1 | //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements semantic analysis for initializers. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "CheckExprLifetime.h" |
14 | #include "clang/AST/ASTContext.h" |
15 | #include "clang/AST/DeclObjC.h" |
16 | #include "clang/AST/Expr.h" |
17 | #include "clang/AST/ExprCXX.h" |
18 | #include "clang/AST/ExprObjC.h" |
19 | #include "clang/AST/ExprOpenMP.h" |
20 | #include "clang/AST/IgnoreExpr.h" |
21 | #include "clang/AST/TypeLoc.h" |
22 | #include "clang/Basic/CharInfo.h" |
23 | #include "clang/Basic/SourceManager.h" |
24 | #include "clang/Basic/Specifiers.h" |
25 | #include "clang/Basic/TargetInfo.h" |
26 | #include "clang/Sema/Designator.h" |
27 | #include "clang/Sema/EnterExpressionEvaluationContext.h" |
28 | #include "clang/Sema/Initialization.h" |
29 | #include "clang/Sema/Lookup.h" |
30 | #include "clang/Sema/Ownership.h" |
31 | #include "clang/Sema/SemaInternal.h" |
32 | #include "clang/Sema/SemaObjC.h" |
33 | #include "llvm/ADT/APInt.h" |
34 | #include "llvm/ADT/FoldingSet.h" |
35 | #include "llvm/ADT/PointerIntPair.h" |
36 | #include "llvm/ADT/STLForwardCompat.h" |
37 | #include "llvm/ADT/SmallString.h" |
38 | #include "llvm/ADT/SmallVector.h" |
39 | #include "llvm/ADT/StringExtras.h" |
40 | #include "llvm/Support/ErrorHandling.h" |
41 | #include "llvm/Support/raw_ostream.h" |
42 | |
43 | using namespace clang; |
44 | |
45 | //===----------------------------------------------------------------------===// |
46 | // Sema Initialization Checking |
47 | //===----------------------------------------------------------------------===// |
48 | |
49 | /// Check whether T is compatible with a wide character type (wchar_t, |
50 | /// char16_t or char32_t). |
51 | static bool IsWideCharCompatible(QualType T, ASTContext &Context) { |
52 | if (Context.typesAreCompatible(T1: Context.getWideCharType(), T2: T)) |
53 | return true; |
54 | if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { |
55 | return Context.typesAreCompatible(T1: Context.Char16Ty, T2: T) || |
56 | Context.typesAreCompatible(T1: Context.Char32Ty, T2: T); |
57 | } |
58 | return false; |
59 | } |
60 | |
61 | enum StringInitFailureKind { |
62 | SIF_None, |
63 | SIF_NarrowStringIntoWideChar, |
64 | SIF_WideStringIntoChar, |
65 | SIF_IncompatWideStringIntoWideChar, |
66 | SIF_UTF8StringIntoPlainChar, |
67 | SIF_PlainStringIntoUTF8Char, |
68 | SIF_Other |
69 | }; |
70 | |
71 | /// Check whether the array of type AT can be initialized by the Init |
72 | /// expression by means of string initialization. Returns SIF_None if so, |
73 | /// otherwise returns a StringInitFailureKind that describes why the |
74 | /// initialization would not work. |
75 | static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, |
76 | ASTContext &Context) { |
77 | if (!isa<ConstantArrayType>(Val: AT) && !isa<IncompleteArrayType>(Val: AT)) |
78 | return SIF_Other; |
79 | |
80 | // See if this is a string literal or @encode. |
81 | Init = Init->IgnoreParens(); |
82 | |
83 | // Handle @encode, which is a narrow string. |
84 | if (isa<ObjCEncodeExpr>(Val: Init) && AT->getElementType()->isCharType()) |
85 | return SIF_None; |
86 | |
87 | // Otherwise we can only handle string literals. |
88 | StringLiteral *SL = dyn_cast<StringLiteral>(Val: Init); |
89 | if (!SL) |
90 | return SIF_Other; |
91 | |
92 | const QualType ElemTy = |
93 | Context.getCanonicalType(T: AT->getElementType()).getUnqualifiedType(); |
94 | |
95 | auto IsCharOrUnsignedChar = [](const QualType &T) { |
96 | const BuiltinType *BT = dyn_cast<BuiltinType>(Val: T.getTypePtr()); |
97 | return BT && BT->isCharType() && BT->getKind() != BuiltinType::SChar; |
98 | }; |
99 | |
100 | switch (SL->getKind()) { |
101 | case StringLiteralKind::UTF8: |
102 | // char8_t array can be initialized with a UTF-8 string. |
103 | // - C++20 [dcl.init.string] (DR) |
104 | // Additionally, an array of char or unsigned char may be initialized |
105 | // by a UTF-8 string literal. |
106 | if (ElemTy->isChar8Type() || |
107 | (Context.getLangOpts().Char8 && |
108 | IsCharOrUnsignedChar(ElemTy.getCanonicalType()))) |
109 | return SIF_None; |
110 | [[fallthrough]]; |
111 | case StringLiteralKind::Ordinary: |
112 | // char array can be initialized with a narrow string. |
113 | // Only allow char x[] = "foo"; not char x[] = L"foo"; |
114 | if (ElemTy->isCharType()) |
115 | return (SL->getKind() == StringLiteralKind::UTF8 && |
116 | Context.getLangOpts().Char8) |
117 | ? SIF_UTF8StringIntoPlainChar |
118 | : SIF_None; |
119 | if (ElemTy->isChar8Type()) |
120 | return SIF_PlainStringIntoUTF8Char; |
121 | if (IsWideCharCompatible(T: ElemTy, Context)) |
122 | return SIF_NarrowStringIntoWideChar; |
123 | return SIF_Other; |
124 | // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: |
125 | // "An array with element type compatible with a qualified or unqualified |
126 | // version of wchar_t, char16_t, or char32_t may be initialized by a wide |
127 | // string literal with the corresponding encoding prefix (L, u, or U, |
128 | // respectively), optionally enclosed in braces. |
129 | case StringLiteralKind::UTF16: |
130 | if (Context.typesAreCompatible(T1: Context.Char16Ty, T2: ElemTy)) |
131 | return SIF_None; |
132 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
133 | return SIF_WideStringIntoChar; |
134 | if (IsWideCharCompatible(T: ElemTy, Context)) |
135 | return SIF_IncompatWideStringIntoWideChar; |
136 | return SIF_Other; |
137 | case StringLiteralKind::UTF32: |
138 | if (Context.typesAreCompatible(T1: Context.Char32Ty, T2: ElemTy)) |
139 | return SIF_None; |
140 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
141 | return SIF_WideStringIntoChar; |
142 | if (IsWideCharCompatible(T: ElemTy, Context)) |
143 | return SIF_IncompatWideStringIntoWideChar; |
144 | return SIF_Other; |
145 | case StringLiteralKind::Wide: |
146 | if (Context.typesAreCompatible(T1: Context.getWideCharType(), T2: ElemTy)) |
147 | return SIF_None; |
148 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
149 | return SIF_WideStringIntoChar; |
150 | if (IsWideCharCompatible(T: ElemTy, Context)) |
151 | return SIF_IncompatWideStringIntoWideChar; |
152 | return SIF_Other; |
153 | case StringLiteralKind::Unevaluated: |
154 | assert(false && "Unevaluated string literal in initialization" ); |
155 | break; |
156 | } |
157 | |
158 | llvm_unreachable("missed a StringLiteral kind?" ); |
159 | } |
160 | |
161 | static StringInitFailureKind IsStringInit(Expr *init, QualType declType, |
162 | ASTContext &Context) { |
163 | const ArrayType *arrayType = Context.getAsArrayType(T: declType); |
164 | if (!arrayType) |
165 | return SIF_Other; |
166 | return IsStringInit(Init: init, AT: arrayType, Context); |
167 | } |
168 | |
169 | bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) { |
170 | return ::IsStringInit(Init, AT, Context) == SIF_None; |
171 | } |
172 | |
173 | /// Update the type of a string literal, including any surrounding parentheses, |
174 | /// to match the type of the object which it is initializing. |
175 | static void updateStringLiteralType(Expr *E, QualType Ty) { |
176 | while (true) { |
177 | E->setType(Ty); |
178 | E->setValueKind(VK_PRValue); |
179 | if (isa<StringLiteral>(Val: E) || isa<ObjCEncodeExpr>(Val: E)) |
180 | break; |
181 | E = IgnoreParensSingleStep(E); |
182 | } |
183 | } |
184 | |
185 | /// Fix a compound literal initializing an array so it's correctly marked |
186 | /// as an rvalue. |
187 | static void updateGNUCompoundLiteralRValue(Expr *E) { |
188 | while (true) { |
189 | E->setValueKind(VK_PRValue); |
190 | if (isa<CompoundLiteralExpr>(Val: E)) |
191 | break; |
192 | E = IgnoreParensSingleStep(E); |
193 | } |
194 | } |
195 | |
196 | static bool initializingConstexprVariable(const InitializedEntity &Entity) { |
197 | Decl *D = Entity.getDecl(); |
198 | const InitializedEntity *Parent = &Entity; |
199 | |
200 | while (Parent) { |
201 | D = Parent->getDecl(); |
202 | Parent = Parent->getParent(); |
203 | } |
204 | |
205 | if (const auto *VD = dyn_cast_if_present<VarDecl>(Val: D); VD && VD->isConstexpr()) |
206 | return true; |
207 | |
208 | return false; |
209 | } |
210 | |
211 | static void CheckC23ConstexprInitStringLiteral(const StringLiteral *SE, |
212 | Sema &SemaRef, QualType &TT); |
213 | |
214 | static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, |
215 | Sema &S, bool CheckC23ConstexprInit = false) { |
216 | // Get the length of the string as parsed. |
217 | auto *ConstantArrayTy = |
218 | cast<ConstantArrayType>(Val: Str->getType()->getAsArrayTypeUnsafe()); |
219 | uint64_t StrLength = ConstantArrayTy->getZExtSize(); |
220 | |
221 | if (CheckC23ConstexprInit) |
222 | if (const StringLiteral *SL = dyn_cast<StringLiteral>(Val: Str->IgnoreParens())) |
223 | CheckC23ConstexprInitStringLiteral(SE: SL, SemaRef&: S, TT&: DeclT); |
224 | |
225 | if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(Val: AT)) { |
226 | // C99 6.7.8p14. We have an array of character type with unknown size |
227 | // being initialized to a string literal. |
228 | llvm::APInt ConstVal(32, StrLength); |
229 | // Return a new array type (C99 6.7.8p22). |
230 | DeclT = S.Context.getConstantArrayType( |
231 | EltTy: IAT->getElementType(), ArySize: ConstVal, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
232 | updateStringLiteralType(E: Str, Ty: DeclT); |
233 | return; |
234 | } |
235 | |
236 | const ConstantArrayType *CAT = cast<ConstantArrayType>(Val: AT); |
237 | |
238 | // We have an array of character type with known size. However, |
239 | // the size may be smaller or larger than the string we are initializing. |
240 | // FIXME: Avoid truncation for 64-bit length strings. |
241 | if (S.getLangOpts().CPlusPlus) { |
242 | if (StringLiteral *SL = dyn_cast<StringLiteral>(Val: Str->IgnoreParens())) { |
243 | // For Pascal strings it's OK to strip off the terminating null character, |
244 | // so the example below is valid: |
245 | // |
246 | // unsigned char a[2] = "\pa"; |
247 | if (SL->isPascal()) |
248 | StrLength--; |
249 | } |
250 | |
251 | // [dcl.init.string]p2 |
252 | if (StrLength > CAT->getZExtSize()) |
253 | S.Diag(Loc: Str->getBeginLoc(), |
254 | DiagID: diag::err_initializer_string_for_char_array_too_long) |
255 | << CAT->getZExtSize() << StrLength << Str->getSourceRange(); |
256 | } else { |
257 | // C99 6.7.8p14. |
258 | if (StrLength - 1 > CAT->getZExtSize()) |
259 | S.Diag(Loc: Str->getBeginLoc(), |
260 | DiagID: diag::ext_initializer_string_for_char_array_too_long) |
261 | << Str->getSourceRange(); |
262 | } |
263 | |
264 | // Set the type to the actual size that we are initializing. If we have |
265 | // something like: |
266 | // char x[1] = "foo"; |
267 | // then this will set the string literal's type to char[1]. |
268 | updateStringLiteralType(E: Str, Ty: DeclT); |
269 | } |
270 | |
271 | //===----------------------------------------------------------------------===// |
272 | // Semantic checking for initializer lists. |
273 | //===----------------------------------------------------------------------===// |
274 | |
275 | namespace { |
276 | |
277 | /// Semantic checking for initializer lists. |
278 | /// |
279 | /// The InitListChecker class contains a set of routines that each |
280 | /// handle the initialization of a certain kind of entity, e.g., |
281 | /// arrays, vectors, struct/union types, scalars, etc. The |
282 | /// InitListChecker itself performs a recursive walk of the subobject |
283 | /// structure of the type to be initialized, while stepping through |
284 | /// the initializer list one element at a time. The IList and Index |
285 | /// parameters to each of the Check* routines contain the active |
286 | /// (syntactic) initializer list and the index into that initializer |
287 | /// list that represents the current initializer. Each routine is |
288 | /// responsible for moving that Index forward as it consumes elements. |
289 | /// |
290 | /// Each Check* routine also has a StructuredList/StructuredIndex |
291 | /// arguments, which contains the current "structured" (semantic) |
292 | /// initializer list and the index into that initializer list where we |
293 | /// are copying initializers as we map them over to the semantic |
294 | /// list. Once we have completed our recursive walk of the subobject |
295 | /// structure, we will have constructed a full semantic initializer |
296 | /// list. |
297 | /// |
298 | /// C99 designators cause changes in the initializer list traversal, |
299 | /// because they make the initialization "jump" into a specific |
300 | /// subobject and then continue the initialization from that |
301 | /// point. CheckDesignatedInitializer() recursively steps into the |
302 | /// designated subobject and manages backing out the recursion to |
303 | /// initialize the subobjects after the one designated. |
304 | /// |
305 | /// If an initializer list contains any designators, we build a placeholder |
306 | /// structured list even in 'verify only' mode, so that we can track which |
307 | /// elements need 'empty' initializtion. |
308 | class InitListChecker { |
309 | Sema &SemaRef; |
310 | bool hadError = false; |
311 | bool VerifyOnly; // No diagnostics. |
312 | bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. |
313 | bool InOverloadResolution; |
314 | InitListExpr *FullyStructuredList = nullptr; |
315 | NoInitExpr *DummyExpr = nullptr; |
316 | SmallVectorImpl<QualType> *AggrDeductionCandidateParamTypes = nullptr; |
317 | EmbedExpr *CurEmbed = nullptr; // Save current embed we're processing. |
318 | unsigned CurEmbedIndex = 0; |
319 | |
320 | NoInitExpr *getDummyInit() { |
321 | if (!DummyExpr) |
322 | DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy); |
323 | return DummyExpr; |
324 | } |
325 | |
326 | void CheckImplicitInitList(const InitializedEntity &Entity, |
327 | InitListExpr *ParentIList, QualType T, |
328 | unsigned &Index, InitListExpr *StructuredList, |
329 | unsigned &StructuredIndex); |
330 | void CheckExplicitInitList(const InitializedEntity &Entity, |
331 | InitListExpr *IList, QualType &T, |
332 | InitListExpr *StructuredList, |
333 | bool TopLevelObject = false); |
334 | void CheckListElementTypes(const InitializedEntity &Entity, |
335 | InitListExpr *IList, QualType &DeclType, |
336 | bool SubobjectIsDesignatorContext, |
337 | unsigned &Index, |
338 | InitListExpr *StructuredList, |
339 | unsigned &StructuredIndex, |
340 | bool TopLevelObject = false); |
341 | void CheckSubElementType(const InitializedEntity &Entity, |
342 | InitListExpr *IList, QualType ElemType, |
343 | unsigned &Index, |
344 | InitListExpr *StructuredList, |
345 | unsigned &StructuredIndex, |
346 | bool DirectlyDesignated = false); |
347 | void CheckComplexType(const InitializedEntity &Entity, |
348 | InitListExpr *IList, QualType DeclType, |
349 | unsigned &Index, |
350 | InitListExpr *StructuredList, |
351 | unsigned &StructuredIndex); |
352 | void CheckScalarType(const InitializedEntity &Entity, |
353 | InitListExpr *IList, QualType DeclType, |
354 | unsigned &Index, |
355 | InitListExpr *StructuredList, |
356 | unsigned &StructuredIndex); |
357 | void CheckReferenceType(const InitializedEntity &Entity, |
358 | InitListExpr *IList, QualType DeclType, |
359 | unsigned &Index, |
360 | InitListExpr *StructuredList, |
361 | unsigned &StructuredIndex); |
362 | void CheckVectorType(const InitializedEntity &Entity, |
363 | InitListExpr *IList, QualType DeclType, unsigned &Index, |
364 | InitListExpr *StructuredList, |
365 | unsigned &StructuredIndex); |
366 | void CheckStructUnionTypes(const InitializedEntity &Entity, |
367 | InitListExpr *IList, QualType DeclType, |
368 | CXXRecordDecl::base_class_const_range Bases, |
369 | RecordDecl::field_iterator Field, |
370 | bool SubobjectIsDesignatorContext, unsigned &Index, |
371 | InitListExpr *StructuredList, |
372 | unsigned &StructuredIndex, |
373 | bool TopLevelObject = false); |
374 | void CheckArrayType(const InitializedEntity &Entity, |
375 | InitListExpr *IList, QualType &DeclType, |
376 | llvm::APSInt elementIndex, |
377 | bool SubobjectIsDesignatorContext, unsigned &Index, |
378 | InitListExpr *StructuredList, |
379 | unsigned &StructuredIndex); |
380 | bool CheckDesignatedInitializer(const InitializedEntity &Entity, |
381 | InitListExpr *IList, DesignatedInitExpr *DIE, |
382 | unsigned DesigIdx, |
383 | QualType &CurrentObjectType, |
384 | RecordDecl::field_iterator *NextField, |
385 | llvm::APSInt *NextElementIndex, |
386 | unsigned &Index, |
387 | InitListExpr *StructuredList, |
388 | unsigned &StructuredIndex, |
389 | bool FinishSubobjectInit, |
390 | bool TopLevelObject); |
391 | InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, |
392 | QualType CurrentObjectType, |
393 | InitListExpr *StructuredList, |
394 | unsigned StructuredIndex, |
395 | SourceRange InitRange, |
396 | bool IsFullyOverwritten = false); |
397 | void UpdateStructuredListElement(InitListExpr *StructuredList, |
398 | unsigned &StructuredIndex, |
399 | Expr *expr); |
400 | InitListExpr *createInitListExpr(QualType CurrentObjectType, |
401 | SourceRange InitRange, |
402 | unsigned ExpectedNumInits); |
403 | int numArrayElements(QualType DeclType); |
404 | int numStructUnionElements(QualType DeclType); |
405 | static RecordDecl *getRecordDecl(QualType DeclType); |
406 | |
407 | ExprResult PerformEmptyInit(SourceLocation Loc, |
408 | const InitializedEntity &Entity); |
409 | |
410 | /// Diagnose that OldInit (or part thereof) has been overridden by NewInit. |
411 | void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange, |
412 | bool UnionOverride = false, |
413 | bool FullyOverwritten = true) { |
414 | // Overriding an initializer via a designator is valid with C99 designated |
415 | // initializers, but ill-formed with C++20 designated initializers. |
416 | unsigned DiagID = |
417 | SemaRef.getLangOpts().CPlusPlus |
418 | ? (UnionOverride ? diag::ext_initializer_union_overrides |
419 | : diag::ext_initializer_overrides) |
420 | : diag::warn_initializer_overrides; |
421 | |
422 | if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) { |
423 | // In overload resolution, we have to strictly enforce the rules, and so |
424 | // don't allow any overriding of prior initializers. This matters for a |
425 | // case such as: |
426 | // |
427 | // union U { int a, b; }; |
428 | // struct S { int a, b; }; |
429 | // void f(U), f(S); |
430 | // |
431 | // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For |
432 | // consistency, we disallow all overriding of prior initializers in |
433 | // overload resolution, not only overriding of union members. |
434 | hadError = true; |
435 | } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) { |
436 | // If we'll be keeping around the old initializer but overwriting part of |
437 | // the object it initialized, and that object is not trivially |
438 | // destructible, this can leak. Don't allow that, not even as an |
439 | // extension. |
440 | // |
441 | // FIXME: It might be reasonable to allow this in cases where the part of |
442 | // the initializer that we're overriding has trivial destruction. |
443 | DiagID = diag::err_initializer_overrides_destructed; |
444 | } else if (!OldInit->getSourceRange().isValid()) { |
445 | // We need to check on source range validity because the previous |
446 | // initializer does not have to be an explicit initializer. e.g., |
447 | // |
448 | // struct P { int a, b; }; |
449 | // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; |
450 | // |
451 | // There is an overwrite taking place because the first braced initializer |
452 | // list "{ .a = 2 }" already provides value for .p.b (which is zero). |
453 | // |
454 | // Such overwrites are harmless, so we don't diagnose them. (Note that in |
455 | // C++, this cannot be reached unless we've already seen and diagnosed a |
456 | // different conformance issue, such as a mixture of designated and |
457 | // non-designated initializers or a multi-level designator.) |
458 | return; |
459 | } |
460 | |
461 | if (!VerifyOnly) { |
462 | SemaRef.Diag(Loc: NewInitRange.getBegin(), DiagID) |
463 | << NewInitRange << FullyOverwritten << OldInit->getType(); |
464 | SemaRef.Diag(Loc: OldInit->getBeginLoc(), DiagID: diag::note_previous_initializer) |
465 | << (OldInit->HasSideEffects(Ctx: SemaRef.Context) && FullyOverwritten) |
466 | << OldInit->getSourceRange(); |
467 | } |
468 | } |
469 | |
470 | // Explanation on the "FillWithNoInit" mode: |
471 | // |
472 | // Assume we have the following definitions (Case#1): |
473 | // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; |
474 | // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; |
475 | // |
476 | // l.lp.x[1][0..1] should not be filled with implicit initializers because the |
477 | // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". |
478 | // |
479 | // But if we have (Case#2): |
480 | // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; |
481 | // |
482 | // l.lp.x[1][0..1] are implicitly initialized and do not use values from the |
483 | // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". |
484 | // |
485 | // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" |
486 | // in the InitListExpr, the "holes" in Case#1 are filled not with empty |
487 | // initializers but with special "NoInitExpr" place holders, which tells the |
488 | // CodeGen not to generate any initializers for these parts. |
489 | void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, |
490 | const InitializedEntity &ParentEntity, |
491 | InitListExpr *ILE, bool &RequiresSecondPass, |
492 | bool FillWithNoInit); |
493 | void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, |
494 | const InitializedEntity &ParentEntity, |
495 | InitListExpr *ILE, bool &RequiresSecondPass, |
496 | bool FillWithNoInit = false); |
497 | void FillInEmptyInitializations(const InitializedEntity &Entity, |
498 | InitListExpr *ILE, bool &RequiresSecondPass, |
499 | InitListExpr *OuterILE, unsigned OuterIndex, |
500 | bool FillWithNoInit = false); |
501 | bool CheckFlexibleArrayInit(const InitializedEntity &Entity, |
502 | Expr *InitExpr, FieldDecl *Field, |
503 | bool TopLevelObject); |
504 | void CheckEmptyInitializable(const InitializedEntity &Entity, |
505 | SourceLocation Loc); |
506 | |
507 | Expr *HandleEmbed(EmbedExpr *Embed, const InitializedEntity &Entity) { |
508 | Expr *Result = nullptr; |
509 | // Undrestand which part of embed we'd like to reference. |
510 | if (!CurEmbed) { |
511 | CurEmbed = Embed; |
512 | CurEmbedIndex = 0; |
513 | } |
514 | // Reference just one if we're initializing a single scalar. |
515 | uint64_t ElsCount = 1; |
516 | // Otherwise try to fill whole array with embed data. |
517 | if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { |
518 | auto *AType = |
519 | SemaRef.Context.getAsArrayType(T: Entity.getParent()->getType()); |
520 | assert(AType && "expected array type when initializing array" ); |
521 | ElsCount = Embed->getDataElementCount(); |
522 | if (const auto *CAType = dyn_cast<ConstantArrayType>(Val: AType)) |
523 | ElsCount = std::min(a: CAType->getSize().getZExtValue(), |
524 | b: ElsCount - CurEmbedIndex); |
525 | if (ElsCount == Embed->getDataElementCount()) { |
526 | CurEmbed = nullptr; |
527 | CurEmbedIndex = 0; |
528 | return Embed; |
529 | } |
530 | } |
531 | |
532 | Result = new (SemaRef.Context) |
533 | EmbedExpr(SemaRef.Context, Embed->getLocation(), Embed->getData(), |
534 | CurEmbedIndex, ElsCount); |
535 | CurEmbedIndex += ElsCount; |
536 | if (CurEmbedIndex >= Embed->getDataElementCount()) { |
537 | CurEmbed = nullptr; |
538 | CurEmbedIndex = 0; |
539 | } |
540 | return Result; |
541 | } |
542 | |
543 | public: |
544 | InitListChecker( |
545 | Sema &S, const InitializedEntity &Entity, InitListExpr *IL, QualType &T, |
546 | bool VerifyOnly, bool TreatUnavailableAsInvalid, |
547 | bool InOverloadResolution = false, |
548 | SmallVectorImpl<QualType> *AggrDeductionCandidateParamTypes = nullptr); |
549 | InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL, |
550 | QualType &T, |
551 | SmallVectorImpl<QualType> &AggrDeductionCandidateParamTypes) |
552 | : InitListChecker(S, Entity, IL, T, /*VerifyOnly=*/true, |
553 | /*TreatUnavailableAsInvalid=*/false, |
554 | /*InOverloadResolution=*/false, |
555 | &AggrDeductionCandidateParamTypes) {} |
556 | |
557 | bool HadError() { return hadError; } |
558 | |
559 | // Retrieves the fully-structured initializer list used for |
560 | // semantic analysis and code generation. |
561 | InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } |
562 | }; |
563 | |
564 | } // end anonymous namespace |
565 | |
566 | ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc, |
567 | const InitializedEntity &Entity) { |
568 | InitializationKind Kind = InitializationKind::CreateValue(InitLoc: Loc, LParenLoc: Loc, RParenLoc: Loc, |
569 | isImplicit: true); |
570 | MultiExprArg SubInit; |
571 | Expr *InitExpr; |
572 | InitListExpr DummyInitList(SemaRef.Context, Loc, std::nullopt, Loc); |
573 | |
574 | // C++ [dcl.init.aggr]p7: |
575 | // If there are fewer initializer-clauses in the list than there are |
576 | // members in the aggregate, then each member not explicitly initialized |
577 | // ... |
578 | bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && |
579 | Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); |
580 | if (EmptyInitList) { |
581 | // C++1y / DR1070: |
582 | // shall be initialized [...] from an empty initializer list. |
583 | // |
584 | // We apply the resolution of this DR to C++11 but not C++98, since C++98 |
585 | // does not have useful semantics for initialization from an init list. |
586 | // We treat this as copy-initialization, because aggregate initialization |
587 | // always performs copy-initialization on its elements. |
588 | // |
589 | // Only do this if we're initializing a class type, to avoid filling in |
590 | // the initializer list where possible. |
591 | InitExpr = VerifyOnly |
592 | ? &DummyInitList |
593 | : new (SemaRef.Context) |
594 | InitListExpr(SemaRef.Context, Loc, std::nullopt, Loc); |
595 | InitExpr->setType(SemaRef.Context.VoidTy); |
596 | SubInit = InitExpr; |
597 | Kind = InitializationKind::CreateCopy(InitLoc: Loc, EqualLoc: Loc); |
598 | } else { |
599 | // C++03: |
600 | // shall be value-initialized. |
601 | } |
602 | |
603 | InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); |
604 | // libstdc++4.6 marks the vector default constructor as explicit in |
605 | // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. |
606 | // stlport does so too. Look for std::__debug for libstdc++, and for |
607 | // std:: for stlport. This is effectively a compiler-side implementation of |
608 | // LWG2193. |
609 | if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == |
610 | InitializationSequence::FK_ExplicitConstructor) { |
611 | OverloadCandidateSet::iterator Best; |
612 | OverloadingResult O = |
613 | InitSeq.getFailedCandidateSet() |
614 | .BestViableFunction(S&: SemaRef, Loc: Kind.getLocation(), Best); |
615 | (void)O; |
616 | assert(O == OR_Success && "Inconsistent overload resolution" ); |
617 | CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Val: Best->Function); |
618 | CXXRecordDecl *R = CtorDecl->getParent(); |
619 | |
620 | if (CtorDecl->getMinRequiredArguments() == 0 && |
621 | CtorDecl->isExplicit() && R->getDeclName() && |
622 | SemaRef.SourceMgr.isInSystemHeader(Loc: CtorDecl->getLocation())) { |
623 | bool IsInStd = false; |
624 | for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Val: R->getDeclContext()); |
625 | ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(Val: ND->getParent())) { |
626 | if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(NS: ND)) |
627 | IsInStd = true; |
628 | } |
629 | |
630 | if (IsInStd && llvm::StringSwitch<bool>(R->getName()) |
631 | .Cases(S0: "basic_string" , S1: "deque" , S2: "forward_list" , Value: true) |
632 | .Cases(S0: "list" , S1: "map" , S2: "multimap" , S3: "multiset" , Value: true) |
633 | .Cases(S0: "priority_queue" , S1: "queue" , S2: "set" , S3: "stack" , Value: true) |
634 | .Cases(S0: "unordered_map" , S1: "unordered_set" , S2: "vector" , Value: true) |
635 | .Default(Value: false)) { |
636 | InitSeq.InitializeFrom( |
637 | S&: SemaRef, Entity, |
638 | Kind: InitializationKind::CreateValue(InitLoc: Loc, LParenLoc: Loc, RParenLoc: Loc, isImplicit: true), |
639 | Args: MultiExprArg(), /*TopLevelOfInitList=*/false, |
640 | TreatUnavailableAsInvalid); |
641 | // Emit a warning for this. System header warnings aren't shown |
642 | // by default, but people working on system headers should see it. |
643 | if (!VerifyOnly) { |
644 | SemaRef.Diag(Loc: CtorDecl->getLocation(), |
645 | DiagID: diag::warn_invalid_initializer_from_system_header); |
646 | if (Entity.getKind() == InitializedEntity::EK_Member) |
647 | SemaRef.Diag(Loc: Entity.getDecl()->getLocation(), |
648 | DiagID: diag::note_used_in_initialization_here); |
649 | else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) |
650 | SemaRef.Diag(Loc, DiagID: diag::note_used_in_initialization_here); |
651 | } |
652 | } |
653 | } |
654 | } |
655 | if (!InitSeq) { |
656 | if (!VerifyOnly) { |
657 | InitSeq.Diagnose(S&: SemaRef, Entity, Kind, Args: SubInit); |
658 | if (Entity.getKind() == InitializedEntity::EK_Member) |
659 | SemaRef.Diag(Loc: Entity.getDecl()->getLocation(), |
660 | DiagID: diag::note_in_omitted_aggregate_initializer) |
661 | << /*field*/1 << Entity.getDecl(); |
662 | else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { |
663 | bool IsTrailingArrayNewMember = |
664 | Entity.getParent() && |
665 | Entity.getParent()->isVariableLengthArrayNew(); |
666 | SemaRef.Diag(Loc, DiagID: diag::note_in_omitted_aggregate_initializer) |
667 | << (IsTrailingArrayNewMember ? 2 : /*array element*/0) |
668 | << Entity.getElementIndex(); |
669 | } |
670 | } |
671 | hadError = true; |
672 | return ExprError(); |
673 | } |
674 | |
675 | return VerifyOnly ? ExprResult() |
676 | : InitSeq.Perform(S&: SemaRef, Entity, Kind, Args: SubInit); |
677 | } |
678 | |
679 | void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, |
680 | SourceLocation Loc) { |
681 | // If we're building a fully-structured list, we'll check this at the end |
682 | // once we know which elements are actually initialized. Otherwise, we know |
683 | // that there are no designators so we can just check now. |
684 | if (FullyStructuredList) |
685 | return; |
686 | PerformEmptyInit(Loc, Entity); |
687 | } |
688 | |
689 | void InitListChecker::FillInEmptyInitForBase( |
690 | unsigned Init, const CXXBaseSpecifier &Base, |
691 | const InitializedEntity &ParentEntity, InitListExpr *ILE, |
692 | bool &RequiresSecondPass, bool FillWithNoInit) { |
693 | InitializedEntity BaseEntity = InitializedEntity::InitializeBase( |
694 | Context&: SemaRef.Context, Base: &Base, IsInheritedVirtualBase: false, Parent: &ParentEntity); |
695 | |
696 | if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) { |
697 | ExprResult BaseInit = FillWithNoInit |
698 | ? new (SemaRef.Context) NoInitExpr(Base.getType()) |
699 | : PerformEmptyInit(Loc: ILE->getEndLoc(), Entity: BaseEntity); |
700 | if (BaseInit.isInvalid()) { |
701 | hadError = true; |
702 | return; |
703 | } |
704 | |
705 | if (!VerifyOnly) { |
706 | assert(Init < ILE->getNumInits() && "should have been expanded" ); |
707 | ILE->setInit(Init, expr: BaseInit.getAs<Expr>()); |
708 | } |
709 | } else if (InitListExpr *InnerILE = |
710 | dyn_cast<InitListExpr>(Val: ILE->getInit(Init))) { |
711 | FillInEmptyInitializations(Entity: BaseEntity, ILE: InnerILE, RequiresSecondPass, |
712 | OuterILE: ILE, OuterIndex: Init, FillWithNoInit); |
713 | } else if (DesignatedInitUpdateExpr *InnerDIUE = |
714 | dyn_cast<DesignatedInitUpdateExpr>(Val: ILE->getInit(Init))) { |
715 | FillInEmptyInitializations(Entity: BaseEntity, ILE: InnerDIUE->getUpdater(), |
716 | RequiresSecondPass, OuterILE: ILE, OuterIndex: Init, |
717 | /*FillWithNoInit =*/true); |
718 | } |
719 | } |
720 | |
721 | void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, |
722 | const InitializedEntity &ParentEntity, |
723 | InitListExpr *ILE, |
724 | bool &RequiresSecondPass, |
725 | bool FillWithNoInit) { |
726 | SourceLocation Loc = ILE->getEndLoc(); |
727 | unsigned NumInits = ILE->getNumInits(); |
728 | InitializedEntity MemberEntity |
729 | = InitializedEntity::InitializeMember(Member: Field, Parent: &ParentEntity); |
730 | |
731 | if (Init >= NumInits || !ILE->getInit(Init)) { |
732 | if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) |
733 | if (!RType->getDecl()->isUnion()) |
734 | assert((Init < NumInits || VerifyOnly) && |
735 | "This ILE should have been expanded" ); |
736 | |
737 | if (FillWithNoInit) { |
738 | assert(!VerifyOnly && "should not fill with no-init in verify-only mode" ); |
739 | Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); |
740 | if (Init < NumInits) |
741 | ILE->setInit(Init, expr: Filler); |
742 | else |
743 | ILE->updateInit(C: SemaRef.Context, Init, expr: Filler); |
744 | return; |
745 | } |
746 | // C++1y [dcl.init.aggr]p7: |
747 | // If there are fewer initializer-clauses in the list than there are |
748 | // members in the aggregate, then each member not explicitly initialized |
749 | // shall be initialized from its brace-or-equal-initializer [...] |
750 | if (Field->hasInClassInitializer()) { |
751 | if (VerifyOnly) |
752 | return; |
753 | |
754 | ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); |
755 | if (DIE.isInvalid()) { |
756 | hadError = true; |
757 | return; |
758 | } |
759 | SemaRef.checkInitializerLifetime(Entity: MemberEntity, Init: DIE.get()); |
760 | if (Init < NumInits) |
761 | ILE->setInit(Init, expr: DIE.get()); |
762 | else { |
763 | ILE->updateInit(C: SemaRef.Context, Init, expr: DIE.get()); |
764 | RequiresSecondPass = true; |
765 | } |
766 | return; |
767 | } |
768 | |
769 | if (Field->getType()->isReferenceType()) { |
770 | if (!VerifyOnly) { |
771 | // C++ [dcl.init.aggr]p9: |
772 | // If an incomplete or empty initializer-list leaves a |
773 | // member of reference type uninitialized, the program is |
774 | // ill-formed. |
775 | SemaRef.Diag(Loc, DiagID: diag::err_init_reference_member_uninitialized) |
