArgExprs)) {
6442 if (ExecConfig) {
6443 return CUDAKernelCallExpr::Create(Ctx: Context, Fn,
6444 Config: cast<CallExpr>(Val: ExecConfig), Args: ArgExprs,
6445 Ty: Context.DependentTy, VK: VK_PRValue,
6446 RP: RParenLoc, FPFeatures: CurFPFeatureOverrides());
6447 } else {
6448
6449 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6450 S&: *this, UME: dyn_cast<UnresolvedMemberExpr>(Val: Fn->IgnoreParens()),
6451 CallLoc: Fn->getBeginLoc());
6452
6453 return CallExpr::Create(Ctx: Context, Fn, Args: ArgExprs, Ty: Context.DependentTy,
6454 VK: VK_PRValue, RParenLoc, FPFeatures: CurFPFeatureOverrides());
6455 }
6456 }
6457
6458 // Determine whether this is a call to an object (C++ [over.call.object]).
6459 if (Fn->getType()->isRecordType())
6460 return BuildCallToObjectOfClassType(S: Scope, Object: Fn, LParenLoc, Args: ArgExprs,
6461 RParenLoc);
6462
6463 if (Fn->getType() == Context.UnknownAnyTy) {
6464 ExprResult result = rebuildUnknownAnyFunction(S&: *this, fn: Fn);
6465 if (result.isInvalid()) return ExprError();
6466 Fn = result.get();
6467 }
6468
6469 if (Fn->getType() == Context.BoundMemberTy) {
6470 return BuildCallToMemberFunction(S: Scope, MemExpr: Fn, LParenLoc, Args: ArgExprs,
6471 RParenLoc, ExecConfig, IsExecConfig,
6472 AllowRecovery);
6473 }
6474 }
6475
6476 // Check for overloaded calls. This can happen even in C due to extensions.
6477 if (Fn->getType() == Context.OverloadTy) {
6478 OverloadExpr::FindResult find = OverloadExpr::find(E: Fn);
6479
6480 // We aren't supposed to apply this logic if there's an '&' involved.
6481 if (!find.HasFormOfMemberPointer || find.IsAddressOfOperandWithParen) {
6482 if (Expr::hasAnyTypeDependentArguments(Exprs: ArgExprs))
6483 return CallExpr::Create(Ctx: Context, Fn, Args: ArgExprs, Ty: Context.DependentTy,
6484 VK: VK_PRValue, RParenLoc, FPFeatures: CurFPFeatureOverrides());
6485 OverloadExpr *ovl = find.Expression;
6486 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Val: ovl))
6487 return BuildOverloadedCallExpr(
6488 S: Scope, Fn, ULE, LParenLoc, Args: ArgExprs, RParenLoc, ExecConfig,
6489 /*AllowTypoCorrection=*/true, CalleesAddressIsTaken: find.IsAddressOfOperand);
6490 return BuildCallToMemberFunction(S: Scope, MemExpr: Fn, LParenLoc, Args: ArgExprs,
6491 RParenLoc, ExecConfig, IsExecConfig,
6492 AllowRecovery);
6493 }
6494 }
6495
6496 // If we're directly calling a function, get the appropriate declaration.
6497 if (Fn->getType() == Context.UnknownAnyTy) {
6498 ExprResult result = rebuildUnknownAnyFunction(S&: *this, fn: Fn);
6499 if (result.isInvalid()) return ExprError();
6500 Fn = result.get();
6501 }
6502
6503 Expr *NakedFn = Fn->IgnoreParens();
6504
6505 bool CallingNDeclIndirectly = false;
6506 NamedDecl *NDecl = nullptr;
6507 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: NakedFn)) {
6508 if (UnOp->getOpcode() == UO_AddrOf) {
6509 CallingNDeclIndirectly = true;
6510 NakedFn = UnOp->getSubExpr()->IgnoreParens();
6511 }
6512 }
6513
6514 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: NakedFn)) {
6515 NDecl = DRE->getDecl();
6516
6517 FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Val: NDecl);
6518 if (FDecl && FDecl->getBuiltinID()) {
6519 // Rewrite the function decl for this builtin by replacing parameters
6520 // with no explicit address space with the address space of the arguments
6521 // in ArgExprs.
6522 if ((FDecl =
6523 rewriteBuiltinFunctionDecl(Sema: this, Context, FDecl, ArgExprs))) {
6524 NDecl = FDecl;
6525 Fn = DeclRefExpr::Create(
6526 Context, QualifierLoc: FDecl->getQualifierLoc(), TemplateKWLoc: SourceLocation(), D: FDecl, RefersToEnclosingVariableOrCapture: false,
6527 NameLoc: SourceLocation(), T: FDecl->getType(), VK: Fn->getValueKind(), FoundD: FDecl,
6528 TemplateArgs: nullptr, NOUR: DRE->isNonOdrUse());
6529 }
6530 }
6531 } else if (auto *ME = dyn_cast<MemberExpr>(Val: NakedFn))
6532 NDecl = ME->getMemberDecl();
6533
6534 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: NDecl)) {
6535 if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
6536 Function: FD, /*Complain=*/true, Loc: Fn->getBeginLoc()))
6537 return ExprError();
6538
6539 checkDirectCallValidity(S&: *this, Fn, Callee: FD, ArgExprs);
6540
6541 // If this expression is a call to a builtin function in HIP device
6542 // compilation, allow a pointer-type argument to default address space to be
6543 // passed as a pointer-type parameter to a non-default address space.
6544 // If Arg is declared in the default address space and Param is declared
6545 // in a non-default address space, perform an implicit address space cast to
6546 // the parameter type.
6547 if (getLangOpts().HIP && getLangOpts().CUDAIsDevice && FD &&
6548 FD->getBuiltinID()) {
6549 for (unsigned Idx = 0; Idx < ArgExprs.size() && Idx < FD->param_size();
6550 ++Idx) {
6551 ParmVarDecl *Param = FD->getParamDecl(i: Idx);
6552 if (!ArgExprs[Idx] || !Param || !Param->getType()->isPointerType() ||
6553 !ArgExprs[Idx]->getType()->isPointerType())
6554 continue;
6555
6556 auto ParamAS = Param->getType()->getPointeeType().getAddressSpace();
6557 auto ArgTy = ArgExprs[Idx]->getType();
6558 auto ArgPtTy = ArgTy->getPointeeType();
6559 auto ArgAS = ArgPtTy.getAddressSpace();
6560
6561 // Add address space cast if target address spaces are different
6562 bool NeedImplicitASC =
6563 ParamAS != LangAS::Default && // Pointer params in generic AS don't need special handling.
6564 ( ArgAS == LangAS::Default || // We do allow implicit conversion from generic AS
6565 // or from specific AS which has target AS matching that of Param.
6566 getASTContext().getTargetAddressSpace(AS: ArgAS) == getASTContext().getTargetAddressSpace(AS: ParamAS));
6567 if (!NeedImplicitASC)
6568 continue;
6569
6570 // First, ensure that the Arg is an RValue.
6571 if (ArgExprs[Idx]->isGLValue()) {
6572 ArgExprs[Idx] = ImplicitCastExpr::Create(
6573 Context, T: ArgExprs[Idx]->getType(), Kind: CK_NoOp, Operand: ArgExprs[Idx],
6574 BasePath: nullptr, Cat: VK_PRValue, FPO: FPOptionsOverride());
6575 }
6576
6577 // Construct a new arg type with address space of Param
6578 Qualifiers ArgPtQuals = ArgPtTy.getQualifiers();
6579 ArgPtQuals.setAddressSpace(ParamAS);
6580 auto NewArgPtTy =
6581 Context.getQualifiedType(T: ArgPtTy.getUnqualifiedType(), Qs: ArgPtQuals);
6582 auto NewArgTy =
6583 Context.getQualifiedType(T: Context.getPointerType(T: NewArgPtTy),
6584 Qs: ArgTy.getQualifiers());
6585
6586 // Finally perform an implicit address space cast
6587 ArgExprs[Idx] = ImpCastExprToType(E: ArgExprs[Idx], Type: NewArgTy,
6588 CK: CK_AddressSpaceConversion)
6589 .get();
6590 }
6591 }
6592 }
6593
6594 if (Context.isDependenceAllowed() &&
6595 (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(Exprs: ArgExprs))) {
6596 assert(!getLangOpts().CPlusPlus);
6597 assert((Fn->containsErrors() ||
6598 llvm::any_of(ArgExprs,
6599 [](clang::Expr *E) { return E->containsErrors(); })) &&
6600 "should only occur in error-recovery path.");
6601 return CallExpr::Create(Ctx: Context, Fn, Args: ArgExprs, Ty: Context.DependentTy,
6602 VK: VK_PRValue, RParenLoc, FPFeatures: CurFPFeatureOverrides());
6603 }
6604 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, Arg: ArgExprs, RParenLoc,
6605 Config: ExecConfig, IsExecConfig);
6606}
6607
6608Expr *Sema::BuildBuiltinCallExpr(SourceLocation Loc, Builtin::ID Id,
6609 MultiExprArg CallArgs) {
6610 StringRef Name = Context.BuiltinInfo.getName(ID: Id);
6611 LookupResult R(*this, &Context.Idents.get(Name), Loc,
6612 Sema::LookupOrdinaryName);
6613 LookupName(R, S: TUScope, /*AllowBuiltinCreation=*/true);
6614
6615 auto *BuiltInDecl = R.getAsSingle<FunctionDecl>();
6616 assert(BuiltInDecl && "failed to find builtin declaration");
6617
6618 ExprResult DeclRef =
6619 BuildDeclRefExpr(D: BuiltInDecl, Ty: BuiltInDecl->getType(), VK: VK_LValue, Loc);
6620 assert(DeclRef.isUsable() && "Builtin reference cannot fail");
6621
6622 ExprResult Call =
6623 BuildCallExpr(/*Scope=*/nullptr, Fn: DeclRef.get(), LParenLoc: Loc, ArgExprs: CallArgs, RParenLoc: Loc);
6624
6625 assert(!Call.isInvalid() && "Call to builtin cannot fail!");
6626 return Call.get();
6627}
6628
6629ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
6630 SourceLocation BuiltinLoc,
6631 SourceLocation RParenLoc) {
6632 QualType DstTy = GetTypeFromParser(Ty: ParsedDestTy);
6633 return BuildAsTypeExpr(E, DestTy: DstTy, BuiltinLoc, RParenLoc);
6634}
6635
6636ExprResult Sema::BuildAsTypeExpr(Expr *E, QualType DestTy,
6637 SourceLocation BuiltinLoc,
6638 SourceLocation RParenLoc) {
6639 ExprValueKind VK = VK_PRValue;
6640 ExprObjectKind OK = OK_Ordinary;
6641 QualType SrcTy = E->getType();
6642 if (!SrcTy->isDependentType() &&
6643 Context.getTypeSize(T: DestTy) != Context.getTypeSize(T: SrcTy))
6644 return ExprError(
6645 Diag(Loc: BuiltinLoc, DiagID: diag::err_invalid_astype_of_different_size)
6646 << DestTy << SrcTy << E->getSourceRange());
6647 return new (Context) AsTypeExpr(E, DestTy, VK, OK, BuiltinLoc, RParenLoc);
6648}
6649
6650ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
6651 SourceLocation BuiltinLoc,
6652 SourceLocation RParenLoc) {
6653 TypeSourceInfo *TInfo;
6654 GetTypeFromParser(Ty: ParsedDestTy, TInfo: &TInfo);
6655 return ConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
6656}
6657
6658ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
6659 SourceLocation LParenLoc,
6660 ArrayRef<Expr *> Args,
6661 SourceLocation RParenLoc, Expr *Config,
6662 bool IsExecConfig, ADLCallKind UsesADL) {
6663 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(Val: NDecl);
6664 unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
6665
6666 // Functions with 'interrupt' attribute cannot be called directly.
6667 if (FDecl) {
6668 if (FDecl->hasAttr<AnyX86InterruptAttr>()) {
6669 Diag(Loc: Fn->getExprLoc(), DiagID: diag::err_anyx86_interrupt_called);
6670 return ExprError();
6671 }
6672 if (FDecl->hasAttr<ARMInterruptAttr>()) {
6673 Diag(Loc: Fn->getExprLoc(), DiagID: diag::err_arm_interrupt_called);
6674 return ExprError();
6675 }
6676 }
6677
6678 // X86 interrupt handlers may only call routines with attribute
6679 // no_caller_saved_registers since there is no efficient way to
6680 // save and restore the non-GPR state.
6681 if (auto *Caller = getCurFunctionDecl()) {
6682 if (Caller->hasAttr<AnyX86InterruptAttr>() ||
6683 Caller->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) {
6684 const TargetInfo &TI = Context.getTargetInfo();
6685 bool HasNonGPRRegisters =
6686 TI.hasFeature(Feature: "sse") || TI.hasFeature(Feature: "x87") || TI.hasFeature(Feature: "mmx");
6687 if (HasNonGPRRegisters &&
6688 (!FDecl || !FDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())) {
6689 Diag(Loc: Fn->getExprLoc(), DiagID: diag::warn_anyx86_excessive_regsave)
6690 << (Caller->hasAttr<AnyX86InterruptAttr>() ? 0 : 1);
6691 if (FDecl)
6692 Diag(Loc: FDecl->getLocation(), DiagID: diag::note_callee_decl) << FDecl;
6693 }
6694 }
6695 }
6696
6697 // Promote the function operand.
6698 // We special-case function promotion here because we only allow promoting
6699 // builtin functions to function pointers in the callee of a call.
6700 ExprResult Result;
6701 QualType ResultTy;
6702 if (BuiltinID &&
6703 Fn->getType()->isSpecificBuiltinType(K: BuiltinType::BuiltinFn)) {
6704 // Extract the return type from the (builtin) function pointer type.
6705 // FIXME Several builtins still have setType in
6706 // Sema::CheckBuiltinFunctionCall. One should review their definitions in
6707 // Builtins.td to ensure they are correct before removing setType calls.
6708 QualType FnPtrTy = Context.getPointerType(T: FDecl->getType());
6709 Result = ImpCastExprToType(E: Fn, Type: FnPtrTy, CK: CK_BuiltinFnToFnPtr).get();
6710 ResultTy = FDecl->getCallResultType();
6711 } else {
6712 Result = CallExprUnaryConversions(E: Fn);
6713 ResultTy = Context.BoolTy;
6714 }
6715 if (Result.isInvalid())
6716 return ExprError();
6717 Fn = Result.get();
6718
6719 // Check for a valid function type, but only if it is not a builtin which
6720 // requires custom type checking. These will be handled by
6721 // CheckBuiltinFunctionCall below just after creation of the call expression.
6722 const FunctionType *FuncT = nullptr;
6723 if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(ID: BuiltinID)) {
6724 retry:
6725 if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
6726 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
6727 // have type pointer to function".
6728 FuncT = PT->getPointeeType()->getAs<FunctionType>();
6729 if (!FuncT)
6730 return ExprError(Diag(Loc: LParenLoc, DiagID: diag::err_typecheck_call_not_function)
6731 << Fn->getType() << Fn->getSourceRange());
6732 } else if (const BlockPointerType *BPT =
6733 Fn->getType()->getAs<BlockPointerType>()) {
6734 FuncT = BPT->getPointeeType()->castAs<FunctionType>();
6735 } else {
6736 // Handle calls to expressions of unknown-any type.
6737 if (Fn->getType() == Context.UnknownAnyTy) {
6738 ExprResult rewrite = rebuildUnknownAnyFunction(S&: *this, fn: Fn);
6739 if (rewrite.isInvalid())
6740 return ExprError();
6741 Fn = rewrite.get();
6742 goto retry;
6743 }
6744
6745 return ExprError(Diag(Loc: LParenLoc, DiagID: diag::err_typecheck_call_not_function)
6746 << Fn->getType() << Fn->getSourceRange());
6747 }
6748 }
6749
6750 // Get the number of parameters in the function prototype, if any.
6751 // We will allocate space for max(Args.size(), NumParams) arguments
6752 // in the call expression.
6753 const auto *Proto = dyn_cast_or_null<FunctionProtoType>(Val: FuncT);
6754 unsigned NumParams = Proto ? Proto->getNumParams() : 0;
6755
6756 CallExpr *TheCall;
6757 if (Config) {
6758 assert(UsesADL == ADLCallKind::NotADL &&
6759 "CUDAKernelCallExpr should not use ADL");
6760 TheCall = CUDAKernelCallExpr::Create(Ctx: Context, Fn, Config: cast<CallExpr>(Val: Config),
6761 Args, Ty: ResultTy, VK: VK_PRValue, RP: RParenLoc,
6762 FPFeatures: CurFPFeatureOverrides(), MinNumArgs: NumParams);
6763 } else {
6764 TheCall =
6765 CallExpr::Create(Ctx: Context, Fn, Args, Ty: ResultTy, VK: VK_PRValue, RParenLoc,
6766 FPFeatures: CurFPFeatureOverrides(), MinNumArgs: NumParams, UsesADL);
6767 }
6768
6769 if (!Context.isDependenceAllowed()) {
6770 // Forget about the nulled arguments since typo correction
6771 // do not handle them well.
6772 TheCall->shrinkNumArgs(NewNumArgs: Args.size());
6773 // C cannot always handle TypoExpr nodes in builtin calls and direct
6774 // function calls as their argument checking don't necessarily handle
6775 // dependent types properly, so make sure any TypoExprs have been
6776 // dealt with.
6777 ExprResult Result = CorrectDelayedTyposInExpr(E: TheCall);
6778 if (!Result.isUsable()) return ExprError();
6779 CallExpr *TheOldCall = TheCall;
6780 TheCall = dyn_cast<CallExpr>(Val: Result.get());
6781 bool CorrectedTypos = TheCall != TheOldCall;
6782 if (!TheCall) return Result;
6783 Args = llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
6784
6785 // A new call expression node was created if some typos were corrected.
6786 // However it may not have been constructed with enough storage. In this
6787 // case, rebuild the node with enough storage. The waste of space is
6788 // immaterial since this only happens when some typos were corrected.
6789 if (CorrectedTypos && Args.size() < NumParams) {
6790 if (Config)
6791 TheCall = CUDAKernelCallExpr::Create(
6792 Ctx: Context, Fn, Config: cast<CallExpr>(Val: Config), Args, Ty: ResultTy, VK: VK_PRValue,
6793 RP: RParenLoc, FPFeatures: CurFPFeatureOverrides(), MinNumArgs: NumParams);
6794 else
6795 TheCall =
6796 CallExpr::Create(Ctx: Context, Fn, Args, Ty: ResultTy, VK: VK_PRValue, RParenLoc,
6797 FPFeatures: CurFPFeatureOverrides(), MinNumArgs: NumParams, UsesADL);
6798 }
6799 // We can now handle the nulled arguments for the default arguments.
6800 TheCall->setNumArgsUnsafe(std::max<unsigned>(a: Args.size(), b: NumParams));
6801 }
6802
6803 // Bail out early if calling a builtin with custom type checking.
6804 if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(ID: BuiltinID)) {
6805 ExprResult E = CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6806 if (!E.isInvalid() && Context.BuiltinInfo.isImmediate(ID: BuiltinID))
6807 E = CheckForImmediateInvocation(E, Decl: FDecl);
6808 return E;
6809 }
6810
6811 if (getLangOpts().CUDA) {
6812 if (Config) {
6813 // CUDA: Kernel calls must be to global functions
6814 if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
6815 return ExprError(Diag(Loc: LParenLoc,DiagID: diag::err_kern_call_not_global_function)
6816 << FDecl << Fn->getSourceRange());
6817
6818 // CUDA: Kernel function must have 'void' return type
6819 if (!FuncT->getReturnType()->isVoidType() &&
6820 !FuncT->getReturnType()->getAs<AutoType>() &&
6821 !FuncT->getReturnType()->isInstantiationDependentType())
6822 return ExprError(Diag(Loc: LParenLoc, DiagID: diag::err_kern_type_not_void_return)
6823 << Fn->getType() << Fn->getSourceRange());
6824 } else {
6825 // CUDA: Calls to global functions must be configured
6826 if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
6827 return ExprError(Diag(Loc: LParenLoc, DiagID: diag::err_global_call_not_config)
6828 << FDecl << Fn->getSourceRange());
6829 }
6830 }
6831
6832 // Check for a valid return type
6833 if (CheckCallReturnType(ReturnType: FuncT->getReturnType(), Loc: Fn->getBeginLoc(), CE: TheCall,
6834 FD: FDecl))
6835 return ExprError();
6836
6837 // We know the result type of the call, set it.
6838 TheCall->setType(FuncT->getCallResultType(Context));
6839 TheCall->setValueKind(Expr::getValueKindForType(T: FuncT->getReturnType()));
6840
6841 // WebAssembly tables can't be used as arguments.
6842 if (Context.getTargetInfo().getTriple().isWasm()) {
6843 for (const Expr *Arg : Args) {
6844 if (Arg && Arg->getType()->isWebAssemblyTableType()) {
6845 return ExprError(Diag(Loc: Arg->getExprLoc(),
6846 DiagID: diag::err_wasm_table_as_function_parameter));
6847 }
6848 }
6849 }
6850
6851 if (Proto) {
6852 if (ConvertArgumentsForCall(Call: TheCall, Fn, FDecl, Proto, Args, RParenLoc,
6853 IsExecConfig))
6854 return ExprError();
6855 } else {
6856 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
6857
6858 if (FDecl) {
6859 // Check if we have too few/too many template arguments, based
6860 // on our knowledge of the function definition.
6861 const FunctionDecl *Def = nullptr;
6862 if (FDecl->hasBody(Definition&: Def) && Args.size() != Def->param_size()) {
6863 Proto = Def->getType()->getAs<FunctionProtoType>();
6864 if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
6865 Diag(Loc: RParenLoc, DiagID: diag::warn_call_wrong_number_of_arguments)
6866 << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
6867 }
6868
6869 // If the function we're calling isn't a function prototype, but we have
6870 // a function prototype from a prior declaratiom, use that prototype.
6871 if (!FDecl->hasPrototype())
6872 Proto = FDecl->getType()->getAs<FunctionProtoType>();
6873 }
6874
6875 // If we still haven't found a prototype to use but there are arguments to
6876 // the call, diagnose this as calling a function without a prototype.
6877 // However, if we found a function declaration, check to see if
6878 // -Wdeprecated-non-prototype was disabled where the function was declared.
6879 // If so, we will silence the diagnostic here on the assumption that this
6880 // interface is intentional and the user knows what they're doing. We will
6881 // also silence the diagnostic if there is a function declaration but it
6882 // was implicitly defined (the user already gets diagnostics about the
6883 // creation of the implicit function declaration, so the additional warning
6884 // is not helpful).
6885 if (!Proto && !Args.empty() &&
6886 (!FDecl || (!FDecl->isImplicit() &&
6887 !Diags.isIgnored(DiagID: diag::warn_strict_uses_without_prototype,
6888 Loc: FDecl->getLocation()))))
6889 Diag(Loc: LParenLoc, DiagID: diag::warn_strict_uses_without_prototype)
6890 << (FDecl != nullptr) << FDecl;
6891
6892 // Promote the arguments (C99 6.5.2.2p6).
6893 for (unsigned i = 0, e = Args.size(); i != e; i++) {
6894 Expr *Arg = Args[i];
6895
6896 if (Proto && i < Proto->getNumParams()) {
6897 InitializedEntity Entity = InitializedEntity::InitializeParameter(
6898 Context, Type: Proto->getParamType(i), Consumed: Proto->isParamConsumed(I: i));
6899 ExprResult ArgE =
6900 PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: Arg);
6901 if (ArgE.isInvalid())
6902 return true;
6903
6904 Arg = ArgE.getAs<Expr>();
6905
6906 } else {
6907 ExprResult ArgE = DefaultArgumentPromotion(E: Arg);
6908
6909 if (ArgE.isInvalid())
6910 return true;
6911
6912 Arg = ArgE.getAs<Expr>();
6913 }
6914
6915 if (RequireCompleteType(Loc: Arg->getBeginLoc(), T: Arg->getType(),
6916 DiagID: diag::err_call_incomplete_argument, Args: Arg))
6917 return ExprError();
6918
6919 TheCall->setArg(Arg: i, ArgExpr: Arg);
6920 }
6921 TheCall->computeDependence();
6922 }
6923
6924 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Val: FDecl))
6925 if (!isa<RequiresExprBodyDecl>(Val: CurContext) &&
6926 Method->isImplicitObjectMemberFunction())
6927 return ExprError(Diag(Loc: LParenLoc, DiagID: diag::err_member_call_without_object)
6928 << Fn->getSourceRange() << 0);
6929
6930 // Check for sentinels
6931 if (NDecl)
6932 DiagnoseSentinelCalls(D: NDecl, Loc: LParenLoc, Args);
6933
6934 // Warn for unions passing across security boundary (CMSE).
6935 if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
6936 for (unsigned i = 0, e = Args.size(); i != e; i++) {
6937 if (const auto *RT =
6938 dyn_cast<RecordType>(Val: Args[i]->getType().getCanonicalType())) {
6939 if (RT->getDecl()->isOrContainsUnion())
6940 Diag(Loc: Args[i]->getBeginLoc(), DiagID: diag::warn_cmse_nonsecure_union)
6941 << 0 << i;
6942 }
6943 }
6944 }
6945
6946 // Do special checking on direct calls to functions.
6947 if (FDecl) {
6948 if (CheckFunctionCall(FDecl, TheCall, Proto))
6949 return ExprError();
6950
6951 checkFortifiedBuiltinMemoryFunction(FD: FDecl, TheCall);
6952
6953 if (BuiltinID)
6954 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6955 } else if (NDecl) {
6956 if (CheckPointerCall(NDecl, TheCall, Proto))
6957 return ExprError();
6958 } else {
6959 if (CheckOtherCall(TheCall, Proto))
6960 return ExprError();
6961 }
6962
6963 return CheckForImmediateInvocation(E: MaybeBindToTemporary(E: TheCall), Decl: FDecl);
6964}
6965
6966ExprResult
6967Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
6968 SourceLocation RParenLoc, Expr *InitExpr) {
6969 assert(Ty && "ActOnCompoundLiteral(): missing type");
6970 assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
6971
6972 TypeSourceInfo *TInfo;
6973 QualType literalType = GetTypeFromParser(Ty, TInfo: &TInfo);
6974 if (!TInfo)
6975 TInfo = Context.getTrivialTypeSourceInfo(T: literalType);
6976
6977 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, LiteralExpr: InitExpr);
6978}
6979
6980ExprResult
6981Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
6982 SourceLocation RParenLoc, Expr *LiteralExpr) {
6983 QualType literalType = TInfo->getType();
6984
6985 if (literalType->isArrayType()) {
6986 if (RequireCompleteSizedType(
6987 Loc: LParenLoc, T: Context.getBaseElementType(QT: literalType),
6988 DiagID: diag::err_array_incomplete_or_sizeless_type,
6989 Args: SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
6990 return ExprError();
6991 if (literalType->isVariableArrayType()) {
6992 // C23 6.7.10p4: An entity of variable length array type shall not be
6993 // initialized except by an empty initializer.
6994 //
6995 // The C extension warnings are issued from ParseBraceInitializer() and
6996 // do not need to be issued here. However, we continue to issue an error
6997 // in the case there are initializers or we are compiling C++. We allow
6998 // use of VLAs in C++, but it's not clear we want to allow {} to zero
6999 // init a VLA in C++ in all cases (such as with non-trivial constructors).
7000 // FIXME: should we allow this construct in C++ when it makes sense to do
7001 // so?
7002 //
7003 // But: C99-C23 6.5.2.5 Compound literals constraint 1: The type name
7004 // shall specify an object type or an array of unknown size, but not a
7005 // variable length array type. This seems odd, as it allows 'int a[size] =
7006 // {}', but forbids 'int *a = (int[size]){}'. As this is what the standard
7007 // says, this is what's implemented here for C (except for the extension
7008 // that permits constant foldable size arrays)
7009
7010 auto diagID = LangOpts.CPlusPlus
7011 ? diag::err_variable_object_no_init
7012 : diag::err_compound_literal_with_vla_type;
7013 if (!tryToFixVariablyModifiedVarType(TInfo, T&: literalType, Loc: LParenLoc,
7014 FailedFoldDiagID: diagID))
7015 return ExprError();
7016 }
7017 } else if (!literalType->isDependentType() &&
7018 RequireCompleteType(Loc: LParenLoc, T: literalType,
7019 DiagID: diag::err_typecheck_decl_incomplete_type,
7020 Args: SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
7021 return ExprError();
7022
7023 InitializedEntity Entity
7024 = InitializedEntity::InitializeCompoundLiteralInit(TSI: TInfo);
7025 InitializationKind Kind
7026 = InitializationKind::CreateCStyleCast(StartLoc: LParenLoc,
7027 TypeRange: SourceRange(LParenLoc, RParenLoc),
7028 /*InitList=*/true);
7029 InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
7030 ExprResult Result = InitSeq.Perform(S&: *this, Entity, Kind, Args: LiteralExpr,
7031 ResultType: &literalType);
7032 if (Result.isInvalid())
7033 return ExprError();
7034 LiteralExpr = Result.get();
7035
7036 bool isFileScope = !CurContext->isFunctionOrMethod();
7037
7038 // In C, compound literals are l-values for some reason.
7039 // For GCC compatibility, in C++, file-scope array compound literals with
7040 // constant initializers are also l-values, and compound literals are
7041 // otherwise prvalues.
7042 //
7043 // (GCC also treats C++ list-initialized file-scope array prvalues with
7044 // constant initializers as l-values, but that's non-conforming, so we don't
7045 // follow it there.)
7046 //
7047 // FIXME: It would be better to handle the lvalue cases as materializing and
7048 // lifetime-extending a temporary object, but our materialized temporaries
7049 // representation only supports lifetime extension from a variable, not "out
7050 // of thin air".
7051 // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
7052 // is bound to the result of applying array-to-pointer decay to the compound
7053 // literal.
7054 // FIXME: GCC supports compound literals of reference type, which should
7055 // obviously have a value kind derived from the kind of reference involved.
7056 ExprValueKind VK =
7057 (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
7058 ? VK_PRValue
7059 : VK_LValue;
7060
7061 if (isFileScope)
7062 if (auto ILE = dyn_cast<InitListExpr>(Val: LiteralExpr))
7063 for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
7064 Expr *Init = ILE->getInit(Init: i);
7065 ILE->setInit(Init: i, expr: ConstantExpr::Create(Context, E: Init));
7066 }
7067
7068 auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
7069 VK, LiteralExpr, isFileScope);
7070 if (isFileScope) {
7071 if (!LiteralExpr->isTypeDependent() &&
7072 !LiteralExpr->isValueDependent() &&
7073 !literalType->isDependentType()) // C99 6.5.2.5p3
7074 if (CheckForConstantInitializer(Init: LiteralExpr))
7075 return ExprError();
7076 } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
7077 literalType.getAddressSpace() != LangAS::Default) {
7078 // Embedded-C extensions to C99 6.5.2.5:
7079 // "If the compound literal occurs inside the body of a function, the
7080 // type name shall not be qualified by an address-space qualifier."
7081 Diag(Loc: LParenLoc, DiagID: diag::err_compound_literal_with_address_space)
7082 << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
7083 return ExprError();
7084 }
7085
7086 if (!isFileScope && !getLangOpts().CPlusPlus) {
7087 // Compound literals that have automatic storage duration are destroyed at
7088 // the end of the scope in C; in C++, they're just temporaries.
7089
7090 // Emit diagnostics if it is or contains a C union type that is non-trivial
7091 // to destruct.
7092 if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
7093 checkNonTrivialCUnion(QT: E->getType(), Loc: E->getExprLoc(),
7094 UseContext: NTCUC_CompoundLiteral, NonTrivialKind: NTCUK_Destruct);
7095
7096 // Diagnose jumps that enter or exit the lifetime of the compound literal.
7097 if (literalType.isDestructedType()) {
7098 Cleanup.setExprNeedsCleanups(true);
7099 ExprCleanupObjects.push_back(Elt: E);
7100 getCurFunction()->setHasBranchProtectedScope();
7101 }
7102 }
7103
7104 if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
7105 E->getType().hasNonTrivialToPrimitiveCopyCUnion())
7106 checkNonTrivialCUnionInInitializer(Init: E->getInitializer(),
7107 Loc: E->getInitializer()->getExprLoc());
7108
7109 return MaybeBindToTemporary(E);
7110}
7111
7112ExprResult
7113Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7114 SourceLocation RBraceLoc) {
7115 // Only produce each kind of designated initialization diagnostic once.
7116 SourceLocation FirstDesignator;
7117 bool DiagnosedArrayDesignator = false;
7118 bool DiagnosedNestedDesignator = false;
7119 bool DiagnosedMixedDesignator = false;
7120
7121 // Check that any designated initializers are syntactically valid in the
7122 // current language mode.
7123 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7124 if (auto *DIE = dyn_cast<DesignatedInitExpr>(Val: InitArgList[I])) {
7125 if (FirstDesignator.isInvalid())
7126 FirstDesignator = DIE->getBeginLoc();
7127
7128 if (!getLangOpts().CPlusPlus)
7129 break;
7130
7131 if (!DiagnosedNestedDesignator && DIE->size() > 1) {
7132 DiagnosedNestedDesignator = true;
7133 Diag(Loc: DIE->getBeginLoc(), DiagID: diag::ext_designated_init_nested)
7134 << DIE->getDesignatorsSourceRange();
7135 }
7136
7137 for (auto &Desig : DIE->designators()) {
7138 if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
7139 DiagnosedArrayDesignator = true;
7140 Diag(Loc: Desig.getBeginLoc(), DiagID: diag::ext_designated_init_array)
7141 << Desig.getSourceRange();
7142 }
7143 }
7144
7145 if (!DiagnosedMixedDesignator &&
7146 !isa<DesignatedInitExpr>(Val: InitArgList[0])) {
7147 DiagnosedMixedDesignator = true;
7148 Diag(Loc: DIE->getBeginLoc(), DiagID: diag::ext_designated_init_mixed)
7149 << DIE->getSourceRange();
7150 Diag(Loc: InitArgList[0]->getBeginLoc(), DiagID: diag::note_designated_init_mixed)
7151 << InitArgList[0]->getSourceRange();
7152 }
7153 } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
7154 isa<DesignatedInitExpr>(Val: InitArgList[0])) {
7155 DiagnosedMixedDesignator = true;
7156 auto *DIE = cast<DesignatedInitExpr>(Val: InitArgList[0]);
7157 Diag(Loc: DIE->getBeginLoc(), DiagID: diag::ext_designated_init_mixed)
7158 << DIE->getSourceRange();
7159 Diag(Loc: InitArgList[I]->getBeginLoc(), DiagID: diag::note_designated_init_mixed)
7160 << InitArgList[I]->getSourceRange();
7161 }
7162 }
7163
7164 if (FirstDesignator.isValid()) {
7165 // Only diagnose designated initiaization as a C++20 extension if we didn't
7166 // already diagnose use of (non-C++20) C99 designator syntax.
7167 if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
7168 !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
7169 Diag(Loc: FirstDesignator, DiagID: getLangOpts().CPlusPlus20
7170 ? diag::warn_cxx17_compat_designated_init
7171 : diag::ext_cxx_designated_init);
7172 } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
7173 Diag(Loc: FirstDesignator, DiagID: diag::ext_designated_init);
7174 }
7175 }
7176
7177 return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
7178}
7179
7180ExprResult
7181Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
7182 SourceLocation RBraceLoc) {
7183 // Semantic analysis for initializers is done by ActOnDeclarator() and
7184 // CheckInitializer() - it requires knowledge of the object being initialized.
7185
7186 // Immediately handle non-overload placeholders. Overloads can be
7187 // resolved contextually, but everything else here can't.
7188 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
7189 if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
7190 ExprResult result = CheckPlaceholderExpr(E: InitArgList[I]);
7191
7192 // Ignore failures; dropping the entire initializer list because
7193 // of one failure would be terrible for indexing/etc.
7194 if (result.isInvalid()) continue;
7195
7196 InitArgList[I] = result.get();
7197 }
7198 }
7199
7200 InitListExpr *E =
7201 new (Context) InitListExpr(Context, LBraceLoc, InitArgList, RBraceLoc);
7202 E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7203 return E;
7204}
7205
7206void Sema::maybeExtendBlockObject(ExprResult &E) {
7207 assert(E.get()->getType()->isBlockPointerType());
7208 assert(E.get()->isPRValue());
7209
7210 // Only do this in an r-value context.
7211 if (!getLangOpts().ObjCAutoRefCount) return;
7212
7213 E = ImplicitCastExpr::Create(
7214 Context, T: E.get()->getType(), Kind: CK_ARCExtendBlockObject, Operand: E.get(),
7215 /*base path*/ BasePath: nullptr, Cat: VK_PRValue, FPO: FPOptionsOverride());
7216 Cleanup.setExprNeedsCleanups(true);
7217}
7218
7219CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
7220 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
7221 // Also, callers should have filtered out the invalid cases with
7222 // pointers. Everything else should be possible.
7223
7224 QualType SrcTy = Src.get()->getType();
7225 if (Context.hasSameUnqualifiedType(T1: SrcTy, T2: DestTy))
7226 return CK_NoOp;
7227
7228 switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
7229 case Type::STK_MemberPointer:
7230 llvm_unreachable("member pointer type in C");
7231
7232 case Type::STK_CPointer:
7233 case Type::STK_BlockPointer:
7234 case Type::STK_ObjCObjectPointer:
7235 switch (DestTy->getScalarTypeKind()) {
7236 case Type::STK_CPointer: {
7237 LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
7238 LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
7239 if (SrcAS != DestAS)
7240 return CK_AddressSpaceConversion;
7241 if (Context.hasCvrSimilarType(T1: SrcTy, T2: DestTy))
7242 return CK_NoOp;
7243 return CK_BitCast;
7244 }
7245 case Type::STK_BlockPointer:
7246 return (SrcKind == Type::STK_BlockPointer
7247 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
7248 case Type::STK_ObjCObjectPointer:
7249 if (SrcKind == Type::STK_ObjCObjectPointer)
7250 return CK_BitCast;
7251 if (SrcKind == Type::STK_CPointer)
7252 return CK_CPointerToObjCPointerCast;
7253 maybeExtendBlockObject(E&: Src);
7254 return CK_BlockPointerToObjCPointerCast;
7255 case Type::STK_Bool:
7256 return CK_PointerToBoolean;
7257 case Type::STK_Integral:
7258 return CK_PointerToIntegral;
7259 case Type::STK_Floating:
7260 case Type::STK_FloatingComplex:
7261 case Type::STK_IntegralComplex:
7262 case Type::STK_MemberPointer:
7263 case Type::STK_FixedPoint:
7264 llvm_unreachable("illegal cast from pointer");
7265 }
7266 llvm_unreachable("Should have returned before this");
7267
7268 case Type::STK_FixedPoint:
7269 switch (DestTy->getScalarTypeKind()) {
7270 case Type::STK_FixedPoint:
7271 return CK_FixedPointCast;
7272 case Type::STK_Bool:
7273 return CK_FixedPointToBoolean;
7274 case Type::STK_Integral:
7275 return CK_FixedPointToIntegral;
7276 case Type::STK_Floating:
7277 return CK_FixedPointToFloating;
7278 case Type::STK_IntegralComplex:
7279 case Type::STK_FloatingComplex:
7280 Diag(Loc: Src.get()->getExprLoc(),
7281 DiagID: diag::err_unimplemented_conversion_with_fixed_point_type)
7282 << DestTy;
7283 return CK_IntegralCast;
7284 case Type::STK_CPointer:
7285 case Type::STK_ObjCObjectPointer:
7286 case Type::STK_BlockPointer:
7287 case Type::STK_MemberPointer:
7288 llvm_unreachable("illegal cast to pointer type");
7289 }
7290 llvm_unreachable("Should have returned before this");
7291
7292 case Type::STK_Bool: // casting from bool is like casting from an integer
7293 case Type::STK_Integral:
7294 switch (DestTy->getScalarTypeKind()) {
7295 case Type::STK_CPointer:
7296 case Type::STK_ObjCObjectPointer:
7297 case Type::STK_BlockPointer:
7298 if (Src.get()->isNullPointerConstant(Ctx&: Context,
7299 NPC: Expr::NPC_ValueDependentIsNull))
7300 return CK_NullToPointer;
7301 return CK_IntegralToPointer;
7302 case Type::STK_Bool:
7303 return CK_IntegralToBoolean;
7304 case Type::STK_Integral:
7305 return CK_IntegralCast;
7306 case Type::STK_Floating:
7307 return CK_IntegralToFloating;
7308 case Type::STK_IntegralComplex:
7309 Src = ImpCastExprToType(E: Src.get(),
7310 Type: DestTy->castAs<ComplexType>()->getElementType(),
7311 CK: CK_IntegralCast);
7312 return CK_IntegralRealToComplex;
7313 case Type::STK_FloatingComplex:
7314 Src = ImpCastExprToType(E: Src.get(),
7315 Type: DestTy->castAs<ComplexType>()->getElementType(),
7316 CK: CK_IntegralToFloating);
7317 return CK_FloatingRealToComplex;
7318 case Type::STK_MemberPointer:
7319 llvm_unreachable("member pointer type in C");
7320 case Type::STK_FixedPoint:
7321 return CK_IntegralToFixedPoint;
7322 }
7323 llvm_unreachable("Should have returned before this");
7324
7325 case Type::STK_Floating:
7326 switch (DestTy->getScalarTypeKind()) {
7327 case Type::STK_Floating:
7328 return CK_FloatingCast;
7329 case Type::STK_Bool:
7330 return CK_FloatingToBoolean;
7331 case Type::STK_Integral:
7332 return CK_FloatingToIntegral;
7333 case Type::STK_FloatingComplex:
7334 Src = ImpCastExprToType(E: Src.get(),
7335 Type: DestTy->castAs<ComplexType>()->getElementType(),
7336 CK: CK_FloatingCast);
7337 return CK_FloatingRealToComplex;
7338 case Type::STK_IntegralComplex:
7339 Src = ImpCastExprToType(E: Src.get(),
7340 Type: DestTy->castAs<ComplexType>()->getElementType(),
7341 CK: CK_FloatingToIntegral);
7342 return CK_IntegralRealToComplex;
7343 case Type::STK_CPointer:
7344 case Type::STK_ObjCObjectPointer:
7345 case Type::STK_BlockPointer:
7346 llvm_unreachable("valid float->pointer cast?");
7347 case Type::STK_MemberPointer:
7348 llvm_unreachable("member pointer type in C");
7349 case Type::STK_FixedPoint:
7350 return CK_FloatingToFixedPoint;
7351 }
7352 llvm_unreachable("Should have returned before this");
7353
7354 case Type::STK_FloatingComplex:
7355 switch (DestTy->getScalarTypeKind()) {
7356 case Type::STK_FloatingComplex:
7357 return CK_FloatingComplexCast;
7358 case Type::STK_IntegralComplex:
7359 return CK_FloatingComplexToIntegralComplex;
7360 case Type::STK_Floating: {
7361 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7362 if (Context.hasSameType(T1: ET, T2: DestTy))
7363 return CK_FloatingComplexToReal;
7364 Src = ImpCastExprToType(E: Src.get(), Type: ET, CK: CK_FloatingComplexToReal);
7365 return CK_FloatingCast;
7366 }
7367 case Type::STK_Bool:
7368 return CK_FloatingComplexToBoolean;
7369 case Type::STK_Integral:
7370 Src = ImpCastExprToType(E: Src.get(),
7371 Type: SrcTy->castAs<ComplexType>()->getElementType(),
7372 CK: CK_FloatingComplexToReal);
7373 return CK_FloatingToIntegral;
7374 case Type::STK_CPointer:
7375 case Type::STK_ObjCObjectPointer:
7376 case Type::STK_BlockPointer:
7377 llvm_unreachable("valid complex float->pointer cast?");
7378 case Type::STK_MemberPointer:
7379 llvm_unreachable("member pointer type in C");
7380 case Type::STK_FixedPoint:
7381 Diag(Loc: Src.get()->getExprLoc(),
7382 DiagID: diag::err_unimplemented_conversion_with_fixed_point_type)
7383 << SrcTy;
7384 return CK_IntegralCast;
7385 }
7386 llvm_unreachable("Should have returned before this");
7387
7388 case Type::STK_IntegralComplex:
7389 switch (DestTy->getScalarTypeKind()) {
7390 case Type::STK_FloatingComplex:
7391 return CK_IntegralComplexToFloatingComplex;
7392 case Type::STK_IntegralComplex:
7393 return CK_IntegralComplexCast;
7394 case Type::STK_Integral: {
7395 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7396 if (Context.hasSameType(T1: ET, T2: DestTy))
7397 return CK_IntegralComplexToReal;
7398 Src = ImpCastExprToType(E: Src.get(), Type: ET, CK: CK_IntegralComplexToReal);
7399 return CK_IntegralCast;
7400 }
7401 case Type::STK_Bool:
7402 return CK_IntegralComplexToBoolean;
7403 case Type::STK_Floating:
7404 Src = ImpCastExprToType(E: Src.get(),
7405 Type: SrcTy->castAs<ComplexType>()->getElementType(),
7406 CK: CK_IntegralComplexToReal);
7407 return CK_IntegralToFloating;
7408 case Type::STK_CPointer:
7409 case Type::STK_ObjCObjectPointer:
7410 case Type::STK_BlockPointer:
7411 llvm_unreachable("valid complex int->pointer cast?");
7412 case Type::STK_MemberPointer:
7413 llvm_unreachable("member pointer type in C");
7414 case Type::STK_FixedPoint:
7415 Diag(Loc: Src.get()->getExprLoc(),
7416 DiagID: diag::err_unimplemented_conversion_with_fixed_point_type)
7417 << SrcTy;
7418 return CK_IntegralCast;
7419 }
7420 llvm_unreachable("Should have returned before this");
7421 }
7422
7423 llvm_unreachable("Unhandled scalar cast");
7424}
7425
7426static bool breakDownVectorType(QualType type, uint64_t &len,
7427 QualType &eltType) {
7428 // Vectors are simple.
7429 if (const VectorType *vecType = type->getAs<VectorType>()) {
7430 len = vecType->getNumElements();
7431 eltType = vecType->getElementType();
7432 assert(eltType->isScalarType());
7433 return true;
7434 }
7435
7436 // We allow lax conversion to and from non-vector types, but only if
7437 // they're real types (i.e. non-complex, non-pointer scalar types).
7438 if (!type->isRealType()) return false;
7439
7440 len = 1;
7441 eltType = type;
7442 return true;
7443}
7444
7445bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
7446 assert(srcTy->isVectorType() || destTy->isVectorType());
7447
7448 auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
7449 if (!FirstType->isSVESizelessBuiltinType())
7450 return false;
7451
7452 const auto *VecTy = SecondType->getAs<VectorType>();
7453 return VecTy && VecTy->getVectorKind() == VectorKind::SveFixedLengthData;
7454 };
7455
7456 return ValidScalableConversion(srcTy, destTy) ||
7457 ValidScalableConversion(destTy, srcTy);
7458}
7459
7460bool Sema::areMatrixTypesOfTheSameDimension(QualType srcTy, QualType destTy) {
7461 if (!destTy->isMatrixType() || !srcTy->isMatrixType())
7462 return false;
7463
7464 const ConstantMatrixType *matSrcType = srcTy->getAs<ConstantMatrixType>();
7465 const ConstantMatrixType *matDestType = destTy->getAs<ConstantMatrixType>();
7466
7467 return matSrcType->getNumRows() == matDestType->getNumRows() &&
7468 matSrcType->getNumColumns() == matDestType->getNumColumns();
7469}
7470
7471bool Sema::areVectorTypesSameSize(QualType SrcTy, QualType DestTy) {
7472 assert(DestTy->isVectorType() || SrcTy->isVectorType());
7473
7474 uint64_t SrcLen, DestLen;
7475 QualType SrcEltTy, DestEltTy;
7476 if (!breakDownVectorType(type: SrcTy, len&: SrcLen, eltType&: SrcEltTy))
7477 return false;
7478 if (!breakDownVectorType(type: DestTy, len&: DestLen, eltType&: DestEltTy))
7479 return false;
7480
7481 // ASTContext::getTypeSize will return the size rounded up to a
7482 // power of 2, so instead of using that, we need to use the raw
7483 // element size multiplied by the element count.
7484 uint64_t SrcEltSize = Context.getTypeSize(T: SrcEltTy);
7485 uint64_t DestEltSize = Context.getTypeSize(T: DestEltTy);
7486
7487 return (SrcLen * SrcEltSize == DestLen * DestEltSize);
7488}
7489
7490bool Sema::anyAltivecTypes(QualType SrcTy, QualType DestTy) {
7491 assert((DestTy->isVectorType() || SrcTy->isVectorType()) &&
7492 "expected at least one type to be a vector here");
7493
7494 bool IsSrcTyAltivec =
7495 SrcTy->isVectorType() && ((SrcTy->castAs<VectorType>()->getVectorKind() ==
7496 VectorKind::AltiVecVector) ||
7497 (SrcTy->castAs<VectorType>()->getVectorKind() ==
7498 VectorKind::AltiVecBool) ||
7499 (SrcTy->castAs<VectorType>()->getVectorKind() ==
7500 VectorKind::AltiVecPixel));
7501
7502 bool IsDestTyAltivec = DestTy->isVectorType() &&
7503 ((DestTy->castAs<VectorType>()->getVectorKind() ==
7504 VectorKind::AltiVecVector) ||
7505 (DestTy->castAs<VectorType>()->getVectorKind() ==
7506 VectorKind::AltiVecBool) ||
7507 (DestTy->castAs<VectorType>()->getVectorKind() ==
7508 VectorKind::AltiVecPixel));
7509
7510 return (IsSrcTyAltivec || IsDestTyAltivec);
7511}
7512
7513bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
7514 assert(destTy->isVectorType() || srcTy->isVectorType());
7515
7516 // Disallow lax conversions between scalars and ExtVectors (these
7517 // conversions are allowed for other vector types because common headers
7518 // depend on them). Most scalar OP ExtVector cases are handled by the
7519 // splat path anyway, which does what we want (convert, not bitcast).
7520 // What this rules out for ExtVectors is crazy things like char4*float.
7521 if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
7522 if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
7523
7524 return areVectorTypesSameSize(SrcTy: srcTy, DestTy: destTy);
7525}
7526
7527bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
7528 assert(destTy->isVectorType() || srcTy->isVectorType());
7529
7530 switch (Context.getLangOpts().getLaxVectorConversions()) {
7531 case LangOptions::LaxVectorConversionKind::None:
7532 return false;
7533
7534 case LangOptions::LaxVectorConversionKind::Integer:
7535 if (!srcTy->isIntegralOrEnumerationType()) {
7536 auto *Vec = srcTy->getAs<VectorType>();
7537 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7538 return false;
7539 }
7540 if (!destTy->isIntegralOrEnumerationType()) {
7541 auto *Vec = destTy->getAs<VectorType>();
7542 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7543 return false;
7544 }
7545 // OK, integer (vector) -> integer (vector) bitcast.
7546 break;
7547
7548 case LangOptions::LaxVectorConversionKind::All:
7549 break;
7550 }
7551
7552 return areLaxCompatibleVectorTypes(srcTy, destTy);
7553}
7554
7555bool Sema::CheckMatrixCast(SourceRange R, QualType DestTy, QualType SrcTy,
7556 CastKind &Kind) {
7557 if (SrcTy->isMatrixType() && DestTy->isMatrixType()) {
7558 if (!areMatrixTypesOfTheSameDimension(srcTy: SrcTy, destTy: DestTy)) {
7559 return Diag(Loc: R.getBegin(), DiagID: diag::err_invalid_conversion_between_matrixes)
7560 << DestTy << SrcTy << R;
7561 }
7562 } else if (SrcTy->isMatrixType()) {
7563 return Diag(Loc: R.getBegin(),
7564 DiagID: diag::err_invalid_conversion_between_matrix_and_type)
7565 << SrcTy << DestTy << R;
7566 } else if (DestTy->isMatrixType()) {
7567 return Diag(Loc: R.getBegin(),
7568 DiagID: diag::err_invalid_conversion_between_matrix_and_type)
7569 << DestTy << SrcTy << R;
7570 }
7571
7572 Kind = CK_MatrixCast;
7573 return false;
7574}
7575
7576bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
7577 CastKind &Kind) {
7578 assert(VectorTy->isVectorType() && "Not a vector type!");
7579
7580 if (Ty->isVectorType() || Ty->isIntegralType(Ctx: Context)) {
7581 if (!areLaxCompatibleVectorTypes(srcTy: Ty, destTy: VectorTy))
7582 return Diag(Loc: R.getBegin(),
7583 DiagID: Ty->isVectorType() ?
7584 diag::err_invalid_conversion_between_vectors :
7585 diag::err_invalid_conversion_between_vector_and_integer)
7586 << VectorTy << Ty << R;
7587 } else
7588 return Diag(Loc: R.getBegin(),
7589 DiagID: diag::err_invalid_conversion_between_vector_and_scalar)
7590 << VectorTy << Ty << R;
7591
7592 Kind = CK_BitCast;
7593 return false;
7594}
7595
7596ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
7597 QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
7598
7599 if (DestElemTy == SplattedExpr->getType())
7600 return SplattedExpr;
7601
7602 assert(DestElemTy->isFloatingType() ||
7603 DestElemTy->isIntegralOrEnumerationType());
7604
7605 CastKind CK;
7606 if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
7607 // OpenCL requires that we convert `true` boolean expressions to -1, but
7608 // only when splatting vectors.
7609 if (DestElemTy->isFloatingType()) {
7610 // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
7611 // in two steps: boolean to signed integral, then to floating.
7612 ExprResult CastExprRes = ImpCastExprToType(E: SplattedExpr, Type: Context.IntTy,
7613 CK: CK_BooleanToSignedIntegral);
7614 SplattedExpr = CastExprRes.get();
7615 CK = CK_IntegralToFloating;
7616 } else {
7617 CK = CK_BooleanToSignedIntegral;
7618 }
7619 } else {
7620 ExprResult CastExprRes = SplattedExpr;
7621 CK = PrepareScalarCast(Src&: CastExprRes, DestTy: DestElemTy);
7622 if (CastExprRes.isInvalid())
7623 return ExprError();
7624 SplattedExpr = CastExprRes.get();
7625 }
7626 return ImpCastExprToType(E: SplattedExpr, Type: DestElemTy, CK);
7627}
7628
7629ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
7630 Expr *CastExpr, CastKind &Kind) {
7631 assert(DestTy->isExtVectorType() && "Not an extended vector type!");
7632
7633 QualType SrcTy = CastExpr->getType();
7634
7635 // If SrcTy is a VectorType, the total size must match to explicitly cast to
7636 // an ExtVectorType.
7637 // In OpenCL, casts between vectors of different types are not allowed.
7638 // (See OpenCL 6.2).
7639 if (SrcTy->isVectorType()) {
7640 if (!areLaxCompatibleVectorTypes(srcTy: SrcTy, destTy: DestTy) ||
7641 (getLangOpts().OpenCL &&
7642 !Context.hasSameUnqualifiedType(T1: DestTy, T2: SrcTy))) {
7643 Diag(Loc: R.getBegin(),DiagID: diag::err_invalid_conversion_between_ext_vectors)
7644 << DestTy << SrcTy << R;
7645 return ExprError();
7646 }
7647 Kind = CK_BitCast;
7648 return CastExpr;
7649 }
7650
7651 // All non-pointer scalars can be cast to ExtVector type. The appropriate
7652 // conversion will take place first from scalar to elt type, and then
7653 // splat from elt type to vector.
7654 if (SrcTy->isPointerType())
7655 return Diag(Loc: R.getBegin(),
7656 DiagID: diag::err_invalid_conversion_between_vector_and_scalar)
7657 << DestTy << SrcTy << R;
7658
7659 Kind = CK_VectorSplat;
7660 return prepareVectorSplat(VectorTy: DestTy, SplattedExpr: CastExpr);
7661}
7662
7663ExprResult
7664Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
7665 Declarator &D, ParsedType &Ty,
7666 SourceLocation RParenLoc, Expr *CastExpr) {
7667 assert(!D.isInvalidType() && (CastExpr != nullptr) &&
7668 "ActOnCastExpr(): missing type or expr");
7669
7670 TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, FromTy: CastExpr->getType());
7671 if (D.isInvalidType())
7672 return ExprError();
7673
7674 if (getLangOpts().CPlusPlus) {
7675 // Check that there are no default arguments (C++ only).
7676 CheckExtraCXXDefaultArguments(D);
7677 } else {
7678 // Make sure any TypoExprs have been dealt with.
7679 ExprResult Res = CorrectDelayedTyposInExpr(E: CastExpr);
7680 if (!Res.isUsable())
7681 return ExprError();
7682 CastExpr = Res.get();
7683 }
7684
7685 checkUnusedDeclAttributes(D);
7686
7687 QualType castType = castTInfo->getType();
7688 Ty = CreateParsedType(T: castType, TInfo: castTInfo);
7689
7690 bool isVectorLiteral = false;
7691
7692 // Check for an altivec or OpenCL literal,
7693 // i.e. all the elements are integer constants.
7694 ParenExpr *PE = dyn_cast<ParenExpr>(Val: CastExpr);
7695 ParenListExpr *PLE = dyn_cast<ParenListExpr>(Val: CastExpr);
7696 if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
7697 && castType->isVectorType() && (PE || PLE)) {
7698 if (PLE && PLE->getNumExprs() == 0) {
7699 Diag(Loc: PLE->getExprLoc(), DiagID: diag::err_altivec_empty_initializer);
7700 return ExprError();
7701 }
7702 if (PE || PLE->getNumExprs() == 1) {
7703 Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(Init: 0));
7704 if (!E->isTypeDependent() && !E->getType()->isVectorType())
7705 isVectorLiteral = true;
7706 }
7707 else
7708 isVectorLiteral = true;
7709 }
7710
7711 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
7712 // then handle it as such.
7713 if (isVectorLiteral)
7714 return BuildVectorLiteral(LParenLoc, RParenLoc, E: CastExpr, TInfo: castTInfo);
7715
7716 // If the Expr being casted is a ParenListExpr, handle it specially.
7717 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
7718 // sequence of BinOp comma operators.
7719 if (isa<ParenListExpr>(Val: CastExpr)) {
7720 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, ME: CastExpr);
7721 if (Result.isInvalid()) return ExprError();
7722 CastExpr = Result.get();
7723 }
7724
7725 if (getLangOpts().CPlusPlus && !castType->isVoidType())
7726 Diag(Loc: LParenLoc, DiagID: diag::warn_old_style_cast) << CastExpr->getSourceRange();
7727
7728 ObjC().CheckTollFreeBridgeCast(castType, castExpr: CastExpr);
7729
7730 ObjC().CheckObjCBridgeRelatedCast(castType, castExpr: CastExpr);
7731
7732 DiscardMisalignedMemberAddress(T: castType.getTypePtr(), E: CastExpr);
7733
7734 return BuildCStyleCastExpr(LParenLoc, Ty: castTInfo, RParenLoc, Op: CastExpr);
7735}
7736
7737ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
7738 SourceLocation RParenLoc, Expr *E,
7739 TypeSourceInfo *TInfo) {
7740 assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
7741 "Expected paren or paren list expression");
7742
7743 Expr **exprs;
7744 unsigned numExprs;
7745 Expr *subExpr;
7746 SourceLocation LiteralLParenLoc, LiteralRParenLoc;
7747 if (ParenListExpr *PE = dyn_cast<ParenListExpr>(Val: E)) {
7748 LiteralLParenLoc = PE->getLParenLoc();
7749 LiteralRParenLoc = PE->getRParenLoc();
7750 exprs = PE->getExprs();
7751 numExprs = PE->getNumExprs();
7752 } else { // isa<ParenExpr> by assertion at function entrance
7753 LiteralLParenLoc = cast<ParenExpr>(Val: E)->getLParen();
7754 LiteralRParenLoc = cast<ParenExpr>(Val: E)->getRParen();
7755 subExpr = cast<ParenExpr>(Val: E)->getSubExpr();
7756 exprs = &subExpr;
7757 numExprs = 1;
7758 }
7759
7760 QualType Ty = TInfo->getType();
7761 assert(Ty->isVectorType() && "Expected vector type");
7762
7763 SmallVector<Expr *, 8> initExprs;
7764 const VectorType *VTy = Ty->castAs<VectorType>();
7765 unsigned numElems = VTy->getNumElements();
7766
7767 // '(...)' form of vector initialization in AltiVec: the number of
7768 // initializers must be one or must match the size of the vector.
7769 // If a single value is specified in the initializer then it will be
7770 // replicated to all the components of the vector
7771 if (CheckAltivecInitFromScalar(R: E->getSourceRange(), VecTy: Ty,
7772 SrcTy: VTy->getElementType()))
7773 return ExprError();
7774 if (ShouldSplatAltivecScalarInCast(VecTy: VTy)) {
7775 // The number of initializers must be one or must match the size of the
7776 // vector. If a single value is specified in the initializer then it will
7777 // be replicated to all the components of the vector
7778 if (numExprs == 1) {
7779 QualType ElemTy = VTy->getElementType();
7780 ExprResult Literal = DefaultLvalueConversion(E: exprs[0]);
7781 if (Literal.isInvalid())
7782 return ExprError();
7783 Literal = ImpCastExprToType(E: Literal.get(), Type: ElemTy,
7784 CK: PrepareScalarCast(Src&: Literal, DestTy: ElemTy));
7785 return BuildCStyleCastExpr(LParenLoc, Ty: TInfo, RParenLoc, Op: Literal.get());
7786 }
7787 else if (numExprs < numElems) {
7788 Diag(Loc: E->getExprLoc(),
7789 DiagID: diag::err_incorrect_number_of_vector_initializers);
7790 return ExprError();
7791 }
7792 else
7793 initExprs.append(in_start: exprs, in_end: exprs + numExprs);
7794 }
7795 else {
7796 // For OpenCL, when the number of initializers is a single value,
7797 // it will be replicated to all components of the vector.
7798 if (getLangOpts().OpenCL && VTy->getVectorKind() == VectorKind::Generic &&
7799 numExprs == 1) {
7800 QualType ElemTy = VTy->getElementType();
7801 ExprResult Literal = DefaultLvalueConversion(E: exprs[0]);
7802 if (Literal.isInvalid())
7803 return ExprError();
7804 Literal = ImpCastExprToType(E: Literal.get(), Type: ElemTy,
7805 CK: PrepareScalarCast(Src&: Literal, DestTy: ElemTy));
7806 return BuildCStyleCastExpr(LParenLoc, Ty: TInfo, RParenLoc, Op: Literal.get());
7807 }
7808
7809 initExprs.append(in_start: exprs, in_end: exprs + numExprs);
7810 }
7811 // FIXME: This means that pretty-printing the final AST will produce curly
7812 // braces instead of the original commas.
7813 InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
7814 initExprs, LiteralRParenLoc);
7815 initE->setType(Ty);
7816 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, LiteralExpr: initE);
7817}
7818
7819ExprResult
7820Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
7821 ParenListExpr *E = dyn_cast<ParenListExpr>(Val: OrigExpr);
7822 if (!E)
7823 return OrigExpr;
7824
7825 ExprResult Result(E->getExpr(Init: 0));
7826
7827 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
7828 Result = ActOnBinOp(S, TokLoc: E->getExprLoc(), Kind: tok::comma, LHSExpr: Result.get(),
7829 RHSExpr: E->getExpr(Init: i));
7830
7831 if (Result.isInvalid()) return ExprError();
7832
7833 return ActOnParenExpr(L: E->getLParenLoc(), R: E->getRParenLoc(), E: Result.get());
7834}
7835
7836ExprResult Sema::ActOnParenListExpr(SourceLocation L,
7837 SourceLocation R,
7838 MultiExprArg Val) {
7839 return ParenListExpr::Create(Ctx: Context, LParenLoc: L, Exprs: Val, RParenLoc: R);
7840}
7841
7842bool Sema::DiagnoseConditionalForNull(const Expr *LHSExpr, const Expr *RHSExpr,
7843 SourceLocation QuestionLoc) {
7844 const Expr *NullExpr = LHSExpr;
7845 const Expr *NonPointerExpr = RHSExpr;
7846 Expr::NullPointerConstantKind NullKind =
7847 NullExpr->isNullPointerConstant(Ctx&: Context,
7848 NPC: Expr::NPC_ValueDependentIsNotNull);
7849
7850 if (NullKind == Expr::NPCK_NotNull) {
7851 NullExpr = RHSExpr;
7852 NonPointerExpr = LHSExpr;
7853 NullKind =
7854 NullExpr->isNullPointerConstant(Ctx&: Context,
7855 NPC: Expr::NPC_ValueDependentIsNotNull);
7856 }
7857
7858 if (NullKind == Expr::NPCK_NotNull)
7859 return false;
7860
7861 if (NullKind == Expr::NPCK_ZeroExpression)
7862 return false;
7863
7864 if (NullKind == Expr::NPCK_ZeroLiteral) {
7865 // In this case, check to make sure that we got here from a "NULL"
7866 // string in the source code.
7867 NullExpr = NullExpr->IgnoreParenImpCasts();
7868 SourceLocation loc = NullExpr->getExprLoc();
7869 if (!findMacroSpelling(loc, name: "NULL"))
7870 return false;
7871 }
7872
7873 int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
7874 Diag(Loc: QuestionLoc, DiagID: diag::err_typecheck_cond_incompatible_operands_null)
7875 << NonPointerExpr->getType() << DiagType
7876 << NonPointerExpr->getSourceRange();
7877 return true;
7878}
7879
7880/// Return false if the condition expression is valid, true otherwise.
7881static bool checkCondition(Sema &S, const Expr *Cond,
7882 SourceLocation QuestionLoc) {
7883 QualType CondTy = Cond->getType();
7884
7885 // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
7886 if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
7887 S.Diag(Loc: QuestionLoc, DiagID: diag::err_typecheck_cond_expect_nonfloat)
7888 << CondTy << Cond->getSourceRange();
7889 return true;
7890 }
7891
7892 // C99 6.5.15p2
7893 if (CondTy->isScalarType()) return false;
7894
7895 S.Diag(Loc: QuestionLoc, DiagID: diag::err_typecheck_cond_expect_scalar)
7896 << CondTy << Cond->getSourceRange();
7897 return true;
7898}
7899
7900/// Return false if the NullExpr can be promoted to PointerTy,
7901/// true otherwise.
7902static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
7903 QualType PointerTy) {
7904 if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
7905 !NullExpr.get()->isNullPointerConstant(Ctx&: S.Context,
7906 NPC: Expr::NPC_ValueDependentIsNull))
7907 return true;
7908
7909 NullExpr = S.ImpCastExprToType(E: NullExpr.get(), Type: PointerTy, CK: CK_NullToPointer);
7910 return false;
7911}
7912
7913/// Checks compatibility between two pointers and return the resulting
7914/// type.
7915static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
7916 ExprResult &RHS,
7917 SourceLocation Loc) {
7918 QualType LHSTy = LHS.get()->getType();
7919 QualType RHSTy = RHS.get()->getType();
7920
7921 if (S.Context.hasSameType(T1: LHSTy, T2: RHSTy)) {
7922 // Two identical pointers types are always compatible.
7923 return S.Context.getCommonSugaredType(X: LHSTy, Y: RHSTy);
7924 }
7925
7926 QualType lhptee, rhptee;
7927
7928 // Get the pointee types.
7929 bool IsBlockPointer = false;
7930 if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
7931 lhptee = LHSBTy->getPointeeType();
7932 rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
7933 IsBlockPointer = true;
7934 } else {
7935 lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
7936 rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
7937 }
7938
7939 // C99 6.5.15p6: If both operands are pointers to compatible types or to
7940 // differently qualified versions of compatible types, the result type is
7941 // a pointer to an appropriately qualified version of the composite
7942 // type.
7943
7944 // Only CVR-qualifiers exist in the standard, and the differently-qualified
7945 // clause doesn't make sense for our extensions. E.g. address space 2 should
7946 // be incompatible with address space 3: they may live on different devices or
7947 // anything.
7948 Qualifiers lhQual = lhptee.getQualifiers();
7949 Qualifiers rhQual = rhptee.getQualifiers();
7950
7951 LangAS ResultAddrSpace = LangAS::Default;
7952 LangAS LAddrSpace = lhQual.getAddressSpace();
7953 LangAS RAddrSpace = rhQual.getAddressSpace();
7954
7955 // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
7956 // spaces is disallowed.
7957 if (lhQual.isAddressSpaceSupersetOf(other: rhQual))
7958 ResultAddrSpace = LAddrSpace;
7959 else if (rhQual.isAddressSpaceSupersetOf(other: lhQual))
7960 ResultAddrSpace = RAddrSpace;
7961 else {
7962 S.Diag(Loc, DiagID: diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
7963 << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
7964 << RHS.get()->getSourceRange();
7965 return QualType();
7966 }
7967
7968 unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
7969 auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
7970 lhQual.removeCVRQualifiers();
7971 rhQual.removeCVRQualifiers();
7972
7973 // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
7974 // (C99 6.7.3) for address spaces. We assume that the check should behave in
7975 // the same manner as it's defined for CVR qualifiers, so for OpenCL two
7976 // qual types are compatible iff
7977 // * corresponded types are compatible
7978 // * CVR qualifiers are equal
7979 // * address spaces are equal
7980 // Thus for conditional operator we merge CVR and address space unqualified
7981 // pointees and if there is a composite type we return a pointer to it with
7982 // merged qualifiers.
7983 LHSCastKind =
7984 LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
7985 RHSCastKind =
7986 RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
7987 lhQual.removeAddressSpace();
7988 rhQual.removeAddressSpace();
7989
7990 lhptee = S.Context.getQualifiedType(T: lhptee.getUnqualifiedType(), Qs: lhQual);
7991 rhptee = S.Context.getQualifiedType(T: rhptee.getUnqualifiedType(), Qs: rhQual);
7992
7993 QualType CompositeTy = S.Context.mergeTypes(
7994 lhptee, rhptee, /*OfBlockPointer=*/false, /*Unqualified=*/false,
7995 /*BlockReturnType=*/false, /*IsConditionalOperator=*/true);
7996
7997 if (CompositeTy.isNull()) {
7998 // In this situation, we assume void* type. No especially good
7999 // reason, but this is what gcc does, and we do have to pick
8000 // to get a consistent AST.
8001 QualType incompatTy;
8002 incompatTy = S.Context.getPointerType(
8003 T: S.Context.getAddrSpaceQualType(T: S.Context.VoidTy, AddressSpace: ResultAddrSpace));
8004 LHS = S.ImpCastExprToType(E: LHS.get(), Type: incompatTy, CK: LHSCastKind);
8005 RHS = S.ImpCastExprToType(E: RHS.get(), Type: incompatTy, CK: RHSCastKind);
8006
8007 // FIXME: For OpenCL the warning emission and cast to void* leaves a room
8008 // for casts between types with incompatible address space qualifiers.
8009 // For the following code the compiler produces casts between global and
8010 // local address spaces of the corresponded innermost pointees:
8011 // local int *global *a;
8012 // global int *global *b;
8013 // a = (0 ? a : b); // see C99 6.5.16.1.p1.
8014 S.Diag(Loc, DiagID: diag::ext_typecheck_cond_incompatible_pointers)
8015 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8016 << RHS.get()->getSourceRange();
8017
8018 return incompatTy;
8019 }
8020
8021 // The pointer types are compatible.
8022 // In case of OpenCL ResultTy should have the address space qualifier
8023 // which is a superset of address spaces of both the 2nd and the 3rd
8024 // operands of the conditional operator.
8025 QualType ResultTy = [&, ResultAddrSpace]() {
8026 if (S.getLangOpts().OpenCL) {
8027 Qualifiers CompositeQuals = CompositeTy.getQualifiers();
8028 CompositeQuals.setAddressSpace(ResultAddrSpace);
8029 return S.Context
8030 .getQualifiedType(T: CompositeTy.getUnqualifiedType(), Qs: CompositeQuals)
8031 .withCVRQualifiers(CVR: MergedCVRQual);
8032 }
8033 return CompositeTy.withCVRQualifiers(CVR: MergedCVRQual);
8034 }();
8035 if (IsBlockPointer)
8036 ResultTy = S.Context.getBlockPointerType(T: ResultTy);
8037 else
8038 ResultTy = S.Context.getPointerType(T: ResultTy);
8039
8040 LHS = S.ImpCastExprToType(E: LHS.get(), Type: ResultTy, CK: LHSCastKind);
8041 RHS = S.ImpCastExprToType(E: RHS.get(), Type: ResultTy, CK: RHSCastKind);
8042 return ResultTy;
8043}
8044
8045/// Return the resulting type when the operands are both block pointers.
8046static QualType checkConditionalBlockPointerCompatibility(Sema &S,
8047 ExprResult &LHS,
8048 ExprResult &RHS,
8049 SourceLocation Loc) {
8050 QualType LHSTy = LHS.get()->getType();
8051 QualType RHSTy = RHS.get()->getType();
8052
8053 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
8054 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
8055 QualType destType = S.Context.getPointerType(T: S.Context.VoidTy);
8056 LHS = S.ImpCastExprToType(E: LHS.get(), Type: destType, CK: CK_BitCast);
8057 RHS = S.ImpCastExprToType(E: RHS.get(), Type: destType, CK: CK_BitCast);
8058 return destType;
8059 }
8060 S.Diag(Loc, DiagID: diag::err_typecheck_cond_incompatible_operands)
8061 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8062 << RHS.get()->getSourceRange();
8063 return QualType();
8064 }
8065
8066 // We have 2 block pointer types.
8067 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8068}
8069
8070/// Return the resulting type when the operands are both pointers.
8071static QualType
8072checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
8073 ExprResult &RHS,
8074 SourceLocation Loc) {
8075 // get the pointer types
8076 QualType LHSTy = LHS.get()->getType();
8077 QualType RHSTy = RHS.get()->getType();
8078
8079 // get the "pointed to" types
8080 QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8081 QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8082
8083 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
8084 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
8085 // Figure out necessary qualifiers (C99 6.5.15p6)
8086 QualType destPointee
8087 = S.Context.getQualifiedType(T: lhptee, Qs: rhptee.getQualifiers());
8088 QualType destType = S.Context.getPointerType(T: destPointee);
8089 // Add qualifiers if necessary.
8090 LHS = S.ImpCastExprToType(E: LHS.get(), Type: destType, CK: CK_NoOp);
8091 // Promote to void*.
8092 RHS = S.ImpCastExprToType(E: RHS.get(), Type: destType, CK: CK_BitCast);
8093 return destType;
8094 }
8095 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
8096 QualType destPointee
8097 = S.Context.getQualifiedType(T: rhptee, Qs: lhptee.getQualifiers());
8098 QualType destType = S.Context.getPointerType(T: destPointee);
8099 // Add qualifiers if necessary.
8100 RHS = S.ImpCastExprToType(E: RHS.get(), Type: destType, CK: CK_NoOp);
8101 // Promote to void*.
8102 LHS = S.ImpCastExprToType(E: LHS.get(), Type: destType, CK: CK_BitCast);
8103 return destType;
8104 }
8105
8106 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
8107}
8108
8109/// Return false if the first expression is not an integer and the second
8110/// expression is not a pointer, true otherwise.
8111static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
8112 Expr* PointerExpr, SourceLocation Loc,
8113 bool IsIntFirstExpr) {
8114 if (!PointerExpr->getType()->isPointerType() ||
8115 !Int.get()->getType()->isIntegerType())
8116 return false;
8117
8118 Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
8119 Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
8120
8121 S.Diag(Loc, DiagID: diag::ext_typecheck_cond_pointer_integer_mismatch)
8122 << Expr1->getType() << Expr2->getType()
8123 << Expr1->getSourceRange() << Expr2->getSourceRange();
8124 Int = S.ImpCastExprToType(E: Int.get(), Type: PointerExpr->getType(),
8125 CK: CK_IntegralToPointer);
8126 return true;
8127}
8128
8129/// Simple conversion between integer and floating point types.
8130///
8131/// Used when handling the OpenCL conditional operator where the
8132/// condition is a vector while the other operands are scalar.
8133///
8134/// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
8135/// types are either integer or floating type. Between the two
8136/// operands, the type with the higher rank is defined as the "result
8137/// type". The other operand needs to be promoted to the same type. No
8138/// other type promotion is allowed. We cannot use
8139/// UsualArithmeticConversions() for this purpose, since it always
8140/// promotes promotable types.
8141static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
8142 ExprResult &RHS,
8143 SourceLocation QuestionLoc) {
8144 LHS = S.DefaultFunctionArrayLvalueConversion(E: LHS.get());
8145 if (LHS.isInvalid())
8146 return QualType();
8147 RHS = S.DefaultFunctionArrayLvalueConversion(E: RHS.get());
8148 if (RHS.isInvalid())
8149 return QualType();
8150
8151 // For conversion purposes, we ignore any qualifiers.
8152 // For example, "const float" and "float" are equivalent.
8153 QualType LHSType =
8154 S.Context.getCanonicalType(T: LHS.get()->getType()).getUnqualifiedType();
8155 QualType RHSType =
8156 S.Context.getCanonicalType(T: RHS.get()->getType()).getUnqualifiedType();
8157
8158 if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
8159 S.Diag(Loc: QuestionLoc, DiagID: diag::err_typecheck_cond_expect_int_float)
8160 << LHSType << LHS.get()->getSourceRange();
8161 return QualType();
8162 }
8163
8164 if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
8165 S.Diag(Loc: QuestionLoc, DiagID: diag::err_typecheck_cond_expect_int_float)
8166 << RHSType << RHS.get()->getSourceRange();
8167 return QualType();
8168 }
8169
8170 // If both types are identical, no conversion is needed.
8171 if (LHSType == RHSType)
8172 return LHSType;
8173
8174 // Now handle "real" floating types (i.e. float, double, long double).
8175 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
8176 return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
8177 /*IsCompAssign = */ false);
8178
8179 // Finally, we have two differing integer types.
8180 return handleIntegerConversion<doIntegralCast, doIntegralCast>
8181 (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
8182}
8183
8184/// Convert scalar operands to a vector that matches the
8185/// condition in length.
8186///
8187/// Used when handling the OpenCL conditional operator where the
8188/// condition is a vector while the other operands are scalar.