776 | << Field->getType() |
777 | << (ILE->isSyntacticForm() ? ILE : ILE->getSyntacticForm()) |
778 | ->getSourceRange(); |
779 | SemaRef.Diag(Loc: Field->getLocation(), DiagID: diag::note_uninit_reference_member); |
780 | } |
781 | hadError = true; |
782 | return; |
783 | } |
784 | |
785 | ExprResult MemberInit = PerformEmptyInit(Loc, Entity: MemberEntity); |
786 | if (MemberInit.isInvalid()) { |
787 | hadError = true; |
788 | return; |
789 | } |
790 | |
791 | if (hadError || VerifyOnly) { |
792 | // Do nothing |
793 | } else if (Init < NumInits) { |
794 | ILE->setInit(Init, expr: MemberInit.getAs<Expr>()); |
795 | } else if (!isa<ImplicitValueInitExpr>(Val: MemberInit.get())) { |
796 | // Empty initialization requires a constructor call, so |
797 | // extend the initializer list to include the constructor |
798 | // call and make a note that we'll need to take another pass |
799 | // through the initializer list. |
800 | ILE->updateInit(C: SemaRef.Context, Init, expr: MemberInit.getAs<Expr>()); |
801 | RequiresSecondPass = true; |
802 | } |
803 | } else if (InitListExpr *InnerILE |
804 | = dyn_cast<InitListExpr>(Val: ILE->getInit(Init))) { |
805 | FillInEmptyInitializations(Entity: MemberEntity, ILE: InnerILE, |
806 | RequiresSecondPass, OuterILE: ILE, OuterIndex: Init, FillWithNoInit); |
807 | } else if (DesignatedInitUpdateExpr *InnerDIUE = |
808 | dyn_cast<DesignatedInitUpdateExpr>(Val: ILE->getInit(Init))) { |
809 | FillInEmptyInitializations(Entity: MemberEntity, ILE: InnerDIUE->getUpdater(), |
810 | RequiresSecondPass, OuterILE: ILE, OuterIndex: Init, |
811 | /*FillWithNoInit =*/true); |
812 | } |
813 | } |
814 | |
815 | /// Recursively replaces NULL values within the given initializer list |
816 | /// with expressions that perform value-initialization of the |
817 | /// appropriate type, and finish off the InitListExpr formation. |
818 | void |
819 | InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, |
820 | InitListExpr *ILE, |
821 | bool &RequiresSecondPass, |
822 | InitListExpr *OuterILE, |
823 | unsigned OuterIndex, |
824 | bool FillWithNoInit) { |
825 | assert((ILE->getType() != SemaRef.Context.VoidTy) && |
826 | "Should not have void type" ); |
827 | |
828 | // We don't need to do any checks when just filling NoInitExprs; that can't |
829 | // fail. |
830 | if (FillWithNoInit && VerifyOnly) |
831 | return; |
832 | |
833 | // If this is a nested initializer list, we might have changed its contents |
834 | // (and therefore some of its properties, such as instantiation-dependence) |
835 | // while filling it in. Inform the outer initializer list so that its state |
836 | // can be updated to match. |
837 | // FIXME: We should fully build the inner initializers before constructing |
838 | // the outer InitListExpr instead of mutating AST nodes after they have |
839 | // been used as subexpressions of other nodes. |
840 | struct UpdateOuterILEWithUpdatedInit { |
841 | InitListExpr *Outer; |
842 | unsigned OuterIndex; |
843 | ~UpdateOuterILEWithUpdatedInit() { |
844 | if (Outer) |
845 | Outer->setInit(Init: OuterIndex, expr: Outer->getInit(Init: OuterIndex)); |
846 | } |
847 | } UpdateOuterRAII = {.Outer: OuterILE, .OuterIndex: OuterIndex}; |
848 | |
849 | // A transparent ILE is not performing aggregate initialization and should |
850 | // not be filled in. |
851 | if (ILE->isTransparent()) |
852 | return; |
853 | |
854 | if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { |
855 | const RecordDecl *RDecl = RType->getDecl(); |
856 | if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) { |
857 | FillInEmptyInitForField(Init: 0, Field: ILE->getInitializedFieldInUnion(), ParentEntity: Entity, ILE, |
858 | RequiresSecondPass, FillWithNoInit); |
859 | } else { |
860 | assert((!RDecl->isUnion() || !isa<CXXRecordDecl>(RDecl) || |
861 | !cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) && |
862 | "We should have computed initialized fields already" ); |
863 | // The fields beyond ILE->getNumInits() are default initialized, so in |
864 | // order to leave them uninitialized, the ILE is expanded and the extra |
865 | // fields are then filled with NoInitExpr. |
866 | unsigned NumElems = numStructUnionElements(DeclType: ILE->getType()); |
867 | if (!RDecl->isUnion() && RDecl->hasFlexibleArrayMember()) |
868 | ++NumElems; |
869 | if (!VerifyOnly && ILE->getNumInits() < NumElems) |
870 | ILE->resizeInits(Context: SemaRef.Context, NumInits: NumElems); |
871 | |
872 | unsigned Init = 0; |
873 | |
874 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RDecl)) { |
875 | for (auto &Base : CXXRD->bases()) { |
876 | if (hadError) |
877 | return; |
878 | |
879 | FillInEmptyInitForBase(Init, Base, ParentEntity: Entity, ILE, RequiresSecondPass, |
880 | FillWithNoInit); |
881 | ++Init; |
882 | } |
883 | } |
884 | |
885 | for (auto *Field : RDecl->fields()) { |
886 | if (Field->isUnnamedBitField()) |
887 | continue; |
888 | |
889 | if (hadError) |
890 | return; |
891 | |
892 | FillInEmptyInitForField(Init, Field, ParentEntity: Entity, ILE, RequiresSecondPass, |
893 | FillWithNoInit); |
894 | if (hadError) |
895 | return; |
896 | |
897 | ++Init; |
898 | |
899 | // Only look at the first initialization of a union. |
900 | if (RDecl->isUnion()) |
901 | break; |
902 | } |
903 | } |
904 | |
905 | return; |
906 | } |
907 | |
908 | QualType ElementType; |
909 | |
910 | InitializedEntity ElementEntity = Entity; |
911 | unsigned NumInits = ILE->getNumInits(); |
912 | uint64_t NumElements = NumInits; |
913 | if (const ArrayType *AType = SemaRef.Context.getAsArrayType(T: ILE->getType())) { |
914 | ElementType = AType->getElementType(); |
915 | if (const auto *CAType = dyn_cast<ConstantArrayType>(Val: AType)) |
916 | NumElements = CAType->getZExtSize(); |
917 | // For an array new with an unknown bound, ask for one additional element |
918 | // in order to populate the array filler. |
919 | if (Entity.isVariableLengthArrayNew()) |
920 | ++NumElements; |
921 | ElementEntity = InitializedEntity::InitializeElement(Context&: SemaRef.Context, |
922 | Index: 0, Parent: Entity); |
923 | } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { |
924 | ElementType = VType->getElementType(); |
925 | NumElements = VType->getNumElements(); |
926 | ElementEntity = InitializedEntity::InitializeElement(Context&: SemaRef.Context, |
927 | Index: 0, Parent: Entity); |
928 | } else |
929 | ElementType = ILE->getType(); |
930 | |
931 | bool SkipEmptyInitChecks = false; |
932 | for (uint64_t Init = 0; Init != NumElements; ++Init) { |
933 | if (hadError) |
934 | return; |
935 | |
936 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || |
937 | ElementEntity.getKind() == InitializedEntity::EK_VectorElement) |
938 | ElementEntity.setElementIndex(Init); |
939 | |
940 | if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks)) |
941 | return; |
942 | |
943 | Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); |
944 | if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) |
945 | ILE->setInit(Init, expr: ILE->getArrayFiller()); |
946 | else if (!InitExpr && !ILE->hasArrayFiller()) { |
947 | // In VerifyOnly mode, there's no point performing empty initialization |
948 | // more than once. |
949 | if (SkipEmptyInitChecks) |
950 | continue; |
951 | |
952 | Expr *Filler = nullptr; |
953 | |
954 | if (FillWithNoInit) |
955 | Filler = new (SemaRef.Context) NoInitExpr(ElementType); |
956 | else { |
957 | ExprResult ElementInit = |
958 | PerformEmptyInit(Loc: ILE->getEndLoc(), Entity: ElementEntity); |
959 | if (ElementInit.isInvalid()) { |
960 | hadError = true; |
961 | return; |
962 | } |
963 | |
964 | Filler = ElementInit.getAs<Expr>(); |
965 | } |
966 | |
967 | if (hadError) { |
968 | // Do nothing |
969 | } else if (VerifyOnly) { |
970 | SkipEmptyInitChecks = true; |
971 | } else if (Init < NumInits) { |
972 | // For arrays, just set the expression used for value-initialization |
973 | // of the "holes" in the array. |
974 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) |
975 | ILE->setArrayFiller(Filler); |
976 | else |
977 | ILE->setInit(Init, expr: Filler); |
978 | } else { |
979 | // For arrays, just set the expression used for value-initialization |
980 | // of the rest of elements and exit. |
981 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { |
982 | ILE->setArrayFiller(Filler); |
983 | return; |
984 | } |
985 | |
986 | if (!isa<ImplicitValueInitExpr>(Val: Filler) && !isa<NoInitExpr>(Val: Filler)) { |
987 | // Empty initialization requires a constructor call, so |
988 | // extend the initializer list to include the constructor |
989 | // call and make a note that we'll need to take another pass |
990 | // through the initializer list. |
991 | ILE->updateInit(C: SemaRef.Context, Init, expr: Filler); |
992 | RequiresSecondPass = true; |
993 | } |
994 | } |
995 | } else if (InitListExpr *InnerILE |
996 | = dyn_cast_or_null<InitListExpr>(Val: InitExpr)) { |
997 | FillInEmptyInitializations(Entity: ElementEntity, ILE: InnerILE, RequiresSecondPass, |
998 | OuterILE: ILE, OuterIndex: Init, FillWithNoInit); |
999 | } else if (DesignatedInitUpdateExpr *InnerDIUE = |
1000 | dyn_cast_or_null<DesignatedInitUpdateExpr>(Val: InitExpr)) { |
1001 | FillInEmptyInitializations(Entity: ElementEntity, ILE: InnerDIUE->getUpdater(), |
1002 | RequiresSecondPass, OuterILE: ILE, OuterIndex: Init, |
1003 | /*FillWithNoInit =*/true); |
1004 | } |
1005 | } |
1006 | } |
1007 | |
1008 | static bool hasAnyDesignatedInits(const InitListExpr *IL) { |
1009 | for (const Stmt *Init : *IL) |
1010 | if (isa_and_nonnull<DesignatedInitExpr>(Val: Init)) |
1011 | return true; |
1012 | return false; |
1013 | } |
1014 | |
1015 | InitListChecker::InitListChecker( |
1016 | Sema &S, const InitializedEntity &Entity, InitListExpr *IL, QualType &T, |
1017 | bool VerifyOnly, bool TreatUnavailableAsInvalid, bool InOverloadResolution, |
1018 | SmallVectorImpl<QualType> *AggrDeductionCandidateParamTypes) |
1019 | : SemaRef(S), VerifyOnly(VerifyOnly), |
1020 | TreatUnavailableAsInvalid(TreatUnavailableAsInvalid), |
1021 | InOverloadResolution(InOverloadResolution), |
1022 | AggrDeductionCandidateParamTypes(AggrDeductionCandidateParamTypes) { |
1023 | if (!VerifyOnly || hasAnyDesignatedInits(IL)) { |
1024 | FullyStructuredList = |
1025 | createInitListExpr(CurrentObjectType: T, InitRange: IL->getSourceRange(), ExpectedNumInits: IL->getNumInits()); |
1026 | |
1027 | // FIXME: Check that IL isn't already the semantic form of some other |
1028 | // InitListExpr. If it is, we'd create a broken AST. |
1029 | if (!VerifyOnly) |
1030 | FullyStructuredList->setSyntacticForm(IL); |
1031 | } |
1032 | |
1033 | CheckExplicitInitList(Entity, IList: IL, T, StructuredList: FullyStructuredList, |
1034 | /*TopLevelObject=*/true); |
1035 | |
1036 | if (!hadError && !AggrDeductionCandidateParamTypes && FullyStructuredList) { |
1037 | bool RequiresSecondPass = false; |
1038 | FillInEmptyInitializations(Entity, ILE: FullyStructuredList, RequiresSecondPass, |
1039 | /*OuterILE=*/nullptr, /*OuterIndex=*/0); |
1040 | if (RequiresSecondPass && !hadError) |
1041 | FillInEmptyInitializations(Entity, ILE: FullyStructuredList, |
1042 | RequiresSecondPass, OuterILE: nullptr, OuterIndex: 0); |
1043 | } |
1044 | if (hadError && FullyStructuredList) |
1045 | FullyStructuredList->markError(); |
1046 | } |
1047 | |
1048 | int InitListChecker::numArrayElements(QualType DeclType) { |
1049 | // FIXME: use a proper constant |
1050 | int maxElements = 0x7FFFFFFF; |
1051 | if (const ConstantArrayType *CAT = |
1052 | SemaRef.Context.getAsConstantArrayType(T: DeclType)) { |
1053 | maxElements = static_cast<int>(CAT->getZExtSize()); |
1054 | } |
1055 | return maxElements; |
1056 | } |
1057 | |
1058 | int InitListChecker::numStructUnionElements(QualType DeclType) { |
1059 | RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); |
1060 | int InitializableMembers = 0; |
1061 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: structDecl)) |
1062 | InitializableMembers += CXXRD->getNumBases(); |
1063 | for (const auto *Field : structDecl->fields()) |
1064 | if (!Field->isUnnamedBitField()) |
1065 | ++InitializableMembers; |
1066 | |
1067 | if (structDecl->isUnion()) |
1068 | return std::min(a: InitializableMembers, b: 1); |
1069 | return InitializableMembers - structDecl->hasFlexibleArrayMember(); |
1070 | } |
1071 | |
1072 | RecordDecl *InitListChecker::getRecordDecl(QualType DeclType) { |
1073 | if (const auto *RT = DeclType->getAs<RecordType>()) |
1074 | return RT->getDecl(); |
1075 | if (const auto *Inject = DeclType->getAs<InjectedClassNameType>()) |
1076 | return Inject->getDecl(); |
1077 | return nullptr; |
1078 | } |
1079 | |
1080 | /// Determine whether Entity is an entity for which it is idiomatic to elide |
1081 | /// the braces in aggregate initialization. |
1082 | static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { |
1083 | // Recursive initialization of the one and only field within an aggregate |
1084 | // class is considered idiomatic. This case arises in particular for |
1085 | // initialization of std::array, where the C++ standard suggests the idiom of |
1086 | // |
1087 | // std::array<T, N> arr = {1, 2, 3}; |
1088 | // |
1089 | // (where std::array is an aggregate struct containing a single array field. |
1090 | |
1091 | if (!Entity.getParent()) |
1092 | return false; |
1093 | |
1094 | // Allows elide brace initialization for aggregates with empty base. |
1095 | if (Entity.getKind() == InitializedEntity::EK_Base) { |
1096 | auto *ParentRD = |
1097 | Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); |
1098 | CXXRecordDecl *CXXRD = cast<CXXRecordDecl>(Val: ParentRD); |
1099 | return CXXRD->getNumBases() == 1 && CXXRD->field_empty(); |
1100 | } |
1101 | |
1102 | // Allow brace elision if the only subobject is a field. |
1103 | if (Entity.getKind() == InitializedEntity::EK_Member) { |
1104 | auto *ParentRD = |
1105 | Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); |
1106 | if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(Val: ParentRD)) { |
1107 | if (CXXRD->getNumBases()) { |
1108 | return false; |
1109 | } |
1110 | } |
1111 | auto FieldIt = ParentRD->field_begin(); |
1112 | assert(FieldIt != ParentRD->field_end() && |
1113 | "no fields but have initializer for member?" ); |
1114 | return ++FieldIt == ParentRD->field_end(); |
1115 | } |
1116 | |
1117 | return false; |
1118 | } |
1119 | |
1120 | /// Check whether the range of the initializer \p ParentIList from element |
1121 | /// \p Index onwards can be used to initialize an object of type \p T. Update |
1122 | /// \p Index to indicate how many elements of the list were consumed. |
1123 | /// |
1124 | /// This also fills in \p StructuredList, from element \p StructuredIndex |
1125 | /// onwards, with the fully-braced, desugared form of the initialization. |
1126 | void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, |
1127 | InitListExpr *ParentIList, |
1128 | QualType T, unsigned &Index, |
1129 | InitListExpr *StructuredList, |
1130 | unsigned &StructuredIndex) { |
1131 | int maxElements = 0; |
1132 | |
1133 | if (T->isArrayType()) |
1134 | maxElements = numArrayElements(DeclType: T); |
1135 | else if (T->isRecordType()) |
1136 | maxElements = numStructUnionElements(DeclType: T); |
1137 | else if (T->isVectorType()) |
1138 | maxElements = T->castAs<VectorType>()->getNumElements(); |
1139 | else |
1140 | llvm_unreachable("CheckImplicitInitList(): Illegal type" ); |
1141 | |
1142 | if (maxElements == 0) { |
1143 | if (!VerifyOnly) |
1144 | SemaRef.Diag(Loc: ParentIList->getInit(Init: Index)->getBeginLoc(), |
1145 | DiagID: diag::err_implicit_empty_initializer); |
1146 | ++Index; |
1147 | hadError = true; |
1148 | return; |
1149 | } |
1150 | |
1151 | // Build a structured initializer list corresponding to this subobject. |
1152 | InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( |
1153 | IList: ParentIList, Index, CurrentObjectType: T, StructuredList, StructuredIndex, |
1154 | InitRange: SourceRange(ParentIList->getInit(Init: Index)->getBeginLoc(), |
1155 | ParentIList->getSourceRange().getEnd())); |
1156 | unsigned StructuredSubobjectInitIndex = 0; |
1157 | |
1158 | // Check the element types and build the structural subobject. |
1159 | unsigned StartIndex = Index; |
1160 | CheckListElementTypes(Entity, IList: ParentIList, DeclType&: T, |
1161 | /*SubobjectIsDesignatorContext=*/false, Index, |
1162 | StructuredList: StructuredSubobjectInitList, |
1163 | StructuredIndex&: StructuredSubobjectInitIndex); |
1164 | |
1165 | if (StructuredSubobjectInitList) { |
1166 | StructuredSubobjectInitList->setType(T); |
1167 | |
1168 | unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); |
1169 | // Update the structured sub-object initializer so that it's ending |
1170 | // range corresponds with the end of the last initializer it used. |
1171 | if (EndIndex < ParentIList->getNumInits() && |
1172 | ParentIList->getInit(Init: EndIndex)) { |
1173 | SourceLocation EndLoc |
1174 | = ParentIList->getInit(Init: EndIndex)->getSourceRange().getEnd(); |
1175 | StructuredSubobjectInitList->setRBraceLoc(EndLoc); |
1176 | } |
1177 | |
1178 | // Complain about missing braces. |
1179 | if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) && |
1180 | !ParentIList->isIdiomaticZeroInitializer(LangOpts: SemaRef.getLangOpts()) && |
1181 | !isIdiomaticBraceElisionEntity(Entity)) { |
1182 | SemaRef.Diag(Loc: StructuredSubobjectInitList->getBeginLoc(), |
1183 | DiagID: diag::warn_missing_braces) |
1184 | << StructuredSubobjectInitList->getSourceRange() |
1185 | << FixItHint::CreateInsertion( |
1186 | InsertionLoc: StructuredSubobjectInitList->getBeginLoc(), Code: "{" ) |
1187 | << FixItHint::CreateInsertion( |
1188 | InsertionLoc: SemaRef.getLocForEndOfToken( |
1189 | Loc: StructuredSubobjectInitList->getEndLoc()), |
1190 | Code: "}" ); |
1191 | } |
1192 | |
1193 | // Warn if this type won't be an aggregate in future versions of C++. |
1194 | auto *CXXRD = T->getAsCXXRecordDecl(); |
1195 | if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) { |
1196 | SemaRef.Diag(Loc: StructuredSubobjectInitList->getBeginLoc(), |
1197 | DiagID: diag::warn_cxx20_compat_aggregate_init_with_ctors) |
1198 | << StructuredSubobjectInitList->getSourceRange() << T; |
1199 | } |
1200 | } |
1201 | } |
1202 | |
1203 | /// Warn that \p Entity was of scalar type and was initialized by a |
1204 | /// single-element braced initializer list. |
1205 | static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, |
1206 | SourceRange Braces) { |
1207 | // Don't warn during template instantiation. If the initialization was |
1208 | // non-dependent, we warned during the initial parse; otherwise, the |
1209 | // type might not be scalar in some uses of the template. |
1210 | if (S.inTemplateInstantiation()) |
1211 | return; |
1212 | |
1213 | unsigned DiagID = 0; |
1214 | |
1215 | switch (Entity.getKind()) { |
1216 | case InitializedEntity::EK_VectorElement: |
1217 | case InitializedEntity::EK_ComplexElement: |
1218 | case InitializedEntity::EK_ArrayElement: |
1219 | case InitializedEntity::EK_Parameter: |
1220 | case InitializedEntity::EK_Parameter_CF_Audited: |
1221 | case InitializedEntity::EK_TemplateParameter: |
1222 | case InitializedEntity::EK_Result: |
1223 | case InitializedEntity::EK_ParenAggInitMember: |
1224 | // Extra braces here are suspicious. |
1225 | DiagID = diag::warn_braces_around_init; |
1226 | break; |
1227 | |
1228 | case InitializedEntity::EK_Member: |
1229 | // Warn on aggregate initialization but not on ctor init list or |
1230 | // default member initializer. |
1231 | if (Entity.getParent()) |
1232 | DiagID = diag::warn_braces_around_init; |
1233 | break; |
1234 | |
1235 | case InitializedEntity::EK_Variable: |
1236 | case InitializedEntity::EK_LambdaCapture: |
1237 | // No warning, might be direct-list-initialization. |
1238 | // FIXME: Should we warn for copy-list-initialization in these cases? |
1239 | break; |
1240 | |
1241 | case InitializedEntity::EK_New: |
1242 | case InitializedEntity::EK_Temporary: |
1243 | case InitializedEntity::EK_CompoundLiteralInit: |
1244 | // No warning, braces are part of the syntax of the underlying construct. |
1245 | break; |
1246 | |
1247 | case InitializedEntity::EK_RelatedResult: |
1248 | // No warning, we already warned when initializing the result. |
1249 | break; |
1250 | |
1251 | case InitializedEntity::EK_Exception: |
1252 | case InitializedEntity::EK_Base: |
1253 | case InitializedEntity::EK_Delegating: |
1254 | case InitializedEntity::EK_BlockElement: |
1255 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
1256 | case InitializedEntity::EK_Binding: |
1257 | case InitializedEntity::EK_StmtExprResult: |
1258 | llvm_unreachable("unexpected braced scalar init" ); |
1259 | } |
1260 | |
1261 | if (DiagID) { |
1262 | S.Diag(Loc: Braces.getBegin(), DiagID) |
1263 | << Entity.getType()->isSizelessBuiltinType() << Braces |
1264 | << FixItHint::CreateRemoval(RemoveRange: Braces.getBegin()) |
1265 | << FixItHint::CreateRemoval(RemoveRange: Braces.getEnd()); |
1266 | } |
1267 | } |
1268 | |
1269 | /// Check whether the initializer \p IList (that was written with explicit |
1270 | /// braces) can be used to initialize an object of type \p T. |
1271 | /// |
1272 | /// This also fills in \p StructuredList with the fully-braced, desugared |
1273 | /// form of the initialization. |
1274 | void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, |
1275 | InitListExpr *IList, QualType &T, |
1276 | InitListExpr *StructuredList, |
1277 | bool TopLevelObject) { |
1278 | unsigned Index = 0, StructuredIndex = 0; |
1279 | CheckListElementTypes(Entity, IList, DeclType&: T, /*SubobjectIsDesignatorContext=*/true, |
1280 | Index, StructuredList, StructuredIndex, TopLevelObject); |
1281 | if (StructuredList) { |
1282 | QualType ExprTy = T; |
1283 | if (!ExprTy->isArrayType()) |
1284 | ExprTy = ExprTy.getNonLValueExprType(Context: SemaRef.Context); |
1285 | if (!VerifyOnly) |
1286 | IList->setType(ExprTy); |
1287 | StructuredList->setType(ExprTy); |
1288 | } |
1289 | if (hadError) |
1290 | return; |
1291 | |
1292 | // Don't complain for incomplete types, since we'll get an error elsewhere. |
1293 | if (Index < IList->getNumInits() && !T->isIncompleteType()) { |
1294 | // We have leftover initializers |
1295 | bool = SemaRef.getLangOpts().CPlusPlus || |
1296 | (SemaRef.getLangOpts().OpenCL && T->isVectorType()); |
1297 | hadError = ExtraInitsIsError; |
1298 | if (VerifyOnly) { |
1299 | return; |
1300 | } else if (StructuredIndex == 1 && |
1301 | IsStringInit(init: StructuredList->getInit(Init: 0), declType: T, Context&: SemaRef.Context) == |
1302 | SIF_None) { |
1303 | unsigned DK = |
1304 | ExtraInitsIsError |
1305 | ? diag::err_excess_initializers_in_char_array_initializer |
1306 | : diag::ext_excess_initializers_in_char_array_initializer; |
1307 | SemaRef.Diag(Loc: IList->getInit(Init: Index)->getBeginLoc(), DiagID: DK) |
1308 | << IList->getInit(Init: Index)->getSourceRange(); |
1309 | } else if (T->isSizelessBuiltinType()) { |
1310 | unsigned DK = ExtraInitsIsError |
1311 | ? diag::err_excess_initializers_for_sizeless_type |
1312 | : diag::ext_excess_initializers_for_sizeless_type; |
1313 | SemaRef.Diag(Loc: IList->getInit(Init: Index)->getBeginLoc(), DiagID: DK) |
1314 | << T << IList->getInit(Init: Index)->getSourceRange(); |
1315 | } else { |
1316 | int initKind = T->isArrayType() ? 0 : |
1317 | T->isVectorType() ? 1 : |
1318 | T->isScalarType() ? 2 : |
1319 | T->isUnionType() ? 3 : |
1320 | 4; |
1321 | |
1322 | unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers |
1323 | : diag::ext_excess_initializers; |
1324 | SemaRef.Diag(Loc: IList->getInit(Init: Index)->getBeginLoc(), DiagID: DK) |
1325 | << initKind << IList->getInit(Init: Index)->getSourceRange(); |
1326 | } |
1327 | } |
1328 | |
1329 | if (!VerifyOnly) { |
1330 | if (T->isScalarType() && IList->getNumInits() == 1 && |
1331 | !isa<InitListExpr>(Val: IList->getInit(Init: 0))) |
1332 | warnBracedScalarInit(S&: SemaRef, Entity, Braces: IList->getSourceRange()); |
1333 | |
1334 | // Warn if this is a class type that won't be an aggregate in future |
1335 | // versions of C++. |
1336 | auto *CXXRD = T->getAsCXXRecordDecl(); |
1337 | if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { |
1338 | // Don't warn if there's an equivalent default constructor that would be |
1339 | // used instead. |
1340 | bool HasEquivCtor = false; |
1341 | if (IList->getNumInits() == 0) { |
1342 | auto *CD = SemaRef.LookupDefaultConstructor(Class: CXXRD); |
1343 | HasEquivCtor = CD && !CD->isDeleted(); |
1344 | } |
1345 | |
1346 | if (!HasEquivCtor) { |
1347 | SemaRef.Diag(Loc: IList->getBeginLoc(), |
1348 | DiagID: diag::warn_cxx20_compat_aggregate_init_with_ctors) |
1349 | << IList->getSourceRange() << T; |
1350 | } |
1351 | } |
1352 | } |
1353 | } |
1354 | |
1355 | void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, |
1356 | InitListExpr *IList, |
1357 | QualType &DeclType, |
1358 | bool SubobjectIsDesignatorContext, |
1359 | unsigned &Index, |
1360 | InitListExpr *StructuredList, |
1361 | unsigned &StructuredIndex, |
1362 | bool TopLevelObject) { |
1363 | if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { |
1364 | // Explicitly braced initializer for complex type can be real+imaginary |
1365 | // parts. |
1366 | CheckComplexType(Entity, IList, DeclType, Index, |
1367 | StructuredList, StructuredIndex); |
1368 | } else if (DeclType->isScalarType()) { |
1369 | CheckScalarType(Entity, IList, DeclType, Index, |
1370 | StructuredList, StructuredIndex); |
1371 | } else if (DeclType->isVectorType()) { |
1372 | CheckVectorType(Entity, IList, DeclType, Index, |
1373 | StructuredList, StructuredIndex); |
1374 | } else if (const RecordDecl *RD = getRecordDecl(DeclType)) { |
1375 | auto Bases = |
1376 | CXXRecordDecl::base_class_const_range(CXXRecordDecl::base_class_const_iterator(), |
1377 | CXXRecordDecl::base_class_const_iterator()); |
1378 | if (DeclType->isRecordType()) { |
1379 | assert(DeclType->isAggregateType() && |
1380 | "non-aggregate records should be handed in CheckSubElementType" ); |
1381 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) |
1382 | Bases = CXXRD->bases(); |
1383 | } else { |
1384 | Bases = cast<CXXRecordDecl>(Val: RD)->bases(); |
1385 | } |
1386 | CheckStructUnionTypes(Entity, IList, DeclType, Bases, Field: RD->field_begin(), |
1387 | SubobjectIsDesignatorContext, Index, StructuredList, |
1388 | StructuredIndex, TopLevelObject); |
1389 | } else if (DeclType->isArrayType()) { |
1390 | llvm::APSInt Zero( |
1391 | SemaRef.Context.getTypeSize(T: SemaRef.Context.getSizeType()), |
1392 | false); |
1393 | CheckArrayType(Entity, IList, DeclType, elementIndex: Zero, |
1394 | SubobjectIsDesignatorContext, Index, |
1395 | StructuredList, StructuredIndex); |
1396 | } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { |
1397 | // This type is invalid, issue a diagnostic. |
1398 | ++Index; |
1399 | if (!VerifyOnly) |
1400 | SemaRef.Diag(Loc: IList->getBeginLoc(), DiagID: diag::err_illegal_initializer_type) |
1401 | << DeclType; |
1402 | hadError = true; |
1403 | } else if (DeclType->isReferenceType()) { |
1404 | CheckReferenceType(Entity, IList, DeclType, Index, |
1405 | StructuredList, StructuredIndex); |
1406 | } else if (DeclType->isObjCObjectType()) { |
1407 | if (!VerifyOnly) |
1408 | SemaRef.Diag(Loc: IList->getBeginLoc(), DiagID: diag::err_init_objc_class) << DeclType; |
1409 | hadError = true; |
1410 | } else if (DeclType->isOCLIntelSubgroupAVCType() || |
1411 | DeclType->isSizelessBuiltinType()) { |
1412 | // Checks for scalar type are sufficient for these types too. |
1413 | CheckScalarType(Entity, IList, DeclType, Index, StructuredList, |
1414 | StructuredIndex); |
1415 | } else if (DeclType->isDependentType()) { |
1416 | // C++ [over.match.class.deduct]p1.5: |
1417 | // brace elision is not considered for any aggregate element that has a |
1418 | // dependent non-array type or an array type with a value-dependent bound |
1419 | ++Index; |
1420 | assert(AggrDeductionCandidateParamTypes); |
1421 | AggrDeductionCandidateParamTypes->push_back(Elt: DeclType); |
1422 | } else { |
1423 | if (!VerifyOnly) |
1424 | SemaRef.Diag(Loc: IList->getBeginLoc(), DiagID: diag::err_illegal_initializer_type) |
1425 | << DeclType; |
1426 | hadError = true; |
1427 | } |
1428 | } |
1429 | |
1430 | void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, |
1431 | InitListExpr *IList, |
1432 | QualType ElemType, |
1433 | unsigned &Index, |
1434 | InitListExpr *StructuredList, |
1435 | unsigned &StructuredIndex, |
1436 | bool DirectlyDesignated) { |
1437 | Expr *expr = IList->getInit(Init: Index); |
1438 | |
1439 | if (ElemType->isReferenceType()) |
1440 | return CheckReferenceType(Entity, IList, DeclType: ElemType, Index, |
1441 | StructuredList, StructuredIndex); |
1442 | |
1443 | if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(Val: expr)) { |
1444 | if (SubInitList->getNumInits() == 1 && |
1445 | IsStringInit(init: SubInitList->getInit(Init: 0), declType: ElemType, Context&: SemaRef.Context) == |
1446 | SIF_None) { |
1447 | // FIXME: It would be more faithful and no less correct to include an |
1448 | // InitListExpr in the semantic form of the initializer list in this case. |
1449 | expr = SubInitList->getInit(Init: 0); |
1450 | } |
1451 | // Nested aggregate initialization and C++ initialization are handled later. |
1452 | } else if (isa<ImplicitValueInitExpr>(Val: expr)) { |
1453 | // This happens during template instantiation when we see an InitListExpr |
1454 | // that we've already checked once. |
1455 | assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && |
1456 | "found implicit initialization for the wrong type" ); |
1457 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
1458 | ++Index; |
1459 | return; |
1460 | } |
1461 | |
1462 | if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(Val: expr)) { |
1463 | // C++ [dcl.init.aggr]p2: |
1464 | // Each member is copy-initialized from the corresponding |
1465 | // initializer-clause. |
1466 | |
1467 | // FIXME: Better EqualLoc? |
1468 | InitializationKind Kind = |
1469 | InitializationKind::CreateCopy(InitLoc: expr->getBeginLoc(), EqualLoc: SourceLocation()); |
1470 | |
1471 | // Vector elements can be initialized from other vectors in which case |
1472 | // we need initialization entity with a type of a vector (and not a vector |
1473 | // element!) initializing multiple vector elements. |
1474 | auto TmpEntity = |
1475 | (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) |
1476 | ? InitializedEntity::InitializeTemporary(Type: ElemType) |
1477 | : Entity; |
1478 | |
1479 | if (TmpEntity.getType()->isDependentType()) { |
1480 | // C++ [over.match.class.deduct]p1.5: |
1481 | // brace elision is not considered for any aggregate element that has a |
1482 | // dependent non-array type or an array type with a value-dependent |
1483 | // bound |
1484 | assert(AggrDeductionCandidateParamTypes); |
1485 | |
1486 | // In the presence of a braced-init-list within the initializer, we should |
1487 | // not perform brace-elision, even if brace elision would otherwise be |
1488 | // applicable. For example, given: |
1489 | // |
1490 | // template <class T> struct Foo { |
1491 | // T t[2]; |
1492 | // }; |
1493 | // |
1494 | // Foo t = {{1, 2}}; |
1495 | // |
1496 | // we don't want the (T, T) but rather (T [2]) in terms of the initializer |
1497 | // {{1, 2}}. |
1498 | if (isa<InitListExpr, DesignatedInitExpr>(Val: expr) || |
1499 | !isa_and_present<ConstantArrayType>( |
1500 | Val: SemaRef.Context.getAsArrayType(T: ElemType))) { |
1501 | ++Index; |
1502 | AggrDeductionCandidateParamTypes->push_back(Elt: ElemType); |
1503 | return; |
1504 | } |
1505 | } else { |
1506 | InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, |
1507 | /*TopLevelOfInitList*/ true); |
1508 | // C++14 [dcl.init.aggr]p13: |
1509 | // If the assignment-expression can initialize a member, the member is |
1510 | // initialized. Otherwise [...] brace elision is assumed |
1511 | // |
1512 | // Brace elision is never performed if the element is not an |
1513 | // assignment-expression. |
1514 | if (Seq || isa<InitListExpr>(Val: expr)) { |
1515 | if (auto *Embed = dyn_cast<EmbedExpr>(Val: expr)) { |
1516 | expr = HandleEmbed(Embed, Entity); |
1517 | } |
1518 | if (!VerifyOnly) { |
1519 | ExprResult Result = Seq.Perform(S&: SemaRef, Entity: TmpEntity, Kind, Args: expr); |
1520 | if (Result.isInvalid()) |
1521 | hadError = true; |
1522 | |
1523 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
1524 | expr: Result.getAs<Expr>()); |
1525 | } else if (!Seq) { |
1526 | hadError = true; |
1527 | } else if (StructuredList) { |
1528 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
1529 | expr: getDummyInit()); |
1530 | } |
1531 | if (!CurEmbed) |
1532 | ++Index; |
1533 | if (AggrDeductionCandidateParamTypes) |
1534 | AggrDeductionCandidateParamTypes->push_back(Elt: ElemType); |
1535 | return; |
1536 | } |
1537 | } |
1538 | |
1539 | // Fall through for subaggregate initialization |
1540 | } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { |
1541 | // FIXME: Need to handle atomic aggregate types with implicit init lists. |
1542 | return CheckScalarType(Entity, IList, DeclType: ElemType, Index, |
1543 | StructuredList, StructuredIndex); |
1544 | } else if (const ArrayType *arrayType = |
1545 | SemaRef.Context.getAsArrayType(T: ElemType)) { |
1546 | // arrayType can be incomplete if we're initializing a flexible |
1547 | // array member. There's nothing we can do with the completed |
1548 | // type here, though. |
1549 | |
1550 | if (IsStringInit(Init: expr, AT: arrayType, Context&: SemaRef.Context) == SIF_None) { |
1551 | // FIXME: Should we do this checking in verify-only mode? |
1552 | if (!VerifyOnly) |
1553 | CheckStringInit(Str: expr, DeclT&: ElemType, AT: arrayType, S&: SemaRef, |
1554 | CheckC23ConstexprInit: SemaRef.getLangOpts().C23 && |
1555 | initializingConstexprVariable(Entity)); |
1556 | if (StructuredList) |
1557 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
1558 | ++Index; |
1559 | return; |
1560 | } |
1561 | |
1562 | // Fall through for subaggregate initialization. |
1563 | |
1564 | } else { |
1565 | assert((ElemType->isRecordType() || ElemType->isVectorType() || |
1566 | ElemType->isOpenCLSpecificType()) && "Unexpected type" ); |
1567 | |
1568 | // C99 6.7.8p13: |
1569 | // |
1570 | // The initializer for a structure or union object that has |
1571 | // automatic storage duration shall be either an initializer |
1572 | // list as described below, or a single expression that has |
1573 | // compatible structure or union type. In the latter case, the |
1574 | // initial value of the object, including unnamed members, is |
1575 | // that of the expression. |
1576 | ExprResult ExprRes = expr; |
1577 | if (SemaRef.CheckSingleAssignmentConstraints( |
1578 | LHSType: ElemType, RHS&: ExprRes, Diagnose: !VerifyOnly) != Sema::Incompatible) { |
1579 | if (ExprRes.isInvalid()) |
1580 | hadError = true; |
1581 | else { |
1582 | ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(E: ExprRes.get()); |
1583 | if (ExprRes.isInvalid()) |
1584 | hadError = true; |
1585 | } |
1586 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
1587 | expr: ExprRes.getAs<Expr>()); |
1588 | ++Index; |
1589 | return; |
1590 | } |
1591 | ExprRes.get(); |
1592 | // Fall through for subaggregate initialization |
1593 | } |
1594 | |
1595 | // C++ [dcl.init.aggr]p12: |
1596 | // |
1597 | // [...] Otherwise, if the member is itself a non-empty |
1598 | // subaggregate, brace elision is assumed and the initializer is |
1599 | // considered for the initialization of the first member of |
1600 | // the subaggregate. |
1601 | // OpenCL vector initializer is handled elsewhere. |
1602 | if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || |
1603 | ElemType->isAggregateType()) { |
1604 | CheckImplicitInitList(Entity, ParentIList: IList, T: ElemType, Index, StructuredList, |
1605 | StructuredIndex); |
1606 | ++StructuredIndex; |
1607 | |
1608 | // In C++20, brace elision is not permitted for a designated initializer. |
1609 | if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) { |
1610 | if (InOverloadResolution) |
1611 | hadError = true; |
1612 | if (!VerifyOnly) { |
1613 | SemaRef.Diag(Loc: expr->getBeginLoc(), |
1614 | DiagID: diag::ext_designated_init_brace_elision) |
1615 | << expr->getSourceRange() |
1616 | << FixItHint::CreateInsertion(InsertionLoc: expr->getBeginLoc(), Code: "{" ) |
1617 | << FixItHint::CreateInsertion( |
1618 | InsertionLoc: SemaRef.getLocForEndOfToken(Loc: expr->getEndLoc()), Code: "}" ); |
1619 | } |
1620 | } |
1621 | } else { |
1622 | if (!VerifyOnly) { |
1623 | // We cannot initialize this element, so let PerformCopyInitialization |
1624 | // produce the appropriate diagnostic. We already checked that this |
1625 | // initialization will fail. |
1626 | ExprResult Copy = |
1627 | SemaRef.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: expr, |
1628 | /*TopLevelOfInitList=*/true); |
1629 | (void)Copy; |
1630 | assert(Copy.isInvalid() && |
1631 | "expected non-aggregate initialization to fail" ); |
1632 | } |
1633 | hadError = true; |
1634 | ++Index; |
1635 | ++StructuredIndex; |
1636 | } |
1637 | } |
1638 | |
1639 | void InitListChecker::CheckComplexType(const InitializedEntity &Entity, |
1640 | InitListExpr *IList, QualType DeclType, |
1641 | unsigned &Index, |
1642 | InitListExpr *StructuredList, |
1643 | unsigned &StructuredIndex) { |
1644 | assert(Index == 0 && "Index in explicit init list must be zero" ); |
1645 | |
1646 | // As an extension, clang supports complex initializers, which initialize |
1647 | // a complex number component-wise. When an explicit initializer list for |
1648 | // a complex number contains two initializers, this extension kicks in: |
1649 | // it expects the initializer list to contain two elements convertible to |
1650 | // the element type of the complex type. The first element initializes |
1651 | // the real part, and the second element intitializes the imaginary part. |
1652 | |
1653 | if (IList->getNumInits() < 2) |
1654 | return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, |
1655 | StructuredIndex); |
1656 | |
1657 | // This is an extension in C. (The builtin _Complex type does not exist |
1658 | // in the C++ standard.) |
1659 | if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) |
1660 | SemaRef.Diag(Loc: IList->getBeginLoc(), DiagID: diag::ext_complex_component_init) |
1661 | << IList->getSourceRange(); |
1662 | |
1663 | // Initialize the complex number. |
1664 | QualType elementType = DeclType->castAs<ComplexType>()->getElementType(); |
1665 | InitializedEntity ElementEntity = |
1666 | InitializedEntity::InitializeElement(Context&: SemaRef.Context, Index: 0, Parent: Entity); |
1667 | |
1668 | for (unsigned i = 0; i < 2; ++i) { |
1669 | ElementEntity.setElementIndex(Index); |
1670 | CheckSubElementType(Entity: ElementEntity, IList, ElemType: elementType, Index, |
1671 | StructuredList, StructuredIndex); |
1672 | } |
1673 | } |
1674 | |
1675 | void InitListChecker::CheckScalarType(const InitializedEntity &Entity, |
1676 | InitListExpr *IList, QualType DeclType, |
1677 | unsigned &Index, |
1678 | InitListExpr *StructuredList, |
1679 | unsigned &StructuredIndex) { |
1680 | if (Index >= IList->getNumInits()) { |
1681 | if (!VerifyOnly) { |
1682 | if (SemaRef.getLangOpts().CPlusPlus) { |
1683 | if (DeclType->isSizelessBuiltinType()) |
1684 | SemaRef.Diag(Loc: IList->getBeginLoc(), |
1685 | DiagID: SemaRef.getLangOpts().CPlusPlus11 |
1686 | ? diag::warn_cxx98_compat_empty_sizeless_initializer |
1687 | : diag::err_empty_sizeless_initializer) |
1688 | << DeclType << IList->getSourceRange(); |
1689 | else |
1690 | SemaRef.Diag(Loc: IList->getBeginLoc(), |
1691 | DiagID: SemaRef.getLangOpts().CPlusPlus11 |
1692 | ? diag::warn_cxx98_compat_empty_scalar_initializer |
1693 | : diag::err_empty_scalar_initializer) |
1694 | << IList->getSourceRange(); |
1695 | } |
1696 | } |
1697 | hadError = |
1698 | SemaRef.getLangOpts().CPlusPlus && !SemaRef.getLangOpts().CPlusPlus11; |
1699 | ++Index; |
1700 | ++StructuredIndex; |
1701 | return; |
1702 | } |
1703 | |
1704 | Expr *expr = IList->getInit(Init: Index); |
1705 | if (InitListExpr *SubIList = dyn_cast<InitListExpr>(Val: expr)) { |
1706 | // FIXME: This is invalid, and accepting it causes overload resolution |
1707 | // to pick the wrong overload in some corner cases. |
1708 | if (!VerifyOnly) |
1709 | SemaRef.Diag(Loc: SubIList->getBeginLoc(), DiagID: diag::ext_many_braces_around_init) |
1710 | << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange(); |
1711 | |
1712 | CheckScalarType(Entity, IList: SubIList, DeclType, Index, StructuredList, |
1713 | StructuredIndex); |
1714 | return; |
1715 | } else if (isa<DesignatedInitExpr>(Val: expr)) { |
1716 | if (!VerifyOnly) |
1717 | SemaRef.Diag(Loc: expr->getBeginLoc(), |
1718 | DiagID: diag::err_designator_for_scalar_or_sizeless_init) |
1719 | << DeclType->isSizelessBuiltinType() << DeclType |
1720 | << expr->getSourceRange(); |
1721 | hadError = true; |
1722 | ++Index; |
1723 | ++StructuredIndex; |
1724 | return; |
1725 | } else if (auto *Embed = dyn_cast<EmbedExpr>(Val: expr)) { |
1726 | expr = HandleEmbed(Embed, Entity); |
1727 | } |
1728 | |
1729 | ExprResult Result; |
1730 | if (VerifyOnly) { |
1731 | if (SemaRef.CanPerformCopyInitialization(Entity, Init: expr)) |
1732 | Result = getDummyInit(); |
1733 | else |
1734 | Result = ExprError(); |
1735 | } else { |
1736 | Result = |
1737 | SemaRef.PerformCopyInitialization(Entity, EqualLoc: expr->getBeginLoc(), Init: expr, |
1738 | /*TopLevelOfInitList=*/true); |
1739 | } |
1740 | |
1741 | Expr *ResultExpr = nullptr; |
1742 | |
1743 | if (Result.isInvalid()) |
1744 | hadError = true; // types weren't compatible. |
1745 | else { |
1746 | ResultExpr = Result.getAs<Expr>(); |
1747 | |
1748 | if (ResultExpr != expr && !VerifyOnly && !CurEmbed) { |
1749 | // The type was promoted, update initializer list. |
1750 | // FIXME: Why are we updating the syntactic init list? |
1751 | IList->setInit(Init: Index, expr: ResultExpr); |
1752 | } |
1753 | } |
1754 | |
1755 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr: ResultExpr); |
1756 | if (!CurEmbed) |
1757 | ++Index; |
1758 | if (AggrDeductionCandidateParamTypes) |
1759 | AggrDeductionCandidateParamTypes->push_back(Elt: DeclType); |
1760 | } |
1761 | |
1762 | void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, |
1763 | InitListExpr *IList, QualType DeclType, |
1764 | unsigned &Index, |
1765 | InitListExpr *StructuredList, |
1766 | unsigned &StructuredIndex) { |
1767 | if (Index >= IList->getNumInits()) { |
1768 | // FIXME: It would be wonderful if we could point at the actual member. In |
1769 | // general, it would be useful to pass location information down the stack, |
1770 | // so that we know the location (or decl) of the "current object" being |
1771 | // initialized. |
1772 | if (!VerifyOnly) |
1773 | SemaRef.Diag(Loc: IList->getBeginLoc(), |
1774 | DiagID: diag::err_init_reference_member_uninitialized) |
1775 | << DeclType << IList->getSourceRange(); |
1776 | hadError = true; |
1777 | ++Index; |
1778 | ++StructuredIndex; |
1779 | return; |
1780 | } |
1781 | |
1782 | Expr *expr = IList->getInit(Init: Index); |
1783 | if (isa<InitListExpr>(Val: expr) && !SemaRef.getLangOpts().CPlusPlus11) { |
1784 | if (!VerifyOnly) |
1785 | SemaRef.Diag(Loc: IList->getBeginLoc(), DiagID: diag::err_init_non_aggr_init_list) |
1786 | << DeclType << IList->getSourceRange(); |
1787 | hadError = true; |
1788 | ++Index; |
1789 | ++StructuredIndex; |
1790 | return; |
1791 | } |
1792 | |
1793 | ExprResult Result; |
1794 | if (VerifyOnly) { |
1795 | if (SemaRef.CanPerformCopyInitialization(Entity,Init: expr)) |
1796 | Result = getDummyInit(); |
1797 | else |
1798 | Result = ExprError(); |
1799 | } else { |
1800 | Result = |
1801 | SemaRef.PerformCopyInitialization(Entity, EqualLoc: expr->getBeginLoc(), Init: expr, |
1802 | /*TopLevelOfInitList=*/true); |
1803 | } |
1804 | |
1805 | if (Result.isInvalid()) |
1806 | hadError = true; |
1807 | |
1808 | expr = Result.getAs<Expr>(); |
1809 | // FIXME: Why are we updating the syntactic init list? |
1810 | if (!VerifyOnly && expr) |
1811 | IList->setInit(Init: Index, expr); |
1812 | |
1813 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
1814 | ++Index; |
1815 | if (AggrDeductionCandidateParamTypes) |
1816 | AggrDeductionCandidateParamTypes->push_back(Elt: DeclType); |
1817 | } |
1818 | |
1819 | void InitListChecker::CheckVectorType(const InitializedEntity &Entity, |
1820 | InitListExpr *IList, QualType DeclType, |
1821 | unsigned &Index, |
1822 | InitListExpr *StructuredList, |
1823 | unsigned &StructuredIndex) { |
1824 | const VectorType *VT = DeclType->castAs<VectorType>(); |
1825 | unsigned maxElements = VT->getNumElements(); |
1826 | unsigned numEltsInit = 0; |
1827 | QualType elementType = VT->getElementType(); |
1828 | |
1829 | if (Index >= IList->getNumInits()) { |
1830 | // Make sure the element type can be value-initialized. |
1831 | CheckEmptyInitializable( |
1832 | Entity: InitializedEntity::InitializeElement(Context&: SemaRef.Context, Index: 0, Parent: Entity), |
1833 | Loc: IList->getEndLoc()); |
1834 | return; |
1835 | } |
1836 | |
1837 | if (!SemaRef.getLangOpts().OpenCL && !SemaRef.getLangOpts().HLSL ) { |
1838 | // If the initializing element is a vector, try to copy-initialize |
1839 | // instead of breaking it apart (which is doomed to failure anyway). |
1840 | Expr *Init = IList->getInit(Init: Index); |
1841 | if (!isa<InitListExpr>(Val: Init) && Init->getType()->isVectorType()) { |
1842 | ExprResult Result; |
1843 | if (VerifyOnly) { |
1844 | if (SemaRef.CanPerformCopyInitialization(Entity, Init)) |
1845 | Result = getDummyInit(); |
1846 | else |
1847 | Result = ExprError(); |
1848 | } else { |
1849 | Result = |
1850 | SemaRef.PerformCopyInitialization(Entity, EqualLoc: Init->getBeginLoc(), Init, |
1851 | /*TopLevelOfInitList=*/true); |
1852 | } |
1853 | |
1854 | Expr *ResultExpr = nullptr; |
1855 | if (Result.isInvalid()) |
1856 | hadError = true; // types weren't compatible. |
1857 | else { |
1858 | ResultExpr = Result.getAs<Expr>(); |
1859 | |
1860 | if (ResultExpr != Init && !VerifyOnly) { |
1861 | // The type was promoted, update initializer list. |
1862 | // FIXME: Why are we updating the syntactic init list? |
1863 | IList->setInit(Init: Index, expr: ResultExpr); |
1864 | } |
1865 | } |
1866 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr: ResultExpr); |
1867 | ++Index; |
1868 | if (AggrDeductionCandidateParamTypes) |
1869 | AggrDeductionCandidateParamTypes->push_back(Elt: elementType); |
1870 | return; |
1871 | } |
1872 | |
1873 | InitializedEntity ElementEntity = |
1874 | InitializedEntity::InitializeElement(Context&: SemaRef.Context, Index: 0, Parent: Entity); |
1875 | |
1876 | for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { |
1877 | // Don't attempt to go past the end of the init list |
1878 | if (Index >= IList->getNumInits()) { |
1879 | CheckEmptyInitializable(Entity: ElementEntity, Loc: IList->getEndLoc()); |
1880 | break; |
1881 | } |
1882 | |
1883 | ElementEntity.setElementIndex(Index); |
1884 | CheckSubElementType(Entity: ElementEntity, IList, ElemType: elementType, Index, |
1885 | StructuredList, StructuredIndex); |
1886 | } |
1887 | |
1888 | if (VerifyOnly) |
1889 | return; |
1890 | |
1891 | bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); |
1892 | const VectorType *T = Entity.getType()->castAs<VectorType>(); |
1893 | if (isBigEndian && (T->getVectorKind() == VectorKind::Neon || |
1894 | T->getVectorKind() == VectorKind::NeonPoly)) { |
1895 | // The ability to use vector initializer lists is a GNU vector extension |
1896 | // and is unrelated to the NEON intrinsics in arm_neon.h. On little |
1897 | // endian machines it works fine, however on big endian machines it |
1898 | // exhibits surprising behaviour: |
1899 | // |
1900 | // uint32x2_t x = {42, 64}; |
1901 | // return vget_lane_u32(x, 0); // Will return 64. |
1902 | // |
1903 | // Because of this, explicitly call out that it is non-portable. |
1904 | // |
1905 | SemaRef.Diag(Loc: IList->getBeginLoc(), |
1906 | DiagID: diag::warn_neon_vector_initializer_non_portable); |
1907 | |
1908 | const char *typeCode; |
1909 | unsigned typeSize = SemaRef.Context.getTypeSize(T: elementType); |
1910 | |
1911 | if (elementType->isFloatingType()) |
1912 | typeCode = "f" ; |
1913 | else if (elementType->isSignedIntegerType()) |
1914 | typeCode = "s" ; |
1915 | else if (elementType->isUnsignedIntegerType()) |
1916 | typeCode = "u" ; |
1917 | else |
1918 | llvm_unreachable("Invalid element type!" ); |
1919 | |
1920 | SemaRef.Diag(Loc: IList->getBeginLoc(), |
1921 | DiagID: SemaRef.Context.getTypeSize(T: VT) > 64 |
1922 | ? diag::note_neon_vector_initializer_non_portable_q |
1923 | : diag::note_neon_vector_initializer_non_portable) |
1924 | << typeCode << typeSize; |
1925 | } |
1926 | |
1927 | return; |
1928 | } |
1929 | |
1930 | InitializedEntity ElementEntity = |
1931 | InitializedEntity::InitializeElement(Context&: SemaRef.Context, Index: 0, Parent: Entity); |
1932 | |
1933 | // OpenCL and HLSL initializers allow vectors to be constructed from vectors. |
1934 | for (unsigned i = 0; i < maxElements; ++i) { |
1935 | // Don't attempt to go past the end of the init list |
1936 | if (Index >= IList->getNumInits()) |
1937 | break; |
1938 | |
1939 | ElementEntity.setElementIndex(Index); |
1940 | |
1941 | QualType IType = IList->getInit(Init: Index)->getType(); |
1942 | if (!IType->isVectorType()) { |
1943 | CheckSubElementType(Entity: ElementEntity, IList, ElemType: elementType, Index, |
1944 | StructuredList, StructuredIndex); |
1945 | ++numEltsInit; |
1946 | } else { |
1947 | QualType VecType; |
1948 | const VectorType *IVT = IType->castAs<VectorType>(); |
1949 | unsigned numIElts = IVT->getNumElements(); |
1950 | |
1951 | if (IType->isExtVectorType()) |
1952 | VecType = SemaRef.Context.getExtVectorType(VectorType: elementType, NumElts: numIElts); |
1953 | else |
1954 | VecType = SemaRef.Context.getVectorType(VectorType: elementType, NumElts: numIElts, |
1955 | VecKind: IVT->getVectorKind()); |
1956 | CheckSubElementType(Entity: ElementEntity, IList, ElemType: VecType, Index, |
1957 | StructuredList, StructuredIndex); |
1958 | numEltsInit += numIElts; |
1959 | } |
1960 | } |
1961 | |
1962 | // OpenCL and HLSL require all elements to be initialized. |
1963 | if (numEltsInit != maxElements) { |
1964 | if (!VerifyOnly) |
1965 | SemaRef.Diag(Loc: IList->getBeginLoc(), |
1966 | DiagID: diag::err_vector_incorrect_num_initializers) |
1967 | << (numEltsInit < maxElements) << maxElements << numEltsInit; |
1968 | hadError = true; |
1969 | } |
1970 | } |
1971 | |
1972 | /// Check if the type of a class element has an accessible destructor, and marks |
1973 | /// it referenced. Returns true if we shouldn't form a reference to the |
1974 | /// destructor. |
1975 | /// |
1976 | /// Aggregate initialization requires a class element's destructor be |
1977 | /// accessible per 11.6.1 [dcl.init.aggr]: |
1978 | /// |
1979 | /// The destructor for each element of class type is potentially invoked |
1980 | /// (15.4 [class.dtor]) from the context where the aggregate initialization |
1981 | /// occurs. |
1982 | static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, |
1983 | Sema &SemaRef) { |
1984 | auto *CXXRD = ElementType->getAsCXXRecordDecl(); |
1985 | if (!CXXRD) |
1986 | return false; |
1987 | |
1988 | CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(Class: CXXRD); |
1989 | SemaRef.CheckDestructorAccess(Loc, Dtor: Destructor, |
1990 | PDiag: SemaRef.PDiag(DiagID: diag::err_access_dtor_temp) |
1991 | << ElementType); |
1992 | SemaRef.MarkFunctionReferenced(Loc, Func: Destructor); |
1993 | return SemaRef.DiagnoseUseOfDecl(D: Destructor, Locs: Loc); |
1994 | } |
1995 | |
1996 | static bool |
1997 | canInitializeArrayWithEmbedDataString(ArrayRef<Expr *> ExprList, |
1998 | const InitializedEntity &Entity, |
1999 | ASTContext &Context) { |
2000 | QualType InitType = Entity.getType(); |
2001 | const InitializedEntity *Parent = &Entity; |
2002 | |
2003 | while (Parent) { |
2004 | InitType = Parent->getType(); |
2005 | Parent = Parent->getParent(); |
2006 | } |
2007 | |
2008 | // Only one initializer, it's an embed and the types match; |
2009 | EmbedExpr *EE = |
2010 | ExprList.size() == 1 |
2011 | ? dyn_cast_if_present<EmbedExpr>(Val: ExprList[0]->IgnoreParens()) |
2012 | : nullptr; |
2013 | if (!EE) |
2014 | return false; |
2015 | |
2016 | if (InitType->isArrayType()) { |
2017 | const ArrayType *InitArrayType = InitType->getAsArrayTypeUnsafe(); |
2018 | QualType InitElementTy = InitArrayType->getElementType(); |
2019 | QualType EmbedExprElementTy = EE->getDataStringLiteral()->getType(); |
2020 | const bool TypesMatch = |
2021 | Context.typesAreCompatible(T1: InitElementTy, T2: EmbedExprElementTy) || |
2022 | (InitElementTy->isCharType() && EmbedExprElementTy->isCharType()); |
2023 | if (TypesMatch) |
2024 | return true; |
2025 | } |
2026 | return false; |
2027 | } |
2028 | |
2029 | void InitListChecker::CheckArrayType(const InitializedEntity &Entity, |
2030 | InitListExpr *IList, QualType &DeclType, |
2031 | llvm::APSInt elementIndex, |
2032 | bool SubobjectIsDesignatorContext, |
2033 | unsigned &Index, |
2034 | InitListExpr *StructuredList, |
2035 | unsigned &StructuredIndex) { |
2036 | const ArrayType *arrayType = SemaRef.Context.getAsArrayType(T: DeclType); |
2037 | |
2038 | if (!VerifyOnly) { |
2039 | if (checkDestructorReference(ElementType: arrayType->getElementType(), |
2040 | Loc: IList->getEndLoc(), SemaRef)) { |
2041 | hadError = true; |
2042 | return; |
2043 | } |
2044 | } |
2045 | |
2046 | if (canInitializeArrayWithEmbedDataString(ExprList: IList->inits(), Entity, |
2047 | Context&: SemaRef.Context)) { |
2048 | EmbedExpr *Embed = cast<EmbedExpr>(Val: IList->inits()[0]); |
2049 | IList->setInit(Init: 0, expr: Embed->getDataStringLiteral()); |
2050 | } |
2051 | |
2052 | // Check for the special-case of initializing an array with a string. |
2053 | if (Index < IList->getNumInits()) { |
2054 | if (IsStringInit(Init: IList->getInit(Init: Index), AT: arrayType, Context&: SemaRef.Context) == |
2055 | SIF_None) { |
2056 | // We place the string literal directly into the resulting |
2057 | // initializer list. This is the only place where the structure |
2058 | // of the structured initializer list doesn't match exactly, |
2059 | // because doing so would involve allocating one character |
2060 | // constant for each string. |
2061 | // FIXME: Should we do these checks in verify-only mode too? |
2062 | if (!VerifyOnly) |
2063 | CheckStringInit(Str: IList->getInit(Init: Index), DeclT&: DeclType, AT: arrayType, S&: SemaRef, |
2064 | CheckC23ConstexprInit: SemaRef.getLangOpts().C23 && |
2065 | initializingConstexprVariable(Entity)); |
2066 | if (StructuredList) { |
2067 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
2068 | expr: IList->getInit(Init: Index)); |
2069 | StructuredList->resizeInits(Context: SemaRef.Context, NumInits: StructuredIndex); |
2070 | } |
2071 | ++Index; |
2072 | if (AggrDeductionCandidateParamTypes) |
2073 | AggrDeductionCandidateParamTypes->push_back(Elt: DeclType); |
2074 | return; |
2075 | } |
2076 | } |
2077 | if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(Val: arrayType)) { |
2078 | // Check for VLAs; in standard C it would be possible to check this |
2079 | // earlier, but I don't know where clang accepts VLAs (gcc accepts |
2080 | // them in all sorts of strange places). |
2081 | bool HasErr = IList->getNumInits() != 0 || SemaRef.getLangOpts().CPlusPlus; |
2082 | if (!VerifyOnly) { |
2083 | // C23 6.7.10p4: An entity of variable length array type shall not be |
2084 | // initialized except by an empty initializer. |
2085 | // |
2086 | // The C extension warnings are issued from ParseBraceInitializer() and |
2087 | // do not need to be issued here. However, we continue to issue an error |
2088 | // in the case there are initializers or we are compiling C++. We allow |
2089 | // use of VLAs in C++, but it's not clear we want to allow {} to zero |
2090 | // init a VLA in C++ in all cases (such as with non-trivial constructors). |
2091 | // FIXME: should we allow this construct in C++ when it makes sense to do |
2092 | // so? |
2093 | if (HasErr) |
2094 | SemaRef.Diag(Loc: VAT->getSizeExpr()->getBeginLoc(), |
2095 | DiagID: diag::err_variable_object_no_init) |
2096 | << VAT->getSizeExpr()->getSourceRange(); |
2097 | } |
2098 | hadError = HasErr; |
2099 | ++Index; |
2100 | ++StructuredIndex; |
2101 | return; |
2102 | } |
2103 | |
2104 | // We might know the maximum number of elements in advance. |
2105 | llvm::APSInt maxElements(elementIndex.getBitWidth(), |
2106 | elementIndex.isUnsigned()); |
2107 | bool maxElementsKnown = false; |
2108 | if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(Val: arrayType)) { |
2109 | maxElements = CAT->getSize(); |
2110 | elementIndex = elementIndex.extOrTrunc(width: maxElements.getBitWidth()); |
2111 | elementIndex.setIsUnsigned(maxElements.isUnsigned()); |
2112 | maxElementsKnown = true; |
2113 | } |
2114 | |
2115 | QualType elementType = arrayType->getElementType(); |
2116 | while (Index < IList->getNumInits()) { |
2117 | Expr *Init = IList->getInit(Init: Index); |
2118 | if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Val: Init)) { |
2119 | // If we're not the subobject that matches up with the '{' for |
2120 | // the designator, we shouldn't be handling the |
2121 | // designator. Return immediately. |
2122 | if (!SubobjectIsDesignatorContext) |
2123 | return; |
2124 | |
2125 | // Handle this designated initializer. elementIndex will be |
2126 | // updated to be the next array element we'll initialize. |
2127 | if (CheckDesignatedInitializer(Entity, IList, DIE, DesigIdx: 0, |
2128 | CurrentObjectType&: DeclType, NextField: nullptr, NextElementIndex: &elementIndex, Index, |
2129 | StructuredList, StructuredIndex, FinishSubobjectInit: true, |
2130 | TopLevelObject: false)) { |
2131 | hadError = true; |
2132 | continue; |
2133 | } |
2134 | |
2135 | if (elementIndex.getBitWidth() > maxElements.getBitWidth()) |
2136 | maxElements = maxElements.extend(width: elementIndex.getBitWidth()); |
2137 | else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) |
2138 | elementIndex = elementIndex.extend(width: maxElements.getBitWidth()); |
2139 | elementIndex.setIsUnsigned(maxElements.isUnsigned()); |
2140 | |
2141 | // If the array is of incomplete type, keep track of the number of |
2142 | // elements in the initializer. |
2143 | if (!maxElementsKnown && elementIndex > maxElements) |
2144 | maxElements = elementIndex; |
2145 | |
2146 | continue; |
2147 | } |
2148 | |
2149 | // If we know the maximum number of elements, and we've already |
2150 | // hit it, stop consuming elements in the initializer list. |
2151 | if (maxElementsKnown && elementIndex == maxElements) |
2152 | break; |
2153 | |
2154 | InitializedEntity ElementEntity = InitializedEntity::InitializeElement( |
2155 | Context&: SemaRef.Context, Index: StructuredIndex, Parent: Entity); |
2156 | |
2157 | unsigned EmbedElementIndexBeforeInit = CurEmbedIndex; |
2158 | // Check this element. |
2159 | CheckSubElementType(Entity: ElementEntity, IList, ElemType: elementType, Index, |
2160 | StructuredList, StructuredIndex); |
2161 | ++elementIndex; |
2162 | if ((CurEmbed || isa<EmbedExpr>(Val: Init)) && elementType->isScalarType()) { |
2163 | if (CurEmbed) { |
2164 | elementIndex = |
2165 | elementIndex + CurEmbedIndex - EmbedElementIndexBeforeInit - 1; |
2166 | } else { |
2167 | auto Embed = cast<EmbedExpr>(Val: Init); |
2168 | elementIndex = elementIndex + Embed->getDataElementCount() - |
2169 | EmbedElementIndexBeforeInit - 1; |
2170 | } |
2171 | } |
2172 | |
2173 | // If the array is of incomplete type, keep track of the number of |
2174 | // elements in the initializer. |
2175 | if (!maxElementsKnown && elementIndex > maxElements) |
2176 | maxElements = elementIndex; |
2177 | } |
2178 | if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { |
2179 | // If this is an incomplete array type, the actual type needs to |
2180 | // be calculated here. |
2181 | llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); |
2182 | if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { |
2183 | // Sizing an array implicitly to zero is not allowed by ISO C, |
2184 | // but is supported by GNU. |
2185 | SemaRef.Diag(Loc: IList->getBeginLoc(), DiagID: diag::ext_typecheck_zero_array_size); |
2186 | } |
2187 | |
2188 | DeclType = SemaRef.Context.getConstantArrayType( |
2189 | EltTy: elementType, ArySize: maxElements, SizeExpr: nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
2190 | } |
2191 | if (!hadError) { |
2192 | // If there are any members of the array that get value-initialized, check |
2193 | // that is possible. That happens if we know the bound and don't have |
2194 | // enough elements, or if we're performing an array new with an unknown |
2195 | // bound. |
2196 | if ((maxElementsKnown && elementIndex < maxElements) || |
2197 | Entity.isVariableLengthArrayNew()) |
2198 | CheckEmptyInitializable( |
2199 | Entity: InitializedEntity::InitializeElement(Context&: SemaRef.Context, Index: 0, Parent: Entity), |
2200 | Loc: IList->getEndLoc()); |
2201 | } |
2202 | } |
2203 | |
2204 | bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, |
2205 | Expr *InitExpr, |
2206 | FieldDecl *Field, |
2207 | bool TopLevelObject) { |
2208 | // Handle GNU flexible array initializers. |
2209 | unsigned FlexArrayDiag; |
2210 | if (isa<InitListExpr>(Val: InitExpr) && |
2211 | cast<InitListExpr>(Val: InitExpr)->getNumInits() == 0) { |
2212 | // Empty flexible array init always allowed as an extension |
2213 | FlexArrayDiag = diag::ext_flexible_array_init; |
2214 | } else if (!TopLevelObject) { |
2215 | // Disallow flexible array init on non-top-level object |
2216 | FlexArrayDiag = diag::err_flexible_array_init; |
2217 | } else if (Entity.getKind() != InitializedEntity::EK_Variable) { |
2218 | // Disallow flexible array init on anything which is not a variable. |
2219 | FlexArrayDiag = diag::err_flexible_array_init; |
2220 | } else if (cast<VarDecl>(Val: Entity.getDecl())->hasLocalStorage()) { |
2221 | // Disallow flexible array init on local variables. |
2222 | FlexArrayDiag = diag::err_flexible_array_init; |
2223 | } else { |
2224 | // Allow other cases. |
2225 | FlexArrayDiag = diag::ext_flexible_array_init; |
2226 | } |
2227 | |
2228 | if (!VerifyOnly) { |
2229 | SemaRef.Diag(Loc: InitExpr->getBeginLoc(), DiagID: FlexArrayDiag) |
2230 | << InitExpr->getBeginLoc(); |
2231 | SemaRef.Diag(Loc: Field->getLocation(), DiagID: diag::note_flexible_array_member) |
2232 | << Field; |
2233 | } |
2234 | |
2235 | return FlexArrayDiag != diag::ext_flexible_array_init; |
2236 | } |
2237 | |
2238 | void InitListChecker::CheckStructUnionTypes( |
2239 | const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, |
2240 | CXXRecordDecl::base_class_const_range Bases, RecordDecl::field_iterator Field, |
2241 | bool SubobjectIsDesignatorContext, unsigned &Index, |
2242 | InitListExpr *StructuredList, unsigned &StructuredIndex, |
2243 | bool TopLevelObject) { |
2244 | const RecordDecl *RD = getRecordDecl(DeclType); |
2245 | |
2246 | // If the record is invalid, some of it's members are invalid. To avoid |
2247 | // confusion, we forgo checking the initializer for the entire record. |
2248 | if (RD->isInvalidDecl()) { |
2249 | // Assume it was supposed to consume a single initializer. |
2250 | ++Index; |
2251 | hadError = true; |
2252 | return; |
2253 | } |
2254 | |
2255 | if (RD->isUnion() && IList->getNumInits() == 0) { |
2256 | if (!VerifyOnly) |
2257 | for (FieldDecl *FD : RD->fields()) { |
2258 | QualType ET = SemaRef.Context.getBaseElementType(QT: FD->getType()); |
2259 | if (checkDestructorReference(ElementType: ET, Loc: IList->getEndLoc(), SemaRef)) { |
2260 | hadError = true; |
2261 | return; |
2262 | } |
2263 | } |
2264 | |
2265 | // If there's a default initializer, use it. |
2266 | if (isa<CXXRecordDecl>(Val: RD) && |
2267 | cast<CXXRecordDecl>(Val: RD)->hasInClassInitializer()) { |
2268 | if (!StructuredList) |
2269 | return; |
2270 | for (RecordDecl::field_iterator FieldEnd = RD->field_end(); |
2271 | Field != FieldEnd; ++Field) { |
2272 | if (Field->hasInClassInitializer() || |
2273 | (Field->isAnonymousStructOrUnion() && |
2274 | Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) { |
2275 | StructuredList->setInitializedFieldInUnion(*Field); |
2276 | // FIXME: Actually build a CXXDefaultInitExpr? |
2277 | return; |
2278 | } |
2279 | } |
2280 | llvm_unreachable("Couldn't find in-class initializer" ); |
2281 | } |
2282 | |
2283 | // Value-initialize the first member of the union that isn't an unnamed |
2284 | // bitfield. |
2285 | for (RecordDecl::field_iterator FieldEnd = RD->field_end(); |
2286 | Field != FieldEnd; ++Field) { |
2287 | if (!Field->isUnnamedBitField()) { |
2288 | CheckEmptyInitializable( |
2289 | Entity: InitializedEntity::InitializeMember(Member: *Field, Parent: &Entity), |
2290 | Loc: IList->getEndLoc()); |
2291 | if (StructuredList) |
2292 | StructuredList->setInitializedFieldInUnion(*Field); |
2293 | break; |
2294 | } |
2295 | } |
2296 | return; |
2297 | } |
2298 | |
2299 | bool InitializedSomething = false; |
2300 | |
2301 | // If we have any base classes, they are initialized prior to the fields. |
2302 | for (auto I = Bases.begin(), E = Bases.end(); I != E; ++I) { |
2303 | auto &Base = *I; |
2304 | Expr *Init = Index < IList->getNumInits() ? IList->getInit(Init: Index) : nullptr; |
2305 | |
2306 | // Designated inits always initialize fields, so if we see one, all |
2307 | // remaining base classes have no explicit initializer. |
2308 | if (isa_and_nonnull<DesignatedInitExpr>(Val: Init)) |
2309 | Init = nullptr; |
2310 | |
2311 | // C++ [over.match.class.deduct]p1.6: |
2312 | // each non-trailing aggregate element that is a pack expansion is assumed |
2313 | // to correspond to no elements of the initializer list, and (1.7) a |
2314 | // trailing aggregate element that is a pack expansion is assumed to |
2315 | // correspond to all remaining elements of the initializer list (if any). |
2316 | |
2317 | // C++ [over.match.class.deduct]p1.9: |
2318 | // ... except that additional parameter packs of the form P_j... are |
2319 | // inserted into the parameter list in their original aggregate element |
2320 | // position corresponding to each non-trailing aggregate element of |
2321 | // type P_j that was skipped because it was a parameter pack, and the |
2322 | // trailing sequence of parameters corresponding to a trailing |
2323 | // aggregate element that is a pack expansion (if any) is replaced |
2324 | // by a single parameter of the form T_n.... |
2325 | if (AggrDeductionCandidateParamTypes && Base.isPackExpansion()) { |
2326 | AggrDeductionCandidateParamTypes->push_back( |
2327 | Elt: SemaRef.Context.getPackExpansionType(Pattern: Base.getType(), NumExpansions: std::nullopt)); |
2328 | |
2329 | // Trailing pack expansion |
2330 | if (I + 1 == E && RD->field_empty()) { |
2331 | if (Index < IList->getNumInits()) |
2332 | Index = IList->getNumInits(); |
2333 | return; |
2334 | } |
2335 | |
2336 | continue; |
2337 | } |
2338 | |
2339 | SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); |
2340 | InitializedEntity BaseEntity = InitializedEntity::InitializeBase( |
2341 | Context&: SemaRef.Context, Base: &Base, IsInheritedVirtualBase: false, Parent: &Entity); |
2342 | if (Init) { |
2343 | CheckSubElementType(Entity: BaseEntity, IList, ElemType: Base.getType(), Index, |
2344 | StructuredList, StructuredIndex); |
2345 | InitializedSomething = true; |
2346 | } else { |
2347 | CheckEmptyInitializable(Entity: BaseEntity, Loc: InitLoc); |
2348 | } |
2349 | |
2350 | if (!VerifyOnly) |
2351 | if (checkDestructorReference(ElementType: Base.getType(), Loc: InitLoc, SemaRef)) { |
2352 | hadError = true; |
2353 | return; |
2354 | } |
2355 | } |
2356 | |
2357 | // If structDecl is a forward declaration, this loop won't do |
2358 | // anything except look at designated initializers; That's okay, |
2359 | // because an error should get printed out elsewhere. It might be |
2360 | // worthwhile to skip over the rest of the initializer, though. |