8189///
8190/// We first compute the "result type" for the scalar operands
8191/// according to OpenCL v1.1 s6.3.i. Both operands are then converted
8192/// into a vector of that type where the length matches the condition
8193/// vector type. s6.11.6 requires that the element types of the result
8194/// and the condition must have the same number of bits.
8195static QualType
8196OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
8197 QualType CondTy, SourceLocation QuestionLoc) {
8198 QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
8199 if (ResTy.isNull()) return QualType();
8200
8201 const VectorType *CV = CondTy->getAs<VectorType>();
8202 assert(CV);
8203
8204 // Determine the vector result type
8205 unsigned NumElements = CV->getNumElements();
8206 QualType VectorTy = S.Context.getExtVectorType(VectorType: ResTy, NumElts: NumElements);
8207
8208 // Ensure that all types have the same number of bits
8209 if (S.Context.getTypeSize(T: CV->getElementType())
8210 != S.Context.getTypeSize(T: ResTy)) {
8211 // Since VectorTy is created internally, it does not pretty print
8212 // with an OpenCL name. Instead, we just print a description.
8213 std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
8214 SmallString<64> Str;
8215 llvm::raw_svector_ostream OS(Str);
8216 OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
8217 S.Diag(Loc: QuestionLoc, DiagID: diag::err_conditional_vector_element_size)
8218 << CondTy << OS.str();
8219 return QualType();
8220 }
8221
8222 // Convert operands to the vector result type
8223 LHS = S.ImpCastExprToType(E: LHS.get(), Type: VectorTy, CK: CK_VectorSplat);
8224 RHS = S.ImpCastExprToType(E: RHS.get(), Type: VectorTy, CK: CK_VectorSplat);
8225
8226 return VectorTy;
8227}
8228
8229/// Return false if this is a valid OpenCL condition vector
8230static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
8231 SourceLocation QuestionLoc) {
8232 // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
8233 // integral type.
8234 const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
8235 assert(CondTy);
8236 QualType EleTy = CondTy->getElementType();
8237 if (EleTy->isIntegerType()) return false;
8238
8239 S.Diag(Loc: QuestionLoc, DiagID: diag::err_typecheck_cond_expect_nonfloat)
8240 << Cond->getType() << Cond->getSourceRange();
8241 return true;
8242}
8243
8244/// Return false if the vector condition type and the vector
8245/// result type are compatible.
8246///
8247/// OpenCL v1.1 s6.11.6 requires that both vector types have the same
8248/// number of elements, and their element types have the same number
8249/// of bits.
8250static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
8251 SourceLocation QuestionLoc) {
8252 const VectorType *CV = CondTy->getAs<VectorType>();
8253 const VectorType *RV = VecResTy->getAs<VectorType>();
8254 assert(CV && RV);
8255
8256 if (CV->getNumElements() != RV->getNumElements()) {
8257 S.Diag(Loc: QuestionLoc, DiagID: diag::err_conditional_vector_size)
8258 << CondTy << VecResTy;
8259 return true;
8260 }
8261
8262 QualType CVE = CV->getElementType();
8263 QualType RVE = RV->getElementType();
8264
8265 if (S.Context.getTypeSize(T: CVE) != S.Context.getTypeSize(T: RVE)) {
8266 S.Diag(Loc: QuestionLoc, DiagID: diag::err_conditional_vector_element_size)
8267 << CondTy << VecResTy;
8268 return true;
8269 }
8270
8271 return false;
8272}
8273
8274/// Return the resulting type for the conditional operator in
8275/// OpenCL (aka "ternary selection operator", OpenCL v1.1
8276/// s6.3.i) when the condition is a vector type.
8277static QualType
8278OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
8279 ExprResult &LHS, ExprResult &RHS,
8280 SourceLocation QuestionLoc) {
8281 Cond = S.DefaultFunctionArrayLvalueConversion(E: Cond.get());
8282 if (Cond.isInvalid())
8283 return QualType();
8284 QualType CondTy = Cond.get()->getType();
8285
8286 if (checkOpenCLConditionVector(S, Cond: Cond.get(), QuestionLoc))
8287 return QualType();
8288
8289 // If either operand is a vector then find the vector type of the
8290 // result as specified in OpenCL v1.1 s6.3.i.
8291 if (LHS.get()->getType()->isVectorType() ||
8292 RHS.get()->getType()->isVectorType()) {
8293 bool IsBoolVecLang =
8294 !S.getLangOpts().OpenCL && !S.getLangOpts().OpenCLCPlusPlus;
8295 QualType VecResTy =
8296 S.CheckVectorOperands(LHS, RHS, Loc: QuestionLoc,
8297 /*isCompAssign*/ IsCompAssign: false,
8298 /*AllowBothBool*/ true,
8299 /*AllowBoolConversions*/ AllowBoolConversion: false,
8300 /*AllowBooleanOperation*/ AllowBoolOperation: IsBoolVecLang,
8301 /*ReportInvalid*/ true);
8302 if (VecResTy.isNull())
8303 return QualType();
8304 // The result type must match the condition type as specified in
8305 // OpenCL v1.1 s6.11.6.
8306 if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
8307 return QualType();
8308 return VecResTy;
8309 }
8310
8311 // Both operands are scalar.
8312 return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
8313}
8314
8315/// Return true if the Expr is block type
8316static bool checkBlockType(Sema &S, const Expr *E) {
8317 if (const CallExpr *CE = dyn_cast<CallExpr>(Val: E)) {
8318 QualType Ty = CE->getCallee()->getType();
8319 if (Ty->isBlockPointerType()) {
8320 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_opencl_ternary_with_block);
8321 return true;
8322 }
8323 }
8324 return false;
8325}
8326
8327/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
8328/// In that case, LHS = cond.
8329/// C99 6.5.15
8330QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
8331 ExprResult &RHS, ExprValueKind &VK,
8332 ExprObjectKind &OK,
8333 SourceLocation QuestionLoc) {
8334
8335 ExprResult LHSResult = CheckPlaceholderExpr(E: LHS.get());
8336 if (!LHSResult.isUsable()) return QualType();
8337 LHS = LHSResult;
8338
8339 ExprResult RHSResult = CheckPlaceholderExpr(E: RHS.get());
8340 if (!RHSResult.isUsable()) return QualType();
8341 RHS = RHSResult;
8342
8343 // C++ is sufficiently different to merit its own checker.
8344 if (getLangOpts().CPlusPlus)
8345 return CXXCheckConditionalOperands(cond&: Cond, lhs&: LHS, rhs&: RHS, VK, OK, questionLoc: QuestionLoc);
8346
8347 VK = VK_PRValue;
8348 OK = OK_Ordinary;
8349
8350 if (Context.isDependenceAllowed() &&
8351 (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
8352 RHS.get()->isTypeDependent())) {
8353 assert(!getLangOpts().CPlusPlus);
8354 assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||
8355 RHS.get()->containsErrors()) &&
8356 "should only occur in error-recovery path.");
8357 return Context.DependentTy;
8358 }
8359
8360 // The OpenCL operator with a vector condition is sufficiently
8361 // different to merit its own checker.
8362 if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
8363 Cond.get()->getType()->isExtVectorType())
8364 return OpenCLCheckVectorConditional(S&: *this, Cond, LHS, RHS, QuestionLoc);
8365
8366 // First, check the condition.
8367 Cond = UsualUnaryConversions(E: Cond.get());
8368 if (Cond.isInvalid())
8369 return QualType();
8370 if (checkCondition(S&: *this, Cond: Cond.get(), QuestionLoc))
8371 return QualType();
8372
8373 // Handle vectors.
8374 if (LHS.get()->getType()->isVectorType() ||
8375 RHS.get()->getType()->isVectorType())
8376 return CheckVectorOperands(LHS, RHS, Loc: QuestionLoc, /*isCompAssign*/ IsCompAssign: false,
8377 /*AllowBothBool*/ true,
8378 /*AllowBoolConversions*/ AllowBoolConversion: false,
8379 /*AllowBooleanOperation*/ AllowBoolOperation: false,
8380 /*ReportInvalid*/ true);
8381
8382 QualType ResTy =
8383 UsualArithmeticConversions(LHS, RHS, Loc: QuestionLoc, ACK: ACK_Conditional);
8384 if (LHS.isInvalid() || RHS.isInvalid())
8385 return QualType();
8386
8387 // WebAssembly tables are not allowed as conditional LHS or RHS.
8388 QualType LHSTy = LHS.get()->getType();
8389 QualType RHSTy = RHS.get()->getType();
8390 if (LHSTy->isWebAssemblyTableType() || RHSTy->isWebAssemblyTableType()) {
8391 Diag(Loc: QuestionLoc, DiagID: diag::err_wasm_table_conditional_expression)
8392 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8393 return QualType();
8394 }
8395
8396 // Diagnose attempts to convert between __ibm128, __float128 and long double
8397 // where such conversions currently can't be handled.
8398 if (unsupportedTypeConversion(S: *this, LHSType: LHSTy, RHSType: RHSTy)) {
8399 Diag(Loc: QuestionLoc,
8400 DiagID: diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
8401 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8402 return QualType();
8403 }
8404
8405 // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
8406 // selection operator (?:).
8407 if (getLangOpts().OpenCL &&
8408 ((int)checkBlockType(S&: *this, E: LHS.get()) | (int)checkBlockType(S&: *this, E: RHS.get()))) {
8409 return QualType();
8410 }
8411
8412 // If both operands have arithmetic type, do the usual arithmetic conversions
8413 // to find a common type: C99 6.5.15p3,5.
8414 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
8415 // Disallow invalid arithmetic conversions, such as those between bit-
8416 // precise integers types of different sizes, or between a bit-precise
8417 // integer and another type.
8418 if (ResTy.isNull() && (LHSTy->isBitIntType() || RHSTy->isBitIntType())) {
8419 Diag(Loc: QuestionLoc, DiagID: diag::err_typecheck_cond_incompatible_operands)
8420 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8421 << RHS.get()->getSourceRange();
8422 return QualType();
8423 }
8424
8425 LHS = ImpCastExprToType(E: LHS.get(), Type: ResTy, CK: PrepareScalarCast(Src&: LHS, DestTy: ResTy));
8426 RHS = ImpCastExprToType(E: RHS.get(), Type: ResTy, CK: PrepareScalarCast(Src&: RHS, DestTy: ResTy));
8427
8428 return ResTy;
8429 }
8430
8431 // If both operands are the same structure or union type, the result is that
8432 // type.
8433 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
8434 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
8435 if (LHSRT->getDecl() == RHSRT->getDecl())
8436 // "If both the operands have structure or union type, the result has
8437 // that type." This implies that CV qualifiers are dropped.
8438 return Context.getCommonSugaredType(X: LHSTy.getUnqualifiedType(),
8439 Y: RHSTy.getUnqualifiedType());
8440 // FIXME: Type of conditional expression must be complete in C mode.
8441 }
8442
8443 // C99 6.5.15p5: "If both operands have void type, the result has void type."
8444 // The following || allows only one side to be void (a GCC-ism).
8445 if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
8446 QualType ResTy;
8447 if (LHSTy->isVoidType() && RHSTy->isVoidType()) {
8448 ResTy = Context.getCommonSugaredType(X: LHSTy, Y: RHSTy);
8449 } else if (RHSTy->isVoidType()) {
8450 ResTy = RHSTy;
8451 Diag(Loc: RHS.get()->getBeginLoc(), DiagID: diag::ext_typecheck_cond_one_void)
8452 << RHS.get()->getSourceRange();
8453 } else {
8454 ResTy = LHSTy;
8455 Diag(Loc: LHS.get()->getBeginLoc(), DiagID: diag::ext_typecheck_cond_one_void)
8456 << LHS.get()->getSourceRange();
8457 }
8458 LHS = ImpCastExprToType(E: LHS.get(), Type: ResTy, CK: CK_ToVoid);
8459 RHS = ImpCastExprToType(E: RHS.get(), Type: ResTy, CK: CK_ToVoid);
8460 return ResTy;
8461 }
8462
8463 // C23 6.5.15p7:
8464 // ... if both the second and third operands have nullptr_t type, the
8465 // result also has that type.
8466 if (LHSTy->isNullPtrType() && Context.hasSameType(T1: LHSTy, T2: RHSTy))
8467 return ResTy;
8468
8469 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
8470 // the type of the other operand."
8471 if (!checkConditionalNullPointer(S&: *this, NullExpr&: RHS, PointerTy: LHSTy)) return LHSTy;
8472 if (!checkConditionalNullPointer(S&: *this, NullExpr&: LHS, PointerTy: RHSTy)) return RHSTy;
8473
8474 // All objective-c pointer type analysis is done here.
8475 QualType compositeType =
8476 ObjC().FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
8477 if (LHS.isInvalid() || RHS.isInvalid())
8478 return QualType();
8479 if (!compositeType.isNull())
8480 return compositeType;
8481
8482
8483 // Handle block pointer types.
8484 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
8485 return checkConditionalBlockPointerCompatibility(S&: *this, LHS, RHS,
8486 Loc: QuestionLoc);
8487
8488 // Check constraints for C object pointers types (C99 6.5.15p3,6).
8489 if (LHSTy->isPointerType() && RHSTy->isPointerType())
8490 return checkConditionalObjectPointersCompatibility(S&: *this, LHS, RHS,
8491 Loc: QuestionLoc);
8492
8493 // GCC compatibility: soften pointer/integer mismatch. Note that
8494 // null pointers have been filtered out by this point.
8495 if (checkPointerIntegerMismatch(S&: *this, Int&: LHS, PointerExpr: RHS.get(), Loc: QuestionLoc,
8496 /*IsIntFirstExpr=*/true))
8497 return RHSTy;
8498 if (checkPointerIntegerMismatch(S&: *this, Int&: RHS, PointerExpr: LHS.get(), Loc: QuestionLoc,
8499 /*IsIntFirstExpr=*/false))
8500 return LHSTy;
8501
8502 // Emit a better diagnostic if one of the expressions is a null pointer
8503 // constant and the other is not a pointer type. In this case, the user most
8504 // likely forgot to take the address of the other expression.
8505 if (DiagnoseConditionalForNull(LHSExpr: LHS.get(), RHSExpr: RHS.get(), QuestionLoc))
8506 return QualType();
8507
8508 // Finally, if the LHS and RHS types are canonically the same type, we can
8509 // use the common sugared type.
8510 if (Context.hasSameType(T1: LHSTy, T2: RHSTy))
8511 return Context.getCommonSugaredType(X: LHSTy, Y: RHSTy);
8512
8513 // Otherwise, the operands are not compatible.
8514 Diag(Loc: QuestionLoc, DiagID: diag::err_typecheck_cond_incompatible_operands)
8515 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8516 << RHS.get()->getSourceRange();
8517 return QualType();
8518}
8519
8520/// SuggestParentheses - Emit a note with a fixit hint that wraps
8521/// ParenRange in parentheses.
8522static void SuggestParentheses(Sema &Self, SourceLocation Loc,
8523 const PartialDiagnostic &Note,
8524 SourceRange ParenRange) {
8525 SourceLocation EndLoc = Self.getLocForEndOfToken(Loc: ParenRange.getEnd());
8526 if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
8527 EndLoc.isValid()) {
8528 Self.Diag(Loc, PD: Note)
8529 << FixItHint::CreateInsertion(InsertionLoc: ParenRange.getBegin(), Code: "(")
8530 << FixItHint::CreateInsertion(InsertionLoc: EndLoc, Code: ")");
8531 } else {
8532 // We can't display the parentheses, so just show the bare note.
8533 Self.Diag(Loc, PD: Note) << ParenRange;
8534 }
8535}
8536
8537static bool IsArithmeticOp(BinaryOperatorKind Opc) {
8538 return BinaryOperator::isAdditiveOp(Opc) ||
8539 BinaryOperator::isMultiplicativeOp(Opc) ||
8540 BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
8541 // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
8542 // not any of the logical operators. Bitwise-xor is commonly used as a
8543 // logical-xor because there is no logical-xor operator. The logical
8544 // operators, including uses of xor, have a high false positive rate for
8545 // precedence warnings.
8546}
8547
8548/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
8549/// expression, either using a built-in or overloaded operator,
8550/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
8551/// expression.
8552static bool IsArithmeticBinaryExpr(const Expr *E, BinaryOperatorKind *Opcode,
8553 const Expr **RHSExprs) {
8554 // Don't strip parenthesis: we should not warn if E is in parenthesis.
8555 E = E->IgnoreImpCasts();
8556 E = E->IgnoreConversionOperatorSingleStep();
8557 E = E->IgnoreImpCasts();
8558 if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: E)) {
8559 E = MTE->getSubExpr();
8560 E = E->IgnoreImpCasts();
8561 }
8562
8563 // Built-in binary operator.
8564 if (const auto *OP = dyn_cast<BinaryOperator>(Val: E);
8565 OP && IsArithmeticOp(Opc: OP->getOpcode())) {
8566 *Opcode = OP->getOpcode();
8567 *RHSExprs = OP->getRHS();
8568 return true;
8569 }
8570
8571 // Overloaded operator.
8572 if (const auto *Call = dyn_cast<CXXOperatorCallExpr>(Val: E)) {
8573 if (Call->getNumArgs() != 2)
8574 return false;
8575
8576 // Make sure this is really a binary operator that is safe to pass into
8577 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
8578 OverloadedOperatorKind OO = Call->getOperator();
8579 if (OO < OO_Plus || OO > OO_Arrow ||
8580 OO == OO_PlusPlus || OO == OO_MinusMinus)
8581 return false;
8582
8583 BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
8584 if (IsArithmeticOp(Opc: OpKind)) {
8585 *Opcode = OpKind;
8586 *RHSExprs = Call->getArg(Arg: 1);
8587 return true;
8588 }
8589 }
8590
8591 return false;
8592}
8593
8594/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
8595/// or is a logical expression such as (x==y) which has int type, but is
8596/// commonly interpreted as boolean.
8597static bool ExprLooksBoolean(const Expr *E) {
8598 E = E->IgnoreParenImpCasts();
8599
8600 if (E->getType()->isBooleanType())
8601 return true;
8602 if (const auto *OP = dyn_cast<BinaryOperator>(Val: E))
8603 return OP->isComparisonOp() || OP->isLogicalOp();
8604 if (const auto *OP = dyn_cast<UnaryOperator>(Val: E))
8605 return OP->getOpcode() == UO_LNot;
8606 if (E->getType()->isPointerType())
8607 return true;
8608 // FIXME: What about overloaded operator calls returning "unspecified boolean
8609 // type"s (commonly pointer-to-members)?
8610
8611 return false;
8612}
8613
8614/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
8615/// and binary operator are mixed in a way that suggests the programmer assumed
8616/// the conditional operator has higher precedence, for example:
8617/// "int x = a + someBinaryCondition ? 1 : 2".
8618static void DiagnoseConditionalPrecedence(Sema &Self, SourceLocation OpLoc,
8619 Expr *Condition, const Expr *LHSExpr,
8620 const Expr *RHSExpr) {
8621 BinaryOperatorKind CondOpcode;
8622 const Expr *CondRHS;
8623
8624 if (!IsArithmeticBinaryExpr(E: Condition, Opcode: &CondOpcode, RHSExprs: &CondRHS))
8625 return;
8626 if (!ExprLooksBoolean(E: CondRHS))
8627 return;
8628
8629 // The condition is an arithmetic binary expression, with a right-
8630 // hand side that looks boolean, so warn.
8631
8632 unsigned DiagID = BinaryOperator::isBitwiseOp(Opc: CondOpcode)
8633 ? diag::warn_precedence_bitwise_conditional
8634 : diag::warn_precedence_conditional;
8635
8636 Self.Diag(Loc: OpLoc, DiagID)
8637 << Condition->getSourceRange()
8638 << BinaryOperator::getOpcodeStr(Op: CondOpcode);
8639
8640 SuggestParentheses(
8641 Self, Loc: OpLoc,
8642 Note: Self.PDiag(DiagID: diag::note_precedence_silence)
8643 << BinaryOperator::getOpcodeStr(Op: CondOpcode),
8644 ParenRange: SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
8645
8646 SuggestParentheses(Self, Loc: OpLoc,
8647 Note: Self.PDiag(DiagID: diag::note_precedence_conditional_first),
8648 ParenRange: SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
8649}
8650
8651/// Compute the nullability of a conditional expression.
8652static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
8653 QualType LHSTy, QualType RHSTy,
8654 ASTContext &Ctx) {
8655 if (!ResTy->isAnyPointerType())
8656 return ResTy;
8657
8658 auto GetNullability = [](QualType Ty) {
8659 std::optional<NullabilityKind> Kind = Ty->getNullability();
8660 if (Kind) {
8661 // For our purposes, treat _Nullable_result as _Nullable.
8662 if (*Kind == NullabilityKind::NullableResult)
8663 return NullabilityKind::Nullable;
8664 return *Kind;
8665 }
8666 return NullabilityKind::Unspecified;
8667 };
8668
8669 auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
8670 NullabilityKind MergedKind;
8671
8672 // Compute nullability of a binary conditional expression.
8673 if (IsBin) {
8674 if (LHSKind == NullabilityKind::NonNull)
8675 MergedKind = NullabilityKind::NonNull;
8676 else
8677 MergedKind = RHSKind;
8678 // Compute nullability of a normal conditional expression.
8679 } else {
8680 if (LHSKind == NullabilityKind::Nullable ||
8681 RHSKind == NullabilityKind::Nullable)
8682 MergedKind = NullabilityKind::Nullable;
8683 else if (LHSKind == NullabilityKind::NonNull)
8684 MergedKind = RHSKind;
8685 else if (RHSKind == NullabilityKind::NonNull)
8686 MergedKind = LHSKind;
8687 else
8688 MergedKind = NullabilityKind::Unspecified;
8689 }
8690
8691 // Return if ResTy already has the correct nullability.
8692 if (GetNullability(ResTy) == MergedKind)
8693 return ResTy;
8694
8695 // Strip all nullability from ResTy.
8696 while (ResTy->getNullability())
8697 ResTy = ResTy.getSingleStepDesugaredType(Context: Ctx);
8698
8699 // Create a new AttributedType with the new nullability kind.
8700 auto NewAttr = AttributedType::getNullabilityAttrKind(kind: MergedKind);
8701 return Ctx.getAttributedType(attrKind: NewAttr, modifiedType: ResTy, equivalentType: ResTy);
8702}
8703
8704ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
8705 SourceLocation ColonLoc,
8706 Expr *CondExpr, Expr *LHSExpr,
8707 Expr *RHSExpr) {
8708 if (!Context.isDependenceAllowed()) {
8709 // C cannot handle TypoExpr nodes in the condition because it
8710 // doesn't handle dependent types properly, so make sure any TypoExprs have
8711 // been dealt with before checking the operands.
8712 ExprResult CondResult = CorrectDelayedTyposInExpr(E: CondExpr);
8713 ExprResult LHSResult = CorrectDelayedTyposInExpr(E: LHSExpr);
8714 ExprResult RHSResult = CorrectDelayedTyposInExpr(E: RHSExpr);
8715
8716 if (!CondResult.isUsable())
8717 return ExprError();
8718
8719 if (LHSExpr) {
8720 if (!LHSResult.isUsable())
8721 return ExprError();
8722 }
8723
8724 if (!RHSResult.isUsable())
8725 return ExprError();
8726
8727 CondExpr = CondResult.get();
8728 LHSExpr = LHSResult.get();
8729 RHSExpr = RHSResult.get();
8730 }
8731
8732 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
8733 // was the condition.
8734 OpaqueValueExpr *opaqueValue = nullptr;
8735 Expr *commonExpr = nullptr;
8736 if (!LHSExpr) {
8737 commonExpr = CondExpr;
8738 // Lower out placeholder types first. This is important so that we don't
8739 // try to capture a placeholder. This happens in few cases in C++; such
8740 // as Objective-C++'s dictionary subscripting syntax.
8741 if (commonExpr->hasPlaceholderType()) {
8742 ExprResult result = CheckPlaceholderExpr(E: commonExpr);
8743 if (!result.isUsable()) return ExprError();
8744 commonExpr = result.get();
8745 }
8746 // We usually want to apply unary conversions *before* saving, except
8747 // in the special case of a C++ l-value conditional.
8748 if (!(getLangOpts().CPlusPlus
8749 && !commonExpr->isTypeDependent()
8750 && commonExpr->getValueKind() == RHSExpr->getValueKind()
8751 && commonExpr->isGLValue()
8752 && commonExpr->isOrdinaryOrBitFieldObject()
8753 && RHSExpr->isOrdinaryOrBitFieldObject()
8754 && Context.hasSameType(T1: commonExpr->getType(), T2: RHSExpr->getType()))) {
8755 ExprResult commonRes = UsualUnaryConversions(E: commonExpr);
8756 if (commonRes.isInvalid())
8757 return ExprError();
8758 commonExpr = commonRes.get();
8759 }
8760
8761 // If the common expression is a class or array prvalue, materialize it
8762 // so that we can safely refer to it multiple times.
8763 if (commonExpr->isPRValue() && (commonExpr->getType()->isRecordType() ||
8764 commonExpr->getType()->isArrayType())) {
8765 ExprResult MatExpr = TemporaryMaterializationConversion(E: commonExpr);
8766 if (MatExpr.isInvalid())
8767 return ExprError();
8768 commonExpr = MatExpr.get();
8769 }
8770
8771 opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
8772 commonExpr->getType(),
8773 commonExpr->getValueKind(),
8774 commonExpr->getObjectKind(),
8775 commonExpr);
8776 LHSExpr = CondExpr = opaqueValue;
8777 }
8778
8779 QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
8780 ExprValueKind VK = VK_PRValue;
8781 ExprObjectKind OK = OK_Ordinary;
8782 ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
8783 QualType result = CheckConditionalOperands(Cond, LHS, RHS,
8784 VK, OK, QuestionLoc);
8785 if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
8786 RHS.isInvalid())
8787 return ExprError();
8788
8789 DiagnoseConditionalPrecedence(Self&: *this, OpLoc: QuestionLoc, Condition: Cond.get(), LHSExpr: LHS.get(),
8790 RHSExpr: RHS.get());
8791
8792 CheckBoolLikeConversion(E: Cond.get(), CC: QuestionLoc);
8793
8794 result = computeConditionalNullability(ResTy: result, IsBin: commonExpr, LHSTy, RHSTy,
8795 Ctx&: Context);
8796
8797 if (!commonExpr)
8798 return new (Context)
8799 ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
8800 RHS.get(), result, VK, OK);
8801
8802 return new (Context) BinaryConditionalOperator(
8803 commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
8804 ColonLoc, result, VK, OK);
8805}
8806
8807bool Sema::IsInvalidSMECallConversion(QualType FromType, QualType ToType) {
8808 unsigned FromAttributes = 0, ToAttributes = 0;
8809 if (const auto *FromFn =
8810 dyn_cast<FunctionProtoType>(Val: Context.getCanonicalType(T: FromType)))
8811 FromAttributes =
8812 FromFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
8813 if (const auto *ToFn =
8814 dyn_cast<FunctionProtoType>(Val: Context.getCanonicalType(T: ToType)))
8815 ToAttributes =
8816 ToFn->getAArch64SMEAttributes() & FunctionType::SME_AttributeMask;
8817
8818 return FromAttributes != ToAttributes;
8819}
8820
8821// Check if we have a conversion between incompatible cmse function pointer
8822// types, that is, a conversion between a function pointer with the
8823// cmse_nonsecure_call attribute and one without.
8824static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
8825 QualType ToType) {
8826 if (const auto *ToFn =
8827 dyn_cast<FunctionType>(Val: S.Context.getCanonicalType(T: ToType))) {
8828 if (const auto *FromFn =
8829 dyn_cast<FunctionType>(Val: S.Context.getCanonicalType(T: FromType))) {
8830 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
8831 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
8832
8833 return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
8834 }
8835 }
8836 return false;
8837}
8838
8839// checkPointerTypesForAssignment - This is a very tricky routine (despite
8840// being closely modeled after the C99 spec:-). The odd characteristic of this
8841// routine is it effectively iqnores the qualifiers on the top level pointee.
8842// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
8843// FIXME: add a couple examples in this comment.
8844static Sema::AssignConvertType
8845checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType,
8846 SourceLocation Loc) {
8847 assert(LHSType.isCanonical() && "LHS not canonicalized!");
8848 assert(RHSType.isCanonical() && "RHS not canonicalized!");
8849
8850 // get the "pointed to" type (ignoring qualifiers at the top level)
8851 const Type *lhptee, *rhptee;
8852 Qualifiers lhq, rhq;
8853 std::tie(args&: lhptee, args&: lhq) =
8854 cast<PointerType>(Val&: LHSType)->getPointeeType().split().asPair();
8855 std::tie(args&: rhptee, args&: rhq) =
8856 cast<PointerType>(Val&: RHSType)->getPointeeType().split().asPair();
8857
8858 Sema::AssignConvertType ConvTy = Sema::Compatible;
8859
8860 // C99 6.5.16.1p1: This following citation is common to constraints
8861 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
8862 // qualifiers of the type *pointed to* by the right;
8863
8864 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
8865 if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
8866 lhq.compatiblyIncludesObjCLifetime(other: rhq)) {
8867 // Ignore lifetime for further calculation.
8868 lhq.removeObjCLifetime();
8869 rhq.removeObjCLifetime();
8870 }
8871
8872 if (!lhq.compatiblyIncludes(other: rhq)) {
8873 // Treat address-space mismatches as fatal.
8874 if (!lhq.isAddressSpaceSupersetOf(other: rhq))
8875 return Sema::IncompatiblePointerDiscardsQualifiers;
8876
8877 // It's okay to add or remove GC or lifetime qualifiers when converting to
8878 // and from void*.
8879 else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
8880 .compatiblyIncludes(
8881 other: rhq.withoutObjCGCAttr().withoutObjCLifetime())
8882 && (lhptee->isVoidType() || rhptee->isVoidType()))
8883 ; // keep old
8884
8885 // Treat lifetime mismatches as fatal.
8886 else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
8887 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
8888
8889 // For GCC/MS compatibility, other qualifier mismatches are treated
8890 // as still compatible in C.
8891 else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
8892 }
8893
8894 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
8895 // incomplete type and the other is a pointer to a qualified or unqualified
8896 // version of void...
8897 if (lhptee->isVoidType()) {
8898 if (rhptee->isIncompleteOrObjectType())
8899 return ConvTy;
8900
8901 // As an extension, we allow cast to/from void* to function pointer.
8902 assert(rhptee->isFunctionType());
8903 return Sema::FunctionVoidPointer;
8904 }
8905
8906 if (rhptee->isVoidType()) {
8907 if (lhptee->isIncompleteOrObjectType())
8908 return ConvTy;
8909
8910 // As an extension, we allow cast to/from void* to function pointer.
8911 assert(lhptee->isFunctionType());
8912 return Sema::FunctionVoidPointer;
8913 }
8914
8915 if (!S.Diags.isIgnored(
8916 DiagID: diag::warn_typecheck_convert_incompatible_function_pointer_strict,
8917 Loc) &&
8918 RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType() &&
8919 !S.IsFunctionConversion(FromType: RHSType, ToType: LHSType, ResultTy&: RHSType))
8920 return Sema::IncompatibleFunctionPointerStrict;
8921
8922 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
8923 // unqualified versions of compatible types, ...
8924 QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
8925 if (!S.Context.typesAreCompatible(T1: ltrans, T2: rtrans)) {
8926 // Check if the pointee types are compatible ignoring the sign.
8927 // We explicitly check for char so that we catch "char" vs
8928 // "unsigned char" on systems where "char" is unsigned.
8929 if (lhptee->isCharType())
8930 ltrans = S.Context.UnsignedCharTy;
8931 else if (lhptee->hasSignedIntegerRepresentation())
8932 ltrans = S.Context.getCorrespondingUnsignedType(T: ltrans);
8933
8934 if (rhptee->isCharType())
8935 rtrans = S.Context.UnsignedCharTy;
8936 else if (rhptee->hasSignedIntegerRepresentation())
8937 rtrans = S.Context.getCorrespondingUnsignedType(T: rtrans);
8938
8939 if (ltrans == rtrans) {
8940 // Types are compatible ignoring the sign. Qualifier incompatibility
8941 // takes priority over sign incompatibility because the sign
8942 // warning can be disabled.
8943 if (ConvTy != Sema::Compatible)
8944 return ConvTy;
8945
8946 return Sema::IncompatiblePointerSign;
8947 }
8948
8949 // If we are a multi-level pointer, it's possible that our issue is simply
8950 // one of qualification - e.g. char ** -> const char ** is not allowed. If
8951 // the eventual target type is the same and the pointers have the same
8952 // level of indirection, this must be the issue.
8953 if (isa<PointerType>(Val: lhptee) && isa<PointerType>(Val: rhptee)) {
8954 do {
8955 std::tie(args&: lhptee, args&: lhq) =
8956 cast<PointerType>(Val: lhptee)->getPointeeType().split().asPair();
8957 std::tie(args&: rhptee, args&: rhq) =
8958 cast<PointerType>(Val: rhptee)->getPointeeType().split().asPair();
8959
8960 // Inconsistent address spaces at this point is invalid, even if the
8961 // address spaces would be compatible.
8962 // FIXME: This doesn't catch address space mismatches for pointers of
8963 // different nesting levels, like:
8964 // __local int *** a;
8965 // int ** b = a;
8966 // It's not clear how to actually determine when such pointers are
8967 // invalidly incompatible.
8968 if (lhq.getAddressSpace() != rhq.getAddressSpace())
8969 return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
8970
8971 } while (isa<PointerType>(Val: lhptee) && isa<PointerType>(Val: rhptee));
8972
8973 if (lhptee == rhptee)
8974 return Sema::IncompatibleNestedPointerQualifiers;
8975 }
8976
8977 // General pointer incompatibility takes priority over qualifiers.
8978 if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
8979 return Sema::IncompatibleFunctionPointer;
8980 return Sema::IncompatiblePointer;
8981 }
8982 if (!S.getLangOpts().CPlusPlus &&
8983 S.IsFunctionConversion(FromType: ltrans, ToType: rtrans, ResultTy&: ltrans))
8984 return Sema::IncompatibleFunctionPointer;
8985 if (IsInvalidCmseNSCallConversion(S, FromType: ltrans, ToType: rtrans))
8986 return Sema::IncompatibleFunctionPointer;
8987 if (S.IsInvalidSMECallConversion(FromType: rtrans, ToType: ltrans))
8988 return Sema::IncompatibleFunctionPointer;
8989 return ConvTy;
8990}
8991
8992/// checkBlockPointerTypesForAssignment - This routine determines whether two
8993/// block pointer types are compatible or whether a block and normal pointer
8994/// are compatible. It is more restrict than comparing two function pointer
8995// types.
8996static Sema::AssignConvertType
8997checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
8998 QualType RHSType) {
8999 assert(LHSType.isCanonical() && "LHS not canonicalized!");
9000 assert(RHSType.isCanonical() && "RHS not canonicalized!");
9001
9002 QualType lhptee, rhptee;
9003
9004 // get the "pointed to" type (ignoring qualifiers at the top level)
9005 lhptee = cast<BlockPointerType>(Val&: LHSType)->getPointeeType();
9006 rhptee = cast<BlockPointerType>(Val&: RHSType)->getPointeeType();
9007
9008 // In C++, the types have to match exactly.
9009 if (S.getLangOpts().CPlusPlus)
9010 return Sema::IncompatibleBlockPointer;
9011
9012 Sema::AssignConvertType ConvTy = Sema::Compatible;
9013
9014 // For blocks we enforce that qualifiers are identical.
9015 Qualifiers LQuals = lhptee.getLocalQualifiers();
9016 Qualifiers RQuals = rhptee.getLocalQualifiers();
9017 if (S.getLangOpts().OpenCL) {
9018 LQuals.removeAddressSpace();
9019 RQuals.removeAddressSpace();
9020 }
9021 if (LQuals != RQuals)
9022 ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
9023
9024 // FIXME: OpenCL doesn't define the exact compile time semantics for a block
9025 // assignment.
9026 // The current behavior is similar to C++ lambdas. A block might be
9027 // assigned to a variable iff its return type and parameters are compatible
9028 // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
9029 // an assignment. Presumably it should behave in way that a function pointer
9030 // assignment does in C, so for each parameter and return type:
9031 // * CVR and address space of LHS should be a superset of CVR and address
9032 // space of RHS.
9033 // * unqualified types should be compatible.
9034 if (S.getLangOpts().OpenCL) {
9035 if (!S.Context.typesAreBlockPointerCompatible(
9036 S.Context.getQualifiedType(T: LHSType.getUnqualifiedType(), Qs: LQuals),
9037 S.Context.getQualifiedType(T: RHSType.getUnqualifiedType(), Qs: RQuals)))
9038 return Sema::IncompatibleBlockPointer;
9039 } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
9040 return Sema::IncompatibleBlockPointer;
9041
9042 return ConvTy;
9043}
9044
9045/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
9046/// for assignment compatibility.
9047static Sema::AssignConvertType
9048checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
9049 QualType RHSType) {
9050 assert(LHSType.isCanonical() && "LHS was not canonicalized!");
9051 assert(RHSType.isCanonical() && "RHS was not canonicalized!");
9052
9053 if (LHSType->isObjCBuiltinType()) {
9054 // Class is not compatible with ObjC object pointers.
9055 if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
9056 !RHSType->isObjCQualifiedClassType())
9057 return Sema::IncompatiblePointer;
9058 return Sema::Compatible;
9059 }
9060 if (RHSType->isObjCBuiltinType()) {
9061 if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
9062 !LHSType->isObjCQualifiedClassType())
9063 return Sema::IncompatiblePointer;
9064 return Sema::Compatible;
9065 }
9066 QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9067 QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
9068
9069 if (!lhptee.isAtLeastAsQualifiedAs(other: rhptee) &&
9070 // make an exception for id<P>
9071 !LHSType->isObjCQualifiedIdType())
9072 return Sema::CompatiblePointerDiscardsQualifiers;
9073
9074 if (S.Context.typesAreCompatible(T1: LHSType, T2: RHSType))
9075 return Sema::Compatible;
9076 if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
9077 return Sema::IncompatibleObjCQualifiedId;
9078 return Sema::IncompatiblePointer;
9079}
9080
9081Sema::AssignConvertType
9082Sema::CheckAssignmentConstraints(SourceLocation Loc,
9083 QualType LHSType, QualType RHSType) {
9084 // Fake up an opaque expression. We don't actually care about what
9085 // cast operations are required, so if CheckAssignmentConstraints
9086 // adds casts to this they'll be wasted, but fortunately that doesn't
9087 // usually happen on valid code.
9088 OpaqueValueExpr RHSExpr(Loc, RHSType, VK_PRValue);
9089 ExprResult RHSPtr = &RHSExpr;
9090 CastKind K;
9091
9092 return CheckAssignmentConstraints(LHSType, RHS&: RHSPtr, Kind&: K, /*ConvertRHS=*/false);
9093}
9094
9095/// This helper function returns true if QT is a vector type that has element
9096/// type ElementType.
9097static bool isVector(QualType QT, QualType ElementType) {
9098 if (const VectorType *VT = QT->getAs<VectorType>())
9099 return VT->getElementType().getCanonicalType() == ElementType;
9100 return false;
9101}
9102
9103/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
9104/// has code to accommodate several GCC extensions when type checking
9105/// pointers. Here are some objectionable examples that GCC considers warnings:
9106///
9107/// int a, *pint;
9108/// short *pshort;
9109/// struct foo *pfoo;
9110///
9111/// pint = pshort; // warning: assignment from incompatible pointer type
9112/// a = pint; // warning: assignment makes integer from pointer without a cast
9113/// pint = a; // warning: assignment makes pointer from integer without a cast
9114/// pint = pfoo; // warning: assignment from incompatible pointer type
9115///
9116/// As a result, the code for dealing with pointers is more complex than the
9117/// C99 spec dictates.
9118///
9119/// Sets 'Kind' for any result kind except Incompatible.
9120Sema::AssignConvertType
9121Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
9122 CastKind &Kind, bool ConvertRHS) {
9123 QualType RHSType = RHS.get()->getType();
9124 QualType OrigLHSType = LHSType;
9125
9126 // Get canonical types. We're not formatting these types, just comparing
9127 // them.
9128 LHSType = Context.getCanonicalType(T: LHSType).getUnqualifiedType();
9129 RHSType = Context.getCanonicalType(T: RHSType).getUnqualifiedType();
9130
9131 // Common case: no conversion required.
9132 if (LHSType == RHSType) {
9133 Kind = CK_NoOp;
9134 return Compatible;
9135 }
9136
9137 // If the LHS has an __auto_type, there are no additional type constraints
9138 // to be worried about.
9139 if (const auto *AT = dyn_cast<AutoType>(Val&: LHSType)) {
9140 if (AT->isGNUAutoType()) {
9141 Kind = CK_NoOp;
9142 return Compatible;
9143 }
9144 }
9145
9146 // If we have an atomic type, try a non-atomic assignment, then just add an
9147 // atomic qualification step.
9148 if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(Val&: LHSType)) {
9149 Sema::AssignConvertType result =
9150 CheckAssignmentConstraints(LHSType: AtomicTy->getValueType(), RHS, Kind);
9151 if (result != Compatible)
9152 return result;
9153 if (Kind != CK_NoOp && ConvertRHS)
9154 RHS = ImpCastExprToType(E: RHS.get(), Type: AtomicTy->getValueType(), CK: Kind);
9155 Kind = CK_NonAtomicToAtomic;
9156 return Compatible;
9157 }
9158
9159 // If the left-hand side is a reference type, then we are in a
9160 // (rare!) case where we've allowed the use of references in C,
9161 // e.g., as a parameter type in a built-in function. In this case,
9162 // just make sure that the type referenced is compatible with the
9163 // right-hand side type. The caller is responsible for adjusting
9164 // LHSType so that the resulting expression does not have reference
9165 // type.
9166 if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
9167 if (Context.typesAreCompatible(T1: LHSTypeRef->getPointeeType(), T2: RHSType)) {
9168 Kind = CK_LValueBitCast;
9169 return Compatible;
9170 }
9171 return Incompatible;
9172 }
9173
9174 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
9175 // to the same ExtVector type.
9176 if (LHSType->isExtVectorType()) {
9177 if (RHSType->isExtVectorType())
9178 return Incompatible;
9179 if (RHSType->isArithmeticType()) {
9180 // CK_VectorSplat does T -> vector T, so first cast to the element type.
9181 if (ConvertRHS)
9182 RHS = prepareVectorSplat(VectorTy: LHSType, SplattedExpr: RHS.get());
9183 Kind = CK_VectorSplat;
9184 return Compatible;
9185 }
9186 }
9187
9188 // Conversions to or from vector type.
9189 if (LHSType->isVectorType() || RHSType->isVectorType()) {
9190 if (LHSType->isVectorType() && RHSType->isVectorType()) {
9191 // Allow assignments of an AltiVec vector type to an equivalent GCC
9192 // vector type and vice versa
9193 if (Context.areCompatibleVectorTypes(FirstVec: LHSType, SecondVec: RHSType)) {
9194 Kind = CK_BitCast;
9195 return Compatible;
9196 }
9197
9198 // If we are allowing lax vector conversions, and LHS and RHS are both
9199 // vectors, the total size only needs to be the same. This is a bitcast;
9200 // no bits are changed but the result type is different.
9201 if (isLaxVectorConversion(srcTy: RHSType, destTy: LHSType)) {
9202 // The default for lax vector conversions with Altivec vectors will
9203 // change, so if we are converting between vector types where
9204 // at least one is an Altivec vector, emit a warning.
9205 if (Context.getTargetInfo().getTriple().isPPC() &&
9206 anyAltivecTypes(SrcTy: RHSType, DestTy: LHSType) &&
9207 !Context.areCompatibleVectorTypes(FirstVec: RHSType, SecondVec: LHSType))
9208 Diag(Loc: RHS.get()->getExprLoc(), DiagID: diag::warn_deprecated_lax_vec_conv_all)
9209 << RHSType << LHSType;
9210 Kind = CK_BitCast;
9211 return IncompatibleVectors;
9212 }
9213 }
9214
9215 // When the RHS comes from another lax conversion (e.g. binops between
9216 // scalars and vectors) the result is canonicalized as a vector. When the
9217 // LHS is also a vector, the lax is allowed by the condition above. Handle
9218 // the case where LHS is a scalar.
9219 if (LHSType->isScalarType()) {
9220 const VectorType *VecType = RHSType->getAs<VectorType>();
9221 if (VecType && VecType->getNumElements() == 1 &&
9222 isLaxVectorConversion(srcTy: RHSType, destTy: LHSType)) {
9223 if (Context.getTargetInfo().getTriple().isPPC() &&
9224 (VecType->getVectorKind() == VectorKind::AltiVecVector ||
9225 VecType->getVectorKind() == VectorKind::AltiVecBool ||
9226 VecType->getVectorKind() == VectorKind::AltiVecPixel))
9227 Diag(Loc: RHS.get()->getExprLoc(), DiagID: diag::warn_deprecated_lax_vec_conv_all)
9228 << RHSType << LHSType;
9229 ExprResult *VecExpr = &RHS;
9230 *VecExpr = ImpCastExprToType(E: VecExpr->get(), Type: LHSType, CK: CK_BitCast);
9231 Kind = CK_BitCast;
9232 return Compatible;
9233 }
9234 }
9235
9236 // Allow assignments between fixed-length and sizeless SVE vectors.
9237 if ((LHSType->isSVESizelessBuiltinType() && RHSType->isVectorType()) ||
9238 (LHSType->isVectorType() && RHSType->isSVESizelessBuiltinType()))
9239 if (Context.areCompatibleSveTypes(FirstType: LHSType, SecondType: RHSType) ||
9240 Context.areLaxCompatibleSveTypes(FirstType: LHSType, SecondType: RHSType)) {
9241 Kind = CK_BitCast;
9242 return Compatible;
9243 }
9244
9245 // Allow assignments between fixed-length and sizeless RVV vectors.
9246 if ((LHSType->isRVVSizelessBuiltinType() && RHSType->isVectorType()) ||
9247 (LHSType->isVectorType() && RHSType->isRVVSizelessBuiltinType())) {
9248 if (Context.areCompatibleRVVTypes(FirstType: LHSType, SecondType: RHSType) ||
9249 Context.areLaxCompatibleRVVTypes(FirstType: LHSType, SecondType: RHSType)) {
9250 Kind = CK_BitCast;
9251 return Compatible;
9252 }
9253 }
9254
9255 return Incompatible;
9256 }
9257
9258 // Diagnose attempts to convert between __ibm128, __float128 and long double
9259 // where such conversions currently can't be handled.
9260 if (unsupportedTypeConversion(S: *this, LHSType, RHSType))
9261 return Incompatible;
9262
9263 // Disallow assigning a _Complex to a real type in C++ mode since it simply
9264 // discards the imaginary part.
9265 if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
9266 !LHSType->getAs<ComplexType>())
9267 return Incompatible;
9268
9269 // Arithmetic conversions.
9270 if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
9271 !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
9272 if (ConvertRHS)
9273 Kind = PrepareScalarCast(Src&: RHS, DestTy: LHSType);
9274 return Compatible;
9275 }
9276
9277 // Conversions to normal pointers.
9278 if (const PointerType *LHSPointer = dyn_cast<PointerType>(Val&: LHSType)) {
9279 // U* -> T*
9280 if (isa<PointerType>(Val: RHSType)) {
9281 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9282 LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
9283 if (AddrSpaceL != AddrSpaceR)
9284 Kind = CK_AddressSpaceConversion;
9285 else if (Context.hasCvrSimilarType(T1: RHSType, T2: LHSType))
9286 Kind = CK_NoOp;
9287 else
9288 Kind = CK_BitCast;
9289 return checkPointerTypesForAssignment(S&: *this, LHSType, RHSType,
9290 Loc: RHS.get()->getBeginLoc());
9291 }
9292
9293 // int -> T*
9294 if (RHSType->isIntegerType()) {
9295 Kind = CK_IntegralToPointer; // FIXME: null?
9296 return IntToPointer;
9297 }
9298
9299 // C pointers are not compatible with ObjC object pointers,
9300 // with two exceptions:
9301 if (isa<ObjCObjectPointerType>(Val: RHSType)) {
9302 // - conversions to void*
9303 if (LHSPointer->getPointeeType()->isVoidType()) {
9304 Kind = CK_BitCast;
9305 return Compatible;
9306 }
9307
9308 // - conversions from 'Class' to the redefinition type
9309 if (RHSType->isObjCClassType() &&
9310 Context.hasSameType(T1: LHSType,
9311 T2: Context.getObjCClassRedefinitionType())) {
9312 Kind = CK_BitCast;
9313 return Compatible;
9314 }
9315
9316 Kind = CK_BitCast;
9317 return IncompatiblePointer;
9318 }
9319
9320 // U^ -> void*
9321 if (RHSType->getAs<BlockPointerType>()) {
9322 if (LHSPointer->getPointeeType()->isVoidType()) {
9323 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9324 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9325 ->getPointeeType()
9326 .getAddressSpace();
9327 Kind =
9328 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9329 return Compatible;
9330 }
9331 }
9332
9333 return Incompatible;
9334 }
9335
9336 // Conversions to block pointers.
9337 if (isa<BlockPointerType>(Val: LHSType)) {
9338 // U^ -> T^
9339 if (RHSType->isBlockPointerType()) {
9340 LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
9341 ->getPointeeType()
9342 .getAddressSpace();
9343 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9344 ->getPointeeType()
9345 .getAddressSpace();
9346 Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9347 return checkBlockPointerTypesForAssignment(S&: *this, LHSType, RHSType);
9348 }
9349
9350 // int or null -> T^
9351 if (RHSType->isIntegerType()) {
9352 Kind = CK_IntegralToPointer; // FIXME: null
9353 return IntToBlockPointer;
9354 }
9355
9356 // id -> T^
9357 if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
9358 Kind = CK_AnyPointerToBlockPointerCast;
9359 return Compatible;
9360 }
9361
9362 // void* -> T^
9363 if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
9364 if (RHSPT->getPointeeType()->isVoidType()) {
9365 Kind = CK_AnyPointerToBlockPointerCast;
9366 return Compatible;
9367 }
9368
9369 return Incompatible;
9370 }
9371
9372 // Conversions to Objective-C pointers.
9373 if (isa<ObjCObjectPointerType>(Val: LHSType)) {
9374 // A* -> B*
9375 if (RHSType->isObjCObjectPointerType()) {
9376 Kind = CK_BitCast;
9377 Sema::AssignConvertType result =
9378 checkObjCPointerTypesForAssignment(S&: *this, LHSType, RHSType);
9379 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9380 result == Compatible &&
9381 !ObjC().CheckObjCARCUnavailableWeakConversion(castType: OrigLHSType, ExprType: RHSType))
9382 result = IncompatibleObjCWeakRef;
9383 return result;
9384 }
9385
9386 // int or null -> A*
9387 if (RHSType->isIntegerType()) {
9388 Kind = CK_IntegralToPointer; // FIXME: null
9389 return IntToPointer;
9390 }
9391
9392 // In general, C pointers are not compatible with ObjC object pointers,
9393 // with two exceptions:
9394 if (isa<PointerType>(Val: RHSType)) {
9395 Kind = CK_CPointerToObjCPointerCast;
9396
9397 // - conversions from 'void*'
9398 if (RHSType->isVoidPointerType()) {
9399 return Compatible;
9400 }
9401
9402 // - conversions to 'Class' from its redefinition type
9403 if (LHSType->isObjCClassType() &&
9404 Context.hasSameType(T1: RHSType,
9405 T2: Context.getObjCClassRedefinitionType())) {
9406 return Compatible;
9407 }
9408
9409 return IncompatiblePointer;
9410 }
9411
9412 // Only under strict condition T^ is compatible with an Objective-C pointer.
9413 if (RHSType->isBlockPointerType() &&
9414 LHSType->isBlockCompatibleObjCPointerType(ctx&: Context)) {
9415 if (ConvertRHS)
9416 maybeExtendBlockObject(E&: RHS);
9417 Kind = CK_BlockPointerToObjCPointerCast;
9418 return Compatible;
9419 }
9420
9421 return Incompatible;
9422 }
9423
9424 // Conversion to nullptr_t (C23 only)
9425 if (getLangOpts().C23 && LHSType->isNullPtrType() &&
9426 RHS.get()->isNullPointerConstant(Ctx&: Context,
9427 NPC: Expr::NPC_ValueDependentIsNull)) {
9428 // null -> nullptr_t
9429 Kind = CK_NullToPointer;
9430 return Compatible;
9431 }
9432
9433 // Conversions from pointers that are not covered by the above.
9434 if (isa<PointerType>(Val: RHSType)) {
9435 // T* -> _Bool
9436 if (LHSType == Context.BoolTy) {
9437 Kind = CK_PointerToBoolean;
9438 return Compatible;
9439 }
9440
9441 // T* -> int
9442 if (LHSType->isIntegerType()) {
9443 Kind = CK_PointerToIntegral;
9444 return PointerToInt;
9445 }
9446
9447 return Incompatible;
9448 }
9449
9450 // Conversions from Objective-C pointers that are not covered by the above.
9451 if (isa<ObjCObjectPointerType>(Val: RHSType)) {
9452 // T* -> _Bool
9453 if (LHSType == Context.BoolTy) {
9454 Kind = CK_PointerToBoolean;
9455 return Compatible;
9456 }
9457
9458 // T* -> int
9459 if (LHSType->isIntegerType()) {
9460 Kind = CK_PointerToIntegral;
9461 return PointerToInt;
9462 }
9463
9464 return Incompatible;
9465 }
9466
9467 // struct A -> struct B
9468 if (isa<TagType>(Val: LHSType) && isa<TagType>(Val: RHSType)) {
9469 if (Context.typesAreCompatible(T1: LHSType, T2: RHSType)) {
9470 Kind = CK_NoOp;
9471 return Compatible;
9472 }
9473 }
9474
9475 if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
9476 Kind = CK_IntToOCLSampler;
9477 return Compatible;
9478 }
9479
9480 return Incompatible;
9481}
9482
9483/// Constructs a transparent union from an expression that is
9484/// used to initialize the transparent union.
9485static void ConstructTransparentUnion(Sema &S, ASTContext &C,
9486 ExprResult &EResult, QualType UnionType,
9487 FieldDecl *Field) {
9488 // Build an initializer list that designates the appropriate member
9489 // of the transparent union.
9490 Expr *E = EResult.get();
9491 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
9492 E, SourceLocation());
9493 Initializer->setType(UnionType);
9494 Initializer->setInitializedFieldInUnion(Field);
9495
9496 // Build a compound literal constructing a value of the transparent
9497 // union type from this initializer list.
9498 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(T: UnionType);
9499 EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
9500 VK_PRValue, Initializer, false);
9501}
9502
9503Sema::AssignConvertType
9504Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
9505 ExprResult &RHS) {
9506 QualType RHSType = RHS.get()->getType();
9507
9508 // If the ArgType is a Union type, we want to handle a potential
9509 // transparent_union GCC extension.
9510 const RecordType *UT = ArgType->getAsUnionType();
9511 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
9512 return Incompatible;
9513
9514 // The field to initialize within the transparent union.
9515 RecordDecl *UD = UT->getDecl();
9516 FieldDecl *InitField = nullptr;
9517 // It's compatible if the expression matches any of the fields.
9518 for (auto *it : UD->fields()) {
9519 if (it->getType()->isPointerType()) {
9520 // If the transparent union contains a pointer type, we allow:
9521 // 1) void pointer
9522 // 2) null pointer constant
9523 if (RHSType->isPointerType())
9524 if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
9525 RHS = ImpCastExprToType(E: RHS.get(), Type: it->getType(), CK: CK_BitCast);
9526 InitField = it;
9527 break;
9528 }
9529
9530 if (RHS.get()->isNullPointerConstant(Ctx&: Context,
9531 NPC: Expr::NPC_ValueDependentIsNull)) {
9532 RHS = ImpCastExprToType(E: RHS.get(), Type: it->getType(),
9533 CK: CK_NullToPointer);
9534 InitField = it;
9535 break;
9536 }
9537 }
9538
9539 CastKind Kind;
9540 if (CheckAssignmentConstraints(LHSType: it->getType(), RHS, Kind)
9541 == Compatible) {
9542 RHS = ImpCastExprToType(E: RHS.get(), Type: it->getType(), CK: Kind);
9543 InitField = it;
9544 break;
9545 }
9546 }
9547
9548 if (!InitField)
9549 return Incompatible;
9550
9551 ConstructTransparentUnion(S&: *this, C&: Context, EResult&: RHS, UnionType: ArgType, Field: InitField);
9552 return Compatible;
9553}
9554
9555Sema::AssignConvertType
9556Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
9557 bool Diagnose,
9558 bool DiagnoseCFAudited,
9559 bool ConvertRHS) {
9560 // We need to be able to tell the caller whether we diagnosed a problem, if
9561 // they ask us to issue diagnostics.
9562 assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed");
9563
9564 // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
9565 // we can't avoid *all* modifications at the moment, so we need some somewhere
9566 // to put the updated value.
9567 ExprResult LocalRHS = CallerRHS;
9568 ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
9569
9570 if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
9571 if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
9572 if (RHSPtrType->getPointeeType()->hasAttr(AK: attr::NoDeref) &&
9573 !LHSPtrType->getPointeeType()->hasAttr(AK: attr::NoDeref)) {
9574 Diag(Loc: RHS.get()->getExprLoc(),
9575 DiagID: diag::warn_noderef_to_dereferenceable_pointer)
9576 << RHS.get()->getSourceRange();
9577 }
9578 }
9579 }
9580
9581 if (getLangOpts().CPlusPlus) {
9582 if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
9583 // C++ 5.17p3: If the left operand is not of class type, the
9584 // expression is implicitly converted (C++ 4) to the
9585 // cv-unqualified type of the left operand.
9586 QualType RHSType = RHS.get()->getType();
9587 if (Diagnose) {
9588 RHS = PerformImplicitConversion(From: RHS.get(), ToType: LHSType.getUnqualifiedType(),
9589 Action: AA_Assigning);
9590 } else {
9591 ImplicitConversionSequence ICS =
9592 TryImplicitConversion(From: RHS.get(), ToType: LHSType.getUnqualifiedType(),
9593 /*SuppressUserConversions=*/false,
9594 AllowExplicit: AllowedExplicit::None,
9595 /*InOverloadResolution=*/false,
9596 /*CStyle=*/false,
9597 /*AllowObjCWritebackConversion=*/false);
9598 if (ICS.isFailure())
9599 return Incompatible;
9600 RHS = PerformImplicitConversion(From: RHS.get(), ToType: LHSType.getUnqualifiedType(),
9601 ICS, Action: AA_Assigning);
9602 }
9603 if (RHS.isInvalid())
9604 return Incompatible;
9605 Sema::AssignConvertType result = Compatible;
9606 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9607 !ObjC().CheckObjCARCUnavailableWeakConversion(castType: LHSType, ExprType: RHSType))
9608 result = IncompatibleObjCWeakRef;
9609 return result;
9610 }
9611
9612 // FIXME: Currently, we fall through and treat C++ classes like C
9613 // structures.
9614 // FIXME: We also fall through for atomics; not sure what should
9615 // happen there, though.
9616 } else if (RHS.get()->getType() == Context.OverloadTy) {
9617 // As a set of extensions to C, we support overloading on functions. These
9618 // functions need to be resolved here.
9619 DeclAccessPair DAP;
9620 if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
9621 AddressOfExpr: RHS.get(), TargetType: LHSType, /*Complain=*/false, Found&: DAP))
9622 RHS = FixOverloadedFunctionReference(E: RHS.get(), FoundDecl: DAP, Fn: FD);
9623 else
9624 return Incompatible;
9625 }
9626
9627 // This check seems unnatural, however it is necessary to ensure the proper
9628 // conversion of functions/arrays. If the conversion were done for all
9629 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
9630 // expressions that suppress this implicit conversion (&, sizeof). This needs
9631 // to happen before we check for null pointer conversions because C does not
9632 // undergo the same implicit conversions as C++ does above (by the calls to
9633 // TryImplicitConversion() and PerformImplicitConversion()) which insert the
9634 // lvalue to rvalue cast before checking for null pointer constraints. This
9635 // addresses code like: nullptr_t val; int *ptr; ptr = val;
9636 //
9637 // Suppress this for references: C++ 8.5.3p5.
9638 if (!LHSType->isReferenceType()) {
9639 // FIXME: We potentially allocate here even if ConvertRHS is false.
9640 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get(), Diagnose);
9641 if (RHS.isInvalid())
9642 return Incompatible;
9643 }
9644
9645 // The constraints are expressed in terms of the atomic, qualified, or
9646 // unqualified type of the LHS.
9647 QualType LHSTypeAfterConversion = LHSType.getAtomicUnqualifiedType();
9648
9649 // C99 6.5.16.1p1: the left operand is a pointer and the right is
9650 // a null pointer constant <C23>or its type is nullptr_t;</C23>.
9651 if ((LHSTypeAfterConversion->isPointerType() ||
9652 LHSTypeAfterConversion->isObjCObjectPointerType() ||
9653 LHSTypeAfterConversion->isBlockPointerType()) &&
9654 ((getLangOpts().C23 && RHS.get()->getType()->isNullPtrType()) ||
9655 RHS.get()->isNullPointerConstant(Ctx&: Context,
9656 NPC: Expr::NPC_ValueDependentIsNull))) {
9657 if (Diagnose || ConvertRHS) {
9658 CastKind Kind;
9659 CXXCastPath Path;
9660 CheckPointerConversion(From: RHS.get(), ToType: LHSType, Kind, BasePath&: Path,
9661 /*IgnoreBaseAccess=*/false, Diagnose);
9662 if (ConvertRHS)
9663 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: Kind, VK: VK_PRValue, BasePath: &Path);
9664 }
9665 return Compatible;
9666 }
9667 // C23 6.5.16.1p1: the left operand has type atomic, qualified, or
9668 // unqualified bool, and the right operand is a pointer or its type is
9669 // nullptr_t.
9670 if (getLangOpts().C23 && LHSType->isBooleanType() &&
9671 RHS.get()->getType()->isNullPtrType()) {
9672 // NB: T* -> _Bool is handled in CheckAssignmentConstraints, this only
9673 // only handles nullptr -> _Bool due to needing an extra conversion
9674 // step.
9675 // We model this by converting from nullptr -> void * and then let the
9676 // conversion from void * -> _Bool happen naturally.
9677 if (Diagnose || ConvertRHS) {
9678 CastKind Kind;
9679 CXXCastPath Path;
9680 CheckPointerConversion(From: RHS.get(), ToType: Context.VoidPtrTy, Kind, BasePath&: Path,
9681 /*IgnoreBaseAccess=*/false, Diagnose);
9682 if (ConvertRHS)
9683 RHS = ImpCastExprToType(E: RHS.get(), Type: Context.VoidPtrTy, CK: Kind, VK: VK_PRValue,
9684 BasePath: &Path);
9685 }
9686 }
9687
9688 // OpenCL queue_t type assignment.
9689 if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
9690 Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNull)) {
9691 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
9692 return Compatible;
9693 }
9694
9695 CastKind Kind;
9696 Sema::AssignConvertType result =
9697 CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
9698
9699 // C99 6.5.16.1p2: The value of the right operand is converted to the
9700 // type of the assignment expression.
9701 // CheckAssignmentConstraints allows the left-hand side to be a reference,
9702 // so that we can use references in built-in functions even in C.
9703 // The getNonReferenceType() call makes sure that the resulting expression
9704 // does not have reference type.
9705 if (result != Incompatible && RHS.get()->getType() != LHSType) {
9706 QualType Ty = LHSType.getNonLValueExprType(Context);
9707 Expr *E = RHS.get();
9708
9709 // Check for various Objective-C errors. If we are not reporting
9710 // diagnostics and just checking for errors, e.g., during overload
9711 // resolution, return Incompatible to indicate the failure.
9712 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9713 ObjC().CheckObjCConversion(castRange: SourceRange(), castType: Ty, op&: E,
9714 CCK: CheckedConversionKind::Implicit, Diagnose,
9715 DiagnoseCFAudited) != SemaObjC::ACR_okay) {
9716 if (!Diagnose)
9717 return Incompatible;
9718 }
9719 if (getLangOpts().ObjC &&
9720 (ObjC().CheckObjCBridgeRelatedConversions(Loc: E->getBeginLoc(), DestType: LHSType,
9721 SrcType: E->getType(), SrcExpr&: E, Diagnose) ||
9722 ObjC().CheckConversionToObjCLiteral(DstType: LHSType, SrcExpr&: E, Diagnose))) {
9723 if (!Diagnose)
9724 return Incompatible;
9725 // Replace the expression with a corrected version and continue so we
9726 // can find further errors.
9727 RHS = E;
9728 return Compatible;
9729 }
9730
9731 if (ConvertRHS)
9732 RHS = ImpCastExprToType(E, Type: Ty, CK: Kind);
9733 }
9734
9735 return result;
9736}
9737
9738namespace {
9739/// The original operand to an operator, prior to the application of the usual
9740/// arithmetic conversions and converting the arguments of a builtin operator
9741/// candidate.
9742struct OriginalOperand {
9743 explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
9744 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: Op))
9745 Op = MTE->getSubExpr();
9746 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Val: Op))
9747 Op = BTE->getSubExpr();
9748 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Val: Op)) {
9749 Orig = ICE->getSubExprAsWritten();
9750 Conversion = ICE->getConversionFunction();
9751 }
9752 }
9753
9754 QualType getType() const { return Orig->getType(); }
9755
9756 Expr *Orig;
9757 NamedDecl *Conversion;
9758};
9759}
9760
9761QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
9762 ExprResult &RHS) {
9763 OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
9764
9765 Diag(Loc, DiagID: diag::err_typecheck_invalid_operands)
9766 << OrigLHS.getType() << OrigRHS.getType()
9767 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9768
9769 // If a user-defined conversion was applied to either of the operands prior
9770 // to applying the built-in operator rules, tell the user about it.
9771 if (OrigLHS.Conversion) {
9772 Diag(Loc: OrigLHS.Conversion->getLocation(),
9773 DiagID: diag::note_typecheck_invalid_operands_converted)
9774 << 0 << LHS.get()->getType();
9775 }
9776 if (OrigRHS.Conversion) {
9777 Diag(Loc: OrigRHS.Conversion->getLocation(),
9778 DiagID: diag::note_typecheck_invalid_operands_converted)
9779 << 1 << RHS.get()->getType();
9780 }
9781
9782 return QualType();
9783}
9784
9785QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
9786 ExprResult &RHS) {
9787 QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
9788 QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
9789
9790 bool LHSNatVec = LHSType->isVectorType();
9791 bool RHSNatVec = RHSType->isVectorType();
9792
9793 if (!(LHSNatVec && RHSNatVec)) {
9794 Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
9795 Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
9796 Diag(Loc, DiagID: diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9797 << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
9798 << Vector->getSourceRange();
9799 return QualType();
9800 }
9801
9802 Diag(Loc, DiagID: diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9803 << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
9804 << RHS.get()->getSourceRange();
9805
9806 return QualType();
9807}
9808
9809/// Try to convert a value of non-vector type to a vector type by converting
9810/// the type to the element type of the vector and then performing a splat.
9811/// If the language is OpenCL, we only use conversions that promote scalar
9812/// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
9813/// for float->int.
9814///
9815/// OpenCL V2.0 6.2.6.p2:
9816/// An error shall occur if any scalar operand type has greater rank
9817/// than the type of the vector element.
9818///
9819/// \param scalar - if non-null, actually perform the conversions
9820/// \return true if the operation fails (but without diagnosing the failure)
9821static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
9822 QualType scalarTy,
9823 QualType vectorEltTy,
9824 QualType vectorTy,
9825 unsigned &DiagID) {
9826 // The conversion to apply to the scalar before splatting it,
9827 // if necessary.
9828 CastKind scalarCast = CK_NoOp;
9829
9830 if (vectorEltTy->isIntegralType(Ctx: S.Context)) {
9831 if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
9832 (scalarTy->isIntegerType() &&
9833 S.Context.getIntegerTypeOrder(LHS: vectorEltTy, RHS: scalarTy) < 0))) {
9834 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9835 return true;
9836 }
9837 if (!scalarTy->isIntegralType(Ctx: S.Context))
9838 return true;
9839 scalarCast = CK_IntegralCast;
9840 } else if (vectorEltTy->isRealFloatingType()) {
9841 if (scalarTy->isRealFloatingType()) {
9842 if (S.getLangOpts().OpenCL &&
9843 S.Context.getFloatingTypeOrder(LHS: vectorEltTy, RHS: scalarTy) < 0) {
9844 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9845 return true;
9846 }
9847 scalarCast = CK_FloatingCast;
9848 }
9849 else if (scalarTy->isIntegralType(Ctx: S.Context))
9850 scalarCast = CK_IntegralToFloating;
9851 else
9852 return true;
9853 } else {
9854 return true;
9855 }
9856
9857 // Adjust scalar if desired.
9858 if (scalar) {
9859 if (scalarCast != CK_NoOp)
9860 *scalar = S.ImpCastExprToType(E: scalar->get(), Type: vectorEltTy, CK: scalarCast);
9861 *scalar = S.ImpCastExprToType(E: scalar->get(), Type: vectorTy, CK: CK_VectorSplat);
9862 }
9863 return false;
9864}
9865
9866/// Convert vector E to a vector with the same number of elements but different
9867/// element type.
9868static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
9869 const auto *VecTy = E->getType()->getAs<VectorType>();
9870 assert(VecTy && "Expression E must be a vector");
9871 QualType NewVecTy =
9872 VecTy->isExtVectorType()
9873 ? S.Context.getExtVectorType(VectorType: ElementType, NumElts: VecTy->getNumElements())
9874 : S.Context.getVectorType(VectorType: ElementType, NumElts: VecTy->getNumElements(),
9875 VecKind: VecTy->getVectorKind());
9876
9877 // Look through the implicit cast. Return the subexpression if its type is
9878 // NewVecTy.
9879 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E))
9880 if (ICE->getSubExpr()->getType() == NewVecTy)
9881 return ICE->getSubExpr();
9882
9883 auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
9884 return S.ImpCastExprToType(E, Type: NewVecTy, CK: Cast);
9885}
9886
9887/// Test if a (constant) integer Int can be casted to another integer type
9888/// IntTy without losing precision.
9889static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
9890 QualType OtherIntTy) {
9891 QualType IntTy = Int->get()->getType().getUnqualifiedType();
9892
9893 // Reject cases where the value of the Int is unknown as that would
9894 // possibly cause truncation, but accept cases where the scalar can be
9895 // demoted without loss of precision.
9896 Expr::EvalResult EVResult;
9897 bool CstInt = Int->get()->EvaluateAsInt(Result&: EVResult, Ctx: S.Context);
9898 int Order = S.Context.getIntegerTypeOrder(LHS: OtherIntTy, RHS: IntTy);
9899 bool IntSigned = IntTy->hasSignedIntegerRepresentation();
9900 bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
9901
9902 if (CstInt) {
9903 // If the scalar is constant and is of a higher order and has more active
9904 // bits that the vector element type, reject it.
9905 llvm::APSInt Result = EVResult.Val.getInt();
9906 unsigned NumBits = IntSigned
9907 ? (Result.isNegative() ? Result.getSignificantBits()
9908 : Result.getActiveBits())
9909 : Result.getActiveBits();
9910 if (Order < 0 && S.Context.getIntWidth(T: OtherIntTy) < NumBits)
9911 return true;
9912
9913 // If the signedness of the scalar type and the vector element type
9914 // differs and the number of bits is greater than that of the vector
9915 // element reject it.
9916 return (IntSigned != OtherIntSigned &&
9917 NumBits > S.Context.getIntWidth(T: OtherIntTy));
9918 }
9919
9920 // Reject cases where the value of the scalar is not constant and it's
9921 // order is greater than that of the vector element type.
9922 return (Order < 0);
9923}
9924
9925/// Test if a (constant) integer Int can be casted to floating point type
9926/// FloatTy without losing precision.
9927static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
9928 QualType FloatTy) {
9929 QualType IntTy = Int->get()->getType().getUnqualifiedType();
9930
9931 // Determine if the integer constant can be expressed as a floating point
9932 // number of the appropriate type.
9933 Expr::EvalResult EVResult;
9934 bool CstInt = Int->get()->EvaluateAsInt(Result&: EVResult, Ctx: S.Context);
9935
9936 uint64_t Bits = 0;
9937 if (CstInt) {
9938 // Reject constants that would be truncated if they were converted to
9939 // the floating point type. Test by simple to/from conversion.
9940 // FIXME: Ideally the conversion to an APFloat and from an APFloat
9941 // could be avoided if there was a convertFromAPInt method
9942 // which could signal back if implicit truncation occurred.
9943 llvm::APSInt Result = EVResult.Val.getInt();
9944 llvm::APFloat Float(S.Context.getFloatTypeSemantics(T: FloatTy));
9945 Float.convertFromAPInt(Input: Result, IsSigned: IntTy->hasSignedIntegerRepresentation(),
9946 RM: llvm::APFloat::rmTowardZero);
9947 llvm::APSInt ConvertBack(S.Context.getIntWidth(T: IntTy),
9948 !IntTy->hasSignedIntegerRepresentation());
9949 bool Ignored = false;
9950 Float.convertToInteger(Result&: ConvertBack, RM: llvm::APFloat::rmNearestTiesToEven,
9951 IsExact: &Ignored);
9952 if (Result != ConvertBack)
9953 return true;
9954 } else {
9955 // Reject types that cannot be fully encoded into the mantissa of
9956 // the float.
9957 Bits = S.Context.getTypeSize(T: IntTy);
9958 unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
9959 S.Context.getFloatTypeSemantics(T: FloatTy));
9960 if (Bits > FloatPrec)
9961 return true;
9962 }
9963
9964 return false;
9965}
9966
9967/// Attempt to convert and splat Scalar into a vector whose types matches
9968/// Vector following GCC conversion rules. The rule is that implicit
9969/// conversion can occur when Scalar can be casted to match Vector's element
9970/// type without causing truncation of Scalar.
9971static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
9972 ExprResult *Vector) {
9973 QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
9974 QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
9975 QualType VectorEltTy;
9976
9977 if (const auto *VT = VectorTy->getAs<VectorType>()) {
9978 assert(!isa<ExtVectorType>(VT) &&
9979 "ExtVectorTypes should not be handled here!");
9980 VectorEltTy = VT->getElementType();
9981 } else if (VectorTy->isSveVLSBuiltinType()) {
9982 VectorEltTy =
9983 VectorTy->castAs<BuiltinType>()->getSveEltType(Ctx: S.getASTContext());
9984 } else {
9985 llvm_unreachable("Only Fixed-Length and SVE Vector types are handled here");
9986 }
9987
9988 // Reject cases where the vector element type or the scalar element type are
9989 // not integral or floating point types.
9990 if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
9991 return true;
9992
9993 // The conversion to apply to the scalar before splatting it,
9994 // if necessary.
9995 CastKind ScalarCast = CK_NoOp;
9996
9997 // Accept cases where the vector elements are integers and the scalar is
9998 // an integer.
9999 // FIXME: Notionally if the scalar was a floating point value with a precise
10000 // integral representation, we could cast it to an appropriate integer
10001 // type and then perform the rest of the checks here. GCC will perform
10002 // this conversion in some cases as determined by the input language.
10003 // We should accept it on a language independent basis.
10004 if (VectorEltTy->isIntegralType(Ctx: S.Context) &&
10005 ScalarTy->isIntegralType(Ctx: S.Context) &&
10006 S.Context.getIntegerTypeOrder(LHS: VectorEltTy, RHS: ScalarTy)) {
10007
10008 if (canConvertIntToOtherIntTy(S, Int: Scalar, OtherIntTy: VectorEltTy))
10009 return true;
10010
10011 ScalarCast = CK_IntegralCast;
10012 } else if (VectorEltTy->isIntegralType(Ctx: S.Context) &&
10013 ScalarTy->isRealFloatingType()) {
10014 if (S.Context.getTypeSize(T: VectorEltTy) == S.Context.getTypeSize(T: ScalarTy))
10015 ScalarCast = CK_FloatingToIntegral;
10016 else
10017 return true;
10018 } else if (VectorEltTy->isRealFloatingType()) {
10019 if (ScalarTy->isRealFloatingType()) {
10020
10021 // Reject cases where the scalar type is not a constant and has a higher
10022 // Order than the vector element type.
10023 llvm::APFloat Result(0.0);
10024
10025 // Determine whether this is a constant scalar. In the event that the
10026 // value is dependent (and thus cannot be evaluated by the constant
10027 // evaluator), skip the evaluation. This will then diagnose once the
10028 // expression is instantiated.
10029 bool CstScalar = Scalar->get()->isValueDependent() ||
10030 Scalar->get()->EvaluateAsFloat(Result, Ctx: S.Context);
10031 int Order = S.Context.getFloatingTypeOrder(LHS: VectorEltTy, RHS: ScalarTy);
10032 if (!CstScalar && Order < 0)
10033 return true;
10034
10035 // If the scalar cannot be safely casted to the vector element type,
10036 // reject it.
10037 if (CstScalar) {
10038 bool Truncated = false;
10039 Result.convert(ToSemantics: S.Context.getFloatTypeSemantics(T: VectorEltTy),
10040 RM: llvm::APFloat::rmNearestTiesToEven, losesInfo: &Truncated);
10041 if (Truncated)
10042 return true;
10043 }
10044
10045 ScalarCast = CK_FloatingCast;
10046 } else if (ScalarTy->isIntegralType(Ctx: S.Context)) {
10047 if (canConvertIntTyToFloatTy(S, Int: Scalar, FloatTy: VectorEltTy))
10048 return true;
10049
10050 ScalarCast = CK_IntegralToFloating;
10051 } else
10052 return true;
10053 } else if (ScalarTy->isEnumeralType())
10054 return true;
10055
10056 // Adjust scalar if desired.