2361 | RecordDecl::field_iterator FieldEnd = RD->field_end(); |
2362 | size_t NumRecordDecls = llvm::count_if(Range: RD->decls(), P: [&](const Decl *D) { |
2363 | return isa<FieldDecl>(Val: D) || isa<RecordDecl>(Val: D); |
2364 | }); |
2365 | bool HasDesignatedInit = false; |
2366 | |
2367 | llvm::SmallPtrSet<FieldDecl *, 4> InitializedFields; |
2368 | |
2369 | while (Index < IList->getNumInits()) { |
2370 | Expr *Init = IList->getInit(Init: Index); |
2371 | SourceLocation InitLoc = Init->getBeginLoc(); |
2372 | |
2373 | if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Val: Init)) { |
2374 | // If we're not the subobject that matches up with the '{' for |
2375 | // the designator, we shouldn't be handling the |
2376 | // designator. Return immediately. |
2377 | if (!SubobjectIsDesignatorContext) |
2378 | return; |
2379 | |
2380 | HasDesignatedInit = true; |
2381 | |
2382 | // Handle this designated initializer. Field will be updated to |
2383 | // the next field that we'll be initializing. |
2384 | bool DesignatedInitFailed = CheckDesignatedInitializer( |
2385 | Entity, IList, DIE, DesigIdx: 0, CurrentObjectType&: DeclType, NextField: &Field, NextElementIndex: nullptr, Index, |
2386 | StructuredList, StructuredIndex, FinishSubobjectInit: true, TopLevelObject); |
2387 | if (DesignatedInitFailed) |
2388 | hadError = true; |
2389 | |
2390 | // Find the field named by the designated initializer. |
2391 | DesignatedInitExpr::Designator *D = DIE->getDesignator(Idx: 0); |
2392 | if (!VerifyOnly && D->isFieldDesignator()) { |
2393 | FieldDecl *F = D->getFieldDecl(); |
2394 | InitializedFields.insert(Ptr: F); |
2395 | if (!DesignatedInitFailed) { |
2396 | QualType ET = SemaRef.Context.getBaseElementType(QT: F->getType()); |
2397 | if (checkDestructorReference(ElementType: ET, Loc: InitLoc, SemaRef)) { |
2398 | hadError = true; |
2399 | return; |
2400 | } |
2401 | } |
2402 | } |
2403 | |
2404 | InitializedSomething = true; |
2405 | continue; |
2406 | } |
2407 | |
2408 | // Check if this is an initializer of forms: |
2409 | // |
2410 | // struct foo f = {}; |
2411 | // struct foo g = {0}; |
2412 | // |
2413 | // These are okay for randomized structures. [C99 6.7.8p19] |
2414 | // |
2415 | // Also, if there is only one element in the structure, we allow something |
2416 | // like this, because it's really not randomized in the traditional sense. |
2417 | // |
2418 | // struct foo h = {bar}; |
2419 | auto IsZeroInitializer = [&](const Expr *I) { |
2420 | if (IList->getNumInits() == 1) { |
2421 | if (NumRecordDecls == 1) |
2422 | return true; |
2423 | if (const auto *IL = dyn_cast<IntegerLiteral>(Val: I)) |
2424 | return IL->getValue().isZero(); |
2425 | } |
2426 | return false; |
2427 | }; |
2428 | |
2429 | // Don't allow non-designated initializers on randomized structures. |
2430 | if (RD->isRandomized() && !IsZeroInitializer(Init)) { |
2431 | if (!VerifyOnly) |
2432 | SemaRef.Diag(Loc: InitLoc, DiagID: diag::err_non_designated_init_used); |
2433 | hadError = true; |
2434 | break; |
2435 | } |
2436 | |
2437 | if (Field == FieldEnd) { |
2438 | // We've run out of fields. We're done. |
2439 | break; |
2440 | } |
2441 | |
2442 | // We've already initialized a member of a union. We can stop entirely. |
2443 | if (InitializedSomething && RD->isUnion()) |
2444 | return; |
2445 | |
2446 | // Stop if we've hit a flexible array member. |
2447 | if (Field->getType()->isIncompleteArrayType()) |
2448 | break; |
2449 | |
2450 | if (Field->isUnnamedBitField()) { |
2451 | // Don't initialize unnamed bitfields, e.g. "int : 20;" |
2452 | ++Field; |
2453 | continue; |
2454 | } |
2455 | |
2456 | // Make sure we can use this declaration. |
2457 | bool InvalidUse; |
2458 | if (VerifyOnly) |
2459 | InvalidUse = !SemaRef.CanUseDecl(D: *Field, TreatUnavailableAsInvalid); |
2460 | else |
2461 | InvalidUse = SemaRef.DiagnoseUseOfDecl( |
2462 | D: *Field, Locs: IList->getInit(Init: Index)->getBeginLoc()); |
2463 | if (InvalidUse) { |
2464 | ++Index; |
2465 | ++Field; |
2466 | hadError = true; |
2467 | continue; |
2468 | } |
2469 | |
2470 | if (!VerifyOnly) { |
2471 | QualType ET = SemaRef.Context.getBaseElementType(QT: Field->getType()); |
2472 | if (checkDestructorReference(ElementType: ET, Loc: InitLoc, SemaRef)) { |
2473 | hadError = true; |
2474 | return; |
2475 | } |
2476 | } |
2477 | |
2478 | InitializedEntity MemberEntity = |
2479 | InitializedEntity::InitializeMember(Member: *Field, Parent: &Entity); |
2480 | CheckSubElementType(Entity: MemberEntity, IList, ElemType: Field->getType(), Index, |
2481 | StructuredList, StructuredIndex); |
2482 | InitializedSomething = true; |
2483 | InitializedFields.insert(Ptr: *Field); |
2484 | |
2485 | if (RD->isUnion() && StructuredList) { |
2486 | // Initialize the first field within the union. |
2487 | StructuredList->setInitializedFieldInUnion(*Field); |
2488 | } |
2489 | |
2490 | ++Field; |
2491 | } |
2492 | |
2493 | // Emit warnings for missing struct field initializers. |
2494 | // This check is disabled for designated initializers in C. |
2495 | // This matches gcc behaviour. |
2496 | bool IsCDesignatedInitializer = |
2497 | HasDesignatedInit && !SemaRef.getLangOpts().CPlusPlus; |
2498 | if (!VerifyOnly && InitializedSomething && !RD->isUnion() && |
2499 | !IList->isIdiomaticZeroInitializer(LangOpts: SemaRef.getLangOpts()) && |
2500 | !IsCDesignatedInitializer) { |
2501 | // It is possible we have one or more unnamed bitfields remaining. |
2502 | // Find first (if any) named field and emit warning. |
2503 | for (RecordDecl::field_iterator it = HasDesignatedInit ? RD->field_begin() |
2504 | : Field, |
2505 | end = RD->field_end(); |
2506 | it != end; ++it) { |
2507 | if (HasDesignatedInit && InitializedFields.count(Ptr: *it)) |
2508 | continue; |
2509 | |
2510 | if (!it->isUnnamedBitField() && !it->hasInClassInitializer() && |
2511 | !it->getType()->isIncompleteArrayType()) { |
2512 | auto Diag = HasDesignatedInit |
2513 | ? diag::warn_missing_designated_field_initializers |
2514 | : diag::warn_missing_field_initializers; |
2515 | SemaRef.Diag(Loc: IList->getSourceRange().getEnd(), DiagID: Diag) << *it; |
2516 | break; |
2517 | } |
2518 | } |
2519 | } |
2520 | |
2521 | // Check that any remaining fields can be value-initialized if we're not |
2522 | // building a structured list. (If we are, we'll check this later.) |
2523 | if (!StructuredList && Field != FieldEnd && !RD->isUnion() && |
2524 | !Field->getType()->isIncompleteArrayType()) { |
2525 | for (; Field != FieldEnd && !hadError; ++Field) { |
2526 | if (!Field->isUnnamedBitField() && !Field->hasInClassInitializer()) |
2527 | CheckEmptyInitializable( |
2528 | Entity: InitializedEntity::InitializeMember(Member: *Field, Parent: &Entity), |
2529 | Loc: IList->getEndLoc()); |
2530 | } |
2531 | } |
2532 | |
2533 | // Check that the types of the remaining fields have accessible destructors. |
2534 | if (!VerifyOnly) { |
2535 | // If the initializer expression has a designated initializer, check the |
2536 | // elements for which a designated initializer is not provided too. |
2537 | RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() |
2538 | : Field; |
2539 | for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { |
2540 | QualType ET = SemaRef.Context.getBaseElementType(QT: I->getType()); |
2541 | if (checkDestructorReference(ElementType: ET, Loc: IList->getEndLoc(), SemaRef)) { |
2542 | hadError = true; |
2543 | return; |
2544 | } |
2545 | } |
2546 | } |
2547 | |
2548 | if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || |
2549 | Index >= IList->getNumInits()) |
2550 | return; |
2551 | |
2552 | if (CheckFlexibleArrayInit(Entity, InitExpr: IList->getInit(Init: Index), Field: *Field, |
2553 | TopLevelObject)) { |
2554 | hadError = true; |
2555 | ++Index; |
2556 | return; |
2557 | } |
2558 | |
2559 | InitializedEntity MemberEntity = |
2560 | InitializedEntity::InitializeMember(Member: *Field, Parent: &Entity); |
2561 | |
2562 | if (isa<InitListExpr>(Val: IList->getInit(Init: Index)) || |
2563 | AggrDeductionCandidateParamTypes) |
2564 | CheckSubElementType(Entity: MemberEntity, IList, ElemType: Field->getType(), Index, |
2565 | StructuredList, StructuredIndex); |
2566 | else |
2567 | CheckImplicitInitList(Entity: MemberEntity, ParentIList: IList, T: Field->getType(), Index, |
2568 | StructuredList, StructuredIndex); |
2569 | |
2570 | if (RD->isUnion() && StructuredList) { |
2571 | // Initialize the first field within the union. |
2572 | StructuredList->setInitializedFieldInUnion(*Field); |
2573 | } |
2574 | } |
2575 | |
2576 | /// Expand a field designator that refers to a member of an |
2577 | /// anonymous struct or union into a series of field designators that |
2578 | /// refers to the field within the appropriate subobject. |
2579 | /// |
2580 | static void ExpandAnonymousFieldDesignator(Sema &SemaRef, |
2581 | DesignatedInitExpr *DIE, |
2582 | unsigned DesigIdx, |
2583 | IndirectFieldDecl *IndirectField) { |
2584 | typedef DesignatedInitExpr::Designator Designator; |
2585 | |
2586 | // Build the replacement designators. |
2587 | SmallVector<Designator, 4> Replacements; |
2588 | for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), |
2589 | PE = IndirectField->chain_end(); PI != PE; ++PI) { |
2590 | if (PI + 1 == PE) |
2591 | Replacements.push_back(Elt: Designator::CreateFieldDesignator( |
2592 | FieldName: (IdentifierInfo *)nullptr, DotLoc: DIE->getDesignator(Idx: DesigIdx)->getDotLoc(), |
2593 | FieldLoc: DIE->getDesignator(Idx: DesigIdx)->getFieldLoc())); |
2594 | else |
2595 | Replacements.push_back(Elt: Designator::CreateFieldDesignator( |
2596 | FieldName: (IdentifierInfo *)nullptr, DotLoc: SourceLocation(), FieldLoc: SourceLocation())); |
2597 | assert(isa<FieldDecl>(*PI)); |
2598 | Replacements.back().setFieldDecl(cast<FieldDecl>(Val: *PI)); |
2599 | } |
2600 | |
2601 | // Expand the current designator into the set of replacement |
2602 | // designators, so we have a full subobject path down to where the |
2603 | // member of the anonymous struct/union is actually stored. |
2604 | DIE->ExpandDesignator(C: SemaRef.Context, Idx: DesigIdx, First: &Replacements[0], |
2605 | Last: &Replacements[0] + Replacements.size()); |
2606 | } |
2607 | |
2608 | static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, |
2609 | DesignatedInitExpr *DIE) { |
2610 | unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; |
2611 | SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); |
2612 | for (unsigned I = 0; I < NumIndexExprs; ++I) |
2613 | IndexExprs[I] = DIE->getSubExpr(Idx: I + 1); |
2614 | return DesignatedInitExpr::Create(C: SemaRef.Context, Designators: DIE->designators(), |
2615 | IndexExprs, |
2616 | EqualOrColonLoc: DIE->getEqualOrColonLoc(), |
2617 | GNUSyntax: DIE->usesGNUSyntax(), Init: DIE->getInit()); |
2618 | } |
2619 | |
2620 | namespace { |
2621 | |
2622 | // Callback to only accept typo corrections that are for field members of |
2623 | // the given struct or union. |
2624 | class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { |
2625 | public: |
2626 | explicit FieldInitializerValidatorCCC(const RecordDecl *RD) |
2627 | : Record(RD) {} |
2628 | |
2629 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
2630 | FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); |
2631 | return FD && FD->getDeclContext()->getRedeclContext()->Equals(DC: Record); |
2632 | } |
2633 | |
2634 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
2635 | return std::make_unique<FieldInitializerValidatorCCC>(args&: *this); |
2636 | } |
2637 | |
2638 | private: |
2639 | const RecordDecl *Record; |
2640 | }; |
2641 | |
2642 | } // end anonymous namespace |
2643 | |
2644 | /// Check the well-formedness of a C99 designated initializer. |
2645 | /// |
2646 | /// Determines whether the designated initializer @p DIE, which |
2647 | /// resides at the given @p Index within the initializer list @p |
2648 | /// IList, is well-formed for a current object of type @p DeclType |
2649 | /// (C99 6.7.8). The actual subobject that this designator refers to |
2650 | /// within the current subobject is returned in either |
2651 | /// @p NextField or @p NextElementIndex (whichever is appropriate). |
2652 | /// |
2653 | /// @param IList The initializer list in which this designated |
2654 | /// initializer occurs. |
2655 | /// |
2656 | /// @param DIE The designated initializer expression. |
2657 | /// |
2658 | /// @param DesigIdx The index of the current designator. |
2659 | /// |
2660 | /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), |
2661 | /// into which the designation in @p DIE should refer. |
2662 | /// |
2663 | /// @param NextField If non-NULL and the first designator in @p DIE is |
2664 | /// a field, this will be set to the field declaration corresponding |
2665 | /// to the field named by the designator. On input, this is expected to be |
2666 | /// the next field that would be initialized in the absence of designation, |
2667 | /// if the complete object being initialized is a struct. |
2668 | /// |
2669 | /// @param NextElementIndex If non-NULL and the first designator in @p |
2670 | /// DIE is an array designator or GNU array-range designator, this |
2671 | /// will be set to the last index initialized by this designator. |
2672 | /// |
2673 | /// @param Index Index into @p IList where the designated initializer |
2674 | /// @p DIE occurs. |
2675 | /// |
2676 | /// @param StructuredList The initializer list expression that |
2677 | /// describes all of the subobject initializers in the order they'll |
2678 | /// actually be initialized. |
2679 | /// |
2680 | /// @returns true if there was an error, false otherwise. |
2681 | bool |
2682 | InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, |
2683 | InitListExpr *IList, |
2684 | DesignatedInitExpr *DIE, |
2685 | unsigned DesigIdx, |
2686 | QualType &CurrentObjectType, |
2687 | RecordDecl::field_iterator *NextField, |
2688 | llvm::APSInt *NextElementIndex, |
2689 | unsigned &Index, |
2690 | InitListExpr *StructuredList, |
2691 | unsigned &StructuredIndex, |
2692 | bool FinishSubobjectInit, |
2693 | bool TopLevelObject) { |
2694 | if (DesigIdx == DIE->size()) { |
2695 | // C++20 designated initialization can result in direct-list-initialization |
2696 | // of the designated subobject. This is the only way that we can end up |
2697 | // performing direct initialization as part of aggregate initialization, so |
2698 | // it needs special handling. |
2699 | if (DIE->isDirectInit()) { |
2700 | Expr *Init = DIE->getInit(); |
2701 | assert(isa<InitListExpr>(Init) && |
2702 | "designator result in direct non-list initialization?" ); |
2703 | InitializationKind Kind = InitializationKind::CreateDirectList( |
2704 | InitLoc: DIE->getBeginLoc(), LBraceLoc: Init->getBeginLoc(), RBraceLoc: Init->getEndLoc()); |
2705 | InitializationSequence Seq(SemaRef, Entity, Kind, Init, |
2706 | /*TopLevelOfInitList*/ true); |
2707 | if (StructuredList) { |
2708 | ExprResult Result = VerifyOnly |
2709 | ? getDummyInit() |
2710 | : Seq.Perform(S&: SemaRef, Entity, Kind, Args: Init); |
2711 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
2712 | expr: Result.get()); |
2713 | } |
2714 | ++Index; |
2715 | if (AggrDeductionCandidateParamTypes) |
2716 | AggrDeductionCandidateParamTypes->push_back(Elt: CurrentObjectType); |
2717 | return !Seq; |
2718 | } |
2719 | |
2720 | // Check the actual initialization for the designated object type. |
2721 | bool prevHadError = hadError; |
2722 | |
2723 | // Temporarily remove the designator expression from the |
2724 | // initializer list that the child calls see, so that we don't try |
2725 | // to re-process the designator. |
2726 | unsigned OldIndex = Index; |
2727 | IList->setInit(Init: OldIndex, expr: DIE->getInit()); |
2728 | |
2729 | CheckSubElementType(Entity, IList, ElemType: CurrentObjectType, Index, StructuredList, |
2730 | StructuredIndex, /*DirectlyDesignated=*/true); |
2731 | |
2732 | // Restore the designated initializer expression in the syntactic |
2733 | // form of the initializer list. |
2734 | if (IList->getInit(Init: OldIndex) != DIE->getInit()) |
2735 | DIE->setInit(IList->getInit(Init: OldIndex)); |
2736 | IList->setInit(Init: OldIndex, expr: DIE); |
2737 | |
2738 | return hadError && !prevHadError; |
2739 | } |
2740 | |
2741 | DesignatedInitExpr::Designator *D = DIE->getDesignator(Idx: DesigIdx); |
2742 | bool IsFirstDesignator = (DesigIdx == 0); |
2743 | if (IsFirstDesignator ? FullyStructuredList : StructuredList) { |
2744 | // Determine the structural initializer list that corresponds to the |
2745 | // current subobject. |
2746 | if (IsFirstDesignator) |
2747 | StructuredList = FullyStructuredList; |
2748 | else { |
2749 | Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? |
2750 | StructuredList->getInit(Init: StructuredIndex) : nullptr; |
2751 | if (!ExistingInit && StructuredList->hasArrayFiller()) |
2752 | ExistingInit = StructuredList->getArrayFiller(); |
2753 | |
2754 | if (!ExistingInit) |
2755 | StructuredList = getStructuredSubobjectInit( |
2756 | IList, Index, CurrentObjectType, StructuredList, StructuredIndex, |
2757 | InitRange: SourceRange(D->getBeginLoc(), DIE->getEndLoc())); |
2758 | else if (InitListExpr *Result = dyn_cast<InitListExpr>(Val: ExistingInit)) |
2759 | StructuredList = Result; |
2760 | else { |
2761 | // We are creating an initializer list that initializes the |
2762 | // subobjects of the current object, but there was already an |
2763 | // initialization that completely initialized the current |
2764 | // subobject, e.g., by a compound literal: |
2765 | // |
2766 | // struct X { int a, b; }; |
2767 | // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; |
2768 | // |
2769 | // Here, xs[0].a == 1 and xs[0].b == 3, since the second, |
2770 | // designated initializer re-initializes only its current object |
2771 | // subobject [0].b. |
2772 | diagnoseInitOverride(OldInit: ExistingInit, |
2773 | NewInitRange: SourceRange(D->getBeginLoc(), DIE->getEndLoc()), |
2774 | /*UnionOverride=*/false, |
2775 | /*FullyOverwritten=*/false); |
2776 | |
2777 | if (!VerifyOnly) { |
2778 | if (DesignatedInitUpdateExpr *E = |
2779 | dyn_cast<DesignatedInitUpdateExpr>(Val: ExistingInit)) |
2780 | StructuredList = E->getUpdater(); |
2781 | else { |
2782 | DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) |
2783 | DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), |
2784 | ExistingInit, DIE->getEndLoc()); |
2785 | StructuredList->updateInit(C: SemaRef.Context, Init: StructuredIndex, expr: DIUE); |
2786 | StructuredList = DIUE->getUpdater(); |
2787 | } |
2788 | } else { |
2789 | // We don't need to track the structured representation of a |
2790 | // designated init update of an already-fully-initialized object in |
2791 | // verify-only mode. The only reason we would need the structure is |
2792 | // to determine where the uninitialized "holes" are, and in this |
2793 | // case, we know there aren't any and we can't introduce any. |
2794 | StructuredList = nullptr; |
2795 | } |
2796 | } |
2797 | } |
2798 | } |
2799 | |
2800 | if (D->isFieldDesignator()) { |
2801 | // C99 6.7.8p7: |
2802 | // |
2803 | // If a designator has the form |
2804 | // |
2805 | // . identifier |
2806 | // |
2807 | // then the current object (defined below) shall have |
2808 | // structure or union type and the identifier shall be the |
2809 | // name of a member of that type. |
2810 | RecordDecl *RD = getRecordDecl(DeclType: CurrentObjectType); |
2811 | if (!RD) { |
2812 | SourceLocation Loc = D->getDotLoc(); |
2813 | if (Loc.isInvalid()) |
2814 | Loc = D->getFieldLoc(); |
2815 | if (!VerifyOnly) |
2816 | SemaRef.Diag(Loc, DiagID: diag::err_field_designator_non_aggr) |
2817 | << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; |
2818 | ++Index; |
2819 | return true; |
2820 | } |
2821 | |
2822 | FieldDecl *KnownField = D->getFieldDecl(); |
2823 | if (!KnownField) { |
2824 | const IdentifierInfo *FieldName = D->getFieldName(); |
2825 | ValueDecl *VD = SemaRef.tryLookupUnambiguousFieldDecl(ClassDecl: RD, MemberOrBase: FieldName); |
2826 | if (auto *FD = dyn_cast_if_present<FieldDecl>(Val: VD)) { |
2827 | KnownField = FD; |
2828 | } else if (auto *IFD = dyn_cast_if_present<IndirectFieldDecl>(Val: VD)) { |
2829 | // In verify mode, don't modify the original. |
2830 | if (VerifyOnly) |
2831 | DIE = CloneDesignatedInitExpr(SemaRef, DIE); |
2832 | ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IndirectField: IFD); |
2833 | D = DIE->getDesignator(Idx: DesigIdx); |
2834 | KnownField = cast<FieldDecl>(Val: *IFD->chain_begin()); |
2835 | } |
2836 | if (!KnownField) { |
2837 | if (VerifyOnly) { |
2838 | ++Index; |
2839 | return true; // No typo correction when just trying this out. |
2840 | } |
2841 | |
2842 | // We found a placeholder variable |
2843 | if (SemaRef.DiagRedefinedPlaceholderFieldDecl(Loc: DIE->getBeginLoc(), ClassDecl: RD, |
2844 | Name: FieldName)) { |
2845 | ++Index; |
2846 | return true; |
2847 | } |
2848 | // Name lookup found something, but it wasn't a field. |
2849 | if (DeclContextLookupResult Lookup = RD->lookup(Name: FieldName); |
2850 | !Lookup.empty()) { |
2851 | SemaRef.Diag(Loc: D->getFieldLoc(), DiagID: diag::err_field_designator_nonfield) |
2852 | << FieldName; |
2853 | SemaRef.Diag(Loc: Lookup.front()->getLocation(), |
2854 | DiagID: diag::note_field_designator_found); |
2855 | ++Index; |
2856 | return true; |
2857 | } |
2858 | |
2859 | // Name lookup didn't find anything. |
2860 | // Determine whether this was a typo for another field name. |
2861 | FieldInitializerValidatorCCC CCC(RD); |
2862 | if (TypoCorrection Corrected = SemaRef.CorrectTypo( |
2863 | Typo: DeclarationNameInfo(FieldName, D->getFieldLoc()), |
2864 | LookupKind: Sema::LookupMemberName, /*Scope=*/S: nullptr, /*SS=*/nullptr, CCC, |
2865 | Mode: Sema::CTK_ErrorRecovery, MemberContext: RD)) { |
2866 | SemaRef.diagnoseTypo( |
2867 | Correction: Corrected, |
2868 | TypoDiag: SemaRef.PDiag(DiagID: diag::err_field_designator_unknown_suggest) |
2869 | << FieldName << CurrentObjectType); |
2870 | KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); |
2871 | hadError = true; |
2872 | } else { |
2873 | // Typo correction didn't find anything. |
2874 | SourceLocation Loc = D->getFieldLoc(); |
2875 | |
2876 | // The loc can be invalid with a "null" designator (i.e. an anonymous |
2877 | // union/struct). Do our best to approximate the location. |
2878 | if (Loc.isInvalid()) |
2879 | Loc = IList->getBeginLoc(); |
2880 | |
2881 | SemaRef.Diag(Loc, DiagID: diag::err_field_designator_unknown) |
2882 | << FieldName << CurrentObjectType << DIE->getSourceRange(); |
2883 | ++Index; |
2884 | return true; |
2885 | } |
2886 | } |
2887 | } |
2888 | |
2889 | unsigned NumBases = 0; |
2890 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) |
2891 | NumBases = CXXRD->getNumBases(); |
2892 | |
2893 | unsigned FieldIndex = NumBases; |
2894 | |
2895 | for (auto *FI : RD->fields()) { |
2896 | if (FI->isUnnamedBitField()) |
2897 | continue; |
2898 | if (declaresSameEntity(D1: KnownField, D2: FI)) { |
2899 | KnownField = FI; |
2900 | break; |
2901 | } |
2902 | ++FieldIndex; |
2903 | } |
2904 | |
2905 | RecordDecl::field_iterator Field = |
2906 | RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); |
2907 | |
2908 | // All of the fields of a union are located at the same place in |
2909 | // the initializer list. |
2910 | if (RD->isUnion()) { |
2911 | FieldIndex = 0; |
2912 | if (StructuredList) { |
2913 | FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); |
2914 | if (CurrentField && !declaresSameEntity(D1: CurrentField, D2: *Field)) { |
2915 | assert(StructuredList->getNumInits() == 1 |
2916 | && "A union should never have more than one initializer!" ); |
2917 | |
2918 | Expr *ExistingInit = StructuredList->getInit(Init: 0); |
2919 | if (ExistingInit) { |
2920 | // We're about to throw away an initializer, emit warning. |
2921 | diagnoseInitOverride( |
2922 | OldInit: ExistingInit, NewInitRange: SourceRange(D->getBeginLoc(), DIE->getEndLoc()), |
2923 | /*UnionOverride=*/true, |
2924 | /*FullyOverwritten=*/SemaRef.getLangOpts().CPlusPlus ? false |
2925 | : true); |
2926 | } |
2927 | |
2928 | // remove existing initializer |
2929 | StructuredList->resizeInits(Context: SemaRef.Context, NumInits: 0); |
2930 | StructuredList->setInitializedFieldInUnion(nullptr); |
2931 | } |
2932 | |
2933 | StructuredList->setInitializedFieldInUnion(*Field); |
2934 | } |
2935 | } |
2936 | |
2937 | // Make sure we can use this declaration. |
2938 | bool InvalidUse; |
2939 | if (VerifyOnly) |
2940 | InvalidUse = !SemaRef.CanUseDecl(D: *Field, TreatUnavailableAsInvalid); |
2941 | else |
2942 | InvalidUse = SemaRef.DiagnoseUseOfDecl(D: *Field, Locs: D->getFieldLoc()); |
2943 | if (InvalidUse) { |
2944 | ++Index; |
2945 | return true; |
2946 | } |
2947 | |
2948 | // C++20 [dcl.init.list]p3: |
2949 | // The ordered identifiers in the designators of the designated- |
2950 | // initializer-list shall form a subsequence of the ordered identifiers |
2951 | // in the direct non-static data members of T. |
2952 | // |
2953 | // Note that this is not a condition on forming the aggregate |
2954 | // initialization, only on actually performing initialization, |
2955 | // so it is not checked in VerifyOnly mode. |
2956 | // |
2957 | // FIXME: This is the only reordering diagnostic we produce, and it only |
2958 | // catches cases where we have a top-level field designator that jumps |
2959 | // backwards. This is the only such case that is reachable in an |
2960 | // otherwise-valid C++20 program, so is the only case that's required for |
2961 | // conformance, but for consistency, we should diagnose all the other |
2962 | // cases where a designator takes us backwards too. |
2963 | if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus && |
2964 | NextField && |
2965 | (*NextField == RD->field_end() || |
2966 | (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) { |
2967 | // Find the field that we just initialized. |
2968 | FieldDecl *PrevField = nullptr; |
2969 | for (auto FI = RD->field_begin(); FI != RD->field_end(); ++FI) { |
2970 | if (FI->isUnnamedBitField()) |
2971 | continue; |
2972 | if (*NextField != RD->field_end() && |
2973 | declaresSameEntity(D1: *FI, D2: **NextField)) |
2974 | break; |
2975 | PrevField = *FI; |
2976 | } |
2977 | |
2978 | if (PrevField && |
2979 | PrevField->getFieldIndex() > KnownField->getFieldIndex()) { |
2980 | SemaRef.Diag(Loc: DIE->getInit()->getBeginLoc(), |
2981 | DiagID: diag::ext_designated_init_reordered) |
2982 | << KnownField << PrevField << DIE->getSourceRange(); |
2983 | |
2984 | unsigned OldIndex = StructuredIndex - 1; |
2985 | if (StructuredList && OldIndex <= StructuredList->getNumInits()) { |
2986 | if (Expr *PrevInit = StructuredList->getInit(Init: OldIndex)) { |
2987 | SemaRef.Diag(Loc: PrevInit->getBeginLoc(), |
2988 | DiagID: diag::note_previous_field_init) |
2989 | << PrevField << PrevInit->getSourceRange(); |
2990 | } |
2991 | } |
2992 | } |
2993 | } |
2994 | |
2995 | |
2996 | // Update the designator with the field declaration. |
2997 | if (!VerifyOnly) |
2998 | D->setFieldDecl(*Field); |
2999 | |
3000 | // Make sure that our non-designated initializer list has space |
3001 | // for a subobject corresponding to this field. |
3002 | if (StructuredList && FieldIndex >= StructuredList->getNumInits()) |
3003 | StructuredList->resizeInits(Context: SemaRef.Context, NumInits: FieldIndex + 1); |
3004 | |
3005 | // This designator names a flexible array member. |
3006 | if (Field->getType()->isIncompleteArrayType()) { |
3007 | bool Invalid = false; |
3008 | if ((DesigIdx + 1) != DIE->size()) { |
3009 | // We can't designate an object within the flexible array |
3010 | // member (because GCC doesn't allow it). |
3011 | if (!VerifyOnly) { |
3012 | DesignatedInitExpr::Designator *NextD |
3013 | = DIE->getDesignator(Idx: DesigIdx + 1); |
3014 | SemaRef.Diag(Loc: NextD->getBeginLoc(), |
3015 | DiagID: diag::err_designator_into_flexible_array_member) |
3016 | << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); |
3017 | SemaRef.Diag(Loc: Field->getLocation(), DiagID: diag::note_flexible_array_member) |
3018 | << *Field; |
3019 | } |
3020 | Invalid = true; |
3021 | } |
3022 | |
3023 | if (!hadError && !isa<InitListExpr>(Val: DIE->getInit()) && |
3024 | !isa<StringLiteral>(Val: DIE->getInit())) { |
3025 | // The initializer is not an initializer list. |
3026 | if (!VerifyOnly) { |
3027 | SemaRef.Diag(Loc: DIE->getInit()->getBeginLoc(), |
3028 | DiagID: diag::err_flexible_array_init_needs_braces) |
3029 | << DIE->getInit()->getSourceRange(); |
3030 | SemaRef.Diag(Loc: Field->getLocation(), DiagID: diag::note_flexible_array_member) |
3031 | << *Field; |
3032 | } |
3033 | Invalid = true; |
3034 | } |
3035 | |
3036 | // Check GNU flexible array initializer. |
3037 | if (!Invalid && CheckFlexibleArrayInit(Entity, InitExpr: DIE->getInit(), Field: *Field, |
3038 | TopLevelObject)) |
3039 | Invalid = true; |
3040 | |
3041 | if (Invalid) { |
3042 | ++Index; |
3043 | return true; |
3044 | } |
3045 | |
3046 | // Initialize the array. |
3047 | bool prevHadError = hadError; |
3048 | unsigned newStructuredIndex = FieldIndex; |
3049 | unsigned OldIndex = Index; |
3050 | IList->setInit(Init: Index, expr: DIE->getInit()); |
3051 | |
3052 | InitializedEntity MemberEntity = |
3053 | InitializedEntity::InitializeMember(Member: *Field, Parent: &Entity); |
3054 | CheckSubElementType(Entity: MemberEntity, IList, ElemType: Field->getType(), Index, |
3055 | StructuredList, StructuredIndex&: newStructuredIndex); |
3056 | |
3057 | IList->setInit(Init: OldIndex, expr: DIE); |
3058 | if (hadError && !prevHadError) { |
3059 | ++Field; |
3060 | ++FieldIndex; |
3061 | if (NextField) |
3062 | *NextField = Field; |
3063 | StructuredIndex = FieldIndex; |
3064 | return true; |
3065 | } |
3066 | } else { |
3067 | // Recurse to check later designated subobjects. |
3068 | QualType FieldType = Field->getType(); |
3069 | unsigned newStructuredIndex = FieldIndex; |
3070 | |
3071 | InitializedEntity MemberEntity = |
3072 | InitializedEntity::InitializeMember(Member: *Field, Parent: &Entity); |
3073 | if (CheckDesignatedInitializer(Entity: MemberEntity, IList, DIE, DesigIdx: DesigIdx + 1, |
3074 | CurrentObjectType&: FieldType, NextField: nullptr, NextElementIndex: nullptr, Index, |
3075 | StructuredList, StructuredIndex&: newStructuredIndex, |
3076 | FinishSubobjectInit, TopLevelObject: false)) |
3077 | return true; |
3078 | } |
3079 | |
3080 | // Find the position of the next field to be initialized in this |
3081 | // subobject. |
3082 | ++Field; |
3083 | ++FieldIndex; |
3084 | |
3085 | // If this the first designator, our caller will continue checking |
3086 | // the rest of this struct/class/union subobject. |
3087 | if (IsFirstDesignator) { |
3088 | if (Field != RD->field_end() && Field->isUnnamedBitField()) |
3089 | ++Field; |
3090 | |
3091 | if (NextField) |
3092 | *NextField = Field; |
3093 | |
3094 | StructuredIndex = FieldIndex; |
3095 | return false; |
3096 | } |
3097 | |
3098 | if (!FinishSubobjectInit) |
3099 | return false; |
3100 | |
3101 | // We've already initialized something in the union; we're done. |
3102 | if (RD->isUnion()) |
3103 | return hadError; |
3104 | |
3105 | // Check the remaining fields within this class/struct/union subobject. |
3106 | bool prevHadError = hadError; |
3107 | |
3108 | auto NoBases = |
3109 | CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), |
3110 | CXXRecordDecl::base_class_iterator()); |
3111 | CheckStructUnionTypes(Entity, IList, DeclType: CurrentObjectType, Bases: NoBases, Field, |
3112 | SubobjectIsDesignatorContext: false, Index, StructuredList, StructuredIndex&: FieldIndex); |
3113 | return hadError && !prevHadError; |
3114 | } |
3115 | |
3116 | // C99 6.7.8p6: |
3117 | // |
3118 | // If a designator has the form |
3119 | // |
3120 | // [ constant-expression ] |
3121 | // |
3122 | // then the current object (defined below) shall have array |
3123 | // type and the expression shall be an integer constant |
3124 | // expression. If the array is of unknown size, any |
3125 | // nonnegative value is valid. |
3126 | // |
3127 | // Additionally, cope with the GNU extension that permits |
3128 | // designators of the form |
3129 | // |
3130 | // [ constant-expression ... constant-expression ] |
3131 | const ArrayType *AT = SemaRef.Context.getAsArrayType(T: CurrentObjectType); |
3132 | if (!AT) { |
3133 | if (!VerifyOnly) |
3134 | SemaRef.Diag(Loc: D->getLBracketLoc(), DiagID: diag::err_array_designator_non_array) |
3135 | << CurrentObjectType; |
3136 | ++Index; |
3137 | return true; |
3138 | } |
3139 | |
3140 | Expr *IndexExpr = nullptr; |
3141 | llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; |
3142 | if (D->isArrayDesignator()) { |
3143 | IndexExpr = DIE->getArrayIndex(D: *D); |
3144 | DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(Ctx: SemaRef.Context); |
3145 | DesignatedEndIndex = DesignatedStartIndex; |
3146 | } else { |
3147 | assert(D->isArrayRangeDesignator() && "Need array-range designator" ); |
3148 | |
3149 | DesignatedStartIndex = |
3150 | DIE->getArrayRangeStart(D: *D)->EvaluateKnownConstInt(Ctx: SemaRef.Context); |
3151 | DesignatedEndIndex = |
3152 | DIE->getArrayRangeEnd(D: *D)->EvaluateKnownConstInt(Ctx: SemaRef.Context); |
3153 | IndexExpr = DIE->getArrayRangeEnd(D: *D); |
3154 | |
3155 | // Codegen can't handle evaluating array range designators that have side |
3156 | // effects, because we replicate the AST value for each initialized element. |
3157 | // As such, set the sawArrayRangeDesignator() bit if we initialize multiple |
3158 | // elements with something that has a side effect, so codegen can emit an |
3159 | // "error unsupported" error instead of miscompiling the app. |
3160 | if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& |
3161 | DIE->getInit()->HasSideEffects(Ctx: SemaRef.Context) && !VerifyOnly) |
3162 | FullyStructuredList->sawArrayRangeDesignator(); |
3163 | } |
3164 | |
3165 | if (isa<ConstantArrayType>(Val: AT)) { |
3166 | llvm::APSInt MaxElements(cast<ConstantArrayType>(Val: AT)->getSize(), false); |
3167 | DesignatedStartIndex |
3168 | = DesignatedStartIndex.extOrTrunc(width: MaxElements.getBitWidth()); |
3169 | DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); |
3170 | DesignatedEndIndex |
3171 | = DesignatedEndIndex.extOrTrunc(width: MaxElements.getBitWidth()); |
3172 | DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); |
3173 | if (DesignatedEndIndex >= MaxElements) { |
3174 | if (!VerifyOnly) |
3175 | SemaRef.Diag(Loc: IndexExpr->getBeginLoc(), |
3176 | DiagID: diag::err_array_designator_too_large) |
3177 | << toString(I: DesignatedEndIndex, Radix: 10) << toString(I: MaxElements, Radix: 10) |
3178 | << IndexExpr->getSourceRange(); |
3179 | ++Index; |
3180 | return true; |
3181 | } |
3182 | } else { |
3183 | unsigned DesignatedIndexBitWidth = |
3184 | ConstantArrayType::getMaxSizeBits(Context: SemaRef.Context); |
3185 | DesignatedStartIndex = |
3186 | DesignatedStartIndex.extOrTrunc(width: DesignatedIndexBitWidth); |
3187 | DesignatedEndIndex = |
3188 | DesignatedEndIndex.extOrTrunc(width: DesignatedIndexBitWidth); |
3189 | DesignatedStartIndex.setIsUnsigned(true); |
3190 | DesignatedEndIndex.setIsUnsigned(true); |
3191 | } |
3192 | |
3193 | bool IsStringLiteralInitUpdate = |
3194 | StructuredList && StructuredList->isStringLiteralInit(); |
3195 | if (IsStringLiteralInitUpdate && VerifyOnly) { |
3196 | // We're just verifying an update to a string literal init. We don't need |
3197 | // to split the string up into individual characters to do that. |
3198 | StructuredList = nullptr; |
3199 | } else if (IsStringLiteralInitUpdate) { |
3200 | // We're modifying a string literal init; we have to decompose the string |
3201 | // so we can modify the individual characters. |
3202 | ASTContext &Context = SemaRef.Context; |
3203 | Expr *SubExpr = StructuredList->getInit(Init: 0)->IgnoreParenImpCasts(); |
3204 | |
3205 | // Compute the character type |
3206 | QualType CharTy = AT->getElementType(); |
3207 | |
3208 | // Compute the type of the integer literals. |
3209 | QualType PromotedCharTy = CharTy; |
3210 | if (Context.isPromotableIntegerType(T: CharTy)) |
3211 | PromotedCharTy = Context.getPromotedIntegerType(PromotableType: CharTy); |
3212 | unsigned PromotedCharTyWidth = Context.getTypeSize(T: PromotedCharTy); |
3213 | |
3214 | if (StringLiteral *SL = dyn_cast<StringLiteral>(Val: SubExpr)) { |
3215 | // Get the length of the string. |
3216 | uint64_t StrLen = SL->getLength(); |
3217 | if (cast<ConstantArrayType>(Val: AT)->getSize().ult(RHS: StrLen)) |
3218 | StrLen = cast<ConstantArrayType>(Val: AT)->getZExtSize(); |
3219 | StructuredList->resizeInits(Context, NumInits: StrLen); |
3220 | |
3221 | // Build a literal for each character in the string, and put them into |
3222 | // the init list. |
3223 | for (unsigned i = 0, e = StrLen; i != e; ++i) { |
3224 | llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); |
3225 | Expr *Init = new (Context) IntegerLiteral( |
3226 | Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); |
3227 | if (CharTy != PromotedCharTy) |
3228 | Init = ImplicitCastExpr::Create(Context, T: CharTy, Kind: CK_IntegralCast, |
3229 | Operand: Init, BasePath: nullptr, Cat: VK_PRValue, |
3230 | FPO: FPOptionsOverride()); |
3231 | StructuredList->updateInit(C: Context, Init: i, expr: Init); |
3232 | } |
3233 | } else { |
3234 | ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(Val: SubExpr); |
3235 | std::string Str; |
3236 | Context.getObjCEncodingForType(T: E->getEncodedType(), S&: Str); |
3237 | |
3238 | // Get the length of the string. |
3239 | uint64_t StrLen = Str.size(); |
3240 | if (cast<ConstantArrayType>(Val: AT)->getSize().ult(RHS: StrLen)) |
3241 | StrLen = cast<ConstantArrayType>(Val: AT)->getZExtSize(); |
3242 | StructuredList->resizeInits(Context, NumInits: StrLen); |
3243 | |
3244 | // Build a literal for each character in the string, and put them into |
3245 | // the init list. |
3246 | for (unsigned i = 0, e = StrLen; i != e; ++i) { |
3247 | llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); |
3248 | Expr *Init = new (Context) IntegerLiteral( |
3249 | Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); |
3250 | if (CharTy != PromotedCharTy) |
3251 | Init = ImplicitCastExpr::Create(Context, T: CharTy, Kind: CK_IntegralCast, |
3252 | Operand: Init, BasePath: nullptr, Cat: VK_PRValue, |
3253 | FPO: FPOptionsOverride()); |
3254 | StructuredList->updateInit(C: Context, Init: i, expr: Init); |
3255 | } |
3256 | } |
3257 | } |
3258 | |
3259 | // Make sure that our non-designated initializer list has space |
3260 | // for a subobject corresponding to this array element. |
3261 | if (StructuredList && |
3262 | DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) |
3263 | StructuredList->resizeInits(Context: SemaRef.Context, |
3264 | NumInits: DesignatedEndIndex.getZExtValue() + 1); |
3265 | |
3266 | // Repeatedly perform subobject initializations in the range |
3267 | // [DesignatedStartIndex, DesignatedEndIndex]. |
3268 | |
3269 | // Move to the next designator |
3270 | unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); |
3271 | unsigned OldIndex = Index; |
3272 | |
3273 | InitializedEntity ElementEntity = |
3274 | InitializedEntity::InitializeElement(Context&: SemaRef.Context, Index: 0, Parent: Entity); |
3275 | |
3276 | while (DesignatedStartIndex <= DesignatedEndIndex) { |
3277 | // Recurse to check later designated subobjects. |
3278 | QualType ElementType = AT->getElementType(); |
3279 | Index = OldIndex; |
3280 | |
3281 | ElementEntity.setElementIndex(ElementIndex); |
3282 | if (CheckDesignatedInitializer( |
3283 | Entity: ElementEntity, IList, DIE, DesigIdx: DesigIdx + 1, CurrentObjectType&: ElementType, NextField: nullptr, |
3284 | NextElementIndex: nullptr, Index, StructuredList, StructuredIndex&: ElementIndex, |
3285 | FinishSubobjectInit: FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), |
3286 | TopLevelObject: false)) |
3287 | return true; |
3288 | |
3289 | // Move to the next index in the array that we'll be initializing. |
3290 | ++DesignatedStartIndex; |
3291 | ElementIndex = DesignatedStartIndex.getZExtValue(); |
3292 | } |
3293 | |
3294 | // If this the first designator, our caller will continue checking |
3295 | // the rest of this array subobject. |
3296 | if (IsFirstDesignator) { |
3297 | if (NextElementIndex) |
3298 | *NextElementIndex = DesignatedStartIndex; |
3299 | StructuredIndex = ElementIndex; |
3300 | return false; |
3301 | } |
3302 | |
3303 | if (!FinishSubobjectInit) |
3304 | return false; |
3305 | |
3306 | // Check the remaining elements within this array subobject. |
3307 | bool prevHadError = hadError; |
3308 | CheckArrayType(Entity, IList, DeclType&: CurrentObjectType, elementIndex: DesignatedStartIndex, |
3309 | /*SubobjectIsDesignatorContext=*/false, Index, |
3310 | StructuredList, StructuredIndex&: ElementIndex); |
3311 | return hadError && !prevHadError; |
3312 | } |
3313 | |
3314 | // Get the structured initializer list for a subobject of type |
3315 | // @p CurrentObjectType. |
3316 | InitListExpr * |
3317 | InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, |
3318 | QualType CurrentObjectType, |
3319 | InitListExpr *StructuredList, |
3320 | unsigned StructuredIndex, |
3321 | SourceRange InitRange, |
3322 | bool IsFullyOverwritten) { |
3323 | if (!StructuredList) |
3324 | return nullptr; |
3325 | |
3326 | Expr *ExistingInit = nullptr; |
3327 | if (StructuredIndex < StructuredList->getNumInits()) |
3328 | ExistingInit = StructuredList->getInit(Init: StructuredIndex); |
3329 | |
3330 | if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(Val: ExistingInit)) |
3331 | // There might have already been initializers for subobjects of the current |
3332 | // object, but a subsequent initializer list will overwrite the entirety |
3333 | // of the current object. (See DR 253 and C99 6.7.8p21). e.g., |
3334 | // |
3335 | // struct P { char x[6]; }; |
3336 | // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; |
3337 | // |
3338 | // The first designated initializer is ignored, and l.x is just "f". |
3339 | if (!IsFullyOverwritten) |
3340 | return Result; |
3341 | |
3342 | if (ExistingInit) { |
3343 | // We are creating an initializer list that initializes the |
3344 | // subobjects of the current object, but there was already an |
3345 | // initialization that completely initialized the current |
3346 | // subobject: |
3347 | // |
3348 | // struct X { int a, b; }; |
3349 | // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 }; |
3350 | // |
3351 | // Here, xs[0].a == 1 and xs[0].b == 3, since the second, |
3352 | // designated initializer overwrites the [0].b initializer |
3353 | // from the prior initialization. |
3354 | // |
3355 | // When the existing initializer is an expression rather than an |
3356 | // initializer list, we cannot decompose and update it in this way. |
3357 | // For example: |
3358 | // |
3359 | // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; |
3360 | // |
3361 | // This case is handled by CheckDesignatedInitializer. |
3362 | diagnoseInitOverride(OldInit: ExistingInit, NewInitRange: InitRange); |
3363 | } |
3364 | |
3365 | unsigned ExpectedNumInits = 0; |
3366 | if (Index < IList->getNumInits()) { |
3367 | if (auto *Init = dyn_cast_or_null<InitListExpr>(Val: IList->getInit(Init: Index))) |
3368 | ExpectedNumInits = Init->getNumInits(); |
3369 | else |
3370 | ExpectedNumInits = IList->getNumInits() - Index; |
3371 | } |
3372 | |
3373 | InitListExpr *Result = |
3374 | createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits); |
3375 | |
3376 | // Link this new initializer list into the structured initializer |
3377 | // lists. |
3378 | StructuredList->updateInit(C: SemaRef.Context, Init: StructuredIndex, expr: Result); |
3379 | return Result; |
3380 | } |
3381 | |
3382 | InitListExpr * |
3383 | InitListChecker::createInitListExpr(QualType CurrentObjectType, |
3384 | SourceRange InitRange, |
3385 | unsigned ExpectedNumInits) { |
3386 | InitListExpr *Result = new (SemaRef.Context) InitListExpr( |
3387 | SemaRef.Context, InitRange.getBegin(), std::nullopt, InitRange.getEnd()); |
3388 | |
3389 | QualType ResultType = CurrentObjectType; |
3390 | if (!ResultType->isArrayType()) |
3391 | ResultType = ResultType.getNonLValueExprType(Context: SemaRef.Context); |
3392 | Result->setType(ResultType); |
3393 | |
3394 | // Pre-allocate storage for the structured initializer list. |
3395 | unsigned NumElements = 0; |
3396 | |
3397 | if (const ArrayType *AType |
3398 | = SemaRef.Context.getAsArrayType(T: CurrentObjectType)) { |
3399 | if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(Val: AType)) { |
3400 | NumElements = CAType->getZExtSize(); |
3401 | // Simple heuristic so that we don't allocate a very large |
3402 | // initializer with many empty entries at the end. |
3403 | if (NumElements > ExpectedNumInits) |
3404 | NumElements = 0; |
3405 | } |
3406 | } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) { |
3407 | NumElements = VType->getNumElements(); |
3408 | } else if (CurrentObjectType->isRecordType()) { |
3409 | NumElements = numStructUnionElements(DeclType: CurrentObjectType); |
3410 | } else if (CurrentObjectType->isDependentType()) { |
3411 | NumElements = 1; |
3412 | } |
3413 | |
3414 | Result->reserveInits(C: SemaRef.Context, NumInits: NumElements); |
3415 | |
3416 | return Result; |
3417 | } |
3418 | |
3419 | /// Update the initializer at index @p StructuredIndex within the |
3420 | /// structured initializer list to the value @p expr. |
3421 | void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, |
3422 | unsigned &StructuredIndex, |
3423 | Expr *expr) { |
3424 | // No structured initializer list to update |
3425 | if (!StructuredList) |
3426 | return; |
3427 | |
3428 | if (Expr *PrevInit = StructuredList->updateInit(C: SemaRef.Context, |
3429 | Init: StructuredIndex, expr)) { |
3430 | // This initializer overwrites a previous initializer. |
3431 | // No need to diagnose when `expr` is nullptr because a more relevant |
3432 | // diagnostic has already been issued and this diagnostic is potentially |
3433 | // noise. |
3434 | if (expr) |
3435 | diagnoseInitOverride(OldInit: PrevInit, NewInitRange: expr->getSourceRange()); |
3436 | } |
3437 | |
3438 | ++StructuredIndex; |
3439 | } |
3440 | |
3441 | bool Sema::CanPerformAggregateInitializationForOverloadResolution( |
3442 | const InitializedEntity &Entity, InitListExpr *From) { |
3443 | QualType Type = Entity.getType(); |
3444 | InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true, |
3445 | /*TreatUnavailableAsInvalid=*/false, |
3446 | /*InOverloadResolution=*/true); |
3447 | return !Check.HadError(); |
3448 | } |
3449 | |
3450 | /// Check that the given Index expression is a valid array designator |
3451 | /// value. This is essentially just a wrapper around |
3452 | /// VerifyIntegerConstantExpression that also checks for negative values |
3453 | /// and produces a reasonable diagnostic if there is a |
3454 | /// failure. Returns the index expression, possibly with an implicit cast |
3455 | /// added, on success. If everything went okay, Value will receive the |
3456 | /// value of the constant expression. |
3457 | static ExprResult |
3458 | CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { |
3459 | SourceLocation Loc = Index->getBeginLoc(); |
3460 | |
3461 | // Make sure this is an integer constant expression. |
3462 | ExprResult Result = |
3463 | S.VerifyIntegerConstantExpression(E: Index, Result: &Value, CanFold: Sema::AllowFold); |
3464 | if (Result.isInvalid()) |
3465 | return Result; |
3466 | |
3467 | if (Value.isSigned() && Value.isNegative()) |
3468 | return S.Diag(Loc, DiagID: diag::err_array_designator_negative) |
3469 | << toString(I: Value, Radix: 10) << Index->getSourceRange(); |
3470 | |
3471 | Value.setIsUnsigned(true); |
3472 | return Result; |
3473 | } |
3474 | |
3475 | ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, |
3476 | SourceLocation EqualOrColonLoc, |
3477 | bool GNUSyntax, |
3478 | ExprResult Init) { |
3479 | typedef DesignatedInitExpr::Designator ASTDesignator; |
3480 | |
3481 | bool Invalid = false; |
3482 | SmallVector<ASTDesignator, 32> Designators; |
3483 | SmallVector<Expr *, 32> InitExpressions; |
3484 | |
3485 | // Build designators and check array designator expressions. |
3486 | for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { |
3487 | const Designator &D = Desig.getDesignator(Idx); |
3488 | |
3489 | if (D.isFieldDesignator()) { |
3490 | Designators.push_back(Elt: ASTDesignator::CreateFieldDesignator( |
3491 | FieldName: D.getFieldDecl(), DotLoc: D.getDotLoc(), FieldLoc: D.getFieldLoc())); |
3492 | } else if (D.isArrayDesignator()) { |
3493 | Expr *Index = static_cast<Expr *>(D.getArrayIndex()); |
3494 | llvm::APSInt IndexValue; |
3495 | if (!Index->isTypeDependent() && !Index->isValueDependent()) |
3496 | Index = CheckArrayDesignatorExpr(S&: *this, Index, Value&: IndexValue).get(); |
3497 | if (!Index) |
3498 | Invalid = true; |
3499 | else { |
3500 | Designators.push_back(Elt: ASTDesignator::CreateArrayDesignator( |
3501 | Index: InitExpressions.size(), LBracketLoc: D.getLBracketLoc(), RBracketLoc: D.getRBracketLoc())); |
3502 | InitExpressions.push_back(Elt: Index); |
3503 | } |
3504 | } else if (D.isArrayRangeDesignator()) { |
3505 | Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); |
3506 | Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); |
3507 | llvm::APSInt StartValue; |
3508 | llvm::APSInt EndValue; |
3509 | bool StartDependent = StartIndex->isTypeDependent() || |
3510 | StartIndex->isValueDependent(); |
3511 | bool EndDependent = EndIndex->isTypeDependent() || |
3512 | EndIndex->isValueDependent(); |
3513 | if (!StartDependent) |
3514 | StartIndex = |
3515 | CheckArrayDesignatorExpr(S&: *this, Index: StartIndex, Value&: StartValue).get(); |
3516 | if (!EndDependent) |
3517 | EndIndex = CheckArrayDesignatorExpr(S&: *this, Index: EndIndex, Value&: EndValue).get(); |
3518 | |
3519 | if (!StartIndex || !EndIndex) |
3520 | Invalid = true; |
3521 | else { |
3522 | // Make sure we're comparing values with the same bit width. |
3523 | if (StartDependent || EndDependent) { |
3524 | // Nothing to compute. |
3525 | } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) |
3526 | EndValue = EndValue.extend(width: StartValue.getBitWidth()); |
3527 | else if (StartValue.getBitWidth() < EndValue.getBitWidth()) |
3528 | StartValue = StartValue.extend(width: EndValue.getBitWidth()); |
3529 | |
3530 | if (!StartDependent && !EndDependent && EndValue < StartValue) { |
3531 | Diag(Loc: D.getEllipsisLoc(), DiagID: diag::err_array_designator_empty_range) |
3532 | << toString(I: StartValue, Radix: 10) << toString(I: EndValue, Radix: 10) |
3533 | << StartIndex->getSourceRange() << EndIndex->getSourceRange(); |
3534 | Invalid = true; |
3535 | } else { |
3536 | Designators.push_back(Elt: ASTDesignator::CreateArrayRangeDesignator( |
3537 | Index: InitExpressions.size(), LBracketLoc: D.getLBracketLoc(), EllipsisLoc: D.getEllipsisLoc(), |
3538 | RBracketLoc: D.getRBracketLoc())); |
3539 | InitExpressions.push_back(Elt: StartIndex); |
3540 | InitExpressions.push_back(Elt: EndIndex); |
3541 | } |
3542 | } |
3543 | } |
3544 | } |
3545 | |
3546 | if (Invalid || Init.isInvalid()) |
3547 | return ExprError(); |
3548 | |
3549 | return DesignatedInitExpr::Create(C: Context, Designators, IndexExprs: InitExpressions, |
3550 | EqualOrColonLoc, GNUSyntax, |
3551 | Init: Init.getAs<Expr>()); |
3552 | } |
3553 | |
3554 | //===----------------------------------------------------------------------===// |
3555 | // Initialization entity |
3556 | //===----------------------------------------------------------------------===// |
3557 | |
3558 | InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, |
3559 | const InitializedEntity &Parent) |
3560 | : Parent(&Parent), Index(Index) |
3561 | { |
3562 | if (const ArrayType *AT = Context.getAsArrayType(T: Parent.getType())) { |
3563 | Kind = EK_ArrayElement; |
3564 | Type = AT->getElementType(); |
3565 | } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { |
3566 | Kind = EK_VectorElement; |
3567 | Type = VT->getElementType(); |
3568 | } else { |
3569 | const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); |
3570 | assert(CT && "Unexpected type" ); |
3571 | Kind = EK_ComplexElement; |
3572 | Type = CT->getElementType(); |
3573 | } |
3574 | } |
3575 | |
3576 | InitializedEntity |
3577 | InitializedEntity::InitializeBase(ASTContext &Context, |
3578 | const CXXBaseSpecifier *Base, |
3579 | bool IsInheritedVirtualBase, |
3580 | const InitializedEntity *Parent) { |
3581 | InitializedEntity Result; |
3582 | Result.Kind = EK_Base; |
3583 | Result.Parent = Parent; |
3584 | Result.Base = {Base, IsInheritedVirtualBase}; |
3585 | Result.Type = Base->getType(); |
3586 | return Result; |
3587 | } |
3588 | |
3589 | DeclarationName InitializedEntity::getName() const { |
3590 | switch (getKind()) { |
3591 | case EK_Parameter: |
3592 | case EK_Parameter_CF_Audited: { |
3593 | ParmVarDecl *D = Parameter.getPointer(); |
3594 | return (D ? D->getDeclName() : DeclarationName()); |
3595 | } |
3596 | |
3597 | case EK_Variable: |
3598 | case EK_Member: |
3599 | case EK_ParenAggInitMember: |
3600 | case EK_Binding: |
3601 | case EK_TemplateParameter: |
3602 | return Variable.VariableOrMember->getDeclName(); |
3603 | |
3604 | case EK_LambdaCapture: |
3605 | return DeclarationName(Capture.VarID); |
3606 | |
3607 | case EK_Result: |
3608 | case EK_StmtExprResult: |
3609 | case EK_Exception: |
3610 | case EK_New: |
3611 | case EK_Temporary: |
3612 | case EK_Base: |
3613 | case EK_Delegating: |
3614 | case EK_ArrayElement: |
3615 | case EK_VectorElement: |
3616 | case EK_ComplexElement: |
3617 | case EK_BlockElement: |
3618 | case EK_LambdaToBlockConversionBlockElement: |
3619 | case EK_CompoundLiteralInit: |
3620 | case EK_RelatedResult: |
3621 | return DeclarationName(); |
3622 | } |
3623 | |
3624 | llvm_unreachable("Invalid EntityKind!" ); |
3625 | } |
3626 | |
3627 | ValueDecl *InitializedEntity::getDecl() const { |
3628 | switch (getKind()) { |
3629 | case EK_Variable: |
3630 | case EK_Member: |
3631 | case EK_ParenAggInitMember: |
3632 | case EK_Binding: |
3633 | case EK_TemplateParameter: |
3634 | return Variable.VariableOrMember; |
3635 | |
3636 | case EK_Parameter: |
3637 | case EK_Parameter_CF_Audited: |
3638 | return Parameter.getPointer(); |
3639 | |
3640 | case EK_Result: |
3641 | case EK_StmtExprResult: |
3642 | case EK_Exception: |
3643 | case EK_New: |
3644 | case EK_Temporary: |
3645 | case EK_Base: |
3646 | case EK_Delegating: |
3647 | case EK_ArrayElement: |
3648 | case EK_VectorElement: |
3649 | case EK_ComplexElement: |
3650 | case EK_BlockElement: |
3651 | case EK_LambdaToBlockConversionBlockElement: |
3652 | case EK_LambdaCapture: |
3653 | case EK_CompoundLiteralInit: |
3654 | case EK_RelatedResult: |
3655 | return nullptr; |
3656 | } |
3657 | |
3658 | llvm_unreachable("Invalid EntityKind!" ); |
3659 | } |
3660 | |
3661 | bool InitializedEntity::allowsNRVO() const { |
3662 | switch (getKind()) { |
3663 | case EK_Result: |
3664 | case EK_Exception: |
3665 | return LocAndNRVO.NRVO; |
3666 | |
3667 | case EK_StmtExprResult: |
3668 | case EK_Variable: |
3669 | case EK_Parameter: |
3670 | case EK_Parameter_CF_Audited: |
3671 | case EK_TemplateParameter: |
3672 | case EK_Member: |
3673 | case EK_ParenAggInitMember: |
3674 | case EK_Binding: |
3675 | case EK_New: |
3676 | case EK_Temporary: |
3677 | case EK_CompoundLiteralInit: |
3678 | case EK_Base: |
3679 | case EK_Delegating: |
3680 | case EK_ArrayElement: |
3681 | case EK_VectorElement: |
3682 | case EK_ComplexElement: |
3683 | case EK_BlockElement: |
3684 | case EK_LambdaToBlockConversionBlockElement: |
3685 | case EK_LambdaCapture: |
3686 | case EK_RelatedResult: |
3687 | break; |
3688 | } |
3689 | |
3690 | return false; |
3691 | } |
3692 | |
3693 | unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { |
3694 | assert(getParent() != this); |
3695 | unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; |
3696 | for (unsigned I = 0; I != Depth; ++I) |
3697 | OS << "`-" ; |
3698 | |
3699 | switch (getKind()) { |
3700 | case EK_Variable: OS << "Variable" ; break; |
3701 | case EK_Parameter: OS << "Parameter" ; break; |
3702 | case EK_Parameter_CF_Audited: OS << "CF audited function Parameter" ; |
3703 | break; |
3704 | case EK_TemplateParameter: OS << "TemplateParameter" ; break; |
3705 | case EK_Result: OS << "Result" ; break; |
3706 | case EK_StmtExprResult: OS << "StmtExprResult" ; break; |
3707 | case EK_Exception: OS << "Exception" ; break; |
3708 | case EK_Member: |
3709 | case EK_ParenAggInitMember: |
3710 | OS << "Member" ; |
3711 | break; |
3712 | case EK_Binding: OS << "Binding" ; break; |
3713 | case EK_New: OS << "New" ; break; |
3714 | case EK_Temporary: OS << "Temporary" ; break; |
3715 | case EK_CompoundLiteralInit: OS << "CompoundLiteral" ;break; |
3716 | case EK_RelatedResult: OS << "RelatedResult" ; break; |
3717 | case EK_Base: OS << "Base" ; break; |
3718 | case EK_Delegating: OS << "Delegating" ; break; |
3719 | case EK_ArrayElement: OS << "ArrayElement " << Index; break; |
3720 | case EK_VectorElement: OS << "VectorElement " << Index; break; |
3721 | case EK_ComplexElement: OS << "ComplexElement " << Index; break; |
3722 | case EK_BlockElement: OS << "Block" ; break; |
3723 | case EK_LambdaToBlockConversionBlockElement: |
3724 | OS << "Block (lambda)" ; |
3725 | break; |
3726 | case EK_LambdaCapture: |
3727 | OS << "LambdaCapture " ; |
3728 | OS << DeclarationName(Capture.VarID); |
3729 | break; |
3730 | } |
3731 | |
3732 | if (auto *D = getDecl()) { |
3733 | OS << " " ; |
3734 | D->printQualifiedName(OS); |
3735 | } |
3736 | |
3737 | OS << " '" << getType() << "'\n" ; |
3738 | |
3739 | return Depth + 1; |
3740 | } |
3741 | |
3742 | LLVM_DUMP_METHOD void InitializedEntity::dump() const { |
3743 | dumpImpl(OS&: llvm::errs()); |
3744 | } |
3745 | |
3746 | //===----------------------------------------------------------------------===// |
3747 | // Initialization sequence |
3748 | //===----------------------------------------------------------------------===// |
3749 | |
3750 | void InitializationSequence::Step::Destroy() { |
3751 | switch (Kind) { |
3752 | case SK_ResolveAddressOfOverloadedFunction: |
3753 | case SK_CastDerivedToBasePRValue: |
3754 | case SK_CastDerivedToBaseXValue: |
3755 | case SK_CastDerivedToBaseLValue: |
3756 | case SK_BindReference: |
3757 | case SK_BindReferenceToTemporary: |
3758 | case SK_FinalCopy: |
3759 | case SK_ExtraneousCopyToTemporary: |
3760 | case SK_UserConversion: |
3761 | case SK_QualificationConversionPRValue: |
3762 | case SK_QualificationConversionXValue: |
3763 | case SK_QualificationConversionLValue: |
3764 | case SK_FunctionReferenceConversion: |
3765 | case SK_AtomicConversion: |
3766 | case SK_ListInitialization: |
3767 | case SK_UnwrapInitList: |
3768 | case SK_RewrapInitList: |
3769 | case SK_ConstructorInitialization: |
3770 | case SK_ConstructorInitializationFromList: |
3771 | case SK_ZeroInitialization: |
3772 | case SK_CAssignment: |
3773 | case SK_StringInit: |
3774 | case SK_ObjCObjectConversion: |
3775 | case SK_ArrayLoopIndex: |
3776 | case SK_ArrayLoopInit: |
3777 | case SK_ArrayInit: |
3778 | case SK_GNUArrayInit: |
3779 | case SK_ParenthesizedArrayInit: |
3780 | case SK_PassByIndirectCopyRestore: |
3781 | case SK_PassByIndirectRestore: |
3782 | case SK_ProduceObjCObject: |
3783 | case SK_StdInitializerList: |
3784 | case SK_StdInitializerListConstructorCall: |
3785 | case SK_OCLSamplerInit: |
3786 | case SK_OCLZeroOpaqueType: |
3787 | case SK_ParenthesizedListInit: |
3788 | break; |
3789 | |
3790 | case SK_ConversionSequence: |
3791 | case SK_ConversionSequenceNoNarrowing: |
3792 | delete ICS; |
3793 | } |
3794 | } |
3795 | |
3796 | bool InitializationSequence::isDirectReferenceBinding() const { |
3797 | // There can be some lvalue adjustments after the SK_BindReference step. |
3798 | for (const Step &S : llvm::reverse(C: Steps)) { |
3799 | if (S.Kind == SK_BindReference) |
3800 | return true; |
3801 | if (S.Kind == SK_BindReferenceToTemporary) |
3802 | return false; |
3803 | } |
3804 | return false; |
3805 | } |
3806 | |
3807 | bool InitializationSequence::isAmbiguous() const { |
3808 | if (!Failed()) |
3809 | return false; |
3810 | |
3811 | switch (getFailureKind()) { |
3812 | case FK_TooManyInitsForReference: |
3813 | case FK_ParenthesizedListInitForReference: |
3814 | case FK_ArrayNeedsInitList: |
3815 | case FK_ArrayNeedsInitListOrStringLiteral: |
3816 | case FK_ArrayNeedsInitListOrWideStringLiteral: |
3817 | case FK_NarrowStringIntoWideCharArray: |
3818 | case FK_WideStringIntoCharArray: |
3819 | case FK_IncompatWideStringIntoWideChar: |
3820 | case FK_PlainStringIntoUTF8Char: |
3821 | case FK_UTF8StringIntoPlainChar: |
3822 | case FK_AddressOfOverloadFailed: // FIXME: Could do better |
3823 | case FK_NonConstLValueReferenceBindingToTemporary: |
3824 | case FK_NonConstLValueReferenceBindingToBitfield: |
3825 | case FK_NonConstLValueReferenceBindingToVectorElement: |
3826 | case FK_NonConstLValueReferenceBindingToMatrixElement: |
3827 | case FK_NonConstLValueReferenceBindingToUnrelated: |
3828 | case FK_RValueReferenceBindingToLValue: |
3829 | case FK_ReferenceAddrspaceMismatchTemporary: |
3830 | case FK_ReferenceInitDropsQualifiers: |
3831 | case FK_ReferenceInitFailed: |
3832 | case FK_ConversionFailed: |
3833 | case FK_ConversionFromPropertyFailed: |
3834 | case FK_TooManyInitsForScalar: |
3835 | case FK_ParenthesizedListInitForScalar: |
3836 | case FK_ReferenceBindingToInitList: |
3837 | case FK_InitListBadDestinationType: |
3838 | case FK_DefaultInitOfConst: |
3839 | case FK_Incomplete: |
3840 | case FK_ArrayTypeMismatch: |
3841 | case FK_NonConstantArrayInit: |
3842 | case FK_ListInitializationFailed: |
3843 | case FK_VariableLengthArrayHasInitializer: |
3844 | case FK_PlaceholderType: |
3845 | case FK_ExplicitConstructor: |
3846 | case FK_AddressOfUnaddressableFunction: |
3847 | case FK_ParenthesizedListInitFailed: |
3848 | case FK_DesignatedInitForNonAggregate: |
3849 | return false; |
3850 | |
3851 | case FK_ReferenceInitOverloadFailed: |
3852 | case FK_UserConversionOverloadFailed: |
3853 | case FK_ConstructorOverloadFailed: |
3854 | case FK_ListConstructorOverloadFailed: |
3855 | return FailedOverloadResult == OR_Ambiguous; |
3856 | } |
3857 | |
3858 | llvm_unreachable("Invalid EntityKind!" ); |
3859 | } |
3860 | |
3861 | bool InitializationSequence::isConstructorInitialization() const { |
3862 | return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; |
3863 | } |
3864 | |
3865 | void |
3866 | InitializationSequence |
3867 | ::AddAddressOverloadResolutionStep(FunctionDecl *Function, |
3868 | DeclAccessPair Found, |
3869 | bool HadMultipleCandidates) { |
3870 | Step S; |
3871 | S.Kind = SK_ResolveAddressOfOverloadedFunction; |
3872 | S.Type = Function->getType(); |
3873 | S.Function.HadMultipleCandidates = HadMultipleCandidates; |
3874 | S.Function.Function = Function; |
3875 | S.Function.FoundDecl = Found; |
3876 | Steps.push_back(Elt: S); |
3877 | } |
3878 | |
3879 | void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, |
3880 | ExprValueKind VK) { |
3881 | Step S; |
3882 | switch (VK) { |
3883 | case VK_PRValue: |
3884 | S.Kind = SK_CastDerivedToBasePRValue; |
3885 | break; |
3886 | case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; |
3887 | case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; |
3888 | } |
3889 | S.Type = BaseType; |
3890 | Steps.push_back(Elt: S); |
3891 | } |
3892 | |
3893 | void InitializationSequence::AddReferenceBindingStep(QualType T, |
3894 | bool BindingTemporary) { |
3895 | Step S; |
3896 | S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; |
3897 | S.Type = T; |
3898 | Steps.push_back(Elt: S); |
3899 | } |
3900 | |
3901 | void InitializationSequence::AddFinalCopy(QualType T) { |
3902 | Step S; |
3903 | S.Kind = SK_FinalCopy; |
3904 | S.Type = T; |
3905 | Steps.push_back(Elt: S); |
3906 | } |
3907 | |
3908 | void InitializationSequence::(QualType T) { |
3909 | Step S; |
3910 | S.Kind = SK_ExtraneousCopyToTemporary; |
3911 | S.Type = T; |
3912 | Steps.push_back(Elt: S); |
3913 | } |
3914 | |
3915 | void |
3916 | InitializationSequence::AddUserConversionStep(FunctionDecl *Function, |
3917 | DeclAccessPair FoundDecl, |
3918 | QualType T, |
3919 | bool HadMultipleCandidates) { |
3920 | Step S; |
3921 | S.Kind = SK_UserConversion; |
3922 | S.Type = T; |
3923 | S.Function.HadMultipleCandidates = HadMultipleCandidates; |
3924 | S.Function.Function = Function; |
3925 | S.Function.FoundDecl = FoundDecl; |
3926 | Steps.push_back(Elt: S); |
3927 | } |
3928 | |
3929 | void InitializationSequence::AddQualificationConversionStep(QualType Ty, |
3930 | ExprValueKind VK) { |
3931 | Step S; |
3932 | S.Kind = SK_QualificationConversionPRValue; // work around a gcc warning |
3933 | switch (VK) { |
3934 | case VK_PRValue: |
3935 | S.Kind = SK_QualificationConversionPRValue; |
3936 | break; |
3937 | case VK_XValue: |
3938 | S.Kind = SK_QualificationConversionXValue; |
3939 | break; |
3940 | case VK_LValue: |
3941 | S.Kind = SK_QualificationConversionLValue; |
3942 | break; |
3943 | } |
3944 | S.Type = Ty; |
3945 | Steps.push_back(Elt: S); |
3946 | } |
3947 | |
3948 | void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) { |
3949 | Step S; |
3950 | S.Kind = SK_FunctionReferenceConversion; |
3951 | S.Type = Ty; |
3952 | Steps.push_back(Elt: S); |
3953 | } |
3954 | |
3955 | void InitializationSequence::AddAtomicConversionStep(QualType Ty) { |
3956 | Step S; |
3957 | S.Kind = SK_AtomicConversion; |
3958 | S.Type = Ty; |
3959 | Steps.push_back(Elt: S); |
3960 | } |
3961 | |
3962 | void InitializationSequence::AddConversionSequenceStep( |
3963 | const ImplicitConversionSequence &ICS, QualType T, |
3964 | bool TopLevelOfInitList) { |
3965 | Step S; |
3966 | S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing |
3967 | : SK_ConversionSequence; |
3968 | S.Type = T; |
3969 | S.ICS = new ImplicitConversionSequence(ICS); |
3970 | Steps.push_back(Elt: S); |
3971 | } |
3972 | |
3973 | void InitializationSequence::AddListInitializationStep(QualType T) { |
3974 | Step S; |
3975 | S.Kind = SK_ListInitialization; |
3976 | S.Type = T; |
3977 | Steps.push_back(Elt: S); |
3978 | } |
3979 | |
3980 | void InitializationSequence::AddConstructorInitializationStep( |
3981 | DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, |
3982 | bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { |
3983 | Step S; |
3984 | S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall |
3985 | : SK_ConstructorInitializationFromList |
3986 | : SK_ConstructorInitialization; |
3987 | S.Type = T; |
3988 | S.Function.HadMultipleCandidates = HadMultipleCandidates; |
3989 | S.Function.Function = Constructor; |
3990 | S.Function.FoundDecl = FoundDecl; |
3991 | Steps.push_back(Elt: S); |
3992 | } |
3993 | |
3994 | void InitializationSequence::AddZeroInitializationStep(QualType T) { |
3995 | Step S; |
3996 | S.Kind = SK_ZeroInitialization; |
3997 | S.Type = T; |
3998 | Steps.push_back(Elt: S); |
3999 | } |
4000 | |
4001 | void InitializationSequence::AddCAssignmentStep(QualType T) { |
4002 | Step S; |
4003 | S.Kind = SK_CAssignment; |
4004 | S.Type = T; |
4005 | Steps.push_back(Elt: S); |
4006 | } |
4007 | |
4008 | void InitializationSequence::AddStringInitStep(QualType T) { |
4009 | Step S; |
4010 | S.Kind = SK_StringInit; |
4011 | S.Type = T; |
4012 | Steps.push_back(Elt: S); |
4013 | } |
4014 | |
4015 | void InitializationSequence::AddObjCObjectConversionStep(QualType T) { |
4016 | Step S; |
4017 | S.Kind = SK_ObjCObjectConversion; |
4018 | S.Type = T; |
4019 | Steps.push_back(Elt: S); |
4020 | } |
4021 | |
4022 | void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { |
4023 | Step S; |
4024 | S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; |
4025 | S.Type = T; |
4026 | Steps.push_back(Elt: S); |
4027 | } |
4028 | |
4029 | void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { |
4030 | Step S; |
4031 | S.Kind = SK_ArrayLoopIndex; |
4032 | S.Type = EltT; |
4033 | Steps.insert(I: Steps.begin(), Elt: S); |
4034 | |
4035 | S.Kind = SK_ArrayLoopInit; |
4036 | S.Type = T; |
4037 | Steps.push_back(Elt: S); |