10057 if (ScalarCast != CK_NoOp)
10058 *Scalar = S.ImpCastExprToType(E: Scalar->get(), Type: VectorEltTy, CK: ScalarCast);
10059 *Scalar = S.ImpCastExprToType(E: Scalar->get(), Type: VectorTy, CK: CK_VectorSplat);
10060 return false;
10061}
10062
10063QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
10064 SourceLocation Loc, bool IsCompAssign,
10065 bool AllowBothBool,
10066 bool AllowBoolConversions,
10067 bool AllowBoolOperation,
10068 bool ReportInvalid) {
10069 if (!IsCompAssign) {
10070 LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get());
10071 if (LHS.isInvalid())
10072 return QualType();
10073 }
10074 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get());
10075 if (RHS.isInvalid())
10076 return QualType();
10077
10078 // For conversion purposes, we ignore any qualifiers.
10079 // For example, "const float" and "float" are equivalent.
10080 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10081 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10082
10083 const VectorType *LHSVecType = LHSType->getAs<VectorType>();
10084 const VectorType *RHSVecType = RHSType->getAs<VectorType>();
10085 assert(LHSVecType || RHSVecType);
10086
10087 // AltiVec-style "vector bool op vector bool" combinations are allowed
10088 // for some operators but not others.
10089 if (!AllowBothBool && LHSVecType &&
10090 LHSVecType->getVectorKind() == VectorKind::AltiVecBool && RHSVecType &&
10091 RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
10092 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10093
10094 // This operation may not be performed on boolean vectors.
10095 if (!AllowBoolOperation &&
10096 (LHSType->isExtVectorBoolType() || RHSType->isExtVectorBoolType()))
10097 return ReportInvalid ? InvalidOperands(Loc, LHS, RHS) : QualType();
10098
10099 // If the vector types are identical, return.
10100 if (Context.hasSameType(T1: LHSType, T2: RHSType))
10101 return Context.getCommonSugaredType(X: LHSType, Y: RHSType);
10102
10103 // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
10104 if (LHSVecType && RHSVecType &&
10105 Context.areCompatibleVectorTypes(FirstVec: LHSType, SecondVec: RHSType)) {
10106 if (isa<ExtVectorType>(Val: LHSVecType)) {
10107 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_BitCast);
10108 return LHSType;
10109 }
10110
10111 if (!IsCompAssign)
10112 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_BitCast);
10113 return RHSType;
10114 }
10115
10116 // AllowBoolConversions says that bool and non-bool AltiVec vectors
10117 // can be mixed, with the result being the non-bool type. The non-bool
10118 // operand must have integer element type.
10119 if (AllowBoolConversions && LHSVecType && RHSVecType &&
10120 LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
10121 (Context.getTypeSize(T: LHSVecType->getElementType()) ==
10122 Context.getTypeSize(T: RHSVecType->getElementType()))) {
10123 if (LHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
10124 LHSVecType->getElementType()->isIntegerType() &&
10125 RHSVecType->getVectorKind() == VectorKind::AltiVecBool) {
10126 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_BitCast);
10127 return LHSType;
10128 }
10129 if (!IsCompAssign &&
10130 LHSVecType->getVectorKind() == VectorKind::AltiVecBool &&
10131 RHSVecType->getVectorKind() == VectorKind::AltiVecVector &&
10132 RHSVecType->getElementType()->isIntegerType()) {
10133 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_BitCast);
10134 return RHSType;
10135 }
10136 }
10137
10138 // Expressions containing fixed-length and sizeless SVE/RVV vectors are
10139 // invalid since the ambiguity can affect the ABI.
10140 auto IsSveRVVConversion = [](QualType FirstType, QualType SecondType,
10141 unsigned &SVEorRVV) {
10142 const VectorType *VecType = SecondType->getAs<VectorType>();
10143 SVEorRVV = 0;
10144 if (FirstType->isSizelessBuiltinType() && VecType) {
10145 if (VecType->getVectorKind() == VectorKind::SveFixedLengthData ||
10146 VecType->getVectorKind() == VectorKind::SveFixedLengthPredicate)
10147 return true;
10148 if (VecType->getVectorKind() == VectorKind::RVVFixedLengthData ||
10149 VecType->getVectorKind() == VectorKind::RVVFixedLengthMask) {
10150 SVEorRVV = 1;
10151 return true;
10152 }
10153 }
10154
10155 return false;
10156 };
10157
10158 unsigned SVEorRVV;
10159 if (IsSveRVVConversion(LHSType, RHSType, SVEorRVV) ||
10160 IsSveRVVConversion(RHSType, LHSType, SVEorRVV)) {
10161 Diag(Loc, DiagID: diag::err_typecheck_sve_rvv_ambiguous)
10162 << SVEorRVV << LHSType << RHSType;
10163 return QualType();
10164 }
10165
10166 // Expressions containing GNU and SVE or RVV (fixed or sizeless) vectors are
10167 // invalid since the ambiguity can affect the ABI.
10168 auto IsSveRVVGnuConversion = [](QualType FirstType, QualType SecondType,
10169 unsigned &SVEorRVV) {
10170 const VectorType *FirstVecType = FirstType->getAs<VectorType>();
10171 const VectorType *SecondVecType = SecondType->getAs<VectorType>();
10172
10173 SVEorRVV = 0;
10174 if (FirstVecType && SecondVecType) {
10175 if (FirstVecType->getVectorKind() == VectorKind::Generic) {
10176 if (SecondVecType->getVectorKind() == VectorKind::SveFixedLengthData ||
10177 SecondVecType->getVectorKind() ==
10178 VectorKind::SveFixedLengthPredicate)
10179 return true;
10180 if (SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthData ||
10181 SecondVecType->getVectorKind() == VectorKind::RVVFixedLengthMask) {
10182 SVEorRVV = 1;
10183 return true;
10184 }
10185 }
10186 return false;
10187 }
10188
10189 if (SecondVecType &&
10190 SecondVecType->getVectorKind() == VectorKind::Generic) {
10191 if (FirstType->isSVESizelessBuiltinType())
10192 return true;
10193 if (FirstType->isRVVSizelessBuiltinType()) {
10194 SVEorRVV = 1;
10195 return true;
10196 }
10197 }
10198
10199 return false;
10200 };
10201
10202 if (IsSveRVVGnuConversion(LHSType, RHSType, SVEorRVV) ||
10203 IsSveRVVGnuConversion(RHSType, LHSType, SVEorRVV)) {
10204 Diag(Loc, DiagID: diag::err_typecheck_sve_rvv_gnu_ambiguous)
10205 << SVEorRVV << LHSType << RHSType;
10206 return QualType();
10207 }
10208
10209 // If there's a vector type and a scalar, try to convert the scalar to
10210 // the vector element type and splat.
10211 unsigned DiagID = diag::err_typecheck_vector_not_convertable;
10212 if (!RHSVecType) {
10213 if (isa<ExtVectorType>(Val: LHSVecType)) {
10214 if (!tryVectorConvertAndSplat(S&: *this, scalar: &RHS, scalarTy: RHSType,
10215 vectorEltTy: LHSVecType->getElementType(), vectorTy: LHSType,
10216 DiagID))
10217 return LHSType;
10218 } else {
10219 if (!tryGCCVectorConvertAndSplat(S&: *this, Scalar: &RHS, Vector: &LHS))
10220 return LHSType;
10221 }
10222 }
10223 if (!LHSVecType) {
10224 if (isa<ExtVectorType>(Val: RHSVecType)) {
10225 if (!tryVectorConvertAndSplat(S&: *this, scalar: (IsCompAssign ? nullptr : &LHS),
10226 scalarTy: LHSType, vectorEltTy: RHSVecType->getElementType(),
10227 vectorTy: RHSType, DiagID))
10228 return RHSType;
10229 } else {
10230 if (LHS.get()->isLValue() ||
10231 !tryGCCVectorConvertAndSplat(S&: *this, Scalar: &LHS, Vector: &RHS))
10232 return RHSType;
10233 }
10234 }
10235
10236 // FIXME: The code below also handles conversion between vectors and
10237 // non-scalars, we should break this down into fine grained specific checks
10238 // and emit proper diagnostics.
10239 QualType VecType = LHSVecType ? LHSType : RHSType;
10240 const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
10241 QualType OtherType = LHSVecType ? RHSType : LHSType;
10242 ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
10243 if (isLaxVectorConversion(srcTy: OtherType, destTy: VecType)) {
10244 if (Context.getTargetInfo().getTriple().isPPC() &&
10245 anyAltivecTypes(SrcTy: RHSType, DestTy: LHSType) &&
10246 !Context.areCompatibleVectorTypes(FirstVec: RHSType, SecondVec: LHSType))
10247 Diag(Loc, DiagID: diag::warn_deprecated_lax_vec_conv_all) << RHSType << LHSType;
10248 // If we're allowing lax vector conversions, only the total (data) size
10249 // needs to be the same. For non compound assignment, if one of the types is
10250 // scalar, the result is always the vector type.
10251 if (!IsCompAssign) {
10252 *OtherExpr = ImpCastExprToType(E: OtherExpr->get(), Type: VecType, CK: CK_BitCast);
10253 return VecType;
10254 // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
10255 // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
10256 // type. Note that this is already done by non-compound assignments in
10257 // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
10258 // <1 x T> -> T. The result is also a vector type.
10259 } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
10260 (OtherType->isScalarType() && VT->getNumElements() == 1)) {
10261 ExprResult *RHSExpr = &RHS;
10262 *RHSExpr = ImpCastExprToType(E: RHSExpr->get(), Type: LHSType, CK: CK_BitCast);
10263 return VecType;
10264 }
10265 }
10266
10267 // Okay, the expression is invalid.
10268
10269 // If there's a non-vector, non-real operand, diagnose that.
10270 if ((!RHSVecType && !RHSType->isRealType()) ||
10271 (!LHSVecType && !LHSType->isRealType())) {
10272 Diag(Loc, DiagID: diag::err_typecheck_vector_not_convertable_non_scalar)
10273 << LHSType << RHSType
10274 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10275 return QualType();
10276 }
10277
10278 // OpenCL V1.1 6.2.6.p1:
10279 // If the operands are of more than one vector type, then an error shall
10280 // occur. Implicit conversions between vector types are not permitted, per
10281 // section 6.2.1.
10282 if (getLangOpts().OpenCL &&
10283 RHSVecType && isa<ExtVectorType>(Val: RHSVecType) &&
10284 LHSVecType && isa<ExtVectorType>(Val: LHSVecType)) {
10285 Diag(Loc, DiagID: diag::err_opencl_implicit_vector_conversion) << LHSType
10286 << RHSType;
10287 return QualType();
10288 }
10289
10290
10291 // If there is a vector type that is not a ExtVector and a scalar, we reach
10292 // this point if scalar could not be converted to the vector's element type
10293 // without truncation.
10294 if ((RHSVecType && !isa<ExtVectorType>(Val: RHSVecType)) ||
10295 (LHSVecType && !isa<ExtVectorType>(Val: LHSVecType))) {
10296 QualType Scalar = LHSVecType ? RHSType : LHSType;
10297 QualType Vector = LHSVecType ? LHSType : RHSType;
10298 unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
10299 Diag(Loc,
10300 DiagID: diag::err_typecheck_vector_not_convertable_implict_truncation)
10301 << ScalarOrVector << Scalar << Vector;
10302
10303 return QualType();
10304 }
10305
10306 // Otherwise, use the generic diagnostic.
10307 Diag(Loc, DiagID)
10308 << LHSType << RHSType
10309 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10310 return QualType();
10311}
10312
10313QualType Sema::CheckSizelessVectorOperands(ExprResult &LHS, ExprResult &RHS,
10314 SourceLocation Loc,
10315 bool IsCompAssign,
10316 ArithConvKind OperationKind) {
10317 if (!IsCompAssign) {
10318 LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get());
10319 if (LHS.isInvalid())
10320 return QualType();
10321 }
10322 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get());
10323 if (RHS.isInvalid())
10324 return QualType();
10325
10326 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
10327 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
10328
10329 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
10330 const BuiltinType *RHSBuiltinTy = RHSType->getAs<BuiltinType>();
10331
10332 unsigned DiagID = diag::err_typecheck_invalid_operands;
10333 if ((OperationKind == ACK_Arithmetic) &&
10334 ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
10335 (RHSBuiltinTy && RHSBuiltinTy->isSVEBool()))) {
10336 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10337 << RHS.get()->getSourceRange();
10338 return QualType();
10339 }
10340
10341 if (Context.hasSameType(T1: LHSType, T2: RHSType))
10342 return LHSType;
10343
10344 if (LHSType->isSveVLSBuiltinType() && !RHSType->isSveVLSBuiltinType()) {
10345 if (!tryGCCVectorConvertAndSplat(S&: *this, Scalar: &RHS, Vector: &LHS))
10346 return LHSType;
10347 }
10348 if (RHSType->isSveVLSBuiltinType() && !LHSType->isSveVLSBuiltinType()) {
10349 if (LHS.get()->isLValue() ||
10350 !tryGCCVectorConvertAndSplat(S&: *this, Scalar: &LHS, Vector: &RHS))
10351 return RHSType;
10352 }
10353
10354 if ((!LHSType->isSveVLSBuiltinType() && !LHSType->isRealType()) ||
10355 (!RHSType->isSveVLSBuiltinType() && !RHSType->isRealType())) {
10356 Diag(Loc, DiagID: diag::err_typecheck_vector_not_convertable_non_scalar)
10357 << LHSType << RHSType << LHS.get()->getSourceRange()
10358 << RHS.get()->getSourceRange();
10359 return QualType();
10360 }
10361
10362 if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
10363 Context.getBuiltinVectorTypeInfo(VecTy: LHSBuiltinTy).EC !=
10364 Context.getBuiltinVectorTypeInfo(VecTy: RHSBuiltinTy).EC) {
10365 Diag(Loc, DiagID: diag::err_typecheck_vector_lengths_not_equal)
10366 << LHSType << RHSType << LHS.get()->getSourceRange()
10367 << RHS.get()->getSourceRange();
10368 return QualType();
10369 }
10370
10371 if (LHSType->isSveVLSBuiltinType() || RHSType->isSveVLSBuiltinType()) {
10372 QualType Scalar = LHSType->isSveVLSBuiltinType() ? RHSType : LHSType;
10373 QualType Vector = LHSType->isSveVLSBuiltinType() ? LHSType : RHSType;
10374 bool ScalarOrVector =
10375 LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType();
10376
10377 Diag(Loc, DiagID: diag::err_typecheck_vector_not_convertable_implict_truncation)
10378 << ScalarOrVector << Scalar << Vector;
10379
10380 return QualType();
10381 }
10382
10383 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
10384 << RHS.get()->getSourceRange();
10385 return QualType();
10386}
10387
10388// checkArithmeticNull - Detect when a NULL constant is used improperly in an
10389// expression. These are mainly cases where the null pointer is used as an
10390// integer instead of a pointer.
10391static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
10392 SourceLocation Loc, bool IsCompare) {
10393 // The canonical way to check for a GNU null is with isNullPointerConstant,
10394 // but we use a bit of a hack here for speed; this is a relatively
10395 // hot path, and isNullPointerConstant is slow.
10396 bool LHSNull = isa<GNUNullExpr>(Val: LHS.get()->IgnoreParenImpCasts());
10397 bool RHSNull = isa<GNUNullExpr>(Val: RHS.get()->IgnoreParenImpCasts());
10398
10399 QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
10400
10401 // Avoid analyzing cases where the result will either be invalid (and
10402 // diagnosed as such) or entirely valid and not something to warn about.
10403 if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
10404 NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
10405 return;
10406
10407 // Comparison operations would not make sense with a null pointer no matter
10408 // what the other expression is.
10409 if (!IsCompare) {
10410 S.Diag(Loc, DiagID: diag::warn_null_in_arithmetic_operation)
10411 << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
10412 << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
10413 return;
10414 }
10415
10416 // The rest of the operations only make sense with a null pointer
10417 // if the other expression is a pointer.
10418 if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
10419 NonNullType->canDecayToPointerType())
10420 return;
10421
10422 S.Diag(Loc, DiagID: diag::warn_null_in_comparison_operation)
10423 << LHSNull /* LHS is NULL */ << NonNullType
10424 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10425}
10426
10427static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
10428 SourceLocation Loc) {
10429 const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(Val: LHS);
10430 const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(Val: RHS);
10431 if (!LUE || !RUE)
10432 return;
10433 if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
10434 RUE->getKind() != UETT_SizeOf)
10435 return;
10436
10437 const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
10438 QualType LHSTy = LHSArg->getType();
10439 QualType RHSTy;
10440
10441 if (RUE->isArgumentType())
10442 RHSTy = RUE->getArgumentType().getNonReferenceType();
10443 else
10444 RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
10445
10446 if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
10447 if (!S.Context.hasSameUnqualifiedType(T1: LHSTy->getPointeeType(), T2: RHSTy))
10448 return;
10449
10450 S.Diag(Loc, DiagID: diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
10451 if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: LHSArg)) {
10452 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10453 S.Diag(Loc: LHSArgDecl->getLocation(), DiagID: diag::note_pointer_declared_here)
10454 << LHSArgDecl;
10455 }
10456 } else if (const auto *ArrayTy = S.Context.getAsArrayType(T: LHSTy)) {
10457 QualType ArrayElemTy = ArrayTy->getElementType();
10458 if (ArrayElemTy != S.Context.getBaseElementType(VAT: ArrayTy) ||
10459 ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
10460 RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
10461 S.Context.getTypeSize(T: ArrayElemTy) == S.Context.getTypeSize(T: RHSTy))
10462 return;
10463 S.Diag(Loc, DiagID: diag::warn_division_sizeof_array)
10464 << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
10465 if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: LHSArg)) {
10466 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10467 S.Diag(Loc: LHSArgDecl->getLocation(), DiagID: diag::note_array_declared_here)
10468 << LHSArgDecl;
10469 }
10470
10471 S.Diag(Loc, DiagID: diag::note_precedence_silence) << RHS;
10472 }
10473}
10474
10475static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
10476 ExprResult &RHS,
10477 SourceLocation Loc, bool IsDiv) {
10478 // Check for division/remainder by zero.
10479 Expr::EvalResult RHSValue;
10480 if (!RHS.get()->isValueDependent() &&
10481 RHS.get()->EvaluateAsInt(Result&: RHSValue, Ctx: S.Context) &&
10482 RHSValue.Val.getInt() == 0)
10483 S.DiagRuntimeBehavior(Loc, Statement: RHS.get(),
10484 PD: S.PDiag(DiagID: diag::warn_remainder_division_by_zero)
10485 << IsDiv << RHS.get()->getSourceRange());
10486}
10487
10488QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
10489 SourceLocation Loc,
10490 bool IsCompAssign, bool IsDiv) {
10491 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/false);
10492
10493 QualType LHSTy = LHS.get()->getType();
10494 QualType RHSTy = RHS.get()->getType();
10495 if (LHSTy->isVectorType() || RHSTy->isVectorType())
10496 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10497 /*AllowBothBool*/ getLangOpts().AltiVec,
10498 /*AllowBoolConversions*/ false,
10499 /*AllowBooleanOperation*/ AllowBoolOperation: false,
10500 /*ReportInvalid*/ true);
10501 if (LHSTy->isSveVLSBuiltinType() || RHSTy->isSveVLSBuiltinType())
10502 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
10503 OperationKind: ACK_Arithmetic);
10504 if (!IsDiv &&
10505 (LHSTy->isConstantMatrixType() || RHSTy->isConstantMatrixType()))
10506 return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
10507 // For division, only matrix-by-scalar is supported. Other combinations with
10508 // matrix types are invalid.
10509 if (IsDiv && LHSTy->isConstantMatrixType() && RHSTy->isArithmeticType())
10510 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
10511
10512 QualType compType = UsualArithmeticConversions(
10513 LHS, RHS, Loc, ACK: IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10514 if (LHS.isInvalid() || RHS.isInvalid())
10515 return QualType();
10516
10517
10518 if (compType.isNull() || !compType->isArithmeticType())
10519 return InvalidOperands(Loc, LHS, RHS);
10520 if (IsDiv) {
10521 DiagnoseBadDivideOrRemainderValues(S&: *this, LHS, RHS, Loc, IsDiv);
10522 DiagnoseDivisionSizeofPointerOrArray(S&: *this, LHS: LHS.get(), RHS: RHS.get(), Loc);
10523 }
10524 return compType;
10525}
10526
10527QualType Sema::CheckRemainderOperands(
10528 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
10529 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/false);
10530
10531 if (LHS.get()->getType()->isVectorType() ||
10532 RHS.get()->getType()->isVectorType()) {
10533 if (LHS.get()->getType()->hasIntegerRepresentation() &&
10534 RHS.get()->getType()->hasIntegerRepresentation())
10535 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10536 /*AllowBothBool*/ getLangOpts().AltiVec,
10537 /*AllowBoolConversions*/ false,
10538 /*AllowBooleanOperation*/ AllowBoolOperation: false,
10539 /*ReportInvalid*/ true);
10540 return InvalidOperands(Loc, LHS, RHS);
10541 }
10542
10543 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
10544 RHS.get()->getType()->isSveVLSBuiltinType()) {
10545 if (LHS.get()->getType()->hasIntegerRepresentation() &&
10546 RHS.get()->getType()->hasIntegerRepresentation())
10547 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
10548 OperationKind: ACK_Arithmetic);
10549
10550 return InvalidOperands(Loc, LHS, RHS);
10551 }
10552
10553 QualType compType = UsualArithmeticConversions(
10554 LHS, RHS, Loc, ACK: IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10555 if (LHS.isInvalid() || RHS.isInvalid())
10556 return QualType();
10557
10558 if (compType.isNull() || !compType->isIntegerType())
10559 return InvalidOperands(Loc, LHS, RHS);
10560 DiagnoseBadDivideOrRemainderValues(S&: *this, LHS, RHS, Loc, IsDiv: false /* IsDiv */);
10561 return compType;
10562}
10563
10564/// Diagnose invalid arithmetic on two void pointers.
10565static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
10566 Expr *LHSExpr, Expr *RHSExpr) {
10567 S.Diag(Loc, DiagID: S.getLangOpts().CPlusPlus
10568 ? diag::err_typecheck_pointer_arith_void_type
10569 : diag::ext_gnu_void_ptr)
10570 << 1 /* two pointers */ << LHSExpr->getSourceRange()
10571 << RHSExpr->getSourceRange();
10572}
10573
10574/// Diagnose invalid arithmetic on a void pointer.
10575static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
10576 Expr *Pointer) {
10577 S.Diag(Loc, DiagID: S.getLangOpts().CPlusPlus
10578 ? diag::err_typecheck_pointer_arith_void_type
10579 : diag::ext_gnu_void_ptr)
10580 << 0 /* one pointer */ << Pointer->getSourceRange();
10581}
10582
10583/// Diagnose invalid arithmetic on a null pointer.
10584///
10585/// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
10586/// idiom, which we recognize as a GNU extension.
10587///
10588static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
10589 Expr *Pointer, bool IsGNUIdiom) {
10590 if (IsGNUIdiom)
10591 S.Diag(Loc, DiagID: diag::warn_gnu_null_ptr_arith)
10592 << Pointer->getSourceRange();
10593 else
10594 S.Diag(Loc, DiagID: diag::warn_pointer_arith_null_ptr)
10595 << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
10596}
10597
10598/// Diagnose invalid subraction on a null pointer.
10599///
10600static void diagnoseSubtractionOnNullPointer(Sema &S, SourceLocation Loc,
10601 Expr *Pointer, bool BothNull) {
10602 // Null - null is valid in C++ [expr.add]p7
10603 if (BothNull && S.getLangOpts().CPlusPlus)
10604 return;
10605
10606 // Is this s a macro from a system header?
10607 if (S.Diags.getSuppressSystemWarnings() && S.SourceMgr.isInSystemMacro(loc: Loc))
10608 return;
10609
10610 S.DiagRuntimeBehavior(Loc, Statement: Pointer,
10611 PD: S.PDiag(DiagID: diag::warn_pointer_sub_null_ptr)
10612 << S.getLangOpts().CPlusPlus
10613 << Pointer->getSourceRange());
10614}
10615
10616/// Diagnose invalid arithmetic on two function pointers.
10617static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
10618 Expr *LHS, Expr *RHS) {
10619 assert(LHS->getType()->isAnyPointerType());
10620 assert(RHS->getType()->isAnyPointerType());
10621 S.Diag(Loc, DiagID: S.getLangOpts().CPlusPlus
10622 ? diag::err_typecheck_pointer_arith_function_type
10623 : diag::ext_gnu_ptr_func_arith)
10624 << 1 /* two pointers */ << LHS->getType()->getPointeeType()
10625 // We only show the second type if it differs from the first.
10626 << (unsigned)!S.Context.hasSameUnqualifiedType(T1: LHS->getType(),
10627 T2: RHS->getType())
10628 << RHS->getType()->getPointeeType()
10629 << LHS->getSourceRange() << RHS->getSourceRange();
10630}
10631
10632/// Diagnose invalid arithmetic on a function pointer.
10633static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
10634 Expr *Pointer) {
10635 assert(Pointer->getType()->isAnyPointerType());
10636 S.Diag(Loc, DiagID: S.getLangOpts().CPlusPlus
10637 ? diag::err_typecheck_pointer_arith_function_type
10638 : diag::ext_gnu_ptr_func_arith)
10639 << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
10640 << 0 /* one pointer, so only one type */
10641 << Pointer->getSourceRange();
10642}
10643
10644/// Emit error if Operand is incomplete pointer type
10645///
10646/// \returns True if pointer has incomplete type
10647static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
10648 Expr *Operand) {
10649 QualType ResType = Operand->getType();
10650 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10651 ResType = ResAtomicType->getValueType();
10652
10653 assert(ResType->isAnyPointerType());
10654 QualType PointeeTy = ResType->getPointeeType();
10655 return S.RequireCompleteSizedType(
10656 Loc, T: PointeeTy,
10657 DiagID: diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
10658 Args: Operand->getSourceRange());
10659}
10660
10661/// Check the validity of an arithmetic pointer operand.
10662///
10663/// If the operand has pointer type, this code will check for pointer types
10664/// which are invalid in arithmetic operations. These will be diagnosed
10665/// appropriately, including whether or not the use is supported as an
10666/// extension.
10667///
10668/// \returns True when the operand is valid to use (even if as an extension).
10669static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
10670 Expr *Operand) {
10671 QualType ResType = Operand->getType();
10672 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10673 ResType = ResAtomicType->getValueType();
10674
10675 if (!ResType->isAnyPointerType()) return true;
10676
10677 QualType PointeeTy = ResType->getPointeeType();
10678 if (PointeeTy->isVoidType()) {
10679 diagnoseArithmeticOnVoidPointer(S, Loc, Pointer: Operand);
10680 return !S.getLangOpts().CPlusPlus;
10681 }
10682 if (PointeeTy->isFunctionType()) {
10683 diagnoseArithmeticOnFunctionPointer(S, Loc, Pointer: Operand);
10684 return !S.getLangOpts().CPlusPlus;
10685 }
10686
10687 if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
10688
10689 return true;
10690}
10691
10692/// Check the validity of a binary arithmetic operation w.r.t. pointer
10693/// operands.
10694///
10695/// This routine will diagnose any invalid arithmetic on pointer operands much
10696/// like \see checkArithmeticOpPointerOperand. However, it has special logic
10697/// for emitting a single diagnostic even for operations where both LHS and RHS
10698/// are (potentially problematic) pointers.
10699///
10700/// \returns True when the operand is valid to use (even if as an extension).
10701static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
10702 Expr *LHSExpr, Expr *RHSExpr) {
10703 bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
10704 bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
10705 if (!isLHSPointer && !isRHSPointer) return true;
10706
10707 QualType LHSPointeeTy, RHSPointeeTy;
10708 if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
10709 if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
10710
10711 // if both are pointers check if operation is valid wrt address spaces
10712 if (isLHSPointer && isRHSPointer) {
10713 if (!LHSPointeeTy.isAddressSpaceOverlapping(T: RHSPointeeTy)) {
10714 S.Diag(Loc,
10715 DiagID: diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
10716 << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
10717 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
10718 return false;
10719 }
10720 }
10721
10722 // Check for arithmetic on pointers to incomplete types.
10723 bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
10724 bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
10725 if (isLHSVoidPtr || isRHSVoidPtr) {
10726 if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, Pointer: LHSExpr);
10727 else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, Pointer: RHSExpr);
10728 else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
10729
10730 return !S.getLangOpts().CPlusPlus;
10731 }
10732
10733 bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
10734 bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
10735 if (isLHSFuncPtr || isRHSFuncPtr) {
10736 if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, Pointer: LHSExpr);
10737 else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
10738 Pointer: RHSExpr);
10739 else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHS: LHSExpr, RHS: RHSExpr);
10740
10741 return !S.getLangOpts().CPlusPlus;
10742 }
10743
10744 if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, Operand: LHSExpr))
10745 return false;
10746 if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, Operand: RHSExpr))
10747 return false;
10748
10749 return true;
10750}
10751
10752/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
10753/// literal.
10754static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
10755 Expr *LHSExpr, Expr *RHSExpr) {
10756 StringLiteral* StrExpr = dyn_cast<StringLiteral>(Val: LHSExpr->IgnoreImpCasts());
10757 Expr* IndexExpr = RHSExpr;
10758 if (!StrExpr) {
10759 StrExpr = dyn_cast<StringLiteral>(Val: RHSExpr->IgnoreImpCasts());
10760 IndexExpr = LHSExpr;
10761 }
10762
10763 bool IsStringPlusInt = StrExpr &&
10764 IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
10765 if (!IsStringPlusInt || IndexExpr->isValueDependent())
10766 return;
10767
10768 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10769 Self.Diag(Loc: OpLoc, DiagID: diag::warn_string_plus_int)
10770 << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
10771
10772 // Only print a fixit for "str" + int, not for int + "str".
10773 if (IndexExpr == RHSExpr) {
10774 SourceLocation EndLoc = Self.getLocForEndOfToken(Loc: RHSExpr->getEndLoc());
10775 Self.Diag(Loc: OpLoc, DiagID: diag::note_string_plus_scalar_silence)
10776 << FixItHint::CreateInsertion(InsertionLoc: LHSExpr->getBeginLoc(), Code: "&")
10777 << FixItHint::CreateReplacement(RemoveRange: SourceRange(OpLoc), Code: "[")
10778 << FixItHint::CreateInsertion(InsertionLoc: EndLoc, Code: "]");
10779 } else
10780 Self.Diag(Loc: OpLoc, DiagID: diag::note_string_plus_scalar_silence);
10781}
10782
10783/// Emit a warning when adding a char literal to a string.
10784static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
10785 Expr *LHSExpr, Expr *RHSExpr) {
10786 const Expr *StringRefExpr = LHSExpr;
10787 const CharacterLiteral *CharExpr =
10788 dyn_cast<CharacterLiteral>(Val: RHSExpr->IgnoreImpCasts());
10789
10790 if (!CharExpr) {
10791 CharExpr = dyn_cast<CharacterLiteral>(Val: LHSExpr->IgnoreImpCasts());
10792 StringRefExpr = RHSExpr;
10793 }
10794
10795 if (!CharExpr || !StringRefExpr)
10796 return;
10797
10798 const QualType StringType = StringRefExpr->getType();
10799
10800 // Return if not a PointerType.
10801 if (!StringType->isAnyPointerType())
10802 return;
10803
10804 // Return if not a CharacterType.
10805 if (!StringType->getPointeeType()->isAnyCharacterType())
10806 return;
10807
10808 ASTContext &Ctx = Self.getASTContext();
10809 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10810
10811 const QualType CharType = CharExpr->getType();
10812 if (!CharType->isAnyCharacterType() &&
10813 CharType->isIntegerType() &&
10814 llvm::isUIntN(N: Ctx.getCharWidth(), x: CharExpr->getValue())) {
10815 Self.Diag(Loc: OpLoc, DiagID: diag::warn_string_plus_char)
10816 << DiagRange << Ctx.CharTy;
10817 } else {
10818 Self.Diag(Loc: OpLoc, DiagID: diag::warn_string_plus_char)
10819 << DiagRange << CharExpr->getType();
10820 }
10821
10822 // Only print a fixit for str + char, not for char + str.
10823 if (isa<CharacterLiteral>(Val: RHSExpr->IgnoreImpCasts())) {
10824 SourceLocation EndLoc = Self.getLocForEndOfToken(Loc: RHSExpr->getEndLoc());
10825 Self.Diag(Loc: OpLoc, DiagID: diag::note_string_plus_scalar_silence)
10826 << FixItHint::CreateInsertion(InsertionLoc: LHSExpr->getBeginLoc(), Code: "&")
10827 << FixItHint::CreateReplacement(RemoveRange: SourceRange(OpLoc), Code: "[")
10828 << FixItHint::CreateInsertion(InsertionLoc: EndLoc, Code: "]");
10829 } else {
10830 Self.Diag(Loc: OpLoc, DiagID: diag::note_string_plus_scalar_silence);
10831 }
10832}
10833
10834/// Emit error when two pointers are incompatible.
10835static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
10836 Expr *LHSExpr, Expr *RHSExpr) {
10837 assert(LHSExpr->getType()->isAnyPointerType());
10838 assert(RHSExpr->getType()->isAnyPointerType());
10839 S.Diag(Loc, DiagID: diag::err_typecheck_sub_ptr_compatible)
10840 << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
10841 << RHSExpr->getSourceRange();
10842}
10843
10844// C99 6.5.6
10845QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
10846 SourceLocation Loc, BinaryOperatorKind Opc,
10847 QualType* CompLHSTy) {
10848 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/false);
10849
10850 if (LHS.get()->getType()->isVectorType() ||
10851 RHS.get()->getType()->isVectorType()) {
10852 QualType compType =
10853 CheckVectorOperands(LHS, RHS, Loc, IsCompAssign: CompLHSTy,
10854 /*AllowBothBool*/ getLangOpts().AltiVec,
10855 /*AllowBoolConversions*/ getLangOpts().ZVector,
10856 /*AllowBooleanOperation*/ AllowBoolOperation: false,
10857 /*ReportInvalid*/ true);
10858 if (CompLHSTy) *CompLHSTy = compType;
10859 return compType;
10860 }
10861
10862 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
10863 RHS.get()->getType()->isSveVLSBuiltinType()) {
10864 QualType compType =
10865 CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign: CompLHSTy, OperationKind: ACK_Arithmetic);
10866 if (CompLHSTy)
10867 *CompLHSTy = compType;
10868 return compType;
10869 }
10870
10871 if (LHS.get()->getType()->isConstantMatrixType() ||
10872 RHS.get()->getType()->isConstantMatrixType()) {
10873 QualType compType =
10874 CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign: CompLHSTy);
10875 if (CompLHSTy)
10876 *CompLHSTy = compType;
10877 return compType;
10878 }
10879
10880 QualType compType = UsualArithmeticConversions(
10881 LHS, RHS, Loc, ACK: CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
10882 if (LHS.isInvalid() || RHS.isInvalid())
10883 return QualType();
10884
10885 // Diagnose "string literal" '+' int and string '+' "char literal".
10886 if (Opc == BO_Add) {
10887 diagnoseStringPlusInt(Self&: *this, OpLoc: Loc, LHSExpr: LHS.get(), RHSExpr: RHS.get());
10888 diagnoseStringPlusChar(Self&: *this, OpLoc: Loc, LHSExpr: LHS.get(), RHSExpr: RHS.get());
10889 }
10890
10891 // handle the common case first (both operands are arithmetic).
10892 if (!compType.isNull() && compType->isArithmeticType()) {
10893 if (CompLHSTy) *CompLHSTy = compType;
10894 return compType;
10895 }
10896
10897 // Type-checking. Ultimately the pointer's going to be in PExp;
10898 // note that we bias towards the LHS being the pointer.
10899 Expr *PExp = LHS.get(), *IExp = RHS.get();
10900
10901 bool isObjCPointer;
10902 if (PExp->getType()->isPointerType()) {
10903 isObjCPointer = false;
10904 } else if (PExp->getType()->isObjCObjectPointerType()) {
10905 isObjCPointer = true;
10906 } else {
10907 std::swap(a&: PExp, b&: IExp);
10908 if (PExp->getType()->isPointerType()) {
10909 isObjCPointer = false;
10910 } else if (PExp->getType()->isObjCObjectPointerType()) {
10911 isObjCPointer = true;
10912 } else {
10913 return InvalidOperands(Loc, LHS, RHS);
10914 }
10915 }
10916 assert(PExp->getType()->isAnyPointerType());
10917
10918 if (!IExp->getType()->isIntegerType())
10919 return InvalidOperands(Loc, LHS, RHS);
10920
10921 // Adding to a null pointer results in undefined behavior.
10922 if (PExp->IgnoreParenCasts()->isNullPointerConstant(
10923 Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNotNull)) {
10924 // In C++ adding zero to a null pointer is defined.
10925 Expr::EvalResult KnownVal;
10926 if (!getLangOpts().CPlusPlus ||
10927 (!IExp->isValueDependent() &&
10928 (!IExp->EvaluateAsInt(Result&: KnownVal, Ctx: Context) ||
10929 KnownVal.Val.getInt() != 0))) {
10930 // Check the conditions to see if this is the 'p = nullptr + n' idiom.
10931 bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
10932 Ctx&: Context, Opc: BO_Add, LHS: PExp, RHS: IExp);
10933 diagnoseArithmeticOnNullPointer(S&: *this, Loc, Pointer: PExp, IsGNUIdiom);
10934 }
10935 }
10936
10937 if (!checkArithmeticOpPointerOperand(S&: *this, Loc, Operand: PExp))
10938 return QualType();
10939
10940 if (isObjCPointer && checkArithmeticOnObjCPointer(S&: *this, opLoc: Loc, op: PExp))
10941 return QualType();
10942
10943 // Arithmetic on label addresses is normally allowed, except when we add
10944 // a ptrauth signature to the addresses.
10945 if (isa<AddrLabelExpr>(Val: PExp) && getLangOpts().PointerAuthIndirectGotos) {
10946 Diag(Loc, DiagID: diag::err_ptrauth_indirect_goto_addrlabel_arithmetic)
10947 << /*addition*/ 1;
10948 return QualType();
10949 }
10950
10951 // Check array bounds for pointer arithemtic
10952 CheckArrayAccess(BaseExpr: PExp, IndexExpr: IExp);
10953
10954 if (CompLHSTy) {
10955 QualType LHSTy = Context.isPromotableBitField(E: LHS.get());
10956 if (LHSTy.isNull()) {
10957 LHSTy = LHS.get()->getType();
10958 if (Context.isPromotableIntegerType(T: LHSTy))
10959 LHSTy = Context.getPromotedIntegerType(PromotableType: LHSTy);
10960 }
10961 *CompLHSTy = LHSTy;
10962 }
10963
10964 return PExp->getType();
10965}
10966
10967// C99 6.5.6
10968QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
10969 SourceLocation Loc,
10970 QualType* CompLHSTy) {
10971 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/false);
10972
10973 if (LHS.get()->getType()->isVectorType() ||
10974 RHS.get()->getType()->isVectorType()) {
10975 QualType compType =
10976 CheckVectorOperands(LHS, RHS, Loc, IsCompAssign: CompLHSTy,
10977 /*AllowBothBool*/ getLangOpts().AltiVec,
10978 /*AllowBoolConversions*/ getLangOpts().ZVector,
10979 /*AllowBooleanOperation*/ AllowBoolOperation: false,
10980 /*ReportInvalid*/ true);
10981 if (CompLHSTy) *CompLHSTy = compType;
10982 return compType;
10983 }
10984
10985 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
10986 RHS.get()->getType()->isSveVLSBuiltinType()) {
10987 QualType compType =
10988 CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign: CompLHSTy, OperationKind: ACK_Arithmetic);
10989 if (CompLHSTy)
10990 *CompLHSTy = compType;
10991 return compType;
10992 }
10993
10994 if (LHS.get()->getType()->isConstantMatrixType() ||
10995 RHS.get()->getType()->isConstantMatrixType()) {
10996 QualType compType =
10997 CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign: CompLHSTy);
10998 if (CompLHSTy)
10999 *CompLHSTy = compType;
11000 return compType;
11001 }
11002
11003 QualType compType = UsualArithmeticConversions(
11004 LHS, RHS, Loc, ACK: CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
11005 if (LHS.isInvalid() || RHS.isInvalid())
11006 return QualType();
11007
11008 // Enforce type constraints: C99 6.5.6p3.
11009
11010 // Handle the common case first (both operands are arithmetic).
11011 if (!compType.isNull() && compType->isArithmeticType()) {
11012 if (CompLHSTy) *CompLHSTy = compType;
11013 return compType;
11014 }
11015
11016 // Either ptr - int or ptr - ptr.
11017 if (LHS.get()->getType()->isAnyPointerType()) {
11018 QualType lpointee = LHS.get()->getType()->getPointeeType();
11019
11020 // Diagnose bad cases where we step over interface counts.
11021 if (LHS.get()->getType()->isObjCObjectPointerType() &&
11022 checkArithmeticOnObjCPointer(S&: *this, opLoc: Loc, op: LHS.get()))
11023 return QualType();
11024
11025 // Arithmetic on label addresses is normally allowed, except when we add
11026 // a ptrauth signature to the addresses.
11027 if (isa<AddrLabelExpr>(Val: LHS.get()) &&
11028 getLangOpts().PointerAuthIndirectGotos) {
11029 Diag(Loc, DiagID: diag::err_ptrauth_indirect_goto_addrlabel_arithmetic)
11030 << /*subtraction*/ 0;
11031 return QualType();
11032 }
11033
11034 // The result type of a pointer-int computation is the pointer type.
11035 if (RHS.get()->getType()->isIntegerType()) {
11036 // Subtracting from a null pointer should produce a warning.
11037 // The last argument to the diagnose call says this doesn't match the
11038 // GNU int-to-pointer idiom.
11039 if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Ctx&: Context,
11040 NPC: Expr::NPC_ValueDependentIsNotNull)) {
11041 // In C++ adding zero to a null pointer is defined.
11042 Expr::EvalResult KnownVal;
11043 if (!getLangOpts().CPlusPlus ||
11044 (!RHS.get()->isValueDependent() &&
11045 (!RHS.get()->EvaluateAsInt(Result&: KnownVal, Ctx: Context) ||
11046 KnownVal.Val.getInt() != 0))) {
11047 diagnoseArithmeticOnNullPointer(S&: *this, Loc, Pointer: LHS.get(), IsGNUIdiom: false);
11048 }
11049 }
11050
11051 if (!checkArithmeticOpPointerOperand(S&: *this, Loc, Operand: LHS.get()))
11052 return QualType();
11053
11054 // Check array bounds for pointer arithemtic
11055 CheckArrayAccess(BaseExpr: LHS.get(), IndexExpr: RHS.get(), /*ArraySubscriptExpr*/ASE: nullptr,
11056 /*AllowOnePastEnd*/true, /*IndexNegated*/true);
11057
11058 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11059 return LHS.get()->getType();
11060 }
11061
11062 // Handle pointer-pointer subtractions.
11063 if (const PointerType *RHSPTy
11064 = RHS.get()->getType()->getAs<PointerType>()) {
11065 QualType rpointee = RHSPTy->getPointeeType();
11066
11067 if (getLangOpts().CPlusPlus) {
11068 // Pointee types must be the same: C++ [expr.add]
11069 if (!Context.hasSameUnqualifiedType(T1: lpointee, T2: rpointee)) {
11070 diagnosePointerIncompatibility(S&: *this, Loc, LHSExpr: LHS.get(), RHSExpr: RHS.get());
11071 }
11072 } else {
11073 // Pointee types must be compatible C99 6.5.6p3
11074 if (!Context.typesAreCompatible(
11075 T1: Context.getCanonicalType(T: lpointee).getUnqualifiedType(),
11076 T2: Context.getCanonicalType(T: rpointee).getUnqualifiedType())) {
11077 diagnosePointerIncompatibility(S&: *this, Loc, LHSExpr: LHS.get(), RHSExpr: RHS.get());
11078 return QualType();
11079 }
11080 }
11081
11082 if (!checkArithmeticBinOpPointerOperands(S&: *this, Loc,
11083 LHSExpr: LHS.get(), RHSExpr: RHS.get()))
11084 return QualType();
11085
11086 bool LHSIsNullPtr = LHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11087 Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNotNull);
11088 bool RHSIsNullPtr = RHS.get()->IgnoreParenCasts()->isNullPointerConstant(
11089 Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNotNull);
11090
11091 // Subtracting nullptr or from nullptr is suspect
11092 if (LHSIsNullPtr)
11093 diagnoseSubtractionOnNullPointer(S&: *this, Loc, Pointer: LHS.get(), BothNull: RHSIsNullPtr);
11094 if (RHSIsNullPtr)
11095 diagnoseSubtractionOnNullPointer(S&: *this, Loc, Pointer: RHS.get(), BothNull: LHSIsNullPtr);
11096
11097 // The pointee type may have zero size. As an extension, a structure or
11098 // union may have zero size or an array may have zero length. In this
11099 // case subtraction does not make sense.
11100 if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
11101 CharUnits ElementSize = Context.getTypeSizeInChars(T: rpointee);
11102 if (ElementSize.isZero()) {
11103 Diag(Loc,DiagID: diag::warn_sub_ptr_zero_size_types)
11104 << rpointee.getUnqualifiedType()
11105 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11106 }
11107 }
11108
11109 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
11110 return Context.getPointerDiffType();
11111 }
11112 }
11113
11114 return InvalidOperands(Loc, LHS, RHS);
11115}
11116
11117static bool isScopedEnumerationType(QualType T) {
11118 if (const EnumType *ET = T->getAs<EnumType>())
11119 return ET->getDecl()->isScoped();
11120 return false;
11121}
11122
11123static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
11124 SourceLocation Loc, BinaryOperatorKind Opc,
11125 QualType LHSType) {
11126 // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
11127 // so skip remaining warnings as we don't want to modify values within Sema.
11128 if (S.getLangOpts().OpenCL)
11129 return;
11130
11131 // Check right/shifter operand
11132 Expr::EvalResult RHSResult;
11133 if (RHS.get()->isValueDependent() ||
11134 !RHS.get()->EvaluateAsInt(Result&: RHSResult, Ctx: S.Context))
11135 return;
11136 llvm::APSInt Right = RHSResult.Val.getInt();
11137
11138 if (Right.isNegative()) {
11139 S.DiagRuntimeBehavior(Loc, Statement: RHS.get(),
11140 PD: S.PDiag(DiagID: diag::warn_shift_negative)
11141 << RHS.get()->getSourceRange());
11142 return;
11143 }
11144
11145 QualType LHSExprType = LHS.get()->getType();
11146 uint64_t LeftSize = S.Context.getTypeSize(T: LHSExprType);
11147 if (LHSExprType->isBitIntType())
11148 LeftSize = S.Context.getIntWidth(T: LHSExprType);
11149 else if (LHSExprType->isFixedPointType()) {
11150 auto FXSema = S.Context.getFixedPointSemantics(Ty: LHSExprType);
11151 LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
11152 }
11153 if (Right.uge(RHS: LeftSize)) {
11154 S.DiagRuntimeBehavior(Loc, Statement: RHS.get(),
11155 PD: S.PDiag(DiagID: diag::warn_shift_gt_typewidth)
11156 << RHS.get()->getSourceRange());
11157 return;
11158 }
11159
11160 // FIXME: We probably need to handle fixed point types specially here.
11161 if (Opc != BO_Shl || LHSExprType->isFixedPointType())
11162 return;
11163
11164 // When left shifting an ICE which is signed, we can check for overflow which
11165 // according to C++ standards prior to C++2a has undefined behavior
11166 // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
11167 // more than the maximum value representable in the result type, so never
11168 // warn for those. (FIXME: Unsigned left-shift overflow in a constant
11169 // expression is still probably a bug.)
11170 Expr::EvalResult LHSResult;
11171 if (LHS.get()->isValueDependent() ||
11172 LHSType->hasUnsignedIntegerRepresentation() ||
11173 !LHS.get()->EvaluateAsInt(Result&: LHSResult, Ctx: S.Context))
11174 return;
11175 llvm::APSInt Left = LHSResult.Val.getInt();
11176
11177 // Don't warn if signed overflow is defined, then all the rest of the
11178 // diagnostics will not be triggered because the behavior is defined.
11179 // Also don't warn in C++20 mode (and newer), as signed left shifts
11180 // always wrap and never overflow.
11181 if (S.getLangOpts().isSignedOverflowDefined() || S.getLangOpts().CPlusPlus20)
11182 return;
11183
11184 // If LHS does not have a non-negative value then, the
11185 // behavior is undefined before C++2a. Warn about it.
11186 if (Left.isNegative()) {
11187 S.DiagRuntimeBehavior(Loc, Statement: LHS.get(),
11188 PD: S.PDiag(DiagID: diag::warn_shift_lhs_negative)
11189 << LHS.get()->getSourceRange());
11190 return;
11191 }
11192
11193 llvm::APInt ResultBits =
11194 static_cast<llvm::APInt &>(Right) + Left.getSignificantBits();
11195 if (ResultBits.ule(RHS: LeftSize))
11196 return;
11197 llvm::APSInt Result = Left.extend(width: ResultBits.getLimitedValue());
11198 Result = Result.shl(ShiftAmt: Right);
11199
11200 // Print the bit representation of the signed integer as an unsigned
11201 // hexadecimal number.
11202 SmallString<40> HexResult;
11203 Result.toString(Str&: HexResult, Radix: 16, /*Signed =*/false, /*Literal =*/formatAsCLiteral: true);
11204
11205 // If we are only missing a sign bit, this is less likely to result in actual
11206 // bugs -- if the result is cast back to an unsigned type, it will have the
11207 // expected value. Thus we place this behind a different warning that can be
11208 // turned off separately if needed.
11209 if (ResultBits - 1 == LeftSize) {
11210 S.Diag(Loc, DiagID: diag::warn_shift_result_sets_sign_bit)
11211 << HexResult << LHSType
11212 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11213 return;
11214 }
11215
11216 S.Diag(Loc, DiagID: diag::warn_shift_result_gt_typewidth)
11217 << HexResult.str() << Result.getSignificantBits() << LHSType
11218 << Left.getBitWidth() << LHS.get()->getSourceRange()
11219 << RHS.get()->getSourceRange();
11220}
11221
11222/// Return the resulting type when a vector is shifted
11223/// by a scalar or vector shift amount.
11224static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
11225 SourceLocation Loc, bool IsCompAssign) {
11226 // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
11227 if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
11228 !LHS.get()->getType()->isVectorType()) {
11229 S.Diag(Loc, DiagID: diag::err_shift_rhs_only_vector)
11230 << RHS.get()->getType() << LHS.get()->getType()
11231 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11232 return QualType();
11233 }
11234
11235 if (!IsCompAssign) {
11236 LHS = S.UsualUnaryConversions(E: LHS.get());
11237 if (LHS.isInvalid()) return QualType();
11238 }
11239
11240 RHS = S.UsualUnaryConversions(E: RHS.get());
11241 if (RHS.isInvalid()) return QualType();
11242
11243 QualType LHSType = LHS.get()->getType();
11244 // Note that LHS might be a scalar because the routine calls not only in
11245 // OpenCL case.
11246 const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
11247 QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
11248
11249 // Note that RHS might not be a vector.
11250 QualType RHSType = RHS.get()->getType();
11251 const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
11252 QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
11253
11254 // Do not allow shifts for boolean vectors.
11255 if ((LHSVecTy && LHSVecTy->isExtVectorBoolType()) ||
11256 (RHSVecTy && RHSVecTy->isExtVectorBoolType())) {
11257 S.Diag(Loc, DiagID: diag::err_typecheck_invalid_operands)
11258 << LHS.get()->getType() << RHS.get()->getType()
11259 << LHS.get()->getSourceRange();
11260 return QualType();
11261 }
11262
11263 // The operands need to be integers.
11264 if (!LHSEleType->isIntegerType()) {
11265 S.Diag(Loc, DiagID: diag::err_typecheck_expect_int)
11266 << LHS.get()->getType() << LHS.get()->getSourceRange();
11267 return QualType();
11268 }
11269
11270 if (!RHSEleType->isIntegerType()) {
11271 S.Diag(Loc, DiagID: diag::err_typecheck_expect_int)
11272 << RHS.get()->getType() << RHS.get()->getSourceRange();
11273 return QualType();
11274 }
11275
11276 if (!LHSVecTy) {
11277 assert(RHSVecTy);
11278 if (IsCompAssign)
11279 return RHSType;
11280 if (LHSEleType != RHSEleType) {
11281 LHS = S.ImpCastExprToType(E: LHS.get(),Type: RHSEleType, CK: CK_IntegralCast);
11282 LHSEleType = RHSEleType;
11283 }
11284 QualType VecTy =
11285 S.Context.getExtVectorType(VectorType: LHSEleType, NumElts: RHSVecTy->getNumElements());
11286 LHS = S.ImpCastExprToType(E: LHS.get(), Type: VecTy, CK: CK_VectorSplat);
11287 LHSType = VecTy;
11288 } else if (RHSVecTy) {
11289 // OpenCL v1.1 s6.3.j says that for vector types, the operators
11290 // are applied component-wise. So if RHS is a vector, then ensure
11291 // that the number of elements is the same as LHS...
11292 if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
11293 S.Diag(Loc, DiagID: diag::err_typecheck_vector_lengths_not_equal)
11294 << LHS.get()->getType() << RHS.get()->getType()
11295 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11296 return QualType();
11297 }
11298 if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
11299 const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
11300 const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
11301 if (LHSBT != RHSBT &&
11302 S.Context.getTypeSize(T: LHSBT) != S.Context.getTypeSize(T: RHSBT)) {
11303 S.Diag(Loc, DiagID: diag::warn_typecheck_vector_element_sizes_not_equal)
11304 << LHS.get()->getType() << RHS.get()->getType()
11305 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11306 }
11307 }
11308 } else {
11309 // ...else expand RHS to match the number of elements in LHS.
11310 QualType VecTy =
11311 S.Context.getExtVectorType(VectorType: RHSEleType, NumElts: LHSVecTy->getNumElements());
11312 RHS = S.ImpCastExprToType(E: RHS.get(), Type: VecTy, CK: CK_VectorSplat);
11313 }
11314
11315 return LHSType;
11316}
11317
11318static QualType checkSizelessVectorShift(Sema &S, ExprResult &LHS,
11319 ExprResult &RHS, SourceLocation Loc,
11320 bool IsCompAssign) {
11321 if (!IsCompAssign) {
11322 LHS = S.UsualUnaryConversions(E: LHS.get());
11323 if (LHS.isInvalid())
11324 return QualType();
11325 }
11326
11327 RHS = S.UsualUnaryConversions(E: RHS.get());
11328 if (RHS.isInvalid())
11329 return QualType();
11330
11331 QualType LHSType = LHS.get()->getType();
11332 const BuiltinType *LHSBuiltinTy = LHSType->castAs<BuiltinType>();
11333 QualType LHSEleType = LHSType->isSveVLSBuiltinType()
11334 ? LHSBuiltinTy->getSveEltType(Ctx: S.getASTContext())
11335 : LHSType;
11336
11337 // Note that RHS might not be a vector
11338 QualType RHSType = RHS.get()->getType();
11339 const BuiltinType *RHSBuiltinTy = RHSType->castAs<BuiltinType>();
11340 QualType RHSEleType = RHSType->isSveVLSBuiltinType()
11341 ? RHSBuiltinTy->getSveEltType(Ctx: S.getASTContext())
11342 : RHSType;
11343
11344 if ((LHSBuiltinTy && LHSBuiltinTy->isSVEBool()) ||
11345 (RHSBuiltinTy && RHSBuiltinTy->isSVEBool())) {
11346 S.Diag(Loc, DiagID: diag::err_typecheck_invalid_operands)
11347 << LHSType << RHSType << LHS.get()->getSourceRange();
11348 return QualType();
11349 }
11350
11351 if (!LHSEleType->isIntegerType()) {
11352 S.Diag(Loc, DiagID: diag::err_typecheck_expect_int)
11353 << LHS.get()->getType() << LHS.get()->getSourceRange();
11354 return QualType();
11355 }
11356
11357 if (!RHSEleType->isIntegerType()) {
11358 S.Diag(Loc, DiagID: diag::err_typecheck_expect_int)
11359 << RHS.get()->getType() << RHS.get()->getSourceRange();
11360 return QualType();
11361 }
11362
11363 if (LHSType->isSveVLSBuiltinType() && RHSType->isSveVLSBuiltinType() &&
11364 (S.Context.getBuiltinVectorTypeInfo(VecTy: LHSBuiltinTy).EC !=
11365 S.Context.getBuiltinVectorTypeInfo(VecTy: RHSBuiltinTy).EC)) {
11366 S.Diag(Loc, DiagID: diag::err_typecheck_invalid_operands)
11367 << LHSType << RHSType << LHS.get()->getSourceRange()
11368 << RHS.get()->getSourceRange();
11369 return QualType();
11370 }
11371
11372 if (!LHSType->isSveVLSBuiltinType()) {
11373 assert(RHSType->isSveVLSBuiltinType());
11374 if (IsCompAssign)
11375 return RHSType;
11376 if (LHSEleType != RHSEleType) {
11377 LHS = S.ImpCastExprToType(E: LHS.get(), Type: RHSEleType, CK: clang::CK_IntegralCast);
11378 LHSEleType = RHSEleType;
11379 }
11380 const llvm::ElementCount VecSize =
11381 S.Context.getBuiltinVectorTypeInfo(VecTy: RHSBuiltinTy).EC;
11382 QualType VecTy =
11383 S.Context.getScalableVectorType(EltTy: LHSEleType, NumElts: VecSize.getKnownMinValue());
11384 LHS = S.ImpCastExprToType(E: LHS.get(), Type: VecTy, CK: clang::CK_VectorSplat);
11385 LHSType = VecTy;
11386 } else if (RHSBuiltinTy && RHSBuiltinTy->isSveVLSBuiltinType()) {
11387 if (S.Context.getTypeSize(T: RHSBuiltinTy) !=
11388 S.Context.getTypeSize(T: LHSBuiltinTy)) {
11389 S.Diag(Loc, DiagID: diag::err_typecheck_vector_lengths_not_equal)
11390 << LHSType << RHSType << LHS.get()->getSourceRange()
11391 << RHS.get()->getSourceRange();
11392 return QualType();
11393 }
11394 } else {
11395 const llvm::ElementCount VecSize =
11396 S.Context.getBuiltinVectorTypeInfo(VecTy: LHSBuiltinTy).EC;
11397 if (LHSEleType != RHSEleType) {
11398 RHS = S.ImpCastExprToType(E: RHS.get(), Type: LHSEleType, CK: clang::CK_IntegralCast);
11399 RHSEleType = LHSEleType;
11400 }
11401 QualType VecTy =
11402 S.Context.getScalableVectorType(EltTy: RHSEleType, NumElts: VecSize.getKnownMinValue());
11403 RHS = S.ImpCastExprToType(E: RHS.get(), Type: VecTy, CK: CK_VectorSplat);
11404 }
11405
11406 return LHSType;
11407}
11408
11409// C99 6.5.7
11410QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
11411 SourceLocation Loc, BinaryOperatorKind Opc,
11412 bool IsCompAssign) {
11413 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/false);
11414
11415 // Vector shifts promote their scalar inputs to vector type.
11416 if (LHS.get()->getType()->isVectorType() ||
11417 RHS.get()->getType()->isVectorType()) {
11418 if (LangOpts.ZVector) {
11419 // The shift operators for the z vector extensions work basically
11420 // like general shifts, except that neither the LHS nor the RHS is
11421 // allowed to be a "vector bool".
11422 if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
11423 if (LHSVecType->getVectorKind() == VectorKind::AltiVecBool)
11424 return InvalidOperands(Loc, LHS, RHS);
11425 if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
11426 if (RHSVecType->getVectorKind() == VectorKind::AltiVecBool)
11427 return InvalidOperands(Loc, LHS, RHS);
11428 }
11429 return checkVectorShift(S&: *this, LHS, RHS, Loc, IsCompAssign);
11430 }
11431
11432 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
11433 RHS.get()->getType()->isSveVLSBuiltinType())
11434 return checkSizelessVectorShift(S&: *this, LHS, RHS, Loc, IsCompAssign);
11435
11436 // Shifts don't perform usual arithmetic conversions, they just do integer
11437 // promotions on each operand. C99 6.5.7p3
11438
11439 // For the LHS, do usual unary conversions, but then reset them away
11440 // if this is a compound assignment.
11441 ExprResult OldLHS = LHS;
11442 LHS = UsualUnaryConversions(E: LHS.get());
11443 if (LHS.isInvalid())
11444 return QualType();
11445 QualType LHSType = LHS.get()->getType();
11446 if (IsCompAssign) LHS = OldLHS;
11447
11448 // The RHS is simpler.
11449 RHS = UsualUnaryConversions(E: RHS.get());
11450 if (RHS.isInvalid())
11451 return QualType();
11452 QualType RHSType = RHS.get()->getType();
11453
11454 // C99 6.5.7p2: Each of the operands shall have integer type.
11455 // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
11456 if ((!LHSType->isFixedPointOrIntegerType() &&
11457 !LHSType->hasIntegerRepresentation()) ||
11458 !RHSType->hasIntegerRepresentation())
11459 return InvalidOperands(Loc, LHS, RHS);
11460
11461 // C++0x: Don't allow scoped enums. FIXME: Use something better than
11462 // hasIntegerRepresentation() above instead of this.
11463 if (isScopedEnumerationType(T: LHSType) ||
11464 isScopedEnumerationType(T: RHSType)) {
11465 return InvalidOperands(Loc, LHS, RHS);
11466 }
11467 DiagnoseBadShiftValues(S&: *this, LHS, RHS, Loc, Opc, LHSType);
11468
11469 // "The type of the result is that of the promoted left operand."
11470 return LHSType;
11471}
11472
11473/// Diagnose bad pointer comparisons.
11474static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
11475 ExprResult &LHS, ExprResult &RHS,
11476 bool IsError) {
11477 S.Diag(Loc, DiagID: IsError ? diag::err_typecheck_comparison_of_distinct_pointers
11478 : diag::ext_typecheck_comparison_of_distinct_pointers)
11479 << LHS.get()->getType() << RHS.get()->getType()
11480 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11481}
11482
11483/// Returns false if the pointers are converted to a composite type,
11484/// true otherwise.
11485static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
11486 ExprResult &LHS, ExprResult &RHS) {
11487 // C++ [expr.rel]p2:
11488 // [...] Pointer conversions (4.10) and qualification
11489 // conversions (4.4) are performed on pointer operands (or on
11490 // a pointer operand and a null pointer constant) to bring
11491 // them to their composite pointer type. [...]
11492 //
11493 // C++ [expr.eq]p1 uses the same notion for (in)equality
11494 // comparisons of pointers.
11495
11496 QualType LHSType = LHS.get()->getType();
11497 QualType RHSType = RHS.get()->getType();
11498 assert(LHSType->isPointerType() || RHSType->isPointerType() ||
11499 LHSType->isMemberPointerType() || RHSType->isMemberPointerType());
11500
11501 QualType T = S.FindCompositePointerType(Loc, E1&: LHS, E2&: RHS);
11502 if (T.isNull()) {
11503 if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
11504 (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
11505 diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/IsError: true);
11506 else
11507 S.InvalidOperands(Loc, LHS, RHS);
11508 return true;
11509 }
11510
11511 return false;
11512}
11513
11514static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
11515 ExprResult &LHS,
11516 ExprResult &RHS,
11517 bool IsError) {
11518 S.Diag(Loc, DiagID: IsError ? diag::err_typecheck_comparison_of_fptr_to_void
11519 : diag::ext_typecheck_comparison_of_fptr_to_void)
11520 << LHS.get()->getType() << RHS.get()->getType()
11521 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11522}
11523
11524static bool isObjCObjectLiteral(ExprResult &E) {
11525 switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
11526 case Stmt::ObjCArrayLiteralClass:
11527 case Stmt::ObjCDictionaryLiteralClass:
11528 case Stmt::ObjCStringLiteralClass:
11529 case Stmt::ObjCBoxedExprClass:
11530 return true;
11531 default:
11532 // Note that ObjCBoolLiteral is NOT an object literal!
11533 return false;
11534 }
11535}
11536
11537static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
11538 const ObjCObjectPointerType *Type =
11539 LHS->getType()->getAs<ObjCObjectPointerType>();
11540
11541 // If this is not actually an Objective-C object, bail out.
11542 if (!Type)
11543 return false;
11544
11545 // Get the LHS object's interface type.
11546 QualType InterfaceType = Type->getPointeeType();
11547
11548 // If the RHS isn't an Objective-C object, bail out.
11549 if (!RHS->getType()->isObjCObjectPointerType())
11550 return false;
11551
11552 // Try to find the -isEqual: method.
11553 Selector IsEqualSel = S.ObjC().NSAPIObj->getIsEqualSelector();
11554 ObjCMethodDecl *Method =
11555 S.ObjC().LookupMethodInObjectType(Sel: IsEqualSel, Ty: InterfaceType,
11556 /*IsInstance=*/true);
11557 if (!Method) {
11558 if (Type->isObjCIdType()) {
11559 // For 'id', just check the global pool.
11560 Method =
11561 S.ObjC().LookupInstanceMethodInGlobalPool(Sel: IsEqualSel, R: SourceRange(),
11562 /*receiverId=*/receiverIdOrClass: true);
11563 } else {
11564 // Check protocols.
11565 Method = S.ObjC().LookupMethodInQualifiedType(Sel: IsEqualSel, OPT: Type,
11566 /*IsInstance=*/true);
11567 }
11568 }
11569
11570 if (!Method)
11571 return false;
11572
11573 QualType T = Method->parameters()[0]->getType();
11574 if (!T->isObjCObjectPointerType())
11575 return false;
11576
11577 QualType R = Method->getReturnType();
11578 if (!R->isScalarType())
11579 return false;
11580
11581 return true;
11582}
11583
11584static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
11585 ExprResult &LHS, ExprResult &RHS,
11586 BinaryOperator::Opcode Opc){
11587 Expr *Literal;
11588 Expr *Other;
11589 if (isObjCObjectLiteral(E&: LHS)) {
11590 Literal = LHS.get();
11591 Other = RHS.get();
11592 } else {
11593 Literal = RHS.get();
11594 Other = LHS.get();
11595 }
11596
11597 // Don't warn on comparisons against nil.
11598 Other = Other->IgnoreParenCasts();
11599 if (Other->isNullPointerConstant(Ctx&: S.getASTContext(),
11600 NPC: Expr::NPC_ValueDependentIsNotNull))
11601 return;
11602
11603 // This should be kept in sync with warn_objc_literal_comparison.
11604 // LK_String should always be after the other literals, since it has its own
11605 // warning flag.
11606 SemaObjC::ObjCLiteralKind LiteralKind = S.ObjC().CheckLiteralKind(FromE: Literal);
11607 assert(LiteralKind != SemaObjC::LK_Block);
11608 if (LiteralKind == SemaObjC::LK_None) {
11609 llvm_unreachable("Unknown Objective-C object literal kind");
11610 }
11611
11612 if (LiteralKind == SemaObjC::LK_String)
11613 S.Diag(Loc, DiagID: diag::warn_objc_string_literal_comparison)
11614 << Literal->getSourceRange();
11615 else
11616 S.Diag(Loc, DiagID: diag::warn_objc_literal_comparison)
11617 << LiteralKind << Literal->getSourceRange();
11618
11619 if (BinaryOperator::isEqualityOp(Opc) &&
11620 hasIsEqualMethod(S, LHS: LHS.get(), RHS: RHS.get())) {
11621 SourceLocation Start = LHS.get()->getBeginLoc();
11622 SourceLocation End = S.getLocForEndOfToken(Loc: RHS.get()->getEndLoc());
11623 CharSourceRange OpRange =
11624 CharSourceRange::getCharRange(B: Loc, E: S.getLocForEndOfToken(Loc));
11625
11626 S.Diag(Loc, DiagID: diag::note_objc_literal_comparison_isequal)
11627 << FixItHint::CreateInsertion(InsertionLoc: Start, Code: Opc == BO_EQ ? "[" : "![")
11628 << FixItHint::CreateReplacement(RemoveRange: OpRange, Code: " isEqual:")
11629 << FixItHint::CreateInsertion(InsertionLoc: End, Code: "]");
11630 }
11631}
11632
11633/// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
11634static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
11635 ExprResult &RHS, SourceLocation Loc,
11636 BinaryOperatorKind Opc) {
11637 // Check that left hand side is !something.
11638 UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: LHS.get()->IgnoreImpCasts());
11639 if (!UO || UO->getOpcode() != UO_LNot) return;
11640
11641 // Only check if the right hand side is non-bool arithmetic type.
11642 if (RHS.get()->isKnownToHaveBooleanValue()) return;
11643
11644 // Make sure that the something in !something is not bool.
11645 Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
11646 if (SubExpr->isKnownToHaveBooleanValue()) return;
11647
11648 // Emit warning.
11649 bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
11650 S.Diag(Loc: UO->getOperatorLoc(), DiagID: diag::warn_logical_not_on_lhs_of_check)
11651 << Loc << IsBitwiseOp;
11652
11653 // First note suggest !(x < y)
11654 SourceLocation FirstOpen = SubExpr->getBeginLoc();
11655 SourceLocation FirstClose = RHS.get()->getEndLoc();
11656 FirstClose = S.getLocForEndOfToken(Loc: FirstClose);
11657 if (FirstClose.isInvalid())
11658 FirstOpen = SourceLocation();
11659 S.Diag(Loc: UO->getOperatorLoc(), DiagID: diag::note_logical_not_fix)
11660 << IsBitwiseOp
11661 << FixItHint::CreateInsertion(InsertionLoc: FirstOpen, Code: "(")
11662 << FixItHint::CreateInsertion(InsertionLoc: FirstClose, Code: ")");
11663
11664 // Second note suggests (!x) < y
11665 SourceLocation SecondOpen = LHS.get()->getBeginLoc();
11666 SourceLocation SecondClose = LHS.get()->getEndLoc();
11667 SecondClose = S.getLocForEndOfToken(Loc: SecondClose);
11668 if (SecondClose.isInvalid())
11669 SecondOpen = SourceLocation();
11670 S.Diag(Loc: UO->getOperatorLoc(), DiagID: diag::note_logical_not_silence_with_parens)
11671 << FixItHint::CreateInsertion(InsertionLoc: SecondOpen, Code: "(")
11672 << FixItHint::CreateInsertion(InsertionLoc: SecondClose, Code: ")");
11673}
11674
11675// Returns true if E refers to a non-weak array.
11676static bool checkForArray(const Expr *E) {
11677 const ValueDecl *D = nullptr;
11678 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Val: E)) {
11679 D = DR->getDecl();
11680 } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(Val: E)) {
11681 if (Mem->isImplicitAccess())
11682 D = Mem->getMemberDecl();
11683 }
11684 if (!D)
11685 return false;
11686 return D->getType()->isArrayType() && !D->isWeak();
11687}
11688
11689/// Diagnose some forms of syntactically-obvious tautological comparison.
11690static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
11691 Expr *LHS, Expr *RHS,
11692 BinaryOperatorKind Opc) {
11693 Expr *LHSStripped = LHS->IgnoreParenImpCasts();
11694 Expr *RHSStripped = RHS->IgnoreParenImpCasts();
11695
11696 QualType LHSType = LHS->getType();
11697 QualType RHSType = RHS->getType();
11698 if (LHSType->hasFloatingRepresentation() ||
11699 (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
11700 S.inTemplateInstantiation())
11701 return;
11702
11703 // WebAssembly Tables cannot be compared, therefore shouldn't emit
11704 // Tautological diagnostics.
11705 if (LHSType->isWebAssemblyTableType() || RHSType->isWebAssemblyTableType())
11706 return;
11707
11708 // Comparisons between two array types are ill-formed for operator<=>, so
11709 // we shouldn't emit any additional warnings about it.
11710 if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
11711 return;
11712
11713 // For non-floating point types, check for self-comparisons of the form
11714 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
11715 // often indicate logic errors in the program.
11716 //
11717 // NOTE: Don't warn about comparison expressions resulting from macro
11718 // expansion. Also don't warn about comparisons which are only self
11719 // comparisons within a template instantiation. The warnings should catch
11720 // obvious cases in the definition of the template anyways. The idea is to
11721 // warn when the typed comparison operator will always evaluate to the same
11722 // result.
11723
11724 // Used for indexing into %select in warn_comparison_always
11725 enum {
11726 AlwaysConstant,
11727 AlwaysTrue,
11728 AlwaysFalse,
11729 AlwaysEqual, // std::strong_ordering::equal from operator<=>
11730 };
11731
11732 // C++2a [depr.array.comp]:
11733 // Equality and relational comparisons ([expr.eq], [expr.rel]) between two
11734 // operands of array type are deprecated.
11735 if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
11736 RHSStripped->getType()->isArrayType()) {
11737 S.Diag(Loc, DiagID: diag::warn_depr_array_comparison)
11738 << LHS->getSourceRange() << RHS->getSourceRange()
11739 << LHSStripped->getType() << RHSStripped->getType();
11740 // Carry on to produce the tautological comparison warning, if this
11741 // expression is potentially-evaluated, we can resolve the array to a
11742 // non-weak declaration, and so on.
11743 }
11744
11745 if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
11746 if (Expr::isSameComparisonOperand(E1: LHS, E2: RHS)) {
11747 unsigned Result;
11748 switch (Opc) {
11749 case BO_EQ:
11750 case BO_LE:
11751 case BO_GE:
11752 Result = AlwaysTrue;
11753 break;
11754 case BO_NE:
11755 case BO_LT:
11756 case BO_GT:
11757 Result = AlwaysFalse;
11758 break;
11759 case BO_Cmp:
11760 Result = AlwaysEqual;
11761 break;
11762 default:
11763 Result = AlwaysConstant;
11764 break;
11765 }
11766 S.DiagRuntimeBehavior(Loc, Statement: nullptr,
11767 PD: S.PDiag(DiagID: diag::warn_comparison_always)
11768 << 0 /*self-comparison*/
11769 << Result);
11770 } else if (checkForArray(E: LHSStripped) && checkForArray(E: RHSStripped)) {
11771 // What is it always going to evaluate to?
11772 unsigned Result;
11773 switch (Opc) {
11774 case BO_EQ: // e.g. array1 == array2
11775 Result = AlwaysFalse;
11776 break;
11777 case BO_NE: // e.g. array1 != array2
11778 Result = AlwaysTrue;
11779 break;
11780 default: // e.g. array1 <= array2
11781 // The best we can say is 'a constant'
11782 Result = AlwaysConstant;
11783 break;
11784 }
11785 S.DiagRuntimeBehavior(Loc, Statement: nullptr,
11786 PD: S.PDiag(DiagID: diag::warn_comparison_always)
11787 << 1 /*array comparison*/
11788 << Result);
11789 }
11790 }
11791
11792 if (isa<CastExpr>(Val: LHSStripped))
11793 LHSStripped = LHSStripped->IgnoreParenCasts();
11794 if (isa<CastExpr>(Val: RHSStripped))
11795 RHSStripped = RHSStripped->IgnoreParenCasts();
11796
11797 // Warn about comparisons against a string constant (unless the other
11798 // operand is null); the user probably wants string comparison function.
11799 Expr *LiteralString = nullptr;
11800 Expr *LiteralStringStripped = nullptr;
11801 if ((isa<StringLiteral>(Val: LHSStripped) || isa<ObjCEncodeExpr>(Val: LHSStripped)) &&
11802 !RHSStripped->isNullPointerConstant(Ctx&: S.Context,
11803 NPC: Expr::NPC_ValueDependentIsNull)) {
11804 LiteralString = LHS;
11805 LiteralStringStripped = LHSStripped;
11806 } else if ((isa<StringLiteral>(Val: RHSStripped) ||
11807 isa<ObjCEncodeExpr>(Val: RHSStripped)) &&
11808 !LHSStripped->isNullPointerConstant(Ctx&: S.Context,
11809 NPC: Expr::NPC_ValueDependentIsNull)) {
11810 LiteralString = RHS;
11811 LiteralStringStripped = RHSStripped;
11812 }
11813
11814 if (LiteralString) {
11815 S.DiagRuntimeBehavior(Loc, Statement: nullptr,
11816 PD: S.PDiag(DiagID: diag::warn_stringcompare)
11817 << isa<ObjCEncodeExpr>(Val: LiteralStringStripped)
11818 << LiteralString->getSourceRange());
11819 }
11820}
11821
11822static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
11823 switch (CK) {
11824 default: {
11825#ifndef NDEBUG
11826 llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
11827 << "\n";
11828#endif
11829 llvm_unreachable("unhandled cast kind");
11830 }
11831 case CK_UserDefinedConversion:
11832 return ICK_Identity;
11833 case CK_LValueToRValue:
11834 return ICK_Lvalue_To_Rvalue;
11835 case CK_ArrayToPointerDecay:
11836 return ICK_Array_To_Pointer;
11837 case CK_FunctionToPointerDecay:
11838 return ICK_Function_To_Pointer;
11839 case CK_IntegralCast:
11840 return ICK_Integral_Conversion;
11841 case CK_FloatingCast:
11842 return ICK_Floating_Conversion;
11843 case CK_IntegralToFloating:
11844 case CK_FloatingToIntegral:
11845 return ICK_Floating_Integral;
11846 case CK_IntegralComplexCast:
11847 case CK_FloatingComplexCast:
11848 case CK_FloatingComplexToIntegralComplex:
11849 case CK_IntegralComplexToFloatingComplex:
11850 return ICK_Complex_Conversion;
11851 case CK_FloatingComplexToReal:
11852 case CK_FloatingRealToComplex:
11853 case CK_IntegralComplexToReal:
11854 case CK_IntegralRealToComplex:
11855 return ICK_Complex_Real;
11856 case CK_HLSLArrayRValue:
11857 return ICK_HLSL_Array_RValue;
11858 }
11859}
11860
11861static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
11862 QualType FromType,
11863 SourceLocation Loc) {
11864 // Check for a narrowing implicit conversion.