4038 | } |
4039 | |
4040 | void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { |
4041 | Step S; |
4042 | S.Kind = SK_ParenthesizedArrayInit; |
4043 | S.Type = T; |
4044 | Steps.push_back(Elt: S); |
4045 | } |
4046 | |
4047 | void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, |
4048 | bool shouldCopy) { |
4049 | Step s; |
4050 | s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore |
4051 | : SK_PassByIndirectRestore); |
4052 | s.Type = type; |
4053 | Steps.push_back(Elt: s); |
4054 | } |
4055 | |
4056 | void InitializationSequence::AddProduceObjCObjectStep(QualType T) { |
4057 | Step S; |
4058 | S.Kind = SK_ProduceObjCObject; |
4059 | S.Type = T; |
4060 | Steps.push_back(Elt: S); |
4061 | } |
4062 | |
4063 | void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { |
4064 | Step S; |
4065 | S.Kind = SK_StdInitializerList; |
4066 | S.Type = T; |
4067 | Steps.push_back(Elt: S); |
4068 | } |
4069 | |
4070 | void InitializationSequence::AddOCLSamplerInitStep(QualType T) { |
4071 | Step S; |
4072 | S.Kind = SK_OCLSamplerInit; |
4073 | S.Type = T; |
4074 | Steps.push_back(Elt: S); |
4075 | } |
4076 | |
4077 | void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { |
4078 | Step S; |
4079 | S.Kind = SK_OCLZeroOpaqueType; |
4080 | S.Type = T; |
4081 | Steps.push_back(Elt: S); |
4082 | } |
4083 | |
4084 | void InitializationSequence::AddParenthesizedListInitStep(QualType T) { |
4085 | Step S; |
4086 | S.Kind = SK_ParenthesizedListInit; |
4087 | S.Type = T; |
4088 | Steps.push_back(Elt: S); |
4089 | } |
4090 | |
4091 | void InitializationSequence::RewrapReferenceInitList(QualType T, |
4092 | InitListExpr *Syntactic) { |
4093 | assert(Syntactic->getNumInits() == 1 && |
4094 | "Can only rewrap trivial init lists." ); |
4095 | Step S; |
4096 | S.Kind = SK_UnwrapInitList; |
4097 | S.Type = Syntactic->getInit(Init: 0)->getType(); |
4098 | Steps.insert(I: Steps.begin(), Elt: S); |
4099 | |
4100 | S.Kind = SK_RewrapInitList; |
4101 | S.Type = T; |
4102 | S.WrappingSyntacticList = Syntactic; |
4103 | Steps.push_back(Elt: S); |
4104 | } |
4105 | |
4106 | void InitializationSequence::SetOverloadFailure(FailureKind Failure, |
4107 | OverloadingResult Result) { |
4108 | setSequenceKind(FailedSequence); |
4109 | this->Failure = Failure; |
4110 | this->FailedOverloadResult = Result; |
4111 | } |
4112 | |
4113 | //===----------------------------------------------------------------------===// |
4114 | // Attempt initialization |
4115 | //===----------------------------------------------------------------------===// |
4116 | |
4117 | /// Tries to add a zero initializer. Returns true if that worked. |
4118 | static bool |
4119 | maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, |
4120 | const InitializedEntity &Entity) { |
4121 | if (Entity.getKind() != InitializedEntity::EK_Variable) |
4122 | return false; |
4123 | |
4124 | VarDecl *VD = cast<VarDecl>(Val: Entity.getDecl()); |
4125 | if (VD->getInit() || VD->getEndLoc().isMacroID()) |
4126 | return false; |
4127 | |
4128 | QualType VariableTy = VD->getType().getCanonicalType(); |
4129 | SourceLocation Loc = S.getLocForEndOfToken(Loc: VD->getEndLoc()); |
4130 | std::string Init = S.getFixItZeroInitializerForType(T: VariableTy, Loc); |
4131 | if (!Init.empty()) { |
4132 | Sequence.AddZeroInitializationStep(T: Entity.getType()); |
4133 | Sequence.SetZeroInitializationFixit(Fixit: Init, L: Loc); |
4134 | return true; |
4135 | } |
4136 | return false; |
4137 | } |
4138 | |
4139 | static void MaybeProduceObjCObject(Sema &S, |
4140 | InitializationSequence &Sequence, |
4141 | const InitializedEntity &Entity) { |
4142 | if (!S.getLangOpts().ObjCAutoRefCount) return; |
4143 | |
4144 | /// When initializing a parameter, produce the value if it's marked |
4145 | /// __attribute__((ns_consumed)). |
4146 | if (Entity.isParameterKind()) { |
4147 | if (!Entity.isParameterConsumed()) |
4148 | return; |
4149 | |
4150 | assert(Entity.getType()->isObjCRetainableType() && |
4151 | "consuming an object of unretainable type?" ); |
4152 | Sequence.AddProduceObjCObjectStep(T: Entity.getType()); |
4153 | |
4154 | /// When initializing a return value, if the return type is a |
4155 | /// retainable type, then returns need to immediately retain the |
4156 | /// object. If an autorelease is required, it will be done at the |
4157 | /// last instant. |
4158 | } else if (Entity.getKind() == InitializedEntity::EK_Result || |
4159 | Entity.getKind() == InitializedEntity::EK_StmtExprResult) { |
4160 | if (!Entity.getType()->isObjCRetainableType()) |
4161 | return; |
4162 | |
4163 | Sequence.AddProduceObjCObjectStep(T: Entity.getType()); |
4164 | } |
4165 | } |
4166 | |
4167 | static void TryListInitialization(Sema &S, |
4168 | const InitializedEntity &Entity, |
4169 | const InitializationKind &Kind, |
4170 | InitListExpr *InitList, |
4171 | InitializationSequence &Sequence, |
4172 | bool TreatUnavailableAsInvalid); |
4173 | |
4174 | /// When initializing from init list via constructor, handle |
4175 | /// initialization of an object of type std::initializer_list<T>. |
4176 | /// |
4177 | /// \return true if we have handled initialization of an object of type |
4178 | /// std::initializer_list<T>, false otherwise. |
4179 | static bool TryInitializerListConstruction(Sema &S, |
4180 | InitListExpr *List, |
4181 | QualType DestType, |
4182 | InitializationSequence &Sequence, |
4183 | bool TreatUnavailableAsInvalid) { |
4184 | QualType E; |
4185 | if (!S.isStdInitializerList(Ty: DestType, Element: &E)) |
4186 | return false; |
4187 | |
4188 | if (!S.isCompleteType(Loc: List->getExprLoc(), T: E)) { |
4189 | Sequence.setIncompleteTypeFailure(E); |
4190 | return true; |
4191 | } |
4192 | |
4193 | // Try initializing a temporary array from the init list. |
4194 | QualType ArrayType = S.Context.getConstantArrayType( |
4195 | EltTy: E.withConst(), |
4196 | ArySize: llvm::APInt(S.Context.getTypeSize(T: S.Context.getSizeType()), |
4197 | List->getNumInits()), |
4198 | SizeExpr: nullptr, ASM: clang::ArraySizeModifier::Normal, IndexTypeQuals: 0); |
4199 | InitializedEntity HiddenArray = |
4200 | InitializedEntity::InitializeTemporary(Type: ArrayType); |
4201 | InitializationKind Kind = InitializationKind::CreateDirectList( |
4202 | InitLoc: List->getExprLoc(), LBraceLoc: List->getBeginLoc(), RBraceLoc: List->getEndLoc()); |
4203 | TryListInitialization(S, Entity: HiddenArray, Kind, InitList: List, Sequence, |
4204 | TreatUnavailableAsInvalid); |
4205 | if (Sequence) |
4206 | Sequence.AddStdInitializerListConstructionStep(T: DestType); |
4207 | return true; |
4208 | } |
4209 | |
4210 | /// Determine if the constructor has the signature of a copy or move |
4211 | /// constructor for the type T of the class in which it was found. That is, |
4212 | /// determine if its first parameter is of type T or reference to (possibly |
4213 | /// cv-qualified) T. |
4214 | static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, |
4215 | const ConstructorInfo &Info) { |
4216 | if (Info.Constructor->getNumParams() == 0) |
4217 | return false; |
4218 | |
4219 | QualType ParmT = |
4220 | Info.Constructor->getParamDecl(i: 0)->getType().getNonReferenceType(); |
4221 | QualType ClassT = |
4222 | Ctx.getRecordType(Decl: cast<CXXRecordDecl>(Val: Info.FoundDecl->getDeclContext())); |
4223 | |
4224 | return Ctx.hasSameUnqualifiedType(T1: ParmT, T2: ClassT); |
4225 | } |
4226 | |
4227 | static OverloadingResult ResolveConstructorOverload( |
4228 | Sema &S, SourceLocation DeclLoc, MultiExprArg Args, |
4229 | OverloadCandidateSet &CandidateSet, QualType DestType, |
4230 | DeclContext::lookup_result Ctors, OverloadCandidateSet::iterator &Best, |
4231 | bool CopyInitializing, bool AllowExplicit, bool OnlyListConstructors, |
4232 | bool IsListInit, bool RequireActualConstructor, |
4233 | bool SecondStepOfCopyInit = false) { |
4234 | CandidateSet.clear(CSK: OverloadCandidateSet::CSK_InitByConstructor); |
4235 | CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); |
4236 | |
4237 | for (NamedDecl *D : Ctors) { |
4238 | auto Info = getConstructorInfo(ND: D); |
4239 | if (!Info.Constructor || Info.Constructor->isInvalidDecl()) |
4240 | continue; |
4241 | |
4242 | if (OnlyListConstructors && !S.isInitListConstructor(Ctor: Info.Constructor)) |
4243 | continue; |
4244 | |
4245 | // C++11 [over.best.ics]p4: |
4246 | // ... and the constructor or user-defined conversion function is a |
4247 | // candidate by |
4248 | // - 13.3.1.3, when the argument is the temporary in the second step |
4249 | // of a class copy-initialization, or |
4250 | // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] |
4251 | // - the second phase of 13.3.1.7 when the initializer list has exactly |
4252 | // one element that is itself an initializer list, and the target is |
4253 | // the first parameter of a constructor of class X, and the conversion |
4254 | // is to X or reference to (possibly cv-qualified X), |
4255 | // user-defined conversion sequences are not considered. |
4256 | bool SuppressUserConversions = |
4257 | SecondStepOfCopyInit || |
4258 | (IsListInit && Args.size() == 1 && isa<InitListExpr>(Val: Args[0]) && |
4259 | hasCopyOrMoveCtorParam(Ctx&: S.Context, Info)); |
4260 | |
4261 | if (Info.ConstructorTmpl) |
4262 | S.AddTemplateOverloadCandidate( |
4263 | FunctionTemplate: Info.ConstructorTmpl, FoundDecl: Info.FoundDecl, |
4264 | /*ExplicitArgs*/ ExplicitTemplateArgs: nullptr, Args, CandidateSet, SuppressUserConversions, |
4265 | /*PartialOverloading=*/false, AllowExplicit); |
4266 | else { |
4267 | // C++ [over.match.copy]p1: |
4268 | // - When initializing a temporary to be bound to the first parameter |
4269 | // of a constructor [for type T] that takes a reference to possibly |
4270 | // cv-qualified T as its first argument, called with a single |
4271 | // argument in the context of direct-initialization, explicit |
4272 | // conversion functions are also considered. |
4273 | // FIXME: What if a constructor template instantiates to such a signature? |
4274 | bool AllowExplicitConv = AllowExplicit && !CopyInitializing && |
4275 | Args.size() == 1 && |
4276 | hasCopyOrMoveCtorParam(Ctx&: S.Context, Info); |
4277 | S.AddOverloadCandidate(Function: Info.Constructor, FoundDecl: Info.FoundDecl, Args, |
4278 | CandidateSet, SuppressUserConversions, |
4279 | /*PartialOverloading=*/false, AllowExplicit, |
4280 | AllowExplicitConversion: AllowExplicitConv); |
4281 | } |
4282 | } |
4283 | |
4284 | // FIXME: Work around a bug in C++17 guaranteed copy elision. |
4285 | // |
4286 | // When initializing an object of class type T by constructor |
4287 | // ([over.match.ctor]) or by list-initialization ([over.match.list]) |
4288 | // from a single expression of class type U, conversion functions of |
4289 | // U that convert to the non-reference type cv T are candidates. |
4290 | // Explicit conversion functions are only candidates during |
4291 | // direct-initialization. |
4292 | // |
4293 | // Note: SecondStepOfCopyInit is only ever true in this case when |
4294 | // evaluating whether to produce a C++98 compatibility warning. |
4295 | if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && |
4296 | !RequireActualConstructor && !SecondStepOfCopyInit) { |
4297 | Expr *Initializer = Args[0]; |
4298 | auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); |
4299 | if (SourceRD && S.isCompleteType(Loc: DeclLoc, T: Initializer->getType())) { |
4300 | const auto &Conversions = SourceRD->getVisibleConversionFunctions(); |
4301 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
4302 | NamedDecl *D = *I; |
4303 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Val: D->getDeclContext()); |
4304 | D = D->getUnderlyingDecl(); |
4305 | |
4306 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(Val: D); |
4307 | CXXConversionDecl *Conv; |
4308 | if (ConvTemplate) |
4309 | Conv = cast<CXXConversionDecl>(Val: ConvTemplate->getTemplatedDecl()); |
4310 | else |
4311 | Conv = cast<CXXConversionDecl>(Val: D); |
4312 | |
4313 | if (ConvTemplate) |
4314 | S.AddTemplateConversionCandidate( |
4315 | FunctionTemplate: ConvTemplate, FoundDecl: I.getPair(), ActingContext: ActingDC, From: Initializer, ToType: DestType, |
4316 | CandidateSet, AllowObjCConversionOnExplicit: AllowExplicit, AllowExplicit, |
4317 | /*AllowResultConversion*/ false); |
4318 | else |
4319 | S.AddConversionCandidate(Conversion: Conv, FoundDecl: I.getPair(), ActingContext: ActingDC, From: Initializer, |
4320 | ToType: DestType, CandidateSet, AllowObjCConversionOnExplicit: AllowExplicit, |
4321 | AllowExplicit, |
4322 | /*AllowResultConversion*/ false); |
4323 | } |
4324 | } |
4325 | } |
4326 | |
4327 | // Perform overload resolution and return the result. |
4328 | return CandidateSet.BestViableFunction(S, Loc: DeclLoc, Best); |
4329 | } |
4330 | |
4331 | /// Attempt initialization by constructor (C++ [dcl.init]), which |
4332 | /// enumerates the constructors of the initialized entity and performs overload |
4333 | /// resolution to select the best. |
4334 | /// \param DestType The destination class type. |
4335 | /// \param DestArrayType The destination type, which is either DestType or |
4336 | /// a (possibly multidimensional) array of DestType. |
4337 | /// \param IsListInit Is this list-initialization? |
4338 | /// \param IsInitListCopy Is this non-list-initialization resulting from a |
4339 | /// list-initialization from {x} where x is the same |
4340 | /// type as the entity? |
4341 | static void TryConstructorInitialization(Sema &S, |
4342 | const InitializedEntity &Entity, |
4343 | const InitializationKind &Kind, |
4344 | MultiExprArg Args, QualType DestType, |
4345 | QualType DestArrayType, |
4346 | InitializationSequence &Sequence, |
4347 | bool IsListInit = false, |
4348 | bool IsInitListCopy = false) { |
4349 | assert(((!IsListInit && !IsInitListCopy) || |
4350 | (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && |
4351 | "IsListInit/IsInitListCopy must come with a single initializer list " |
4352 | "argument." ); |
4353 | InitListExpr *ILE = |
4354 | (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Val: Args[0]) : nullptr; |
4355 | MultiExprArg UnwrappedArgs = |
4356 | ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; |
4357 | |
4358 | // The type we're constructing needs to be complete. |
4359 | if (!S.isCompleteType(Loc: Kind.getLocation(), T: DestType)) { |
4360 | Sequence.setIncompleteTypeFailure(DestType); |
4361 | return; |
4362 | } |
4363 | |
4364 | bool RequireActualConstructor = |
4365 | !(Entity.getKind() != InitializedEntity::EK_Base && |
4366 | Entity.getKind() != InitializedEntity::EK_Delegating && |
4367 | Entity.getKind() != |
4368 | InitializedEntity::EK_LambdaToBlockConversionBlockElement); |
4369 | |
4370 | // C++17 [dcl.init]p17: |
4371 | // - If the initializer expression is a prvalue and the cv-unqualified |
4372 | // version of the source type is the same class as the class of the |
4373 | // destination, the initializer expression is used to initialize the |
4374 | // destination object. |
4375 | // Per DR (no number yet), this does not apply when initializing a base |
4376 | // class or delegating to another constructor from a mem-initializer. |
4377 | // ObjC++: Lambda captured by the block in the lambda to block conversion |
4378 | // should avoid copy elision. |
4379 | if (S.getLangOpts().CPlusPlus17 && !RequireActualConstructor && |
4380 | UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isPRValue() && |
4381 | S.Context.hasSameUnqualifiedType(T1: UnwrappedArgs[0]->getType(), T2: DestType)) { |
4382 | // Convert qualifications if necessary. |
4383 | Sequence.AddQualificationConversionStep(Ty: DestType, VK: VK_PRValue); |
4384 | if (ILE) |
4385 | Sequence.RewrapReferenceInitList(T: DestType, Syntactic: ILE); |
4386 | return; |
4387 | } |
4388 | |
4389 | const RecordType *DestRecordType = DestType->getAs<RecordType>(); |
4390 | assert(DestRecordType && "Constructor initialization requires record type" ); |
4391 | CXXRecordDecl *DestRecordDecl |
4392 | = cast<CXXRecordDecl>(Val: DestRecordType->getDecl()); |
4393 | |
4394 | // Build the candidate set directly in the initialization sequence |
4395 | // structure, so that it will persist if we fail. |
4396 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
4397 | |
4398 | // Determine whether we are allowed to call explicit constructors or |
4399 | // explicit conversion operators. |
4400 | bool AllowExplicit = Kind.AllowExplicit() || IsListInit; |
4401 | bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; |
4402 | |
4403 | // - Otherwise, if T is a class type, constructors are considered. The |
4404 | // applicable constructors are enumerated, and the best one is chosen |
4405 | // through overload resolution. |
4406 | DeclContext::lookup_result Ctors = S.LookupConstructors(Class: DestRecordDecl); |
4407 | |
4408 | OverloadingResult Result = OR_No_Viable_Function; |
4409 | OverloadCandidateSet::iterator Best; |
4410 | bool AsInitializerList = false; |
4411 | |
4412 | // C++11 [over.match.list]p1, per DR1467: |
4413 | // When objects of non-aggregate type T are list-initialized, such that |
4414 | // 8.5.4 [dcl.init.list] specifies that overload resolution is performed |
4415 | // according to the rules in this section, overload resolution selects |
4416 | // the constructor in two phases: |
4417 | // |
4418 | // - Initially, the candidate functions are the initializer-list |
4419 | // constructors of the class T and the argument list consists of the |
4420 | // initializer list as a single argument. |
4421 | if (IsListInit) { |
4422 | AsInitializerList = true; |
4423 | |
4424 | // If the initializer list has no elements and T has a default constructor, |
4425 | // the first phase is omitted. |
4426 | if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(Class: DestRecordDecl))) |
4427 | Result = ResolveConstructorOverload( |
4428 | S, DeclLoc: Kind.getLocation(), Args, CandidateSet, DestType, Ctors, Best, |
4429 | CopyInitializing: CopyInitialization, AllowExplicit, |
4430 | /*OnlyListConstructors=*/true, IsListInit, RequireActualConstructor); |
4431 | } |
4432 | |
4433 | // C++11 [over.match.list]p1: |
4434 | // - If no viable initializer-list constructor is found, overload resolution |
4435 | // is performed again, where the candidate functions are all the |
4436 | // constructors of the class T and the argument list consists of the |
4437 | // elements of the initializer list. |
4438 | if (Result == OR_No_Viable_Function) { |
4439 | AsInitializerList = false; |
4440 | Result = ResolveConstructorOverload( |
4441 | S, DeclLoc: Kind.getLocation(), Args: UnwrappedArgs, CandidateSet, DestType, Ctors, |
4442 | Best, CopyInitializing: CopyInitialization, AllowExplicit, |
4443 | /*OnlyListConstructors=*/false, IsListInit, RequireActualConstructor); |
4444 | } |
4445 | if (Result) { |
4446 | Sequence.SetOverloadFailure( |
4447 | Failure: IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed |
4448 | : InitializationSequence::FK_ConstructorOverloadFailed, |
4449 | Result); |
4450 | |
4451 | if (Result != OR_Deleted) |
4452 | return; |
4453 | } |
4454 | |
4455 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
4456 | |
4457 | // In C++17, ResolveConstructorOverload can select a conversion function |
4458 | // instead of a constructor. |
4459 | if (auto *CD = dyn_cast<CXXConversionDecl>(Val: Best->Function)) { |
4460 | // Add the user-defined conversion step that calls the conversion function. |
4461 | QualType ConvType = CD->getConversionType(); |
4462 | assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && |
4463 | "should not have selected this conversion function" ); |
4464 | Sequence.AddUserConversionStep(Function: CD, FoundDecl: Best->FoundDecl, T: ConvType, |
4465 | HadMultipleCandidates); |
4466 | if (!S.Context.hasSameType(T1: ConvType, T2: DestType)) |
4467 | Sequence.AddQualificationConversionStep(Ty: DestType, VK: VK_PRValue); |
4468 | if (IsListInit) |
4469 | Sequence.RewrapReferenceInitList(T: Entity.getType(), Syntactic: ILE); |
4470 | return; |
4471 | } |
4472 | |
4473 | CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Val: Best->Function); |
4474 | if (Result != OR_Deleted) { |
4475 | // C++11 [dcl.init]p6: |
4476 | // If a program calls for the default initialization of an object |
4477 | // of a const-qualified type T, T shall be a class type with a |
4478 | // user-provided default constructor. |
4479 | // C++ core issue 253 proposal: |
4480 | // If the implicit default constructor initializes all subobjects, no |
4481 | // initializer should be required. |
4482 | // The 253 proposal is for example needed to process libstdc++ headers |
4483 | // in 5.x. |
4484 | if (Kind.getKind() == InitializationKind::IK_Default && |
4485 | Entity.getType().isConstQualified()) { |
4486 | if (!CtorDecl->getParent()->allowConstDefaultInit()) { |
4487 | if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) |
4488 | Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); |
4489 | return; |
4490 | } |
4491 | } |
4492 | |
4493 | // C++11 [over.match.list]p1: |
4494 | // In copy-list-initialization, if an explicit constructor is chosen, the |
4495 | // initializer is ill-formed. |
4496 | if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { |
4497 | Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); |
4498 | return; |
4499 | } |
4500 | } |
4501 | |
4502 | // [class.copy.elision]p3: |
4503 | // In some copy-initialization contexts, a two-stage overload resolution |
4504 | // is performed. |
4505 | // If the first overload resolution selects a deleted function, we also |
4506 | // need the initialization sequence to decide whether to perform the second |
4507 | // overload resolution. |
4508 | // For deleted functions in other contexts, there is no need to get the |
4509 | // initialization sequence. |
4510 | if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy) |
4511 | return; |
4512 | |
4513 | // Add the constructor initialization step. Any cv-qualification conversion is |
4514 | // subsumed by the initialization. |
4515 | Sequence.AddConstructorInitializationStep( |
4516 | FoundDecl: Best->FoundDecl, Constructor: CtorDecl, T: DestArrayType, HadMultipleCandidates, |
4517 | FromInitList: IsListInit | IsInitListCopy, AsInitList: AsInitializerList); |
4518 | } |
4519 | |
4520 | static bool |
4521 | ResolveOverloadedFunctionForReferenceBinding(Sema &S, |
4522 | Expr *Initializer, |
4523 | QualType &SourceType, |
4524 | QualType &UnqualifiedSourceType, |
4525 | QualType UnqualifiedTargetType, |
4526 | InitializationSequence &Sequence) { |
4527 | if (S.Context.getCanonicalType(T: UnqualifiedSourceType) == |
4528 | S.Context.OverloadTy) { |
4529 | DeclAccessPair Found; |
4530 | bool HadMultipleCandidates = false; |
4531 | if (FunctionDecl *Fn |
4532 | = S.ResolveAddressOfOverloadedFunction(AddressOfExpr: Initializer, |
4533 | TargetType: UnqualifiedTargetType, |
4534 | Complain: false, Found, |
4535 | pHadMultipleCandidates: &HadMultipleCandidates)) { |
4536 | Sequence.AddAddressOverloadResolutionStep(Function: Fn, Found, |
4537 | HadMultipleCandidates); |
4538 | SourceType = Fn->getType(); |
4539 | UnqualifiedSourceType = SourceType.getUnqualifiedType(); |
4540 | } else if (!UnqualifiedTargetType->isRecordType()) { |
4541 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
4542 | return true; |
4543 | } |
4544 | } |
4545 | return false; |
4546 | } |
4547 | |
4548 | static void TryReferenceInitializationCore(Sema &S, |
4549 | const InitializedEntity &Entity, |
4550 | const InitializationKind &Kind, |
4551 | Expr *Initializer, |
4552 | QualType cv1T1, QualType T1, |
4553 | Qualifiers T1Quals, |
4554 | QualType cv2T2, QualType T2, |
4555 | Qualifiers T2Quals, |
4556 | InitializationSequence &Sequence, |
4557 | bool TopLevelOfInitList); |
4558 | |
4559 | static void TryValueInitialization(Sema &S, |
4560 | const InitializedEntity &Entity, |
4561 | const InitializationKind &Kind, |
4562 | InitializationSequence &Sequence, |
4563 | InitListExpr *InitList = nullptr); |
4564 | |
4565 | /// Attempt list initialization of a reference. |
4566 | static void TryReferenceListInitialization(Sema &S, |
4567 | const InitializedEntity &Entity, |
4568 | const InitializationKind &Kind, |
4569 | InitListExpr *InitList, |
4570 | InitializationSequence &Sequence, |
4571 | bool TreatUnavailableAsInvalid) { |
4572 | // First, catch C++03 where this isn't possible. |
4573 | if (!S.getLangOpts().CPlusPlus11) { |
4574 | Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); |
4575 | return; |
4576 | } |
4577 | // Can't reference initialize a compound literal. |
4578 | if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { |
4579 | Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); |
4580 | return; |
4581 | } |
4582 | |
4583 | QualType DestType = Entity.getType(); |
4584 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); |
4585 | Qualifiers T1Quals; |
4586 | QualType T1 = S.Context.getUnqualifiedArrayType(T: cv1T1, Quals&: T1Quals); |
4587 | |
4588 | // Reference initialization via an initializer list works thus: |
4589 | // If the initializer list consists of a single element that is |
4590 | // reference-related to the referenced type, bind directly to that element |
4591 | // (possibly creating temporaries). |
4592 | // Otherwise, initialize a temporary with the initializer list and |
4593 | // bind to that. |
4594 | if (InitList->getNumInits() == 1) { |
4595 | Expr *Initializer = InitList->getInit(Init: 0); |
4596 | QualType cv2T2 = S.getCompletedType(E: Initializer); |
4597 | Qualifiers T2Quals; |
4598 | QualType T2 = S.Context.getUnqualifiedArrayType(T: cv2T2, Quals&: T2Quals); |
4599 | |
4600 | // If this fails, creating a temporary wouldn't work either. |
4601 | if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, SourceType&: cv2T2, UnqualifiedSourceType&: T2, |
4602 | UnqualifiedTargetType: T1, Sequence)) |
4603 | return; |
4604 | |
4605 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
4606 | Sema::ReferenceCompareResult RefRelationship |
4607 | = S.CompareReferenceRelationship(Loc: DeclLoc, T1: cv1T1, T2: cv2T2); |
4608 | if (RefRelationship >= Sema::Ref_Related) { |
4609 | // Try to bind the reference here. |
4610 | TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, |
4611 | T1Quals, cv2T2, T2, T2Quals, Sequence, |
4612 | /*TopLevelOfInitList=*/true); |
4613 | if (Sequence) |
4614 | Sequence.RewrapReferenceInitList(T: cv1T1, Syntactic: InitList); |
4615 | return; |
4616 | } |
4617 | |
4618 | // Update the initializer if we've resolved an overloaded function. |
4619 | if (Sequence.step_begin() != Sequence.step_end()) |
4620 | Sequence.RewrapReferenceInitList(T: cv1T1, Syntactic: InitList); |
4621 | } |
4622 | // Perform address space compatibility check. |
4623 | QualType cv1T1IgnoreAS = cv1T1; |
4624 | if (T1Quals.hasAddressSpace()) { |
4625 | Qualifiers T2Quals; |
4626 | (void)S.Context.getUnqualifiedArrayType(T: InitList->getType(), Quals&: T2Quals); |
4627 | if (!T1Quals.isAddressSpaceSupersetOf(other: T2Quals)) { |
4628 | Sequence.SetFailed( |
4629 | InitializationSequence::FK_ReferenceInitDropsQualifiers); |
4630 | return; |
4631 | } |
4632 | // Ignore address space of reference type at this point and perform address |
4633 | // space conversion after the reference binding step. |
4634 | cv1T1IgnoreAS = |
4635 | S.Context.getQualifiedType(T: T1, Qs: T1Quals.withoutAddressSpace()); |
4636 | } |
4637 | // Not reference-related. Create a temporary and bind to that. |
4638 | InitializedEntity TempEntity = |
4639 | InitializedEntity::InitializeTemporary(Type: cv1T1IgnoreAS); |
4640 | |
4641 | TryListInitialization(S, Entity: TempEntity, Kind, InitList, Sequence, |
4642 | TreatUnavailableAsInvalid); |
4643 | if (Sequence) { |
4644 | if (DestType->isRValueReferenceType() || |
4645 | (T1Quals.hasConst() && !T1Quals.hasVolatile())) { |
4646 | if (S.getLangOpts().CPlusPlus20 && |
4647 | isa<IncompleteArrayType>(Val: T1->getUnqualifiedDesugaredType()) && |
4648 | DestType->isRValueReferenceType()) { |
4649 | // C++20 [dcl.init.list]p3.10: |
4650 | // List-initialization of an object or reference of type T is defined as |
4651 | // follows: |
4652 | // ..., unless T is “reference to array of unknown bound of U”, in which |
4653 | // case the type of the prvalue is the type of x in the declaration U |
4654 | // x[] H, where H is the initializer list. |
4655 | Sequence.AddQualificationConversionStep(Ty: cv1T1, VK: clang::VK_PRValue); |
4656 | } |
4657 | Sequence.AddReferenceBindingStep(T: cv1T1IgnoreAS, |
4658 | /*BindingTemporary=*/true); |
4659 | if (T1Quals.hasAddressSpace()) |
4660 | Sequence.AddQualificationConversionStep( |
4661 | Ty: cv1T1, VK: DestType->isRValueReferenceType() ? VK_XValue : VK_LValue); |
4662 | } else |
4663 | Sequence.SetFailed( |
4664 | InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); |
4665 | } |
4666 | } |
4667 | |
4668 | /// Attempt list initialization (C++0x [dcl.init.list]) |
4669 | static void TryListInitialization(Sema &S, |
4670 | const InitializedEntity &Entity, |
4671 | const InitializationKind &Kind, |
4672 | InitListExpr *InitList, |
4673 | InitializationSequence &Sequence, |
4674 | bool TreatUnavailableAsInvalid) { |
4675 | QualType DestType = Entity.getType(); |
4676 | |
4677 | // C++ doesn't allow scalar initialization with more than one argument. |
4678 | // But C99 complex numbers are scalars and it makes sense there. |
4679 | if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && |
4680 | !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { |
4681 | Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); |
4682 | return; |
4683 | } |
4684 | if (DestType->isReferenceType()) { |
4685 | TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, |
4686 | TreatUnavailableAsInvalid); |
4687 | return; |
4688 | } |
4689 | |
4690 | if (DestType->isRecordType() && |
4691 | !S.isCompleteType(Loc: InitList->getBeginLoc(), T: DestType)) { |
4692 | Sequence.setIncompleteTypeFailure(DestType); |
4693 | return; |
4694 | } |
4695 | |
4696 | // C++20 [dcl.init.list]p3: |
4697 | // - If the braced-init-list contains a designated-initializer-list, T shall |
4698 | // be an aggregate class. [...] Aggregate initialization is performed. |
4699 | // |
4700 | // We allow arrays here too in order to support array designators. |
4701 | // |
4702 | // FIXME: This check should precede the handling of reference initialization. |
4703 | // We follow other compilers in allowing things like 'Aggr &&a = {.x = 1};' |
4704 | // as a tentative DR resolution. |
4705 | bool IsDesignatedInit = InitList->hasDesignatedInit(); |
4706 | if (!DestType->isAggregateType() && IsDesignatedInit) { |
4707 | Sequence.SetFailed( |
4708 | InitializationSequence::FK_DesignatedInitForNonAggregate); |
4709 | return; |
4710 | } |
4711 | |
4712 | // C++11 [dcl.init.list]p3, per DR1467: |
4713 | // - If T is a class type and the initializer list has a single element of |
4714 | // type cv U, where U is T or a class derived from T, the object is |
4715 | // initialized from that element (by copy-initialization for |
4716 | // copy-list-initialization, or by direct-initialization for |
4717 | // direct-list-initialization). |
4718 | // - Otherwise, if T is a character array and the initializer list has a |
4719 | // single element that is an appropriately-typed string literal |
4720 | // (8.5.2 [dcl.init.string]), initialization is performed as described |
4721 | // in that section. |
4722 | // - Otherwise, if T is an aggregate, [...] (continue below). |
4723 | if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1 && |
4724 | !IsDesignatedInit) { |
4725 | if (DestType->isRecordType()) { |
4726 | QualType InitType = InitList->getInit(Init: 0)->getType(); |
4727 | if (S.Context.hasSameUnqualifiedType(T1: InitType, T2: DestType) || |
4728 | S.IsDerivedFrom(Loc: InitList->getBeginLoc(), Derived: InitType, Base: DestType)) { |
4729 | Expr *InitListAsExpr = InitList; |
4730 | TryConstructorInitialization(S, Entity, Kind, Args: InitListAsExpr, DestType, |
4731 | DestArrayType: DestType, Sequence, |
4732 | /*InitListSyntax*/IsListInit: false, |
4733 | /*IsInitListCopy*/true); |
4734 | return; |
4735 | } |
4736 | } |
4737 | if (const ArrayType *DestAT = S.Context.getAsArrayType(T: DestType)) { |
4738 | Expr *SubInit[1] = {InitList->getInit(Init: 0)}; |
4739 | if (!isa<VariableArrayType>(Val: DestAT) && |
4740 | IsStringInit(Init: SubInit[0], AT: DestAT, Context&: S.Context) == SIF_None) { |
4741 | InitializationKind SubKind = |
4742 | Kind.getKind() == InitializationKind::IK_DirectList |
4743 | ? InitializationKind::CreateDirect(InitLoc: Kind.getLocation(), |
4744 | LParenLoc: InitList->getLBraceLoc(), |
4745 | RParenLoc: InitList->getRBraceLoc()) |
4746 | : Kind; |
4747 | Sequence.InitializeFrom(S, Entity, Kind: SubKind, Args: SubInit, |
4748 | /*TopLevelOfInitList*/ true, |
4749 | TreatUnavailableAsInvalid); |
4750 | |
4751 | // TryStringLiteralInitialization() (in InitializeFrom()) will fail if |
4752 | // the element is not an appropriately-typed string literal, in which |
4753 | // case we should proceed as in C++11 (below). |
4754 | if (Sequence) { |
4755 | Sequence.RewrapReferenceInitList(T: Entity.getType(), Syntactic: InitList); |
4756 | return; |
4757 | } |
4758 | } |
4759 | } |
4760 | } |
4761 | |
4762 | // C++11 [dcl.init.list]p3: |
4763 | // - If T is an aggregate, aggregate initialization is performed. |
4764 | if ((DestType->isRecordType() && !DestType->isAggregateType()) || |
4765 | (S.getLangOpts().CPlusPlus11 && |
4766 | S.isStdInitializerList(Ty: DestType, Element: nullptr) && !IsDesignatedInit)) { |
4767 | if (S.getLangOpts().CPlusPlus11) { |
4768 | // - Otherwise, if the initializer list has no elements and T is a |
4769 | // class type with a default constructor, the object is |
4770 | // value-initialized. |
4771 | if (InitList->getNumInits() == 0) { |
4772 | CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); |
4773 | if (S.LookupDefaultConstructor(Class: RD)) { |
4774 | TryValueInitialization(S, Entity, Kind, Sequence, InitList); |
4775 | return; |
4776 | } |
4777 | } |
4778 | |
4779 | // - Otherwise, if T is a specialization of std::initializer_list<E>, |