11865 StandardConversionSequence SCS;
11866 SCS.setAsIdentityConversion();
11867 SCS.setToType(Idx: 0, T: FromType);
11868 SCS.setToType(Idx: 1, T: ToType);
11869 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E))
11870 SCS.Second = castKindToImplicitConversionKind(CK: ICE->getCastKind());
11871
11872 APValue PreNarrowingValue;
11873 QualType PreNarrowingType;
11874 switch (SCS.getNarrowingKind(Context&: S.Context, Converted: E, ConstantValue&: PreNarrowingValue,
11875 ConstantType&: PreNarrowingType,
11876 /*IgnoreFloatToIntegralConversion*/ true)) {
11877 case NK_Dependent_Narrowing:
11878 // Implicit conversion to a narrower type, but the expression is
11879 // value-dependent so we can't tell whether it's actually narrowing.
11880 case NK_Not_Narrowing:
11881 return false;
11882
11883 case NK_Constant_Narrowing:
11884 // Implicit conversion to a narrower type, and the value is not a constant
11885 // expression.
11886 S.Diag(Loc: E->getBeginLoc(), DiagID: diag::err_spaceship_argument_narrowing)
11887 << /*Constant*/ 1
11888 << PreNarrowingValue.getAsString(Ctx: S.Context, Ty: PreNarrowingType) << ToType;
11889 return true;
11890
11891 case NK_Variable_Narrowing:
11892 // Implicit conversion to a narrower type, and the value is not a constant
11893 // expression.
11894 case NK_Type_Narrowing:
11895 S.Diag(Loc: E->getBeginLoc(), DiagID: diag::err_spaceship_argument_narrowing)
11896 << /*Constant*/ 0 << FromType << ToType;
11897 // TODO: It's not a constant expression, but what if the user intended it
11898 // to be? Can we produce notes to help them figure out why it isn't?
11899 return true;
11900 }
11901 llvm_unreachable("unhandled case in switch");
11902}
11903
11904static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
11905 ExprResult &LHS,
11906 ExprResult &RHS,
11907 SourceLocation Loc) {
11908 QualType LHSType = LHS.get()->getType();
11909 QualType RHSType = RHS.get()->getType();
11910 // Dig out the original argument type and expression before implicit casts
11911 // were applied. These are the types/expressions we need to check the
11912 // [expr.spaceship] requirements against.
11913 ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
11914 ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
11915 QualType LHSStrippedType = LHSStripped.get()->getType();
11916 QualType RHSStrippedType = RHSStripped.get()->getType();
11917
11918 // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
11919 // other is not, the program is ill-formed.
11920 if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
11921 S.InvalidOperands(Loc, LHS&: LHSStripped, RHS&: RHSStripped);
11922 return QualType();
11923 }
11924
11925 // FIXME: Consider combining this with checkEnumArithmeticConversions.
11926 int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
11927 RHSStrippedType->isEnumeralType();
11928 if (NumEnumArgs == 1) {
11929 bool LHSIsEnum = LHSStrippedType->isEnumeralType();
11930 QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
11931 if (OtherTy->hasFloatingRepresentation()) {
11932 S.InvalidOperands(Loc, LHS&: LHSStripped, RHS&: RHSStripped);
11933 return QualType();
11934 }
11935 }
11936 if (NumEnumArgs == 2) {
11937 // C++2a [expr.spaceship]p5: If both operands have the same enumeration
11938 // type E, the operator yields the result of converting the operands
11939 // to the underlying type of E and applying <=> to the converted operands.
11940 if (!S.Context.hasSameUnqualifiedType(T1: LHSStrippedType, T2: RHSStrippedType)) {
11941 S.InvalidOperands(Loc, LHS, RHS);
11942 return QualType();
11943 }
11944 QualType IntType =
11945 LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
11946 assert(IntType->isArithmeticType());
11947
11948 // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
11949 // promote the boolean type, and all other promotable integer types, to
11950 // avoid this.
11951 if (S.Context.isPromotableIntegerType(T: IntType))
11952 IntType = S.Context.getPromotedIntegerType(PromotableType: IntType);
11953
11954 LHS = S.ImpCastExprToType(E: LHS.get(), Type: IntType, CK: CK_IntegralCast);
11955 RHS = S.ImpCastExprToType(E: RHS.get(), Type: IntType, CK: CK_IntegralCast);
11956 LHSType = RHSType = IntType;
11957 }
11958
11959 // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
11960 // usual arithmetic conversions are applied to the operands.
11961 QualType Type =
11962 S.UsualArithmeticConversions(LHS, RHS, Loc, ACK: Sema::ACK_Comparison);
11963 if (LHS.isInvalid() || RHS.isInvalid())
11964 return QualType();
11965 if (Type.isNull())
11966 return S.InvalidOperands(Loc, LHS, RHS);
11967
11968 std::optional<ComparisonCategoryType> CCT =
11969 getComparisonCategoryForBuiltinCmp(T: Type);
11970 if (!CCT)
11971 return S.InvalidOperands(Loc, LHS, RHS);
11972
11973 bool HasNarrowing = checkThreeWayNarrowingConversion(
11974 S, ToType: Type, E: LHS.get(), FromType: LHSType, Loc: LHS.get()->getBeginLoc());
11975 HasNarrowing |= checkThreeWayNarrowingConversion(S, ToType: Type, E: RHS.get(), FromType: RHSType,
11976 Loc: RHS.get()->getBeginLoc());
11977 if (HasNarrowing)
11978 return QualType();
11979
11980 assert(!Type.isNull() && "composite type for <=> has not been set");
11981
11982 return S.CheckComparisonCategoryType(
11983 Kind: *CCT, Loc, Usage: Sema::ComparisonCategoryUsage::OperatorInExpression);
11984}
11985
11986static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
11987 ExprResult &RHS,
11988 SourceLocation Loc,
11989 BinaryOperatorKind Opc) {
11990 if (Opc == BO_Cmp)
11991 return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
11992
11993 // C99 6.5.8p3 / C99 6.5.9p4
11994 QualType Type =
11995 S.UsualArithmeticConversions(LHS, RHS, Loc, ACK: Sema::ACK_Comparison);
11996 if (LHS.isInvalid() || RHS.isInvalid())
11997 return QualType();
11998 if (Type.isNull())
11999 return S.InvalidOperands(Loc, LHS, RHS);
12000 assert(Type->isArithmeticType() || Type->isEnumeralType());
12001
12002 if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
12003 return S.InvalidOperands(Loc, LHS, RHS);
12004
12005 // Check for comparisons of floating point operands using != and ==.
12006 if (Type->hasFloatingRepresentation())
12007 S.CheckFloatComparison(Loc, LHS: LHS.get(), RHS: RHS.get(), Opcode: Opc);
12008
12009 // The result of comparisons is 'bool' in C++, 'int' in C.
12010 return S.Context.getLogicalOperationType();
12011}
12012
12013void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
12014 if (!NullE.get()->getType()->isAnyPointerType())
12015 return;
12016 int NullValue = PP.isMacroDefined(Id: "NULL") ? 0 : 1;
12017 if (!E.get()->getType()->isAnyPointerType() &&
12018 E.get()->isNullPointerConstant(Ctx&: Context,
12019 NPC: Expr::NPC_ValueDependentIsNotNull) ==
12020 Expr::NPCK_ZeroExpression) {
12021 if (const auto *CL = dyn_cast<CharacterLiteral>(Val: E.get())) {
12022 if (CL->getValue() == 0)
12023 Diag(Loc: E.get()->getExprLoc(), DiagID: diag::warn_pointer_compare)
12024 << NullValue
12025 << FixItHint::CreateReplacement(RemoveRange: E.get()->getExprLoc(),
12026 Code: NullValue ? "NULL" : "(void *)0");
12027 } else if (const auto *CE = dyn_cast<CStyleCastExpr>(Val: E.get())) {
12028 TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
12029 QualType T = Context.getCanonicalType(T: TI->getType()).getUnqualifiedType();
12030 if (T == Context.CharTy)
12031 Diag(Loc: E.get()->getExprLoc(), DiagID: diag::warn_pointer_compare)
12032 << NullValue
12033 << FixItHint::CreateReplacement(RemoveRange: E.get()->getExprLoc(),
12034 Code: NullValue ? "NULL" : "(void *)0");
12035 }
12036 }
12037}
12038
12039// C99 6.5.8, C++ [expr.rel]
12040QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
12041 SourceLocation Loc,
12042 BinaryOperatorKind Opc) {
12043 bool IsRelational = BinaryOperator::isRelationalOp(Opc);
12044 bool IsThreeWay = Opc == BO_Cmp;
12045 bool IsOrdered = IsRelational || IsThreeWay;
12046 auto IsAnyPointerType = [](ExprResult E) {
12047 QualType Ty = E.get()->getType();
12048 return Ty->isPointerType() || Ty->isMemberPointerType();
12049 };
12050
12051 // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
12052 // type, array-to-pointer, ..., conversions are performed on both operands to
12053 // bring them to their composite type.
12054 // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
12055 // any type-related checks.
12056 if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
12057 LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get());
12058 if (LHS.isInvalid())
12059 return QualType();
12060 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get());
12061 if (RHS.isInvalid())
12062 return QualType();
12063 } else {
12064 LHS = DefaultLvalueConversion(E: LHS.get());
12065 if (LHS.isInvalid())
12066 return QualType();
12067 RHS = DefaultLvalueConversion(E: RHS.get());
12068 if (RHS.isInvalid())
12069 return QualType();
12070 }
12071
12072 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/true);
12073 if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
12074 CheckPtrComparisonWithNullChar(E&: LHS, NullE&: RHS);
12075 CheckPtrComparisonWithNullChar(E&: RHS, NullE&: LHS);
12076 }
12077
12078 // Handle vector comparisons separately.
12079 if (LHS.get()->getType()->isVectorType() ||
12080 RHS.get()->getType()->isVectorType())
12081 return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
12082
12083 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
12084 RHS.get()->getType()->isSveVLSBuiltinType())
12085 return CheckSizelessVectorCompareOperands(LHS, RHS, Loc, Opc);
12086
12087 diagnoseLogicalNotOnLHSofCheck(S&: *this, LHS, RHS, Loc, Opc);
12088 diagnoseTautologicalComparison(S&: *this, Loc, LHS: LHS.get(), RHS: RHS.get(), Opc);
12089
12090 QualType LHSType = LHS.get()->getType();
12091 QualType RHSType = RHS.get()->getType();
12092 if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
12093 (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
12094 return checkArithmeticOrEnumeralCompare(S&: *this, LHS, RHS, Loc, Opc);
12095
12096 if ((LHSType->isPointerType() &&
12097 LHSType->getPointeeType().isWebAssemblyReferenceType()) ||
12098 (RHSType->isPointerType() &&
12099 RHSType->getPointeeType().isWebAssemblyReferenceType()))
12100 return InvalidOperands(Loc, LHS, RHS);
12101
12102 const Expr::NullPointerConstantKind LHSNullKind =
12103 LHS.get()->isNullPointerConstant(Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNull);
12104 const Expr::NullPointerConstantKind RHSNullKind =
12105 RHS.get()->isNullPointerConstant(Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNull);
12106 bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
12107 bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
12108
12109 auto computeResultTy = [&]() {
12110 if (Opc != BO_Cmp)
12111 return Context.getLogicalOperationType();
12112 assert(getLangOpts().CPlusPlus);
12113 assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()));
12114
12115 QualType CompositeTy = LHS.get()->getType();
12116 assert(!CompositeTy->isReferenceType());
12117
12118 std::optional<ComparisonCategoryType> CCT =
12119 getComparisonCategoryForBuiltinCmp(T: CompositeTy);
12120 if (!CCT)
12121 return InvalidOperands(Loc, LHS, RHS);
12122
12123 if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
12124 // P0946R0: Comparisons between a null pointer constant and an object
12125 // pointer result in std::strong_equality, which is ill-formed under
12126 // P1959R0.
12127 Diag(Loc, DiagID: diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
12128 << (LHSIsNull ? LHS.get()->getSourceRange()
12129 : RHS.get()->getSourceRange());
12130 return QualType();
12131 }
12132
12133 return CheckComparisonCategoryType(
12134 Kind: *CCT, Loc, Usage: ComparisonCategoryUsage::OperatorInExpression);
12135 };
12136
12137 if (!IsOrdered && LHSIsNull != RHSIsNull) {
12138 bool IsEquality = Opc == BO_EQ;
12139 if (RHSIsNull)
12140 DiagnoseAlwaysNonNullPointer(E: LHS.get(), NullType: RHSNullKind, IsEqual: IsEquality,
12141 Range: RHS.get()->getSourceRange());
12142 else
12143 DiagnoseAlwaysNonNullPointer(E: RHS.get(), NullType: LHSNullKind, IsEqual: IsEquality,
12144 Range: LHS.get()->getSourceRange());
12145 }
12146
12147 if (IsOrdered && LHSType->isFunctionPointerType() &&
12148 RHSType->isFunctionPointerType()) {
12149 // Valid unless a relational comparison of function pointers
12150 bool IsError = Opc == BO_Cmp;
12151 auto DiagID =
12152 IsError ? diag::err_typecheck_ordered_comparison_of_function_pointers
12153 : getLangOpts().CPlusPlus
12154 ? diag::warn_typecheck_ordered_comparison_of_function_pointers
12155 : diag::ext_typecheck_ordered_comparison_of_function_pointers;
12156 Diag(Loc, DiagID) << LHSType << RHSType << LHS.get()->getSourceRange()
12157 << RHS.get()->getSourceRange();
12158 if (IsError)
12159 return QualType();
12160 }
12161
12162 if ((LHSType->isIntegerType() && !LHSIsNull) ||
12163 (RHSType->isIntegerType() && !RHSIsNull)) {
12164 // Skip normal pointer conversion checks in this case; we have better
12165 // diagnostics for this below.
12166 } else if (getLangOpts().CPlusPlus) {
12167 // Equality comparison of a function pointer to a void pointer is invalid,
12168 // but we allow it as an extension.
12169 // FIXME: If we really want to allow this, should it be part of composite
12170 // pointer type computation so it works in conditionals too?
12171 if (!IsOrdered &&
12172 ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
12173 (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
12174 // This is a gcc extension compatibility comparison.
12175 // In a SFINAE context, we treat this as a hard error to maintain
12176 // conformance with the C++ standard.
12177 diagnoseFunctionPointerToVoidComparison(
12178 S&: *this, Loc, LHS, RHS, /*isError*/ IsError: (bool)isSFINAEContext());
12179
12180 if (isSFINAEContext())
12181 return QualType();
12182
12183 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_BitCast);
12184 return computeResultTy();
12185 }
12186
12187 // C++ [expr.eq]p2:
12188 // If at least one operand is a pointer [...] bring them to their
12189 // composite pointer type.
12190 // C++ [expr.spaceship]p6
12191 // If at least one of the operands is of pointer type, [...] bring them
12192 // to their composite pointer type.
12193 // C++ [expr.rel]p2:
12194 // If both operands are pointers, [...] bring them to their composite
12195 // pointer type.
12196 // For <=>, the only valid non-pointer types are arrays and functions, and
12197 // we already decayed those, so this is really the same as the relational
12198 // comparison rule.
12199 if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
12200 (IsOrdered ? 2 : 1) &&
12201 (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
12202 RHSType->isObjCObjectPointerType()))) {
12203 if (convertPointersToCompositeType(S&: *this, Loc, LHS, RHS))
12204 return QualType();
12205 return computeResultTy();
12206 }
12207 } else if (LHSType->isPointerType() &&
12208 RHSType->isPointerType()) { // C99 6.5.8p2
12209 // All of the following pointer-related warnings are GCC extensions, except
12210 // when handling null pointer constants.
12211 QualType LCanPointeeTy =
12212 LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12213 QualType RCanPointeeTy =
12214 RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
12215
12216 // C99 6.5.9p2 and C99 6.5.8p2
12217 if (Context.typesAreCompatible(T1: LCanPointeeTy.getUnqualifiedType(),
12218 T2: RCanPointeeTy.getUnqualifiedType())) {
12219 if (IsRelational) {
12220 // Pointers both need to point to complete or incomplete types
12221 if ((LCanPointeeTy->isIncompleteType() !=
12222 RCanPointeeTy->isIncompleteType()) &&
12223 !getLangOpts().C11) {
12224 Diag(Loc, DiagID: diag::ext_typecheck_compare_complete_incomplete_pointers)
12225 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
12226 << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
12227 << RCanPointeeTy->isIncompleteType();
12228 }
12229 }
12230 } else if (!IsRelational &&
12231 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
12232 // Valid unless comparison between non-null pointer and function pointer
12233 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
12234 && !LHSIsNull && !RHSIsNull)
12235 diagnoseFunctionPointerToVoidComparison(S&: *this, Loc, LHS, RHS,
12236 /*isError*/IsError: false);
12237 } else {
12238 // Invalid
12239 diagnoseDistinctPointerComparison(S&: *this, Loc, LHS, RHS, /*isError*/IsError: false);
12240 }
12241 if (LCanPointeeTy != RCanPointeeTy) {
12242 // Treat NULL constant as a special case in OpenCL.
12243 if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
12244 if (!LCanPointeeTy.isAddressSpaceOverlapping(T: RCanPointeeTy)) {
12245 Diag(Loc,
12246 DiagID: diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
12247 << LHSType << RHSType << 0 /* comparison */
12248 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
12249 }
12250 }
12251 LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
12252 LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
12253 CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
12254 : CK_BitCast;
12255 if (LHSIsNull && !RHSIsNull)
12256 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: Kind);
12257 else
12258 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: Kind);
12259 }
12260 return computeResultTy();
12261 }
12262
12263
12264 // C++ [expr.eq]p4:
12265 // Two operands of type std::nullptr_t or one operand of type
12266 // std::nullptr_t and the other a null pointer constant compare
12267 // equal.
12268 // C23 6.5.9p5:
12269 // If both operands have type nullptr_t or one operand has type nullptr_t
12270 // and the other is a null pointer constant, they compare equal if the
12271 // former is a null pointer.
12272 if (!IsOrdered && LHSIsNull && RHSIsNull) {
12273 if (LHSType->isNullPtrType()) {
12274 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
12275 return computeResultTy();
12276 }
12277 if (RHSType->isNullPtrType()) {
12278 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_NullToPointer);
12279 return computeResultTy();
12280 }
12281 }
12282
12283 if (!getLangOpts().CPlusPlus && !IsOrdered && (LHSIsNull || RHSIsNull)) {
12284 // C23 6.5.9p6:
12285 // Otherwise, at least one operand is a pointer. If one is a pointer and
12286 // the other is a null pointer constant or has type nullptr_t, they
12287 // compare equal
12288 if (LHSIsNull && RHSType->isPointerType()) {
12289 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_NullToPointer);
12290 return computeResultTy();
12291 }
12292 if (RHSIsNull && LHSType->isPointerType()) {
12293 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
12294 return computeResultTy();
12295 }
12296 }
12297
12298 // Comparison of Objective-C pointers and block pointers against nullptr_t.
12299 // These aren't covered by the composite pointer type rules.
12300 if (!IsOrdered && RHSType->isNullPtrType() &&
12301 (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
12302 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
12303 return computeResultTy();
12304 }
12305 if (!IsOrdered && LHSType->isNullPtrType() &&
12306 (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
12307 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_NullToPointer);
12308 return computeResultTy();
12309 }
12310
12311 if (getLangOpts().CPlusPlus) {
12312 if (IsRelational &&
12313 ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
12314 (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
12315 // HACK: Relational comparison of nullptr_t against a pointer type is
12316 // invalid per DR583, but we allow it within std::less<> and friends,
12317 // since otherwise common uses of it break.
12318 // FIXME: Consider removing this hack once LWG fixes std::less<> and
12319 // friends to have std::nullptr_t overload candidates.
12320 DeclContext *DC = CurContext;
12321 if (isa<FunctionDecl>(Val: DC))
12322 DC = DC->getParent();
12323 if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Val: DC)) {
12324 if (CTSD->isInStdNamespace() &&
12325 llvm::StringSwitch<bool>(CTSD->getName())
12326 .Cases(S0: "less", S1: "less_equal", S2: "greater", S3: "greater_equal", Value: true)
12327 .Default(Value: false)) {
12328 if (RHSType->isNullPtrType())
12329 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
12330 else
12331 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_NullToPointer);
12332 return computeResultTy();
12333 }
12334 }
12335 }
12336
12337 // C++ [expr.eq]p2:
12338 // If at least one operand is a pointer to member, [...] bring them to
12339 // their composite pointer type.
12340 if (!IsOrdered &&
12341 (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
12342 if (convertPointersToCompositeType(S&: *this, Loc, LHS, RHS))
12343 return QualType();
12344 else
12345 return computeResultTy();
12346 }
12347 }
12348
12349 // Handle block pointer types.
12350 if (!IsOrdered && LHSType->isBlockPointerType() &&
12351 RHSType->isBlockPointerType()) {
12352 QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
12353 QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
12354
12355 if (!LHSIsNull && !RHSIsNull &&
12356 !Context.typesAreCompatible(T1: lpointee, T2: rpointee)) {
12357 Diag(Loc, DiagID: diag::err_typecheck_comparison_of_distinct_blocks)
12358 << LHSType << RHSType << LHS.get()->getSourceRange()
12359 << RHS.get()->getSourceRange();
12360 }
12361 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_BitCast);
12362 return computeResultTy();
12363 }
12364
12365 // Allow block pointers to be compared with null pointer constants.
12366 if (!IsOrdered
12367 && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
12368 || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
12369 if (!LHSIsNull && !RHSIsNull) {
12370 if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
12371 ->getPointeeType()->isVoidType())
12372 || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
12373 ->getPointeeType()->isVoidType())))
12374 Diag(Loc, DiagID: diag::err_typecheck_comparison_of_distinct_blocks)
12375 << LHSType << RHSType << LHS.get()->getSourceRange()
12376 << RHS.get()->getSourceRange();
12377 }
12378 if (LHSIsNull && !RHSIsNull)
12379 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType,
12380 CK: RHSType->isPointerType() ? CK_BitCast
12381 : CK_AnyPointerToBlockPointerCast);
12382 else
12383 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType,
12384 CK: LHSType->isPointerType() ? CK_BitCast
12385 : CK_AnyPointerToBlockPointerCast);
12386 return computeResultTy();
12387 }
12388
12389 if (LHSType->isObjCObjectPointerType() ||
12390 RHSType->isObjCObjectPointerType()) {
12391 const PointerType *LPT = LHSType->getAs<PointerType>();
12392 const PointerType *RPT = RHSType->getAs<PointerType>();
12393 if (LPT || RPT) {
12394 bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
12395 bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
12396
12397 if (!LPtrToVoid && !RPtrToVoid &&
12398 !Context.typesAreCompatible(T1: LHSType, T2: RHSType)) {
12399 diagnoseDistinctPointerComparison(S&: *this, Loc, LHS, RHS,
12400 /*isError*/IsError: false);
12401 }
12402 // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
12403 // the RHS, but we have test coverage for this behavior.
12404 // FIXME: Consider using convertPointersToCompositeType in C++.
12405 if (LHSIsNull && !RHSIsNull) {
12406 Expr *E = LHS.get();
12407 if (getLangOpts().ObjCAutoRefCount)
12408 ObjC().CheckObjCConversion(castRange: SourceRange(), castType: RHSType, op&: E,
12409 CCK: CheckedConversionKind::Implicit);
12410 LHS = ImpCastExprToType(E, Type: RHSType,
12411 CK: RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12412 }
12413 else {
12414 Expr *E = RHS.get();
12415 if (getLangOpts().ObjCAutoRefCount)
12416 ObjC().CheckObjCConversion(castRange: SourceRange(), castType: LHSType, op&: E,
12417 CCK: CheckedConversionKind::Implicit,
12418 /*Diagnose=*/true,
12419 /*DiagnoseCFAudited=*/false, Opc);
12420 RHS = ImpCastExprToType(E, Type: LHSType,
12421 CK: LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
12422 }
12423 return computeResultTy();
12424 }
12425 if (LHSType->isObjCObjectPointerType() &&
12426 RHSType->isObjCObjectPointerType()) {
12427 if (!Context.areComparableObjCPointerTypes(LHS: LHSType, RHS: RHSType))
12428 diagnoseDistinctPointerComparison(S&: *this, Loc, LHS, RHS,
12429 /*isError*/IsError: false);
12430 if (isObjCObjectLiteral(E&: LHS) || isObjCObjectLiteral(E&: RHS))
12431 diagnoseObjCLiteralComparison(S&: *this, Loc, LHS, RHS, Opc);
12432
12433 if (LHSIsNull && !RHSIsNull)
12434 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_BitCast);
12435 else
12436 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_BitCast);
12437 return computeResultTy();
12438 }
12439
12440 if (!IsOrdered && LHSType->isBlockPointerType() &&
12441 RHSType->isBlockCompatibleObjCPointerType(ctx&: Context)) {
12442 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType,
12443 CK: CK_BlockPointerToObjCPointerCast);
12444 return computeResultTy();
12445 } else if (!IsOrdered &&
12446 LHSType->isBlockCompatibleObjCPointerType(ctx&: Context) &&
12447 RHSType->isBlockPointerType()) {
12448 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType,
12449 CK: CK_BlockPointerToObjCPointerCast);
12450 return computeResultTy();
12451 }
12452 }
12453 if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
12454 (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
12455 unsigned DiagID = 0;
12456 bool isError = false;
12457 if (LangOpts.DebuggerSupport) {
12458 // Under a debugger, allow the comparison of pointers to integers,
12459 // since users tend to want to compare addresses.
12460 } else if ((LHSIsNull && LHSType->isIntegerType()) ||
12461 (RHSIsNull && RHSType->isIntegerType())) {
12462 if (IsOrdered) {
12463 isError = getLangOpts().CPlusPlus;
12464 DiagID =
12465 isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
12466 : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
12467 }
12468 } else if (getLangOpts().CPlusPlus) {
12469 DiagID = diag::err_typecheck_comparison_of_pointer_integer;
12470 isError = true;
12471 } else if (IsOrdered)
12472 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
12473 else
12474 DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
12475
12476 if (DiagID) {
12477 Diag(Loc, DiagID)
12478 << LHSType << RHSType << LHS.get()->getSourceRange()
12479 << RHS.get()->getSourceRange();
12480 if (isError)
12481 return QualType();
12482 }
12483
12484 if (LHSType->isIntegerType())
12485 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType,
12486 CK: LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12487 else
12488 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType,
12489 CK: RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
12490 return computeResultTy();
12491 }
12492
12493 // Handle block pointers.
12494 if (!IsOrdered && RHSIsNull
12495 && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
12496 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
12497 return computeResultTy();
12498 }
12499 if (!IsOrdered && LHSIsNull
12500 && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
12501 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_NullToPointer);
12502 return computeResultTy();
12503 }
12504
12505 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
12506 if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
12507 return computeResultTy();
12508 }
12509
12510 if (LHSType->isQueueT() && RHSType->isQueueT()) {
12511 return computeResultTy();
12512 }
12513
12514 if (LHSIsNull && RHSType->isQueueT()) {
12515 LHS = ImpCastExprToType(E: LHS.get(), Type: RHSType, CK: CK_NullToPointer);
12516 return computeResultTy();
12517 }
12518
12519 if (LHSType->isQueueT() && RHSIsNull) {
12520 RHS = ImpCastExprToType(E: RHS.get(), Type: LHSType, CK: CK_NullToPointer);
12521 return computeResultTy();
12522 }
12523 }
12524
12525 return InvalidOperands(Loc, LHS, RHS);
12526}
12527
12528QualType Sema::GetSignedVectorType(QualType V) {
12529 const VectorType *VTy = V->castAs<VectorType>();
12530 unsigned TypeSize = Context.getTypeSize(T: VTy->getElementType());
12531
12532 if (isa<ExtVectorType>(Val: VTy)) {
12533 if (VTy->isExtVectorBoolType())
12534 return Context.getExtVectorType(VectorType: Context.BoolTy, NumElts: VTy->getNumElements());
12535 if (TypeSize == Context.getTypeSize(T: Context.CharTy))
12536 return Context.getExtVectorType(VectorType: Context.CharTy, NumElts: VTy->getNumElements());
12537 if (TypeSize == Context.getTypeSize(T: Context.ShortTy))
12538 return Context.getExtVectorType(VectorType: Context.ShortTy, NumElts: VTy->getNumElements());
12539 if (TypeSize == Context.getTypeSize(T: Context.IntTy))
12540 return Context.getExtVectorType(VectorType: Context.IntTy, NumElts: VTy->getNumElements());
12541 if (TypeSize == Context.getTypeSize(T: Context.Int128Ty))
12542 return Context.getExtVectorType(VectorType: Context.Int128Ty, NumElts: VTy->getNumElements());
12543 if (TypeSize == Context.getTypeSize(T: Context.LongTy))
12544 return Context.getExtVectorType(VectorType: Context.LongTy, NumElts: VTy->getNumElements());
12545 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
12546 "Unhandled vector element size in vector compare");
12547 return Context.getExtVectorType(VectorType: Context.LongLongTy, NumElts: VTy->getNumElements());
12548 }
12549
12550 if (TypeSize == Context.getTypeSize(T: Context.Int128Ty))
12551 return Context.getVectorType(VectorType: Context.Int128Ty, NumElts: VTy->getNumElements(),
12552 VecKind: VectorKind::Generic);
12553 if (TypeSize == Context.getTypeSize(T: Context.LongLongTy))
12554 return Context.getVectorType(VectorType: Context.LongLongTy, NumElts: VTy->getNumElements(),
12555 VecKind: VectorKind::Generic);
12556 if (TypeSize == Context.getTypeSize(T: Context.LongTy))
12557 return Context.getVectorType(VectorType: Context.LongTy, NumElts: VTy->getNumElements(),
12558 VecKind: VectorKind::Generic);
12559 if (TypeSize == Context.getTypeSize(T: Context.IntTy))
12560 return Context.getVectorType(VectorType: Context.IntTy, NumElts: VTy->getNumElements(),
12561 VecKind: VectorKind::Generic);
12562 if (TypeSize == Context.getTypeSize(T: Context.ShortTy))
12563 return Context.getVectorType(VectorType: Context.ShortTy, NumElts: VTy->getNumElements(),
12564 VecKind: VectorKind::Generic);
12565 assert(TypeSize == Context.getTypeSize(Context.CharTy) &&
12566 "Unhandled vector element size in vector compare");
12567 return Context.getVectorType(VectorType: Context.CharTy, NumElts: VTy->getNumElements(),
12568 VecKind: VectorKind::Generic);
12569}
12570
12571QualType Sema::GetSignedSizelessVectorType(QualType V) {
12572 const BuiltinType *VTy = V->castAs<BuiltinType>();
12573 assert(VTy->isSizelessBuiltinType() && "expected sizeless type");
12574
12575 const QualType ETy = V->getSveEltType(Ctx: Context);
12576 const auto TypeSize = Context.getTypeSize(T: ETy);
12577
12578 const QualType IntTy = Context.getIntTypeForBitwidth(DestWidth: TypeSize, Signed: true);
12579 const llvm::ElementCount VecSize = Context.getBuiltinVectorTypeInfo(VecTy: VTy).EC;
12580 return Context.getScalableVectorType(EltTy: IntTy, NumElts: VecSize.getKnownMinValue());
12581}
12582
12583QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
12584 SourceLocation Loc,
12585 BinaryOperatorKind Opc) {
12586 if (Opc == BO_Cmp) {
12587 Diag(Loc, DiagID: diag::err_three_way_vector_comparison);
12588 return QualType();
12589 }
12590
12591 // Check to make sure we're operating on vectors of the same type and width,
12592 // Allowing one side to be a scalar of element type.
12593 QualType vType =
12594 CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/ IsCompAssign: false,
12595 /*AllowBothBool*/ true,
12596 /*AllowBoolConversions*/ getLangOpts().ZVector,
12597 /*AllowBooleanOperation*/ AllowBoolOperation: true,
12598 /*ReportInvalid*/ true);
12599 if (vType.isNull())
12600 return vType;
12601
12602 QualType LHSType = LHS.get()->getType();
12603
12604 // Determine the return type of a vector compare. By default clang will return
12605 // a scalar for all vector compares except vector bool and vector pixel.
12606 // With the gcc compiler we will always return a vector type and with the xl
12607 // compiler we will always return a scalar type. This switch allows choosing
12608 // which behavior is prefered.
12609 if (getLangOpts().AltiVec) {
12610 switch (getLangOpts().getAltivecSrcCompat()) {
12611 case LangOptions::AltivecSrcCompatKind::Mixed:
12612 // If AltiVec, the comparison results in a numeric type, i.e.
12613 // bool for C++, int for C
12614 if (vType->castAs<VectorType>()->getVectorKind() ==
12615 VectorKind::AltiVecVector)
12616 return Context.getLogicalOperationType();
12617 else
12618 Diag(Loc, DiagID: diag::warn_deprecated_altivec_src_compat);
12619 break;
12620 case LangOptions::AltivecSrcCompatKind::GCC:
12621 // For GCC we always return the vector type.
12622 break;
12623 case LangOptions::AltivecSrcCompatKind::XL:
12624 return Context.getLogicalOperationType();
12625 break;
12626 }
12627 }
12628
12629 // For non-floating point types, check for self-comparisons of the form
12630 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12631 // often indicate logic errors in the program.
12632 diagnoseTautologicalComparison(S&: *this, Loc, LHS: LHS.get(), RHS: RHS.get(), Opc);
12633
12634 // Check for comparisons of floating point operands using != and ==.
12635 if (LHSType->hasFloatingRepresentation()) {
12636 assert(RHS.get()->getType()->hasFloatingRepresentation());
12637 CheckFloatComparison(Loc, LHS: LHS.get(), RHS: RHS.get(), Opcode: Opc);
12638 }
12639
12640 // Return a signed type for the vector.
12641 return GetSignedVectorType(V: vType);
12642}
12643
12644QualType Sema::CheckSizelessVectorCompareOperands(ExprResult &LHS,
12645 ExprResult &RHS,
12646 SourceLocation Loc,
12647 BinaryOperatorKind Opc) {
12648 if (Opc == BO_Cmp) {
12649 Diag(Loc, DiagID: diag::err_three_way_vector_comparison);
12650 return QualType();
12651 }
12652
12653 // Check to make sure we're operating on vectors of the same type and width,
12654 // Allowing one side to be a scalar of element type.
12655 QualType vType = CheckSizelessVectorOperands(
12656 LHS, RHS, Loc, /*isCompAssign*/ IsCompAssign: false, OperationKind: ACK_Comparison);
12657
12658 if (vType.isNull())
12659 return vType;
12660
12661 QualType LHSType = LHS.get()->getType();
12662
12663 // For non-floating point types, check for self-comparisons of the form
12664 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12665 // often indicate logic errors in the program.
12666 diagnoseTautologicalComparison(S&: *this, Loc, LHS: LHS.get(), RHS: RHS.get(), Opc);
12667
12668 // Check for comparisons of floating point operands using != and ==.
12669 if (LHSType->hasFloatingRepresentation()) {
12670 assert(RHS.get()->getType()->hasFloatingRepresentation());
12671 CheckFloatComparison(Loc, LHS: LHS.get(), RHS: RHS.get(), Opcode: Opc);
12672 }
12673
12674 const BuiltinType *LHSBuiltinTy = LHSType->getAs<BuiltinType>();
12675 const BuiltinType *RHSBuiltinTy = RHS.get()->getType()->getAs<BuiltinType>();
12676
12677 if (LHSBuiltinTy && RHSBuiltinTy && LHSBuiltinTy->isSVEBool() &&
12678 RHSBuiltinTy->isSVEBool())
12679 return LHSType;
12680
12681 // Return a signed type for the vector.
12682 return GetSignedSizelessVectorType(V: vType);
12683}
12684
12685static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
12686 const ExprResult &XorRHS,
12687 const SourceLocation Loc) {
12688 // Do not diagnose macros.
12689 if (Loc.isMacroID())
12690 return;
12691
12692 // Do not diagnose if both LHS and RHS are macros.
12693 if (XorLHS.get()->getExprLoc().isMacroID() &&
12694 XorRHS.get()->getExprLoc().isMacroID())
12695 return;
12696
12697 bool Negative = false;
12698 bool ExplicitPlus = false;
12699 const auto *LHSInt = dyn_cast<IntegerLiteral>(Val: XorLHS.get());
12700 const auto *RHSInt = dyn_cast<IntegerLiteral>(Val: XorRHS.get());
12701
12702 if (!LHSInt)
12703 return;
12704 if (!RHSInt) {
12705 // Check negative literals.
12706 if (const auto *UO = dyn_cast<UnaryOperator>(Val: XorRHS.get())) {
12707 UnaryOperatorKind Opc = UO->getOpcode();
12708 if (Opc != UO_Minus && Opc != UO_Plus)
12709 return;
12710 RHSInt = dyn_cast<IntegerLiteral>(Val: UO->getSubExpr());
12711 if (!RHSInt)
12712 return;
12713 Negative = (Opc == UO_Minus);
12714 ExplicitPlus = !Negative;
12715 } else {
12716 return;
12717 }
12718 }
12719
12720 const llvm::APInt &LeftSideValue = LHSInt->getValue();
12721 llvm::APInt RightSideValue = RHSInt->getValue();
12722 if (LeftSideValue != 2 && LeftSideValue != 10)
12723 return;
12724
12725 if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
12726 return;
12727
12728 CharSourceRange ExprRange = CharSourceRange::getCharRange(
12729 B: LHSInt->getBeginLoc(), E: S.getLocForEndOfToken(Loc: RHSInt->getLocation()));
12730 llvm::StringRef ExprStr =
12731 Lexer::getSourceText(Range: ExprRange, SM: S.getSourceManager(), LangOpts: S.getLangOpts());
12732
12733 CharSourceRange XorRange =
12734 CharSourceRange::getCharRange(B: Loc, E: S.getLocForEndOfToken(Loc));
12735 llvm::StringRef XorStr =
12736 Lexer::getSourceText(Range: XorRange, SM: S.getSourceManager(), LangOpts: S.getLangOpts());
12737 // Do not diagnose if xor keyword/macro is used.
12738 if (XorStr == "xor")
12739 return;
12740
12741 std::string LHSStr = std::string(Lexer::getSourceText(
12742 Range: CharSourceRange::getTokenRange(R: LHSInt->getSourceRange()),
12743 SM: S.getSourceManager(), LangOpts: S.getLangOpts()));
12744 std::string RHSStr = std::string(Lexer::getSourceText(
12745 Range: CharSourceRange::getTokenRange(R: RHSInt->getSourceRange()),
12746 SM: S.getSourceManager(), LangOpts: S.getLangOpts()));
12747
12748 if (Negative) {
12749 RightSideValue = -RightSideValue;
12750 RHSStr = "-" + RHSStr;
12751 } else if (ExplicitPlus) {
12752 RHSStr = "+" + RHSStr;
12753 }
12754
12755 StringRef LHSStrRef = LHSStr;
12756 StringRef RHSStrRef = RHSStr;
12757 // Do not diagnose literals with digit separators, binary, hexadecimal, octal
12758 // literals.
12759 if (LHSStrRef.starts_with(Prefix: "0b") || LHSStrRef.starts_with(Prefix: "0B") ||
12760 RHSStrRef.starts_with(Prefix: "0b") || RHSStrRef.starts_with(Prefix: "0B") ||
12761 LHSStrRef.starts_with(Prefix: "0x") || LHSStrRef.starts_with(Prefix: "0X") ||
12762 RHSStrRef.starts_with(Prefix: "0x") || RHSStrRef.starts_with(Prefix: "0X") ||
12763 (LHSStrRef.size() > 1 && LHSStrRef.starts_with(Prefix: "0")) ||
12764 (RHSStrRef.size() > 1 && RHSStrRef.starts_with(Prefix: "0")) ||
12765 LHSStrRef.contains(C: '\'') || RHSStrRef.contains(C: '\''))
12766 return;
12767
12768 bool SuggestXor =
12769 S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined(Id: "xor");
12770 const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
12771 int64_t RightSideIntValue = RightSideValue.getSExtValue();
12772 if (LeftSideValue == 2 && RightSideIntValue >= 0) {
12773 std::string SuggestedExpr = "1 << " + RHSStr;
12774 bool Overflow = false;
12775 llvm::APInt One = (LeftSideValue - 1);
12776 llvm::APInt PowValue = One.sshl_ov(Amt: RightSideValue, Overflow);
12777 if (Overflow) {
12778 if (RightSideIntValue < 64)
12779 S.Diag(Loc, DiagID: diag::warn_xor_used_as_pow_base)
12780 << ExprStr << toString(I: XorValue, Radix: 10, Signed: true) << ("1LL << " + RHSStr)
12781 << FixItHint::CreateReplacement(RemoveRange: ExprRange, Code: "1LL << " + RHSStr);
12782 else if (RightSideIntValue == 64)
12783 S.Diag(Loc, DiagID: diag::warn_xor_used_as_pow)
12784 << ExprStr << toString(I: XorValue, Radix: 10, Signed: true);
12785 else
12786 return;
12787 } else {
12788 S.Diag(Loc, DiagID: diag::warn_xor_used_as_pow_base_extra)
12789 << ExprStr << toString(I: XorValue, Radix: 10, Signed: true) << SuggestedExpr
12790 << toString(I: PowValue, Radix: 10, Signed: true)
12791 << FixItHint::CreateReplacement(
12792 RemoveRange: ExprRange, Code: (RightSideIntValue == 0) ? "1" : SuggestedExpr);
12793 }
12794
12795 S.Diag(Loc, DiagID: diag::note_xor_used_as_pow_silence)
12796 << ("0x2 ^ " + RHSStr) << SuggestXor;
12797 } else if (LeftSideValue == 10) {
12798 std::string SuggestedValue = "1e" + std::to_string(val: RightSideIntValue);
12799 S.Diag(Loc, DiagID: diag::warn_xor_used_as_pow_base)
12800 << ExprStr << toString(I: XorValue, Radix: 10, Signed: true) << SuggestedValue
12801 << FixItHint::CreateReplacement(RemoveRange: ExprRange, Code: SuggestedValue);
12802 S.Diag(Loc, DiagID: diag::note_xor_used_as_pow_silence)
12803 << ("0xA ^ " + RHSStr) << SuggestXor;
12804 }
12805}
12806
12807QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12808 SourceLocation Loc) {
12809 // Ensure that either both operands are of the same vector type, or
12810 // one operand is of a vector type and the other is of its element type.
12811 QualType vType = CheckVectorOperands(LHS, RHS, Loc, IsCompAssign: false,
12812 /*AllowBothBool*/ true,
12813 /*AllowBoolConversions*/ false,
12814 /*AllowBooleanOperation*/ AllowBoolOperation: false,
12815 /*ReportInvalid*/ false);
12816 if (vType.isNull())
12817 return InvalidOperands(Loc, LHS, RHS);
12818 if (getLangOpts().OpenCL &&
12819 getLangOpts().getOpenCLCompatibleVersion() < 120 &&
12820 vType->hasFloatingRepresentation())
12821 return InvalidOperands(Loc, LHS, RHS);
12822 // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
12823 // usage of the logical operators && and || with vectors in C. This
12824 // check could be notionally dropped.
12825 if (!getLangOpts().CPlusPlus &&
12826 !(isa<ExtVectorType>(Val: vType->getAs<VectorType>())))
12827 return InvalidLogicalVectorOperands(Loc, LHS, RHS);
12828
12829 return GetSignedVectorType(V: LHS.get()->getType());
12830}
12831
12832QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
12833 SourceLocation Loc,
12834 bool IsCompAssign) {
12835 if (!IsCompAssign) {
12836 LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get());
12837 if (LHS.isInvalid())
12838 return QualType();
12839 }
12840 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get());
12841 if (RHS.isInvalid())
12842 return QualType();
12843
12844 // For conversion purposes, we ignore any qualifiers.
12845 // For example, "const float" and "float" are equivalent.
12846 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
12847 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
12848
12849 const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
12850 const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
12851 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
12852
12853 if (Context.hasSameType(T1: LHSType, T2: RHSType))
12854 return Context.getCommonSugaredType(X: LHSType, Y: RHSType);
12855
12856 // Type conversion may change LHS/RHS. Keep copies to the original results, in
12857 // case we have to return InvalidOperands.
12858 ExprResult OriginalLHS = LHS;
12859 ExprResult OriginalRHS = RHS;
12860 if (LHSMatType && !RHSMatType) {
12861 RHS = tryConvertExprToType(E: RHS.get(), Ty: LHSMatType->getElementType());
12862 if (!RHS.isInvalid())
12863 return LHSType;
12864
12865 return InvalidOperands(Loc, LHS&: OriginalLHS, RHS&: OriginalRHS);
12866 }
12867
12868 if (!LHSMatType && RHSMatType) {
12869 LHS = tryConvertExprToType(E: LHS.get(), Ty: RHSMatType->getElementType());
12870 if (!LHS.isInvalid())
12871 return RHSType;
12872 return InvalidOperands(Loc, LHS&: OriginalLHS, RHS&: OriginalRHS);
12873 }
12874
12875 return InvalidOperands(Loc, LHS, RHS);
12876}
12877
12878QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
12879 SourceLocation Loc,
12880 bool IsCompAssign) {
12881 if (!IsCompAssign) {
12882 LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get());
12883 if (LHS.isInvalid())
12884 return QualType();
12885 }
12886 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get());
12887 if (RHS.isInvalid())
12888 return QualType();
12889
12890 auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
12891 auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
12892 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix");
12893
12894 if (LHSMatType && RHSMatType) {
12895 if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
12896 return InvalidOperands(Loc, LHS, RHS);
12897
12898 if (Context.hasSameType(T1: LHSMatType, T2: RHSMatType))
12899 return Context.getCommonSugaredType(
12900 X: LHS.get()->getType().getUnqualifiedType(),
12901 Y: RHS.get()->getType().getUnqualifiedType());
12902
12903 QualType LHSELTy = LHSMatType->getElementType(),
12904 RHSELTy = RHSMatType->getElementType();
12905 if (!Context.hasSameType(T1: LHSELTy, T2: RHSELTy))
12906 return InvalidOperands(Loc, LHS, RHS);
12907
12908 return Context.getConstantMatrixType(
12909 ElementType: Context.getCommonSugaredType(X: LHSELTy, Y: RHSELTy),
12910 NumRows: LHSMatType->getNumRows(), NumColumns: RHSMatType->getNumColumns());
12911 }
12912 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
12913}
12914
12915static bool isLegalBoolVectorBinaryOp(BinaryOperatorKind Opc) {
12916 switch (Opc) {
12917 default:
12918 return false;
12919 case BO_And:
12920 case BO_AndAssign:
12921 case BO_Or:
12922 case BO_OrAssign:
12923 case BO_Xor:
12924 case BO_XorAssign:
12925 return true;
12926 }
12927}
12928
12929inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
12930 SourceLocation Loc,
12931 BinaryOperatorKind Opc) {
12932 checkArithmeticNull(S&: *this, LHS, RHS, Loc, /*IsCompare=*/false);
12933
12934 bool IsCompAssign =
12935 Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
12936
12937 bool LegalBoolVecOperator = isLegalBoolVectorBinaryOp(Opc);
12938
12939 if (LHS.get()->getType()->isVectorType() ||
12940 RHS.get()->getType()->isVectorType()) {
12941 if (LHS.get()->getType()->hasIntegerRepresentation() &&
12942 RHS.get()->getType()->hasIntegerRepresentation())
12943 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
12944 /*AllowBothBool*/ true,
12945 /*AllowBoolConversions*/ getLangOpts().ZVector,
12946 /*AllowBooleanOperation*/ AllowBoolOperation: LegalBoolVecOperator,
12947 /*ReportInvalid*/ true);
12948 return InvalidOperands(Loc, LHS, RHS);
12949 }
12950
12951 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
12952 RHS.get()->getType()->isSveVLSBuiltinType()) {
12953 if (LHS.get()->getType()->hasIntegerRepresentation() &&
12954 RHS.get()->getType()->hasIntegerRepresentation())
12955 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
12956 OperationKind: ACK_BitwiseOp);
12957 return InvalidOperands(Loc, LHS, RHS);
12958 }
12959
12960 if (LHS.get()->getType()->isSveVLSBuiltinType() ||
12961 RHS.get()->getType()->isSveVLSBuiltinType()) {
12962 if (LHS.get()->getType()->hasIntegerRepresentation() &&
12963 RHS.get()->getType()->hasIntegerRepresentation())
12964 return CheckSizelessVectorOperands(LHS, RHS, Loc, IsCompAssign,
12965 OperationKind: ACK_BitwiseOp);
12966 return InvalidOperands(Loc, LHS, RHS);
12967 }
12968
12969 if (Opc == BO_And)
12970 diagnoseLogicalNotOnLHSofCheck(S&: *this, LHS, RHS, Loc, Opc);
12971
12972 if (LHS.get()->getType()->hasFloatingRepresentation() ||
12973 RHS.get()->getType()->hasFloatingRepresentation())
12974 return InvalidOperands(Loc, LHS, RHS);
12975
12976 ExprResult LHSResult = LHS, RHSResult = RHS;
12977 QualType compType = UsualArithmeticConversions(
12978 LHS&: LHSResult, RHS&: RHSResult, Loc, ACK: IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
12979 if (LHSResult.isInvalid() || RHSResult.isInvalid())
12980 return QualType();
12981 LHS = LHSResult.get();
12982 RHS = RHSResult.get();
12983
12984 if (Opc == BO_Xor)
12985 diagnoseXorMisusedAsPow(S&: *this, XorLHS: LHS, XorRHS: RHS, Loc);
12986
12987 if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
12988 return compType;
12989 return InvalidOperands(Loc, LHS, RHS);
12990}
12991
12992// C99 6.5.[13,14]
12993inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12994 SourceLocation Loc,
12995 BinaryOperatorKind Opc) {
12996 // Check vector operands differently.
12997 if (LHS.get()->getType()->isVectorType() ||
12998 RHS.get()->getType()->isVectorType())
12999 return CheckVectorLogicalOperands(LHS, RHS, Loc);
13000
13001 bool EnumConstantInBoolContext = false;
13002 for (const ExprResult &HS : {LHS, RHS}) {
13003 if (const auto *DREHS = dyn_cast<DeclRefExpr>(Val: HS.get())) {
13004 const auto *ECDHS = dyn_cast<EnumConstantDecl>(Val: DREHS->getDecl());
13005 if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
13006 EnumConstantInBoolContext = true;
13007 }
13008 }
13009
13010 if (EnumConstantInBoolContext)
13011 Diag(Loc, DiagID: diag::warn_enum_constant_in_bool_context);
13012
13013 // WebAssembly tables can't be used with logical operators.
13014 QualType LHSTy = LHS.get()->getType();
13015 QualType RHSTy = RHS.get()->getType();
13016 const auto *LHSATy = dyn_cast<ArrayType>(Val&: LHSTy);
13017 const auto *RHSATy = dyn_cast<ArrayType>(Val&: RHSTy);
13018 if ((LHSATy && LHSATy->getElementType().isWebAssemblyReferenceType()) ||
13019 (RHSATy && RHSATy->getElementType().isWebAssemblyReferenceType())) {
13020 return InvalidOperands(Loc, LHS, RHS);
13021 }
13022
13023 // Diagnose cases where the user write a logical and/or but probably meant a
13024 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
13025 // is a constant.
13026 if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
13027 !LHS.get()->getType()->isBooleanType() &&
13028 RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
13029 // Don't warn in macros or template instantiations.
13030 !Loc.isMacroID() && !inTemplateInstantiation()) {
13031 // If the RHS can be constant folded, and if it constant folds to something
13032 // that isn't 0 or 1 (which indicate a potential logical operation that
13033 // happened to fold to true/false) then warn.
13034 // Parens on the RHS are ignored.
13035 Expr::EvalResult EVResult;
13036 if (RHS.get()->EvaluateAsInt(Result&: EVResult, Ctx: Context)) {
13037 llvm::APSInt Result = EVResult.Val.getInt();
13038 if ((getLangOpts().CPlusPlus && !RHS.get()->getType()->isBooleanType() &&
13039 !RHS.get()->getExprLoc().isMacroID()) ||
13040 (Result != 0 && Result != 1)) {
13041 Diag(Loc, DiagID: diag::warn_logical_instead_of_bitwise)
13042 << RHS.get()->getSourceRange() << (Opc == BO_LAnd ? "&&" : "||");
13043 // Suggest replacing the logical operator with the bitwise version
13044 Diag(Loc, DiagID: diag::note_logical_instead_of_bitwise_change_operator)
13045 << (Opc == BO_LAnd ? "&" : "|")
13046 << FixItHint::CreateReplacement(
13047 RemoveRange: SourceRange(Loc, getLocForEndOfToken(Loc)),
13048 Code: Opc == BO_LAnd ? "&" : "|");
13049 if (Opc == BO_LAnd)
13050 // Suggest replacing "Foo() && kNonZero" with "Foo()"
13051 Diag(Loc, DiagID: diag::note_logical_instead_of_bitwise_remove_constant)
13052 << FixItHint::CreateRemoval(
13053 RemoveRange: SourceRange(getLocForEndOfToken(Loc: LHS.get()->getEndLoc()),
13054 RHS.get()->getEndLoc()));
13055 }
13056 }
13057 }
13058
13059 if (!Context.getLangOpts().CPlusPlus) {
13060 // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
13061 // not operate on the built-in scalar and vector float types.
13062 if (Context.getLangOpts().OpenCL &&
13063 Context.getLangOpts().OpenCLVersion < 120) {
13064 if (LHS.get()->getType()->isFloatingType() ||
13065 RHS.get()->getType()->isFloatingType())
13066 return InvalidOperands(Loc, LHS, RHS);
13067 }
13068
13069 LHS = UsualUnaryConversions(E: LHS.get());
13070 if (LHS.isInvalid())
13071 return QualType();
13072
13073 RHS = UsualUnaryConversions(E: RHS.get());
13074 if (RHS.isInvalid())
13075 return QualType();
13076
13077 if (!LHS.get()->getType()->isScalarType() ||
13078 !RHS.get()->getType()->isScalarType())
13079 return InvalidOperands(Loc, LHS, RHS);
13080
13081 return Context.IntTy;
13082 }
13083
13084 // The following is safe because we only use this method for
13085 // non-overloadable operands.
13086
13087 // C++ [expr.log.and]p1
13088 // C++ [expr.log.or]p1
13089 // The operands are both contextually converted to type bool.
13090 ExprResult LHSRes = PerformContextuallyConvertToBool(From: LHS.get());
13091 if (LHSRes.isInvalid())
13092 return InvalidOperands(Loc, LHS, RHS);
13093 LHS = LHSRes;
13094
13095 ExprResult RHSRes = PerformContextuallyConvertToBool(From: RHS.get());
13096 if (RHSRes.isInvalid())
13097 return InvalidOperands(Loc, LHS, RHS);
13098 RHS = RHSRes;
13099
13100 // C++ [expr.log.and]p2
13101 // C++ [expr.log.or]p2
13102 // The result is a bool.
13103 return Context.BoolTy;
13104}
13105
13106static bool IsReadonlyMessage(Expr *E, Sema &S) {
13107 const MemberExpr *ME = dyn_cast<MemberExpr>(Val: E);
13108 if (!ME) return false;
13109 if (!isa<FieldDecl>(Val: ME->getMemberDecl())) return false;
13110 ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
13111 Val: ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
13112 if (!Base) return false;
13113 return Base->getMethodDecl() != nullptr;
13114}
13115
13116/// Is the given expression (which must be 'const') a reference to a
13117/// variable which was originally non-const, but which has become
13118/// 'const' due to being captured within a block?
13119enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
13120static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
13121 assert(E->isLValue() && E->getType().isConstQualified());
13122 E = E->IgnoreParens();
13123
13124 // Must be a reference to a declaration from an enclosing scope.
13125 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E);
13126 if (!DRE) return NCCK_None;
13127 if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
13128
13129 // The declaration must be a variable which is not declared 'const'.
13130 VarDecl *var = dyn_cast<VarDecl>(Val: DRE->getDecl());
13131 if (!var) return NCCK_None;
13132 if (var->getType().isConstQualified()) return NCCK_None;
13133 assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
13134
13135 // Decide whether the first capture was for a block or a lambda.
13136 DeclContext *DC = S.CurContext, *Prev = nullptr;
13137 // Decide whether the first capture was for a block or a lambda.
13138 while (DC) {
13139 // For init-capture, it is possible that the variable belongs to the
13140 // template pattern of the current context.
13141 if (auto *FD = dyn_cast<FunctionDecl>(Val: DC))
13142 if (var->isInitCapture() &&
13143 FD->getTemplateInstantiationPattern() == var->getDeclContext())
13144 break;
13145 if (DC == var->getDeclContext())
13146 break;
13147 Prev = DC;
13148 DC = DC->getParent();
13149 }
13150 // Unless we have an init-capture, we've gone one step too far.
13151 if (!var->isInitCapture())
13152 DC = Prev;
13153 return (isa<BlockDecl>(Val: DC) ? NCCK_Block : NCCK_Lambda);
13154}
13155
13156static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
13157 Ty = Ty.getNonReferenceType();
13158 if (IsDereference && Ty->isPointerType())
13159 Ty = Ty->getPointeeType();
13160 return !Ty.isConstQualified();
13161}
13162
13163// Update err_typecheck_assign_const and note_typecheck_assign_const
13164// when this enum is changed.
13165enum {
13166 ConstFunction,
13167 ConstVariable,
13168 ConstMember,
13169 ConstMethod,
13170 NestedConstMember,
13171 ConstUnknown, // Keep as last element
13172};
13173
13174/// Emit the "read-only variable not assignable" error and print notes to give
13175/// more information about why the variable is not assignable, such as pointing
13176/// to the declaration of a const variable, showing that a method is const, or
13177/// that the function is returning a const reference.
13178static void DiagnoseConstAssignment(Sema &S, const Expr *E,
13179 SourceLocation Loc) {
13180 SourceRange ExprRange = E->getSourceRange();
13181
13182 // Only emit one error on the first const found. All other consts will emit
13183 // a note to the error.
13184 bool DiagnosticEmitted = false;
13185
13186 // Track if the current expression is the result of a dereference, and if the
13187 // next checked expression is the result of a dereference.
13188 bool IsDereference = false;
13189 bool NextIsDereference = false;
13190
13191 // Loop to process MemberExpr chains.
13192 while (true) {
13193 IsDereference = NextIsDereference;
13194
13195 E = E->IgnoreImplicit()->IgnoreParenImpCasts();
13196 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Val: E)) {
13197 NextIsDereference = ME->isArrow();
13198 const ValueDecl *VD = ME->getMemberDecl();
13199 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Val: VD)) {
13200 // Mutable fields can be modified even if the class is const.
13201 if (Field->isMutable()) {
13202 assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
13203 break;
13204 }
13205
13206 if (!IsTypeModifiable(Ty: Field->getType(), IsDereference)) {
13207 if (!DiagnosticEmitted) {
13208 S.Diag(Loc, DiagID: diag::err_typecheck_assign_const)
13209 << ExprRange << ConstMember << false /*static*/ << Field
13210 << Field->getType();
13211 DiagnosticEmitted = true;
13212 }
13213 S.Diag(Loc: VD->getLocation(), DiagID: diag::note_typecheck_assign_const)
13214 << ConstMember << false /*static*/ << Field << Field->getType()
13215 << Field->getSourceRange();
13216 }
13217 E = ME->getBase();
13218 continue;
13219 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(Val: VD)) {
13220 if (VDecl->getType().isConstQualified()) {
13221 if (!DiagnosticEmitted) {
13222 S.Diag(Loc, DiagID: diag::err_typecheck_assign_const)
13223 << ExprRange << ConstMember << true /*static*/ << VDecl
13224 << VDecl->getType();
13225 DiagnosticEmitted = true;
13226 }
13227 S.Diag(Loc: VD->getLocation(), DiagID: diag::note_typecheck_assign_const)
13228 << ConstMember << true /*static*/ << VDecl << VDecl->getType()
13229 << VDecl->getSourceRange();
13230 }
13231 // Static fields do not inherit constness from parents.
13232 break;
13233 }
13234 break; // End MemberExpr
13235 } else if (const ArraySubscriptExpr *ASE =
13236 dyn_cast<ArraySubscriptExpr>(Val: E)) {
13237 E = ASE->getBase()->IgnoreParenImpCasts();
13238 continue;
13239 } else if (const ExtVectorElementExpr *EVE =
13240 dyn_cast<ExtVectorElementExpr>(Val: E)) {
13241 E = EVE->getBase()->IgnoreParenImpCasts();
13242 continue;
13243 }
13244 break;
13245 }
13246
13247 if (const CallExpr *CE = dyn_cast<CallExpr>(Val: E)) {
13248 // Function calls
13249 const FunctionDecl *FD = CE->getDirectCallee();
13250 if (FD && !IsTypeModifiable(Ty: FD->getReturnType(), IsDereference)) {
13251 if (!DiagnosticEmitted) {
13252 S.Diag(Loc, DiagID: diag::err_typecheck_assign_const) << ExprRange
13253 << ConstFunction << FD;
13254 DiagnosticEmitted = true;
13255 }
13256 S.Diag(Loc: FD->getReturnTypeSourceRange().getBegin(),
13257 DiagID: diag::note_typecheck_assign_const)
13258 << ConstFunction << FD << FD->getReturnType()
13259 << FD->getReturnTypeSourceRange();
13260 }
13261 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) {
13262 // Point to variable declaration.
13263 if (const ValueDecl *VD = DRE->getDecl()) {
13264 if (!IsTypeModifiable(Ty: VD->getType(), IsDereference)) {
13265 if (!DiagnosticEmitted) {
13266 S.Diag(Loc, DiagID: diag::err_typecheck_assign_const)
13267 << ExprRange << ConstVariable << VD << VD->getType();
13268 DiagnosticEmitted = true;
13269 }
13270 S.Diag(Loc: VD->getLocation(), DiagID: diag::note_typecheck_assign_const)
13271 << ConstVariable << VD << VD->getType() << VD->getSourceRange();
13272 }
13273 }
13274 } else if (isa<CXXThisExpr>(Val: E)) {
13275 if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
13276 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: DC)) {
13277 if (MD->isConst()) {
13278 if (!DiagnosticEmitted) {
13279 S.Diag(Loc, DiagID: diag::err_typecheck_assign_const) << ExprRange
13280 << ConstMethod << MD;
13281 DiagnosticEmitted = true;
13282 }
13283 S.Diag(Loc: MD->getLocation(), DiagID: diag::note_typecheck_assign_const)
13284 << ConstMethod << MD << MD->getSourceRange();
13285 }
13286 }
13287 }
13288 }
13289
13290 if (DiagnosticEmitted)
13291 return;
13292
13293 // Can't determine a more specific message, so display the generic error.
13294 S.Diag(Loc, DiagID: diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
13295}
13296
13297enum OriginalExprKind {
13298 OEK_Variable,
13299 OEK_Member,
13300 OEK_LValue
13301};
13302
13303static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
13304 const RecordType *Ty,
13305 SourceLocation Loc, SourceRange Range,
13306 OriginalExprKind OEK,
13307 bool &DiagnosticEmitted) {
13308 std::vector<const RecordType *> RecordTypeList;
13309 RecordTypeList.push_back(x: Ty);
13310 unsigned NextToCheckIndex = 0;
13311 // We walk the record hierarchy breadth-first to ensure that we print
13312 // diagnostics in field nesting order.
13313 while (RecordTypeList.size() > NextToCheckIndex) {
13314 bool IsNested = NextToCheckIndex > 0;
13315 for (const FieldDecl *Field :
13316 RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
13317 // First, check every field for constness.
13318 QualType FieldTy = Field->getType();
13319 if (FieldTy.isConstQualified()) {
13320 if (!DiagnosticEmitted) {
13321 S.Diag(Loc, DiagID: diag::err_typecheck_assign_const)
13322 << Range << NestedConstMember << OEK << VD
13323 << IsNested << Field;
13324 DiagnosticEmitted = true;
13325 }
13326 S.Diag(Loc: Field->getLocation(), DiagID: diag::note_typecheck_assign_const)
13327 << NestedConstMember << IsNested << Field
13328 << FieldTy << Field->getSourceRange();
13329 }
13330
13331 // Then we append it to the list to check next in order.
13332 FieldTy = FieldTy.getCanonicalType();
13333 if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
13334 if (!llvm::is_contained(Range&: RecordTypeList, Element: FieldRecTy))
13335 RecordTypeList.push_back(x: FieldRecTy);
13336 }
13337 }
13338 ++NextToCheckIndex;
13339 }
13340}
13341
13342/// Emit an error for the case where a record we are trying to assign to has a
13343/// const-qualified field somewhere in its hierarchy.
13344static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
13345 SourceLocation Loc) {
13346 QualType Ty = E->getType();
13347 assert(Ty->isRecordType() && "lvalue was not record?");
13348 SourceRange Range = E->getSourceRange();
13349 const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
13350 bool DiagEmitted = false;
13351
13352 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Val: E))
13353 DiagnoseRecursiveConstFields(S, VD: ME->getMemberDecl(), Ty: RTy, Loc,
13354 Range, OEK: OEK_Member, DiagnosticEmitted&: DiagEmitted);
13355 else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E))
13356 DiagnoseRecursiveConstFields(S, VD: DRE->getDecl(), Ty: RTy, Loc,
13357 Range, OEK: OEK_Variable, DiagnosticEmitted&: DiagEmitted);
13358 else
13359 DiagnoseRecursiveConstFields(S, VD: nullptr, Ty: RTy, Loc,
13360 Range, OEK: OEK_LValue, DiagnosticEmitted&: DiagEmitted);
13361 if (!DiagEmitted)
13362 DiagnoseConstAssignment(S, E, Loc);
13363}
13364
13365/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
13366/// emit an error and return true. If so, return false.
13367static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
13368 assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
13369
13370 S.CheckShadowingDeclModification(E, Loc);
13371
13372 SourceLocation OrigLoc = Loc;
13373 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(Ctx&: S.Context,
13374 Loc: &Loc);
13375 if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
13376 IsLV = Expr::MLV_InvalidMessageExpression;
13377 if (IsLV == Expr::MLV_Valid)
13378 return false;
13379
13380 unsigned DiagID = 0;
13381 bool NeedType = false;
13382 switch (IsLV) { // C99 6.5.16p2
13383 case Expr::MLV_ConstQualified:
13384 // Use a specialized diagnostic when we're assigning to an object
13385 // from an enclosing function or block.
13386 if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
13387 if (NCCK == NCCK_Block)
13388 DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
13389 else
13390 DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
13391 break;
13392 }
13393
13394 // In ARC, use some specialized diagnostics for occasions where we
13395 // infer 'const'. These are always pseudo-strong variables.
13396 if (S.getLangOpts().ObjCAutoRefCount) {
13397 DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(Val: E->IgnoreParenCasts());
13398 if (declRef && isa<VarDecl>(Val: declRef->getDecl())) {
13399 VarDecl *var = cast<VarDecl>(Val: declRef->getDecl());
13400
13401 // Use the normal diagnostic if it's pseudo-__strong but the
13402 // user actually wrote 'const'.
13403 if (var->isARCPseudoStrong() &&
13404 (!var->getTypeSourceInfo() ||
13405 !var->getTypeSourceInfo()->getType().isConstQualified())) {
13406 // There are three pseudo-strong cases:
13407 // - self
13408 ObjCMethodDecl *method = S.getCurMethodDecl();
13409 if (method && var == method->getSelfDecl()) {
13410 DiagID = method->isClassMethod()
13411 ? diag::err_typecheck_arc_assign_self_class_method
13412 : diag::err_typecheck_arc_assign_self;
13413
13414 // - Objective-C externally_retained attribute.
13415 } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
13416 isa<ParmVarDecl>(Val: var)) {
13417 DiagID = diag::err_typecheck_arc_assign_externally_retained;
13418
13419 // - fast enumeration variables
13420 } else {
13421 DiagID = diag::err_typecheck_arr_assign_enumeration;
13422 }
13423
13424 SourceRange Assign;
13425 if (Loc != OrigLoc)
13426 Assign = SourceRange(OrigLoc, OrigLoc);
13427 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13428 // We need to preserve the AST regardless, so migration tool
13429 // can do its job.
13430 return false;
13431 }
13432 }
13433 }
13434
13435 // If none of the special cases above are triggered, then this is a
13436 // simple const assignment.
13437 if (DiagID == 0) {
13438 DiagnoseConstAssignment(S, E, Loc);
13439 return true;
13440 }
13441
13442 break;
13443 case Expr::MLV_ConstAddrSpace:
13444 DiagnoseConstAssignment(S, E, Loc);
13445 return true;
13446 case Expr::MLV_ConstQualifiedField:
13447 DiagnoseRecursiveConstFields(S, E, Loc);
13448 return true;
13449 case Expr::MLV_ArrayType:
13450 case Expr::MLV_ArrayTemporary:
13451 DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
13452 NeedType = true;
13453 break;
13454 case Expr::MLV_NotObjectType:
13455 DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
13456 NeedType = true;
13457 break;
13458 case Expr::MLV_LValueCast:
13459 DiagID = diag::err_typecheck_lvalue_casts_not_supported;
13460 break;
13461 case Expr::MLV_Valid:
13462 llvm_unreachable("did not take early return for MLV_Valid");
13463 case Expr::MLV_InvalidExpression:
13464 case Expr::MLV_MemberFunction:
13465 case Expr::MLV_ClassTemporary:
13466 DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
13467 break;
13468 case Expr::MLV_IncompleteType:
13469 case Expr::MLV_IncompleteVoidType:
13470 return S.RequireCompleteType(Loc, T: E->getType(),
13471 DiagID: diag::err_typecheck_incomplete_type_not_modifiable_lvalue, Args: E);
13472 case Expr::MLV_DuplicateVectorComponents:
13473 DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
13474 break;
13475 case Expr::MLV_NoSetterProperty:
13476 llvm_unreachable("readonly properties should be processed differently");
13477 case Expr::MLV_InvalidMessageExpression:
13478 DiagID = diag::err_readonly_message_assignment;
13479 break;
13480 case Expr::MLV_SubObjCPropertySetting:
13481 DiagID = diag::err_no_subobject_property_setting;
13482 break;
13483 }
13484
13485 SourceRange Assign;
13486 if (Loc != OrigLoc)
13487 Assign = SourceRange(OrigLoc, OrigLoc);
13488 if (NeedType)
13489 S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
13490 else
13491 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
13492 return true;
13493}
13494
13495static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
13496 SourceLocation Loc,
13497 Sema &Sema) {
13498 if (Sema.inTemplateInstantiation())
13499 return;
13500 if (Sema.isUnevaluatedContext())
13501 return;
13502 if (Loc.isInvalid() || Loc.isMacroID())
13503 return;
13504 if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
13505 return;
13506
13507 // C / C++ fields
13508 MemberExpr *ML = dyn_cast<MemberExpr>(Val: LHSExpr);
13509 MemberExpr *MR = dyn_cast<MemberExpr>(Val: RHSExpr);
13510 if (ML && MR) {
13511 if (!(isa<CXXThisExpr>(Val: ML->getBase()) && isa<CXXThisExpr>(Val: MR->getBase())))
13512 return;
13513 const ValueDecl *LHSDecl =
13514 cast<ValueDecl>(Val: ML->getMemberDecl()->getCanonicalDecl());
13515 const ValueDecl *RHSDecl =
13516 cast<ValueDecl>(Val: MR->getMemberDecl()->getCanonicalDecl());
13517 if (LHSDecl != RHSDecl)
13518 return;
13519 if (LHSDecl->getType().isVolatileQualified())
13520 return;
13521 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
13522 if (RefTy->getPointeeType().isVolatileQualified())
13523 return;
13524
13525 Sema.Diag(Loc, DiagID: diag::warn_identity_field_assign) << 0;
13526 }
13527
13528 // Objective-C instance variables
13529 ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(Val: LHSExpr);
13530 ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(Val: RHSExpr);
13531 if (OL && OR && OL->getDecl() == OR->getDecl()) {
13532 DeclRefExpr *RL = dyn_cast<DeclRefExpr>(Val: OL->getBase()->IgnoreImpCasts());
13533 DeclRefExpr *RR = dyn_cast<DeclRefExpr>(Val: OR->getBase()->IgnoreImpCasts());
13534 if (RL && RR && RL->getDecl() == RR->getDecl())
13535 Sema.Diag(Loc, DiagID: diag::warn_identity_field_assign) << 1;
13536 }
13537}
13538
13539// C99 6.5.16.1
13540QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
13541 SourceLocation Loc,
13542 QualType CompoundType,
13543 BinaryOperatorKind Opc) {
13544 assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
13545
13546 // Verify that LHS is a modifiable lvalue, and emit error if not.
13547 if (CheckForModifiableLvalue(E: LHSExpr, Loc, S&: *this))
13548 return QualType();
13549
13550 QualType LHSType = LHSExpr->getType();
13551 QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
13552 CompoundType;
13553 // OpenCL v1.2 s6.1.1.1 p2:
13554 // The half data type can only be used to declare a pointer to a buffer that
13555 // contains half values
13556 if (getLangOpts().OpenCL &&
13557 !getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp16", LO: getLangOpts()) &&
13558 LHSType->isHalfType()) {
13559 Diag(Loc, DiagID: diag::err_opencl_half_load_store) << 1
13560 << LHSType.getUnqualifiedType();
13561 return QualType();
13562 }
13563
13564 // WebAssembly tables can't be used on RHS of an assignment expression.
13565 if (RHSType->isWebAssemblyTableType()) {
13566 Diag(Loc, DiagID: diag::err_wasm_table_art) << 0;
13567 return QualType();
13568 }
13569
13570 AssignConvertType ConvTy;
13571 if (CompoundType.isNull()) {
13572 Expr *RHSCheck = RHS.get();
13573
13574 CheckIdentityFieldAssignment(LHSExpr, RHSExpr: RHSCheck, Loc, Sema&: *this);
13575
13576 QualType LHSTy(LHSType);
13577 ConvTy = CheckSingleAssignmentConstraints(LHSType: LHSTy, CallerRHS&: RHS);
13578 if (RHS.isInvalid())
13579 return QualType();
13580 // Special case of NSObject attributes on c-style pointer types.
13581 if (ConvTy == IncompatiblePointer &&
13582 ((Context.isObjCNSObjectType(Ty: LHSType) &&
13583 RHSType->isObjCObjectPointerType()) ||
13584 (Context.isObjCNSObjectType(Ty: RHSType) &&
13585 LHSType->isObjCObjectPointerType())))
13586 ConvTy = Compatible;
13587
13588 if (ConvTy == Compatible &&
13589 LHSType->isObjCObjectType())
13590 Diag(Loc, DiagID: diag::err_objc_object_assignment)
13591 << LHSType;
13592
13593 // If the RHS is a unary plus or minus, check to see if they = and + are
13594 // right next to each other. If so, the user may have typo'd "x =+ 4"
13595 // instead of "x += 4".
13596 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: RHSCheck))
13597 RHSCheck = ICE->getSubExpr();
13598 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: RHSCheck)) {
13599 if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
13600 Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
13601 // Only if the two operators are exactly adjacent.
13602 Loc.getLocWithOffset(Offset: 1) == UO->getOperatorLoc() &&
13603 // And there is a space or other character before the subexpr of the
13604 // unary +/-. We don't want to warn on "x=-1".
13605 Loc.getLocWithOffset(Offset: 2) != UO->getSubExpr()->getBeginLoc() &&
13606 UO->getSubExpr()->getBeginLoc().isFileID()) {
13607 Diag(Loc, DiagID: diag::warn_not_compound_assign)
13608 << (UO->getOpcode() == UO_Plus ? "+" : "-")
13609 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
13610 }
13611 }
13612
13613 if (ConvTy == Compatible) {
13614 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
13615 // Warn about retain cycles where a block captures the LHS, but
13616 // not if the LHS is a simple variable into which the block is
13617 // being stored...unless that variable can be captured by reference!
13618 const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
13619 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: InnerLHS);
13620 if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
13621 ObjC().checkRetainCycles(receiver: LHSExpr, argument: RHS.get());
13622 }
13623
13624 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
13625 LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
13626 // It is safe to assign a weak reference into a strong variable.
13627 // Although this code can still have problems:
13628 // id x = self.weakProp;
13629 // id y = self.weakProp;
13630 // we do not warn to warn spuriously when 'x' and 'y' are on separate
13631 // paths through the function. This should be revisited if
13632 // -Wrepeated-use-of-weak is made flow-sensitive.
13633 // For ObjCWeak only, we do not warn if the assign is to a non-weak
13634 // variable, which will be valid for the current autorelease scope.
13635 if (!Diags.isIgnored(DiagID: diag::warn_arc_repeated_use_of_weak,
13636 Loc: RHS.get()->getBeginLoc()))
13637 getCurFunction()->markSafeWeakUse(E: RHS.get());
13638
13639 } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
13640 checkUnsafeExprAssigns(Loc, LHS: LHSExpr, RHS: RHS.get());
13641 }
13642 }
13643 } else {
13644 // Compound assignment "x += y"
13645 ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
13646 }
13647
13648 if (DiagnoseAssignmentResult(ConvTy, Loc, DstType: LHSType, SrcType: RHSType,
13649 SrcExpr: RHS.get(), Action: AA_Assigning))
13650 return QualType();
13651
13652 CheckForNullPointerDereference(S&: *this, E: LHSExpr);
13653
13654 AssignedEntity AE{.LHS: LHSExpr};
13655 checkExprLifetime(SemaRef&: *this, Entity: AE, Init: RHS.get());
13656
13657 if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
13658 if (CompoundType.isNull()) {
13659 // C++2a [expr.ass]p5:
13660 // A simple-assignment whose left operand is of a volatile-qualified
13661 // type is deprecated unless the assignment is either a discarded-value
13662 // expression or an unevaluated operand
13663 ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(Elt: LHSExpr);
13664 }
13665 }
13666
13667 // C11 6.5.16p3: The type of an assignment expression is the type of the
13668 // left operand would have after lvalue conversion.
13669 // C11 6.3.2.1p2: ...this is called lvalue conversion. If the lvalue has
13670 // qualified type, the value has the unqualified version of the type of the
13671 // lvalue; additionally, if the lvalue has atomic type, the value has the
13672 // non-atomic version of the type of the lvalue.
13673 // C++ 5.17p1: the type of the assignment expression is that of its left
13674 // operand.