4780 | // an initializer_list object constructed [...] |
4781 | if (TryInitializerListConstruction(S, List: InitList, DestType, Sequence, |
4782 | TreatUnavailableAsInvalid)) |
4783 | return; |
4784 | |
4785 | // - Otherwise, if T is a class type, constructors are considered. |
4786 | Expr *InitListAsExpr = InitList; |
4787 | TryConstructorInitialization(S, Entity, Kind, Args: InitListAsExpr, DestType, |
4788 | DestArrayType: DestType, Sequence, /*InitListSyntax*/IsListInit: true); |
4789 | } else |
4790 | Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); |
4791 | return; |
4792 | } |
4793 | |
4794 | if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && |
4795 | InitList->getNumInits() == 1) { |
4796 | Expr *E = InitList->getInit(Init: 0); |
4797 | |
4798 | // - Otherwise, if T is an enumeration with a fixed underlying type, |
4799 | // the initializer-list has a single element v, and the initialization |
4800 | // is direct-list-initialization, the object is initialized with the |
4801 | // value T(v); if a narrowing conversion is required to convert v to |
4802 | // the underlying type of T, the program is ill-formed. |
4803 | auto *ET = DestType->getAs<EnumType>(); |
4804 | if (S.getLangOpts().CPlusPlus17 && |
4805 | Kind.getKind() == InitializationKind::IK_DirectList && |
4806 | ET && ET->getDecl()->isFixed() && |
4807 | !S.Context.hasSameUnqualifiedType(T1: E->getType(), T2: DestType) && |
4808 | (E->getType()->isIntegralOrUnscopedEnumerationType() || |
4809 | E->getType()->isFloatingType())) { |
4810 | // There are two ways that T(v) can work when T is an enumeration type. |
4811 | // If there is either an implicit conversion sequence from v to T or |
4812 | // a conversion function that can convert from v to T, then we use that. |
4813 | // Otherwise, if v is of integral, unscoped enumeration, or floating-point |
4814 | // type, it is converted to the enumeration type via its underlying type. |
4815 | // There is no overlap possible between these two cases (except when the |
4816 | // source value is already of the destination type), and the first |
4817 | // case is handled by the general case for single-element lists below. |
4818 | ImplicitConversionSequence ICS; |
4819 | ICS.setStandard(); |
4820 | ICS.Standard.setAsIdentityConversion(); |
4821 | if (!E->isPRValue()) |
4822 | ICS.Standard.First = ICK_Lvalue_To_Rvalue; |
4823 | // If E is of a floating-point type, then the conversion is ill-formed |
4824 | // due to narrowing, but go through the motions in order to produce the |
4825 | // right diagnostic. |
4826 | ICS.Standard.Second = E->getType()->isFloatingType() |
4827 | ? ICK_Floating_Integral |
4828 | : ICK_Integral_Conversion; |
4829 | ICS.Standard.setFromType(E->getType()); |
4830 | ICS.Standard.setToType(Idx: 0, T: E->getType()); |
4831 | ICS.Standard.setToType(Idx: 1, T: DestType); |
4832 | ICS.Standard.setToType(Idx: 2, T: DestType); |
4833 | Sequence.AddConversionSequenceStep(ICS, T: ICS.Standard.getToType(Idx: 2), |
4834 | /*TopLevelOfInitList*/true); |
4835 | Sequence.RewrapReferenceInitList(T: Entity.getType(), Syntactic: InitList); |
4836 | return; |
4837 | } |
4838 | |
4839 | // - Otherwise, if the initializer list has a single element of type E |
4840 | // [...references are handled above...], the object or reference is |
4841 | // initialized from that element (by copy-initialization for |
4842 | // copy-list-initialization, or by direct-initialization for |
4843 | // direct-list-initialization); if a narrowing conversion is required |
4844 | // to convert the element to T, the program is ill-formed. |
4845 | // |
4846 | // Per core-24034, this is direct-initialization if we were performing |
4847 | // direct-list-initialization and copy-initialization otherwise. |
4848 | // We can't use InitListChecker for this, because it always performs |
4849 | // copy-initialization. This only matters if we might use an 'explicit' |
4850 | // conversion operator, or for the special case conversion of nullptr_t to |
4851 | // bool, so we only need to handle those cases. |
4852 | // |
4853 | // FIXME: Why not do this in all cases? |
4854 | Expr *Init = InitList->getInit(Init: 0); |
4855 | if (Init->getType()->isRecordType() || |
4856 | (Init->getType()->isNullPtrType() && DestType->isBooleanType())) { |
4857 | InitializationKind SubKind = |
4858 | Kind.getKind() == InitializationKind::IK_DirectList |
4859 | ? InitializationKind::CreateDirect(InitLoc: Kind.getLocation(), |
4860 | LParenLoc: InitList->getLBraceLoc(), |
4861 | RParenLoc: InitList->getRBraceLoc()) |
4862 | : Kind; |
4863 | Expr *SubInit[1] = { Init }; |
4864 | Sequence.InitializeFrom(S, Entity, Kind: SubKind, Args: SubInit, |
4865 | /*TopLevelOfInitList*/true, |
4866 | TreatUnavailableAsInvalid); |
4867 | if (Sequence) |
4868 | Sequence.RewrapReferenceInitList(T: Entity.getType(), Syntactic: InitList); |
4869 | return; |
4870 | } |
4871 | } |
4872 | |
4873 | InitListChecker CheckInitList(S, Entity, InitList, |
4874 | DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); |
4875 | if (CheckInitList.HadError()) { |
4876 | Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); |
4877 | return; |
4878 | } |
4879 | |
4880 | // Add the list initialization step with the built init list. |
4881 | Sequence.AddListInitializationStep(T: DestType); |
4882 | } |
4883 | |
4884 | /// Try a reference initialization that involves calling a conversion |
4885 | /// function. |
4886 | static OverloadingResult TryRefInitWithConversionFunction( |
4887 | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, |
4888 | Expr *Initializer, bool AllowRValues, bool IsLValueRef, |
4889 | InitializationSequence &Sequence) { |
4890 | QualType DestType = Entity.getType(); |
4891 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); |
4892 | QualType T1 = cv1T1.getUnqualifiedType(); |
4893 | QualType cv2T2 = Initializer->getType(); |
4894 | QualType T2 = cv2T2.getUnqualifiedType(); |
4895 | |
4896 | assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && |
4897 | "Must have incompatible references when binding via conversion" ); |
4898 | |
4899 | // Build the candidate set directly in the initialization sequence |
4900 | // structure, so that it will persist if we fail. |
4901 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
4902 | CandidateSet.clear(CSK: OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
4903 | |
4904 | // Determine whether we are allowed to call explicit conversion operators. |
4905 | // Note that none of [over.match.copy], [over.match.conv], nor |
4906 | // [over.match.ref] permit an explicit constructor to be chosen when |
4907 | // initializing a reference, not even for direct-initialization. |
4908 | bool AllowExplicitCtors = false; |
4909 | bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); |
4910 | |
4911 | const RecordType *T1RecordType = nullptr; |
4912 | if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && |
4913 | S.isCompleteType(Loc: Kind.getLocation(), T: T1)) { |
4914 | // The type we're converting to is a class type. Enumerate its constructors |
4915 | // to see if there is a suitable conversion. |
4916 | CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(Val: T1RecordType->getDecl()); |
4917 | |
4918 | for (NamedDecl *D : S.LookupConstructors(Class: T1RecordDecl)) { |
4919 | auto Info = getConstructorInfo(ND: D); |
4920 | if (!Info.Constructor) |
4921 | continue; |
4922 | |
4923 | if (!Info.Constructor->isInvalidDecl() && |
4924 | Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { |
4925 | if (Info.ConstructorTmpl) |
4926 | S.AddTemplateOverloadCandidate( |
4927 | FunctionTemplate: Info.ConstructorTmpl, FoundDecl: Info.FoundDecl, |
4928 | /*ExplicitArgs*/ ExplicitTemplateArgs: nullptr, Args: Initializer, CandidateSet, |
4929 | /*SuppressUserConversions=*/true, |
4930 | /*PartialOverloading*/ false, AllowExplicit: AllowExplicitCtors); |
4931 | else |
4932 | S.AddOverloadCandidate( |
4933 | Function: Info.Constructor, FoundDecl: Info.FoundDecl, Args: Initializer, CandidateSet, |
4934 | /*SuppressUserConversions=*/true, |
4935 | /*PartialOverloading*/ false, AllowExplicit: AllowExplicitCtors); |
4936 | } |
4937 | } |
4938 | } |
4939 | if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) |
4940 | return OR_No_Viable_Function; |
4941 | |
4942 | const RecordType *T2RecordType = nullptr; |
4943 | if ((T2RecordType = T2->getAs<RecordType>()) && |
4944 | S.isCompleteType(Loc: Kind.getLocation(), T: T2)) { |
4945 | // The type we're converting from is a class type, enumerate its conversion |
4946 | // functions. |
4947 | CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(Val: T2RecordType->getDecl()); |
4948 | |
4949 | const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); |
4950 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
4951 | NamedDecl *D = *I; |
4952 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Val: D->getDeclContext()); |
4953 | if (isa<UsingShadowDecl>(Val: D)) |
4954 | D = cast<UsingShadowDecl>(Val: D)->getTargetDecl(); |
4955 | |
4956 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(Val: D); |
4957 | CXXConversionDecl *Conv; |
4958 | if (ConvTemplate) |
4959 | Conv = cast<CXXConversionDecl>(Val: ConvTemplate->getTemplatedDecl()); |
4960 | else |
4961 | Conv = cast<CXXConversionDecl>(Val: D); |
4962 | |
4963 | // If the conversion function doesn't return a reference type, |
4964 | // it can't be considered for this conversion unless we're allowed to |
4965 | // consider rvalues. |
4966 | // FIXME: Do we need to make sure that we only consider conversion |
4967 | // candidates with reference-compatible results? That might be needed to |
4968 | // break recursion. |
4969 | if ((AllowRValues || |
4970 | Conv->getConversionType()->isLValueReferenceType())) { |
4971 | if (ConvTemplate) |
4972 | S.AddTemplateConversionCandidate( |
4973 | FunctionTemplate: ConvTemplate, FoundDecl: I.getPair(), ActingContext: ActingDC, From: Initializer, ToType: DestType, |
4974 | CandidateSet, |
4975 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit: AllowExplicitConvs); |
4976 | else |
4977 | S.AddConversionCandidate( |
4978 | Conversion: Conv, FoundDecl: I.getPair(), ActingContext: ActingDC, From: Initializer, ToType: DestType, CandidateSet, |
4979 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit: AllowExplicitConvs); |
4980 | } |
4981 | } |
4982 | } |
4983 | if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) |
4984 | return OR_No_Viable_Function; |
4985 | |
4986 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
4987 | |
4988 | // Perform overload resolution. If it fails, return the failed result. |
4989 | OverloadCandidateSet::iterator Best; |
4990 | if (OverloadingResult Result |
4991 | = CandidateSet.BestViableFunction(S, Loc: DeclLoc, Best)) |
4992 | return Result; |
4993 | |
4994 | FunctionDecl *Function = Best->Function; |
4995 | // This is the overload that will be used for this initialization step if we |
4996 | // use this initialization. Mark it as referenced. |
4997 | Function->setReferenced(); |
4998 | |
4999 | // Compute the returned type and value kind of the conversion. |
5000 | QualType cv3T3; |
5001 | if (isa<CXXConversionDecl>(Val: Function)) |
5002 | cv3T3 = Function->getReturnType(); |
5003 | else |
5004 | cv3T3 = T1; |
5005 | |
5006 | ExprValueKind VK = VK_PRValue; |
5007 | if (cv3T3->isLValueReferenceType()) |
5008 | VK = VK_LValue; |
5009 | else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) |
5010 | VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; |
5011 | cv3T3 = cv3T3.getNonLValueExprType(Context: S.Context); |
5012 | |
5013 | // Add the user-defined conversion step. |
5014 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
5015 | Sequence.AddUserConversionStep(Function, FoundDecl: Best->FoundDecl, T: cv3T3, |
5016 | HadMultipleCandidates); |
5017 | |
5018 | // Determine whether we'll need to perform derived-to-base adjustments or |
5019 | // other conversions. |
5020 | Sema::ReferenceConversions RefConv; |
5021 | Sema::ReferenceCompareResult NewRefRelationship = |
5022 | S.CompareReferenceRelationship(Loc: DeclLoc, T1, T2: cv3T3, Conv: &RefConv); |
5023 | |
5024 | // Add the final conversion sequence, if necessary. |
5025 | if (NewRefRelationship == Sema::Ref_Incompatible) { |
5026 | assert(!isa<CXXConstructorDecl>(Function) && |
5027 | "should not have conversion after constructor" ); |
5028 | |
5029 | ImplicitConversionSequence ICS; |
5030 | ICS.setStandard(); |
5031 | ICS.Standard = Best->FinalConversion; |
5032 | Sequence.AddConversionSequenceStep(ICS, T: ICS.Standard.getToType(Idx: 2)); |
5033 | |
5034 | // Every implicit conversion results in a prvalue, except for a glvalue |
5035 | // derived-to-base conversion, which we handle below. |
5036 | cv3T3 = ICS.Standard.getToType(Idx: 2); |
5037 | VK = VK_PRValue; |
5038 | } |
5039 | |
5040 | // If the converted initializer is a prvalue, its type T4 is adjusted to |
5041 | // type "cv1 T4" and the temporary materialization conversion is applied. |
5042 | // |
5043 | // We adjust the cv-qualifications to match the reference regardless of |
5044 | // whether we have a prvalue so that the AST records the change. In this |
5045 | // case, T4 is "cv3 T3". |
5046 | QualType cv1T4 = S.Context.getQualifiedType(T: cv3T3, Qs: cv1T1.getQualifiers()); |
5047 | if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) |
5048 | Sequence.AddQualificationConversionStep(Ty: cv1T4, VK); |
5049 | Sequence.AddReferenceBindingStep(T: cv1T4, BindingTemporary: VK == VK_PRValue); |
5050 | VK = IsLValueRef ? VK_LValue : VK_XValue; |
5051 | |
5052 | if (RefConv & Sema::ReferenceConversions::DerivedToBase) |
5053 | Sequence.AddDerivedToBaseCastStep(BaseType: cv1T1, VK); |
5054 | else if (RefConv & Sema::ReferenceConversions::ObjC) |
5055 | Sequence.AddObjCObjectConversionStep(T: cv1T1); |
5056 | else if (RefConv & Sema::ReferenceConversions::Function) |
5057 | Sequence.AddFunctionReferenceConversionStep(Ty: cv1T1); |
5058 | else if (RefConv & Sema::ReferenceConversions::Qualification) { |
5059 | if (!S.Context.hasSameType(T1: cv1T4, T2: cv1T1)) |
5060 | Sequence.AddQualificationConversionStep(Ty: cv1T1, VK); |
5061 | } |
5062 | |
5063 | return OR_Success; |
5064 | } |
5065 | |
5066 | static void CheckCXX98CompatAccessibleCopy(Sema &S, |
5067 | const InitializedEntity &Entity, |
5068 | Expr *CurInitExpr); |
5069 | |
5070 | /// Attempt reference initialization (C++0x [dcl.init.ref]) |
5071 | static void TryReferenceInitialization(Sema &S, const InitializedEntity &Entity, |
5072 | const InitializationKind &Kind, |
5073 | Expr *Initializer, |
5074 | InitializationSequence &Sequence, |
5075 | bool TopLevelOfInitList) { |
5076 | QualType DestType = Entity.getType(); |
5077 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); |
5078 | Qualifiers T1Quals; |
5079 | QualType T1 = S.Context.getUnqualifiedArrayType(T: cv1T1, Quals&: T1Quals); |
5080 | QualType cv2T2 = S.getCompletedType(E: Initializer); |
5081 | Qualifiers T2Quals; |
5082 | QualType T2 = S.Context.getUnqualifiedArrayType(T: cv2T2, Quals&: T2Quals); |
5083 | |
5084 | // If the initializer is the address of an overloaded function, try |
5085 | // to resolve the overloaded function. If all goes well, T2 is the |
5086 | // type of the resulting function. |
5087 | if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, SourceType&: cv2T2, UnqualifiedSourceType&: T2, |
5088 | UnqualifiedTargetType: T1, Sequence)) |
5089 | return; |
5090 | |
5091 | // Delegate everything else to a subfunction. |
5092 | TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, |
5093 | T1Quals, cv2T2, T2, T2Quals, Sequence, |
5094 | TopLevelOfInitList); |
5095 | } |
5096 | |
5097 | /// Determine whether an expression is a non-referenceable glvalue (one to |
5098 | /// which a reference can never bind). Attempting to bind a reference to |
5099 | /// such a glvalue will always create a temporary. |
5100 | static bool isNonReferenceableGLValue(Expr *E) { |
5101 | return E->refersToBitField() || E->refersToVectorElement() || |
5102 | E->refersToMatrixElement(); |
5103 | } |
5104 | |
5105 | /// Reference initialization without resolving overloaded functions. |
5106 | /// |
5107 | /// We also can get here in C if we call a builtin which is declared as |
5108 | /// a function with a parameter of reference type (such as __builtin_va_end()). |
5109 | static void TryReferenceInitializationCore(Sema &S, |
5110 | const InitializedEntity &Entity, |
5111 | const InitializationKind &Kind, |
5112 | Expr *Initializer, |
5113 | QualType cv1T1, QualType T1, |
5114 | Qualifiers T1Quals, |
5115 | QualType cv2T2, QualType T2, |
5116 | Qualifiers T2Quals, |
5117 | InitializationSequence &Sequence, |
5118 | bool TopLevelOfInitList) { |
5119 | QualType DestType = Entity.getType(); |
5120 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
5121 | |
5122 | // Compute some basic properties of the types and the initializer. |
5123 | bool isLValueRef = DestType->isLValueReferenceType(); |
5124 | bool isRValueRef = !isLValueRef; |
5125 | Expr::Classification InitCategory = Initializer->Classify(Ctx&: S.Context); |
5126 | |
5127 | Sema::ReferenceConversions RefConv; |
5128 | Sema::ReferenceCompareResult RefRelationship = |
5129 | S.CompareReferenceRelationship(Loc: DeclLoc, T1: cv1T1, T2: cv2T2, Conv: &RefConv); |
5130 | |
5131 | // C++0x [dcl.init.ref]p5: |
5132 | // A reference to type "cv1 T1" is initialized by an expression of type |
5133 | // "cv2 T2" as follows: |
5134 | // |
5135 | // - If the reference is an lvalue reference and the initializer |
5136 | // expression |
5137 | // Note the analogous bullet points for rvalue refs to functions. Because |
5138 | // there are no function rvalues in C++, rvalue refs to functions are treated |
5139 | // like lvalue refs. |
5140 | OverloadingResult ConvOvlResult = OR_Success; |
5141 | bool T1Function = T1->isFunctionType(); |
5142 | if (isLValueRef || T1Function) { |
5143 | if (InitCategory.isLValue() && !isNonReferenceableGLValue(E: Initializer) && |
5144 | (RefRelationship == Sema::Ref_Compatible || |
5145 | (Kind.isCStyleOrFunctionalCast() && |
5146 | RefRelationship == Sema::Ref_Related))) { |
5147 | // - is an lvalue (but is not a bit-field), and "cv1 T1" is |
5148 | // reference-compatible with "cv2 T2," or |
5149 | if (RefConv & (Sema::ReferenceConversions::DerivedToBase | |
5150 | Sema::ReferenceConversions::ObjC)) { |
5151 | // If we're converting the pointee, add any qualifiers first; |
5152 | // these qualifiers must all be top-level, so just convert to "cv1 T2". |
5153 | if (RefConv & (Sema::ReferenceConversions::Qualification)) |
5154 | Sequence.AddQualificationConversionStep( |
5155 | Ty: S.Context.getQualifiedType(T: T2, Qs: T1Quals), |
5156 | VK: Initializer->getValueKind()); |
5157 | if (RefConv & Sema::ReferenceConversions::DerivedToBase) |
5158 | Sequence.AddDerivedToBaseCastStep(BaseType: cv1T1, VK: VK_LValue); |
5159 | else |
5160 | Sequence.AddObjCObjectConversionStep(T: cv1T1); |
5161 | } else if (RefConv & Sema::ReferenceConversions::Qualification) { |
5162 | // Perform a (possibly multi-level) qualification conversion. |
5163 | Sequence.AddQualificationConversionStep(Ty: cv1T1, |
5164 | VK: Initializer->getValueKind()); |
5165 | } else if (RefConv & Sema::ReferenceConversions::Function) { |
5166 | Sequence.AddFunctionReferenceConversionStep(Ty: cv1T1); |
5167 | } |
5168 | |
5169 | // We only create a temporary here when binding a reference to a |
5170 | // bit-field or vector element. Those cases are't supposed to be |
5171 | // handled by this bullet, but the outcome is the same either way. |
5172 | Sequence.AddReferenceBindingStep(T: cv1T1, BindingTemporary: false); |
5173 | return; |
5174 | } |
5175 | |
5176 | // - has a class type (i.e., T2 is a class type), where T1 is not |
5177 | // reference-related to T2, and can be implicitly converted to an |
5178 | // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible |
5179 | // with "cv3 T3" (this conversion is selected by enumerating the |
5180 | // applicable conversion functions (13.3.1.6) and choosing the best |
5181 | // one through overload resolution (13.3)), |
5182 | // If we have an rvalue ref to function type here, the rhs must be |
5183 | // an rvalue. DR1287 removed the "implicitly" here. |
5184 | if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && |
5185 | (isLValueRef || InitCategory.isRValue())) { |
5186 | if (S.getLangOpts().CPlusPlus) { |
5187 | // Try conversion functions only for C++. |
5188 | ConvOvlResult = TryRefInitWithConversionFunction( |
5189 | S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, |
5190 | /*IsLValueRef*/ isLValueRef, Sequence); |
5191 | if (ConvOvlResult == OR_Success) |
5192 | return; |
5193 | if (ConvOvlResult != OR_No_Viable_Function) |
5194 | Sequence.SetOverloadFailure( |
5195 | Failure: InitializationSequence::FK_ReferenceInitOverloadFailed, |
5196 | Result: ConvOvlResult); |
5197 | } else { |
5198 | ConvOvlResult = OR_No_Viable_Function; |
5199 | } |
5200 | } |
5201 | } |
5202 | |
5203 | // - Otherwise, the reference shall be an lvalue reference to a |
5204 | // non-volatile const type (i.e., cv1 shall be const), or the reference |
5205 | // shall be an rvalue reference. |
5206 | // For address spaces, we interpret this to mean that an addr space |
5207 | // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". |
5208 | if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() && |
5209 | T1Quals.isAddressSpaceSupersetOf(other: T2Quals))) { |
5210 | if (S.Context.getCanonicalType(T: T2) == S.Context.OverloadTy) |
5211 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
5212 | else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) |
5213 | Sequence.SetOverloadFailure( |
5214 | Failure: InitializationSequence::FK_ReferenceInitOverloadFailed, |
5215 | Result: ConvOvlResult); |
5216 | else if (!InitCategory.isLValue()) |
5217 | Sequence.SetFailed( |
5218 | T1Quals.isAddressSpaceSupersetOf(other: T2Quals) |
5219 | ? InitializationSequence:: |
5220 | FK_NonConstLValueReferenceBindingToTemporary |
5221 | : InitializationSequence::FK_ReferenceInitDropsQualifiers); |
5222 | else { |
5223 | InitializationSequence::FailureKind FK; |
5224 | switch (RefRelationship) { |
5225 | case Sema::Ref_Compatible: |
5226 | if (Initializer->refersToBitField()) |
5227 | FK = InitializationSequence:: |
5228 | FK_NonConstLValueReferenceBindingToBitfield; |
5229 | else if (Initializer->refersToVectorElement()) |
5230 | FK = InitializationSequence:: |
5231 | FK_NonConstLValueReferenceBindingToVectorElement; |
5232 | else if (Initializer->refersToMatrixElement()) |
5233 | FK = InitializationSequence:: |
5234 | FK_NonConstLValueReferenceBindingToMatrixElement; |
5235 | else |
5236 | llvm_unreachable("unexpected kind of compatible initializer" ); |
5237 | break; |
5238 | case Sema::Ref_Related: |
5239 | FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; |
5240 | break; |
5241 | case Sema::Ref_Incompatible: |
5242 | FK = InitializationSequence:: |
5243 | FK_NonConstLValueReferenceBindingToUnrelated; |
5244 | break; |
5245 | } |
5246 | Sequence.SetFailed(FK); |
5247 | } |
5248 | return; |
5249 | } |
5250 | |
5251 | // - If the initializer expression |
5252 | // - is an |
5253 | // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or |
5254 | // [1z] rvalue (but not a bit-field) or |
5255 | // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" |
5256 | // |
5257 | // Note: functions are handled above and below rather than here... |
5258 | if (!T1Function && |
5259 | (RefRelationship == Sema::Ref_Compatible || |
5260 | (Kind.isCStyleOrFunctionalCast() && |
5261 | RefRelationship == Sema::Ref_Related)) && |
5262 | ((InitCategory.isXValue() && !isNonReferenceableGLValue(E: Initializer)) || |
5263 | (InitCategory.isPRValue() && |
5264 | (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || |
5265 | T2->isArrayType())))) { |
5266 | ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_PRValue; |
5267 | if (InitCategory.isPRValue() && T2->isRecordType()) { |
5268 | // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the |
5269 | // compiler the freedom to perform a copy here or bind to the |
5270 | // object, while C++0x requires that we bind directly to the |
5271 | // object. Hence, we always bind to the object without making an |
5272 | // extra copy. However, in C++03 requires that we check for the |
5273 | // presence of a suitable copy constructor: |
5274 | // |
5275 | // The constructor that would be used to make the copy shall |
5276 | // be callable whether or not the copy is actually done. |
5277 | if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) |
5278 | Sequence.AddExtraneousCopyToTemporary(T: cv2T2); |
5279 | else if (S.getLangOpts().CPlusPlus11) |
5280 | CheckCXX98CompatAccessibleCopy(S, Entity, CurInitExpr: Initializer); |
5281 | } |
5282 | |
5283 | // C++1z [dcl.init.ref]/5.2.1.2: |
5284 | // If the converted initializer is a prvalue, its type T4 is adjusted |
5285 | // to type "cv1 T4" and the temporary materialization conversion is |
5286 | // applied. |
5287 | // Postpone address space conversions to after the temporary materialization |
5288 | // conversion to allow creating temporaries in the alloca address space. |
5289 | auto T1QualsIgnoreAS = T1Quals; |
5290 | auto T2QualsIgnoreAS = T2Quals; |
5291 | if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { |
5292 | T1QualsIgnoreAS.removeAddressSpace(); |
5293 | T2QualsIgnoreAS.removeAddressSpace(); |
5294 | } |
5295 | QualType cv1T4 = S.Context.getQualifiedType(T: cv2T2, Qs: T1QualsIgnoreAS); |
5296 | if (T1QualsIgnoreAS != T2QualsIgnoreAS) |
5297 | Sequence.AddQualificationConversionStep(Ty: cv1T4, VK: ValueKind); |
5298 | Sequence.AddReferenceBindingStep(T: cv1T4, BindingTemporary: ValueKind == VK_PRValue); |
5299 | ValueKind = isLValueRef ? VK_LValue : VK_XValue; |
5300 | // Add addr space conversion if required. |
5301 | if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { |
5302 | auto T4Quals = cv1T4.getQualifiers(); |
5303 | T4Quals.addAddressSpace(space: T1Quals.getAddressSpace()); |
5304 | QualType cv1T4WithAS = S.Context.getQualifiedType(T: T2, Qs: T4Quals); |
5305 | Sequence.AddQualificationConversionStep(Ty: cv1T4WithAS, VK: ValueKind); |
5306 | cv1T4 = cv1T4WithAS; |
5307 | } |
5308 | |
5309 | // In any case, the reference is bound to the resulting glvalue (or to |
5310 | // an appropriate base class subobject). |
5311 | if (RefConv & Sema::ReferenceConversions::DerivedToBase) |
5312 | Sequence.AddDerivedToBaseCastStep(BaseType: cv1T1, VK: ValueKind); |
5313 | else if (RefConv & Sema::ReferenceConversions::ObjC) |
5314 | Sequence.AddObjCObjectConversionStep(T: cv1T1); |
5315 | else if (RefConv & Sema::ReferenceConversions::Qualification) { |
5316 | if (!S.Context.hasSameType(T1: cv1T4, T2: cv1T1)) |
5317 | Sequence.AddQualificationConversionStep(Ty: cv1T1, VK: ValueKind); |
5318 | } |
5319 | return; |
5320 | } |
5321 | |
5322 | // - has a class type (i.e., T2 is a class type), where T1 is not |
5323 | // reference-related to T2, and can be implicitly converted to an |
5324 | // xvalue, class prvalue, or function lvalue of type "cv3 T3", |
5325 | // where "cv1 T1" is reference-compatible with "cv3 T3", |
5326 | // |
5327 | // DR1287 removes the "implicitly" here. |
5328 | if (T2->isRecordType()) { |
5329 | if (RefRelationship == Sema::Ref_Incompatible) { |
5330 | ConvOvlResult = TryRefInitWithConversionFunction( |
5331 | S, Entity, Kind, Initializer, /*AllowRValues*/ true, |
5332 | /*IsLValueRef*/ isLValueRef, Sequence); |
5333 | if (ConvOvlResult) |
5334 | Sequence.SetOverloadFailure( |
5335 | Failure: InitializationSequence::FK_ReferenceInitOverloadFailed, |
5336 | Result: ConvOvlResult); |
5337 | |
5338 | return; |
5339 | } |
5340 | |
5341 | if (RefRelationship == Sema::Ref_Compatible && |
5342 | isRValueRef && InitCategory.isLValue()) { |
5343 | Sequence.SetFailed( |
5344 | InitializationSequence::FK_RValueReferenceBindingToLValue); |
5345 | return; |
5346 | } |
5347 | |
5348 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); |
5349 | return; |
5350 | } |
5351 | |
5352 | // - Otherwise, a temporary of type "cv1 T1" is created and initialized |
5353 | // from the initializer expression using the rules for a non-reference |
5354 | // copy-initialization (8.5). The reference is then bound to the |
5355 | // temporary. [...] |
5356 | |
5357 | // Ignore address space of reference type at this point and perform address |
5358 | // space conversion after the reference binding step. |
5359 | QualType cv1T1IgnoreAS = |
5360 | T1Quals.hasAddressSpace() |
5361 | ? S.Context.getQualifiedType(T: T1, Qs: T1Quals.withoutAddressSpace()) |
5362 | : cv1T1; |
5363 | |
5364 | InitializedEntity TempEntity = |
5365 | InitializedEntity::InitializeTemporary(Type: cv1T1IgnoreAS); |
5366 | |
5367 | // FIXME: Why do we use an implicit conversion here rather than trying |
5368 | // copy-initialization? |
5369 | ImplicitConversionSequence ICS |
5370 | = S.TryImplicitConversion(From: Initializer, ToType: TempEntity.getType(), |
5371 | /*SuppressUserConversions=*/false, |
5372 | AllowExplicit: Sema::AllowedExplicit::None, |
5373 | /*FIXME:InOverloadResolution=*/InOverloadResolution: false, |
5374 | /*CStyle=*/Kind.isCStyleOrFunctionalCast(), |
5375 | /*AllowObjCWritebackConversion=*/false); |
5376 | |
5377 | if (ICS.isBad()) { |
5378 | // FIXME: Use the conversion function set stored in ICS to turn |
5379 | // this into an overloading ambiguity diagnostic. However, we need |
5380 | // to keep that set as an OverloadCandidateSet rather than as some |
5381 | // other kind of set. |
5382 | if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) |
5383 | Sequence.SetOverloadFailure( |
5384 | Failure: InitializationSequence::FK_ReferenceInitOverloadFailed, |
5385 | Result: ConvOvlResult); |
5386 | else if (S.Context.getCanonicalType(T: T2) == S.Context.OverloadTy) |
5387 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
5388 | else |
5389 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); |
5390 | return; |
5391 | } else { |
5392 | Sequence.AddConversionSequenceStep(ICS, T: TempEntity.getType(), |
5393 | TopLevelOfInitList); |
5394 | } |
5395 | |
5396 | // [...] If T1 is reference-related to T2, cv1 must be the |
5397 | // same cv-qualification as, or greater cv-qualification |
5398 | // than, cv2; otherwise, the program is ill-formed. |
5399 | unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); |
5400 | unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); |
5401 | if (RefRelationship == Sema::Ref_Related && |
5402 | ((T1CVRQuals | T2CVRQuals) != T1CVRQuals || |
5403 | !T1Quals.isAddressSpaceSupersetOf(other: T2Quals))) { |
5404 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); |
5405 | return; |
5406 | } |
5407 | |
5408 | // [...] If T1 is reference-related to T2 and the reference is an rvalue |
5409 | // reference, the initializer expression shall not be an lvalue. |
5410 | if (RefRelationship >= Sema::Ref_Related && !isLValueRef && |
5411 | InitCategory.isLValue()) { |
5412 | Sequence.SetFailed( |
5413 | InitializationSequence::FK_RValueReferenceBindingToLValue); |
5414 | return; |
5415 | } |
5416 | |
5417 | Sequence.AddReferenceBindingStep(T: cv1T1IgnoreAS, /*BindingTemporary=*/true); |
5418 | |
5419 | if (T1Quals.hasAddressSpace()) { |
5420 | if (!Qualifiers::isAddressSpaceSupersetOf(A: T1Quals.getAddressSpace(), |
5421 | B: LangAS::Default)) { |
5422 | Sequence.SetFailed( |
5423 | InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); |
5424 | return; |
5425 | } |
5426 | Sequence.AddQualificationConversionStep(Ty: cv1T1, VK: isLValueRef ? VK_LValue |
5427 | : VK_XValue); |
5428 | } |
5429 | } |
5430 | |
5431 | /// Attempt character array initialization from a string literal |
5432 | /// (C++ [dcl.init.string], C99 6.7.8). |
5433 | static void TryStringLiteralInitialization(Sema &S, |
5434 | const InitializedEntity &Entity, |
5435 | const InitializationKind &Kind, |
5436 | Expr *Initializer, |
5437 | InitializationSequence &Sequence) { |
5438 | Sequence.AddStringInitStep(T: Entity.getType()); |
5439 | } |
5440 | |
5441 | /// Attempt value initialization (C++ [dcl.init]p7). |
5442 | static void TryValueInitialization(Sema &S, |
5443 | const InitializedEntity &Entity, |
5444 | const InitializationKind &Kind, |
5445 | InitializationSequence &Sequence, |
5446 | InitListExpr *InitList) { |
5447 | assert((!InitList || InitList->getNumInits() == 0) && |
5448 | "Shouldn't use value-init for non-empty init lists" ); |
5449 | |
5450 | // C++98 [dcl.init]p5, C++11 [dcl.init]p7: |
5451 | // |
5452 | // To value-initialize an object of type T means: |
5453 | QualType T = Entity.getType(); |
5454 | |
5455 | // -- if T is an array type, then each element is value-initialized; |
5456 | T = S.Context.getBaseElementType(QT: T); |
5457 | |
5458 | if (const RecordType *RT = T->getAs<RecordType>()) { |
5459 | if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Val: RT->getDecl())) { |
5460 | bool NeedZeroInitialization = true; |
5461 | // C++98: |
5462 | // -- if T is a class type (clause 9) with a user-declared constructor |
5463 | // (12.1), then the default constructor for T is called (and the |
5464 | // initialization is ill-formed if T has no accessible default |
5465 | // constructor); |
5466 | // C++11: |
5467 | // -- if T is a class type (clause 9) with either no default constructor |
5468 | // (12.1 [class.ctor]) or a default constructor that is user-provided |
5469 | // or deleted, then the object is default-initialized; |
5470 | // |
5471 | // Note that the C++11 rule is the same as the C++98 rule if there are no |
5472 | // defaulted or deleted constructors, so we just use it unconditionally. |
5473 | CXXConstructorDecl *CD = S.LookupDefaultConstructor(Class: ClassDecl); |
5474 | if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) |
5475 | NeedZeroInitialization = false; |
5476 | |
5477 | // -- if T is a (possibly cv-qualified) non-union class type without a |
5478 | // user-provided or deleted default constructor, then the object is |
5479 | // zero-initialized and, if T has a non-trivial default constructor, |