13675 return getLangOpts().CPlusPlus ? LHSType : LHSType.getAtomicUnqualifiedType();
13676}
13677
13678// Scenarios to ignore if expression E is:
13679// 1. an explicit cast expression into void
13680// 2. a function call expression that returns void
13681static bool IgnoreCommaOperand(const Expr *E, const ASTContext &Context) {
13682 E = E->IgnoreParens();
13683
13684 if (const CastExpr *CE = dyn_cast<CastExpr>(Val: E)) {
13685 if (CE->getCastKind() == CK_ToVoid) {
13686 return true;
13687 }
13688
13689 // static_cast<void> on a dependent type will not show up as CK_ToVoid.
13690 if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
13691 CE->getSubExpr()->getType()->isDependentType()) {
13692 return true;
13693 }
13694 }
13695
13696 if (const auto *CE = dyn_cast<CallExpr>(Val: E))
13697 return CE->getCallReturnType(Ctx: Context)->isVoidType();
13698 return false;
13699}
13700
13701void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
13702 // No warnings in macros
13703 if (Loc.isMacroID())
13704 return;
13705
13706 // Don't warn in template instantiations.
13707 if (inTemplateInstantiation())
13708 return;
13709
13710 // Scope isn't fine-grained enough to explicitly list the specific cases, so
13711 // instead, skip more than needed, then call back into here with the
13712 // CommaVisitor in SemaStmt.cpp.
13713 // The listed locations are the initialization and increment portions
13714 // of a for loop. The additional checks are on the condition of
13715 // if statements, do/while loops, and for loops.
13716 // Differences in scope flags for C89 mode requires the extra logic.
13717 const unsigned ForIncrementFlags =
13718 getLangOpts().C99 || getLangOpts().CPlusPlus
13719 ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
13720 : Scope::ContinueScope | Scope::BreakScope;
13721 const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
13722 const unsigned ScopeFlags = getCurScope()->getFlags();
13723 if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
13724 (ScopeFlags & ForInitFlags) == ForInitFlags)
13725 return;
13726
13727 // If there are multiple comma operators used together, get the RHS of the
13728 // of the comma operator as the LHS.
13729 while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: LHS)) {
13730 if (BO->getOpcode() != BO_Comma)
13731 break;
13732 LHS = BO->getRHS();
13733 }
13734
13735 // Only allow some expressions on LHS to not warn.
13736 if (IgnoreCommaOperand(E: LHS, Context))
13737 return;
13738
13739 Diag(Loc, DiagID: diag::warn_comma_operator);
13740 Diag(Loc: LHS->getBeginLoc(), DiagID: diag::note_cast_to_void)
13741 << LHS->getSourceRange()
13742 << FixItHint::CreateInsertion(InsertionLoc: LHS->getBeginLoc(),
13743 Code: LangOpts.CPlusPlus ? "static_cast<void>("
13744 : "(void)(")
13745 << FixItHint::CreateInsertion(InsertionLoc: PP.getLocForEndOfToken(Loc: LHS->getEndLoc()),
13746 Code: ")");
13747}
13748
13749// C99 6.5.17
13750static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
13751 SourceLocation Loc) {
13752 LHS = S.CheckPlaceholderExpr(E: LHS.get());
13753 RHS = S.CheckPlaceholderExpr(E: RHS.get());
13754 if (LHS.isInvalid() || RHS.isInvalid())
13755 return QualType();
13756
13757 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
13758 // operands, but not unary promotions.
13759 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
13760
13761 // So we treat the LHS as a ignored value, and in C++ we allow the
13762 // containing site to determine what should be done with the RHS.
13763 LHS = S.IgnoredValueConversions(E: LHS.get());
13764 if (LHS.isInvalid())
13765 return QualType();
13766
13767 S.DiagnoseUnusedExprResult(S: LHS.get(), DiagID: diag::warn_unused_comma_left_operand);
13768
13769 if (!S.getLangOpts().CPlusPlus) {
13770 RHS = S.DefaultFunctionArrayLvalueConversion(E: RHS.get());
13771 if (RHS.isInvalid())
13772 return QualType();
13773 if (!RHS.get()->getType()->isVoidType())
13774 S.RequireCompleteType(Loc, T: RHS.get()->getType(),
13775 DiagID: diag::err_incomplete_type);
13776 }
13777
13778 if (!S.getDiagnostics().isIgnored(DiagID: diag::warn_comma_operator, Loc))
13779 S.DiagnoseCommaOperator(LHS: LHS.get(), Loc);
13780
13781 return RHS.get()->getType();
13782}
13783
13784/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
13785/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
13786static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
13787 ExprValueKind &VK,
13788 ExprObjectKind &OK,
13789 SourceLocation OpLoc, bool IsInc,
13790 bool IsPrefix) {
13791 QualType ResType = Op->getType();
13792 // Atomic types can be used for increment / decrement where the non-atomic
13793 // versions can, so ignore the _Atomic() specifier for the purpose of
13794 // checking.
13795 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
13796 ResType = ResAtomicType->getValueType();
13797
13798 assert(!ResType.isNull() && "no type for increment/decrement expression");
13799
13800 if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
13801 // Decrement of bool is not allowed.
13802 if (!IsInc) {
13803 S.Diag(Loc: OpLoc, DiagID: diag::err_decrement_bool) << Op->getSourceRange();
13804 return QualType();
13805 }
13806 // Increment of bool sets it to true, but is deprecated.
13807 S.Diag(Loc: OpLoc, DiagID: S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
13808 : diag::warn_increment_bool)
13809 << Op->getSourceRange();
13810 } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
13811 // Error on enum increments and decrements in C++ mode
13812 S.Diag(Loc: OpLoc, DiagID: diag::err_increment_decrement_enum) << IsInc << ResType;
13813 return QualType();
13814 } else if (ResType->isRealType()) {
13815 // OK!
13816 } else if (ResType->isPointerType()) {
13817 // C99 6.5.2.4p2, 6.5.6p2
13818 if (!checkArithmeticOpPointerOperand(S, Loc: OpLoc, Operand: Op))
13819 return QualType();
13820 } else if (ResType->isObjCObjectPointerType()) {
13821 // On modern runtimes, ObjC pointer arithmetic is forbidden.
13822 // Otherwise, we just need a complete type.
13823 if (checkArithmeticIncompletePointerType(S, Loc: OpLoc, Operand: Op) ||
13824 checkArithmeticOnObjCPointer(S, opLoc: OpLoc, op: Op))
13825 return QualType();
13826 } else if (ResType->isAnyComplexType()) {
13827 // C99 does not support ++/-- on complex types, we allow as an extension.
13828 S.Diag(Loc: OpLoc, DiagID: S.getLangOpts().C2y ? diag::warn_c2y_compat_increment_complex
13829 : diag::ext_c2y_increment_complex)
13830 << IsInc << Op->getSourceRange();
13831 } else if (ResType->isPlaceholderType()) {
13832 ExprResult PR = S.CheckPlaceholderExpr(E: Op);
13833 if (PR.isInvalid()) return QualType();
13834 return CheckIncrementDecrementOperand(S, Op: PR.get(), VK, OK, OpLoc,
13835 IsInc, IsPrefix);
13836 } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
13837 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
13838 } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
13839 (ResType->castAs<VectorType>()->getVectorKind() !=
13840 VectorKind::AltiVecBool)) {
13841 // The z vector extensions allow ++ and -- for non-bool vectors.
13842 } else if (S.getLangOpts().OpenCL && ResType->isVectorType() &&
13843 ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
13844 // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
13845 } else {
13846 S.Diag(Loc: OpLoc, DiagID: diag::err_typecheck_illegal_increment_decrement)
13847 << ResType << int(IsInc) << Op->getSourceRange();
13848 return QualType();
13849 }
13850 // At this point, we know we have a real, complex or pointer type.
13851 // Now make sure the operand is a modifiable lvalue.
13852 if (CheckForModifiableLvalue(E: Op, Loc: OpLoc, S))
13853 return QualType();
13854 if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
13855 // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
13856 // An operand with volatile-qualified type is deprecated
13857 S.Diag(Loc: OpLoc, DiagID: diag::warn_deprecated_increment_decrement_volatile)
13858 << IsInc << ResType;
13859 }
13860 // In C++, a prefix increment is the same type as the operand. Otherwise
13861 // (in C or with postfix), the increment is the unqualified type of the
13862 // operand.
13863 if (IsPrefix && S.getLangOpts().CPlusPlus) {
13864 VK = VK_LValue;
13865 OK = Op->getObjectKind();
13866 return ResType;
13867 } else {
13868 VK = VK_PRValue;
13869 return ResType.getUnqualifiedType();
13870 }
13871}
13872
13873/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
13874/// This routine allows us to typecheck complex/recursive expressions
13875/// where the declaration is needed for type checking. We only need to
13876/// handle cases when the expression references a function designator
13877/// or is an lvalue. Here are some examples:
13878/// - &(x) => x
13879/// - &*****f => f for f a function designator.
13880/// - &s.xx => s
13881/// - &s.zz[1].yy -> s, if zz is an array
13882/// - *(x + 1) -> x, if x is an array
13883/// - &"123"[2] -> 0
13884/// - & __real__ x -> x
13885///
13886/// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
13887/// members.
13888static ValueDecl *getPrimaryDecl(Expr *E) {
13889 switch (E->getStmtClass()) {
13890 case Stmt::DeclRefExprClass:
13891 return cast<DeclRefExpr>(Val: E)->getDecl();
13892 case Stmt::MemberExprClass:
13893 // If this is an arrow operator, the address is an offset from
13894 // the base's value, so the object the base refers to is
13895 // irrelevant.
13896 if (cast<MemberExpr>(Val: E)->isArrow())
13897 return nullptr;
13898 // Otherwise, the expression refers to a part of the base
13899 return getPrimaryDecl(E: cast<MemberExpr>(Val: E)->getBase());
13900 case Stmt::ArraySubscriptExprClass: {
13901 // FIXME: This code shouldn't be necessary! We should catch the implicit
13902 // promotion of register arrays earlier.
13903 Expr* Base = cast<ArraySubscriptExpr>(Val: E)->getBase();
13904 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Val: Base)) {
13905 if (ICE->getSubExpr()->getType()->isArrayType())
13906 return getPrimaryDecl(E: ICE->getSubExpr());
13907 }
13908 return nullptr;
13909 }
13910 case Stmt::UnaryOperatorClass: {
13911 UnaryOperator *UO = cast<UnaryOperator>(Val: E);
13912
13913 switch(UO->getOpcode()) {
13914 case UO_Real:
13915 case UO_Imag:
13916 case UO_Extension:
13917 return getPrimaryDecl(E: UO->getSubExpr());
13918 default:
13919 return nullptr;
13920 }
13921 }
13922 case Stmt::ParenExprClass:
13923 return getPrimaryDecl(E: cast<ParenExpr>(Val: E)->getSubExpr());
13924 case Stmt::ImplicitCastExprClass:
13925 // If the result of an implicit cast is an l-value, we care about
13926 // the sub-expression; otherwise, the result here doesn't matter.
13927 return getPrimaryDecl(E: cast<ImplicitCastExpr>(Val: E)->getSubExpr());
13928 case Stmt::CXXUuidofExprClass:
13929 return cast<CXXUuidofExpr>(Val: E)->getGuidDecl();
13930 default:
13931 return nullptr;
13932 }
13933}
13934
13935namespace {
13936enum {
13937 AO_Bit_Field = 0,
13938 AO_Vector_Element = 1,
13939 AO_Property_Expansion = 2,
13940 AO_Register_Variable = 3,
13941 AO_Matrix_Element = 4,
13942 AO_No_Error = 5
13943};
13944}
13945/// Diagnose invalid operand for address of operations.
13946///
13947/// \param Type The type of operand which cannot have its address taken.
13948static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
13949 Expr *E, unsigned Type) {
13950 S.Diag(Loc, DiagID: diag::err_typecheck_address_of) << Type << E->getSourceRange();
13951}
13952
13953bool Sema::CheckUseOfCXXMethodAsAddressOfOperand(SourceLocation OpLoc,
13954 const Expr *Op,
13955 const CXXMethodDecl *MD) {
13956 const auto *DRE = cast<DeclRefExpr>(Val: Op->IgnoreParens());
13957
13958 if (Op != DRE)
13959 return Diag(Loc: OpLoc, DiagID: diag::err_parens_pointer_member_function)
13960 << Op->getSourceRange();
13961
13962 // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
13963 if (isa<CXXDestructorDecl>(Val: MD))
13964 return Diag(Loc: OpLoc, DiagID: diag::err_typecheck_addrof_dtor)
13965 << DRE->getSourceRange();
13966
13967 if (DRE->getQualifier())
13968 return false;
13969
13970 if (MD->getParent()->getName().empty())
13971 return Diag(Loc: OpLoc, DiagID: diag::err_unqualified_pointer_member_function)
13972 << DRE->getSourceRange();
13973
13974 SmallString<32> Str;
13975 StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Out&: Str);
13976 return Diag(Loc: OpLoc, DiagID: diag::err_unqualified_pointer_member_function)
13977 << DRE->getSourceRange()
13978 << FixItHint::CreateInsertion(InsertionLoc: DRE->getSourceRange().getBegin(), Code: Qual);
13979}
13980
13981QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
13982 if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
13983 if (PTy->getKind() == BuiltinType::Overload) {
13984 Expr *E = OrigOp.get()->IgnoreParens();
13985 if (!isa<OverloadExpr>(Val: E)) {
13986 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
13987 Diag(Loc: OpLoc, DiagID: diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
13988 << OrigOp.get()->getSourceRange();
13989 return QualType();
13990 }
13991
13992 OverloadExpr *Ovl = cast<OverloadExpr>(Val: E);
13993 if (isa<UnresolvedMemberExpr>(Val: Ovl))
13994 if (!ResolveSingleFunctionTemplateSpecialization(ovl: Ovl)) {
13995 Diag(Loc: OpLoc, DiagID: diag::err_invalid_form_pointer_member_function)
13996 << OrigOp.get()->getSourceRange();
13997 return QualType();
13998 }
13999
14000 return Context.OverloadTy;
14001 }
14002
14003 if (PTy->getKind() == BuiltinType::UnknownAny)
14004 return Context.UnknownAnyTy;
14005
14006 if (PTy->getKind() == BuiltinType::BoundMember) {
14007 Diag(Loc: OpLoc, DiagID: diag::err_invalid_form_pointer_member_function)
14008 << OrigOp.get()->getSourceRange();
14009 return QualType();
14010 }
14011
14012 OrigOp = CheckPlaceholderExpr(E: OrigOp.get());
14013 if (OrigOp.isInvalid()) return QualType();
14014 }
14015
14016 if (OrigOp.get()->isTypeDependent())
14017 return Context.DependentTy;
14018
14019 assert(!OrigOp.get()->hasPlaceholderType());
14020
14021 // Make sure to ignore parentheses in subsequent checks
14022 Expr *op = OrigOp.get()->IgnoreParens();
14023
14024 // In OpenCL captures for blocks called as lambda functions
14025 // are located in the private address space. Blocks used in
14026 // enqueue_kernel can be located in a different address space
14027 // depending on a vendor implementation. Thus preventing
14028 // taking an address of the capture to avoid invalid AS casts.
14029 if (LangOpts.OpenCL) {
14030 auto* VarRef = dyn_cast<DeclRefExpr>(Val: op);
14031 if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
14032 Diag(Loc: op->getExprLoc(), DiagID: diag::err_opencl_taking_address_capture);
14033 return QualType();
14034 }
14035 }
14036
14037 if (getLangOpts().C99) {
14038 // Implement C99-only parts of addressof rules.
14039 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(Val: op)) {
14040 if (uOp->getOpcode() == UO_Deref)
14041 // Per C99 6.5.3.2, the address of a deref always returns a valid result
14042 // (assuming the deref expression is valid).
14043 return uOp->getSubExpr()->getType();
14044 }
14045 // Technically, there should be a check for array subscript
14046 // expressions here, but the result of one is always an lvalue anyway.
14047 }
14048 ValueDecl *dcl = getPrimaryDecl(E: op);
14049
14050 if (auto *FD = dyn_cast_or_null<FunctionDecl>(Val: dcl))
14051 if (!checkAddressOfFunctionIsAvailable(Function: FD, /*Complain=*/true,
14052 Loc: op->getBeginLoc()))
14053 return QualType();
14054
14055 Expr::LValueClassification lval = op->ClassifyLValue(Ctx&: Context);
14056 unsigned AddressOfError = AO_No_Error;
14057
14058 if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
14059 bool sfinae = (bool)isSFINAEContext();
14060 Diag(Loc: OpLoc, DiagID: isSFINAEContext() ? diag::err_typecheck_addrof_temporary
14061 : diag::ext_typecheck_addrof_temporary)
14062 << op->getType() << op->getSourceRange();
14063 if (sfinae)
14064 return QualType();
14065 // Materialize the temporary as an lvalue so that we can take its address.
14066 OrigOp = op =
14067 CreateMaterializeTemporaryExpr(T: op->getType(), Temporary: OrigOp.get(), BoundToLvalueReference: true);
14068 } else if (isa<ObjCSelectorExpr>(Val: op)) {
14069 return Context.getPointerType(T: op->getType());
14070 } else if (lval == Expr::LV_MemberFunction) {
14071 // If it's an instance method, make a member pointer.
14072 // The expression must have exactly the form &A::foo.
14073
14074 // If the underlying expression isn't a decl ref, give up.
14075 if (!isa<DeclRefExpr>(Val: op)) {
14076 Diag(Loc: OpLoc, DiagID: diag::err_invalid_form_pointer_member_function)
14077 << OrigOp.get()->getSourceRange();
14078 return QualType();
14079 }
14080 DeclRefExpr *DRE = cast<DeclRefExpr>(Val: op);
14081 CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: DRE->getDecl());
14082
14083 CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, Op: OrigOp.get(), MD);
14084
14085 QualType MPTy = Context.getMemberPointerType(
14086 T: op->getType(), Cls: Context.getTypeDeclType(Decl: MD->getParent()).getTypePtr());
14087
14088 if (getLangOpts().PointerAuthCalls && MD->isVirtual() &&
14089 !isUnevaluatedContext() && !MPTy->isDependentType()) {
14090 // When pointer authentication is enabled, argument and return types of
14091 // vitual member functions must be complete. This is because vitrual
14092 // member function pointers are implemented using virtual dispatch
14093 // thunks and the thunks cannot be emitted if the argument or return
14094 // types are incomplete.
14095 auto ReturnOrParamTypeIsIncomplete = [&](QualType T,
14096 SourceLocation DeclRefLoc,
14097 SourceLocation RetArgTypeLoc) {
14098 if (RequireCompleteType(Loc: DeclRefLoc, T, DiagID: diag::err_incomplete_type)) {
14099 Diag(Loc: DeclRefLoc,
14100 DiagID: diag::note_ptrauth_virtual_function_pointer_incomplete_arg_ret);
14101 Diag(Loc: RetArgTypeLoc,
14102 DiagID: diag::note_ptrauth_virtual_function_incomplete_arg_ret_type)
14103 << T;
14104 return true;
14105 }
14106 return false;
14107 };
14108 QualType RetTy = MD->getReturnType();
14109 bool IsIncomplete =
14110 !RetTy->isVoidType() &&
14111 ReturnOrParamTypeIsIncomplete(
14112 RetTy, OpLoc, MD->getReturnTypeSourceRange().getBegin());
14113 for (auto *PVD : MD->parameters())
14114 IsIncomplete |= ReturnOrParamTypeIsIncomplete(PVD->getType(), OpLoc,
14115 PVD->getBeginLoc());
14116 if (IsIncomplete)
14117 return QualType();
14118 }
14119
14120 // Under the MS ABI, lock down the inheritance model now.
14121 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14122 (void)isCompleteType(Loc: OpLoc, T: MPTy);
14123 return MPTy;
14124 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
14125 // C99 6.5.3.2p1
14126 // The operand must be either an l-value or a function designator
14127 if (!op->getType()->isFunctionType()) {
14128 // Use a special diagnostic for loads from property references.
14129 if (isa<PseudoObjectExpr>(Val: op)) {
14130 AddressOfError = AO_Property_Expansion;
14131 } else {
14132 Diag(Loc: OpLoc, DiagID: diag::err_typecheck_invalid_lvalue_addrof)
14133 << op->getType() << op->getSourceRange();
14134 return QualType();
14135 }
14136 } else if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: op)) {
14137 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Val: DRE->getDecl()))
14138 CheckUseOfCXXMethodAsAddressOfOperand(OpLoc, Op: OrigOp.get(), MD);
14139 }
14140
14141 } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
14142 // The operand cannot be a bit-field
14143 AddressOfError = AO_Bit_Field;
14144 } else if (op->getObjectKind() == OK_VectorComponent) {
14145 // The operand cannot be an element of a vector
14146 AddressOfError = AO_Vector_Element;
14147 } else if (op->getObjectKind() == OK_MatrixComponent) {
14148 // The operand cannot be an element of a matrix.
14149 AddressOfError = AO_Matrix_Element;
14150 } else if (dcl) { // C99 6.5.3.2p1
14151 // We have an lvalue with a decl. Make sure the decl is not declared
14152 // with the register storage-class specifier.
14153 if (const VarDecl *vd = dyn_cast<VarDecl>(Val: dcl)) {
14154 // in C++ it is not error to take address of a register
14155 // variable (c++03 7.1.1P3)
14156 if (vd->getStorageClass() == SC_Register &&
14157 !getLangOpts().CPlusPlus) {
14158 AddressOfError = AO_Register_Variable;
14159 }
14160 } else if (isa<MSPropertyDecl>(Val: dcl)) {
14161 AddressOfError = AO_Property_Expansion;
14162 } else if (isa<FunctionTemplateDecl>(Val: dcl)) {
14163 return Context.OverloadTy;
14164 } else if (isa<FieldDecl>(Val: dcl) || isa<IndirectFieldDecl>(Val: dcl)) {
14165 // Okay: we can take the address of a field.
14166 // Could be a pointer to member, though, if there is an explicit
14167 // scope qualifier for the class.
14168
14169 // [C++26] [expr.prim.id.general]
14170 // If an id-expression E denotes a non-static non-type member
14171 // of some class C [...] and if E is a qualified-id, E is
14172 // not the un-parenthesized operand of the unary & operator [...]
14173 // the id-expression is transformed into a class member access expression.
14174 if (isa<DeclRefExpr>(Val: op) && cast<DeclRefExpr>(Val: op)->getQualifier() &&
14175 !isa<ParenExpr>(Val: OrigOp.get())) {
14176 DeclContext *Ctx = dcl->getDeclContext();
14177 if (Ctx && Ctx->isRecord()) {
14178 if (dcl->getType()->isReferenceType()) {
14179 Diag(Loc: OpLoc,
14180 DiagID: diag::err_cannot_form_pointer_to_member_of_reference_type)
14181 << dcl->getDeclName() << dcl->getType();
14182 return QualType();
14183 }
14184
14185 while (cast<RecordDecl>(Val: Ctx)->isAnonymousStructOrUnion())
14186 Ctx = Ctx->getParent();
14187
14188 QualType MPTy = Context.getMemberPointerType(
14189 T: op->getType(),
14190 Cls: Context.getTypeDeclType(Decl: cast<RecordDecl>(Val: Ctx)).getTypePtr());
14191 // Under the MS ABI, lock down the inheritance model now.
14192 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
14193 (void)isCompleteType(Loc: OpLoc, T: MPTy);
14194 return MPTy;
14195 }
14196 }
14197 } else if (!isa<FunctionDecl, NonTypeTemplateParmDecl, BindingDecl,
14198 MSGuidDecl, UnnamedGlobalConstantDecl>(Val: dcl))
14199 llvm_unreachable("Unknown/unexpected decl type");
14200 }
14201
14202 if (AddressOfError != AO_No_Error) {
14203 diagnoseAddressOfInvalidType(S&: *this, Loc: OpLoc, E: op, Type: AddressOfError);
14204 return QualType();
14205 }
14206
14207 if (lval == Expr::LV_IncompleteVoidType) {
14208 // Taking the address of a void variable is technically illegal, but we
14209 // allow it in cases which are otherwise valid.
14210 // Example: "extern void x; void* y = &x;".
14211 Diag(Loc: OpLoc, DiagID: diag::ext_typecheck_addrof_void) << op->getSourceRange();
14212 }
14213
14214 // If the operand has type "type", the result has type "pointer to type".
14215 if (op->getType()->isObjCObjectType())
14216 return Context.getObjCObjectPointerType(OIT: op->getType());
14217
14218 // Cannot take the address of WebAssembly references or tables.
14219 if (Context.getTargetInfo().getTriple().isWasm()) {
14220 QualType OpTy = op->getType();
14221 if (OpTy.isWebAssemblyReferenceType()) {
14222 Diag(Loc: OpLoc, DiagID: diag::err_wasm_ca_reference)
14223 << 1 << OrigOp.get()->getSourceRange();
14224 return QualType();
14225 }
14226 if (OpTy->isWebAssemblyTableType()) {
14227 Diag(Loc: OpLoc, DiagID: diag::err_wasm_table_pr)
14228 << 1 << OrigOp.get()->getSourceRange();
14229 return QualType();
14230 }
14231 }
14232
14233 CheckAddressOfPackedMember(rhs: op);
14234
14235 return Context.getPointerType(T: op->getType());
14236}
14237
14238static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
14239 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Exp);
14240 if (!DRE)
14241 return;
14242 const Decl *D = DRE->getDecl();
14243 if (!D)
14244 return;
14245 const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Val: D);
14246 if (!Param)
14247 return;
14248 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Val: Param->getDeclContext()))
14249 if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
14250 return;
14251 if (FunctionScopeInfo *FD = S.getCurFunction())
14252 FD->ModifiedNonNullParams.insert(Ptr: Param);
14253}
14254
14255/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
14256static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
14257 SourceLocation OpLoc,
14258 bool IsAfterAmp = false) {
14259 ExprResult ConvResult = S.UsualUnaryConversions(E: Op);
14260 if (ConvResult.isInvalid())
14261 return QualType();
14262 Op = ConvResult.get();
14263 QualType OpTy = Op->getType();
14264 QualType Result;
14265
14266 if (isa<CXXReinterpretCastExpr>(Val: Op)) {
14267 QualType OpOrigType = Op->IgnoreParenCasts()->getType();
14268 S.CheckCompatibleReinterpretCast(SrcType: OpOrigType, DestType: OpTy, /*IsDereference*/true,
14269 Range: Op->getSourceRange());
14270 }
14271
14272 if (const PointerType *PT = OpTy->getAs<PointerType>())
14273 {
14274 Result = PT->getPointeeType();
14275 }
14276 else if (const ObjCObjectPointerType *OPT =
14277 OpTy->getAs<ObjCObjectPointerType>())
14278 Result = OPT->getPointeeType();
14279 else {
14280 ExprResult PR = S.CheckPlaceholderExpr(E: Op);
14281 if (PR.isInvalid()) return QualType();
14282 if (PR.get() != Op)
14283 return CheckIndirectionOperand(S, Op: PR.get(), VK, OpLoc);
14284 }
14285
14286 if (Result.isNull()) {
14287 S.Diag(Loc: OpLoc, DiagID: diag::err_typecheck_indirection_requires_pointer)
14288 << OpTy << Op->getSourceRange();
14289 return QualType();
14290 }
14291
14292 if (Result->isVoidType()) {
14293 // C++ [expr.unary.op]p1:
14294 // [...] the expression to which [the unary * operator] is applied shall
14295 // be a pointer to an object type, or a pointer to a function type
14296 LangOptions LO = S.getLangOpts();
14297 if (LO.CPlusPlus)
14298 S.Diag(Loc: OpLoc, DiagID: diag::err_typecheck_indirection_through_void_pointer_cpp)
14299 << OpTy << Op->getSourceRange();
14300 else if (!(LO.C99 && IsAfterAmp) && !S.isUnevaluatedContext())
14301 S.Diag(Loc: OpLoc, DiagID: diag::ext_typecheck_indirection_through_void_pointer)
14302 << OpTy << Op->getSourceRange();
14303 }
14304
14305 // Dereferences are usually l-values...
14306 VK = VK_LValue;
14307
14308 // ...except that certain expressions are never l-values in C.
14309 if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
14310 VK = VK_PRValue;
14311
14312 return Result;
14313}
14314
14315BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
14316 BinaryOperatorKind Opc;
14317 switch (Kind) {
14318 default: llvm_unreachable("Unknown binop!");
14319 case tok::periodstar: Opc = BO_PtrMemD; break;
14320 case tok::arrowstar: Opc = BO_PtrMemI; break;
14321 case tok::star: Opc = BO_Mul; break;
14322 case tok::slash: Opc = BO_Div; break;
14323 case tok::percent: Opc = BO_Rem; break;
14324 case tok::plus: Opc = BO_Add; break;
14325 case tok::minus: Opc = BO_Sub; break;
14326 case tok::lessless: Opc = BO_Shl; break;
14327 case tok::greatergreater: Opc = BO_Shr; break;
14328 case tok::lessequal: Opc = BO_LE; break;
14329 case tok::less: Opc = BO_LT; break;
14330 case tok::greaterequal: Opc = BO_GE; break;
14331 case tok::greater: Opc = BO_GT; break;
14332 case tok::exclaimequal: Opc = BO_NE; break;
14333 case tok::equalequal: Opc = BO_EQ; break;
14334 case tok::spaceship: Opc = BO_Cmp; break;
14335 case tok::amp: Opc = BO_And; break;
14336 case tok::caret: Opc = BO_Xor; break;
14337 case tok::pipe: Opc = BO_Or; break;
14338 case tok::ampamp: Opc = BO_LAnd; break;
14339 case tok::pipepipe: Opc = BO_LOr; break;
14340 case tok::equal: Opc = BO_Assign; break;
14341 case tok::starequal: Opc = BO_MulAssign; break;
14342 case tok::slashequal: Opc = BO_DivAssign; break;
14343 case tok::percentequal: Opc = BO_RemAssign; break;
14344 case tok::plusequal: Opc = BO_AddAssign; break;
14345 case tok::minusequal: Opc = BO_SubAssign; break;
14346 case tok::lesslessequal: Opc = BO_ShlAssign; break;
14347 case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
14348 case tok::ampequal: Opc = BO_AndAssign; break;
14349 case tok::caretequal: Opc = BO_XorAssign; break;
14350 case tok::pipeequal: Opc = BO_OrAssign; break;
14351 case tok::comma: Opc = BO_Comma; break;
14352 }
14353 return Opc;
14354}
14355
14356static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
14357 tok::TokenKind Kind) {
14358 UnaryOperatorKind Opc;
14359 switch (Kind) {
14360 default: llvm_unreachable("Unknown unary op!");
14361 case tok::plusplus: Opc = UO_PreInc; break;
14362 case tok::minusminus: Opc = UO_PreDec; break;
14363 case tok::amp: Opc = UO_AddrOf; break;
14364 case tok::star: Opc = UO_Deref; break;
14365 case tok::plus: Opc = UO_Plus; break;
14366 case tok::minus: Opc = UO_Minus; break;
14367 case tok::tilde: Opc = UO_Not; break;
14368 case tok::exclaim: Opc = UO_LNot; break;
14369 case tok::kw___real: Opc = UO_Real; break;
14370 case tok::kw___imag: Opc = UO_Imag; break;
14371 case tok::kw___extension__: Opc = UO_Extension; break;
14372 }
14373 return Opc;
14374}
14375
14376const FieldDecl *
14377Sema::getSelfAssignmentClassMemberCandidate(const ValueDecl *SelfAssigned) {
14378 // Explore the case for adding 'this->' to the LHS of a self assignment, very
14379 // common for setters.
14380 // struct A {
14381 // int X;
14382 // -void setX(int X) { X = X; }
14383 // +void setX(int X) { this->X = X; }
14384 // };
14385
14386 // Only consider parameters for self assignment fixes.
14387 if (!isa<ParmVarDecl>(Val: SelfAssigned))
14388 return nullptr;
14389 const auto *Method =
14390 dyn_cast_or_null<CXXMethodDecl>(Val: getCurFunctionDecl(AllowLambda: true));
14391 if (!Method)
14392 return nullptr;
14393
14394 const CXXRecordDecl *Parent = Method->getParent();
14395 // In theory this is fixable if the lambda explicitly captures this, but
14396 // that's added complexity that's rarely going to be used.
14397 if (Parent->isLambda())
14398 return nullptr;
14399
14400 // FIXME: Use an actual Lookup operation instead of just traversing fields
14401 // in order to get base class fields.
14402 auto Field =
14403 llvm::find_if(Range: Parent->fields(),
14404 P: [Name(SelfAssigned->getDeclName())](const FieldDecl *F) {
14405 return F->getDeclName() == Name;
14406 });
14407 return (Field != Parent->field_end()) ? *Field : nullptr;
14408}
14409
14410/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
14411/// This warning suppressed in the event of macro expansions.
14412static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
14413 SourceLocation OpLoc, bool IsBuiltin) {
14414 if (S.inTemplateInstantiation())
14415 return;
14416 if (S.isUnevaluatedContext())
14417 return;
14418 if (OpLoc.isInvalid() || OpLoc.isMacroID())
14419 return;
14420 LHSExpr = LHSExpr->IgnoreParenImpCasts();
14421 RHSExpr = RHSExpr->IgnoreParenImpCasts();
14422 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(Val: LHSExpr);
14423 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(Val: RHSExpr);
14424 if (!LHSDeclRef || !RHSDeclRef ||
14425 LHSDeclRef->getLocation().isMacroID() ||
14426 RHSDeclRef->getLocation().isMacroID())
14427 return;
14428 const ValueDecl *LHSDecl =
14429 cast<ValueDecl>(Val: LHSDeclRef->getDecl()->getCanonicalDecl());
14430 const ValueDecl *RHSDecl =
14431 cast<ValueDecl>(Val: RHSDeclRef->getDecl()->getCanonicalDecl());
14432 if (LHSDecl != RHSDecl)
14433 return;
14434 if (LHSDecl->getType().isVolatileQualified())
14435 return;
14436 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
14437 if (RefTy->getPointeeType().isVolatileQualified())
14438 return;
14439
14440 auto Diag = S.Diag(Loc: OpLoc, DiagID: IsBuiltin ? diag::warn_self_assignment_builtin
14441 : diag::warn_self_assignment_overloaded)
14442 << LHSDeclRef->getType() << LHSExpr->getSourceRange()
14443 << RHSExpr->getSourceRange();
14444 if (const FieldDecl *SelfAssignField =
14445 S.getSelfAssignmentClassMemberCandidate(SelfAssigned: RHSDecl))
14446 Diag << 1 << SelfAssignField
14447 << FixItHint::CreateInsertion(InsertionLoc: LHSDeclRef->getBeginLoc(), Code: "this->");
14448 else
14449 Diag << 0;
14450}
14451
14452/// Check if a bitwise-& is performed on an Objective-C pointer. This
14453/// is usually indicative of introspection within the Objective-C pointer.
14454static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
14455 SourceLocation OpLoc) {
14456 if (!S.getLangOpts().ObjC)
14457 return;
14458
14459 const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
14460 const Expr *LHS = L.get();
14461 const Expr *RHS = R.get();
14462
14463 if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14464 ObjCPointerExpr = LHS;
14465 OtherExpr = RHS;
14466 }
14467 else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
14468 ObjCPointerExpr = RHS;
14469 OtherExpr = LHS;
14470 }
14471
14472 // This warning is deliberately made very specific to reduce false
14473 // positives with logic that uses '&' for hashing. This logic mainly
14474 // looks for code trying to introspect into tagged pointers, which
14475 // code should generally never do.
14476 if (ObjCPointerExpr && isa<IntegerLiteral>(Val: OtherExpr->IgnoreParenCasts())) {
14477 unsigned Diag = diag::warn_objc_pointer_masking;
14478 // Determine if we are introspecting the result of performSelectorXXX.
14479 const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
14480 // Special case messages to -performSelector and friends, which
14481 // can return non-pointer values boxed in a pointer value.
14482 // Some clients may wish to silence warnings in this subcase.
14483 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Val: Ex)) {
14484 Selector S = ME->getSelector();
14485 StringRef SelArg0 = S.getNameForSlot(argIndex: 0);
14486 if (SelArg0.starts_with(Prefix: "performSelector"))
14487 Diag = diag::warn_objc_pointer_masking_performSelector;
14488 }
14489
14490 S.Diag(Loc: OpLoc, DiagID: Diag)
14491 << ObjCPointerExpr->getSourceRange();
14492 }
14493}
14494
14495static NamedDecl *getDeclFromExpr(Expr *E) {
14496 if (!E)
14497 return nullptr;
14498 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E))
14499 return DRE->getDecl();
14500 if (auto *ME = dyn_cast<MemberExpr>(Val: E))
14501 return ME->getMemberDecl();
14502 if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(Val: E))
14503 return IRE->getDecl();
14504 return nullptr;
14505}
14506
14507// This helper function promotes a binary operator's operands (which are of a
14508// half vector type) to a vector of floats and then truncates the result to
14509// a vector of either half or short.
14510static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
14511 BinaryOperatorKind Opc, QualType ResultTy,
14512 ExprValueKind VK, ExprObjectKind OK,
14513 bool IsCompAssign, SourceLocation OpLoc,
14514 FPOptionsOverride FPFeatures) {
14515 auto &Context = S.getASTContext();
14516 assert((isVector(ResultTy, Context.HalfTy) ||
14517 isVector(ResultTy, Context.ShortTy)) &&
14518 "Result must be a vector of half or short");
14519 assert(isVector(LHS.get()->getType(), Context.HalfTy) &&
14520 isVector(RHS.get()->getType(), Context.HalfTy) &&
14521 "both operands expected to be a half vector");
14522
14523 RHS = convertVector(E: RHS.get(), ElementType: Context.FloatTy, S);
14524 QualType BinOpResTy = RHS.get()->getType();
14525
14526 // If Opc is a comparison, ResultType is a vector of shorts. In that case,
14527 // change BinOpResTy to a vector of ints.
14528 if (isVector(QT: ResultTy, ElementType: Context.ShortTy))
14529 BinOpResTy = S.GetSignedVectorType(V: BinOpResTy);
14530
14531 if (IsCompAssign)
14532 return CompoundAssignOperator::Create(C: Context, lhs: LHS.get(), rhs: RHS.get(), opc: Opc,
14533 ResTy: ResultTy, VK, OK, opLoc: OpLoc, FPFeatures,
14534 CompLHSType: BinOpResTy, CompResultType: BinOpResTy);
14535
14536 LHS = convertVector(E: LHS.get(), ElementType: Context.FloatTy, S);
14537 auto *BO = BinaryOperator::Create(C: Context, lhs: LHS.get(), rhs: RHS.get(), opc: Opc,
14538 ResTy: BinOpResTy, VK, OK, opLoc: OpLoc, FPFeatures);
14539 return convertVector(E: BO, ElementType: ResultTy->castAs<VectorType>()->getElementType(), S);
14540}
14541
14542static std::pair<ExprResult, ExprResult>
14543CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
14544 Expr *RHSExpr) {
14545 ExprResult LHS = LHSExpr, RHS = RHSExpr;
14546 if (!S.Context.isDependenceAllowed()) {
14547 // C cannot handle TypoExpr nodes on either side of a binop because it
14548 // doesn't handle dependent types properly, so make sure any TypoExprs have
14549 // been dealt with before checking the operands.
14550 LHS = S.CorrectDelayedTyposInExpr(ER: LHS);
14551 RHS = S.CorrectDelayedTyposInExpr(
14552 ER: RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
14553 Filter: [Opc, LHS](Expr *E) {
14554 if (Opc != BO_Assign)
14555 return ExprResult(E);
14556 // Avoid correcting the RHS to the same Expr as the LHS.
14557 Decl *D = getDeclFromExpr(E);
14558 return (D && D == getDeclFromExpr(E: LHS.get())) ? ExprError() : E;
14559 });
14560 }
14561 return std::make_pair(x&: LHS, y&: RHS);
14562}
14563
14564/// Returns true if conversion between vectors of halfs and vectors of floats
14565/// is needed.
14566static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
14567 Expr *E0, Expr *E1 = nullptr) {
14568 if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
14569 Ctx.getTargetInfo().useFP16ConversionIntrinsics())
14570 return false;
14571
14572 auto HasVectorOfHalfType = [&Ctx](Expr *E) {
14573 QualType Ty = E->IgnoreImplicit()->getType();
14574
14575 // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
14576 // to vectors of floats. Although the element type of the vectors is __fp16,
14577 // the vectors shouldn't be treated as storage-only types. See the
14578 // discussion here: https://reviews.llvm.org/rG825235c140e7
14579 if (const VectorType *VT = Ty->getAs<VectorType>()) {
14580 if (VT->getVectorKind() == VectorKind::Neon)
14581 return false;
14582 return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
14583 }
14584 return false;
14585 };
14586
14587 return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
14588}
14589
14590ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
14591 BinaryOperatorKind Opc,
14592 Expr *LHSExpr, Expr *RHSExpr) {
14593 if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(Val: RHSExpr)) {
14594 // The syntax only allows initializer lists on the RHS of assignment,
14595 // so we don't need to worry about accepting invalid code for
14596 // non-assignment operators.
14597 // C++11 5.17p9:
14598 // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
14599 // of x = {} is x = T().
14600 InitializationKind Kind = InitializationKind::CreateDirectList(
14601 InitLoc: RHSExpr->getBeginLoc(), LBraceLoc: RHSExpr->getBeginLoc(), RBraceLoc: RHSExpr->getEndLoc());
14602 InitializedEntity Entity =
14603 InitializedEntity::InitializeTemporary(Type: LHSExpr->getType());
14604 InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
14605 ExprResult Init = InitSeq.Perform(S&: *this, Entity, Kind, Args: RHSExpr);
14606 if (Init.isInvalid())
14607 return Init;
14608 RHSExpr = Init.get();
14609 }
14610
14611 ExprResult LHS = LHSExpr, RHS = RHSExpr;
14612 QualType ResultTy; // Result type of the binary operator.
14613 // The following two variables are used for compound assignment operators
14614 QualType CompLHSTy; // Type of LHS after promotions for computation
14615 QualType CompResultTy; // Type of computation result
14616 ExprValueKind VK = VK_PRValue;
14617 ExprObjectKind OK = OK_Ordinary;
14618 bool ConvertHalfVec = false;
14619
14620 std::tie(args&: LHS, args&: RHS) = CorrectDelayedTyposInBinOp(S&: *this, Opc, LHSExpr, RHSExpr);
14621 if (!LHS.isUsable() || !RHS.isUsable())
14622 return ExprError();
14623
14624 if (getLangOpts().OpenCL) {
14625 QualType LHSTy = LHSExpr->getType();
14626 QualType RHSTy = RHSExpr->getType();
14627 // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
14628 // the ATOMIC_VAR_INIT macro.
14629 if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
14630 SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
14631 if (BO_Assign == Opc)
14632 Diag(Loc: OpLoc, DiagID: diag::err_opencl_atomic_init) << 0 << SR;
14633 else
14634 ResultTy = InvalidOperands(Loc: OpLoc, LHS, RHS);
14635 return ExprError();
14636 }
14637
14638 // OpenCL special types - image, sampler, pipe, and blocks are to be used
14639 // only with a builtin functions and therefore should be disallowed here.
14640 if (LHSTy->isImageType() || RHSTy->isImageType() ||
14641 LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
14642 LHSTy->isPipeType() || RHSTy->isPipeType() ||
14643 LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
14644 ResultTy = InvalidOperands(Loc: OpLoc, LHS, RHS);
14645 return ExprError();
14646 }
14647 }
14648
14649 checkTypeSupport(Ty: LHSExpr->getType(), Loc: OpLoc, /*ValueDecl*/ D: nullptr);
14650 checkTypeSupport(Ty: RHSExpr->getType(), Loc: OpLoc, /*ValueDecl*/ D: nullptr);
14651
14652 switch (Opc) {
14653 case BO_Assign:
14654 ResultTy = CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: QualType(), Opc);
14655 if (getLangOpts().CPlusPlus &&
14656 LHS.get()->getObjectKind() != OK_ObjCProperty) {
14657 VK = LHS.get()->getValueKind();
14658 OK = LHS.get()->getObjectKind();
14659 }
14660 if (!ResultTy.isNull()) {
14661 DiagnoseSelfAssignment(S&: *this, LHSExpr: LHS.get(), RHSExpr: RHS.get(), OpLoc, IsBuiltin: true);
14662 DiagnoseSelfMove(LHSExpr: LHS.get(), RHSExpr: RHS.get(), OpLoc);
14663
14664 // Avoid copying a block to the heap if the block is assigned to a local
14665 // auto variable that is declared in the same scope as the block. This
14666 // optimization is unsafe if the local variable is declared in an outer
14667 // scope. For example:
14668 //
14669 // BlockTy b;
14670 // {
14671 // b = ^{...};
14672 // }
14673 // // It is unsafe to invoke the block here if it wasn't copied to the
14674 // // heap.
14675 // b();
14676
14677 if (auto *BE = dyn_cast<BlockExpr>(Val: RHS.get()->IgnoreParens()))
14678 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: LHS.get()->IgnoreParens()))
14679 if (auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl()))
14680 if (VD->hasLocalStorage() && getCurScope()->isDeclScope(D: VD))
14681 BE->getBlockDecl()->setCanAvoidCopyToHeap();
14682
14683 if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
14684 checkNonTrivialCUnion(QT: LHS.get()->getType(), Loc: LHS.get()->getExprLoc(),
14685 UseContext: NTCUC_Assignment, NonTrivialKind: NTCUK_Copy);
14686 }
14687 RecordModifiableNonNullParam(S&: *this, Exp: LHS.get());
14688 break;
14689 case BO_PtrMemD:
14690 case BO_PtrMemI:
14691 ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
14692 isIndirect: Opc == BO_PtrMemI);
14693 break;
14694 case BO_Mul:
14695 case BO_Div:
14696 ConvertHalfVec = true;
14697 ResultTy = CheckMultiplyDivideOperands(LHS, RHS, Loc: OpLoc, IsCompAssign: false,
14698 IsDiv: Opc == BO_Div);
14699 break;
14700 case BO_Rem:
14701 ResultTy = CheckRemainderOperands(LHS, RHS, Loc: OpLoc);
14702 break;
14703 case BO_Add:
14704 ConvertHalfVec = true;
14705 ResultTy = CheckAdditionOperands(LHS, RHS, Loc: OpLoc, Opc);
14706 break;
14707 case BO_Sub:
14708 ConvertHalfVec = true;
14709 ResultTy = CheckSubtractionOperands(LHS, RHS, Loc: OpLoc);
14710 break;
14711 case BO_Shl:
14712 case BO_Shr:
14713 ResultTy = CheckShiftOperands(LHS, RHS, Loc: OpLoc, Opc);
14714 break;
14715 case BO_LE:
14716 case BO_LT:
14717 case BO_GE:
14718 case BO_GT:
14719 ConvertHalfVec = true;
14720 ResultTy = CheckCompareOperands(LHS, RHS, Loc: OpLoc, Opc);
14721
14722 if (const auto *BI = dyn_cast<BinaryOperator>(Val: LHSExpr);
14723 BI && BI->isComparisonOp())
14724 Diag(Loc: OpLoc, DiagID: diag::warn_consecutive_comparison);
14725
14726 break;
14727 case BO_EQ:
14728 case BO_NE:
14729 ConvertHalfVec = true;
14730 ResultTy = CheckCompareOperands(LHS, RHS, Loc: OpLoc, Opc);
14731 break;
14732 case BO_Cmp:
14733 ConvertHalfVec = true;
14734 ResultTy = CheckCompareOperands(LHS, RHS, Loc: OpLoc, Opc);
14735 assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl());
14736 break;
14737 case BO_And:
14738 checkObjCPointerIntrospection(S&: *this, L&: LHS, R&: RHS, OpLoc);
14739 [[fallthrough]];
14740 case BO_Xor:
14741 case BO_Or:
14742 ResultTy = CheckBitwiseOperands(LHS, RHS, Loc: OpLoc, Opc);
14743 break;
14744 case BO_LAnd:
14745 case BO_LOr:
14746 ConvertHalfVec = true;
14747 ResultTy = CheckLogicalOperands(LHS, RHS, Loc: OpLoc, Opc);
14748 break;
14749 case BO_MulAssign:
14750 case BO_DivAssign:
14751 ConvertHalfVec = true;
14752 CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, Loc: OpLoc, IsCompAssign: true,
14753 IsDiv: Opc == BO_DivAssign);
14754 CompLHSTy = CompResultTy;
14755 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14756 ResultTy =
14757 CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: CompResultTy, Opc);
14758 break;
14759 case BO_RemAssign:
14760 CompResultTy = CheckRemainderOperands(LHS, RHS, Loc: OpLoc, IsCompAssign: true);
14761 CompLHSTy = CompResultTy;
14762 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14763 ResultTy =
14764 CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: CompResultTy, Opc);
14765 break;
14766 case BO_AddAssign:
14767 ConvertHalfVec = true;
14768 CompResultTy = CheckAdditionOperands(LHS, RHS, Loc: OpLoc, Opc, CompLHSTy: &CompLHSTy);
14769 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14770 ResultTy =
14771 CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: CompResultTy, Opc);
14772 break;
14773 case BO_SubAssign:
14774 ConvertHalfVec = true;
14775 CompResultTy = CheckSubtractionOperands(LHS, RHS, Loc: OpLoc, CompLHSTy: &CompLHSTy);
14776 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14777 ResultTy =
14778 CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: CompResultTy, Opc);
14779 break;
14780 case BO_ShlAssign:
14781 case BO_ShrAssign:
14782 CompResultTy = CheckShiftOperands(LHS, RHS, Loc: OpLoc, Opc, IsCompAssign: true);
14783 CompLHSTy = CompResultTy;
14784 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14785 ResultTy =
14786 CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: CompResultTy, Opc);
14787 break;
14788 case BO_AndAssign:
14789 case BO_OrAssign: // fallthrough
14790 DiagnoseSelfAssignment(S&: *this, LHSExpr: LHS.get(), RHSExpr: RHS.get(), OpLoc, IsBuiltin: true);
14791 [[fallthrough]];
14792 case BO_XorAssign:
14793 CompResultTy = CheckBitwiseOperands(LHS, RHS, Loc: OpLoc, Opc);
14794 CompLHSTy = CompResultTy;
14795 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14796 ResultTy =
14797 CheckAssignmentOperands(LHSExpr: LHS.get(), RHS, Loc: OpLoc, CompoundType: CompResultTy, Opc);
14798 break;
14799 case BO_Comma:
14800 ResultTy = CheckCommaOperands(S&: *this, LHS, RHS, Loc: OpLoc);
14801 if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
14802 VK = RHS.get()->getValueKind();
14803 OK = RHS.get()->getObjectKind();
14804 }
14805 break;
14806 }
14807 if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
14808 return ExprError();
14809
14810 // Some of the binary operations require promoting operands of half vector to
14811 // float vectors and truncating the result back to half vector. For now, we do
14812 // this only when HalfArgsAndReturn is set (that is, when the target is arm or
14813 // arm64).
14814 assert(
14815 (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==
14816 isVector(LHS.get()->getType(), Context.HalfTy)) &&
14817 "both sides are half vectors or neither sides are");
14818 ConvertHalfVec =
14819 needsConversionOfHalfVec(OpRequiresConversion: ConvertHalfVec, Ctx&: Context, E0: LHS.get(), E1: RHS.get());
14820
14821 // Check for array bounds violations for both sides of the BinaryOperator
14822 CheckArrayAccess(E: LHS.get());
14823 CheckArrayAccess(E: RHS.get());
14824
14825 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(Val: LHS.get()->IgnoreParenCasts())) {
14826 NamedDecl *ObjectSetClass = LookupSingleName(S: TUScope,
14827 Name: &Context.Idents.get(Name: "object_setClass"),
14828 Loc: SourceLocation(), NameKind: LookupOrdinaryName);
14829 if (ObjectSetClass && isa<ObjCIsaExpr>(Val: LHS.get())) {
14830 SourceLocation RHSLocEnd = getLocForEndOfToken(Loc: RHS.get()->getEndLoc());
14831 Diag(Loc: LHS.get()->getExprLoc(), DiagID: diag::warn_objc_isa_assign)
14832 << FixItHint::CreateInsertion(InsertionLoc: LHS.get()->getBeginLoc(),
14833 Code: "object_setClass(")
14834 << FixItHint::CreateReplacement(RemoveRange: SourceRange(OISA->getOpLoc(), OpLoc),
14835 Code: ",")
14836 << FixItHint::CreateInsertion(InsertionLoc: RHSLocEnd, Code: ")");
14837 }
14838 else
14839 Diag(Loc: LHS.get()->getExprLoc(), DiagID: diag::warn_objc_isa_assign);
14840 }
14841 else if (const ObjCIvarRefExpr *OIRE =
14842 dyn_cast<ObjCIvarRefExpr>(Val: LHS.get()->IgnoreParenCasts()))
14843 DiagnoseDirectIsaAccess(S&: *this, OIRE, AssignLoc: OpLoc, RHS: RHS.get());
14844
14845 // Opc is not a compound assignment if CompResultTy is null.
14846 if (CompResultTy.isNull()) {
14847 if (ConvertHalfVec)
14848 return convertHalfVecBinOp(S&: *this, LHS, RHS, Opc, ResultTy, VK, OK, IsCompAssign: false,
14849 OpLoc, FPFeatures: CurFPFeatureOverrides());
14850 return BinaryOperator::Create(C: Context, lhs: LHS.get(), rhs: RHS.get(), opc: Opc, ResTy: ResultTy,
14851 VK, OK, opLoc: OpLoc, FPFeatures: CurFPFeatureOverrides());
14852 }
14853
14854 // Handle compound assignments.
14855 if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
14856 OK_ObjCProperty) {
14857 VK = VK_LValue;
14858 OK = LHS.get()->getObjectKind();
14859 }
14860
14861 // The LHS is not converted to the result type for fixed-point compound
14862 // assignment as the common type is computed on demand. Reset the CompLHSTy
14863 // to the LHS type we would have gotten after unary conversions.
14864 if (CompResultTy->isFixedPointType())
14865 CompLHSTy = UsualUnaryConversions(E: LHS.get()).get()->getType();
14866
14867 if (ConvertHalfVec)
14868 return convertHalfVecBinOp(S&: *this, LHS, RHS, Opc, ResultTy, VK, OK, IsCompAssign: true,
14869 OpLoc, FPFeatures: CurFPFeatureOverrides());
14870
14871 return CompoundAssignOperator::Create(
14872 C: Context, lhs: LHS.get(), rhs: RHS.get(), opc: Opc, ResTy: ResultTy, VK, OK, opLoc: OpLoc,
14873 FPFeatures: CurFPFeatureOverrides(), CompLHSType: CompLHSTy, CompResultType: CompResultTy);
14874}
14875
14876/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
14877/// operators are mixed in a way that suggests that the programmer forgot that
14878/// comparison operators have higher precedence. The most typical example of
14879/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
14880static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
14881 SourceLocation OpLoc, Expr *LHSExpr,
14882 Expr *RHSExpr) {
14883 BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(Val: LHSExpr);
14884 BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(Val: RHSExpr);
14885
14886 // Check that one of the sides is a comparison operator and the other isn't.
14887 bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
14888 bool isRightComp = RHSBO && RHSBO->isComparisonOp();
14889 if (isLeftComp == isRightComp)
14890 return;
14891
14892 // Bitwise operations are sometimes used as eager logical ops.
14893 // Don't diagnose this.
14894 bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
14895 bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
14896 if (isLeftBitwise || isRightBitwise)
14897 return;
14898
14899 SourceRange DiagRange = isLeftComp
14900 ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
14901 : SourceRange(OpLoc, RHSExpr->getEndLoc());
14902 StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
14903 SourceRange ParensRange =
14904 isLeftComp
14905 ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
14906 : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
14907
14908 Self.Diag(Loc: OpLoc, DiagID: diag::warn_precedence_bitwise_rel)
14909 << DiagRange << BinaryOperator::getOpcodeStr(Op: Opc) << OpStr;
14910 SuggestParentheses(Self, Loc: OpLoc,
14911 Note: Self.PDiag(DiagID: diag::note_precedence_silence) << OpStr,
14912 ParenRange: (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
14913 SuggestParentheses(Self, Loc: OpLoc,
14914 Note: Self.PDiag(DiagID: diag::note_precedence_bitwise_first)
14915 << BinaryOperator::getOpcodeStr(Op: Opc),
14916 ParenRange: ParensRange);
14917}
14918
14919/// It accepts a '&&' expr that is inside a '||' one.
14920/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
14921/// in parentheses.
14922static void
14923EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
14924 BinaryOperator *Bop) {
14925 assert(Bop->getOpcode() == BO_LAnd);
14926 Self.Diag(Loc: Bop->getOperatorLoc(), DiagID: diag::warn_logical_and_in_logical_or)
14927 << Bop->getSourceRange() << OpLoc;
14928 SuggestParentheses(Self, Loc: Bop->getOperatorLoc(),
14929 Note: Self.PDiag(DiagID: diag::note_precedence_silence)
14930 << Bop->getOpcodeStr(),
14931 ParenRange: Bop->getSourceRange());
14932}
14933
14934/// Look for '&&' in the left hand of a '||' expr.
14935static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
14936 Expr *LHSExpr, Expr *RHSExpr) {
14937 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(Val: LHSExpr)) {
14938 if (Bop->getOpcode() == BO_LAnd) {
14939 // If it's "string_literal && a || b" don't warn since the precedence
14940 // doesn't matter.
14941 if (!isa<StringLiteral>(Val: Bop->getLHS()->IgnoreParenImpCasts()))
14942 return EmitDiagnosticForLogicalAndInLogicalOr(Self&: S, OpLoc, Bop);
14943 } else if (Bop->getOpcode() == BO_LOr) {
14944 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Val: Bop->getRHS())) {
14945 // If it's "a || b && string_literal || c" we didn't warn earlier for
14946 // "a || b && string_literal", but warn now.
14947 if (RBop->getOpcode() == BO_LAnd &&
14948 isa<StringLiteral>(Val: RBop->getRHS()->IgnoreParenImpCasts()))
14949 return EmitDiagnosticForLogicalAndInLogicalOr(Self&: S, OpLoc, Bop: RBop);
14950 }
14951 }
14952 }
14953}
14954
14955/// Look for '&&' in the right hand of a '||' expr.
14956static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
14957 Expr *LHSExpr, Expr *RHSExpr) {
14958 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(Val: RHSExpr)) {
14959 if (Bop->getOpcode() == BO_LAnd) {
14960 // If it's "a || b && string_literal" don't warn since the precedence
14961 // doesn't matter.
14962 if (!isa<StringLiteral>(Val: Bop->getRHS()->IgnoreParenImpCasts()))
14963 return EmitDiagnosticForLogicalAndInLogicalOr(Self&: S, OpLoc, Bop);
14964 }
14965 }
14966}
14967
14968/// Look for bitwise op in the left or right hand of a bitwise op with
14969/// lower precedence and emit a diagnostic together with a fixit hint that wraps
14970/// the '&' expression in parentheses.
14971static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
14972 SourceLocation OpLoc, Expr *SubExpr) {
14973 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(Val: SubExpr)) {
14974 if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
14975 S.Diag(Loc: Bop->getOperatorLoc(), DiagID: diag::warn_bitwise_op_in_bitwise_op)
14976 << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Op: Opc)
14977 << Bop->getSourceRange() << OpLoc;
14978 SuggestParentheses(Self&: S, Loc: Bop->getOperatorLoc(),
14979 Note: S.PDiag(DiagID: diag::note_precedence_silence)
14980 << Bop->getOpcodeStr(),
14981 ParenRange: Bop->getSourceRange());
14982 }
14983 }
14984}
14985
14986static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
14987 Expr *SubExpr, StringRef Shift) {
14988 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(Val: SubExpr)) {
14989 if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
14990 StringRef Op = Bop->getOpcodeStr();
14991 S.Diag(Loc: Bop->getOperatorLoc(), DiagID: diag::warn_addition_in_bitshift)
14992 << Bop->getSourceRange() << OpLoc << Shift << Op;
14993 SuggestParentheses(Self&: S, Loc: Bop->getOperatorLoc(),
14994 Note: S.PDiag(DiagID: diag::note_precedence_silence) << Op,
14995 ParenRange: Bop->getSourceRange());
14996 }
14997 }
14998}
14999
15000static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
15001 Expr *LHSExpr, Expr *RHSExpr) {
15002 CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(Val: LHSExpr);
15003 if (!OCE)
15004 return;
15005
15006 FunctionDecl *FD = OCE->getDirectCallee();
15007 if (!FD || !FD->isOverloadedOperator())
15008 return;
15009
15010 OverloadedOperatorKind Kind = FD->getOverloadedOperator();
15011 if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
15012 return;
15013
15014 S.Diag(Loc: OpLoc, DiagID: diag::warn_overloaded_shift_in_comparison)
15015 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
15016 << (Kind == OO_LessLess);
15017 SuggestParentheses(Self&: S, Loc: OCE->getOperatorLoc(),
15018 Note: S.PDiag(DiagID: diag::note_precedence_silence)
15019 << (Kind == OO_LessLess ? "<<" : ">>"),
15020 ParenRange: OCE->getSourceRange());
15021 SuggestParentheses(
15022 Self&: S, Loc: OpLoc, Note: S.PDiag(DiagID: diag::note_evaluate_comparison_first),
15023 ParenRange: SourceRange(OCE->getArg(Arg: 1)->getBeginLoc(), RHSExpr->getEndLoc()));
15024}
15025
15026/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
15027/// precedence.
15028static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
15029 SourceLocation OpLoc, Expr *LHSExpr,
15030 Expr *RHSExpr){
15031 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
15032 if (BinaryOperator::isBitwiseOp(Opc))
15033 DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
15034
15035 // Diagnose "arg1 & arg2 | arg3"
15036 if ((Opc == BO_Or || Opc == BO_Xor) &&
15037 !OpLoc.isMacroID()/* Don't warn in macros. */) {
15038 DiagnoseBitwiseOpInBitwiseOp(S&: Self, Opc, OpLoc, SubExpr: LHSExpr);
15039 DiagnoseBitwiseOpInBitwiseOp(S&: Self, Opc, OpLoc, SubExpr: RHSExpr);
15040 }
15041
15042 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
15043 // We don't warn for 'assert(a || b && "bad")' since this is safe.
15044 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
15045 DiagnoseLogicalAndInLogicalOrLHS(S&: Self, OpLoc, LHSExpr, RHSExpr);
15046 DiagnoseLogicalAndInLogicalOrRHS(S&: Self, OpLoc, LHSExpr, RHSExpr);
15047 }
15048
15049 if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Ctx: Self.getASTContext()))
15050 || Opc == BO_Shr) {
15051 StringRef Shift = BinaryOperator::getOpcodeStr(Op: Opc);
15052 DiagnoseAdditionInShift(S&: Self, OpLoc, SubExpr: LHSExpr, Shift);
15053 DiagnoseAdditionInShift(S&: Self, OpLoc, SubExpr: RHSExpr, Shift);
15054 }
15055
15056 // Warn on overloaded shift operators and comparisons, such as:
15057 // cout << 5 == 4;
15058 if (BinaryOperator::isComparisonOp(Opc))
15059 DiagnoseShiftCompare(S&: Self, OpLoc, LHSExpr, RHSExpr);
15060}
15061
15062ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
15063 tok::TokenKind Kind,
15064 Expr *LHSExpr, Expr *RHSExpr) {
15065 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
15066 assert(LHSExpr && "ActOnBinOp(): missing left expression");
15067 assert(RHSExpr && "ActOnBinOp(): missing right expression");
15068
15069 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
15070 DiagnoseBinOpPrecedence(Self&: *this, Opc, OpLoc: TokLoc, LHSExpr, RHSExpr);
15071
15072 return BuildBinOp(S, OpLoc: TokLoc, Opc, LHSExpr, RHSExpr);
15073}
15074
15075void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
15076 UnresolvedSetImpl &Functions) {
15077 OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
15078 if (OverOp != OO_None && OverOp != OO_Equal)
15079 LookupOverloadedOperatorName(Op: OverOp, S, Functions);
15080
15081 // In C++20 onwards, we may have a second operator to look up.
15082 if (getLangOpts().CPlusPlus20) {
15083 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Kind: OverOp))
15084 LookupOverloadedOperatorName(Op: ExtraOp, S, Functions);
15085 }
15086}
15087
15088/// Build an overloaded binary operator expression in the given scope.
15089static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
15090 BinaryOperatorKind Opc,
15091 Expr *LHS, Expr *RHS) {
15092 switch (Opc) {
15093 case BO_Assign:
15094 // In the non-overloaded case, we warn about self-assignment (x = x) for
15095 // both simple assignment and certain compound assignments where algebra
15096 // tells us the operation yields a constant result. When the operator is
15097 // overloaded, we can't do the latter because we don't want to assume that
15098 // those algebraic identities still apply; for example, a path-building
15099 // library might use operator/= to append paths. But it's still reasonable
15100 // to assume that simple assignment is just moving/copying values around
15101 // and so self-assignment is likely a bug.
15102 DiagnoseSelfAssignment(S, LHSExpr: LHS, RHSExpr: RHS, OpLoc, IsBuiltin: false);
15103 [[fallthrough]];
15104 case BO_DivAssign:
15105 case BO_RemAssign:
15106 case BO_SubAssign:
15107 case BO_AndAssign:
15108 case BO_OrAssign:
15109 case BO_XorAssign:
15110 CheckIdentityFieldAssignment(LHSExpr: LHS, RHSExpr: RHS, Loc: OpLoc, Sema&: S);
15111 break;
15112 default:
15113 break;
15114 }
15115
15116 // Find all of the overloaded operators visible from this point.
15117 UnresolvedSet<16> Functions;
15118 S.LookupBinOp(S: Sc, OpLoc, Opc, Functions);
15119
15120 // Build the (potentially-overloaded, potentially-dependent)
15121 // binary operation.
15122 return S.CreateOverloadedBinOp(OpLoc, Opc, Fns: Functions, LHS, RHS);
15123}
15124
15125ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
15126 BinaryOperatorKind Opc,
15127 Expr *LHSExpr, Expr *RHSExpr) {
15128 ExprResult LHS, RHS;
15129 std::tie(args&: LHS, args&: RHS) = CorrectDelayedTyposInBinOp(S&: *this, Opc, LHSExpr, RHSExpr);
15130 if (!LHS.isUsable() || !RHS.isUsable())
15131 return ExprError();
15132 LHSExpr = LHS.get();
15133 RHSExpr = RHS.get();
15134
15135 // We want to end up calling one of SemaPseudoObject::checkAssignment
15136 // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
15137 // both expressions are overloadable or either is type-dependent),
15138 // or CreateBuiltinBinOp (in any other case). We also want to get
15139 // any placeholder types out of the way.
15140
15141 // Handle pseudo-objects in the LHS.
15142 if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
15143 // Assignments with a pseudo-object l-value need special analysis.
15144 if (pty->getKind() == BuiltinType::PseudoObject &&
15145 BinaryOperator::isAssignmentOp(Opc))
15146 return PseudoObject().checkAssignment(S, OpLoc, Opcode: Opc, LHS: LHSExpr, RHS: RHSExpr);
15147
15148 // Don't resolve overloads if the other type is overloadable.
15149 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
15150 // We can't actually test that if we still have a placeholder,
15151 // though. Fortunately, none of the exceptions we see in that
15152 // code below are valid when the LHS is an overload set. Note
15153 // that an overload set can be dependently-typed, but it never
15154 // instantiates to having an overloadable type.
15155 ExprResult resolvedRHS = CheckPlaceholderExpr(E: RHSExpr);
15156 if (resolvedRHS.isInvalid()) return ExprError();
15157 RHSExpr = resolvedRHS.get();
15158
15159 if (RHSExpr->isTypeDependent() ||
15160 RHSExpr->getType()->isOverloadableType())
15161 return BuildOverloadedBinOp(S&: *this, Sc: S, OpLoc, Opc, LHS: LHSExpr, RHS: RHSExpr);
15162 }
15163
15164 // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
15165 // template, diagnose the missing 'template' keyword instead of diagnosing
15166 // an invalid use of a bound member function.
15167 //
15168 // Note that "A::x < b" might be valid if 'b' has an overloadable type due
15169 // to C++1z [over.over]/1.4, but we already checked for that case above.
15170 if (Opc == BO_LT && inTemplateInstantiation() &&
15171 (pty->getKind() == BuiltinType::BoundMember ||
15172 pty->getKind() == BuiltinType::Overload)) {
15173 auto *OE = dyn_cast<OverloadExpr>(Val: LHSExpr);
15174 if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
15175 llvm::any_of(Range: OE->decls(), P: [](NamedDecl *ND) {
15176 return isa<FunctionTemplateDecl>(Val: ND);
15177 })) {
15178 Diag(Loc: OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
15179 : OE->getNameLoc(),
15180 DiagID: diag::err_template_kw_missing)
15181 << OE->getName().getAsString() << "";
15182 return ExprError();
15183 }
15184 }
15185
15186 ExprResult LHS = CheckPlaceholderExpr(E: LHSExpr);
15187 if (LHS.isInvalid()) return ExprError();
15188 LHSExpr = LHS.get();
15189 }
15190
15191 // Handle pseudo-objects in the RHS.
15192 if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
15193 // An overload in the RHS can potentially be resolved by the type
15194 // being assigned to.
15195 if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
15196 if (getLangOpts().CPlusPlus &&
15197 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
15198 LHSExpr->getType()->isOverloadableType()))
15199 return BuildOverloadedBinOp(S&: *this, Sc: S, OpLoc, Opc, LHS: LHSExpr, RHS: RHSExpr);
15200
15201 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
15202 }
15203
15204 // Don't resolve overloads if the other type is overloadable.
15205 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
15206 LHSExpr->getType()->isOverloadableType())
15207 return BuildOverloadedBinOp(S&: *this, Sc: S, OpLoc, Opc, LHS: LHSExpr, RHS: RHSExpr);
15208
15209 ExprResult resolvedRHS = CheckPlaceholderExpr(E: RHSExpr);
15210 if (!resolvedRHS.isUsable()) return ExprError();
15211 RHSExpr = resolvedRHS.get();
15212 }
15213
15214 if (getLangOpts().CPlusPlus) {
15215 // Otherwise, build an overloaded op if either expression is type-dependent
15216 // or has an overloadable type.
15217 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
15218 LHSExpr->getType()->isOverloadableType() ||
15219 RHSExpr->getType()->isOverloadableType())
15220 return BuildOverloadedBinOp(S&: *this, Sc: S, OpLoc, Opc, LHS: LHSExpr, RHS: RHSExpr);
15221 }
15222
15223 if (getLangOpts().RecoveryAST &&
15224 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
15225 assert(!getLangOpts().CPlusPlus);
15226 assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&
15227 "Should only occur in error-recovery path.");
15228 if (BinaryOperator::isCompoundAssignmentOp(Opc))
15229 // C [6.15.16] p3:
15230 // An assignment expression has the value of the left operand after the
15231 // assignment, but is not an lvalue.
15232 return CompoundAssignOperator::Create(
15233 C: Context, lhs: LHSExpr, rhs: RHSExpr, opc: Opc,
15234 ResTy: LHSExpr->getType().getUnqualifiedType(), VK: VK_PRValue, OK: OK_Ordinary,
15235 opLoc: OpLoc, FPFeatures: CurFPFeatureOverrides());
15236 QualType ResultType;
15237 switch (Opc) {
15238 case BO_Assign:
15239 ResultType = LHSExpr->getType().getUnqualifiedType();
15240 break;
15241 case BO_LT:
15242 case BO_GT:
15243 case BO_LE:
15244 case BO_GE:
15245 case BO_EQ:
15246 case BO_NE:
15247 case BO_LAnd:
15248 case BO_LOr:
15249 // These operators have a fixed result type regardless of operands.
15250 ResultType = Context.IntTy;
15251 break;
15252 case BO_Comma:
15253 ResultType = RHSExpr->getType();
15254 break;
15255 default:
15256 ResultType = Context.DependentTy;
15257 break;
15258 }
15259 return BinaryOperator::Create(C: Context, lhs: LHSExpr, rhs: RHSExpr, opc: Opc, ResTy: ResultType,
15260 VK: VK_PRValue, OK: OK_Ordinary, opLoc: OpLoc,
15261 FPFeatures: CurFPFeatureOverrides());
15262 }
15263
15264 // Build a built-in binary operation.
15265 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
15266}
15267
15268static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
15269 if (T.isNull() || T->isDependentType())
15270 return false;
15271
15272 if (!Ctx.isPromotableIntegerType(T))
15273 return true;
15274
15275 return Ctx.getIntWidth(T) >= Ctx.getIntWidth(T: Ctx.IntTy);
15276}
15277
15278ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
15279 UnaryOperatorKind Opc, Expr *InputExpr,
15280 bool IsAfterAmp) {
15281 ExprResult Input = InputExpr;
15282 ExprValueKind VK = VK_PRValue;
15283 ExprObjectKind OK = OK_Ordinary;
15284 QualType resultType;
15285 bool CanOverflow = false;
15286
15287 bool ConvertHalfVec = false;
15288 if (getLangOpts().OpenCL) {
15289 QualType Ty = InputExpr->getType();
15290 // The only legal unary operation for atomics is '&'.
15291 if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
15292 // OpenCL special types - image, sampler, pipe, and blocks are to be used
15293 // only with a builtin functions and therefore should be disallowed here.
15294 (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
15295 || Ty->isBlockPointerType())) {
15296 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_typecheck_unary_expr)
15297 << InputExpr->getType()
15298 << Input.get()->getSourceRange());
15299 }
15300 }
15301
15302 if (getLangOpts().HLSL && OpLoc.isValid()) {
15303 if (Opc == UO_AddrOf)
15304 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_hlsl_operator_unsupported) << 0);
15305 if (Opc == UO_Deref)
15306 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_hlsl_operator_unsupported) << 1);
15307 }
15308
15309 if (InputExpr->isTypeDependent() &&
15310 InputExpr->getType()->isSpecificBuiltinType(K: BuiltinType::Dependent)) {
15311 resultType = Context.DependentTy;
15312 } else {
15313 switch (Opc) {
15314 case UO_PreInc:
15315 case UO_PreDec:
15316 case UO_PostInc:
15317 case UO_PostDec:
15318 resultType =
15319 CheckIncrementDecrementOperand(S&: *this, Op: Input.get(), VK, OK, OpLoc,
15320 IsInc: Opc == UO_PreInc || Opc == UO_PostInc,
15321 IsPrefix: Opc == UO_PreInc || Opc == UO_PreDec);
15322 CanOverflow = isOverflowingIntegerType(Ctx&: Context, T: resultType);
15323 break;
15324 case UO_AddrOf:
15325 resultType = CheckAddressOfOperand(OrigOp&: Input, OpLoc);
15326 CheckAddressOfNoDeref(E: InputExpr);
15327 RecordModifiableNonNullParam(S&: *this, Exp: InputExpr);
15328 break;
15329 case UO_Deref: {
15330 Input = DefaultFunctionArrayLvalueConversion(E: Input.get());
15331 if (Input.isInvalid())
15332 return ExprError();
15333 resultType =
15334 CheckIndirectionOperand(S&: *this, Op: Input.get(), VK, OpLoc, IsAfterAmp);
15335 break;
15336 }
15337 case UO_Plus:
15338 case UO_Minus:
15339 CanOverflow = Opc == UO_Minus &&
15340 isOverflowingIntegerType(Ctx&: Context, T: Input.get()->getType());
15341 Input = UsualUnaryConversions(E: Input.get());
15342 if (Input.isInvalid())
15343 return ExprError();
15344 // Unary plus and minus require promoting an operand of half vector to a
15345 // float vector and truncating the result back to a half vector. For now,
15346 // we do this only when HalfArgsAndReturns is set (that is, when the
15347 // target is arm or arm64).
15348 ConvertHalfVec = needsConversionOfHalfVec(OpRequiresConversion: true, Ctx&: Context, E0: Input.get());
15349
15350 // If the operand is a half vector, promote it to a float vector.
15351 if (ConvertHalfVec)
15352 Input = convertVector(E: Input.get(), ElementType: Context.FloatTy, S&: *this);
15353 resultType = Input.get()->getType();
15354 if (resultType->isArithmeticType()) // C99 6.5.3.3p1
15355 break;
15356 else if (resultType->isVectorType() &&
15357 // The z vector extensions don't allow + or - with bool vectors.
15358 (!Context.getLangOpts().ZVector ||
15359 resultType->castAs<VectorType>()->getVectorKind() !=
15360 VectorKind::AltiVecBool))
15361 break;
15362 else if (resultType->isSveVLSBuiltinType()) // SVE vectors allow + and -
15363 break;
15364 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
15365 Opc == UO_Plus && resultType->isPointerType())
15366 break;
15367
15368 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_typecheck_unary_expr)
15369 << resultType << Input.get()->getSourceRange());
15370
15371 case UO_Not: // bitwise complement
15372 Input = UsualUnaryConversions(E: Input.get());
15373 if (Input.isInvalid())
15374 return ExprError();
15375 resultType = Input.get()->getType();
15376 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
15377 if (resultType->isComplexType() || resultType->isComplexIntegerType())
15378 // C99 does not support '~' for complex conjugation.
15379 Diag(Loc: OpLoc, DiagID: diag::ext_integer_complement_complex)
15380 << resultType << Input.get()->getSourceRange();
15381 else if (resultType->hasIntegerRepresentation())
15382 break;
15383 else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
15384 // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
15385 // on vector float types.
15386 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15387 if (!T->isIntegerType())
15388 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_typecheck_unary_expr)
15389 << resultType << Input.get()->getSourceRange());
15390 } else {
15391 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_typecheck_unary_expr)
15392 << resultType << Input.get()->getSourceRange());
15393 }
15394 break;
15395
15396 case UO_LNot: // logical negation
15397 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
15398 Input = DefaultFunctionArrayLvalueConversion(E: Input.get());
15399 if (Input.isInvalid())
15400 return ExprError();
15401 resultType = Input.get()->getType();
15402
15403 // Though we still have to promote half FP to float...
15404 if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
15405 Input = ImpCastExprToType(E: Input.get(), Type: Context.FloatTy, CK: CK_FloatingCast)
15406 .get();
15407 resultType = Context.FloatTy;
15408 }
15409
15410 // WebAsembly tables can't be used in unary expressions.
15411 if (resultType->isPointerType() &&
15412 resultType->getPointeeType().isWebAssemblyReferenceType()) {
15413 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_typecheck_unary_expr)
15414 << resultType << Input.get()->getSourceRange());
15415 }
15416
15417 if (resultType->isScalarType() && !isScopedEnumerationType(T: resultType)) {
15418 // C99 6.5.3.3p1: ok, fallthrough;
15419 if (Context.getLangOpts().CPlusPlus) {
15420 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
15421 // operand contextually converted to bool.
15422 Input = ImpCastExprToType(E: Input.get(), Type: Context.BoolTy,
15423 CK: ScalarTypeToBooleanCastKind(ScalarTy: resultType));
15424 } else if (Context.getLangOpts().OpenCL &&
15425 Context.getLangOpts().OpenCLVersion < 120) {
15426 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15427 // operate on scalar float types.
15428 if (!resultType->isIntegerType() && !resultType->isPointerType())
15429 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_typecheck_unary_expr)
15430 << resultType << Input.get()->getSourceRange());
15431 }
15432 } else if (resultType->isExtVectorType()) {
15433 if (Context.getLangOpts().OpenCL &&
15434 Context.getLangOpts().getOpenCLCompatibleVersion() < 120) {
15435 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
15436 // operate on vector float types.
15437 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
15438 if (!T->isIntegerType())
15439 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_typecheck_unary_expr)
15440 << resultType << Input.get()->getSourceRange());
15441 }
15442 // Vector logical not returns the signed variant of the operand type.
15443 resultType = GetSignedVectorType(V: resultType);
15444 break;
15445 } else if (Context.getLangOpts().CPlusPlus &&
15446 resultType->isVectorType()) {
15447 const VectorType *VTy = resultType->castAs<VectorType>();
15448 if (VTy->getVectorKind() != VectorKind::Generic)
15449 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_typecheck_unary_expr)
15450 << resultType << Input.get()->getSourceRange());
15451
15452 // Vector logical not returns the signed variant of the operand type.
15453 resultType = GetSignedVectorType(V: resultType);
15454 break;
15455 } else {
15456 return ExprError(Diag(Loc: OpLoc, DiagID: diag::err_typecheck_unary_expr)
15457 << resultType << Input.get()->getSourceRange());
15458 }
15459
15460 // LNot always has type int. C99 6.5.3.3p5.
15461 // In C++, it's bool. C++ 5.3.1p8
15462 resultType = Context.getLogicalOperationType();
15463 break;
15464 case UO_Real:
15465 case UO_Imag:
15466 resultType = CheckRealImagOperand(S&: *this, V&: Input, Loc: OpLoc, IsReal: Opc == UO_Real);
15467 // _Real maps ordinary l-values into ordinary l-values. _Imag maps
15468 // ordinary complex l-values to ordinary l-values and all other values to
15469 // r-values.
15470 if (Input.isInvalid())
15471 return ExprError();
15472 if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
15473 if (Input.get()->isGLValue() &&
15474 Input.get()->getObjectKind() == OK_Ordinary)
15475 VK = Input.get()->getValueKind();
15476 } else if (!getLangOpts().CPlusPlus) {
15477 // In C, a volatile scalar is read by __imag. In C++, it is not.
15478 Input = DefaultLvalueConversion(E: Input.get());
15479 }
15480 break;
15481 case UO_Extension:
15482 resultType = Input.get()->getType();
15483 VK = Input.get()->getValueKind();
15484 OK = Input.get()->getObjectKind();
15485 break;
15486 case UO_Coawait:
15487 // It's unnecessary to represent the pass-through operator co_await in the
15488 // AST; just return the input expression instead.
15489 assert(!Input.get()->getType()->isDependentType() &&
15490 "the co_await expression must be non-dependant before "
15491 "building operator co_await");
15492 return Input;
15493 }
15494 }
15495 if (resultType.isNull() || Input.isInvalid())
15496 return ExprError();
15497
15498 // Check for array bounds violations in the operand of the UnaryOperator,
15499 // except for the '*' and '&' operators that have to be handled specially
15500 // by CheckArrayAccess (as there are special cases like &array[arraysize]
15501 // that are explicitly defined as valid by the standard).
15502 if (Opc != UO_AddrOf && Opc != UO_Deref)
15503 CheckArrayAccess(E: Input.get());
15504
15505 auto *UO =
15506 UnaryOperator::Create(C: Context, input: Input.get(), opc: Opc, type: resultType, VK, OK,
15507 l: OpLoc, CanOverflow, FPFeatures: CurFPFeatureOverrides());
15508
15509 if (Opc == UO_Deref && UO->getType()->hasAttr(AK: attr::NoDeref) &&
15510 !isa<ArrayType>(Val: UO->getType().getDesugaredType(Context)) &&
15511 !isUnevaluatedContext())
15512 ExprEvalContexts.back().PossibleDerefs.insert(Ptr: UO);
15513
15514 // Convert the result back to a half vector.
15515 if (ConvertHalfVec)
15516 return convertVector(E: UO, ElementType: Context.HalfTy, S&: *this);
15517 return UO;
15518}
15519
15520bool Sema::isQualifiedMemberAccess(Expr *E) {
15521 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) {
15522 if (!DRE->getQualifier())
15523 return false;
15524
15525 ValueDecl *VD = DRE->getDecl();
15526 if (!VD->isCXXClassMember())
15527 return false;
15528
15529 if (isa<FieldDecl>(Val: VD) || isa<IndirectFieldDecl>(Val: VD))
15530 return true;
15531 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: VD))
15532 return Method->isImplicitObjectMemberFunction();
15533
15534 return false;
15535 }
15536
15537 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Val: E)) {
15538 if (!ULE->getQualifier())
15539 return false;
15540
15541 for (NamedDecl *D : ULE->decls()) {
15542 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: D)) {
15543 if (Method->isImplicitObjectMemberFunction())
15544 return true;
15545 } else {
15546 // Overload set does not contain methods.
15547 break;
15548 }
15549 }
15550
15551 return false;
15552 }
15553
15554 return false;
15555}
15556
15557ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
15558 UnaryOperatorKind Opc, Expr *Input,
15559 bool IsAfterAmp) {
15560 // First things first: handle placeholders so that the
15561 // overloaded-operator check considers the right type.
15562 if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
15563 // Increment and decrement of pseudo-object references.
15564 if (pty->getKind() == BuiltinType::PseudoObject &&
15565 UnaryOperator::isIncrementDecrementOp(Op: Opc))
15566 return PseudoObject().checkIncDec(S, OpLoc, Opcode: Opc, Op: Input);
15567
15568 // extension is always a builtin operator.
15569 if (Opc == UO_Extension)
15570 return CreateBuiltinUnaryOp(OpLoc, Opc, InputExpr: Input);
15571
15572 // & gets special logic for several kinds of placeholder.
15573 // The builtin code knows what to do.
15574 if (Opc == UO_AddrOf &&
15575 (pty->getKind() == BuiltinType::Overload ||
15576 pty->getKind() == BuiltinType::UnknownAny ||
15577 pty->getKind() == BuiltinType::BoundMember))
15578 return CreateBuiltinUnaryOp(OpLoc, Opc, InputExpr: Input);
15579
15580 // Anything else needs to be handled now.
15581 ExprResult Result = CheckPlaceholderExpr(E: Input);
15582 if (Result.isInvalid()) return ExprError();
15583 Input = Result.get();
15584 }
15585
15586 if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
15587 UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
15588 !(Opc == UO_AddrOf && isQualifiedMemberAccess(E: Input))) {
15589 // Find all of the overloaded operators visible from this point.
15590 UnresolvedSet<16> Functions;
15591 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
15592 if (S && OverOp != OO_None)
15593 LookupOverloadedOperatorName(Op: OverOp, S, Functions);
15594
15595 return CreateOverloadedUnaryOp(OpLoc, Opc, Fns: Functions, input: Input);
15596 }
15597
15598 return CreateBuiltinUnaryOp(OpLoc, Opc, InputExpr: Input, IsAfterAmp);
15599}
15600
15601ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc, tok::TokenKind Op,
15602 Expr *Input, bool IsAfterAmp) {
15603 return BuildUnaryOp(S, OpLoc, Opc: ConvertTokenKindToUnaryOpcode(Kind: Op), Input,
15604 IsAfterAmp);
15605}
15606
15607ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
15608 LabelDecl *TheDecl) {
15609 TheDecl->markUsed(C&: Context);
15610 // Create the AST node. The address of a label always has type 'void*'.
15611 auto *Res = new (Context) AddrLabelExpr(
15612 OpLoc, LabLoc, TheDecl, Context.getPointerType(T: Context.VoidTy));
15613
15614 if (getCurFunction())
15615 getCurFunction()->AddrLabels.push_back(Elt: Res);
15616
15617 return Res;
15618}
15619
15620void Sema::ActOnStartStmtExpr() {
15621 PushExpressionEvaluationContext(NewContext: ExprEvalContexts.back().Context);
15622 // Make sure we diagnose jumping into a statement expression.
15623 setFunctionHasBranchProtectedScope();
15624}
15625
15626void Sema::ActOnStmtExprError() {
15627 // Note that function is also called by TreeTransform when leaving a
15628 // StmtExpr scope without rebuilding anything.
15629
15630 DiscardCleanupsInEvaluationContext();
15631 PopExpressionEvaluationContext();
15632}
15633
15634ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
15635 SourceLocation RPLoc) {
15636 return BuildStmtExpr(LPLoc, SubStmt, RPLoc, TemplateDepth: getTemplateDepth(S));
15637}
15638
15639ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
15640 SourceLocation RPLoc, unsigned TemplateDepth) {
15641 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
15642 CompoundStmt *Compound = cast<CompoundStmt>(Val: SubStmt);
15643
15644 if (hasAnyUnrecoverableErrorsInThisFunction())
15645 DiscardCleanupsInEvaluationContext();
15646 assert(!Cleanup.exprNeedsCleanups() &&
15647 "cleanups within StmtExpr not correctly bound!");
15648 PopExpressionEvaluationContext();
15649
15650 // FIXME: there are a variety of strange constraints to enforce here, for
15651 // example, it is not possible to goto into a stmt expression apparently.
15652 // More semantic analysis is needed.
15653
15654 // If there are sub-stmts in the compound stmt, take the type of the last one
15655 // as the type of the stmtexpr.
15656 QualType Ty = Context.VoidTy;
15657 bool StmtExprMayBindToTemp = false;
15658 if (!Compound->body_empty()) {
15659 // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
15660 if (const auto *LastStmt =
15661 dyn_cast<ValueStmt>(Val: Compound->getStmtExprResult())) {
15662 if (const Expr *Value = LastStmt->getExprStmt()) {
15663 StmtExprMayBindToTemp = true;
15664 Ty = Value->getType();
15665 }
15666 }
15667 }
15668
15669 // FIXME: Check that expression type is complete/non-abstract; statement
15670 // expressions are not lvalues.
15671 Expr *ResStmtExpr =
15672 new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
15673 if (StmtExprMayBindToTemp)
15674 return MaybeBindToTemporary(E: ResStmtExpr);
15675 return ResStmtExpr;
15676}
15677
15678ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
15679 if (ER.isInvalid())
15680 return ExprError();
15681
15682 // Do function/array conversion on the last expression, but not
15683 // lvalue-to-rvalue. However, initialize an unqualified type.
15684 ER = DefaultFunctionArrayConversion(E: ER.get());
15685 if (ER.isInvalid())
15686 return ExprError();
15687 Expr *E = ER.get();
15688
15689 if (E->isTypeDependent())
15690 return E;
15691
15692 // In ARC, if the final expression ends in a consume, splice
15693 // the consume out and bind it later. In the alternate case
15694 // (when dealing with a retainable type), the result
15695 // initialization will create a produce. In both cases the
15696 // result will be +1, and we'll need to balance that out with
15697 // a bind.
15698 auto *Cast = dyn_cast<ImplicitCastExpr>(Val: E);
15699 if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
15700 return Cast->getSubExpr();
15701
15702 // FIXME: Provide a better location for the initialization.
15703 return PerformCopyInitialization(
15704 Entity: InitializedEntity::InitializeStmtExprResult(
15705 ReturnLoc: E->getBeginLoc(), Type: E->getType().getUnqualifiedType()),
15706 EqualLoc: SourceLocation(), Init: E);
15707}
15708
15709ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
15710 TypeSourceInfo *TInfo,
15711 ArrayRef<OffsetOfComponent> Components,
15712 SourceLocation RParenLoc) {
15713 QualType ArgTy = TInfo->getType();
15714 bool Dependent = ArgTy->isDependentType();
15715 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
15716
15717 // We must have at least one component that refers to the type, and the first
15718 // one is known to be a field designator. Verify that the ArgTy represents
15719 // a struct/union/class.
15720 if (!Dependent && !ArgTy->isRecordType())
15721 return ExprError(Diag(Loc: BuiltinLoc, DiagID: diag::err_offsetof_record_type)
15722 << ArgTy << TypeRange);
15723
15724 // Type must be complete per C99 7.17p3 because a declaring a variable
15725 // with an incomplete type would be ill-formed.
15726 if (!Dependent
15727 && RequireCompleteType(Loc: BuiltinLoc, T: ArgTy,
15728 DiagID: diag::err_offsetof_incomplete_type, Args: TypeRange))
15729 return ExprError();
15730
15731 bool DidWarnAboutNonPOD = false;
15732 QualType CurrentType = ArgTy;
15733 SmallVector<OffsetOfNode, 4> Comps;
15734 SmallVector<Expr*, 4> Exprs;
15735 for (const OffsetOfComponent &OC : Components) {
15736 if (OC.isBrackets) {
15737 // Offset of an array sub-field. TODO: Should we allow vector elements?
15738 if (!CurrentType->isDependentType()) {
15739 const ArrayType *AT = Context.getAsArrayType(T: CurrentType);
15740 if(!AT)
15741 return ExprError(Diag(Loc: OC.LocEnd, DiagID: diag::err_offsetof_array_type)
15742 << CurrentType);
15743 CurrentType = AT->getElementType();
15744 } else
15745 CurrentType = Context.DependentTy;
15746
15747 ExprResult IdxRval = DefaultLvalueConversion(E: static_cast<Expr*>(OC.U.E));
15748 if (IdxRval.isInvalid())
15749 return ExprError();
15750 Expr *Idx = IdxRval.get();
15751
15752 // The expression must be an integral expression.
15753 // FIXME: An integral constant expression?
15754 if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
15755 !Idx->getType()->isIntegerType())
15756 return ExprError(
15757 Diag(Loc: Idx->getBeginLoc(), DiagID: diag::err_typecheck_subscript_not_integer)
15758 << Idx->getSourceRange());
15759
15760 // Record this array index.
15761 Comps.push_back(Elt: OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
15762 Exprs.push_back(Elt: Idx);
15763 continue;
15764 }
15765
15766 // Offset of a field.
15767 if (CurrentType->isDependentType()) {
15768 // We have the offset of a field, but we can't look into the dependent
15769 // type. Just record the identifier of the field.
15770 Comps.push_back(Elt: OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
15771 CurrentType = Context.DependentTy;
15772 continue;
15773 }
15774
15775 // We need to have a complete type to look into.
15776 if (RequireCompleteType(Loc: OC.LocStart, T: CurrentType,
15777 DiagID: diag::err_offsetof_incomplete_type))
15778 return ExprError();
15779
15780 // Look for the designated field.
15781 const RecordType *RC = CurrentType->getAs<RecordType>();
15782 if (!RC)
15783 return ExprError(Diag(Loc: OC.LocEnd, DiagID: diag::err_offsetof_record_type)
15784 << CurrentType);
15785 RecordDecl *RD = RC->getDecl();
15786
15787 // C++ [lib.support.types]p5:
15788 // The macro offsetof accepts a restricted set of type arguments in this
15789 // International Standard. type shall be a POD structure or a POD union
15790 // (clause 9).
15791 // C++11 [support.types]p4:
15792 // If type is not a standard-layout class (Clause 9), the results are
15793 // undefined.
15794 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(Val: RD)) {
15795 bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
15796 unsigned DiagID =
15797 LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
15798 : diag::ext_offsetof_non_pod_type;
15799
15800 if (!IsSafe && !DidWarnAboutNonPOD && !isUnevaluatedContext()) {
15801 Diag(Loc: BuiltinLoc, DiagID)
15802 << SourceRange(Components[0].LocStart, OC.LocEnd) << CurrentType;
15803 DidWarnAboutNonPOD = true;
15804 }
15805 }
15806
15807 // Look for the field.
15808 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
15809 LookupQualifiedName(R, LookupCtx: RD);
15810 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
15811 IndirectFieldDecl *IndirectMemberDecl = nullptr;
15812 if (!MemberDecl) {
15813 if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
15814 MemberDecl = IndirectMemberDecl->getAnonField();
15815 }
15816
15817 if (!MemberDecl) {
15818 // Lookup could be ambiguous when looking up a placeholder variable
15819 // __builtin_offsetof(S, _).
15820 // In that case we would already have emitted a diagnostic
15821 if (!R.isAmbiguous())
15822 Diag(Loc: BuiltinLoc, DiagID: diag::err_no_member)
15823 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart, OC.LocEnd);
15824 return ExprError();
15825 }
15826
15827 // C99 7.17p3:
15828 // (If the specified member is a bit-field, the behavior is undefined.)
15829 //
15830 // We diagnose this as an error.
15831 if (MemberDecl->isBitField()) {
15832 Diag(Loc: OC.LocEnd, DiagID: diag::err_offsetof_bitfield)
15833 << MemberDecl->getDeclName()
15834 << SourceRange(BuiltinLoc, RParenLoc);
15835 Diag(Loc: MemberDecl->getLocation(), DiagID: diag::note_bitfield_decl);
15836 return ExprError();
15837 }
15838
15839 RecordDecl *Parent = MemberDecl->getParent();
15840 if (IndirectMemberDecl)
15841 Parent = cast<RecordDecl>(Val: IndirectMemberDecl->getDeclContext());
15842
15843 // If the member was found in a base class, introduce OffsetOfNodes for
15844 // the base class indirections.
15845 CXXBasePaths Paths;
15846 if (IsDerivedFrom(Loc: OC.LocStart, Derived: CurrentType, Base: Context.getTypeDeclType(Decl: Parent),
15847 Paths)) {
15848 if (Paths.getDetectedVirtual()) {
15849 Diag(Loc: OC.LocEnd, DiagID: diag::err_offsetof_field_of_virtual_base)
15850 << MemberDecl->getDeclName()
15851 << SourceRange(BuiltinLoc, RParenLoc);
15852 return ExprError();
15853 }
15854
15855 CXXBasePath &Path = Paths.front();
15856 for (const CXXBasePathElement &B : Path)
15857 Comps.push_back(Elt: OffsetOfNode(B.Base));
15858 }
15859
15860 if (IndirectMemberDecl) {
15861 for (auto *FI : IndirectMemberDecl->chain()) {
15862 assert(isa<FieldDecl>(FI));
15863 Comps.push_back(Elt: OffsetOfNode(OC.LocStart,
15864 cast<FieldDecl>(Val: FI), OC.LocEnd));
15865 }
15866 } else
15867 Comps.push_back(Elt: OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
15868
15869 CurrentType = MemberDecl->getType().getNonReferenceType();
15870 }
15871
15872 return OffsetOfExpr::Create(C: Context, type: Context.getSizeType(), OperatorLoc: BuiltinLoc, tsi: TInfo,
15873 comps: Comps, exprs: Exprs, RParenLoc);
15874}
15875
15876ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
15877 SourceLocation BuiltinLoc,
15878 SourceLocation TypeLoc,
15879 ParsedType ParsedArgTy,
15880 ArrayRef<OffsetOfComponent> Components,
15881 SourceLocation RParenLoc) {
15882
15883 TypeSourceInfo *ArgTInfo;
15884 QualType ArgTy = GetTypeFromParser(Ty: ParsedArgTy, TInfo: &ArgTInfo);
15885 if (ArgTy.isNull())
15886 return ExprError();
15887
15888 if (!ArgTInfo)
15889 ArgTInfo = Context.getTrivialTypeSourceInfo(T: ArgTy, Loc: TypeLoc);
15890
15891 return BuildBuiltinOffsetOf(BuiltinLoc, TInfo: ArgTInfo, Components, RParenLoc);
15892}
15893
15894
15895ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
15896 Expr *CondExpr,
15897 Expr *LHSExpr, Expr *RHSExpr,
15898 SourceLocation RPLoc) {
15899 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
15900
15901 ExprValueKind VK = VK_PRValue;
15902 ExprObjectKind OK = OK_Ordinary;
15903 QualType resType;
15904 bool CondIsTrue = false;
15905 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
15906 resType = Context.DependentTy;
15907 } else {
15908 // The conditional expression is required to be a constant expression.
15909 llvm::APSInt condEval(32);
15910 ExprResult CondICE = VerifyIntegerConstantExpression(
15911 E: CondExpr, Result: &condEval, DiagID: diag::err_typecheck_choose_expr_requires_constant);
15912 if (CondICE.isInvalid())
15913 return ExprError();
15914 CondExpr = CondICE.get();
15915 CondIsTrue = condEval.getZExtValue();
15916
15917 // If the condition is > zero, then the AST type is the same as the LHSExpr.
15918 Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
15919
15920 resType = ActiveExpr->getType();
15921 VK = ActiveExpr->getValueKind();
15922 OK = ActiveExpr->getObjectKind();
15923 }
15924
15925 return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
15926 resType, VK, OK, RPLoc, CondIsTrue);
15927}
15928
15929//===----------------------------------------------------------------------===//
15930// Clang Extensions.
15931//===----------------------------------------------------------------------===//
15932
15933void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
15934 BlockDecl *Block = BlockDecl::Create(C&: Context, DC: CurContext, L: CaretLoc);
15935
15936 if (LangOpts.CPlusPlus) {
15937 MangleNumberingContext *MCtx;
15938 Decl *ManglingContextDecl;
15939 std::tie(args&: MCtx, args&: ManglingContextDecl) =
15940 getCurrentMangleNumberContext(DC: Block->getDeclContext());
15941 if (MCtx) {
15942 unsigned ManglingNumber = MCtx->getManglingNumber(BD: Block);
15943 Block->setBlockMangling(Number: ManglingNumber, Ctx: ManglingContextDecl);
15944 }
15945 }
15946
15947 PushBlockScope(BlockScope: CurScope, Block);
15948 CurContext->addDecl(D: Block);
15949 if (CurScope)
15950 PushDeclContext(S: CurScope, DC: Block);
15951 else
15952 CurContext = Block;
15953
15954 getCurBlock()->HasImplicitReturnType = true;
15955
15956 // Enter a new evaluation context to insulate the block from any
15957 // cleanups from the enclosing full-expression.
15958 PushExpressionEvaluationContext(
15959 NewContext: ExpressionEvaluationContext::PotentiallyEvaluated);
15960}
15961
15962void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
15963 Scope *CurScope) {
15964 assert(ParamInfo.getIdentifier() == nullptr &&
15965 "block-id should have no identifier!");
15966 assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral);
15967 BlockScopeInfo *CurBlock = getCurBlock();
15968
15969 TypeSourceInfo *Sig = GetTypeForDeclarator(D&: ParamInfo);
15970 QualType T = Sig->getType();
15971
15972 // FIXME: We should allow unexpanded parameter packs here, but that would,
15973 // in turn, make the block expression contain unexpanded parameter packs.
15974 if (DiagnoseUnexpandedParameterPack(Loc: CaretLoc, T: Sig, UPPC: UPPC_Block)) {
15975 // Drop the parameters.
15976 FunctionProtoType::ExtProtoInfo EPI;
15977 EPI.HasTrailingReturn = false;
15978 EPI.TypeQuals.addConst();
15979 T = Context.getFunctionType(ResultTy: Context.DependentTy, Args: std::nullopt, EPI);
15980 Sig = Context.getTrivialTypeSourceInfo(T);
15981 }
15982
15983 // GetTypeForDeclarator always produces a function type for a block
15984 // literal signature. Furthermore, it is always a FunctionProtoType
15985 // unless the function was written with a typedef.
15986 assert(T->isFunctionType() &&
15987 "GetTypeForDeclarator made a non-function block signature");
15988
15989 // Look for an explicit signature in that function type.
15990 FunctionProtoTypeLoc ExplicitSignature;
15991
15992 if ((ExplicitSignature = Sig->getTypeLoc()
15993 .getAsAdjusted<FunctionProtoTypeLoc>())) {
15994
15995 // Check whether that explicit signature was synthesized by
15996 // GetTypeForDeclarator. If so, don't save that as part of the
15997 // written signature.
15998 if (ExplicitSignature.getLocalRangeBegin() ==
15999 ExplicitSignature.getLocalRangeEnd()) {
16000 // This would be much cheaper if we stored TypeLocs instead of
16001 // TypeSourceInfos.
16002 TypeLoc Result = ExplicitSignature.getReturnLoc();
16003 unsigned Size = Result.getFullDataSize();
16004 Sig = Context.CreateTypeSourceInfo(T: Result.getType(), Size);
16005 Sig->getTypeLoc().initializeFullCopy(Other: Result, Size);
16006
16007 ExplicitSignature = FunctionProtoTypeLoc();
16008 }
16009 }
16010
16011 CurBlock->TheDecl->setSignatureAsWritten(Sig);
16012 CurBlock->FunctionType = T;
16013
16014 const auto *Fn = T->castAs<FunctionType>();
16015 QualType RetTy = Fn->getReturnType();
16016 bool isVariadic =
16017 (isa<FunctionProtoType>(Val: Fn) && cast<FunctionProtoType>(Val: Fn)->isVariadic());
16018
16019 CurBlock->TheDecl->setIsVariadic(isVariadic);
16020
16021 // Context.DependentTy is used as a placeholder for a missing block
16022 // return type. TODO: what should we do with declarators like:
16023 // ^ * { ... }
16024 // If the answer is "apply template argument deduction"....
16025 if (RetTy != Context.DependentTy) {
16026 CurBlock->ReturnType = RetTy;
16027 CurBlock->TheDecl->setBlockMissingReturnType(false);
16028 CurBlock->HasImplicitReturnType = false;
16029 }
16030
16031 // Push block parameters from the declarator if we had them.
16032 SmallVector<ParmVarDecl*, 8> Params;
16033 if (ExplicitSignature) {
16034 for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
16035 ParmVarDecl *Param = ExplicitSignature.getParam(i: I);
16036 if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
16037 !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
16038 // Diagnose this as an extension in C17 and earlier.
16039 if (!getLangOpts().C23)
16040 Diag(Loc: Param->getLocation(), DiagID: diag::ext_parameter_name_omitted_c23);
16041 }
16042 Params.push_back(Elt: Param);
16043 }
16044
16045 // Fake up parameter variables if we have a typedef, like
16046 // ^ fntype { ... }
16047 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
16048 for (const auto &I : Fn->param_types()) {
16049 ParmVarDecl *Param = BuildParmVarDeclForTypedef(
16050 DC: CurBlock->TheDecl, Loc: ParamInfo.getBeginLoc(), T: I);
16051 Params.push_back(Elt: Param);
16052 }
16053 }
16054
16055 // Set the parameters on the block decl.
16056 if (!Params.empty()) {
16057 CurBlock->TheDecl->setParams(Params);
16058 CheckParmsForFunctionDef(Parameters: CurBlock->TheDecl->parameters(),
16059 /*CheckParameterNames=*/false);
16060 }
16061
16062 // Finally we can process decl attributes.
16063 ProcessDeclAttributes(S: CurScope, D: CurBlock->TheDecl, PD: ParamInfo);
16064
16065 // Put the parameter variables in scope.
16066 for (auto *AI : CurBlock->TheDecl->parameters()) {
16067 AI->setOwningFunction(CurBlock->TheDecl);
16068
16069 // If this has an identifier, add it to the scope stack.
16070 if (AI->getIdentifier()) {
16071 CheckShadow(S: CurBlock->TheScope, D: AI);
16072
16073 PushOnScopeChains(D: AI, S: CurBlock->TheScope);
16074 }
16075
16076 if (AI->isInvalidDecl())
16077 CurBlock->TheDecl->setInvalidDecl();
16078 }
16079}
16080
16081void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
16082 // Leave the expression-evaluation context.
16083 DiscardCleanupsInEvaluationContext();
16084 PopExpressionEvaluationContext();
16085
16086 // Pop off CurBlock, handle nested blocks.
16087 PopDeclContext();
16088 PopFunctionScopeInfo();
16089}
16090
16091ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
16092 Stmt *Body, Scope *CurScope) {
16093 // If blocks are disabled, emit an error.
16094 if (!LangOpts.Blocks)
16095 Diag(Loc: CaretLoc, DiagID: diag::err_blocks_disable) << LangOpts.OpenCL;
16096
16097 // Leave the expression-evaluation context.
16098 if (hasAnyUnrecoverableErrorsInThisFunction())
16099 DiscardCleanupsInEvaluationContext();
16100 assert(!Cleanup.exprNeedsCleanups() &&
16101 "cleanups within block not correctly bound!");
16102 PopExpressionEvaluationContext();
16103
16104 BlockScopeInfo *BSI = cast<BlockScopeInfo>(Val: FunctionScopes.back());
16105 BlockDecl *BD = BSI->TheDecl;
16106
16107 if (BSI->HasImplicitReturnType)
16108 deduceClosureReturnType(CSI&: *BSI);
16109
16110 QualType RetTy = Context.VoidTy;
16111 if (!BSI->ReturnType.isNull())
16112 RetTy = BSI->ReturnType;
16113
16114 bool NoReturn = BD->hasAttr<NoReturnAttr>();
16115 QualType BlockTy;
16116
16117 // If the user wrote a function type in some form, try to use that.
16118 if (!BSI->FunctionType.isNull()) {
16119 const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
16120
16121 FunctionType::ExtInfo Ext = FTy->getExtInfo();
16122 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(noReturn: true);
16123
16124 // Turn protoless block types into nullary block types.
16125 if (isa<FunctionNoProtoType>(Val: FTy)) {
16126 FunctionProtoType::ExtProtoInfo EPI;
16127 EPI.ExtInfo = Ext;
16128 BlockTy = Context.getFunctionType(ResultTy: RetTy, Args: std::nullopt, EPI);
16129
16130 // Otherwise, if we don't need to change anything about the function type,
16131 // preserve its sugar structure.
16132 } else if (FTy->getReturnType() == RetTy &&
16133 (!NoReturn || FTy->getNoReturnAttr())) {
16134 BlockTy = BSI->FunctionType;
16135
16136 // Otherwise, make the minimal modifications to the function type.
16137 } else {
16138 const FunctionProtoType *FPT = cast<FunctionProtoType>(Val: FTy);
16139 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
16140 EPI.TypeQuals = Qualifiers();
16141 EPI.ExtInfo = Ext;
16142 BlockTy = Context.getFunctionType(ResultTy: RetTy, Args: FPT->getParamTypes(), EPI);
16143 }
16144
16145 // If we don't have a function type, just build one from nothing.
16146 } else {
16147 FunctionProtoType::ExtProtoInfo EPI;
16148 EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(noReturn: NoReturn);
16149 BlockTy = Context.getFunctionType(ResultTy: RetTy, Args: std::nullopt, EPI);
16150 }
16151
16152 DiagnoseUnusedParameters(Parameters: BD->parameters());
16153 BlockTy = Context.getBlockPointerType(T: BlockTy);
16154
16155 // If needed, diagnose invalid gotos and switches in the block.
16156 if (getCurFunction()->NeedsScopeChecking() &&
16157 !PP.isCodeCompletionEnabled())
16158 DiagnoseInvalidJumps(Body: cast<CompoundStmt>(Val: Body));
16159
16160 BD->setBody(cast<CompoundStmt>(Val: Body));
16161
16162 if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
16163 DiagnoseUnguardedAvailabilityViolations(FD: BD);
16164
16165 // Try to apply the named return value optimization. We have to check again
16166 // if we can do this, though, because blocks keep return statements around
16167 // to deduce an implicit return type.
16168 if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
16169 !BD->isDependentContext())
16170 computeNRVO(Body, Scope: BSI);
16171
16172 if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
16173 RetTy.hasNonTrivialToPrimitiveCopyCUnion())
16174 checkNonTrivialCUnion(QT: RetTy, Loc: BD->getCaretLocation(), UseContext: NTCUC_FunctionReturn,
16175 NonTrivialKind: NTCUK_Destruct|NTCUK_Copy);
16176
16177 PopDeclContext();
16178
16179 // Set the captured variables on the block.
16180 SmallVector<BlockDecl::Capture, 4> Captures;
16181 for (Capture &Cap : BSI->Captures) {
16182 if (Cap.isInvalid() || Cap.isThisCapture())
16183 continue;
16184 // Cap.getVariable() is always a VarDecl because
16185 // blocks cannot capture structured bindings or other ValueDecl kinds.
16186 auto *Var = cast<VarDecl>(Val: Cap.getVariable());
16187 Expr *CopyExpr = nullptr;
16188 if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
16189 if (const RecordType *Record =
16190 Cap.getCaptureType()->getAs<RecordType>()) {
16191 // The capture logic needs the destructor, so make sure we mark it.
16192 // Usually this is unnecessary because most local variables have
16193 // their destructors marked at declaration time, but parameters are
16194 // an exception because it's technically only the call site that
16195 // actually requires the destructor.
16196 if (isa<ParmVarDecl>(Val: Var))
16197 FinalizeVarWithDestructor(VD: Var, DeclInitType: Record);
16198
16199 // Enter a separate potentially-evaluated context while building block
16200 // initializers to isolate their cleanups from those of the block
16201 // itself.
16202 // FIXME: Is this appropriate even when the block itself occurs in an
16203 // unevaluated operand?
16204 EnterExpressionEvaluationContext EvalContext(
16205 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
16206
16207 SourceLocation Loc = Cap.getLocation();
16208
16209 ExprResult Result = BuildDeclarationNameExpr(
16210 SS: CXXScopeSpec(), NameInfo: DeclarationNameInfo(Var->getDeclName(), Loc), D: Var);
16211
16212 // According to the blocks spec, the capture of a variable from
16213 // the stack requires a const copy constructor. This is not true
16214 // of the copy/move done to move a __block variable to the heap.
16215 if (!Result.isInvalid() &&
16216 !Result.get()->getType().isConstQualified()) {
16217 Result = ImpCastExprToType(E: Result.get(),
16218 Type: Result.get()->getType().withConst(),
16219 CK: CK_NoOp, VK: VK_LValue);
16220 }
16221
16222 if (!Result.isInvalid()) {
16223 Result = PerformCopyInitialization(
16224 Entity: InitializedEntity::InitializeBlock(BlockVarLoc: Var->getLocation(),
16225 Type: Cap.getCaptureType()),
16226 EqualLoc: Loc, Init: Result.get());
16227 }
16228
16229 // Build a full-expression copy expression if initialization
16230 // succeeded and used a non-trivial constructor. Recover from
16231 // errors by pretending that the copy isn't necessary.
16232 if (!Result.isInvalid() &&
16233 !cast<CXXConstructExpr>(Val: Result.get())->getConstructor()
16234 ->isTrivial()) {
16235 Result = MaybeCreateExprWithCleanups(SubExpr: Result);
16236 CopyExpr = Result.get();
16237 }
16238 }
16239 }
16240
16241 BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
16242 CopyExpr);
16243 Captures.push_back(Elt: NewCap);
16244 }
16245 BD->setCaptures(Context, Captures, CapturesCXXThis: BSI->CXXThisCaptureIndex != 0);
16246
16247 // Pop the block scope now but keep it alive to the end of this function.
16248 AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
16249 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(WP: &WP, D: BD, BlockType: BlockTy);
16250
16251 BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
16252
16253 // If the block isn't obviously global, i.e. it captures anything at
16254 // all, then we need to do a few things in the surrounding context:
16255 if (Result->getBlockDecl()->hasCaptures()) {
16256 // First, this expression has a new cleanup object.
16257 ExprCleanupObjects.push_back(Elt: Result->getBlockDecl());
16258 Cleanup.setExprNeedsCleanups(true);
16259
16260 // It also gets a branch-protected scope if any of the captured
16261 // variables needs destruction.
16262 for (const auto &CI : Result->getBlockDecl()->captures()) {
16263 const VarDecl *var = CI.getVariable();
16264 if (var->getType().isDestructedType() != QualType::DK_none) {
16265 setFunctionHasBranchProtectedScope();
16266 break;
16267 }
16268 }
16269 }
16270
16271 if (getCurFunction())
16272 getCurFunction()->addBlock(BD);
16273
16274 if (BD->isInvalidDecl())
16275 return CreateRecoveryExpr(Begin: Result->getBeginLoc(), End: Result->getEndLoc(),
16276 SubExprs: {Result}, T: Result->getType());
16277 return Result;
16278}
16279
16280ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
16281 SourceLocation RPLoc) {
16282 TypeSourceInfo *TInfo;
16283 GetTypeFromParser(Ty, TInfo: &TInfo);
16284 return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
16285}
16286
16287ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
16288 Expr *E, TypeSourceInfo *TInfo,
16289 SourceLocation RPLoc) {
16290 Expr *OrigExpr = E;
16291 bool IsMS = false;
16292
16293 // CUDA device code does not support varargs.
16294 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
16295 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(Val: CurContext)) {
16296 CUDAFunctionTarget T = CUDA().IdentifyTarget(D: F);
16297 if (T == CUDAFunctionTarget::Global || T == CUDAFunctionTarget::Device ||
16298 T == CUDAFunctionTarget::HostDevice)
16299 return ExprError(Diag(Loc: E->getBeginLoc(), DiagID: diag::err_va_arg_in_device));
16300 }
16301 }
16302
16303 // NVPTX does not support va_arg expression.
16304 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsTargetDevice &&
16305 Context.getTargetInfo().getTriple().isNVPTX())
16306 targetDiag(Loc: E->getBeginLoc(), DiagID: diag::err_va_arg_in_device);
16307
16308 // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
16309 // as Microsoft ABI on an actual Microsoft platform, where
16310 // __builtin_ms_va_list and __builtin_va_list are the same.)
16311 if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
16312 Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
16313 QualType MSVaListType = Context.getBuiltinMSVaListType();
16314 if (Context.hasSameType(T1: MSVaListType, T2: E->getType())) {
16315 if (CheckForModifiableLvalue(E, Loc: BuiltinLoc, S&: *this))
16316 return ExprError();
16317 IsMS = true;
16318 }
16319 }
16320
16321 // Get the va_list type
16322 QualType VaListType = Context.getBuiltinVaListType();
16323 if (!IsMS) {
16324 if (VaListType->isArrayType()) {
16325 // Deal with implicit array decay; for example, on x86-64,
16326 // va_list is an array, but it's supposed to decay to
16327 // a pointer for va_arg.
16328 VaListType = Context.getArrayDecayedType(T: VaListType);
16329 // Make sure the input expression also decays appropriately.
16330 ExprResult Result = UsualUnaryConversions(E);
16331 if (Result.isInvalid())
16332 return ExprError();
16333 E = Result.get();
16334 } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
16335 // If va_list is a record type and we are compiling in C++ mode,
16336 // check the argument using reference binding.
16337 InitializedEntity Entity = InitializedEntity::InitializeParameter(
16338 Context, Type: Context.getLValueReferenceType(T: VaListType), Consumed: false);
16339 ExprResult Init = PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: E);
16340 if (Init.isInvalid())
16341 return ExprError();
16342 E = Init.getAs<Expr>();
16343 } else {
16344 // Otherwise, the va_list argument must be an l-value because
16345 // it is modified by va_arg.
16346 if (!E->isTypeDependent() &&
16347 CheckForModifiableLvalue(E, Loc: BuiltinLoc, S&: *this))
16348 return ExprError();
16349 }
16350 }
16351
16352 if (!IsMS && !E->isTypeDependent() &&
16353 !Context.hasSameType(T1: VaListType, T2: E->getType()))
16354 return ExprError(
16355 Diag(Loc: E->getBeginLoc(),
16356 DiagID: diag::err_first_argument_to_va_arg_not_of_type_va_list)
16357 << OrigExpr->getType() << E->getSourceRange());
16358
16359 if (!TInfo->getType()->isDependentType()) {
16360 if (RequireCompleteType(Loc: TInfo->getTypeLoc().getBeginLoc(), T: TInfo->getType(),
16361 DiagID: diag::err_second_parameter_to_va_arg_incomplete,
16362 Args: TInfo->getTypeLoc()))
16363 return ExprError();
16364
16365 if (RequireNonAbstractType(Loc: TInfo->getTypeLoc().getBeginLoc(),
16366 T: TInfo->getType(),
16367 DiagID: diag::err_second_parameter_to_va_arg_abstract,
16368 Args: TInfo->getTypeLoc()))
16369 return ExprError();
16370
16371 if (!TInfo->getType().isPODType(Context)) {
16372 Diag(Loc: TInfo->getTypeLoc().getBeginLoc(),
16373 DiagID: TInfo->getType()->isObjCLifetimeType()
16374 ? diag::warn_second_parameter_to_va_arg_ownership_qualified
16375 : diag::warn_second_parameter_to_va_arg_not_pod)
16376 << TInfo->getType()
16377 << TInfo->getTypeLoc().getSourceRange();
16378 }
16379
16380 // Check for va_arg where arguments of the given type will be promoted
16381 // (i.e. this va_arg is guaranteed to have undefined behavior).
16382 QualType PromoteType;
16383 if (Context.isPromotableIntegerType(T: TInfo->getType())) {
16384 PromoteType = Context.getPromotedIntegerType(PromotableType: TInfo->getType());
16385 // [cstdarg.syn]p1 defers the C++ behavior to what the C standard says,
16386 // and C23 7.16.1.1p2 says, in part:
16387 // If type is not compatible with the type of the actual next argument
16388 // (as promoted according to the default argument promotions), the
16389 // behavior is undefined, except for the following cases:
16390 // - both types are pointers to qualified or unqualified versions of
16391 // compatible types;
16392 // - one type is compatible with a signed integer type, the other
16393 // type is compatible with the corresponding unsigned integer type,
16394 // and the value is representable in both types;
16395 // - one type is pointer to qualified or unqualified void and the
16396 // other is a pointer to a qualified or unqualified character type;
16397 // - or, the type of the next argument is nullptr_t and type is a
16398 // pointer type that has the same representation and alignment
16399 // requirements as a pointer to a character type.
16400 // Given that type compatibility is the primary requirement (ignoring
16401 // qualifications), you would think we could call typesAreCompatible()
16402 // directly to test this. However, in C++, that checks for *same type*,
16403 // which causes false positives when passing an enumeration type to
16404 // va_arg. Instead, get the underlying type of the enumeration and pass
16405 // that.
16406 QualType UnderlyingType = TInfo->getType();
16407 if (const auto *ET = UnderlyingType->getAs<EnumType>())
16408 UnderlyingType = ET->getDecl()->getIntegerType();
16409 if (Context.typesAreCompatible(T1: PromoteType, T2: UnderlyingType,
16410 /*CompareUnqualified*/ true))
16411 PromoteType = QualType();
16412
16413 // If the types are still not compatible, we need to test whether the
16414 // promoted type and the underlying type are the same except for
16415 // signedness. Ask the AST for the correctly corresponding type and see
16416 // if that's compatible.
16417 if (!PromoteType.isNull() && !UnderlyingType->isBooleanType() &&
16418 PromoteType->isUnsignedIntegerType() !=
16419 UnderlyingType->isUnsignedIntegerType()) {
16420 UnderlyingType =
16421 UnderlyingType->isUnsignedIntegerType()
16422 ? Context.getCorrespondingSignedType(T: UnderlyingType)
16423 : Context.getCorrespondingUnsignedType(T: UnderlyingType);
16424 if (Context.typesAreCompatible(T1: PromoteType, T2: UnderlyingType,
16425 /*CompareUnqualified*/ true))
16426 PromoteType = QualType();
16427 }
16428 }
16429 if (TInfo->getType()->isSpecificBuiltinType(K: BuiltinType::Float))
16430 PromoteType = Context.DoubleTy;
16431 if (!PromoteType.isNull())
16432 DiagRuntimeBehavior(Loc: TInfo->getTypeLoc().getBeginLoc(), Statement: E,
16433 PD: PDiag(DiagID: diag::warn_second_parameter_to_va_arg_never_compatible)
16434 << TInfo->getType()
16435 << PromoteType
16436 << TInfo->getTypeLoc().getSourceRange());
16437 }
16438
16439 QualType T = TInfo->getType().getNonLValueExprType(Context);
16440 return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
16441}
16442
16443ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
16444 // The type of __null will be int or long, depending on the size of
16445 // pointers on the target.
16446 QualType Ty;
16447 unsigned pw = Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default);
16448 if (pw == Context.getTargetInfo().getIntWidth())
16449 Ty = Context.IntTy;
16450 else if (pw == Context.getTargetInfo().getLongWidth())
16451 Ty = Context.LongTy;
16452 else if (pw == Context.getTargetInfo().getLongLongWidth())
16453 Ty = Context.LongLongTy;
16454 else {
16455 llvm_unreachable("I don't know size of pointer!");
16456 }
16457
16458 return new (Context) GNUNullExpr(Ty, TokenLoc);
16459}
16460
16461static CXXRecordDecl *LookupStdSourceLocationImpl(Sema &S, SourceLocation Loc) {
16462 CXXRecordDecl *ImplDecl = nullptr;
16463
16464 // Fetch the std::source_location::__impl decl.
16465 if (NamespaceDecl *Std = S.getStdNamespace()) {
16466 LookupResult ResultSL(S, &S.PP.getIdentifierTable().get(Name: "source_location"),
16467 Loc, Sema::LookupOrdinaryName);
16468 if (S.LookupQualifiedName(R&: ResultSL, LookupCtx: Std)) {
16469 if (auto *SLDecl = ResultSL.getAsSingle<RecordDecl>()) {
16470 LookupResult ResultImpl(S, &S.PP.getIdentifierTable().get(Name: "__impl"),
16471 Loc, Sema::LookupOrdinaryName);
16472 if ((SLDecl->isCompleteDefinition() || SLDecl->isBeingDefined()) &&
16473 S.LookupQualifiedName(R&: ResultImpl, LookupCtx: SLDecl)) {
16474 ImplDecl = ResultImpl.getAsSingle<CXXRecordDecl>();
16475 }
16476 }
16477 }
16478 }
16479
16480 if (!ImplDecl || !ImplDecl->isCompleteDefinition()) {
16481 S.Diag(Loc, DiagID: diag::err_std_source_location_impl_not_found);
16482 return nullptr;
16483 }
16484
16485 // Verify that __impl is a trivial struct type, with no base classes, and with
16486 // only the four expected fields.
16487 if (ImplDecl->isUnion() || !ImplDecl->isStandardLayout() ||
16488 ImplDecl->getNumBases() != 0) {
16489 S.Diag(Loc, DiagID: diag::err_std_source_location_impl_malformed);
16490 return nullptr;
16491 }
16492
16493 unsigned Count = 0;
16494 for (FieldDecl *F : ImplDecl->fields()) {
16495 StringRef Name = F->getName();
16496
16497 if (Name == "_M_file_name") {
16498 if (F->getType() !=
16499 S.Context.getPointerType(T: S.Context.CharTy.withConst()))
16500 break;
16501 Count++;
16502 } else if (Name == "_M_function_name") {
16503 if (F->getType() !=
16504 S.Context.getPointerType(T: S.Context.CharTy.withConst()))
16505 break;
16506 Count++;
16507 } else if (Name == "_M_line") {
16508 if (!F->getType()->isIntegerType())
16509 break;
16510 Count++;
16511 } else if (Name == "_M_column") {
16512 if (!F->getType()->isIntegerType())
16513 break;
16514 Count++;
16515 } else {
16516 Count = 100; // invalid
16517 break;
16518 }
16519 }
16520 if (Count != 4) {
16521 S.Diag(Loc, DiagID: diag::err_std_source_location_impl_malformed);
16522 return nullptr;
16523 }
16524
16525 return ImplDecl;
16526}
16527
16528ExprResult Sema::ActOnSourceLocExpr(SourceLocIdentKind Kind,
16529 SourceLocation BuiltinLoc,
16530 SourceLocation RPLoc) {
16531 QualType ResultTy;
16532 switch (Kind) {
16533 case SourceLocIdentKind::File:
16534 case SourceLocIdentKind::FileName:
16535 case SourceLocIdentKind::Function:
16536 case SourceLocIdentKind::FuncSig: {
16537 QualType ArrTy = Context.getStringLiteralArrayType(EltTy: Context.CharTy, Length: 0);
16538 ResultTy =
16539 Context.getPointerType(T: ArrTy->getAsArrayTypeUnsafe()->getElementType());
16540 break;
16541 }
16542 case SourceLocIdentKind::Line:
16543 case SourceLocIdentKind::Column:
16544 ResultTy = Context.UnsignedIntTy;
16545 break;
16546 case SourceLocIdentKind::SourceLocStruct:
16547 if (!StdSourceLocationImplDecl) {
16548 StdSourceLocationImplDecl =
16549 LookupStdSourceLocationImpl(S&: *this, Loc: BuiltinLoc);
16550 if (!StdSourceLocationImplDecl)
16551 return ExprError();
16552 }
16553 ResultTy = Context.getPointerType(
16554 T: Context.getRecordType(Decl: StdSourceLocationImplDecl).withConst());
16555 break;
16556 }
16557
16558 return BuildSourceLocExpr(Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext: CurContext);
16559}
16560
16561ExprResult Sema::BuildSourceLocExpr(SourceLocIdentKind Kind, QualType ResultTy,
16562 SourceLocation BuiltinLoc,
16563 SourceLocation RPLoc,
16564 DeclContext *ParentContext) {
16565 return new (Context)
16566 SourceLocExpr(Context, Kind, ResultTy, BuiltinLoc, RPLoc, ParentContext);
16567}
16568
16569ExprResult Sema::ActOnEmbedExpr(SourceLocation EmbedKeywordLoc,
16570 StringLiteral *BinaryData) {
16571 EmbedDataStorage *Data = new (Context) EmbedDataStorage;
16572 Data->BinaryData = BinaryData;
16573 return new (Context)
16574 EmbedExpr(Context, EmbedKeywordLoc, Data, /*NumOfElements=*/0,
16575 Data->getDataElementCount());
16576}
16577
16578static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
16579 const Expr *SrcExpr) {
16580 if (!DstType->isFunctionPointerType() ||
16581 !SrcExpr->getType()->isFunctionType())
16582 return false;
16583
16584 auto *DRE = dyn_cast<DeclRefExpr>(Val: SrcExpr->IgnoreParenImpCasts());
16585 if (!DRE)
16586 return false;
16587
16588 auto *FD = dyn_cast<FunctionDecl>(Val: DRE->getDecl());
16589 if (!FD)
16590 return false;
16591
16592 return !S.checkAddressOfFunctionIsAvailable(Function: FD,
16593 /*Complain=*/true,
16594 Loc: SrcExpr->getBeginLoc());
16595}
16596
16597bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
16598 SourceLocation Loc,
16599 QualType DstType, QualType SrcType,
16600 Expr *SrcExpr, AssignmentAction Action,
16601 bool *Complained) {
16602 if (Complained)
16603 *Complained = false;
16604
16605 // Decode the result (notice that AST's are still created for extensions).
16606 bool CheckInferredResultType = false;
16607 bool isInvalid = false;
16608 unsigned DiagKind = 0;
16609 ConversionFixItGenerator ConvHints;
16610 bool MayHaveConvFixit = false;
16611 bool MayHaveFunctionDiff = false;
16612 const ObjCInterfaceDecl *IFace = nullptr;
16613 const ObjCProtocolDecl *PDecl = nullptr;
16614
16615 switch (ConvTy) {
16616 case Compatible:
16617 DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
16618 return false;
16619
16620 case PointerToInt:
16621 if (getLangOpts().CPlusPlus) {
16622 DiagKind = diag::err_typecheck_convert_pointer_int;
16623 isInvalid = true;
16624 } else {
16625 DiagKind = diag::ext_typecheck_convert_pointer_int;
16626 }
16627 ConvHints.tryToFixConversion(FromExpr: SrcExpr, FromQTy: SrcType, ToQTy: DstType, S&: *this);
16628 MayHaveConvFixit = true;
16629 break;
16630 case IntToPointer:
16631 if (getLangOpts().CPlusPlus) {
16632 DiagKind = diag::err_typecheck_convert_int_pointer;
16633 isInvalid = true;
16634 } else {
16635 DiagKind = diag::ext_typecheck_convert_int_pointer;
16636 }
16637 ConvHints.tryToFixConversion(FromExpr: SrcExpr, FromQTy: SrcType, ToQTy: DstType, S&: *this);
16638 MayHaveConvFixit = true;
16639 break;
16640 case IncompatibleFunctionPointerStrict:
16641 DiagKind =
16642 diag::warn_typecheck_convert_incompatible_function_pointer_strict;
16643 ConvHints.tryToFixConversion(FromExpr: SrcExpr, FromQTy: SrcType, ToQTy: DstType, S&: *this);
16644 MayHaveConvFixit = true;
16645 break;
16646 case IncompatibleFunctionPointer:
16647 if (getLangOpts().CPlusPlus) {
16648 DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
16649 isInvalid = true;
16650 } else {
16651 DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
16652 }
16653 ConvHints.tryToFixConversion(FromExpr: SrcExpr, FromQTy: SrcType, ToQTy: DstType, S&: *this);
16654 MayHaveConvFixit = true;
16655 break;
16656 case IncompatiblePointer:
16657 if (Action == AA_Passing_CFAudited) {
16658 DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
16659 } else if (getLangOpts().CPlusPlus) {
16660 DiagKind = diag::err_typecheck_convert_incompatible_pointer;
16661 isInvalid = true;
16662 } else {
16663 DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
16664 }
16665 CheckInferredResultType = DstType->isObjCObjectPointerType() &&
16666 SrcType->isObjCObjectPointerType();
16667 if (CheckInferredResultType) {
16668 SrcType = SrcType.getUnqualifiedType();
16669 DstType = DstType.getUnqualifiedType();
16670 } else {
16671 ConvHints.tryToFixConversion(FromExpr: SrcExpr, FromQTy: SrcType, ToQTy: DstType, S&: *this);
16672 }
16673 MayHaveConvFixit = true;
16674 break;
16675 case IncompatiblePointerSign:
16676 if (getLangOpts().CPlusPlus) {
16677 DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
16678 isInvalid = true;
16679 } else {
16680 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
16681 }
16682 break;
16683 case FunctionVoidPointer:
16684 if (getLangOpts().CPlusPlus) {
16685 DiagKind = diag::err_typecheck_convert_pointer_void_func;
16686 isInvalid = true;
16687 } else {
16688 DiagKind = diag::ext_typecheck_convert_pointer_void_func;
16689 }
16690 break;
16691 case IncompatiblePointerDiscardsQualifiers: {
16692 // Perform array-to-pointer decay if necessary.
16693 if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(T: SrcType);
16694
16695 isInvalid = true;
16696
16697 Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
16698 Qualifiers rhq = DstType->getPointeeType().getQualifiers();
16699 if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
16700 DiagKind = diag::err_typecheck_incompatible_address_space;
16701 break;
16702 } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
16703 DiagKind = diag::err_typecheck_incompatible_ownership;
16704 break;
16705 }
16706
16707 llvm_unreachable("unknown error case for discarding qualifiers!");
16708 // fallthrough
16709 }
16710 case CompatiblePointerDiscardsQualifiers:
16711 // If the qualifiers lost were because we were applying the
16712 // (deprecated) C++ conversion from a string literal to a char*
16713 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
16714 // Ideally, this check would be performed in
16715 // checkPointerTypesForAssignment. However, that would require a
16716 // bit of refactoring (so that the second argument is an
16717 // expression, rather than a type), which should be done as part
16718 // of a larger effort to fix checkPointerTypesForAssignment for
16719 // C++ semantics.
16720 if (getLangOpts().CPlusPlus &&
16721 IsStringLiteralToNonConstPointerConversion(From: SrcExpr, ToType: DstType))
16722 return false;
16723 if (getLangOpts().CPlusPlus) {
16724 DiagKind = diag::err_typecheck_convert_discards_qualifiers;
16725 isInvalid = true;
16726 } else {
16727 DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
16728 }
16729
16730 break;
16731 case IncompatibleNestedPointerQualifiers:
16732 if (getLangOpts().CPlusPlus) {
16733 isInvalid = true;
16734 DiagKind = diag::err_nested_pointer_qualifier_mismatch;
16735 } else {
16736 DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
16737 }
16738 break;
16739 case IncompatibleNestedPointerAddressSpaceMismatch:
16740 DiagKind = diag::err_typecheck_incompatible_nested_address_space;
16741 isInvalid = true;
16742 break;
16743 case IntToBlockPointer:
16744 DiagKind = diag::err_int_to_block_pointer;
16745 isInvalid = true;
16746 break;
16747 case IncompatibleBlockPointer:
16748 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
16749 isInvalid = true;
16750 break;
16751 case IncompatibleObjCQualifiedId: {
16752 if (SrcType->isObjCQualifiedIdType()) {
16753 const ObjCObjectPointerType *srcOPT =
16754 SrcType->castAs<ObjCObjectPointerType>();
16755 for (auto *srcProto : srcOPT->quals()) {
16756 PDecl = srcProto;
16757 break;
16758 }
16759 if (const ObjCInterfaceType *IFaceT =
16760 DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
16761 IFace = IFaceT->getDecl();
16762 }
16763 else if (DstType->isObjCQualifiedIdType()) {
16764 const ObjCObjectPointerType *dstOPT =
16765 DstType->castAs<ObjCObjectPointerType>();
16766 for (auto *dstProto : dstOPT->quals()) {
16767 PDecl = dstProto;
16768 break;
16769 }
16770 if (const ObjCInterfaceType *IFaceT =
16771 SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
16772 IFace = IFaceT->getDecl();
16773 }
16774 if (getLangOpts().CPlusPlus) {
16775 DiagKind = diag::err_incompatible_qualified_id;
16776 isInvalid = true;
16777 } else {
16778 DiagKind = diag::warn_incompatible_qualified_id;
16779 }
16780 break;
16781 }
16782 case IncompatibleVectors:
16783 if (getLangOpts().CPlusPlus) {
16784 DiagKind = diag::err_incompatible_vectors;
16785 isInvalid = true;
16786 } else {
16787 DiagKind = diag::warn_incompatible_vectors;
16788 }
16789 break;
16790 case IncompatibleObjCWeakRef:
16791 DiagKind = diag::err_arc_weak_unavailable_assign;
16792 isInvalid = true;
16793 break;
16794 case Incompatible:
16795 if (maybeDiagnoseAssignmentToFunction(S&: *this, DstType, SrcExpr)) {
16796 if (Complained)
16797 *Complained = true;
16798 return true;
16799 }
16800
16801 DiagKind = diag::err_typecheck_convert_incompatible;
16802 ConvHints.tryToFixConversion(FromExpr: SrcExpr, FromQTy: SrcType, ToQTy: DstType, S&: *this);
16803 MayHaveConvFixit = true;
16804 isInvalid = true;
16805 MayHaveFunctionDiff = true;
16806 break;
16807 }
16808
16809 QualType FirstType, SecondType;
16810 switch (Action) {
16811 case AA_Assigning:
16812 case AA_Initializing:
16813 // The destination type comes first.
16814 FirstType = DstType;
16815 SecondType = SrcType;
16816 break;
16817
16818 case AA_Returning:
16819 case AA_Passing:
16820 case AA_Passing_CFAudited:
16821 case AA_Converting:
16822 case AA_Sending:
16823 case AA_Casting:
16824 // The source type comes first.
16825 FirstType = SrcType;
16826 SecondType = DstType;
16827 break;
16828 }
16829
16830 PartialDiagnostic FDiag = PDiag(DiagID: DiagKind);
16831 AssignmentAction ActionForDiag = Action;
16832 if (Action == AA_Passing_CFAudited)
16833 ActionForDiag = AA_Passing;
16834
16835 FDiag << FirstType << SecondType << ActionForDiag
16836 << SrcExpr->getSourceRange();
16837
16838 if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
16839 DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
16840 auto isPlainChar = [](const clang::Type *Type) {
16841 return Type->isSpecificBuiltinType(K: BuiltinType::Char_S) ||
16842 Type->isSpecificBuiltinType(K: BuiltinType::Char_U);
16843 };
16844 FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
16845 isPlainChar(SecondType->getPointeeOrArrayElementType()));
16846 }
16847
16848 // If we can fix the conversion, suggest the FixIts.
16849 if (!ConvHints.isNull()) {
16850 for (FixItHint &H : ConvHints.Hints)
16851 FDiag << H;
16852 }
16853
16854 if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
16855
16856 if (MayHaveFunctionDiff)
16857 HandleFunctionTypeMismatch(PDiag&: FDiag, FromType: SecondType, ToType: FirstType);
16858
16859 Diag(Loc, PD: FDiag);
16860 if ((DiagKind == diag::warn_incompatible_qualified_id ||
16861 DiagKind == diag::err_incompatible_qualified_id) &&
16862 PDecl && IFace && !IFace->hasDefinition())
16863 Diag(Loc: IFace->getLocation(), DiagID: diag::note_incomplete_class_and_qualified_id)
16864 << IFace << PDecl;
16865
16866 if (SecondType == Context.OverloadTy)
16867 NoteAllOverloadCandidates(E: OverloadExpr::find(E: SrcExpr).Expression,
16868 DestType: FirstType, /*TakingAddress=*/true);
16869
16870 if (CheckInferredResultType)
16871 ObjC().EmitRelatedResultTypeNote(E: SrcExpr);
16872
16873 if (Action == AA_Returning && ConvTy == IncompatiblePointer)
16874 ObjC().EmitRelatedResultTypeNoteForReturn(destType: DstType);
16875
16876 if (Complained)
16877 *Complained = true;
16878 return isInvalid;
16879}
16880
16881ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
16882 llvm::APSInt *Result,
16883 AllowFoldKind CanFold) {
16884 class SimpleICEDiagnoser : public VerifyICEDiagnoser {
16885 public:
16886 SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
16887 QualType T) override {
16888 return S.Diag(Loc, DiagID: diag::err_ice_not_integral)
16889 << T << S.LangOpts.CPlusPlus;
16890 }
16891 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
16892 return S.Diag(Loc, DiagID: diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
16893 }
16894 } Diagnoser;
16895
16896 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
16897}
16898
16899ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
16900 llvm::APSInt *Result,
16901 unsigned DiagID,
16902 AllowFoldKind CanFold) {
16903 class IDDiagnoser : public VerifyICEDiagnoser {
16904 unsigned DiagID;
16905
16906 public:
16907 IDDiagnoser(unsigned DiagID)
16908 : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
16909
16910 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
16911 return S.Diag(Loc, DiagID);
16912 }
16913 } Diagnoser(DiagID);
16914
16915 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
16916}
16917
16918Sema::SemaDiagnosticBuilder
16919Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
16920 QualType T) {
16921 return diagnoseNotICE(S, Loc);
16922}
16923
16924Sema::SemaDiagnosticBuilder
16925Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
16926 return S.Diag(Loc, DiagID: diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
16927}
16928
16929ExprResult
16930Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
16931 VerifyICEDiagnoser &Diagnoser,
16932 AllowFoldKind CanFold) {
16933 SourceLocation DiagLoc = E->getBeginLoc();
16934
16935 if (getLangOpts().CPlusPlus11) {
16936 // C++11 [expr.const]p5:
16937 // If an expression of literal class type is used in a context where an
16938 // integral constant expression is required, then that class type shall
16939 // have a single non-explicit conversion function to an integral or
16940 // unscoped enumeration type
16941 ExprResult Converted;
16942 class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
16943 VerifyICEDiagnoser &BaseDiagnoser;
16944 public:
16945 CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
16946 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
16947 BaseDiagnoser.Suppress, true),
16948 BaseDiagnoser(BaseDiagnoser) {}
16949
16950 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
16951 QualType T) override {
16952 return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
16953 }
16954
16955 SemaDiagnosticBuilder diagnoseIncomplete(
16956 Sema &S, SourceLocation Loc, QualType T) override {
16957 return S.Diag(Loc, DiagID: diag::err_ice_incomplete_type) << T;
16958 }
16959
16960 SemaDiagnosticBuilder diagnoseExplicitConv(
16961 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
16962 return S.Diag(Loc, DiagID: diag::err_ice_explicit_conversion) << T << ConvTy;
16963 }
16964
16965 SemaDiagnosticBuilder noteExplicitConv(
16966 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
16967 return S.Diag(Loc: Conv->getLocation(), DiagID: diag::note_ice_conversion_here)
16968 << ConvTy->isEnumeralType() << ConvTy;
16969 }
16970
16971 SemaDiagnosticBuilder diagnoseAmbiguous(
16972 Sema &S, SourceLocation Loc, QualType T) override {
16973 return S.Diag(Loc, DiagID: diag::err_ice_ambiguous_conversion) << T;
16974 }
16975
16976 SemaDiagnosticBuilder noteAmbiguous(
16977 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
16978 return S.Diag(Loc: Conv->getLocation(), DiagID: diag::note_ice_conversion_here)
16979 << ConvTy->isEnumeralType() << ConvTy;
16980 }
16981
16982 SemaDiagnosticBuilder diagnoseConversion(
16983 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
16984 llvm_unreachable("conversion functions are permitted");
16985 }
16986 } ConvertDiagnoser(Diagnoser);
16987
16988 Converted = PerformContextualImplicitConversion(Loc: DiagLoc, FromE: E,
16989 Converter&: ConvertDiagnoser);
16990 if (Converted.isInvalid())
16991 return Converted;
16992 E = Converted.get();
16993 // The 'explicit' case causes us to get a RecoveryExpr. Give up here so we
16994 // don't try to evaluate it later. We also don't want to return the
16995 // RecoveryExpr here, as it results in this call succeeding, thus callers of
16996 // this function will attempt to use 'Value'.
16997 if (isa<RecoveryExpr>(Val: E))
16998 return ExprError();
16999 if (!E->getType()->isIntegralOrUnscopedEnumerationType())
17000 return ExprError();
17001 } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
17002 // An ICE must be of integral or unscoped enumeration type.
17003 if (!Diagnoser.Suppress)
17004 Diagnoser.diagnoseNotICEType(S&: *this, Loc: DiagLoc, T: E->getType())
17005 << E->getSourceRange();
17006 return ExprError();
17007 }
17008
17009 ExprResult RValueExpr = DefaultLvalueConversion(E);
17010 if (RValueExpr.isInvalid())
17011 return ExprError();
17012
17013 E = RValueExpr.get();
17014
17015 // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
17016 // in the non-ICE case.
17017 if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Ctx: Context)) {
17018 SmallVector<PartialDiagnosticAt, 8> Notes;
17019 if (Result)
17020 *Result = E->EvaluateKnownConstIntCheckOverflow(Ctx: Context, Diag: &Notes);
17021 if (!isa<ConstantExpr>(Val: E))
17022 E = Result ? ConstantExpr::Create(Context, E, Result: APValue(*Result))
17023 : ConstantExpr::Create(Context, E);
17024
17025 if (Notes.empty())
17026 return E;
17027
17028 // If our only note is the usual "invalid subexpression" note, just point
17029 // the caret at its location rather than producing an essentially
17030 // redundant note.
17031 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
17032 diag::note_invalid_subexpr_in_const_expr) {
17033 DiagLoc = Notes[0].first;
17034 Notes.clear();
17035 }
17036
17037 if (getLangOpts().CPlusPlus) {
17038 if (!Diagnoser.Suppress) {
17039 Diagnoser.diagnoseNotICE(S&: *this, Loc: DiagLoc) << E->getSourceRange();
17040 for (const PartialDiagnosticAt &Note : Notes)
17041 Diag(Loc: Note.first, PD: Note.second);
17042 }
17043 return ExprError();
17044 }
17045
17046 Diagnoser.diagnoseFold(S&: *this, Loc: DiagLoc) << E->getSourceRange();
17047 for (const PartialDiagnosticAt &Note : Notes)
17048 Diag(Loc: Note.first, PD: Note.second);
17049
17050 return E;
17051 }
17052
17053 Expr::EvalResult EvalResult;
17054 SmallVector<PartialDiagnosticAt, 8> Notes;
17055 EvalResult.Diag = &Notes;
17056
17057 // Try to evaluate the expression, and produce diagnostics explaining why it's
17058 // not a constant expression as a side-effect.
17059 bool Folded =
17060 E->EvaluateAsRValue(Result&: EvalResult, Ctx: Context, /*isConstantContext*/ InConstantContext: true) &&
17061 EvalResult.Val.isInt() && !EvalResult.HasSideEffects &&
17062 (!getLangOpts().CPlusPlus || !EvalResult.HasUndefinedBehavior);
17063
17064 if (!isa<ConstantExpr>(Val: E))
17065 E = ConstantExpr::Create(Context, E, Result: EvalResult.Val);
17066
17067 // In C++11, we can rely on diagnostics being produced for any expression
17068 // which is not a constant expression. If no diagnostics were produced, then
17069 // this is a constant expression.
17070 if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
17071 if (Result)
17072 *Result = EvalResult.Val.getInt();
17073 return E;
17074 }
17075
17076 // If our only note is the usual "invalid subexpression" note, just point
17077 // the caret at its location rather than producing an essentially
17078 // redundant note.
17079 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
17080 diag::note_invalid_subexpr_in_const_expr) {
17081 DiagLoc = Notes[0].first;
17082 Notes.clear();
17083 }
17084
17085 if (!Folded || !CanFold) {
17086 if (!Diagnoser.Suppress) {
17087 Diagnoser.diagnoseNotICE(S&: *this, Loc: DiagLoc) << E->getSourceRange();
17088 for (const PartialDiagnosticAt &Note : Notes)
17089 Diag(Loc: Note.first, PD: Note.second);
17090 }
17091
17092 return ExprError();
17093 }
17094
17095 Diagnoser.diagnoseFold(S&: *this, Loc: DiagLoc) << E->getSourceRange();
17096 for (const PartialDiagnosticAt &Note : Notes)
17097 Diag(Loc: Note.first, PD: Note.second);
17098
17099 if (Result)
17100 *Result = EvalResult.Val.getInt();
17101 return E;
17102}
17103
17104namespace {
17105 // Handle the case where we conclude a expression which we speculatively
17106 // considered to be unevaluated is actually evaluated.
17107 class TransformToPE : public TreeTransform<TransformToPE> {
17108 typedef TreeTransform<TransformToPE> BaseTransform;
17109
17110 public:
17111 TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
17112
17113 // Make sure we redo semantic analysis
17114 bool AlwaysRebuild() { return true; }
17115 bool ReplacingOriginal() { return true; }
17116
17117 // We need to special-case DeclRefExprs referring to FieldDecls which
17118 // are not part of a member pointer formation; normal TreeTransforming
17119 // doesn't catch this case because of the way we represent them in the AST.
17120 // FIXME: This is a bit ugly; is it really the best way to handle this
17121 // case?
17122 //
17123 // Error on DeclRefExprs referring to FieldDecls.
17124 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17125 if (isa<FieldDecl>(Val: E->getDecl()) &&
17126 !SemaRef.isUnevaluatedContext())
17127 return SemaRef.Diag(Loc: E->getLocation(),
17128 DiagID: diag::err_invalid_non_static_member_use)
17129 << E->getDecl() << E->getSourceRange();
17130
17131 return BaseTransform::TransformDeclRefExpr(E);
17132 }
17133
17134 // Exception: filter out member pointer formation
17135 ExprResult TransformUnaryOperator(UnaryOperator *E) {
17136 if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
17137 return E;
17138
17139 return BaseTransform::TransformUnaryOperator(E);
17140 }
17141
17142 // The body of a lambda-expression is in a separate expression evaluation
17143 // context so never needs to be transformed.
17144 // FIXME: Ideally we wouldn't transform the closure type either, and would
17145 // just recreate the capture expressions and lambda expression.
17146 StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
17147 return SkipLambdaBody(E, Body);
17148 }
17149 };
17150}
17151
17152ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
17153 assert(isUnevaluatedContext() &&
17154 "Should only transform unevaluated expressions");
17155 ExprEvalContexts.back().Context =
17156 ExprEvalContexts[ExprEvalContexts.size()-2].Context;
17157 if (isUnevaluatedContext())
17158 return E;
17159 return TransformToPE(*this).TransformExpr(E);
17160}
17161
17162TypeSourceInfo *Sema::TransformToPotentiallyEvaluated(TypeSourceInfo *TInfo) {
17163 assert(isUnevaluatedContext() &&
17164 "Should only transform unevaluated expressions");
17165 ExprEvalContexts.back().Context = parentEvaluationContext().Context;
17166 if (isUnevaluatedContext())
17167 return TInfo;
17168 return TransformToPE(*this).TransformType(DI: TInfo);
17169}
17170
17171void
17172Sema::PushExpressionEvaluationContext(
17173 ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
17174 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17175 ExprEvalContexts.emplace_back(Args&: NewContext, Args: ExprCleanupObjects.size(), Args&: Cleanup,
17176 Args&: LambdaContextDecl, Args&: ExprContext);
17177
17178 // Discarded statements and immediate contexts nested in other
17179 // discarded statements or immediate context are themselves
17180 // a discarded statement or an immediate context, respectively.
17181 ExprEvalContexts.back().InDiscardedStatement =
17182 parentEvaluationContext().isDiscardedStatementContext();
17183
17184 // C++23 [expr.const]/p15
17185 // An expression or conversion is in an immediate function context if [...]
17186 // it is a subexpression of a manifestly constant-evaluated expression or
17187 // conversion.
17188 const auto &Prev = parentEvaluationContext();
17189 ExprEvalContexts.back().InImmediateFunctionContext =
17190 Prev.isImmediateFunctionContext() || Prev.isConstantEvaluated();
17191
17192 ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
17193 Prev.InImmediateEscalatingFunctionContext;
17194
17195 Cleanup.reset();
17196 if (!MaybeODRUseExprs.empty())
17197 std::swap(LHS&: MaybeODRUseExprs, RHS&: ExprEvalContexts.back().SavedMaybeODRUseExprs);
17198}
17199
17200void
17201Sema::PushExpressionEvaluationContext(
17202 ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
17203 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
17204 Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
17205 PushExpressionEvaluationContext(NewContext, LambdaContextDecl: ClosureContextDecl, ExprContext);
17206}
17207
17208namespace {
17209
17210const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
17211 PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
17212 if (const auto *E = dyn_cast<UnaryOperator>(Val: PossibleDeref)) {
17213 if (E->getOpcode() == UO_Deref)
17214 return CheckPossibleDeref(S, PossibleDeref: E->getSubExpr());
17215 } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(Val: PossibleDeref)) {
17216 return CheckPossibleDeref(S, PossibleDeref: E->getBase());
17217 } else if (const auto *E = dyn_cast<MemberExpr>(Val: PossibleDeref)) {
17218 return CheckPossibleDeref(S, PossibleDeref: E->getBase());
17219 } else if (const auto E = dyn_cast<DeclRefExpr>(Val: PossibleDeref)) {
17220 QualType Inner;
17221 QualType Ty = E->getType();
17222 if (const auto *Ptr = Ty->getAs<PointerType>())
17223 Inner = Ptr->getPointeeType();
17224 else if (const auto *Arr = S.Context.getAsArrayType(T: Ty))
17225 Inner = Arr->getElementType();
17226 else
17227 return nullptr;
17228
17229 if (Inner->hasAttr(AK: attr::NoDeref))
17230 return E;
17231 }
17232 return nullptr;
17233}
17234
17235} // namespace
17236
17237void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
17238 for (const Expr *E : Rec.PossibleDerefs) {
17239 const DeclRefExpr *DeclRef = CheckPossibleDeref(S&: *this, PossibleDeref: E);
17240 if (DeclRef) {
17241 const ValueDecl *Decl = DeclRef->getDecl();
17242 Diag(Loc: E->getExprLoc(), DiagID: diag::warn_dereference_of_noderef_type)
17243 << Decl->getName() << E->getSourceRange();
17244 Diag(Loc: Decl->getLocation(), DiagID: diag::note_previous_decl) << Decl->getName();
17245 } else {
17246 Diag(Loc: E->getExprLoc(), DiagID: diag::warn_dereference_of_noderef_type_no_decl)
17247 << E->getSourceRange();
17248 }
17249 }
17250 Rec.PossibleDerefs.clear();
17251}
17252
17253void Sema::CheckUnusedVolatileAssignment(Expr *E) {
17254 if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
17255 return;
17256
17257 // Note: ignoring parens here is not justified by the standard rules, but
17258 // ignoring parentheses seems like a more reasonable approach, and this only
17259 // drives a deprecation warning so doesn't affect conformance.
17260 if (auto *BO = dyn_cast<BinaryOperator>(Val: E->IgnoreParenImpCasts())) {
17261 if (BO->getOpcode() == BO_Assign) {
17262 auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
17263 llvm::erase(C&: LHSs, V: BO->getLHS());
17264 }
17265 }
17266}
17267
17268void Sema::MarkExpressionAsImmediateEscalating(Expr *E) {
17269 assert(getLangOpts().CPlusPlus20 &&
17270 ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
17271 "Cannot mark an immediate escalating expression outside of an "
17272 "immediate escalating context");
17273 if (auto *Call = dyn_cast<CallExpr>(Val: E->IgnoreImplicit());
17274 Call && Call->getCallee()) {
17275 if (auto *DeclRef =
17276 dyn_cast<DeclRefExpr>(Val: Call->getCallee()->IgnoreImplicit()))
17277 DeclRef->setIsImmediateEscalating(true);
17278 } else if (auto *Ctr = dyn_cast<CXXConstructExpr>(Val: E->IgnoreImplicit())) {
17279 Ctr->setIsImmediateEscalating(true);
17280 } else if (auto *DeclRef = dyn_cast<DeclRefExpr>(Val: E->IgnoreImplicit())) {
17281 DeclRef->setIsImmediateEscalating(true);
17282 } else {
17283 assert(false && "expected an immediately escalating expression");
17284 }
17285 if (FunctionScopeInfo *FI = getCurFunction())
17286 FI->FoundImmediateEscalatingExpression = true;
17287}
17288
17289ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
17290 if (isUnevaluatedContext() || !E.isUsable() || !Decl ||
17291 !Decl->isImmediateFunction() || isAlwaysConstantEvaluatedContext() ||
17292 isCheckingDefaultArgumentOrInitializer() ||
17293 RebuildingImmediateInvocation || isImmediateFunctionContext())
17294 return E;
17295
17296 /// Opportunistically remove the callee from ReferencesToConsteval if we can.
17297 /// It's OK if this fails; we'll also remove this in
17298 /// HandleImmediateInvocations, but catching it here allows us to avoid
17299 /// walking the AST looking for it in simple cases.
17300 if (auto *Call = dyn_cast<CallExpr>(Val: E.get()->IgnoreImplicit()))
17301 if (auto *DeclRef =
17302 dyn_cast<DeclRefExpr>(Val: Call->getCallee()->IgnoreImplicit()))
17303 ExprEvalContexts.back().ReferenceToConsteval.erase(Ptr: DeclRef);
17304
17305 // C++23 [expr.const]/p16
17306 // An expression or conversion is immediate-escalating if it is not initially
17307 // in an immediate function context and it is [...] an immediate invocation
17308 // that is not a constant expression and is not a subexpression of an
17309 // immediate invocation.
17310 APValue Cached;
17311 auto CheckConstantExpressionAndKeepResult = [&]() {
17312 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
17313 Expr::EvalResult Eval;
17314 Eval.Diag = &Notes;
17315 bool Res = E.get()->EvaluateAsConstantExpr(
17316 Result&: Eval, Ctx: getASTContext(), Kind: ConstantExprKind::ImmediateInvocation);
17317 if (Res && Notes.empty()) {
17318 Cached = std::move(Eval.Val);
17319 return true;
17320 }
17321 return false;
17322 };
17323
17324 if (!E.get()->isValueDependent() &&
17325 ExprEvalContexts.back().InImmediateEscalatingFunctionContext &&
17326 !CheckConstantExpressionAndKeepResult()) {
17327 MarkExpressionAsImmediateEscalating(E: E.get());
17328 return E;
17329 }
17330
17331 if (Cleanup.exprNeedsCleanups()) {
17332 // Since an immediate invocation is a full expression itself - it requires
17333 // an additional ExprWithCleanups node, but it can participate to a bigger
17334 // full expression which actually requires cleanups to be run after so
17335 // create ExprWithCleanups without using MaybeCreateExprWithCleanups as it
17336 // may discard cleanups for outer expression too early.
17337
17338 // Note that ExprWithCleanups created here must always have empty cleanup
17339 // objects:
17340 // - compound literals do not create cleanup objects in C++ and immediate
17341 // invocations are C++-only.
17342 // - blocks are not allowed inside constant expressions and compiler will
17343 // issue an error if they appear there.
17344 //
17345 // Hence, in correct code any cleanup objects created inside current
17346 // evaluation context must be outside the immediate invocation.
17347 E = ExprWithCleanups::Create(C: getASTContext(), subexpr: E.get(),
17348 CleanupsHaveSideEffects: Cleanup.cleanupsHaveSideEffects(), objects: {});
17349 }
17350
17351 ConstantExpr *Res = ConstantExpr::Create(
17352 Context: getASTContext(), E: E.get(),
17353 Storage: ConstantExpr::getStorageKind(T: Decl->getReturnType().getTypePtr(),
17354 Context: getASTContext()),
17355 /*IsImmediateInvocation*/ true);
17356 if (Cached.hasValue())
17357 Res->MoveIntoResult(Value&: Cached, Context: getASTContext());
17358 /// Value-dependent constant expressions should not be immediately
17359 /// evaluated until they are instantiated.
17360 if (!Res->isValueDependent())
17361 ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Args&: Res, Args: 0);
17362 return Res;
17363}
17364
17365static void EvaluateAndDiagnoseImmediateInvocation(
17366 Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
17367 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
17368 Expr::EvalResult Eval;
17369 Eval.Diag = &Notes;
17370 ConstantExpr *CE = Candidate.getPointer();
17371 bool Result = CE->EvaluateAsConstantExpr(
17372 Result&: Eval, Ctx: SemaRef.getASTContext(), Kind: ConstantExprKind::ImmediateInvocation);
17373 if (!Result || !Notes.empty()) {
17374 SemaRef.FailedImmediateInvocations.insert(Ptr: CE);
17375 Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
17376 if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(Val: InnerExpr))
17377 InnerExpr = FunctionalCast->getSubExpr()->IgnoreImplicit();
17378 FunctionDecl *FD = nullptr;
17379 if (auto *Call = dyn_cast<CallExpr>(Val: InnerExpr))
17380 FD = cast<FunctionDecl>(Val: Call->getCalleeDecl());
17381 else if (auto *Call = dyn_cast<CXXConstructExpr>(Val: InnerExpr))
17382 FD = Call->getConstructor();
17383 else if (auto *Cast = dyn_cast<CastExpr>(Val: InnerExpr))
17384 FD = dyn_cast_or_null<FunctionDecl>(Val: Cast->getConversionFunction());
17385
17386 assert(FD && FD->isImmediateFunction() &&
17387 "could not find an immediate function in this expression");
17388 if (FD->isInvalidDecl())
17389 return;
17390 SemaRef.Diag(Loc: CE->getBeginLoc(), DiagID: diag::err_invalid_consteval_call)
17391 << FD << FD->isConsteval();
17392 if (auto Context =
17393 SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
17394 SemaRef.Diag(Loc: Context->Loc, DiagID: diag::note_invalid_consteval_initializer)
17395 << Context->Decl;
17396 SemaRef.Diag(Loc: Context->Decl->getBeginLoc(), DiagID: diag::note_declared_at);
17397 }
17398 if (!FD->isConsteval())
17399 SemaRef.DiagnoseImmediateEscalatingReason(FD);
17400 for (auto &Note : Notes)
17401 SemaRef.Diag(Loc: Note.first, PD: Note.second);
17402 return;
17403 }
17404 CE->MoveIntoResult(Value&: Eval.Val, Context: SemaRef.getASTContext());
17405}
17406
17407static void RemoveNestedImmediateInvocation(
17408 Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
17409 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
17410 struct ComplexRemove : TreeTransform<ComplexRemove> {
17411 using Base = TreeTransform<ComplexRemove>;
17412 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17413 SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
17414 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
17415 CurrentII;
17416 ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
17417 SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
17418 SmallVector<Sema::ImmediateInvocationCandidate,
17419 4>::reverse_iterator Current)
17420 : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
17421 void RemoveImmediateInvocation(ConstantExpr* E) {
17422 auto It = std::find_if(first: CurrentII, last: IISet.rend(),
17423 pred: [E](Sema::ImmediateInvocationCandidate Elem) {
17424 return Elem.getPointer() == E;
17425 });
17426 // It is possible that some subexpression of the current immediate
17427 // invocation was handled from another expression evaluation context. Do
17428 // not handle the current immediate invocation if some of its
17429 // subexpressions failed before.
17430 if (It == IISet.rend()) {
17431 if (SemaRef.FailedImmediateInvocations.contains(Ptr: E))
17432 CurrentII->setInt(1);
17433 } else {
17434 It->setInt(1); // Mark as deleted
17435 }
17436 }
17437 ExprResult TransformConstantExpr(ConstantExpr *E) {
17438 if (!E->isImmediateInvocation())
17439 return Base::TransformConstantExpr(E);
17440 RemoveImmediateInvocation(E);
17441 return Base::TransformExpr(E: E->getSubExpr());
17442 }
17443 /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
17444 /// we need to remove its DeclRefExpr from the DRSet.
17445 ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
17446 DRSet.erase(Ptr: cast<DeclRefExpr>(Val: E->getCallee()->IgnoreImplicit()));
17447 return Base::TransformCXXOperatorCallExpr(E);
17448 }
17449 /// Base::TransformUserDefinedLiteral doesn't preserve the
17450 /// UserDefinedLiteral node.
17451 ExprResult TransformUserDefinedLiteral(UserDefinedLiteral *E) { return E; }
17452 /// Base::TransformInitializer skips ConstantExpr so we need to visit them
17453 /// here.
17454 ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
17455 if (!Init)
17456 return Init;
17457 /// ConstantExpr are the first layer of implicit node to be removed so if
17458 /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
17459 if (auto *CE = dyn_cast<ConstantExpr>(Val: Init))
17460 if (CE->isImmediateInvocation())
17461 RemoveImmediateInvocation(E: CE);
17462 return Base::TransformInitializer(Init, NotCopyInit);
17463 }
17464 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
17465 DRSet.erase(Ptr: E);
17466 return E;
17467 }
17468 ExprResult TransformLambdaExpr(LambdaExpr *E) {
17469 // Do not rebuild lambdas to avoid creating a new type.
17470 // Lambdas have already been processed inside their eval context.
17471 return E;
17472 }
17473 bool AlwaysRebuild() { return false; }
17474 bool ReplacingOriginal() { return true; }
17475 bool AllowSkippingCXXConstructExpr() {
17476 bool Res = AllowSkippingFirstCXXConstructExpr;
17477 AllowSkippingFirstCXXConstructExpr = true;
17478 return Res;
17479 }
17480 bool AllowSkippingFirstCXXConstructExpr = true;
17481 } Transformer(SemaRef, Rec.ReferenceToConsteval,
17482 Rec.ImmediateInvocationCandidates, It);
17483
17484 /// CXXConstructExpr with a single argument are getting skipped by
17485 /// TreeTransform in some situtation because they could be implicit. This
17486 /// can only occur for the top-level CXXConstructExpr because it is used
17487 /// nowhere in the expression being transformed therefore will not be rebuilt.
17488 /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
17489 /// skipping the first CXXConstructExpr.
17490 if (isa<CXXConstructExpr>(Val: It->getPointer()->IgnoreImplicit()))
17491 Transformer.AllowSkippingFirstCXXConstructExpr = false;
17492
17493 ExprResult Res = Transformer.TransformExpr(E: It->getPointer()->getSubExpr());
17494 // The result may not be usable in case of previous compilation errors.
17495 // In this case evaluation of the expression may result in crash so just
17496 // don't do anything further with the result.
17497 if (Res.isUsable()) {
17498 Res = SemaRef.MaybeCreateExprWithCleanups(SubExpr: Res);
17499 It->getPointer()->setSubExpr(Res.get());
17500 }
17501}
17502
17503static void
17504HandleImmediateInvocations(Sema &SemaRef,
17505 Sema::ExpressionEvaluationContextRecord &Rec) {
17506 if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
17507 Rec.ReferenceToConsteval.size() == 0) ||
17508 Rec.isImmediateFunctionContext() || SemaRef.RebuildingImmediateInvocation)
17509 return;
17510
17511 /// When we have more than 1 ImmediateInvocationCandidates or previously
17512 /// failed immediate invocations, we need to check for nested
17513 /// ImmediateInvocationCandidates in order to avoid duplicate diagnostics.
17514 /// Otherwise we only need to remove ReferenceToConsteval in the immediate
17515 /// invocation.
17516 if (Rec.ImmediateInvocationCandidates.size() > 1 ||
17517 !SemaRef.FailedImmediateInvocations.empty()) {
17518
17519 /// Prevent sema calls during the tree transform from adding pointers that
17520 /// are already in the sets.
17521 llvm::SaveAndRestore DisableIITracking(
17522 SemaRef.RebuildingImmediateInvocation, true);
17523
17524 /// Prevent diagnostic during tree transfrom as they are duplicates
17525 Sema::TentativeAnalysisScope DisableDiag(SemaRef);
17526
17527 for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
17528 It != Rec.ImmediateInvocationCandidates.rend(); It++)
17529 if (!It->getInt())
17530 RemoveNestedImmediateInvocation(SemaRef, Rec, It);
17531 } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
17532 Rec.ReferenceToConsteval.size()) {
17533 struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
17534 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
17535 SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
17536 bool VisitDeclRefExpr(DeclRefExpr *E) {
17537 DRSet.erase(Ptr: E);
17538 return DRSet.size();
17539 }
17540 } Visitor(Rec.ReferenceToConsteval);
17541 Visitor.TraverseStmt(
17542 S: Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
17543 }
17544 for (auto CE : Rec.ImmediateInvocationCandidates)
17545 if (!CE.getInt())
17546 EvaluateAndDiagnoseImmediateInvocation(SemaRef, Candidate: CE);
17547 for (auto *DR : Rec.ReferenceToConsteval) {
17548 // If the expression is immediate escalating, it is not an error;
17549 // The outer context itself becomes immediate and further errors,
17550 // if any, will be handled by DiagnoseImmediateEscalatingReason.
17551 if (DR->isImmediateEscalating())
17552 continue;
17553 auto *FD = cast<FunctionDecl>(Val: DR->getDecl());
17554 const NamedDecl *ND = FD;
17555 if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: ND);
17556 MD && (MD->isLambdaStaticInvoker() || isLambdaCallOperator(MD)))
17557 ND = MD->getParent();
17558
17559 // C++23 [expr.const]/p16
17560 // An expression or conversion is immediate-escalating if it is not
17561 // initially in an immediate function context and it is [...] a
17562 // potentially-evaluated id-expression that denotes an immediate function
17563 // that is not a subexpression of an immediate invocation.
17564 bool ImmediateEscalating = false;
17565 bool IsPotentiallyEvaluated =
17566 Rec.Context ==
17567 Sema::ExpressionEvaluationContext::PotentiallyEvaluated ||
17568 Rec.Context ==
17569 Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed;
17570 if (SemaRef.inTemplateInstantiation() && IsPotentiallyEvaluated)
17571 ImmediateEscalating = Rec.InImmediateEscalatingFunctionContext;
17572
17573 if (!Rec.InImmediateEscalatingFunctionContext ||
17574 (SemaRef.inTemplateInstantiation() && !ImmediateEscalating)) {
17575 SemaRef.Diag(Loc: DR->getBeginLoc(), DiagID: diag::err_invalid_consteval_take_address)
17576 << ND << isa<CXXRecordDecl>(Val: ND) << FD->isConsteval();
17577 SemaRef.Diag(Loc: ND->getLocation(), DiagID: diag::note_declared_at);
17578 if (auto Context =
17579 SemaRef.InnermostDeclarationWithDelayedImmediateInvocations()) {
17580 SemaRef.Diag(Loc: Context->Loc, DiagID: diag::note_invalid_consteval_initializer)
17581 << Context->Decl;
17582 SemaRef.Diag(Loc: Context->Decl->getBeginLoc(), DiagID: diag::note_declared_at);
17583 }
17584 if (FD->isImmediateEscalating() && !FD->isConsteval())
17585 SemaRef.DiagnoseImmediateEscalatingReason(FD);
17586
17587 } else {
17588 SemaRef.MarkExpressionAsImmediateEscalating(E: DR);
17589 }
17590 }
17591}
17592
17593void Sema::PopExpressionEvaluationContext() {
17594 ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
17595 unsigned NumTypos = Rec.NumTypos;
17596
17597 if (!Rec.Lambdas.empty()) {
17598 using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
17599 if (!getLangOpts().CPlusPlus20 &&
17600 (Rec.ExprContext == ExpressionKind::EK_TemplateArgument ||
17601 Rec.isUnevaluated() ||
17602 (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17))) {
17603 unsigned D;
17604 if (Rec.isUnevaluated()) {
17605 // C++11 [expr.prim.lambda]p2:
17606 // A lambda-expression shall not appear in an unevaluated operand
17607 // (Clause 5).
17608 D = diag::err_lambda_unevaluated_operand;
17609 } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
17610 // C++1y [expr.const]p2:
17611 // A conditional-expression e is a core constant expression unless the
17612 // evaluation of e, following the rules of the abstract machine, would
17613 // evaluate [...] a lambda-expression.
17614 D = diag::err_lambda_in_constant_expression;
17615 } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
17616 // C++17 [expr.prim.lamda]p2:
17617 // A lambda-expression shall not appear [...] in a template-argument.
17618 D = diag::err_lambda_in_invalid_context;
17619 } else
17620 llvm_unreachable("Couldn't infer lambda error message.");
17621
17622 for (const auto *L : Rec.Lambdas)
17623 Diag(Loc: L->getBeginLoc(), DiagID: D);
17624 }
17625 }
17626
17627 // Append the collected materialized temporaries into previous context before
17628 // exit if the previous also is a lifetime extending context.
17629 auto &PrevRecord = parentEvaluationContext();
17630 if (getLangOpts().CPlusPlus23 && Rec.InLifetimeExtendingContext &&
17631 PrevRecord.InLifetimeExtendingContext &&
17632 !Rec.ForRangeLifetimeExtendTemps.empty()) {
17633 PrevRecord.ForRangeLifetimeExtendTemps.append(
17634 RHS: Rec.ForRangeLifetimeExtendTemps);
17635 }
17636
17637 WarnOnPendingNoDerefs(Rec);
17638 HandleImmediateInvocations(SemaRef&: *this, Rec);
17639
17640 // Warn on any volatile-qualified simple-assignments that are not discarded-
17641 // value expressions nor unevaluated operands (those cases get removed from
17642 // this list by CheckUnusedVolatileAssignment).
17643 for (auto *BO : Rec.VolatileAssignmentLHSs)
17644 Diag(Loc: BO->getBeginLoc(), DiagID: diag::warn_deprecated_simple_assign_volatile)
17645 << BO->getType();
17646
17647 // When are coming out of an unevaluated context, clear out any
17648 // temporaries that we may have created as part of the evaluation of
17649 // the expression in that context: they aren't relevant because they
17650 // will never be constructed.
17651 if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
17652 ExprCleanupObjects.erase(CS: ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
17653 CE: ExprCleanupObjects.end());
17654 Cleanup = Rec.ParentCleanup;
17655 CleanupVarDeclMarking();
17656 std::swap(LHS&: MaybeODRUseExprs, RHS&: Rec.SavedMaybeODRUseExprs);
17657 // Otherwise, merge the contexts together.
17658 } else {
17659 Cleanup.mergeFrom(Rhs: Rec.ParentCleanup);
17660 MaybeODRUseExprs.insert(Start: Rec.SavedMaybeODRUseExprs.begin(),
17661 End: Rec.SavedMaybeODRUseExprs.end());
17662 }
17663
17664 // Pop the current expression evaluation context off the stack.
17665 ExprEvalContexts.pop_back();
17666
17667 // The global expression evaluation context record is never popped.
17668 ExprEvalContexts.back().NumTypos += NumTypos;
17669}
17670
17671void Sema::DiscardCleanupsInEvaluationContext() {
17672 ExprCleanupObjects.erase(
17673 CS: ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
17674 CE: ExprCleanupObjects.end());
17675 Cleanup.reset();
17676 MaybeODRUseExprs.clear();
17677}
17678
17679ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
17680 ExprResult Result = CheckPlaceholderExpr(E);
17681 if (Result.isInvalid())
17682 return ExprError();
17683 E = Result.get();
17684 if (!E->getType()->isVariablyModifiedType())
17685 return E;
17686 return TransformToPotentiallyEvaluated(E);
17687}
17688
17689/// Are we in a context that is potentially constant evaluated per C++20
17690/// [expr.const]p12?
17691static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
17692 /// C++2a [expr.const]p12:
17693 // An expression or conversion is potentially constant evaluated if it is
17694 switch (SemaRef.ExprEvalContexts.back().Context) {
17695 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
17696 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
17697
17698 // -- a manifestly constant-evaluated expression,
17699 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
17700 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17701 case Sema::ExpressionEvaluationContext::DiscardedStatement:
17702 // -- a potentially-evaluated expression,
17703 case Sema::ExpressionEvaluationContext::UnevaluatedList:
17704 // -- an immediate subexpression of a braced-init-list,
17705
17706 // -- [FIXME] an expression of the form & cast-expression that occurs
17707 // within a templated entity
17708 // -- a subexpression of one of the above that is not a subexpression of
17709 // a nested unevaluated operand.
17710 return true;
17711
17712 case Sema::ExpressionEvaluationContext::Unevaluated:
17713 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
17714 // Expressions in this context are never evaluated.
17715 return false;
17716 }
17717 llvm_unreachable("Invalid context");
17718}
17719
17720/// Return true if this function has a calling convention that requires mangling
17721/// in the size of the parameter pack.
17722static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
17723 // These manglings don't do anything on non-Windows or non-x86 platforms, so
17724 // we don't need parameter type sizes.
17725 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
17726 if (!TT.isOSWindows() || !TT.isX86())
17727 return false;
17728
17729 // If this is C++ and this isn't an extern "C" function, parameters do not
17730 // need to be complete. In this case, C++ mangling will apply, which doesn't
17731 // use the size of the parameters.
17732 if (S.getLangOpts().CPlusPlus && !FD->isExternC())
17733 return false;
17734
17735 // Stdcall, fastcall, and vectorcall need this special treatment.
17736 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
17737 switch (CC) {
17738 case CC_X86StdCall:
17739 case CC_X86FastCall:
17740 case CC_X86VectorCall:
17741 return true;
17742 default:
17743 break;
17744 }
17745 return false;
17746}
17747
17748/// Require that all of the parameter types of function be complete. Normally,
17749/// parameter types are only required to be complete when a function is called
17750/// or defined, but to mangle functions with certain calling conventions, the
17751/// mangler needs to know the size of the parameter list. In this situation,
17752/// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
17753/// the function as _foo@0, i.e. zero bytes of parameters, which will usually
17754/// result in a linker error. Clang doesn't implement this behavior, and instead
17755/// attempts to error at compile time.
17756static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
17757 SourceLocation Loc) {
17758 class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
17759 FunctionDecl *FD;
17760 ParmVarDecl *Param;
17761
17762 public:
17763 ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
17764 : FD(FD), Param(Param) {}
17765
17766 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
17767 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
17768 StringRef CCName;
17769 switch (CC) {
17770 case CC_X86StdCall:
17771 CCName = "stdcall";
17772 break;
17773 case CC_X86FastCall:
17774 CCName = "fastcall";
17775 break;
17776 case CC_X86VectorCall:
17777 CCName = "vectorcall";
17778 break;
17779 default:
17780 llvm_unreachable("CC does not need mangling");
17781 }
17782
17783 S.Diag(Loc, DiagID: diag::err_cconv_incomplete_param_type)
17784 << Param->getDeclName() << FD->getDeclName() << CCName;
17785 }
17786 };
17787
17788 for (ParmVarDecl *Param : FD->parameters()) {
17789 ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
17790 S.RequireCompleteType(Loc, T: Param->getType(), Diagnoser);
17791 }
17792}
17793
17794namespace {
17795enum class OdrUseContext {
17796 /// Declarations in this context are not odr-used.
17797 None,
17798 /// Declarations in this context are formally odr-used, but this is a
17799 /// dependent context.
17800 Dependent,
17801 /// Declarations in this context are odr-used but not actually used (yet).
17802 FormallyOdrUsed,
17803 /// Declarations in this context are used.
17804 Used
17805};
17806}
17807
17808/// Are we within a context in which references to resolved functions or to
17809/// variables result in odr-use?
17810static OdrUseContext isOdrUseContext(Sema &SemaRef) {
17811 OdrUseContext Result;
17812
17813 switch (SemaRef.ExprEvalContexts.back().Context) {
17814 case Sema::ExpressionEvaluationContext::Unevaluated:
17815 case Sema::ExpressionEvaluationContext::UnevaluatedList:
17816 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
17817 return OdrUseContext::None;
17818
17819 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
17820 case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
17821 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
17822 Result = OdrUseContext::Used;
17823 break;
17824
17825 case Sema::ExpressionEvaluationContext::DiscardedStatement:
17826 Result = OdrUseContext::FormallyOdrUsed;
17827 break;
17828
17829 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
17830 // A default argument formally results in odr-use, but doesn't actually
17831 // result in a use in any real sense until it itself is used.
17832 Result = OdrUseContext::FormallyOdrUsed;
17833 break;
17834 }
17835
17836 if (SemaRef.CurContext->isDependentContext())
17837 return OdrUseContext::Dependent;
17838
17839 return Result;
17840}
17841
17842static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
17843 if (!Func->isConstexpr())
17844 return false;
17845
17846 if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
17847 return true;
17848 auto *CCD = dyn_cast<CXXConstructorDecl>(Val: Func);
17849 return CCD && CCD->getInheritedConstructor();
17850}
17851
17852void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
17853 bool MightBeOdrUse) {
17854 assert(Func && "No function?");
17855
17856 Func->setReferenced();
17857
17858 // Recursive functions aren't really used until they're used from some other
17859 // context.
17860 bool IsRecursiveCall = CurContext == Func;
17861
17862 // C++11 [basic.def.odr]p3:
17863 // A function whose name appears as a potentially-evaluated expression is
17864 // odr-used if it is the unique lookup result or the selected member of a
17865 // set of overloaded functions [...].
17866 //
17867 // We (incorrectly) mark overload resolution as an unevaluated context, so we
17868 // can just check that here.
17869 OdrUseContext OdrUse =
17870 MightBeOdrUse ? isOdrUseContext(SemaRef&: *this) : OdrUseContext::None;
17871 if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
17872 OdrUse = OdrUseContext::FormallyOdrUsed;
17873
17874 // Trivial default constructors and destructors are never actually used.
17875 // FIXME: What about other special members?
17876 if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
17877 OdrUse == OdrUseContext::Used) {
17878 if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Val: Func))
17879 if (Constructor->isDefaultConstructor())
17880 OdrUse = OdrUseContext::FormallyOdrUsed;
17881 if (isa<CXXDestructorDecl>(Val: Func))
17882 OdrUse = OdrUseContext::FormallyOdrUsed;
17883 }
17884
17885 // C++20 [expr.const]p12:
17886 // A function [...] is needed for constant evaluation if it is [...] a
17887 // constexpr function that is named by an expression that is potentially
17888 // constant evaluated
17889 bool NeededForConstantEvaluation =
17890 isPotentiallyConstantEvaluatedContext(SemaRef&: *this) &&
17891 isImplicitlyDefinableConstexprFunction(Func);
17892
17893 // Determine whether we require a function definition to exist, per
17894 // C++11 [temp.inst]p3:
17895 // Unless a function template specialization has been explicitly
17896 // instantiated or explicitly specialized, the function template
17897 // specialization is implicitly instantiated when the specialization is
17898 // referenced in a context that requires a function definition to exist.
17899 // C++20 [temp.inst]p7:
17900 // The existence of a definition of a [...] function is considered to
17901 // affect the semantics of the program if the [...] function is needed for
17902 // constant evaluation by an expression
17903 // C++20 [basic.def.odr]p10:
17904 // Every program shall contain exactly one definition of every non-inline
17905 // function or variable that is odr-used in that program outside of a
17906 // discarded statement
17907 // C++20 [special]p1:
17908 // The implementation will implicitly define [defaulted special members]
17909 // if they are odr-used or needed for constant evaluation.
17910 //
17911 // Note that we skip the implicit instantiation of templates that are only
17912 // used in unused default arguments or by recursive calls to themselves.
17913 // This is formally non-conforming, but seems reasonable in practice.
17914 bool NeedDefinition =
17915 !IsRecursiveCall &&
17916 (OdrUse == OdrUseContext::Used ||
17917 (NeededForConstantEvaluation && !Func->isPureVirtual()));
17918
17919 // C++14 [temp.expl.spec]p6:
17920 // If a template [...] is explicitly specialized then that specialization
17921 // shall be declared before the first use of that specialization that would
17922 // cause an implicit instantiation to take place, in every translation unit
17923 // in which such a use occurs
17924 if (NeedDefinition &&
17925 (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
17926 Func->getMemberSpecializationInfo()))
17927 checkSpecializationReachability(Loc, Spec: Func);
17928
17929 if (getLangOpts().CUDA)
17930 CUDA().CheckCall(Loc, Callee: Func);
17931
17932 // If we need a definition, try to create one.
17933 if (NeedDefinition && !Func->getBody()) {
17934 runWithSufficientStackSpace(Loc, Fn: [&] {
17935 if (CXXConstructorDecl *Constructor =
17936 dyn_cast<CXXConstructorDecl>(Val: Func)) {
17937 Constructor = cast<CXXConstructorDecl>(Val: Constructor->getFirstDecl());
17938 if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
17939 if (Constructor->isDefaultConstructor()) {
17940 if (Constructor->isTrivial() &&
17941 !Constructor->hasAttr<DLLExportAttr>())
17942 return;
17943 DefineImplicitDefaultConstructor(CurrentLocation: Loc, Constructor);
17944 } else if (Constructor->isCopyConstructor()) {
17945 DefineImplicitCopyConstructor(CurrentLocation: Loc, Constructor);
17946 } else if (Constructor->isMoveConstructor()) {
17947 DefineImplicitMoveConstructor(CurrentLocation: Loc, Constructor);
17948 }
17949 } else if (Constructor->getInheritedConstructor()) {
17950 DefineInheritingConstructor(UseLoc: Loc, Constructor);
17951 }
17952 } else if (CXXDestructorDecl *Destructor =
17953 dyn_cast<CXXDestructorDecl>(Val: Func)) {
17954 Destructor = cast<CXXDestructorDecl>(Val: Destructor->getFirstDecl());
17955 if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
17956 if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
17957 return;
17958 DefineImplicitDestructor(CurrentLocation: Loc, Destructor);
17959 }
17960 if (Destructor->isVirtual() && getLangOpts().AppleKext)
17961 MarkVTableUsed(Loc, Class: Destructor->getParent());
17962 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Val: Func)) {
17963 if (MethodDecl->isOverloadedOperator() &&
17964 MethodDecl->getOverloadedOperator() == OO_Equal) {
17965 MethodDecl = cast<CXXMethodDecl>(Val: MethodDecl->getFirstDecl());
17966 if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
17967 if (MethodDecl->isCopyAssignmentOperator())
17968 DefineImplicitCopyAssignment(CurrentLocation: Loc, MethodDecl);
17969 else if (MethodDecl->isMoveAssignmentOperator())
17970 DefineImplicitMoveAssignment(CurrentLocation: Loc, MethodDecl);
17971 }
17972 } else if (isa<CXXConversionDecl>(Val: MethodDecl) &&
17973 MethodDecl->getParent()->isLambda()) {
17974 CXXConversionDecl *Conversion =
17975 cast<CXXConversionDecl>(Val: MethodDecl->getFirstDecl());
17976 if (Conversion->isLambdaToBlockPointerConversion())
17977 DefineImplicitLambdaToBlockPointerConversion(CurrentLoc: Loc, Conv: Conversion);
17978 else
17979 DefineImplicitLambdaToFunctionPointerConversion(CurrentLoc: Loc, Conv: Conversion);
17980 } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
17981 MarkVTableUsed(Loc, Class: MethodDecl->getParent());
17982 }
17983
17984 if (Func->isDefaulted() && !Func->isDeleted()) {
17985 DefaultedComparisonKind DCK = getDefaultedComparisonKind(FD: Func);
17986 if (DCK != DefaultedComparisonKind::None)
17987 DefineDefaultedComparison(Loc, FD: Func, DCK);
17988 }
17989
17990 // Implicit instantiation of function templates and member functions of
17991 // class templates.
17992 if (Func->isImplicitlyInstantiable()) {
17993 TemplateSpecializationKind TSK =
17994 Func->getTemplateSpecializationKindForInstantiation();
17995 SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
17996 bool FirstInstantiation = PointOfInstantiation.isInvalid();
17997 if (FirstInstantiation) {
17998 PointOfInstantiation = Loc;
17999 if (auto *MSI = Func->getMemberSpecializationInfo())
18000 MSI->setPointOfInstantiation(Loc);
18001 // FIXME: Notify listener.
18002 else
18003 Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
18004 } else if (TSK != TSK_ImplicitInstantiation) {
18005 // Use the point of use as the point of instantiation, instead of the
18006 // point of explicit instantiation (which we track as the actual point
18007 // of instantiation). This gives better backtraces in diagnostics.
18008 PointOfInstantiation = Loc;
18009 }
18010
18011 if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
18012 Func->isConstexpr()) {
18013 if (isa<CXXRecordDecl>(Val: Func->getDeclContext()) &&
18014 cast<CXXRecordDecl>(Val: Func->getDeclContext())->isLocalClass() &&
18015 CodeSynthesisContexts.size())
18016 PendingLocalImplicitInstantiations.push_back(
18017 x: std::make_pair(x&: Func, y&: PointOfInstantiation));
18018 else if (Func->isConstexpr())
18019 // Do not defer instantiations of constexpr functions, to avoid the
18020 // expression evaluator needing to call back into Sema if it sees a
18021 // call to such a function.
18022 InstantiateFunctionDefinition(PointOfInstantiation, Function: Func);
18023 else {
18024 Func->setInstantiationIsPending(true);
18025 PendingInstantiations.push_back(
18026 x: std::make_pair(x&: Func, y&: PointOfInstantiation));
18027 // Notify the consumer that a function was implicitly instantiated.
18028 Consumer.HandleCXXImplicitFunctionInstantiation(D: Func);
18029 }
18030 }
18031 } else {
18032 // Walk redefinitions, as some of them may be instantiable.
18033 for (auto *i : Func->redecls()) {
18034 if (!i->isUsed(CheckUsedAttr: false) && i->isImplicitlyInstantiable())
18035 MarkFunctionReferenced(Loc, Func: i, MightBeOdrUse);
18036 }
18037 }
18038 });
18039 }
18040
18041 // If a constructor was defined in the context of a default parameter
18042 // or of another default member initializer (ie a PotentiallyEvaluatedIfUsed
18043 // context), its initializers may not be referenced yet.
18044 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Val: Func)) {
18045 EnterExpressionEvaluationContext EvalContext(
18046 *this,
18047 Constructor->isImmediateFunction()
18048 ? ExpressionEvaluationContext::ImmediateFunctionContext
18049 : ExpressionEvaluationContext::PotentiallyEvaluated,
18050 Constructor);
18051 for (CXXCtorInitializer *Init : Constructor->inits()) {
18052 if (Init->isInClassMemberInitializer())
18053 runWithSufficientStackSpace(Loc: Init->getSourceLocation(), Fn: [&]() {
18054 MarkDeclarationsReferencedInExpr(E: Init->getInit());
18055 });
18056 }
18057 }
18058
18059 // C++14 [except.spec]p17:
18060 // An exception-specification is considered to be needed when:
18061 // - the function is odr-used or, if it appears in an unevaluated operand,
18062 // would be odr-used if the expression were potentially-evaluated;
18063 //
18064 // Note, we do this even if MightBeOdrUse is false. That indicates that the
18065 // function is a pure virtual function we're calling, and in that case the
18066 // function was selected by overload resolution and we need to resolve its
18067 // exception specification for a different reason.
18068 const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
18069 if (FPT && isUnresolvedExceptionSpec(ESpecType: FPT->getExceptionSpecType()))
18070 ResolveExceptionSpec(Loc, FPT);
18071
18072 // A callee could be called by a host function then by a device function.
18073 // If we only try recording once, we will miss recording the use on device
18074 // side. Therefore keep trying until it is recorded.
18075 if (LangOpts.OffloadImplicitHostDeviceTemplates && LangOpts.CUDAIsDevice &&
18076 !getASTContext().CUDAImplicitHostDeviceFunUsedByDevice.count(V: Func))
18077 CUDA().RecordImplicitHostDeviceFuncUsedByDevice(FD: Func);
18078
18079 // If this is the first "real" use, act on that.
18080 if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
18081 // Keep track of used but undefined functions.
18082 if (!Func->isDefined()) {
18083 if (mightHaveNonExternalLinkage(FD: Func))
18084 UndefinedButUsed.insert(KV: std::make_pair(x: Func->getCanonicalDecl(), y&: Loc));
18085 else if (Func->getMostRecentDecl()->isInlined() &&
18086 !LangOpts.GNUInline &&
18087 !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
18088 UndefinedButUsed.insert(KV: std::make_pair(x: Func->getCanonicalDecl(), y&: Loc));
18089 else if (isExternalWithNoLinkageType(VD: Func))
18090 UndefinedButUsed.insert(KV: std::make_pair(x: Func->getCanonicalDecl(), y&: Loc));
18091 }
18092
18093 // Some x86 Windows calling conventions mangle the size of the parameter
18094 // pack into the name. Computing the size of the parameters requires the
18095 // parameter types to be complete. Check that now.
18096 if (funcHasParameterSizeMangling(S&: *this, FD: Func))
18097 CheckCompleteParameterTypesForMangler(S&: *this, FD: Func, Loc);
18098
18099 // In the MS C++ ABI, the compiler emits destructor variants where they are
18100 // used. If the destructor is used here but defined elsewhere, mark the
18101 // virtual base destructors referenced. If those virtual base destructors
18102 // are inline, this will ensure they are defined when emitting the complete
18103 // destructor variant. This checking may be redundant if the destructor is
18104 // provided later in this TU.
18105 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
18106 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Val: Func)) {
18107 CXXRecordDecl *Parent = Dtor->getParent();
18108 if (Parent->getNumVBases() > 0 && !Dtor->getBody())
18109 CheckCompleteDestructorVariant(CurrentLocation: Loc, Dtor);
18110 }
18111 }
18112
18113 Func->markUsed(C&: Context);
18114 }
18115}
18116
18117/// Directly mark a variable odr-used. Given a choice, prefer to use
18118/// MarkVariableReferenced since it does additional checks and then
18119/// calls MarkVarDeclODRUsed.
18120/// If the variable must be captured:
18121/// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
18122/// - else capture it in the DeclContext that maps to the
18123/// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
18124static void
18125MarkVarDeclODRUsed(ValueDecl *V, SourceLocation Loc, Sema &SemaRef,
18126 const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
18127 // Keep track of used but undefined variables.
18128 // FIXME: We shouldn't suppress this warning for static data members.
18129 VarDecl *Var = V->getPotentiallyDecomposedVarDecl();
18130 assert(Var && "expected a capturable variable");
18131
18132 if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
18133 (!Var->isExternallyVisible() || Var->isInline() ||
18134 SemaRef.isExternalWithNoLinkageType(VD: Var)) &&
18135 !(Var->isStaticDataMember() && Var->hasInit())) {
18136 SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
18137 if (old.isInvalid())
18138 old = Loc;
18139 }
18140 QualType CaptureType, DeclRefType;
18141 if (SemaRef.LangOpts.OpenMP)
18142 SemaRef.OpenMP().tryCaptureOpenMPLambdas(V);
18143 SemaRef.tryCaptureVariable(Var: V, Loc, Kind: Sema::TryCapture_Implicit,
18144 /*EllipsisLoc*/ SourceLocation(),
18145 /*BuildAndDiagnose*/ true, CaptureType,
18146 DeclRefType, FunctionScopeIndexToStopAt);
18147
18148 if (SemaRef.LangOpts.CUDA && Var->hasGlobalStorage()) {
18149 auto *FD = dyn_cast_or_null<FunctionDecl>(Val: SemaRef.CurContext);
18150 auto VarTarget = SemaRef.CUDA().IdentifyTarget(D: Var);
18151 auto UserTarget = SemaRef.CUDA().IdentifyTarget(D: FD);
18152 if (VarTarget == SemaCUDA::CVT_Host &&
18153 (UserTarget == CUDAFunctionTarget::Device ||
18154 UserTarget == CUDAFunctionTarget::HostDevice ||
18155 UserTarget == CUDAFunctionTarget::Global)) {
18156 // Diagnose ODR-use of host global variables in device functions.
18157 // Reference of device global variables in host functions is allowed
18158 // through shadow variables therefore it is not diagnosed.
18159 if (SemaRef.LangOpts.CUDAIsDevice && !SemaRef.LangOpts.HIPStdPar) {
18160 SemaRef.targetDiag(Loc, DiagID: diag::err_ref_bad_target)
18161 << /*host*/ 2 << /*variable*/ 1 << Var
18162 << llvm::to_underlying(E: UserTarget);
18163 SemaRef.targetDiag(Loc: Var->getLocation(),
18164 DiagID: Var->getType().isConstQualified()
18165 ? diag::note_cuda_const_var_unpromoted
18166 : diag::note_cuda_host_var);
18167 }
18168 } else if (VarTarget == SemaCUDA::CVT_Device &&
18169 !Var->hasAttr<CUDASharedAttr>() &&
18170 (UserTarget == CUDAFunctionTarget::Host ||
18171 UserTarget == CUDAFunctionTarget::HostDevice)) {
18172 // Record a CUDA/HIP device side variable if it is ODR-used
18173 // by host code. This is done conservatively, when the variable is
18174 // referenced in any of the following contexts:
18175 // - a non-function context
18176 // - a host function
18177 // - a host device function
18178 // This makes the ODR-use of the device side variable by host code to
18179 // be visible in the device compilation for the compiler to be able to
18180 // emit template variables instantiated by host code only and to
18181 // externalize the static device side variable ODR-used by host code.
18182 if (!Var->hasExternalStorage())
18183 SemaRef.getASTContext().CUDADeviceVarODRUsedByHost.insert(V: Var);
18184 else if (SemaRef.LangOpts.GPURelocatableDeviceCode &&
18185 (!FD || (!FD->getDescribedFunctionTemplate() &&
18186 SemaRef.getASTContext().GetGVALinkageForFunction(FD) ==
18187 GVA_StrongExternal)))
18188 SemaRef.getASTContext().CUDAExternalDeviceDeclODRUsedByHost.insert(V: Var);
18189 }
18190 }
18191
18192 V->markUsed(C&: SemaRef.Context);
18193}
18194
18195void Sema::MarkCaptureUsedInEnclosingContext(ValueDecl *Capture,
18196 SourceLocation Loc,
18197 unsigned CapturingScopeIndex) {
18198 MarkVarDeclODRUsed(V: Capture, Loc, SemaRef&: *this, FunctionScopeIndexToStopAt: &CapturingScopeIndex);
18199}
18200
18201void diagnoseUncapturableValueReferenceOrBinding(Sema &S, SourceLocation loc,
18202 ValueDecl *var) {
18203 DeclContext *VarDC = var->getDeclContext();
18204
18205 // If the parameter still belongs to the translation unit, then
18206 // we're actually just using one parameter in the declaration of
18207 // the next.
18208 if (isa<ParmVarDecl>(Val: var) &&
18209 isa<TranslationUnitDecl>(Val: VarDC))
18210 return;
18211
18212 // For C code, don't diagnose about capture if we're not actually in code
18213 // right now; it's impossible to write a non-constant expression outside of
18214 // function context, so we'll get other (more useful) diagnostics later.
18215 //
18216 // For C++, things get a bit more nasty... it would be nice to suppress this
18217 // diagnostic for certain cases like using a local variable in an array bound
18218 // for a member of a local class, but the correct predicate is not obvious.
18219 if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
18220 return;
18221
18222 unsigned ValueKind = isa<BindingDecl>(Val: var) ? 1 : 0;
18223 unsigned ContextKind = 3; // unknown
18224 if (isa<CXXMethodDecl>(Val: VarDC) &&
18225 cast<CXXRecordDecl>(Val: VarDC->getParent())->isLambda()) {
18226 ContextKind = 2;
18227 } else if (isa<FunctionDecl>(Val: VarDC)) {
18228 ContextKind = 0;
18229 } else if (isa<BlockDecl>(Val: VarDC)) {
18230 ContextKind = 1;
18231 }
18232
18233 S.Diag(Loc: loc, DiagID: diag::err_reference_to_local_in_enclosing_context)
18234 << var << ValueKind << ContextKind << VarDC;
18235 S.Diag(Loc: var->getLocation(), DiagID: diag::note_entity_declared_at)
18236 << var;
18237
18238 // FIXME: Add additional diagnostic info about class etc. which prevents
18239 // capture.
18240}
18241
18242static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI,
18243 ValueDecl *Var,
18244 bool &SubCapturesAreNested,
18245 QualType &CaptureType,
18246 QualType &DeclRefType) {
18247 // Check whether we've already captured it.
18248 if (CSI->CaptureMap.count(Val: Var)) {
18249 // If we found a capture, any subcaptures are nested.
18250 SubCapturesAreNested = true;
18251
18252 // Retrieve the capture type for this variable.
18253 CaptureType = CSI->getCapture(Var).getCaptureType();
18254
18255 // Compute the type of an expression that refers to this variable.
18256 DeclRefType = CaptureType.getNonReferenceType();
18257
18258 // Similarly to mutable captures in lambda, all the OpenMP captures by copy
18259 // are mutable in the sense that user can change their value - they are
18260 // private instances of the captured declarations.
18261 const Capture &Cap = CSI->getCapture(Var);
18262 if (Cap.isCopyCapture() &&
18263 !(isa<LambdaScopeInfo>(Val: CSI) &&
18264 !cast<LambdaScopeInfo>(Val: CSI)->lambdaCaptureShouldBeConst()) &&
18265 !(isa<CapturedRegionScopeInfo>(Val: CSI) &&
18266 cast<CapturedRegionScopeInfo>(Val: CSI)->CapRegionKind == CR_OpenMP))
18267 DeclRefType.addConst();
18268 return true;
18269 }
18270 return false;
18271}
18272
18273// Only block literals, captured statements, and lambda expressions can
18274// capture; other scopes don't work.
18275static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC,
18276 ValueDecl *Var,
18277 SourceLocation Loc,
18278 const bool Diagnose,
18279 Sema &S) {
18280 if (isa<BlockDecl>(Val: DC) || isa<CapturedDecl>(Val: DC) || isLambdaCallOperator(DC))
18281 return getLambdaAwareParentOfDeclContext(DC);
18282
18283 VarDecl *Underlying = Var->getPotentiallyDecomposedVarDecl();
18284 if (Underlying) {
18285 if (Underlying->hasLocalStorage() && Diagnose)
18286 diagnoseUncapturableValueReferenceOrBinding(S, loc: Loc, var: Var);
18287 }
18288 return nullptr;
18289}
18290
18291// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18292// certain types of variables (unnamed, variably modified types etc.)
18293// so check for eligibility.
18294static bool isVariableCapturable(CapturingScopeInfo *CSI, ValueDecl *Var,
18295 SourceLocation Loc, const bool Diagnose,
18296 Sema &S) {
18297
18298 assert((isa<VarDecl, BindingDecl>(Var)) &&
18299 "Only variables and structured bindings can be captured");
18300
18301 bool IsBlock = isa<BlockScopeInfo>(Val: CSI);
18302 bool IsLambda = isa<LambdaScopeInfo>(Val: CSI);
18303
18304 // Lambdas are not allowed to capture unnamed variables
18305 // (e.g. anonymous unions).
18306 // FIXME: The C++11 rule don't actually state this explicitly, but I'm
18307 // assuming that's the intent.
18308 if (IsLambda && !Var->getDeclName()) {
18309 if (Diagnose) {
18310 S.Diag(Loc, DiagID: diag::err_lambda_capture_anonymous_var);
18311 S.Diag(Loc: Var->getLocation(), DiagID: diag::note_declared_at);
18312 }
18313 return false;
18314 }
18315
18316 // Prohibit variably-modified types in blocks; they're difficult to deal with.
18317 if (Var->getType()->isVariablyModifiedType() && IsBlock) {
18318 if (Diagnose) {
18319 S.Diag(Loc, DiagID: diag::err_ref_vm_type);
18320 S.Diag(Loc: Var->getLocation(), DiagID: diag::note_previous_decl) << Var;
18321 }
18322 return false;
18323 }
18324 // Prohibit structs with flexible array members too.
18325 // We cannot capture what is in the tail end of the struct.
18326 if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
18327 if (VTTy->getDecl()->hasFlexibleArrayMember()) {
18328 if (Diagnose) {
18329 if (IsBlock)
18330 S.Diag(Loc, DiagID: diag::err_ref_flexarray_type);
18331 else
18332 S.Diag(Loc, DiagID: diag::err_lambda_capture_flexarray_type) << Var;
18333 S.Diag(Loc: Var->getLocation(), DiagID: diag::note_previous_decl) << Var;
18334 }
18335 return false;
18336 }
18337 }
18338 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18339 // Lambdas and captured statements are not allowed to capture __block
18340 // variables; they don't support the expected semantics.
18341 if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(Val: CSI))) {
18342 if (Diagnose) {
18343 S.Diag(Loc, DiagID: diag::err_capture_block_variable) << Var << !IsLambda;
18344 S.Diag(Loc: Var->getLocation(), DiagID: diag::note_previous_decl) << Var;
18345 }
18346 return false;
18347 }
18348 // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
18349 if (S.getLangOpts().OpenCL && IsBlock &&
18350 Var->getType()->isBlockPointerType()) {
18351 if (Diagnose)
18352 S.Diag(Loc, DiagID: diag::err_opencl_block_ref_block);
18353 return false;
18354 }
18355
18356 if (isa<BindingDecl>(Val: Var)) {
18357 if (!IsLambda || !S.getLangOpts().CPlusPlus) {
18358 if (Diagnose)
18359 diagnoseUncapturableValueReferenceOrBinding(S, loc: Loc, var: Var);
18360 return false;
18361 } else if (Diagnose && S.getLangOpts().CPlusPlus) {
18362 S.Diag(Loc, DiagID: S.LangOpts.CPlusPlus20
18363 ? diag::warn_cxx17_compat_capture_binding
18364 : diag::ext_capture_binding)
18365 << Var;
18366 S.Diag(Loc: Var->getLocation(), DiagID: diag::note_entity_declared_at) << Var;
18367 }
18368 }
18369
18370 return true;
18371}
18372
18373// Returns true if the capture by block was successful.
18374static bool captureInBlock(BlockScopeInfo *BSI, ValueDecl *Var,
18375 SourceLocation Loc, const bool BuildAndDiagnose,
18376 QualType &CaptureType, QualType &DeclRefType,
18377 const bool Nested, Sema &S, bool Invalid) {
18378 bool ByRef = false;
18379
18380 // Blocks are not allowed to capture arrays, excepting OpenCL.
18381 // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
18382 // (decayed to pointers).
18383 if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
18384 if (BuildAndDiagnose) {
18385 S.Diag(Loc, DiagID: diag::err_ref_array_type);
18386 S.Diag(Loc: Var->getLocation(), DiagID: diag::note_previous_decl) << Var;
18387 Invalid = true;
18388 } else {
18389 return false;
18390 }
18391 }
18392
18393 // Forbid the block-capture of autoreleasing variables.
18394 if (!Invalid &&
18395 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18396 if (BuildAndDiagnose) {
18397 S.Diag(Loc, DiagID: diag::err_arc_autoreleasing_capture)
18398 << /*block*/ 0;
18399 S.Diag(Loc: Var->getLocation(), DiagID: diag::note_previous_decl) << Var;
18400 Invalid = true;
18401 } else {
18402 return false;
18403 }
18404 }
18405
18406 // Warn about implicitly autoreleasing indirect parameters captured by blocks.
18407 if (const auto *PT = CaptureType->getAs<PointerType>()) {
18408 QualType PointeeTy = PT->getPointeeType();
18409
18410 if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
18411 PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
18412 !S.Context.hasDirectOwnershipQualifier(Ty: PointeeTy)) {
18413 if (BuildAndDiagnose) {
18414 SourceLocation VarLoc = Var->getLocation();
18415 S.Diag(Loc, DiagID: diag::warn_block_capture_autoreleasing);
18416 S.Diag(Loc: VarLoc, DiagID: diag::note_declare_parameter_strong);
18417 }
18418 }
18419 }
18420
18421 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
18422 if (HasBlocksAttr || CaptureType->isReferenceType() ||
18423 (S.getLangOpts().OpenMP && S.OpenMP().isOpenMPCapturedDecl(D: Var))) {
18424 // Block capture by reference does not change the capture or
18425 // declaration reference types.
18426 ByRef = true;
18427 } else {
18428 // Block capture by copy introduces 'const'.
18429 CaptureType = CaptureType.getNonReferenceType().withConst();
18430 DeclRefType = CaptureType;
18431 }
18432
18433 // Actually capture the variable.
18434 if (BuildAndDiagnose)
18435 BSI->addCapture(Var, isBlock: HasBlocksAttr, isByref: ByRef, isNested: Nested, Loc, EllipsisLoc: SourceLocation(),
18436 CaptureType, Invalid);
18437
18438 return !Invalid;
18439}
18440
18441/// Capture the given variable in the captured region.
18442static bool captureInCapturedRegion(
18443 CapturedRegionScopeInfo *RSI, ValueDecl *Var, SourceLocation Loc,
18444 const bool BuildAndDiagnose, QualType &CaptureType, QualType &DeclRefType,
18445 const bool RefersToCapturedVariable, Sema::TryCaptureKind Kind,
18446 bool IsTopScope, Sema &S, bool Invalid) {
18447 // By default, capture variables by reference.
18448 bool ByRef = true;
18449 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
18450 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
18451 } else if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
18452 // Using an LValue reference type is consistent with Lambdas (see below).
18453 if (S.OpenMP().isOpenMPCapturedDecl(D: Var)) {
18454 bool HasConst = DeclRefType.isConstQualified();
18455 DeclRefType = DeclRefType.getUnqualifiedType();
18456 // Don't lose diagnostics about assignments to const.
18457 if (HasConst)
18458 DeclRefType.addConst();
18459 }
18460 // Do not capture firstprivates in tasks.
18461 if (S.OpenMP().isOpenMPPrivateDecl(D: Var, Level: RSI->OpenMPLevel,
18462 CapLevel: RSI->OpenMPCaptureLevel) != OMPC_unknown)
18463 return true;
18464 ByRef = S.OpenMP().isOpenMPCapturedByRef(D: Var, Level: RSI->OpenMPLevel,
18465 OpenMPCaptureLevel: RSI->OpenMPCaptureLevel);
18466 }
18467
18468 if (ByRef)
18469 CaptureType = S.Context.getLValueReferenceType(T: DeclRefType);
18470 else
18471 CaptureType = DeclRefType;
18472
18473 // Actually capture the variable.
18474 if (BuildAndDiagnose)
18475 RSI->addCapture(Var, /*isBlock*/ false, isByref: ByRef, isNested: RefersToCapturedVariable,
18476 Loc, EllipsisLoc: SourceLocation(), CaptureType, Invalid);
18477
18478 return !Invalid;
18479}
18480
18481/// Capture the given variable in the lambda.
18482static bool captureInLambda(LambdaScopeInfo *LSI, ValueDecl *Var,
18483 SourceLocation Loc, const bool BuildAndDiagnose,
18484 QualType &CaptureType, QualType &DeclRefType,
18485 const bool RefersToCapturedVariable,
18486 const Sema::TryCaptureKind Kind,
18487 SourceLocation EllipsisLoc, const bool IsTopScope,
18488 Sema &S, bool Invalid) {
18489 // Determine whether we are capturing by reference or by value.
18490 bool ByRef = false;
18491 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
18492 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
18493 } else {
18494 ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
18495 }
18496
18497 if (BuildAndDiagnose && S.Context.getTargetInfo().getTriple().isWasm() &&
18498 CaptureType.getNonReferenceType().isWebAssemblyReferenceType()) {
18499 S.Diag(Loc, DiagID: diag::err_wasm_ca_reference) << 0;
18500 Invalid = true;
18501 }
18502
18503 // Compute the type of the field that will capture this variable.
18504 if (ByRef) {
18505 // C++11 [expr.prim.lambda]p15:
18506 // An entity is captured by reference if it is implicitly or
18507 // explicitly captured but not captured by copy. It is
18508 // unspecified whether additional unnamed non-static data
18509 // members are declared in the closure type for entities
18510 // captured by reference.
18511 //
18512 // FIXME: It is not clear whether we want to build an lvalue reference
18513 // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
18514 // to do the former, while EDG does the latter. Core issue 1249 will
18515 // clarify, but for now we follow GCC because it's a more permissive and
18516 // easily defensible position.
18517 CaptureType = S.Context.getLValueReferenceType(T: DeclRefType);
18518 } else {
18519 // C++11 [expr.prim.lambda]p14:
18520 // For each entity captured by copy, an unnamed non-static
18521 // data member is declared in the closure type. The
18522 // declaration order of these members is unspecified. The type
18523 // of such a data member is the type of the corresponding
18524 // captured entity if the entity is not a reference to an
18525 // object, or the referenced type otherwise. [Note: If the
18526 // captured entity is a reference to a function, the
18527 // corresponding data member is also a reference to a
18528 // function. - end note ]
18529 if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
18530 if (!RefType->getPointeeType()->isFunctionType())
18531 CaptureType = RefType->getPointeeType();
18532 }
18533
18534 // Forbid the lambda copy-capture of autoreleasing variables.
18535 if (!Invalid &&
18536 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
18537 if (BuildAndDiagnose) {
18538 S.Diag(Loc, DiagID: diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
18539 S.Diag(Loc: Var->getLocation(), DiagID: diag::note_previous_decl)
18540 << Var->getDeclName();
18541 Invalid = true;
18542 } else {
18543 return false;
18544 }
18545 }
18546
18547 // Make sure that by-copy captures are of a complete and non-abstract type.
18548 if (!Invalid && BuildAndDiagnose) {
18549 if (!CaptureType->isDependentType() &&
18550 S.RequireCompleteSizedType(
18551 Loc, T: CaptureType,
18552 DiagID: diag::err_capture_of_incomplete_or_sizeless_type,
18553 Args: Var->getDeclName()))
18554 Invalid = true;
18555 else if (S.RequireNonAbstractType(Loc, T: CaptureType,
18556 DiagID: diag::err_capture_of_abstract_type))
18557 Invalid = true;
18558 }
18559 }
18560
18561 // Compute the type of a reference to this captured variable.
18562 if (ByRef)
18563 DeclRefType = CaptureType.getNonReferenceType();
18564 else {
18565 // C++ [expr.prim.lambda]p5:
18566 // The closure type for a lambda-expression has a public inline
18567 // function call operator [...]. This function call operator is
18568 // declared const (9.3.1) if and only if the lambda-expression's
18569 // parameter-declaration-clause is not followed by mutable.
18570 DeclRefType = CaptureType.getNonReferenceType();
18571 bool Const = LSI->lambdaCaptureShouldBeConst();
18572 if (Const && !CaptureType->isReferenceType())
18573 DeclRefType.addConst();
18574 }
18575
18576 // Add the capture.
18577 if (BuildAndDiagnose)
18578 LSI->addCapture(Var, /*isBlock=*/false, isByref: ByRef, isNested: RefersToCapturedVariable,
18579 Loc, EllipsisLoc, CaptureType, Invalid);
18580
18581 return !Invalid;
18582}
18583
18584static bool canCaptureVariableByCopy(ValueDecl *Var,
18585 const ASTContext &Context) {
18586 // Offer a Copy fix even if the type is dependent.
18587 if (Var->getType()->isDependentType())
18588 return true;
18589 QualType T = Var->getType().getNonReferenceType();
18590 if (T.isTriviallyCopyableType(Context))
18591 return true;
18592 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
18593
18594 if (!(RD = RD->getDefinition()))
18595 return false;
18596 if (RD->hasSimpleCopyConstructor())
18597 return true;
18598 if (RD->hasUserDeclaredCopyConstructor())
18599 for (CXXConstructorDecl *Ctor : RD->ctors())
18600 if (Ctor->isCopyConstructor())
18601 return !Ctor->isDeleted();
18602 }
18603 return false;
18604}
18605
18606/// Create up to 4 fix-its for explicit reference and value capture of \p Var or
18607/// default capture. Fixes may be omitted if they aren't allowed by the
18608/// standard, for example we can't emit a default copy capture fix-it if we
18609/// already explicitly copy capture capture another variable.
18610static void buildLambdaCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI,
18611 ValueDecl *Var) {
18612 assert(LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None);
18613 // Don't offer Capture by copy of default capture by copy fixes if Var is
18614 // known not to be copy constructible.
18615 bool ShouldOfferCopyFix = canCaptureVariableByCopy(Var, Context: Sema.getASTContext());
18616
18617 SmallString<32> FixBuffer;
18618 StringRef Separator = LSI->NumExplicitCaptures > 0 ? ", " : "";
18619 if (Var->getDeclName().isIdentifier() && !Var->getName().empty()) {
18620 SourceLocation VarInsertLoc = LSI->IntroducerRange.getEnd();
18621 if (ShouldOfferCopyFix) {
18622 // Offer fixes to insert an explicit capture for the variable.
18623 // [] -> [VarName]
18624 // [OtherCapture] -> [OtherCapture, VarName]
18625 FixBuffer.assign(Refs: {Separator, Var->getName()});
18626 Sema.Diag(Loc: VarInsertLoc, DiagID: diag::note_lambda_variable_capture_fixit)
18627 << Var << /*value*/ 0
18628 << FixItHint::CreateInsertion(InsertionLoc: VarInsertLoc, Code: FixBuffer);
18629 }
18630 // As above but capture by reference.
18631 FixBuffer.assign(Refs: {Separator, "&", Var->getName()});
18632 Sema.Diag(Loc: VarInsertLoc, DiagID: diag::note_lambda_variable_capture_fixit)
18633 << Var << /*reference*/ 1
18634 << FixItHint::CreateInsertion(InsertionLoc: VarInsertLoc, Code: FixBuffer);
18635 }
18636
18637 // Only try to offer default capture if there are no captures excluding this
18638 // and init captures.
18639 // [this]: OK.
18640 // [X = Y]: OK.
18641 // [&A, &B]: Don't offer.
18642 // [A, B]: Don't offer.
18643 if (llvm::any_of(Range&: LSI->Captures, P: [](Capture &C) {
18644 return !C.isThisCapture() && !C.isInitCapture();
18645 }))
18646 return;
18647
18648 // The default capture specifiers, '=' or '&', must appear first in the
18649 // capture body.
18650 SourceLocation DefaultInsertLoc =
18651 LSI->IntroducerRange.getBegin().getLocWithOffset(Offset: 1);
18652
18653 if (ShouldOfferCopyFix) {
18654 bool CanDefaultCopyCapture = true;
18655 // [=, *this] OK since c++17
18656 // [=, this] OK since c++20
18657 if (LSI->isCXXThisCaptured() && !Sema.getLangOpts().CPlusPlus20)
18658 CanDefaultCopyCapture = Sema.getLangOpts().CPlusPlus17
18659 ? LSI->getCXXThisCapture().isCopyCapture()
18660 : false;
18661 // We can't use default capture by copy if any captures already specified
18662 // capture by copy.
18663 if (CanDefaultCopyCapture && llvm::none_of(Range&: LSI->Captures, P: [](Capture &C) {
18664 return !C.isThisCapture() && !C.isInitCapture() && C.isCopyCapture();
18665 })) {
18666 FixBuffer.assign(Refs: {"=", Separator});
18667 Sema.Diag(Loc: DefaultInsertLoc, DiagID: diag::note_lambda_default_capture_fixit)
18668 << /*value*/ 0
18669 << FixItHint::CreateInsertion(InsertionLoc: DefaultInsertLoc, Code: FixBuffer);
18670 }
18671 }
18672
18673 // We can't use default capture by reference if any captures already specified
18674 // capture by reference.
18675 if (llvm::none_of(Range&: LSI->Captures, P: [](Capture &C) {
18676 return !C.isInitCapture() && C.isReferenceCapture() &&
18677 !C.isThisCapture();
18678 })) {
18679 FixBuffer.assign(Refs: {"&", Separator});
18680 Sema.Diag(Loc: DefaultInsertLoc, DiagID: diag::note_lambda_default_capture_fixit)
18681 << /*reference*/ 1
18682 << FixItHint::CreateInsertion(InsertionLoc: DefaultInsertLoc, Code: FixBuffer);
18683 }
18684}
18685
18686bool Sema::tryCaptureVariable(
18687 ValueDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
18688 SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
18689 QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
18690 // An init-capture is notionally from the context surrounding its
18691 // declaration, but its parent DC is the lambda class.
18692 DeclContext *VarDC = Var->getDeclContext();
18693 DeclContext *DC = CurContext;
18694
18695 // Skip past RequiresExprBodys because they don't constitute function scopes.
18696 while (DC->isRequiresExprBody())
18697 DC = DC->getParent();
18698
18699 // tryCaptureVariable is called every time a DeclRef is formed,
18700 // it can therefore have non-negigible impact on performances.
18701 // For local variables and when there is no capturing scope,
18702 // we can bailout early.
18703 if (CapturingFunctionScopes == 0 && (!BuildAndDiagnose || VarDC == DC))
18704 return true;
18705
18706 // Exception: Function parameters are not tied to the function's DeclContext
18707 // until we enter the function definition. Capturing them anyway would result
18708 // in an out-of-bounds error while traversing DC and its parents.
18709 if (isa<ParmVarDecl>(Val: Var) && !VarDC->isFunctionOrMethod())
18710 return true;
18711
18712 const auto *VD = dyn_cast<VarDecl>(Val: Var);
18713 if (VD) {
18714 if (VD->isInitCapture())
18715 VarDC = VarDC->getParent();
18716 } else {
18717 VD = Var->getPotentiallyDecomposedVarDecl();
18718 }
18719 assert(VD && "Cannot capture a null variable");
18720
18721 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
18722 ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
18723 // We need to sync up the Declaration Context with the
18724 // FunctionScopeIndexToStopAt
18725 if (FunctionScopeIndexToStopAt) {
18726 unsigned FSIndex = FunctionScopes.size() - 1;
18727 while (FSIndex != MaxFunctionScopesIndex) {
18728 DC = getLambdaAwareParentOfDeclContext(DC);
18729 --FSIndex;
18730 }
18731 }
18732
18733 // Capture global variables if it is required to use private copy of this
18734 // variable.
18735 bool IsGlobal = !VD->hasLocalStorage();
18736 if (IsGlobal && !(LangOpts.OpenMP &&
18737 OpenMP().isOpenMPCapturedDecl(D: Var, /*CheckScopeInfo=*/true,
18738 StopAt: MaxFunctionScopesIndex)))
18739 return true;
18740
18741 if (isa<VarDecl>(Val: Var))
18742 Var = cast<VarDecl>(Val: Var->getCanonicalDecl());
18743
18744 // Walk up the stack to determine whether we can capture the variable,
18745 // performing the "simple" checks that don't depend on type. We stop when
18746 // we've either hit the declared scope of the variable or find an existing
18747 // capture of that variable. We start from the innermost capturing-entity
18748 // (the DC) and ensure that all intervening capturing-entities
18749 // (blocks/lambdas etc.) between the innermost capturer and the variable`s
18750 // declcontext can either capture the variable or have already captured
18751 // the variable.
18752 CaptureType = Var->getType();
18753 DeclRefType = CaptureType.getNonReferenceType();
18754 bool Nested = false;
18755 bool Explicit = (Kind != TryCapture_Implicit);
18756 unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
18757 do {
18758
18759 LambdaScopeInfo *LSI = nullptr;
18760 if (!FunctionScopes.empty())
18761 LSI = dyn_cast_or_null<LambdaScopeInfo>(
18762 Val: FunctionScopes[FunctionScopesIndex]);
18763
18764 bool IsInScopeDeclarationContext =
18765 !LSI || LSI->AfterParameterList || CurContext == LSI->CallOperator;
18766
18767 if (LSI && !LSI->AfterParameterList) {
18768 // This allows capturing parameters from a default value which does not
18769 // seems correct
18770 if (isa<ParmVarDecl>(Val: Var) && !Var->getDeclContext()->isFunctionOrMethod())
18771 return true;
18772 }
18773 // If the variable is declared in the current context, there is no need to
18774 // capture it.
18775 if (IsInScopeDeclarationContext &&
18776 FunctionScopesIndex == MaxFunctionScopesIndex && VarDC == DC)
18777 return true;
18778
18779 // Only block literals, captured statements, and lambda expressions can
18780 // capture; other scopes don't work.
18781 DeclContext *ParentDC =
18782 !IsInScopeDeclarationContext
18783 ? DC->getParent()
18784 : getParentOfCapturingContextOrNull(DC, Var, Loc: ExprLoc,
18785 Diagnose: BuildAndDiagnose, S&: *this);
18786 // We need to check for the parent *first* because, if we *have*
18787 // private-captured a global variable, we need to recursively capture it in
18788 // intermediate blocks, lambdas, etc.
18789 if (!ParentDC) {
18790 if (IsGlobal) {
18791 FunctionScopesIndex = MaxFunctionScopesIndex - 1;
18792 break;
18793 }
18794 return true;
18795 }
18796
18797 FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex];
18798 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(Val: FSI);
18799
18800 // Check whether we've already captured it.
18801 if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, SubCapturesAreNested&: Nested, CaptureType,
18802 DeclRefType)) {
18803 CSI->getCapture(Var).markUsed(IsODRUse: BuildAndDiagnose);
18804 break;
18805 }
18806
18807 // When evaluating some attributes (like enable_if) we might refer to a
18808 // function parameter appertaining to the same declaration as that
18809 // attribute.
18810 if (const auto *Parm = dyn_cast<ParmVarDecl>(Val: Var);
18811 Parm && Parm->getDeclContext() == DC)
18812 return true;
18813
18814 // If we are instantiating a generic lambda call operator body,
18815 // we do not want to capture new variables. What was captured
18816 // during either a lambdas transformation or initial parsing
18817 // should be used.
18818 if (isGenericLambdaCallOperatorSpecialization(DC)) {
18819 if (BuildAndDiagnose) {
18820 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(Val: CSI);
18821 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
18822 Diag(Loc: ExprLoc, DiagID: diag::err_lambda_impcap) << Var;
18823 Diag(Loc: Var->getLocation(), DiagID: diag::note_previous_decl) << Var;
18824 Diag(Loc: LSI->Lambda->getBeginLoc(), DiagID: diag::note_lambda_decl);
18825 buildLambdaCaptureFixit(Sema&: *this, LSI, Var);
18826 } else
18827 diagnoseUncapturableValueReferenceOrBinding(S&: *this, loc: ExprLoc, var: Var);
18828 }
18829 return true;
18830 }
18831
18832 // Try to capture variable-length arrays types.
18833 if (Var->getType()->isVariablyModifiedType()) {
18834 // We're going to walk down into the type and look for VLA
18835 // expressions.
18836 QualType QTy = Var->getType();
18837 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Val: Var))
18838 QTy = PVD->getOriginalType();
18839 captureVariablyModifiedType(Context, T: QTy, CSI);
18840 }
18841
18842 if (getLangOpts().OpenMP) {
18843 if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(Val: CSI)) {
18844 // OpenMP private variables should not be captured in outer scope, so
18845 // just break here. Similarly, global variables that are captured in a
18846 // target region should not be captured outside the scope of the region.
18847 if (RSI->CapRegionKind == CR_OpenMP) {
18848 // FIXME: We should support capturing structured bindings in OpenMP.
18849 if (isa<BindingDecl>(Val: Var)) {
18850 if (BuildAndDiagnose) {
18851 Diag(Loc: ExprLoc, DiagID: diag::err_capture_binding_openmp) << Var;
18852 Diag(Loc: Var->getLocation(), DiagID: diag::note_entity_declared_at) << Var;
18853 }
18854 return true;
18855 }
18856 OpenMPClauseKind IsOpenMPPrivateDecl = OpenMP().isOpenMPPrivateDecl(
18857 D: Var, Level: RSI->OpenMPLevel, CapLevel: RSI->OpenMPCaptureLevel);
18858 // If the variable is private (i.e. not captured) and has variably
18859 // modified type, we still need to capture the type for correct
18860 // codegen in all regions, associated with the construct. Currently,
18861 // it is captured in the innermost captured region only.
18862 if (IsOpenMPPrivateDecl != OMPC_unknown &&
18863 Var->getType()->isVariablyModifiedType()) {
18864 QualType QTy = Var->getType();
18865 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Val: Var))
18866 QTy = PVD->getOriginalType();
18867 for (int I = 1,
18868 E = OpenMP().getNumberOfConstructScopes(Level: RSI->OpenMPLevel);
18869 I < E; ++I) {
18870 auto *OuterRSI = cast<CapturedRegionScopeInfo>(
18871 Val: FunctionScopes[FunctionScopesIndex - I]);
18872 assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&
18873 "Wrong number of captured regions associated with the "
18874 "OpenMP construct.");
18875 captureVariablyModifiedType(Context, T: QTy, CSI: OuterRSI);
18876 }
18877 }
18878 bool IsTargetCap =
18879 IsOpenMPPrivateDecl != OMPC_private &&
18880 OpenMP().isOpenMPTargetCapturedDecl(D: Var, Level: RSI->OpenMPLevel,
18881 CaptureLevel: RSI->OpenMPCaptureLevel);
18882 // Do not capture global if it is not privatized in outer regions.
18883 bool IsGlobalCap =
18884 IsGlobal && OpenMP().isOpenMPGlobalCapturedDecl(
18885 D: Var, Level: RSI->OpenMPLevel, CaptureLevel: RSI->OpenMPCaptureLevel);
18886
18887 // When we detect target captures we are looking from inside the
18888 // target region, therefore we need to propagate the capture from the
18889 // enclosing region. Therefore, the capture is not initially nested.
18890 if (IsTargetCap)
18891 OpenMP().adjustOpenMPTargetScopeIndex(FunctionScopesIndex,
18892 Level: RSI->OpenMPLevel);
18893
18894 if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
18895 (IsGlobal && !IsGlobalCap)) {
18896 Nested = !IsTargetCap;
18897 bool HasConst = DeclRefType.isConstQualified();
18898 DeclRefType = DeclRefType.getUnqualifiedType();
18899 // Don't lose diagnostics about assignments to const.
18900 if (HasConst)
18901 DeclRefType.addConst();
18902 CaptureType = Context.getLValueReferenceType(T: DeclRefType);
18903 break;
18904 }
18905 }
18906 }
18907 }
18908 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
18909 // No capture-default, and this is not an explicit capture
18910 // so cannot capture this variable.
18911 if (BuildAndDiagnose) {
18912 Diag(Loc: ExprLoc, DiagID: diag::err_lambda_impcap) << Var;
18913 Diag(Loc: Var->getLocation(), DiagID: diag::note_previous_decl) << Var;
18914 auto *LSI = cast<LambdaScopeInfo>(Val: CSI);
18915 if (LSI->Lambda) {
18916 Diag(Loc: LSI->Lambda->getBeginLoc(), DiagID: diag::note_lambda_decl);
18917 buildLambdaCaptureFixit(Sema&: *this, LSI, Var);
18918 }
18919 // FIXME: If we error out because an outer lambda can not implicitly
18920 // capture a variable that an inner lambda explicitly captures, we
18921 // should have the inner lambda do the explicit capture - because
18922 // it makes for cleaner diagnostics later. This would purely be done
18923 // so that the diagnostic does not misleadingly claim that a variable
18924 // can not be captured by a lambda implicitly even though it is captured
18925 // explicitly. Suggestion:
18926 // - create const bool VariableCaptureWasInitiallyExplicit = Explicit
18927 // at the function head
18928 // - cache the StartingDeclContext - this must be a lambda
18929 // - captureInLambda in the innermost lambda the variable.
18930 }
18931 return true;
18932 }
18933 Explicit = false;
18934 FunctionScopesIndex--;
18935 if (IsInScopeDeclarationContext)
18936 DC = ParentDC;
18937 } while (!VarDC->Equals(DC));
18938
18939 // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
18940 // computing the type of the capture at each step, checking type-specific
18941 // requirements, and adding captures if requested.
18942 // If the variable had already been captured previously, we start capturing
18943 // at the lambda nested within that one.
18944 bool Invalid = false;
18945 for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
18946 ++I) {
18947 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(Val: FunctionScopes[I]);
18948
18949 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
18950 // certain types of variables (unnamed, variably modified types etc.)
18951 // so check for eligibility.
18952 if (!Invalid)
18953 Invalid =
18954 !isVariableCapturable(CSI, Var, Loc: ExprLoc, Diagnose: BuildAndDiagnose, S&: *this);
18955
18956 // After encountering an error, if we're actually supposed to capture, keep
18957 // capturing in nested contexts to suppress any follow-on diagnostics.
18958 if (Invalid && !BuildAndDiagnose)
18959 return true;
18960
18961 if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(Val: CSI)) {
18962 Invalid = !captureInBlock(BSI, Var, Loc: ExprLoc, BuildAndDiagnose, CaptureType,
18963 DeclRefType, Nested, S&: *this, Invalid);
18964 Nested = true;
18965 } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(Val: CSI)) {
18966 Invalid = !captureInCapturedRegion(
18967 RSI, Var, Loc: ExprLoc, BuildAndDiagnose, CaptureType, DeclRefType, RefersToCapturedVariable: Nested,
18968 Kind, /*IsTopScope*/ I == N - 1, S&: *this, Invalid);
18969 Nested = true;
18970 } else {
18971 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(Val: CSI);
18972 Invalid =
18973 !captureInLambda(LSI, Var, Loc: ExprLoc, BuildAndDiagnose, CaptureType,
18974 DeclRefType, RefersToCapturedVariable: Nested, Kind, EllipsisLoc,
18975 /*IsTopScope*/ I == N - 1, S&: *this, Invalid);
18976 Nested = true;
18977 }
18978
18979 if (Invalid && !BuildAndDiagnose)
18980 return true;
18981 }
18982 return Invalid;
18983}
18984
18985bool Sema::tryCaptureVariable(ValueDecl *Var, SourceLocation Loc,
18986 TryCaptureKind Kind, SourceLocation EllipsisLoc) {
18987 QualType CaptureType;
18988 QualType DeclRefType;
18989 return tryCaptureVariable(Var, ExprLoc: Loc, Kind, EllipsisLoc,
18990 /*BuildAndDiagnose=*/true, CaptureType,
18991 DeclRefType, FunctionScopeIndexToStopAt: nullptr);
18992}
18993
18994bool Sema::NeedToCaptureVariable(ValueDecl *Var, SourceLocation Loc) {
18995 QualType CaptureType;
18996 QualType DeclRefType;
18997 return !tryCaptureVariable(Var, ExprLoc: Loc, Kind: TryCapture_Implicit, EllipsisLoc: SourceLocation(),
18998 /*BuildAndDiagnose=*/false, CaptureType,
18999 DeclRefType, FunctionScopeIndexToStopAt: nullptr);
19000}
19001
19002QualType Sema::getCapturedDeclRefType(ValueDecl *Var, SourceLocation Loc) {
19003 QualType CaptureType;
19004 QualType DeclRefType;
19005
19006 // Determine whether we can capture this variable.
19007 if (tryCaptureVariable(Var, ExprLoc: Loc, Kind: TryCapture_Implicit, EllipsisLoc: SourceLocation(),
19008 /*BuildAndDiagnose=*/false, CaptureType,
19009 DeclRefType, FunctionScopeIndexToStopAt: nullptr))
19010 return QualType();
19011
19012 return DeclRefType;
19013}
19014
19015namespace {
19016// Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
19017// The produced TemplateArgumentListInfo* points to data stored within this
19018// object, so should only be used in contexts where the pointer will not be
19019// used after the CopiedTemplateArgs object is destroyed.
19020class CopiedTemplateArgs {
19021 bool HasArgs;
19022 TemplateArgumentListInfo TemplateArgStorage;
19023public:
19024 template<typename RefExpr>
19025 CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
19026 if (HasArgs)
19027 E->copyTemplateArgumentsInto(TemplateArgStorage);
19028 }
19029 operator TemplateArgumentListInfo*()
19030#ifdef __has_cpp_attribute
19031#if __has_cpp_attribute(clang::lifetimebound)
19032 [[clang::lifetimebound]]
19033#endif
19034#endif
19035 {
19036 return HasArgs ? &TemplateArgStorage : nullptr;
19037 }
19038};
19039}
19040
19041/// Walk the set of potential results of an expression and mark them all as
19042/// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
19043///
19044/// \return A new expression if we found any potential results, ExprEmpty() if
19045/// not, and ExprError() if we diagnosed an error.
19046static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
19047 NonOdrUseReason NOUR) {
19048 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
19049 // an object that satisfies the requirements for appearing in a
19050 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
19051 // is immediately applied." This function handles the lvalue-to-rvalue
19052 // conversion part.
19053 //
19054 // If we encounter a node that claims to be an odr-use but shouldn't be, we
19055 // transform it into the relevant kind of non-odr-use node and rebuild the
19056 // tree of nodes leading to it.
19057 //
19058 // This is a mini-TreeTransform that only transforms a restricted subset of
19059 // nodes (and only certain operands of them).
19060
19061 // Rebuild a subexpression.
19062 auto Rebuild = [&](Expr *Sub) {
19063 return rebuildPotentialResultsAsNonOdrUsed(S, E: Sub, NOUR);
19064 };
19065
19066 // Check whether a potential result satisfies the requirements of NOUR.
19067 auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
19068 // Any entity other than a VarDecl is always odr-used whenever it's named
19069 // in a potentially-evaluated expression.
19070 auto *VD = dyn_cast<VarDecl>(Val: D);
19071 if (!VD)
19072 return true;
19073
19074 // C++2a [basic.def.odr]p4:
19075 // A variable x whose name appears as a potentially-evalauted expression
19076 // e is odr-used by e unless
19077 // -- x is a reference that is usable in constant expressions, or
19078 // -- x is a variable of non-reference type that is usable in constant
19079 // expressions and has no mutable subobjects, and e is an element of
19080 // the set of potential results of an expression of
19081 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
19082 // conversion is applied, or
19083 // -- x is a variable of non-reference type, and e is an element of the
19084 // set of potential results of a discarded-value expression to which
19085 // the lvalue-to-rvalue conversion is not applied
19086 //
19087 // We check the first bullet and the "potentially-evaluated" condition in
19088 // BuildDeclRefExpr. We check the type requirements in the second bullet
19089 // in CheckLValueToRValueConversionOperand below.
19090 switch (NOUR) {
19091 case NOUR_None:
19092 case NOUR_Unevaluated:
19093 llvm_unreachable("unexpected non-odr-use-reason");
19094
19095 case NOUR_Constant:
19096 // Constant references were handled when they were built.
19097 if (VD->getType()->isReferenceType())
19098 return true;
19099 if (auto *RD = VD->getType()->getAsCXXRecordDecl())
19100 if (RD->hasMutableFields())
19101 return true;
19102 if (!VD->isUsableInConstantExpressions(C: S.Context))
19103 return true;
19104 break;
19105
19106 case NOUR_Discarded:
19107 if (VD->getType()->isReferenceType())
19108 return true;
19109 break;
19110 }
19111 return false;
19112 };
19113
19114 // Mark that this expression does not constitute an odr-use.
19115 auto MarkNotOdrUsed = [&] {
19116 S.MaybeODRUseExprs.remove(X: E);
19117 if (LambdaScopeInfo *LSI = S.getCurLambda())
19118 LSI->markVariableExprAsNonODRUsed(CapturingVarExpr: E);
19119 };
19120
19121 // C++2a [basic.def.odr]p2:
19122 // The set of potential results of an expression e is defined as follows:
19123 switch (E->getStmtClass()) {
19124 // -- If e is an id-expression, ...
19125 case Expr::DeclRefExprClass: {
19126 auto *DRE = cast<DeclRefExpr>(Val: E);
19127 if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
19128 break;
19129
19130 // Rebuild as a non-odr-use DeclRefExpr.
19131 MarkNotOdrUsed();
19132 return DeclRefExpr::Create(
19133 Context: S.Context, QualifierLoc: DRE->getQualifierLoc(), TemplateKWLoc: DRE->getTemplateKeywordLoc(),
19134 D: DRE->getDecl(), RefersToEnclosingVariableOrCapture: DRE->refersToEnclosingVariableOrCapture(),
19135 NameInfo: DRE->getNameInfo(), T: DRE->getType(), VK: DRE->getValueKind(),
19136 FoundD: DRE->getFoundDecl(), TemplateArgs: CopiedTemplateArgs(DRE), NOUR);
19137 }
19138
19139 case Expr::FunctionParmPackExprClass: {
19140 auto *FPPE = cast<FunctionParmPackExpr>(Val: E);
19141 // If any of the declarations in the pack is odr-used, then the expression
19142 // as a whole constitutes an odr-use.
19143 for (VarDecl *D : *FPPE)
19144 if (IsPotentialResultOdrUsed(D))
19145 return ExprEmpty();
19146
19147 // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
19148 // nothing cares about whether we marked this as an odr-use, but it might
19149 // be useful for non-compiler tools.
19150 MarkNotOdrUsed();
19151 break;
19152 }
19153
19154 // -- If e is a subscripting operation with an array operand...
19155 case Expr::ArraySubscriptExprClass: {
19156 auto *ASE = cast<ArraySubscriptExpr>(Val: E);
19157 Expr *OldBase = ASE->getBase()->IgnoreImplicit();
19158 if (!OldBase->getType()->isArrayType())
19159 break;
19160 ExprResult Base = Rebuild(OldBase);
19161 if (!Base.isUsable())
19162 return Base;
19163 Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
19164 Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
19165 SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
19166 return S.ActOnArraySubscriptExpr(S: nullptr, base: LHS, lbLoc: LBracketLoc, ArgExprs: RHS,
19167 rbLoc: ASE->getRBracketLoc());
19168 }
19169
19170 case Expr::MemberExprClass: {
19171 auto *ME = cast<MemberExpr>(Val: E);
19172 // -- If e is a class member access expression [...] naming a non-static
19173 // data member...
19174 if (isa<FieldDecl>(Val: ME->getMemberDecl())) {
19175 ExprResult Base = Rebuild(ME->getBase());
19176 if (!Base.isUsable())
19177 return Base;
19178 return MemberExpr::Create(
19179 C: S.Context, Base: Base.get(), IsArrow: ME->isArrow(), OperatorLoc: ME->getOperatorLoc(),
19180 QualifierLoc: ME->getQualifierLoc(), TemplateKWLoc: ME->getTemplateKeywordLoc(),
19181 MemberDecl: ME->getMemberDecl(), FoundDecl: ME->getFoundDecl(), MemberNameInfo: ME->getMemberNameInfo(),
19182 TemplateArgs: CopiedTemplateArgs(ME), T: ME->getType(), VK: ME->getValueKind(),
19183 OK: ME->getObjectKind(), NOUR: ME->isNonOdrUse());
19184 }
19185
19186 if (ME->getMemberDecl()->isCXXInstanceMember())
19187 break;
19188
19189 // -- If e is a class member access expression naming a static data member,
19190 // ...
19191 if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
19192 break;
19193
19194 // Rebuild as a non-odr-use MemberExpr.
19195 MarkNotOdrUsed();
19196 return MemberExpr::Create(
19197 C: S.Context, Base: ME->getBase(), IsArrow: ME->isArrow(), OperatorLoc: ME->getOperatorLoc(),
19198 QualifierLoc: ME->getQualifierLoc(), TemplateKWLoc: ME->getTemplateKeywordLoc(), MemberDecl: ME->getMemberDecl(),
19199 FoundDecl: ME->getFoundDecl(), MemberNameInfo: ME->getMemberNameInfo(), TemplateArgs: CopiedTemplateArgs(ME),
19200 T: ME->getType(), VK: ME->getValueKind(), OK: ME->getObjectKind(), NOUR);
19201 }
19202
19203 case Expr::BinaryOperatorClass: {
19204 auto *BO = cast<BinaryOperator>(Val: E);
19205 Expr *LHS = BO->getLHS();
19206 Expr *RHS = BO->getRHS();
19207 // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
19208 if (BO->getOpcode() == BO_PtrMemD) {
19209 ExprResult Sub = Rebuild(LHS);
19210 if (!Sub.isUsable())
19211 return Sub;
19212 BO->setLHS(Sub.get());
19213 // -- If e is a comma expression, ...
19214 } else if (BO->getOpcode() == BO_Comma) {
19215 ExprResult Sub = Rebuild(RHS);
19216 if (!Sub.isUsable())
19217 return Sub;
19218 BO->setRHS(Sub.get());
19219 } else {
19220 break;
19221 }
19222 return ExprResult(BO);
19223 }
19224
19225 // -- If e has the form (e1)...
19226 case Expr::ParenExprClass: {
19227 auto *PE = cast<ParenExpr>(Val: E);
19228 ExprResult Sub = Rebuild(PE->getSubExpr());
19229 if (!Sub.isUsable())
19230 return Sub;
19231 return S.ActOnParenExpr(L: PE->getLParen(), R: PE->getRParen(), E: Sub.get());
19232 }
19233
19234 // -- If e is a glvalue conditional expression, ...
19235 // We don't apply this to a binary conditional operator. FIXME: Should we?
19236 case Expr::ConditionalOperatorClass: {
19237 auto *CO = cast<ConditionalOperator>(Val: E);
19238 ExprResult LHS = Rebuild(CO->getLHS());
19239 if (LHS.isInvalid())
19240 return ExprError();
19241 ExprResult RHS = Rebuild(CO->getRHS());
19242 if (RHS.isInvalid())
19243 return ExprError();
19244 if (!LHS.isUsable() && !RHS.isUsable())
19245 return ExprEmpty();
19246 if (!LHS.isUsable())
19247 LHS = CO->getLHS();
19248 if (!RHS.isUsable())
19249 RHS = CO->getRHS();
19250 return S.ActOnConditionalOp(QuestionLoc: CO->getQuestionLoc(), ColonLoc: CO->getColonLoc(),
19251 CondExpr: CO->getCond(), LHSExpr: LHS.get(), RHSExpr: RHS.get());
19252 }
19253
19254 // [Clang extension]
19255 // -- If e has the form __extension__ e1...
19256 case Expr::UnaryOperatorClass: {
19257 auto *UO = cast<UnaryOperator>(Val: E);
19258 if (UO->getOpcode() != UO_Extension)
19259 break;
19260 ExprResult Sub = Rebuild(UO->getSubExpr());
19261 if (!Sub.isUsable())
19262 return Sub;
19263 return S.BuildUnaryOp(S: nullptr, OpLoc: UO->getOperatorLoc(), Opc: UO_Extension,
19264 Input: Sub.get());
19265 }
19266
19267 // [Clang extension]
19268 // -- If e has the form _Generic(...), the set of potential results is the
19269 // union of the sets of potential results of the associated expressions.
19270 case Expr::GenericSelectionExprClass: {
19271 auto *GSE = cast<GenericSelectionExpr>(Val: E);
19272
19273 SmallVector<Expr *, 4> AssocExprs;
19274 bool AnyChanged = false;
19275 for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
19276 ExprResult AssocExpr = Rebuild(OrigAssocExpr);
19277 if (AssocExpr.isInvalid())
19278 return ExprError();
19279 if (AssocExpr.isUsable()) {
19280 AssocExprs.push_back(Elt: AssocExpr.get());
19281 AnyChanged = true;
19282 } else {
19283 AssocExprs.push_back(Elt: OrigAssocExpr);
19284 }
19285 }
19286
19287 void *ExOrTy = nullptr;
19288 bool IsExpr = GSE->isExprPredicate();
19289 if (IsExpr)
19290 ExOrTy = GSE->getControllingExpr();
19291 else
19292 ExOrTy = GSE->getControllingType();
19293 return AnyChanged ? S.CreateGenericSelectionExpr(
19294 KeyLoc: GSE->getGenericLoc(), DefaultLoc: GSE->getDefaultLoc(),
19295 RParenLoc: GSE->getRParenLoc(), PredicateIsExpr: IsExpr, ControllingExprOrType: ExOrTy,
19296 Types: GSE->getAssocTypeSourceInfos(), Exprs: AssocExprs)
19297 : ExprEmpty();
19298 }
19299
19300 // [Clang extension]
19301 // -- If e has the form __builtin_choose_expr(...), the set of potential
19302 // results is the union of the sets of potential results of the
19303 // second and third subexpressions.
19304 case Expr::ChooseExprClass: {
19305 auto *CE = cast<ChooseExpr>(Val: E);
19306
19307 ExprResult LHS = Rebuild(CE->getLHS());
19308 if (LHS.isInvalid())
19309 return ExprError();
19310
19311 ExprResult RHS = Rebuild(CE->getLHS());
19312 if (RHS.isInvalid())
19313 return ExprError();
19314
19315 if (!LHS.get() && !RHS.get())
19316 return ExprEmpty();
19317 if (!LHS.isUsable())
19318 LHS = CE->getLHS();
19319 if (!RHS.isUsable())
19320 RHS = CE->getRHS();
19321
19322 return S.ActOnChooseExpr(BuiltinLoc: CE->getBuiltinLoc(), CondExpr: CE->getCond(), LHSExpr: LHS.get(),
19323 RHSExpr: RHS.get(), RPLoc: CE->getRParenLoc());
19324 }
19325
19326 // Step through non-syntactic nodes.
19327 case Expr::ConstantExprClass: {
19328 auto *CE = cast<ConstantExpr>(Val: E);
19329 ExprResult Sub = Rebuild(CE->getSubExpr());
19330 if (!Sub.isUsable())
19331 return Sub;
19332 return ConstantExpr::Create(Context: S.Context, E: Sub.get());
19333 }
19334
19335 // We could mostly rely on the recursive rebuilding to rebuild implicit
19336 // casts, but not at the top level, so rebuild them here.
19337 case Expr::ImplicitCastExprClass: {
19338 auto *ICE = cast<ImplicitCastExpr>(Val: E);
19339 // Only step through the narrow set of cast kinds we expect to encounter.
19340 // Anything else suggests we've left the region in which potential results
19341 // can be found.
19342 switch (ICE->getCastKind()) {
19343 case CK_NoOp:
19344 case CK_DerivedToBase:
19345 case CK_UncheckedDerivedToBase: {
19346 ExprResult Sub = Rebuild(ICE->getSubExpr());
19347 if (!Sub.isUsable())
19348 return Sub;
19349 CXXCastPath Path(ICE->path());
19350 return S.ImpCastExprToType(E: Sub.get(), Type: ICE->getType(), CK: ICE->getCastKind(),
19351 VK: ICE->getValueKind(), BasePath: &Path);
19352 }
19353
19354 default:
19355 break;
19356 }
19357 break;
19358 }
19359
19360 default:
19361 break;
19362 }
19363
19364 // Can't traverse through this node. Nothing to do.
19365 return ExprEmpty();
19366}
19367
19368ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
19369 // Check whether the operand is or contains an object of non-trivial C union
19370 // type.
19371 if (E->getType().isVolatileQualified() &&
19372 (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
19373 E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
19374 checkNonTrivialCUnion(QT: E->getType(), Loc: E->getExprLoc(),
19375 UseContext: Sema::NTCUC_LValueToRValueVolatile,
19376 NonTrivialKind: NTCUK_Destruct|NTCUK_Copy);
19377
19378 // C++2a [basic.def.odr]p4:
19379 // [...] an expression of non-volatile-qualified non-class type to which
19380 // the lvalue-to-rvalue conversion is applied [...]
19381 if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
19382 return E;
19383
19384 ExprResult Result =
19385 rebuildPotentialResultsAsNonOdrUsed(S&: *this, E, NOUR: NOUR_Constant);
19386 if (Result.isInvalid())
19387 return ExprError();
19388 return Result.get() ? Result : E;
19389}
19390
19391ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
19392 Res = CorrectDelayedTyposInExpr(ER: Res);
19393
19394 if (!Res.isUsable())
19395 return Res;
19396
19397 // If a constant-expression is a reference to a variable where we delay
19398 // deciding whether it is an odr-use, just assume we will apply the
19399 // lvalue-to-rvalue conversion. In the one case where this doesn't happen
19400 // (a non-type template argument), we have special handling anyway.
19401 return CheckLValueToRValueConversionOperand(E: Res.get());
19402}
19403
19404void Sema::CleanupVarDeclMarking() {
19405 // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
19406 // call.
19407 MaybeODRUseExprSet LocalMaybeODRUseExprs;
19408 std::swap(LHS&: LocalMaybeODRUseExprs, RHS&: MaybeODRUseExprs);
19409
19410 for (Expr *E : LocalMaybeODRUseExprs) {
19411 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) {
19412 MarkVarDeclODRUsed(V: cast<VarDecl>(Val: DRE->getDecl()),
19413 Loc: DRE->getLocation(), SemaRef&: *this);
19414 } else if (auto *ME = dyn_cast<MemberExpr>(Val: E)) {
19415 MarkVarDeclODRUsed(V: cast<VarDecl>(Val: ME->getMemberDecl()), Loc: ME->getMemberLoc(),
19416 SemaRef&: *this);
19417 } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(Val: E)) {
19418 for (VarDecl *VD : *FP)
19419 MarkVarDeclODRUsed(V: VD, Loc: FP->getParameterPackLocation(), SemaRef&: *this);
19420 } else {
19421 llvm_unreachable("Unexpected expression");
19422 }
19423 }
19424
19425 assert(MaybeODRUseExprs.empty() &&
19426 "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?");
19427}
19428
19429static void DoMarkPotentialCapture(Sema &SemaRef, SourceLocation Loc,
19430 ValueDecl *Var, Expr *E) {
19431 VarDecl *VD = Var->getPotentiallyDecomposedVarDecl();
19432 if (!VD)
19433 return;
19434
19435 const bool RefersToEnclosingScope =
19436 (SemaRef.CurContext != VD->getDeclContext() &&
19437 VD->getDeclContext()->isFunctionOrMethod() && VD->hasLocalStorage());
19438 if (RefersToEnclosingScope) {
19439 LambdaScopeInfo *const LSI =
19440 SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
19441 if (LSI && (!LSI->CallOperator ||
19442 !LSI->CallOperator->Encloses(DC: Var->getDeclContext()))) {
19443 // If a variable could potentially be odr-used, defer marking it so
19444 // until we finish analyzing the full expression for any
19445 // lvalue-to-rvalue
19446 // or discarded value conversions that would obviate odr-use.
19447 // Add it to the list of potential captures that will be analyzed
19448 // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
19449 // unless the variable is a reference that was initialized by a constant
19450 // expression (this will never need to be captured or odr-used).
19451 //
19452 // FIXME: We can simplify this a lot after implementing P0588R1.
19453 assert(E && "Capture variable should be used in an expression.");
19454 if (!Var->getType()->isReferenceType() ||
19455 !VD->isUsableInConstantExpressions(C: SemaRef.Context))
19456 LSI->addPotentialCapture(VarExpr: E->IgnoreParens());
19457 }
19458 }
19459}
19460
19461static void DoMarkVarDeclReferenced(
19462 Sema &SemaRef, SourceLocation Loc, VarDecl *Var, Expr *E,
19463 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19464 assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||
19465 isa<FunctionParmPackExpr>(E)) &&
19466 "Invalid Expr argument to DoMarkVarDeclReferenced");
19467 Var->setReferenced();
19468
19469 if (Var->isInvalidDecl())
19470 return;
19471
19472 auto *MSI = Var->getMemberSpecializationInfo();
19473 TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
19474 : Var->getTemplateSpecializationKind();
19475
19476 OdrUseContext OdrUse = isOdrUseContext(SemaRef);
19477 bool UsableInConstantExpr =
19478 Var->mightBeUsableInConstantExpressions(C: SemaRef.Context);
19479
19480 if (Var->isLocalVarDeclOrParm() && !Var->hasExternalStorage()) {
19481 RefsMinusAssignments.insert(KV: {Var, 0}).first->getSecond()++;
19482 }
19483
19484 // C++20 [expr.const]p12:
19485 // A variable [...] is needed for constant evaluation if it is [...] a
19486 // variable whose name appears as a potentially constant evaluated
19487 // expression that is either a contexpr variable or is of non-volatile
19488 // const-qualified integral type or of reference type
19489 bool NeededForConstantEvaluation =
19490 isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
19491
19492 bool NeedDefinition =
19493 OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
19494
19495 assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
19496 "Can't instantiate a partial template specialization.");
19497
19498 // If this might be a member specialization of a static data member, check
19499 // the specialization is visible. We already did the checks for variable
19500 // template specializations when we created them.
19501 if (NeedDefinition && TSK != TSK_Undeclared &&
19502 !isa<VarTemplateSpecializationDecl>(Val: Var))
19503 SemaRef.checkSpecializationVisibility(Loc, Spec: Var);
19504
19505 // Perform implicit instantiation of static data members, static data member
19506 // templates of class templates, and variable template specializations. Delay
19507 // instantiations of variable templates, except for those that could be used
19508 // in a constant expression.
19509 if (NeedDefinition && isTemplateInstantiation(Kind: TSK)) {
19510 // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
19511 // instantiation declaration if a variable is usable in a constant
19512 // expression (among other cases).
19513 bool TryInstantiating =
19514 TSK == TSK_ImplicitInstantiation ||
19515 (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
19516
19517 if (TryInstantiating) {
19518 SourceLocation PointOfInstantiation =
19519 MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
19520 bool FirstInstantiation = PointOfInstantiation.isInvalid();
19521 if (FirstInstantiation) {
19522 PointOfInstantiation = Loc;
19523 if (MSI)
19524 MSI->setPointOfInstantiation(PointOfInstantiation);
19525 // FIXME: Notify listener.
19526 else
19527 Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
19528 }
19529
19530 if (UsableInConstantExpr) {
19531 // Do not defer instantiations of variables that could be used in a
19532 // constant expression.
19533 SemaRef.runWithSufficientStackSpace(Loc: PointOfInstantiation, Fn: [&] {
19534 SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
19535 });
19536
19537 // Re-set the member to trigger a recomputation of the dependence bits
19538 // for the expression.
19539 if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(Val: E))
19540 DRE->setDecl(DRE->getDecl());
19541 else if (auto *ME = dyn_cast_or_null<MemberExpr>(Val: E))
19542 ME->setMemberDecl(ME->getMemberDecl());
19543 } else if (FirstInstantiation) {
19544 SemaRef.PendingInstantiations
19545 .push_back(x: std::make_pair(x&: Var, y&: PointOfInstantiation));
19546 } else {
19547 bool Inserted = false;
19548 for (auto &I : SemaRef.SavedPendingInstantiations) {
19549 auto Iter = llvm::find_if(
19550 Range&: I, P: [Var](const Sema::PendingImplicitInstantiation &P) {
19551 return P.first == Var;
19552 });
19553 if (Iter != I.end()) {
19554 SemaRef.PendingInstantiations.push_back(x: *Iter);
19555 I.erase(position: Iter);
19556 Inserted = true;
19557 break;
19558 }
19559 }
19560
19561 // FIXME: For a specialization of a variable template, we don't
19562 // distinguish between "declaration and type implicitly instantiated"
19563 // and "implicit instantiation of definition requested", so we have
19564 // no direct way to avoid enqueueing the pending instantiation
19565 // multiple times.
19566 if (isa<VarTemplateSpecializationDecl>(Val: Var) && !Inserted)
19567 SemaRef.PendingInstantiations
19568 .push_back(x: std::make_pair(x&: Var, y&: PointOfInstantiation));
19569 }
19570 }
19571 }
19572
19573 // C++2a [basic.def.odr]p4:
19574 // A variable x whose name appears as a potentially-evaluated expression e
19575 // is odr-used by e unless
19576 // -- x is a reference that is usable in constant expressions
19577 // -- x is a variable of non-reference type that is usable in constant
19578 // expressions and has no mutable subobjects [FIXME], and e is an
19579 // element of the set of potential results of an expression of
19580 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
19581 // conversion is applied
19582 // -- x is a variable of non-reference type, and e is an element of the set
19583 // of potential results of a discarded-value expression to which the
19584 // lvalue-to-rvalue conversion is not applied [FIXME]
19585 //
19586 // We check the first part of the second bullet here, and
19587 // Sema::CheckLValueToRValueConversionOperand deals with the second part.
19588 // FIXME: To get the third bullet right, we need to delay this even for
19589 // variables that are not usable in constant expressions.
19590
19591 // If we already know this isn't an odr-use, there's nothing more to do.
19592 if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(Val: E))
19593 if (DRE->isNonOdrUse())
19594 return;
19595 if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(Val: E))
19596 if (ME->isNonOdrUse())
19597 return;
19598
19599 switch (OdrUse) {
19600 case OdrUseContext::None:
19601 // In some cases, a variable may not have been marked unevaluated, if it
19602 // appears in a defaukt initializer.
19603 assert((!E || isa<FunctionParmPackExpr>(E) ||
19604 SemaRef.isUnevaluatedContext()) &&
19605 "missing non-odr-use marking for unevaluated decl ref");
19606 break;
19607
19608 case OdrUseContext::FormallyOdrUsed:
19609 // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
19610 // behavior.
19611 break;
19612
19613 case OdrUseContext::Used:
19614 // If we might later find that this expression isn't actually an odr-use,
19615 // delay the marking.
19616 if (E && Var->isUsableInConstantExpressions(C: SemaRef.Context))
19617 SemaRef.MaybeODRUseExprs.insert(X: E);
19618 else
19619 MarkVarDeclODRUsed(V: Var, Loc, SemaRef);
19620 break;
19621
19622 case OdrUseContext::Dependent:
19623 // If this is a dependent context, we don't need to mark variables as
19624 // odr-used, but we may still need to track them for lambda capture.
19625 // FIXME: Do we also need to do this inside dependent typeid expressions
19626 // (which are modeled as unevaluated at this point)?
19627 DoMarkPotentialCapture(SemaRef, Loc, Var, E);
19628 break;
19629 }
19630}
19631
19632static void DoMarkBindingDeclReferenced(Sema &SemaRef, SourceLocation Loc,
19633 BindingDecl *BD, Expr *E) {
19634 BD->setReferenced();
19635
19636 if (BD->isInvalidDecl())
19637 return;
19638
19639 OdrUseContext OdrUse = isOdrUseContext(SemaRef);
19640 if (OdrUse == OdrUseContext::Used) {
19641 QualType CaptureType, DeclRefType;
19642 SemaRef.tryCaptureVariable(Var: BD, ExprLoc: Loc, Kind: Sema::TryCapture_Implicit,
19643 /*EllipsisLoc*/ SourceLocation(),
19644 /*BuildAndDiagnose*/ true, CaptureType,
19645 DeclRefType,
19646 /*FunctionScopeIndexToStopAt*/ nullptr);
19647 } else if (OdrUse == OdrUseContext::Dependent) {
19648 DoMarkPotentialCapture(SemaRef, Loc, Var: BD, E);
19649 }
19650}
19651
19652void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
19653 DoMarkVarDeclReferenced(SemaRef&: *this, Loc, Var, E: nullptr, RefsMinusAssignments);
19654}
19655
19656// C++ [temp.dep.expr]p3:
19657// An id-expression is type-dependent if it contains:
19658// - an identifier associated by name lookup with an entity captured by copy
19659// in a lambda-expression that has an explicit object parameter whose type
19660// is dependent ([dcl.fct]),
19661static void FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(
19662 Sema &SemaRef, ValueDecl *D, Expr *E) {
19663 auto *ID = dyn_cast<DeclRefExpr>(Val: E);
19664 if (!ID || ID->isTypeDependent() || !ID->refersToEnclosingVariableOrCapture())
19665 return;
19666
19667 // If any enclosing lambda with a dependent explicit object parameter either
19668 // explicitly captures the variable by value, or has a capture default of '='
19669 // and does not capture the variable by reference, then the type of the DRE
19670 // is dependent on the type of that lambda's explicit object parameter.
19671 auto IsDependent = [&]() {
19672 for (auto *Scope : llvm::reverse(C&: SemaRef.FunctionScopes)) {
19673 auto *LSI = dyn_cast<sema::LambdaScopeInfo>(Val: Scope);
19674 if (!LSI)
19675 continue;
19676
19677 if (LSI->Lambda && !LSI->Lambda->Encloses(DC: SemaRef.CurContext) &&
19678 LSI->AfterParameterList)
19679 return false;
19680
19681 const auto *MD = LSI->CallOperator;
19682 if (MD->getType().isNull())
19683 continue;
19684
19685 const auto *Ty = MD->getType()->getAs<FunctionProtoType>();
19686 if (!Ty || !MD->isExplicitObjectMemberFunction() ||
19687 !Ty->getParamType(i: 0)->isDependentType())
19688 continue;
19689
19690 if (auto *C = LSI->CaptureMap.count(Val: D) ? &LSI->getCapture(Var: D) : nullptr) {
19691 if (C->isCopyCapture())
19692 return true;
19693 continue;
19694 }
19695
19696 if (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByval)
19697 return true;
19698 }
19699 return false;
19700 }();
19701
19702 ID->setCapturedByCopyInLambdaWithExplicitObjectParameter(
19703 Set: IsDependent, Context: SemaRef.getASTContext());
19704}
19705
19706static void
19707MarkExprReferenced(Sema &SemaRef, SourceLocation Loc, Decl *D, Expr *E,
19708 bool MightBeOdrUse,
19709 llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
19710 if (SemaRef.OpenMP().isInOpenMPDeclareTargetContext())
19711 SemaRef.OpenMP().checkDeclIsAllowedInOpenMPTarget(E, D);
19712
19713 if (VarDecl *Var = dyn_cast<VarDecl>(Val: D)) {
19714 DoMarkVarDeclReferenced(SemaRef, Loc, Var, E, RefsMinusAssignments);
19715 if (SemaRef.getLangOpts().CPlusPlus)
19716 FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
19717 D: Var, E);
19718 return;
19719 }
19720
19721 if (BindingDecl *Decl = dyn_cast<BindingDecl>(Val: D)) {
19722 DoMarkBindingDeclReferenced(SemaRef, Loc, BD: Decl, E);
19723 if (SemaRef.getLangOpts().CPlusPlus)
19724 FixDependencyOfIdExpressionsInLambdaWithDependentObjectParameter(SemaRef,
19725 D: Decl, E);
19726 return;
19727 }
19728 SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
19729
19730 // If this is a call to a method via a cast, also mark the method in the
19731 // derived class used in case codegen can devirtualize the call.
19732 const MemberExpr *ME = dyn_cast<MemberExpr>(Val: E);
19733 if (!ME)
19734 return;
19735 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: ME->getMemberDecl());
19736 if (!MD)
19737 return;
19738 // Only attempt to devirtualize if this is truly a virtual call.
19739 bool IsVirtualCall = MD->isVirtual() &&
19740 ME->performsVirtualDispatch(LO: SemaRef.getLangOpts());
19741 if (!IsVirtualCall)
19742 return;
19743
19744 // If it's possible to devirtualize the call, mark the called function
19745 // referenced.
19746 CXXMethodDecl *DM = MD->getDevirtualizedMethod(
19747 Base: ME->getBase(), IsAppleKext: SemaRef.getLangOpts().AppleKext);
19748 if (DM)
19749 SemaRef.MarkAnyDeclReferenced(Loc, D: DM, MightBeOdrUse);
19750}
19751
19752void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
19753 // TODO: update this with DR# once a defect report is filed.
19754 // C++11 defect. The address of a pure member should not be an ODR use, even
19755 // if it's a qualified reference.
19756 bool OdrUse = true;
19757 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: E->getDecl()))
19758 if (Method->isVirtual() &&
19759 !Method->getDevirtualizedMethod(Base, IsAppleKext: getLangOpts().AppleKext))
19760 OdrUse = false;
19761
19762 if (auto *FD = dyn_cast<FunctionDecl>(Val: E->getDecl())) {
19763 if (!isUnevaluatedContext() && !isConstantEvaluatedContext() &&
19764 !isImmediateFunctionContext() &&
19765 !isCheckingDefaultArgumentOrInitializer() &&
19766 FD->isImmediateFunction() && !RebuildingImmediateInvocation &&
19767 !FD->isDependentContext())
19768 ExprEvalContexts.back().ReferenceToConsteval.insert(Ptr: E);
19769 }
19770 MarkExprReferenced(SemaRef&: *this, Loc: E->getLocation(), D: E->getDecl(), E, MightBeOdrUse: OdrUse,
19771 RefsMinusAssignments);
19772}
19773
19774void Sema::MarkMemberReferenced(MemberExpr *E) {
19775 // C++11 [basic.def.odr]p2:
19776 // A non-overloaded function whose name appears as a potentially-evaluated
19777 // expression or a member of a set of candidate functions, if selected by
19778 // overload resolution when referred to from a potentially-evaluated
19779 // expression, is odr-used, unless it is a pure virtual function and its
19780 // name is not explicitly qualified.
19781 bool MightBeOdrUse = true;
19782 if (E->performsVirtualDispatch(LO: getLangOpts())) {
19783 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: E->getMemberDecl()))
19784 if (Method->isPureVirtual())
19785 MightBeOdrUse = false;
19786 }
19787 SourceLocation Loc =
19788 E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
19789 MarkExprReferenced(SemaRef&: *this, Loc, D: E->getMemberDecl(), E, MightBeOdrUse,
19790 RefsMinusAssignments);
19791}
19792
19793void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
19794 for (VarDecl *VD : *E)
19795 MarkExprReferenced(SemaRef&: *this, Loc: E->getParameterPackLocation(), D: VD, E, MightBeOdrUse: true,
19796 RefsMinusAssignments);
19797}
19798
19799/// Perform marking for a reference to an arbitrary declaration. It
19800/// marks the declaration referenced, and performs odr-use checking for
19801/// functions and variables. This method should not be used when building a
19802/// normal expression which refers to a variable.
19803void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
19804 bool MightBeOdrUse) {
19805 if (MightBeOdrUse) {
19806 if (auto *VD = dyn_cast<VarDecl>(Val: D)) {
19807 MarkVariableReferenced(Loc, Var: VD);
19808 return;
19809 }
19810 }
19811 if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) {
19812 MarkFunctionReferenced(Loc, Func: FD, MightBeOdrUse);
19813 return;
19814 }
19815 D->setReferenced();
19816}
19817
19818namespace {
19819 // Mark all of the declarations used by a type as referenced.
19820 // FIXME: Not fully implemented yet! We need to have a better understanding
19821 // of when we're entering a context we should not recurse into.
19822 // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
19823 // TreeTransforms rebuilding the type in a new context. Rather than
19824 // duplicating the TreeTransform logic, we should consider reusing it here.
19825 // Currently that causes problems when rebuilding LambdaExprs.
19826 class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
19827 Sema &S;
19828 SourceLocation Loc;
19829
19830 public:
19831 typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
19832
19833 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
19834
19835 bool TraverseTemplateArgument(const TemplateArgument &Arg);
19836 };
19837}
19838
19839bool MarkReferencedDecls::TraverseTemplateArgument(
19840 const TemplateArgument &Arg) {
19841 {
19842 // A non-type template argument is a constant-evaluated context.
19843 EnterExpressionEvaluationContext Evaluated(
19844 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
19845 if (Arg.getKind() == TemplateArgument::Declaration) {
19846 if (Decl *D = Arg.getAsDecl())
19847 S.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse: true);
19848 } else if (Arg.getKind() == TemplateArgument::Expression) {
19849 S.MarkDeclarationsReferencedInExpr(E: Arg.getAsExpr(), SkipLocalVariables: false);
19850 }
19851 }
19852
19853 return Inherited::TraverseTemplateArgument(Arg);
19854}
19855
19856void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
19857 MarkReferencedDecls Marker(*this, Loc);
19858 Marker.TraverseType(T);
19859}
19860
19861namespace {
19862/// Helper class that marks all of the declarations referenced by
19863/// potentially-evaluated subexpressions as "referenced".
19864class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
19865public:
19866 typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
19867 bool SkipLocalVariables;
19868 ArrayRef<const Expr *> StopAt;
19869
19870 EvaluatedExprMarker(Sema &S, bool SkipLocalVariables,
19871 ArrayRef<const Expr *> StopAt)
19872 : Inherited(S), SkipLocalVariables(SkipLocalVariables), StopAt(StopAt) {}
19873
19874 void visitUsedDecl(SourceLocation Loc, Decl *D) {
19875 S.MarkFunctionReferenced(Loc, Func: cast<FunctionDecl>(Val: D));
19876 }
19877
19878 void Visit(Expr *E) {
19879 if (llvm::is_contained(Range&: StopAt, Element: E))
19880 return;
19881 Inherited::Visit(S: E);
19882 }
19883
19884 void VisitConstantExpr(ConstantExpr *E) {
19885 // Don't mark declarations within a ConstantExpression, as this expression
19886 // will be evaluated and folded to a value.
19887 }
19888
19889 void VisitDeclRefExpr(DeclRefExpr *E) {
19890 // If we were asked not to visit local variables, don't.
19891 if (SkipLocalVariables) {
19892 if (VarDecl *VD = dyn_cast<VarDecl>(Val: E->getDecl()))
19893 if (VD->hasLocalStorage())
19894 return;
19895 }
19896
19897 // FIXME: This can trigger the instantiation of the initializer of a
19898 // variable, which can cause the expression to become value-dependent
19899 // or error-dependent. Do we need to propagate the new dependence bits?
19900 S.MarkDeclRefReferenced(E);
19901 }
19902
19903 void VisitMemberExpr(MemberExpr *E) {
19904 S.MarkMemberReferenced(E);
19905 Visit(E: E->getBase());
19906 }
19907};
19908} // namespace
19909
19910void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
19911 bool SkipLocalVariables,
19912 ArrayRef<const Expr*> StopAt) {
19913 EvaluatedExprMarker(*this, SkipLocalVariables, StopAt).Visit(E);
19914}
19915
19916/// Emit a diagnostic when statements are reachable.
19917/// FIXME: check for reachability even in expressions for which we don't build a
19918/// CFG (eg, in the initializer of a global or in a constant expression).
19919/// For example,
19920/// namespace { auto *p = new double[3][false ? (1, 2) : 3]; }
19921bool Sema::DiagIfReachable(SourceLocation Loc, ArrayRef<const Stmt *> Stmts,
19922 const PartialDiagnostic &PD) {
19923 if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
19924 if (!FunctionScopes.empty())
19925 FunctionScopes.back()->PossiblyUnreachableDiags.push_back(
19926 Elt: sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
19927 return true;
19928 }
19929
19930 // The initializer of a constexpr variable or of the first declaration of a
19931 // static data member is not syntactically a constant evaluated constant,
19932 // but nonetheless is always required to be a constant expression, so we
19933 // can skip diagnosing.
19934 // FIXME: Using the mangling context here is a hack.
19935 if (auto *VD = dyn_cast_or_null<VarDecl>(
19936 Val: ExprEvalContexts.back().ManglingContextDecl)) {
19937 if (VD->isConstexpr() ||
19938 (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
19939 return false;
19940 // FIXME: For any other kind of variable, we should build a CFG for its
19941 // initializer and check whether the context in question is reachable.
19942 }
19943
19944 Diag(Loc, PD);
19945 return true;
19946}
19947
19948/// Emit a diagnostic that describes an effect on the run-time behavior
19949/// of the program being compiled.
19950///
19951/// This routine emits the given diagnostic when the code currently being
19952/// type-checked is "potentially evaluated", meaning that there is a
19953/// possibility that the code will actually be executable. Code in sizeof()
19954/// expressions, code used only during overload resolution, etc., are not
19955/// potentially evaluated. This routine will suppress such diagnostics or,
19956/// in the absolutely nutty case of potentially potentially evaluated
19957/// expressions (C++ typeid), queue the diagnostic to potentially emit it
19958/// later.
19959///
19960/// This routine should be used for all diagnostics that describe the run-time
19961/// behavior of a program, such as passing a non-POD value through an ellipsis.
19962/// Failure to do so will likely result in spurious diagnostics or failures
19963/// during overload resolution or within sizeof/alignof/typeof/typeid.
19964bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
19965 const PartialDiagnostic &PD) {
19966
19967 if (ExprEvalContexts.back().isDiscardedStatementContext())
19968 return false;
19969
19970 switch (ExprEvalContexts.back().Context) {
19971 case ExpressionEvaluationContext::Unevaluated:
19972 case ExpressionEvaluationContext::UnevaluatedList:
19973 case ExpressionEvaluationContext::UnevaluatedAbstract:
19974 case ExpressionEvaluationContext::DiscardedStatement:
19975 // The argument will never be evaluated, so don't complain.
19976 break;
19977
19978 case ExpressionEvaluationContext::ConstantEvaluated:
19979 case ExpressionEvaluationContext::ImmediateFunctionContext:
19980 // Relevant diagnostics should be produced by constant evaluation.
19981 break;
19982
19983 case ExpressionEvaluationContext::PotentiallyEvaluated:
19984 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
19985 return DiagIfReachable(Loc, Stmts, PD);
19986 }
19987
19988 return false;
19989}
19990
19991bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
19992 const PartialDiagnostic &PD) {
19993 return DiagRuntimeBehavior(
19994 Loc, Stmts: Statement ? llvm::ArrayRef(Statement) : std::nullopt, PD);
19995}
19996
19997bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
19998 CallExpr *CE, FunctionDecl *FD) {
19999 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
20000 return false;
20001
20002 // If we're inside a decltype's expression, don't check for a valid return
20003 // type or construct temporaries until we know whether this is the last call.
20004 if (ExprEvalContexts.back().ExprContext ==
20005 ExpressionEvaluationContextRecord::EK_Decltype) {
20006 ExprEvalContexts.back().DelayedDecltypeCalls.push_back(Elt: CE);
20007 return false;
20008 }
20009
20010 class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
20011 FunctionDecl *FD;
20012 CallExpr *CE;
20013
20014 public:
20015 CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
20016 : FD(FD), CE(CE) { }
20017
20018 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
20019 if (!FD) {
20020 S.Diag(Loc, DiagID: diag::err_call_incomplete_return)
20021 << T << CE->getSourceRange();
20022 return;
20023 }
20024
20025 S.Diag(Loc, DiagID: diag::err_call_function_incomplete_return)
20026 << CE->getSourceRange() << FD << T;
20027 S.Diag(Loc: FD->getLocation(), DiagID: diag::note_entity_declared_at)
20028 << FD->getDeclName();
20029 }
20030 } Diagnoser(FD, CE);
20031
20032 if (RequireCompleteType(Loc, T: ReturnType, Diagnoser))
20033 return true;
20034
20035 return false;
20036}
20037
20038// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
20039// will prevent this condition from triggering, which is what we want.
20040void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
20041 SourceLocation Loc;
20042
20043 unsigned diagnostic = diag::warn_condition_is_assignment;
20044 bool IsOrAssign = false;
20045
20046 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(Val: E)) {
20047 if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
20048 return;
20049
20050 IsOrAssign = Op->getOpcode() == BO_OrAssign;
20051
20052 // Greylist some idioms by putting them into a warning subcategory.
20053 if (ObjCMessageExpr *ME
20054 = dyn_cast<ObjCMessageExpr>(Val: Op->getRHS()->IgnoreParenCasts())) {
20055 Selector Sel = ME->getSelector();
20056
20057 // self = [<foo> init...]
20058 if (ObjC().isSelfExpr(RExpr: Op->getLHS()) && ME->getMethodFamily() == OMF_init)
20059 diagnostic = diag::warn_condition_is_idiomatic_assignment;
20060
20061 // <foo> = [<bar> nextObject]
20062 else if (Sel.isUnarySelector() && Sel.getNameForSlot(argIndex: 0) == "nextObject")
20063 diagnostic = diag::warn_condition_is_idiomatic_assignment;
20064 }
20065
20066 Loc = Op->getOperatorLoc();
20067 } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(Val: E)) {
20068 if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
20069 return;
20070
20071 IsOrAssign = Op->getOperator() == OO_PipeEqual;
20072 Loc = Op->getOperatorLoc();
20073 } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Val: E))
20074 return DiagnoseAssignmentAsCondition(E: POE->getSyntacticForm());
20075 else {
20076 // Not an assignment.
20077 return;
20078 }
20079
20080 Diag(Loc, DiagID: diagnostic) << E->getSourceRange();
20081
20082 SourceLocation Open = E->getBeginLoc();
20083 SourceLocation Close = getLocForEndOfToken(Loc: E->getSourceRange().getEnd());
20084 Diag(Loc, DiagID: diag::note_condition_assign_silence)
20085 << FixItHint::CreateInsertion(InsertionLoc: Open, Code: "(")
20086 << FixItHint::CreateInsertion(InsertionLoc: Close, Code: ")");
20087
20088 if (IsOrAssign)
20089 Diag(Loc, DiagID: diag::note_condition_or_assign_to_comparison)
20090 << FixItHint::CreateReplacement(RemoveRange: Loc, Code: "!=");
20091 else
20092 Diag(Loc, DiagID: diag::note_condition_assign_to_comparison)
20093 << FixItHint::CreateReplacement(RemoveRange: Loc, Code: "==");
20094}
20095
20096void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
20097 // Don't warn if the parens came from a macro.
20098 SourceLocation parenLoc = ParenE->getBeginLoc();
20099 if (parenLoc.isInvalid() || parenLoc.isMacroID())
20100 return;
20101 // Don't warn for dependent expressions.
20102 if (ParenE->isTypeDependent())
20103 return;
20104
20105 Expr *E = ParenE->IgnoreParens();
20106
20107 if (BinaryOperator *opE = dyn_cast<BinaryOperator>(Val: E))
20108 if (opE->getOpcode() == BO_EQ &&
20109 opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Ctx&: Context)
20110 == Expr::MLV_Valid) {
20111 SourceLocation Loc = opE->getOperatorLoc();
20112
20113 Diag(Loc, DiagID: diag::warn_equality_with_extra_parens) << E->getSourceRange();
20114 SourceRange ParenERange = ParenE->getSourceRange();
20115 Diag(Loc, DiagID: diag::note_equality_comparison_silence)
20116 << FixItHint::CreateRemoval(RemoveRange: ParenERange.getBegin())
20117 << FixItHint::CreateRemoval(RemoveRange: ParenERange.getEnd());
20118 Diag(Loc, DiagID: diag::note_equality_comparison_to_assign)
20119 << FixItHint::CreateReplacement(RemoveRange: Loc, Code: "=");
20120 }
20121}
20122
20123ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
20124 bool IsConstexpr) {
20125 DiagnoseAssignmentAsCondition(E);
20126 if (ParenExpr *parenE = dyn_cast<ParenExpr>(Val: E))
20127 DiagnoseEqualityWithExtraParens(ParenE: parenE);
20128
20129 ExprResult result = CheckPlaceholderExpr(E);
20130 if (result.isInvalid()) return ExprError();
20131 E = result.get();
20132
20133 if (!E->isTypeDependent()) {
20134 if (getLangOpts().CPlusPlus)
20135 return CheckCXXBooleanCondition(CondExpr: E, IsConstexpr); // C++ 6.4p4
20136
20137 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
20138 if (ERes.isInvalid())
20139 return ExprError();
20140 E = ERes.get();
20141
20142 QualType T = E->getType();
20143 if (!T->isScalarType()) { // C99 6.8.4.1p1
20144 Diag(Loc, DiagID: diag::err_typecheck_statement_requires_scalar)
20145 << T << E->getSourceRange();
20146 return ExprError();
20147 }
20148 CheckBoolLikeConversion(E, CC: Loc);
20149 }
20150
20151 return E;
20152}
20153
20154Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
20155 Expr *SubExpr, ConditionKind CK,
20156 bool MissingOK) {
20157 // MissingOK indicates whether having no condition expression is valid
20158 // (for loop) or invalid (e.g. while loop).
20159 if (!SubExpr)
20160 return MissingOK ? ConditionResult() : ConditionError();
20161
20162 ExprResult Cond;
20163 switch (CK) {
20164 case ConditionKind::Boolean:
20165 Cond = CheckBooleanCondition(Loc, E: SubExpr);
20166 break;
20167
20168 case ConditionKind::ConstexprIf:
20169 Cond = CheckBooleanCondition(Loc, E: SubExpr, IsConstexpr: true);
20170 break;
20171
20172 case ConditionKind::Switch:
20173 Cond = CheckSwitchCondition(SwitchLoc: Loc, Cond: SubExpr);
20174 break;
20175 }
20176 if (Cond.isInvalid()) {
20177 Cond = CreateRecoveryExpr(Begin: SubExpr->getBeginLoc(), End: SubExpr->getEndLoc(),
20178 SubExprs: {SubExpr}, T: PreferredConditionType(K: CK));
20179 if (!Cond.get())
20180 return ConditionError();
20181 }
20182 // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
20183 FullExprArg FullExpr = MakeFullExpr(Arg: Cond.get(), CC: Loc);
20184 if (!FullExpr.get())
20185 return ConditionError();
20186
20187 return ConditionResult(*this, nullptr, FullExpr,
20188 CK == ConditionKind::ConstexprIf);
20189}
20190
20191namespace {
20192 /// A visitor for rebuilding a call to an __unknown_any expression
20193 /// to have an appropriate type.
20194 struct RebuildUnknownAnyFunction
20195 : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
20196
20197 Sema &S;
20198
20199 RebuildUnknownAnyFunction(Sema &S) : S(S) {}
20200
20201 ExprResult VisitStmt(Stmt *S) {
20202 llvm_unreachable("unexpected statement!");
20203 }
20204
20205 ExprResult VisitExpr(Expr *E) {
20206 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_unsupported_unknown_any_call)
20207 << E->getSourceRange();
20208 return ExprError();
20209 }
20210
20211 /// Rebuild an expression which simply semantically wraps another
20212 /// expression which it shares the type and value kind of.
20213 template <class T> ExprResult rebuildSugarExpr(T *E) {
20214 ExprResult SubResult = Visit(S: E->getSubExpr());
20215 if (SubResult.isInvalid()) return ExprError();
20216
20217 Expr *SubExpr = SubResult.get();
20218 E->setSubExpr(SubExpr);
20219 E->setType(SubExpr->getType());
20220 E->setValueKind(SubExpr->getValueKind());
20221 assert(E->getObjectKind() == OK_Ordinary);
20222 return E;
20223 }
20224
20225 ExprResult VisitParenExpr(ParenExpr *E) {
20226 return rebuildSugarExpr(E);
20227 }
20228
20229 ExprResult VisitUnaryExtension(UnaryOperator *E) {
20230 return rebuildSugarExpr(E);
20231 }
20232
20233 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20234 ExprResult SubResult = Visit(S: E->getSubExpr());
20235 if (SubResult.isInvalid()) return ExprError();
20236
20237 Expr *SubExpr = SubResult.get();
20238 E->setSubExpr(SubExpr);
20239 E->setType(S.Context.getPointerType(T: SubExpr->getType()));
20240 assert(E->isPRValue());
20241 assert(E->getObjectKind() == OK_Ordinary);
20242 return E;
20243 }
20244
20245 ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
20246 if (!isa<FunctionDecl>(Val: VD)) return VisitExpr(E);
20247
20248 E->setType(VD->getType());
20249
20250 assert(E->isPRValue());
20251 if (S.getLangOpts().CPlusPlus &&
20252 !(isa<CXXMethodDecl>(Val: VD) &&
20253 cast<CXXMethodDecl>(Val: VD)->isInstance()))
20254 E->setValueKind(VK_LValue);
20255
20256 return E;
20257 }
20258
20259 ExprResult VisitMemberExpr(MemberExpr *E) {
20260 return resolveDecl(E, VD: E->getMemberDecl());
20261 }
20262
20263 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20264 return resolveDecl(E, VD: E->getDecl());
20265 }
20266 };
20267}
20268
20269/// Given a function expression of unknown-any type, try to rebuild it
20270/// to have a function type.
20271static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
20272 ExprResult Result = RebuildUnknownAnyFunction(S).Visit(S: FunctionExpr);
20273 if (Result.isInvalid()) return ExprError();
20274 return S.DefaultFunctionArrayConversion(E: Result.get());
20275}
20276
20277namespace {
20278 /// A visitor for rebuilding an expression of type __unknown_anytype
20279 /// into one which resolves the type directly on the referring
20280 /// expression. Strict preservation of the original source
20281 /// structure is not a goal.
20282 struct RebuildUnknownAnyExpr
20283 : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
20284
20285 Sema &S;
20286
20287 /// The current destination type.
20288 QualType DestType;
20289
20290 RebuildUnknownAnyExpr(Sema &S, QualType CastType)
20291 : S(S), DestType(CastType) {}
20292
20293 ExprResult VisitStmt(Stmt *S) {
20294 llvm_unreachable("unexpected statement!");
20295 }
20296
20297 ExprResult VisitExpr(Expr *E) {
20298 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_unsupported_unknown_any_expr)
20299 << E->getSourceRange();
20300 return ExprError();
20301 }
20302
20303 ExprResult VisitCallExpr(CallExpr *E);
20304 ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
20305
20306 /// Rebuild an expression which simply semantically wraps another
20307 /// expression which it shares the type and value kind of.
20308 template <class T> ExprResult rebuildSugarExpr(T *E) {
20309 ExprResult SubResult = Visit(S: E->getSubExpr());
20310 if (SubResult.isInvalid()) return ExprError();
20311 Expr *SubExpr = SubResult.get();
20312 E->setSubExpr(SubExpr);
20313 E->setType(SubExpr->getType());
20314 E->setValueKind(SubExpr->getValueKind());
20315 assert(E->getObjectKind() == OK_Ordinary);
20316 return E;
20317 }
20318
20319 ExprResult VisitParenExpr(ParenExpr *E) {
20320 return rebuildSugarExpr(E);
20321 }
20322
20323 ExprResult VisitUnaryExtension(UnaryOperator *E) {
20324 return rebuildSugarExpr(E);
20325 }
20326
20327 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
20328 const PointerType *Ptr = DestType->getAs<PointerType>();
20329 if (!Ptr) {
20330 S.Diag(Loc: E->getOperatorLoc(), DiagID: diag::err_unknown_any_addrof)
20331 << E->getSourceRange();
20332 return ExprError();
20333 }
20334
20335 if (isa<CallExpr>(Val: E->getSubExpr())) {
20336 S.Diag(Loc: E->getOperatorLoc(), DiagID: diag::err_unknown_any_addrof_call)
20337 << E->getSourceRange();
20338 return ExprError();
20339 }
20340
20341 assert(E->isPRValue());
20342 assert(E->getObjectKind() == OK_Ordinary);
20343 E->setType(DestType);
20344
20345 // Build the sub-expression as if it were an object of the pointee type.
20346 DestType = Ptr->getPointeeType();
20347 ExprResult SubResult = Visit(S: E->getSubExpr());
20348 if (SubResult.isInvalid()) return ExprError();
20349 E->setSubExpr(SubResult.get());
20350 return E;
20351 }
20352
20353 ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
20354
20355 ExprResult resolveDecl(Expr *E, ValueDecl *VD);
20356
20357 ExprResult VisitMemberExpr(MemberExpr *E) {
20358 return resolveDecl(E, VD: E->getMemberDecl());
20359 }
20360
20361 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
20362 return resolveDecl(E, VD: E->getDecl());
20363 }
20364 };
20365}
20366
20367/// Rebuilds a call expression which yielded __unknown_anytype.
20368ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
20369 Expr *CalleeExpr = E->getCallee();
20370
20371 enum FnKind {
20372 FK_MemberFunction,
20373 FK_FunctionPointer,
20374 FK_BlockPointer
20375 };
20376
20377 FnKind Kind;
20378 QualType CalleeType = CalleeExpr->getType();
20379 if (CalleeType == S.Context.BoundMemberTy) {
20380 assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
20381 Kind = FK_MemberFunction;
20382 CalleeType = Expr::findBoundMemberType(expr: CalleeExpr);
20383 } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
20384 CalleeType = Ptr->getPointeeType();
20385 Kind = FK_FunctionPointer;
20386 } else {
20387 CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
20388 Kind = FK_BlockPointer;
20389 }
20390 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
20391
20392 // Verify that this is a legal result type of a function.
20393 if (DestType->isArrayType() || DestType->isFunctionType()) {
20394 unsigned diagID = diag::err_func_returning_array_function;
20395 if (Kind == FK_BlockPointer)
20396 diagID = diag::err_block_returning_array_function;
20397
20398 S.Diag(Loc: E->getExprLoc(), DiagID: diagID)
20399 << DestType->isFunctionType() << DestType;
20400 return ExprError();
20401 }
20402
20403 // Otherwise, go ahead and set DestType as the call's result.
20404 E->setType(DestType.getNonLValueExprType(Context: S.Context));
20405 E->setValueKind(Expr::getValueKindForType(T: DestType));
20406 assert(E->getObjectKind() == OK_Ordinary);
20407
20408 // Rebuild the function type, replacing the result type with DestType.
20409 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(Val: FnType);
20410 if (Proto) {
20411 // __unknown_anytype(...) is a special case used by the debugger when
20412 // it has no idea what a function's signature is.
20413 //
20414 // We want to build this call essentially under the K&R
20415 // unprototyped rules, but making a FunctionNoProtoType in C++
20416 // would foul up all sorts of assumptions. However, we cannot
20417 // simply pass all arguments as variadic arguments, nor can we
20418 // portably just call the function under a non-variadic type; see
20419 // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
20420 // However, it turns out that in practice it is generally safe to
20421 // call a function declared as "A foo(B,C,D);" under the prototype
20422 // "A foo(B,C,D,...);". The only known exception is with the
20423 // Windows ABI, where any variadic function is implicitly cdecl
20424 // regardless of its normal CC. Therefore we change the parameter
20425 // types to match the types of the arguments.
20426 //
20427 // This is a hack, but it is far superior to moving the
20428 // corresponding target-specific code from IR-gen to Sema/AST.
20429
20430 ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
20431 SmallVector<QualType, 8> ArgTypes;
20432 if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
20433 ArgTypes.reserve(N: E->getNumArgs());
20434 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
20435 ArgTypes.push_back(Elt: S.Context.getReferenceQualifiedType(e: E->getArg(Arg: i)));
20436 }
20437 ParamTypes = ArgTypes;
20438 }
20439 DestType = S.Context.getFunctionType(ResultTy: DestType, Args: ParamTypes,
20440 EPI: Proto->getExtProtoInfo());
20441 } else {
20442 DestType = S.Context.getFunctionNoProtoType(ResultTy: DestType,
20443 Info: FnType->getExtInfo());
20444 }
20445
20446 // Rebuild the appropriate pointer-to-function type.
20447 switch (Kind) {
20448 case FK_MemberFunction:
20449 // Nothing to do.
20450 break;
20451
20452 case FK_FunctionPointer:
20453 DestType = S.Context.getPointerType(T: DestType);
20454 break;
20455
20456 case FK_BlockPointer:
20457 DestType = S.Context.getBlockPointerType(T: DestType);
20458 break;
20459 }
20460
20461 // Finally, we can recurse.
20462 ExprResult CalleeResult = Visit(S: CalleeExpr);
20463 if (!CalleeResult.isUsable()) return ExprError();
20464 E->setCallee(CalleeResult.get());
20465
20466 // Bind a temporary if necessary.
20467 return S.MaybeBindToTemporary(E);
20468}
20469
20470ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
20471 // Verify that this is a legal result type of a call.
20472 if (DestType->isArrayType() || DestType->isFunctionType()) {
20473 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_func_returning_array_function)
20474 << DestType->isFunctionType() << DestType;
20475 return ExprError();
20476 }
20477
20478 // Rewrite the method result type if available.
20479 if (ObjCMethodDecl *Method = E->getMethodDecl()) {
20480 assert(Method->getReturnType() == S.Context.UnknownAnyTy);
20481 Method->setReturnType(DestType);
20482 }
20483
20484 // Change the type of the message.
20485 E->setType(DestType.getNonReferenceType());
20486 E->setValueKind(Expr::getValueKindForType(T: DestType));
20487
20488 return S.MaybeBindToTemporary(E);
20489}
20490
20491ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
20492 // The only case we should ever see here is a function-to-pointer decay.
20493 if (E->getCastKind() == CK_FunctionToPointerDecay) {
20494 assert(E->isPRValue());
20495 assert(E->getObjectKind() == OK_Ordinary);
20496
20497 E->setType(DestType);
20498
20499 // Rebuild the sub-expression as the pointee (function) type.
20500 DestType = DestType->castAs<PointerType>()->getPointeeType();
20501
20502 ExprResult Result = Visit(S: E->getSubExpr());
20503 if (!Result.isUsable()) return ExprError();
20504
20505 E->setSubExpr(Result.get());
20506 return E;
20507 } else if (E->getCastKind() == CK_LValueToRValue) {
20508 assert(E->isPRValue());
20509 assert(E->getObjectKind() == OK_Ordinary);
20510
20511 assert(isa<BlockPointerType>(E->getType()));
20512
20513 E->setType(DestType);
20514
20515 // The sub-expression has to be a lvalue reference, so rebuild it as such.
20516 DestType = S.Context.getLValueReferenceType(T: DestType);
20517
20518 ExprResult Result = Visit(S: E->getSubExpr());
20519 if (!Result.isUsable()) return ExprError();
20520
20521 E->setSubExpr(Result.get());
20522 return E;
20523 } else {
20524 llvm_unreachable("Unhandled cast type!");
20525 }
20526}
20527
20528ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
20529 ExprValueKind ValueKind = VK_LValue;
20530 QualType Type = DestType;
20531
20532 // We know how to make this work for certain kinds of decls:
20533
20534 // - functions
20535 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: VD)) {
20536 if (const PointerType *Ptr = Type->getAs<PointerType>()) {
20537 DestType = Ptr->getPointeeType();
20538 ExprResult Result = resolveDecl(E, VD);
20539 if (Result.isInvalid()) return ExprError();
20540 return S.ImpCastExprToType(E: Result.get(), Type, CK: CK_FunctionToPointerDecay,
20541 VK: VK_PRValue);
20542 }
20543
20544 if (!Type->isFunctionType()) {
20545 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_unknown_any_function)
20546 << VD << E->getSourceRange();
20547 return ExprError();
20548 }
20549 if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
20550 // We must match the FunctionDecl's type to the hack introduced in
20551 // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
20552 // type. See the lengthy commentary in that routine.
20553 QualType FDT = FD->getType();
20554 const FunctionType *FnType = FDT->castAs<FunctionType>();
20555 const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(Val: FnType);
20556 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E);
20557 if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
20558 SourceLocation Loc = FD->getLocation();
20559 FunctionDecl *NewFD = FunctionDecl::Create(
20560 C&: S.Context, DC: FD->getDeclContext(), StartLoc: Loc, NLoc: Loc,
20561 N: FD->getNameInfo().getName(), T: DestType, TInfo: FD->getTypeSourceInfo(),
20562 SC: SC_None, UsesFPIntrin: S.getCurFPFeatures().isFPConstrained(),
20563 isInlineSpecified: false /*isInlineSpecified*/, hasWrittenPrototype: FD->hasPrototype(),
20564 /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
20565
20566 if (FD->getQualifier())
20567 NewFD->setQualifierInfo(FD->getQualifierLoc());
20568
20569 SmallVector<ParmVarDecl*, 16> Params;
20570 for (const auto &AI : FT->param_types()) {
20571 ParmVarDecl *Param =
20572 S.BuildParmVarDeclForTypedef(DC: FD, Loc, T: AI);
20573 Param->setScopeInfo(scopeDepth: 0, parameterIndex: Params.size());
20574 Params.push_back(Elt: Param);
20575 }
20576 NewFD->setParams(Params);
20577 DRE->setDecl(NewFD);
20578 VD = DRE->getDecl();
20579 }
20580 }
20581
20582 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD))
20583 if (MD->isInstance()) {
20584 ValueKind = VK_PRValue;
20585 Type = S.Context.BoundMemberTy;
20586 }
20587
20588 // Function references aren't l-values in C.
20589 if (!S.getLangOpts().CPlusPlus)
20590 ValueKind = VK_PRValue;
20591
20592 // - variables
20593 } else if (isa<VarDecl>(Val: VD)) {
20594 if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
20595 Type = RefTy->getPointeeType();
20596 } else if (Type->isFunctionType()) {
20597 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_unknown_any_var_function_type)
20598 << VD << E->getSourceRange();
20599 return ExprError();
20600 }
20601
20602 // - nothing else
20603 } else {
20604 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_unsupported_unknown_any_decl)
20605 << VD << E->getSourceRange();
20606 return ExprError();
20607 }
20608
20609 // Modifying the declaration like this is friendly to IR-gen but
20610 // also really dangerous.
20611 VD->setType(DestType);
20612 E->setType(Type);
20613 E->setValueKind(ValueKind);
20614 return E;
20615}
20616
20617ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
20618 Expr *CastExpr, CastKind &CastKind,
20619 ExprValueKind &VK, CXXCastPath &Path) {
20620 // The type we're casting to must be either void or complete.
20621 if (!CastType->isVoidType() &&
20622 RequireCompleteType(Loc: TypeRange.getBegin(), T: CastType,
20623 DiagID: diag::err_typecheck_cast_to_incomplete))
20624 return ExprError();
20625
20626 // Rewrite the casted expression from scratch.
20627 ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(S: CastExpr);
20628 if (!result.isUsable()) return ExprError();
20629
20630 CastExpr = result.get();
20631 VK = CastExpr->getValueKind();
20632 CastKind = CK_NoOp;
20633
20634 return CastExpr;
20635}
20636
20637ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
20638 return RebuildUnknownAnyExpr(*this, ToType).Visit(S: E);
20639}
20640
20641ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
20642 Expr *arg, QualType &paramType) {
20643 // If the syntactic form of the argument is not an explicit cast of
20644 // any sort, just do default argument promotion.
20645 ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(Val: arg->IgnoreParens());
20646 if (!castArg) {
20647 ExprResult result = DefaultArgumentPromotion(E: arg);
20648 if (result.isInvalid()) return ExprError();
20649 paramType = result.get()->getType();
20650 return result;
20651 }
20652
20653 // Otherwise, use the type that was written in the explicit cast.
20654 assert(!arg->hasPlaceholderType());
20655 paramType = castArg->getTypeAsWritten();
20656
20657 // Copy-initialize a parameter of that type.
20658 InitializedEntity entity =
20659 InitializedEntity::InitializeParameter(Context, Type: paramType,
20660 /*consumed*/ Consumed: false);
20661 return PerformCopyInitialization(Entity: entity, EqualLoc: callLoc, Init: arg);
20662}
20663
20664static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
20665 Expr *orig = E;
20666 unsigned diagID = diag::err_uncasted_use_of_unknown_any;
20667 while (true) {
20668 E = E->IgnoreParenImpCasts();
20669 if (CallExpr *call = dyn_cast<CallExpr>(Val: E)) {
20670 E = call->getCallee();
20671 diagID = diag::err_uncasted_call_of_unknown_any;
20672 } else {
20673 break;
20674 }
20675 }
20676
20677 SourceLocation loc;
20678 NamedDecl *d;
20679 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(Val: E)) {
20680 loc = ref->getLocation();
20681 d = ref->getDecl();
20682 } else if (MemberExpr *mem = dyn_cast<MemberExpr>(Val: E)) {
20683 loc = mem->getMemberLoc();
20684 d = mem->getMemberDecl();
20685 } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(Val: E)) {
20686 diagID = diag::err_uncasted_call_of_unknown_any;
20687 loc = msg->getSelectorStartLoc();
20688 d = msg->getMethodDecl();
20689 if (!d) {
20690 S.Diag(Loc: loc, DiagID: diag::err_uncasted_send_to_unknown_any_method)
20691 << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
20692 << orig->getSourceRange();
20693 return ExprError();
20694 }
20695 } else {
20696 S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_unsupported_unknown_any_expr)
20697 << E->getSourceRange();
20698 return ExprError();
20699 }
20700
20701 S.Diag(Loc: loc, DiagID: diagID) << d << orig->getSourceRange();
20702
20703 // Never recoverable.
20704 return ExprError();
20705}
20706
20707ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
20708 if (!Context.isDependenceAllowed()) {
20709 // C cannot handle TypoExpr nodes on either side of a binop because it
20710 // doesn't handle dependent types properly, so make sure any TypoExprs have
20711 // been dealt with before checking the operands.
20712 ExprResult Result = CorrectDelayedTyposInExpr(E);
20713 if (!Result.isUsable()) return ExprError();
20714 E = Result.get();
20715 }
20716
20717 const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
20718 if (!placeholderType) return E;
20719
20720 switch (placeholderType->getKind()) {
20721 case BuiltinType::UnresolvedTemplate: {
20722 auto *ULE = cast<UnresolvedLookupExpr>(Val: E);
20723 const DeclarationNameInfo &NameInfo = ULE->getNameInfo();
20724 // There's only one FoundDecl for UnresolvedTemplate type. See
20725 // BuildTemplateIdExpr.
20726 NamedDecl *Temp = *ULE->decls_begin();
20727 const bool IsTypeAliasTemplateDecl = isa<TypeAliasTemplateDecl>(Val: Temp);
20728
20729 if (NestedNameSpecifierLoc Loc = ULE->getQualifierLoc(); Loc.hasQualifier())
20730 Diag(Loc: NameInfo.getLoc(), DiagID: diag::err_template_kw_refers_to_type_template)
20731 << Loc.getNestedNameSpecifier() << NameInfo.getName().getAsString()
20732 << Loc.getSourceRange() << IsTypeAliasTemplateDecl;
20733 else
20734 Diag(Loc: NameInfo.getLoc(), DiagID: diag::err_template_kw_refers_to_type_template)
20735 << "" << NameInfo.getName().getAsString() << ULE->getSourceRange()
20736 << IsTypeAliasTemplateDecl;
20737 Diag(Loc: Temp->getLocation(), DiagID: diag::note_referenced_type_template)
20738 << IsTypeAliasTemplateDecl;
20739
20740 return CreateRecoveryExpr(Begin: NameInfo.getBeginLoc(), End: NameInfo.getEndLoc(), SubExprs: {});
20741 }
20742
20743 // Overloaded expressions.
20744 case BuiltinType::Overload: {
20745 // Try to resolve a single function template specialization.
20746 // This is obligatory.
20747 ExprResult Result = E;
20748 if (ResolveAndFixSingleFunctionTemplateSpecialization(SrcExpr&: Result, DoFunctionPointerConversion: false))
20749 return Result;
20750
20751 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
20752 // leaves Result unchanged on failure.
20753 Result = E;
20754 if (resolveAndFixAddressOfSingleOverloadCandidate(SrcExpr&: Result))
20755 return Result;
20756
20757 // If that failed, try to recover with a call.
20758 tryToRecoverWithCall(E&: Result, PD: PDiag(DiagID: diag::err_ovl_unresolvable),
20759 /*complain*/ ForceComplain: true);
20760 return Result;
20761 }
20762
20763 // Bound member functions.
20764 case BuiltinType::BoundMember: {
20765 ExprResult result = E;
20766 const Expr *BME = E->IgnoreParens();
20767 PartialDiagnostic PD = PDiag(DiagID: diag::err_bound_member_function);
20768 // Try to give a nicer diagnostic if it is a bound member that we recognize.
20769 if (isa<CXXPseudoDestructorExpr>(Val: BME)) {
20770 PD = PDiag(DiagID: diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
20771 } else if (const auto *ME = dyn_cast<MemberExpr>(Val: BME)) {
20772 if (ME->getMemberNameInfo().getName().getNameKind() ==
20773 DeclarationName::CXXDestructorName)
20774 PD = PDiag(DiagID: diag::err_dtor_expr_without_call) << /*destructor*/ 0;
20775 }
20776 tryToRecoverWithCall(E&: result, PD,
20777 /*complain*/ ForceComplain: true);
20778 return result;
20779 }
20780
20781 // ARC unbridged casts.
20782 case BuiltinType::ARCUnbridgedCast: {
20783 Expr *realCast = ObjC().stripARCUnbridgedCast(e: E);
20784 ObjC().diagnoseARCUnbridgedCast(e: realCast);
20785 return realCast;
20786 }
20787
20788 // Expressions of unknown type.
20789 case BuiltinType::UnknownAny:
20790 return diagnoseUnknownAnyExpr(S&: *this, E);
20791
20792 // Pseudo-objects.
20793 case BuiltinType::PseudoObject:
20794 return PseudoObject().checkRValue(E);
20795
20796 case BuiltinType::BuiltinFn: {
20797 // Accept __noop without parens by implicitly converting it to a call expr.
20798 auto *DRE = dyn_cast<DeclRefExpr>(Val: E->IgnoreParenImpCasts());
20799 if (DRE) {
20800 auto *FD = cast<FunctionDecl>(Val: DRE->getDecl());
20801 unsigned BuiltinID = FD->getBuiltinID();
20802 if (BuiltinID == Builtin::BI__noop) {
20803 E = ImpCastExprToType(E, Type: Context.getPointerType(T: FD->getType()),
20804 CK: CK_BuiltinFnToFnPtr)
20805 .get();
20806 return CallExpr::Create(Ctx: Context, Fn: E, /*Args=*/{}, Ty: Context.IntTy,
20807 VK: VK_PRValue, RParenLoc: SourceLocation(),
20808 FPFeatures: FPOptionsOverride());
20809 }
20810
20811 if (Context.BuiltinInfo.isInStdNamespace(ID: BuiltinID)) {
20812 // Any use of these other than a direct call is ill-formed as of C++20,
20813 // because they are not addressable functions. In earlier language
20814 // modes, warn and force an instantiation of the real body.
20815 Diag(Loc: E->getBeginLoc(),
20816 DiagID: getLangOpts().CPlusPlus20
20817 ? diag::err_use_of_unaddressable_function
20818 : diag::warn_cxx20_compat_use_of_unaddressable_function);
20819 if (FD->isImplicitlyInstantiable()) {
20820 // Require a definition here because a normal attempt at
20821 // instantiation for a builtin will be ignored, and we won't try
20822 // again later. We assume that the definition of the template
20823 // precedes this use.
20824 InstantiateFunctionDefinition(PointOfInstantiation: E->getBeginLoc(), Function: FD,
20825 /*Recursive=*/false,
20826 /*DefinitionRequired=*/true,
20827 /*AtEndOfTU=*/false);
20828 }
20829 // Produce a properly-typed reference to the function.
20830 CXXScopeSpec SS;
20831 SS.Adopt(Other: DRE->getQualifierLoc());
20832 TemplateArgumentListInfo TemplateArgs;
20833 DRE->copyTemplateArgumentsInto(List&: TemplateArgs);
20834 return BuildDeclRefExpr(
20835 D: FD, Ty: FD->getType(), VK: VK_LValue, NameInfo: DRE->getNameInfo(),
20836 SS: DRE->hasQualifier() ? &SS : nullptr, FoundD: DRE->getFoundDecl(),
20837 TemplateKWLoc: DRE->getTemplateKeywordLoc(),
20838 TemplateArgs: DRE->hasExplicitTemplateArgs() ? &TemplateArgs : nullptr);
20839 }
20840 }
20841
20842 Diag(Loc: E->getBeginLoc(), DiagID: diag::err_builtin_fn_use);
20843 return ExprError();
20844 }
20845
20846 case BuiltinType::IncompleteMatrixIdx:
20847 Diag(Loc: cast<MatrixSubscriptExpr>(Val: E->IgnoreParens())
20848 ->getRowIdx()
20849 ->getBeginLoc(),
20850 DiagID: diag::err_matrix_incomplete_index);
20851 return ExprError();
20852
20853 // Expressions of unknown type.
20854 case BuiltinType::ArraySection:
20855 Diag(Loc: E->getBeginLoc(), DiagID: diag::err_array_section_use)
20856 << cast<ArraySectionExpr>(Val: E)->isOMPArraySection();
20857 return ExprError();
20858
20859 // Expressions of unknown type.
20860 case BuiltinType::OMPArrayShaping:
20861 return ExprError(Diag(Loc: E->getBeginLoc(), DiagID: diag::err_omp_array_shaping_use));
20862
20863 case BuiltinType::OMPIterator:
20864 return ExprError(Diag(Loc: E->getBeginLoc(), DiagID: diag::err_omp_iterator_use));
20865
20866 // Everything else should be impossible.
20867#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
20868 case BuiltinType::Id:
20869#include "clang/Basic/OpenCLImageTypes.def"
20870#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
20871 case BuiltinType::Id:
20872#include "clang/Basic/OpenCLExtensionTypes.def"
20873#define SVE_TYPE(Name, Id, SingletonId) \
20874 case BuiltinType::Id:
20875#include "clang/Basic/AArch64SVEACLETypes.def"
20876#define PPC_VECTOR_TYPE(Name, Id, Size) \
20877 case BuiltinType::Id:
20878#include "clang/Basic/PPCTypes.def"
20879#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
20880#include "clang/Basic/RISCVVTypes.def"
20881#define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
20882#include "clang/Basic/WebAssemblyReferenceTypes.def"
20883#define AMDGPU_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
20884#include "clang/Basic/AMDGPUTypes.def"
20885#define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
20886#define PLACEHOLDER_TYPE(Id, SingletonId)
20887#include "clang/AST/BuiltinTypes.def"
20888 break;
20889 }
20890
20891 llvm_unreachable("invalid placeholder type!");
20892}
20893
20894bool Sema::CheckCaseExpression(Expr *E) {
20895 if (E->isTypeDependent())
20896 return true;
20897 if (E->isValueDependent() || E->isIntegerConstantExpr(Ctx: Context))
20898 return E->getType()->isIntegralOrEnumerationType();
20899 return false;
20900}
20901
20902ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
20903 ArrayRef<Expr *> SubExprs, QualType T) {
20904 if (!Context.getLangOpts().RecoveryAST)
20905 return ExprError();
20906
20907 if (isSFINAEContext())
20908 return ExprError();
20909
20910 if (T.isNull() || T->isUndeducedType() ||
20911 !Context.getLangOpts().RecoveryASTType)
20912 // We don't know the concrete type, fallback to dependent type.
20913 T = Context.DependentTy;
20914
20915 return RecoveryExpr::Create(Ctx&: Context, T, BeginLoc: Begin, EndLoc: End, SubExprs);
20916}
20917