5480 | // default-initialized; |
5481 | // The 'non-union' here was removed by DR1502. The 'non-trivial default |
5482 | // constructor' part was removed by DR1507. |
5483 | if (NeedZeroInitialization) |
5484 | Sequence.AddZeroInitializationStep(T: Entity.getType()); |
5485 | |
5486 | // C++03: |
5487 | // -- if T is a non-union class type without a user-declared constructor, |
5488 | // then every non-static data member and base class component of T is |
5489 | // value-initialized; |
5490 | // [...] A program that calls for [...] value-initialization of an |
5491 | // entity of reference type is ill-formed. |
5492 | // |
5493 | // C++11 doesn't need this handling, because value-initialization does not |
5494 | // occur recursively there, and the implicit default constructor is |
5495 | // defined as deleted in the problematic cases. |
5496 | if (!S.getLangOpts().CPlusPlus11 && |
5497 | ClassDecl->hasUninitializedReferenceMember()) { |
5498 | Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); |
5499 | return; |
5500 | } |
5501 | |
5502 | // If this is list-value-initialization, pass the empty init list on when |
5503 | // building the constructor call. This affects the semantics of a few |
5504 | // things (such as whether an explicit default constructor can be called). |
5505 | Expr *InitListAsExpr = InitList; |
5506 | MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); |
5507 | bool InitListSyntax = InitList; |
5508 | |
5509 | // FIXME: Instead of creating a CXXConstructExpr of array type here, |
5510 | // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. |
5511 | return TryConstructorInitialization( |
5512 | S, Entity, Kind, Args, DestType: T, DestArrayType: Entity.getType(), Sequence, IsListInit: InitListSyntax); |
5513 | } |
5514 | } |
5515 | |
5516 | Sequence.AddZeroInitializationStep(T: Entity.getType()); |
5517 | } |
5518 | |
5519 | /// Attempt default initialization (C++ [dcl.init]p6). |
5520 | static void TryDefaultInitialization(Sema &S, |
5521 | const InitializedEntity &Entity, |
5522 | const InitializationKind &Kind, |
5523 | InitializationSequence &Sequence) { |
5524 | assert(Kind.getKind() == InitializationKind::IK_Default); |
5525 | |
5526 | // C++ [dcl.init]p6: |
5527 | // To default-initialize an object of type T means: |
5528 | // - if T is an array type, each element is default-initialized; |
5529 | QualType DestType = S.Context.getBaseElementType(QT: Entity.getType()); |
5530 | |
5531 | // - if T is a (possibly cv-qualified) class type (Clause 9), the default |
5532 | // constructor for T is called (and the initialization is ill-formed if |
5533 | // T has no accessible default constructor); |
5534 | if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { |
5535 | TryConstructorInitialization(S, Entity, Kind, Args: std::nullopt, DestType, |
5536 | DestArrayType: Entity.getType(), Sequence); |
5537 | return; |
5538 | } |
5539 | |
5540 | // - otherwise, no initialization is performed. |
5541 | |
5542 | // If a program calls for the default initialization of an object of |
5543 | // a const-qualified type T, T shall be a class type with a user-provided |
5544 | // default constructor. |
5545 | if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { |
5546 | if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) |
5547 | Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); |
5548 | return; |
5549 | } |
5550 | |
5551 | // If the destination type has a lifetime property, zero-initialize it. |
5552 | if (DestType.getQualifiers().hasObjCLifetime()) { |
5553 | Sequence.AddZeroInitializationStep(T: Entity.getType()); |
5554 | return; |
5555 | } |
5556 | } |
5557 | |
5558 | static void TryOrBuildParenListInitialization( |
5559 | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, |
5560 | ArrayRef<Expr *> Args, InitializationSequence &Sequence, bool VerifyOnly, |
5561 | ExprResult *Result = nullptr) { |
5562 | unsigned EntityIndexToProcess = 0; |
5563 | SmallVector<Expr *, 4> InitExprs; |
5564 | QualType ResultType; |
5565 | Expr *ArrayFiller = nullptr; |
5566 | FieldDecl *InitializedFieldInUnion = nullptr; |
5567 | |
5568 | auto HandleInitializedEntity = [&](const InitializedEntity &SubEntity, |
5569 | const InitializationKind &SubKind, |
5570 | Expr *Arg, Expr **InitExpr = nullptr) { |
5571 | InitializationSequence IS = InitializationSequence( |
5572 | S, SubEntity, SubKind, Arg ? MultiExprArg(Arg) : std::nullopt); |
5573 | |
5574 | if (IS.Failed()) { |
5575 | if (!VerifyOnly) { |
5576 | IS.Diagnose(S, Entity: SubEntity, Kind: SubKind, Args: Arg ? ArrayRef(Arg) : std::nullopt); |
5577 | } else { |
5578 | Sequence.SetFailed( |
5579 | InitializationSequence::FK_ParenthesizedListInitFailed); |
5580 | } |
5581 | |
5582 | return false; |
5583 | } |
5584 | if (!VerifyOnly) { |
5585 | ExprResult ER; |
5586 | ER = IS.Perform(S, Entity: SubEntity, Kind: SubKind, |
5587 | Args: Arg ? MultiExprArg(Arg) : std::nullopt); |
5588 | |
5589 | if (ER.isInvalid()) |
5590 | return false; |
5591 | |
5592 | if (InitExpr) |
5593 | *InitExpr = ER.get(); |
5594 | else |
5595 | InitExprs.push_back(Elt: ER.get()); |
5596 | } |
5597 | return true; |
5598 | }; |
5599 | |
5600 | if (const ArrayType *AT = |
5601 | S.getASTContext().getAsArrayType(T: Entity.getType())) { |
5602 | SmallVector<InitializedEntity, 4> ElementEntities; |
5603 | uint64_t ArrayLength; |
5604 | // C++ [dcl.init]p16.5 |
5605 | // if the destination type is an array, the object is initialized as |
5606 | // follows. Let x1, . . . , xk be the elements of the expression-list. If |
5607 | // the destination type is an array of unknown bound, it is defined as |
5608 | // having k elements. |
5609 | if (const ConstantArrayType *CAT = |
5610 | S.getASTContext().getAsConstantArrayType(T: Entity.getType())) { |
5611 | ArrayLength = CAT->getZExtSize(); |
5612 | ResultType = Entity.getType(); |
5613 | } else if (const VariableArrayType *VAT = |
5614 | S.getASTContext().getAsVariableArrayType(T: Entity.getType())) { |
5615 | // Braced-initialization of variable array types is not allowed, even if |
5616 | // the size is greater than or equal to the number of args, so we don't |
5617 | // allow them to be initialized via parenthesized aggregate initialization |
5618 | // either. |
5619 | const Expr *SE = VAT->getSizeExpr(); |
5620 | S.Diag(Loc: SE->getBeginLoc(), DiagID: diag::err_variable_object_no_init) |
5621 | << SE->getSourceRange(); |
5622 | return; |
5623 | } else { |
5624 | assert(Entity.getType()->isIncompleteArrayType()); |
5625 | ArrayLength = Args.size(); |
5626 | } |
5627 | EntityIndexToProcess = ArrayLength; |
5628 | |
5629 | // ...the ith array element is copy-initialized with xi for each |
5630 | // 1 <= i <= k |
5631 | for (Expr *E : Args) { |
5632 | InitializedEntity SubEntity = InitializedEntity::InitializeElement( |
5633 | Context&: S.getASTContext(), Index: EntityIndexToProcess, Parent: Entity); |
5634 | InitializationKind SubKind = InitializationKind::CreateForInit( |
5635 | Loc: E->getExprLoc(), /*isDirectInit=*/DirectInit: false, Init: E); |
5636 | if (!HandleInitializedEntity(SubEntity, SubKind, E)) |
5637 | return; |
5638 | } |
5639 | // ...and value-initialized for each k < i <= n; |
5640 | if (ArrayLength > Args.size() || Entity.isVariableLengthArrayNew()) { |
5641 | InitializedEntity SubEntity = InitializedEntity::InitializeElement( |
5642 | Context&: S.getASTContext(), Index: Args.size(), Parent: Entity); |
5643 | InitializationKind SubKind = InitializationKind::CreateValue( |
5644 | InitLoc: Kind.getLocation(), LParenLoc: Kind.getLocation(), RParenLoc: Kind.getLocation(), isImplicit: true); |
5645 | if (!HandleInitializedEntity(SubEntity, SubKind, nullptr, &ArrayFiller)) |
5646 | return; |
5647 | } |
5648 | |
5649 | if (ResultType.isNull()) { |
5650 | ResultType = S.Context.getConstantArrayType( |
5651 | EltTy: AT->getElementType(), ArySize: llvm::APInt(/*numBits=*/32, ArrayLength), |
5652 | /*SizeExpr=*/nullptr, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
5653 | } |
5654 | } else if (auto *RT = Entity.getType()->getAs<RecordType>()) { |
5655 | bool IsUnion = RT->isUnionType(); |
5656 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RT->getDecl()); |
5657 | if (RD->isInvalidDecl()) { |
5658 | // Exit early to avoid confusion when processing members. |
5659 | // We do the same for braced list initialization in |
5660 | // `CheckStructUnionTypes`. |
5661 | Sequence.SetFailed( |
5662 | clang::InitializationSequence::FK_ParenthesizedListInitFailed); |
5663 | return; |
5664 | } |
5665 | |
5666 | if (!IsUnion) { |
5667 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
5668 | InitializedEntity SubEntity = InitializedEntity::InitializeBase( |
5669 | Context&: S.getASTContext(), Base: &Base, IsInheritedVirtualBase: false, Parent: &Entity); |
5670 | if (EntityIndexToProcess < Args.size()) { |
5671 | // C++ [dcl.init]p16.6.2.2. |
5672 | // ...the object is initialized is follows. Let e1, ..., en be the |
5673 | // elements of the aggregate([dcl.init.aggr]). Let x1, ..., xk be |
5674 | // the elements of the expression-list...The element ei is |
5675 | // copy-initialized with xi for 1 <= i <= k. |
5676 | Expr *E = Args[EntityIndexToProcess]; |
5677 | InitializationKind SubKind = InitializationKind::CreateForInit( |
5678 | Loc: E->getExprLoc(), /*isDirectInit=*/DirectInit: false, Init: E); |
5679 | if (!HandleInitializedEntity(SubEntity, SubKind, E)) |
5680 | return; |
5681 | } else { |
5682 | // We've processed all of the args, but there are still base classes |
5683 | // that have to be initialized. |
5684 | // C++ [dcl.init]p17.6.2.2 |
5685 | // The remaining elements...otherwise are value initialzed |
5686 | InitializationKind SubKind = InitializationKind::CreateValue( |
5687 | InitLoc: Kind.getLocation(), LParenLoc: Kind.getLocation(), RParenLoc: Kind.getLocation(), |
5688 | /*IsImplicit=*/isImplicit: true); |
5689 | if (!HandleInitializedEntity(SubEntity, SubKind, nullptr)) |
5690 | return; |
5691 | } |
5692 | EntityIndexToProcess++; |
5693 | } |
5694 | } |
5695 | |
5696 | for (FieldDecl *FD : RD->fields()) { |
5697 | // Unnamed bitfields should not be initialized at all, either with an arg |
5698 | // or by default. |
5699 | if (FD->isUnnamedBitField()) |
5700 | continue; |
5701 | |
5702 | InitializedEntity SubEntity = |
5703 | InitializedEntity::InitializeMemberFromParenAggInit(Member: FD); |
5704 | |
5705 | if (EntityIndexToProcess < Args.size()) { |
5706 | // ...The element ei is copy-initialized with xi for 1 <= i <= k. |
5707 | Expr *E = Args[EntityIndexToProcess]; |
5708 | |
5709 | // Incomplete array types indicate flexible array members. Do not allow |
5710 | // paren list initializations of structs with these members, as GCC |
5711 | // doesn't either. |
5712 | if (FD->getType()->isIncompleteArrayType()) { |
5713 | if (!VerifyOnly) { |
5714 | S.Diag(Loc: E->getBeginLoc(), DiagID: diag::err_flexible_array_init) |
5715 | << SourceRange(E->getBeginLoc(), E->getEndLoc()); |
5716 | S.Diag(Loc: FD->getLocation(), DiagID: diag::note_flexible_array_member) << FD; |
5717 | } |
5718 | Sequence.SetFailed( |
5719 | InitializationSequence::FK_ParenthesizedListInitFailed); |
5720 | return; |
5721 | } |
5722 | |
5723 | InitializationKind SubKind = InitializationKind::CreateForInit( |
5724 | Loc: E->getExprLoc(), /*isDirectInit=*/DirectInit: false, Init: E); |
5725 | if (!HandleInitializedEntity(SubEntity, SubKind, E)) |
5726 | return; |
5727 | |
5728 | // Unions should have only one initializer expression, so we bail out |
5729 | // after processing the first field. If there are more initializers then |
5730 | // it will be caught when we later check whether EntityIndexToProcess is |
5731 | // less than Args.size(); |
5732 | if (IsUnion) { |
5733 | InitializedFieldInUnion = FD; |
5734 | EntityIndexToProcess = 1; |
5735 | break; |
5736 | } |
5737 | } else { |
5738 | // We've processed all of the args, but there are still members that |
5739 | // have to be initialized. |
5740 | if (FD->hasInClassInitializer()) { |
5741 | if (!VerifyOnly) { |
5742 | // C++ [dcl.init]p16.6.2.2 |
5743 | // The remaining elements are initialized with their default |
5744 | // member initializers, if any |
5745 | ExprResult DIE = S.BuildCXXDefaultInitExpr( |
5746 | Loc: Kind.getParenOrBraceRange().getEnd(), Field: FD); |
5747 | if (DIE.isInvalid()) |
5748 | return; |
5749 | S.checkInitializerLifetime(Entity: SubEntity, Init: DIE.get()); |
5750 | InitExprs.push_back(Elt: DIE.get()); |
5751 | } |
5752 | } else { |
5753 | // C++ [dcl.init]p17.6.2.2 |
5754 | // The remaining elements...otherwise are value initialzed |
5755 | if (FD->getType()->isReferenceType()) { |
5756 | Sequence.SetFailed( |
5757 | InitializationSequence::FK_ParenthesizedListInitFailed); |
5758 | if (!VerifyOnly) { |
5759 | SourceRange SR = Kind.getParenOrBraceRange(); |
5760 | S.Diag(Loc: SR.getEnd(), DiagID: diag::err_init_reference_member_uninitialized) |
5761 | << FD->getType() << SR; |
5762 | S.Diag(Loc: FD->getLocation(), DiagID: diag::note_uninit_reference_member); |
5763 | } |
5764 | return; |
5765 | } |
5766 | InitializationKind SubKind = InitializationKind::CreateValue( |
5767 | InitLoc: Kind.getLocation(), LParenLoc: Kind.getLocation(), RParenLoc: Kind.getLocation(), isImplicit: true); |
5768 | if (!HandleInitializedEntity(SubEntity, SubKind, nullptr)) |
5769 | return; |
5770 | } |
5771 | } |
5772 | EntityIndexToProcess++; |
5773 | } |
5774 | ResultType = Entity.getType(); |
5775 | } |
5776 | |
5777 | // Not all of the args have been processed, so there must've been more args |
5778 | // than were required to initialize the element. |
5779 | if (EntityIndexToProcess < Args.size()) { |
5780 | Sequence.SetFailed(InitializationSequence::FK_ParenthesizedListInitFailed); |
5781 | if (!VerifyOnly) { |
5782 | QualType T = Entity.getType(); |
5783 | int InitKind = T->isArrayType() ? 0 : T->isUnionType() ? 3 : 4; |
5784 | SourceRange ExcessInitSR(Args[EntityIndexToProcess]->getBeginLoc(), |
5785 | Args.back()->getEndLoc()); |
5786 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_excess_initializers) |
5787 | << InitKind << ExcessInitSR; |
5788 | } |
5789 | return; |
5790 | } |
5791 | |
5792 | if (VerifyOnly) { |
5793 | Sequence.setSequenceKind(InitializationSequence::NormalSequence); |
5794 | Sequence.AddParenthesizedListInitStep(T: Entity.getType()); |
5795 | } else if (Result) { |
5796 | SourceRange SR = Kind.getParenOrBraceRange(); |
5797 | auto *CPLIE = CXXParenListInitExpr::Create( |
5798 | C&: S.getASTContext(), Args: InitExprs, T: ResultType, NumUserSpecifiedExprs: Args.size(), |
5799 | InitLoc: Kind.getLocation(), LParenLoc: SR.getBegin(), RParenLoc: SR.getEnd()); |
5800 | if (ArrayFiller) |
5801 | CPLIE->setArrayFiller(ArrayFiller); |
5802 | if (InitializedFieldInUnion) |
5803 | CPLIE->setInitializedFieldInUnion(InitializedFieldInUnion); |
5804 | *Result = CPLIE; |
5805 | S.Diag(Loc: Kind.getLocation(), |
5806 | DiagID: diag::warn_cxx17_compat_aggregate_init_paren_list) |
5807 | << Kind.getLocation() << SR << ResultType; |
5808 | } |
5809 | } |
5810 | |
5811 | /// Attempt a user-defined conversion between two types (C++ [dcl.init]), |
5812 | /// which enumerates all conversion functions and performs overload resolution |
5813 | /// to select the best. |
5814 | static void TryUserDefinedConversion(Sema &S, |
5815 | QualType DestType, |
5816 | const InitializationKind &Kind, |
5817 | Expr *Initializer, |
5818 | InitializationSequence &Sequence, |
5819 | bool TopLevelOfInitList) { |
5820 | assert(!DestType->isReferenceType() && "References are handled elsewhere" ); |
5821 | QualType SourceType = Initializer->getType(); |
5822 | assert((DestType->isRecordType() || SourceType->isRecordType()) && |
5823 | "Must have a class type to perform a user-defined conversion" ); |
5824 | |
5825 | // Build the candidate set directly in the initialization sequence |
5826 | // structure, so that it will persist if we fail. |
5827 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
5828 | CandidateSet.clear(CSK: OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
5829 | CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); |
5830 | |
5831 | // Determine whether we are allowed to call explicit constructors or |
5832 | // explicit conversion operators. |
5833 | bool AllowExplicit = Kind.AllowExplicit(); |
5834 | |
5835 | if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { |
5836 | // The type we're converting to is a class type. Enumerate its constructors |
5837 | // to see if there is a suitable conversion. |
5838 | CXXRecordDecl *DestRecordDecl |
5839 | = cast<CXXRecordDecl>(Val: DestRecordType->getDecl()); |
5840 | |
5841 | // Try to complete the type we're converting to. |
5842 | if (S.isCompleteType(Loc: Kind.getLocation(), T: DestType)) { |
5843 | for (NamedDecl *D : S.LookupConstructors(Class: DestRecordDecl)) { |
5844 | auto Info = getConstructorInfo(ND: D); |
5845 | if (!Info.Constructor) |
5846 | continue; |
5847 | |
5848 | if (!Info.Constructor->isInvalidDecl() && |
5849 | Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { |
5850 | if (Info.ConstructorTmpl) |
5851 | S.AddTemplateOverloadCandidate( |
5852 | FunctionTemplate: Info.ConstructorTmpl, FoundDecl: Info.FoundDecl, |
5853 | /*ExplicitArgs*/ ExplicitTemplateArgs: nullptr, Args: Initializer, CandidateSet, |
5854 | /*SuppressUserConversions=*/true, |
5855 | /*PartialOverloading*/ false, AllowExplicit); |
5856 | else |
5857 | S.AddOverloadCandidate(Function: Info.Constructor, FoundDecl: Info.FoundDecl, |
5858 | Args: Initializer, CandidateSet, |
5859 | /*SuppressUserConversions=*/true, |
5860 | /*PartialOverloading*/ false, AllowExplicit); |
5861 | } |
5862 | } |
5863 | } |
5864 | } |
5865 | |
5866 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
5867 | |
5868 | if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { |
5869 | // The type we're converting from is a class type, enumerate its conversion |
5870 | // functions. |
5871 | |
5872 | // We can only enumerate the conversion functions for a complete type; if |
5873 | // the type isn't complete, simply skip this step. |
5874 | if (S.isCompleteType(Loc: DeclLoc, T: SourceType)) { |
5875 | CXXRecordDecl *SourceRecordDecl |
5876 | = cast<CXXRecordDecl>(Val: SourceRecordType->getDecl()); |
5877 | |
5878 | const auto &Conversions = |
5879 | SourceRecordDecl->getVisibleConversionFunctions(); |
5880 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
5881 | NamedDecl *D = *I; |
5882 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Val: D->getDeclContext()); |
5883 | if (isa<UsingShadowDecl>(Val: D)) |
5884 | D = cast<UsingShadowDecl>(Val: D)->getTargetDecl(); |
5885 | |
5886 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(Val: D); |
5887 | CXXConversionDecl *Conv; |
5888 | if (ConvTemplate) |
5889 | Conv = cast<CXXConversionDecl>(Val: ConvTemplate->getTemplatedDecl()); |
5890 | else |
5891 | Conv = cast<CXXConversionDecl>(Val: D); |
5892 | |
5893 | if (ConvTemplate) |
5894 | S.AddTemplateConversionCandidate( |
5895 | FunctionTemplate: ConvTemplate, FoundDecl: I.getPair(), ActingContext: ActingDC, From: Initializer, ToType: DestType, |
5896 | CandidateSet, AllowObjCConversionOnExplicit: AllowExplicit, AllowExplicit); |
5897 | else |
5898 | S.AddConversionCandidate(Conversion: Conv, FoundDecl: I.getPair(), ActingContext: ActingDC, From: Initializer, |
5899 | ToType: DestType, CandidateSet, AllowObjCConversionOnExplicit: AllowExplicit, |
5900 | AllowExplicit); |
5901 | } |
5902 | } |
5903 | } |
5904 | |
5905 | // Perform overload resolution. If it fails, return the failed result. |
5906 | OverloadCandidateSet::iterator Best; |
5907 | if (OverloadingResult Result |
5908 | = CandidateSet.BestViableFunction(S, Loc: DeclLoc, Best)) { |
5909 | Sequence.SetOverloadFailure( |
5910 | Failure: InitializationSequence::FK_UserConversionOverloadFailed, Result); |
5911 | |
5912 | // [class.copy.elision]p3: |
5913 | // In some copy-initialization contexts, a two-stage overload resolution |
5914 | // is performed. |
5915 | // If the first overload resolution selects a deleted function, we also |
5916 | // need the initialization sequence to decide whether to perform the second |
5917 | // overload resolution. |
5918 | if (!(Result == OR_Deleted && |
5919 | Kind.getKind() == InitializationKind::IK_Copy)) |
5920 | return; |
5921 | } |
5922 | |
5923 | FunctionDecl *Function = Best->Function; |
5924 | Function->setReferenced(); |
5925 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
5926 | |
5927 | if (isa<CXXConstructorDecl>(Val: Function)) { |
5928 | // Add the user-defined conversion step. Any cv-qualification conversion is |
5929 | // subsumed by the initialization. Per DR5, the created temporary is of the |
5930 | // cv-unqualified type of the destination. |
5931 | Sequence.AddUserConversionStep(Function, FoundDecl: Best->FoundDecl, |
5932 | T: DestType.getUnqualifiedType(), |
5933 | HadMultipleCandidates); |
5934 | |
5935 | // C++14 and before: |
5936 | // - if the function is a constructor, the call initializes a temporary |
5937 | // of the cv-unqualified version of the destination type. The [...] |
5938 | // temporary [...] is then used to direct-initialize, according to the |
5939 | // rules above, the object that is the destination of the |
5940 | // copy-initialization. |
5941 | // Note that this just performs a simple object copy from the temporary. |
5942 | // |
5943 | // C++17: |
5944 | // - if the function is a constructor, the call is a prvalue of the |
5945 | // cv-unqualified version of the destination type whose return object |
5946 | // is initialized by the constructor. The call is used to |
5947 | // direct-initialize, according to the rules above, the object that |
5948 | // is the destination of the copy-initialization. |
5949 | // Therefore we need to do nothing further. |
5950 | // |
5951 | // FIXME: Mark this copy as extraneous. |
5952 | if (!S.getLangOpts().CPlusPlus17) |
5953 | Sequence.AddFinalCopy(T: DestType); |
5954 | else if (DestType.hasQualifiers()) |
5955 | Sequence.AddQualificationConversionStep(Ty: DestType, VK: VK_PRValue); |
5956 | return; |
5957 | } |
5958 | |
5959 | // Add the user-defined conversion step that calls the conversion function. |
5960 | QualType ConvType = Function->getCallResultType(); |
5961 | Sequence.AddUserConversionStep(Function, FoundDecl: Best->FoundDecl, T: ConvType, |
5962 | HadMultipleCandidates); |
5963 | |
5964 | if (ConvType->getAs<RecordType>()) { |
5965 | // The call is used to direct-initialize [...] the object that is the |
5966 | // destination of the copy-initialization. |
5967 | // |
5968 | // In C++17, this does not call a constructor if we enter /17.6.1: |
5969 | // - If the initializer expression is a prvalue and the cv-unqualified |
5970 | // version of the source type is the same as the class of the |
5971 | // destination [... do not make an extra copy] |
5972 | // |
5973 | // FIXME: Mark this copy as extraneous. |
5974 | if (!S.getLangOpts().CPlusPlus17 || |
5975 | Function->getReturnType()->isReferenceType() || |
5976 | !S.Context.hasSameUnqualifiedType(T1: ConvType, T2: DestType)) |
5977 | Sequence.AddFinalCopy(T: DestType); |
5978 | else if (!S.Context.hasSameType(T1: ConvType, T2: DestType)) |
5979 | Sequence.AddQualificationConversionStep(Ty: DestType, VK: VK_PRValue); |
5980 | return; |
5981 | } |
5982 | |
5983 | // If the conversion following the call to the conversion function |
5984 | // is interesting, add it as a separate step. |
5985 | if (Best->FinalConversion.First || Best->FinalConversion.Second || |
5986 | Best->FinalConversion.Third) { |
5987 | ImplicitConversionSequence ICS; |
5988 | ICS.setStandard(); |
5989 | ICS.Standard = Best->FinalConversion; |
5990 | Sequence.AddConversionSequenceStep(ICS, T: DestType, TopLevelOfInitList); |
5991 | } |
5992 | } |
5993 | |
5994 | /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, |
5995 | /// a function with a pointer return type contains a 'return false;' statement. |
5996 | /// In C++11, 'false' is not a null pointer, so this breaks the build of any |
5997 | /// code using that header. |
5998 | /// |
5999 | /// Work around this by treating 'return false;' as zero-initializing the result |
6000 | /// if it's used in a pointer-returning function in a system header. |
6001 | static bool isLibstdcxxPointerReturnFalseHack(Sema &S, |
6002 | const InitializedEntity &Entity, |
6003 | const Expr *Init) { |
6004 | return S.getLangOpts().CPlusPlus11 && |
6005 | Entity.getKind() == InitializedEntity::EK_Result && |
6006 | Entity.getType()->isPointerType() && |
6007 | isa<CXXBoolLiteralExpr>(Val: Init) && |
6008 | !cast<CXXBoolLiteralExpr>(Val: Init)->getValue() && |
6009 | S.getSourceManager().isInSystemHeader(Loc: Init->getExprLoc()); |
6010 | } |
6011 | |
6012 | /// The non-zero enum values here are indexes into diagnostic alternatives. |
6013 | enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; |
6014 | |
6015 | /// Determines whether this expression is an acceptable ICR source. |
6016 | static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, |
6017 | bool isAddressOf, bool &isWeakAccess) { |
6018 | // Skip parens. |
6019 | e = e->IgnoreParens(); |
6020 | |
6021 | // Skip address-of nodes. |
6022 | if (UnaryOperator *op = dyn_cast<UnaryOperator>(Val: e)) { |
6023 | if (op->getOpcode() == UO_AddrOf) |
6024 | return isInvalidICRSource(C, e: op->getSubExpr(), /*addressof*/ isAddressOf: true, |
6025 | isWeakAccess); |
6026 | |
6027 | // Skip certain casts. |
6028 | } else if (CastExpr *ce = dyn_cast<CastExpr>(Val: e)) { |
6029 | switch (ce->getCastKind()) { |
6030 | case CK_Dependent: |
6031 | case CK_BitCast: |
6032 | case CK_LValueBitCast: |
6033 | case CK_NoOp: |
6034 | return isInvalidICRSource(C, e: ce->getSubExpr(), isAddressOf, isWeakAccess); |
6035 | |
6036 | case CK_ArrayToPointerDecay: |
6037 | return IIK_nonscalar; |
6038 | |
6039 | case CK_NullToPointer: |
6040 | return IIK_okay; |
6041 | |
6042 | default: |
6043 | break; |
6044 | } |
6045 | |
6046 | // If we have a declaration reference, it had better be a local variable. |
6047 | } else if (isa<DeclRefExpr>(Val: e)) { |
6048 | // set isWeakAccess to true, to mean that there will be an implicit |
6049 | // load which requires a cleanup. |
6050 | if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) |
6051 | isWeakAccess = true; |
6052 | |
6053 | if (!isAddressOf) return IIK_nonlocal; |
6054 | |
6055 | VarDecl *var = dyn_cast<VarDecl>(Val: cast<DeclRefExpr>(Val: e)->getDecl()); |
6056 | if (!var) return IIK_nonlocal; |
6057 | |
6058 | return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); |
6059 | |
6060 | // If we have a conditional operator, check both sides. |
6061 | } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(Val: e)) { |
6062 | if (InvalidICRKind iik = isInvalidICRSource(C, e: cond->getLHS(), isAddressOf, |
6063 | isWeakAccess)) |
6064 | return iik; |
6065 | |
6066 | return isInvalidICRSource(C, e: cond->getRHS(), isAddressOf, isWeakAccess); |
6067 | |
6068 | // These are never scalar. |
6069 | } else if (isa<ArraySubscriptExpr>(Val: e)) { |
6070 | return IIK_nonscalar; |
6071 | |
6072 | // Otherwise, it needs to be a null pointer constant. |
6073 | } else { |
6074 | return (e->isNullPointerConstant(Ctx&: C, NPC: Expr::NPC_ValueDependentIsNull) |
6075 | ? IIK_okay : IIK_nonlocal); |
6076 | } |
6077 | |
6078 | return IIK_nonlocal; |
6079 | } |
6080 | |
6081 | /// Check whether the given expression is a valid operand for an |
6082 | /// indirect copy/restore. |
6083 | static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { |
6084 | assert(src->isPRValue()); |
6085 | bool isWeakAccess = false; |
6086 | InvalidICRKind iik = isInvalidICRSource(C&: S.Context, e: src, isAddressOf: false, isWeakAccess); |
6087 | // If isWeakAccess to true, there will be an implicit |
6088 | // load which requires a cleanup. |
6089 | if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) |
6090 | S.Cleanup.setExprNeedsCleanups(true); |
6091 | |
6092 | if (iik == IIK_okay) return; |
6093 | |
6094 | S.Diag(Loc: src->getExprLoc(), DiagID: diag::err_arc_nonlocal_writeback) |
6095 | << ((unsigned) iik - 1) // shift index into diagnostic explanations |
6096 | << src->getSourceRange(); |
6097 | } |
6098 | |
6099 | /// Determine whether we have compatible array types for the |
6100 | /// purposes of GNU by-copy array initialization. |
6101 | static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, |
6102 | const ArrayType *Source) { |
6103 | // If the source and destination array types are equivalent, we're |
6104 | // done. |
6105 | if (Context.hasSameType(T1: QualType(Dest, 0), T2: QualType(Source, 0))) |
6106 | return true; |
6107 | |
6108 | // Make sure that the element types are the same. |
6109 | if (!Context.hasSameType(T1: Dest->getElementType(), T2: Source->getElementType())) |
6110 | return false; |
6111 | |
6112 | // The only mismatch we allow is when the destination is an |
6113 | // incomplete array type and the source is a constant array type. |
6114 | return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); |
6115 | } |
6116 | |
6117 | static bool tryObjCWritebackConversion(Sema &S, |
6118 | InitializationSequence &Sequence, |
6119 | const InitializedEntity &Entity, |
6120 | Expr *Initializer) { |
6121 | bool ArrayDecay = false; |
6122 | QualType ArgType = Initializer->getType(); |
6123 | QualType ArgPointee; |
6124 | if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(T: ArgType)) { |
6125 | ArrayDecay = true; |
6126 | ArgPointee = ArgArrayType->getElementType(); |
6127 | ArgType = S.Context.getPointerType(T: ArgPointee); |
6128 | } |
6129 | |
6130 | // Handle write-back conversion. |
6131 | QualType ConvertedArgType; |
6132 | if (!S.ObjC().isObjCWritebackConversion(FromType: ArgType, ToType: Entity.getType(), |
6133 | ConvertedType&: ConvertedArgType)) |
6134 | return false; |
6135 | |
6136 | // We should copy unless we're passing to an argument explicitly |
6137 | // marked 'out'. |
6138 | bool ShouldCopy = true; |
6139 | if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Val: Entity.getDecl())) |
6140 | ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); |
6141 | |
6142 | // Do we need an lvalue conversion? |
6143 | if (ArrayDecay || Initializer->isGLValue()) { |
6144 | ImplicitConversionSequence ICS; |
6145 | ICS.setStandard(); |
6146 | ICS.Standard.setAsIdentityConversion(); |
6147 | |
6148 | QualType ResultType; |
6149 | if (ArrayDecay) { |
6150 | ICS.Standard.First = ICK_Array_To_Pointer; |
6151 | ResultType = S.Context.getPointerType(T: ArgPointee); |
6152 | } else { |
6153 | ICS.Standard.First = ICK_Lvalue_To_Rvalue; |
6154 | ResultType = Initializer->getType().getNonLValueExprType(Context: S.Context); |
6155 | } |
6156 | |
6157 | Sequence.AddConversionSequenceStep(ICS, T: ResultType); |
6158 | } |
6159 | |
6160 | Sequence.AddPassByIndirectCopyRestoreStep(type: Entity.getType(), shouldCopy: ShouldCopy); |
6161 | return true; |
6162 | } |
6163 | |
6164 | static bool TryOCLSamplerInitialization(Sema &S, |
6165 | InitializationSequence &Sequence, |
6166 | QualType DestType, |
6167 | Expr *Initializer) { |
6168 | if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || |
6169 | (!Initializer->isIntegerConstantExpr(Ctx: S.Context) && |
6170 | !Initializer->getType()->isSamplerT())) |
6171 | return false; |
6172 | |
6173 | Sequence.AddOCLSamplerInitStep(T: DestType); |
6174 | return true; |
6175 | } |
6176 | |
6177 | static bool IsZeroInitializer(Expr *Initializer, Sema &S) { |
6178 | return Initializer->isIntegerConstantExpr(Ctx: S.getASTContext()) && |
6179 | (Initializer->EvaluateKnownConstInt(Ctx: S.getASTContext()) == 0); |
6180 | } |
6181 | |
6182 | static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, |
6183 | InitializationSequence &Sequence, |
6184 | QualType DestType, |
6185 | Expr *Initializer) { |
6186 | if (!S.getLangOpts().OpenCL) |
6187 | return false; |
6188 | |
6189 | // |
6190 | // OpenCL 1.2 spec, s6.12.10 |
6191 | // |
6192 | // The event argument can also be used to associate the |
6193 | // async_work_group_copy with a previous async copy allowing |
6194 | // an event to be shared by multiple async copies; otherwise |
6195 | // event should be zero. |
6196 | // |
6197 | if (DestType->isEventT() || DestType->isQueueT()) { |
6198 | if (!IsZeroInitializer(Initializer, S)) |
6199 | return false; |
6200 | |
6201 | Sequence.AddOCLZeroOpaqueTypeStep(T: DestType); |
6202 | return true; |
6203 | } |
6204 | |
6205 | // We should allow zero initialization for all types defined in the |
6206 | // cl_intel_device_side_avc_motion_estimation extension, except |
6207 | // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. |
6208 | if (S.getOpenCLOptions().isAvailableOption( |
6209 | Ext: "cl_intel_device_side_avc_motion_estimation" , LO: S.getLangOpts()) && |
6210 | DestType->isOCLIntelSubgroupAVCType()) { |
6211 | if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || |
6212 | DestType->isOCLIntelSubgroupAVCMceResultType()) |
6213 | return false; |
6214 | if (!IsZeroInitializer(Initializer, S)) |
6215 | return false; |
6216 | |
6217 | Sequence.AddOCLZeroOpaqueTypeStep(T: DestType); |
6218 | return true; |
6219 | } |
6220 | |
6221 | return false; |
6222 | } |
6223 | |
6224 | InitializationSequence::InitializationSequence( |
6225 | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, |
6226 | MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid) |
6227 | : FailedOverloadResult(OR_Success), |
6228 | FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { |
6229 | InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, |
6230 | TreatUnavailableAsInvalid); |
6231 | } |
6232 | |
6233 | /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the |
6234 | /// address of that function, this returns true. Otherwise, it returns false. |
6235 | static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { |
6236 | auto *DRE = dyn_cast<DeclRefExpr>(Val: E); |
6237 | if (!DRE || !isa<FunctionDecl>(Val: DRE->getDecl())) |
6238 | return false; |
6239 | |
6240 | return !S.checkAddressOfFunctionIsAvailable( |
6241 | Function: cast<FunctionDecl>(Val: DRE->getDecl())); |
6242 | } |
6243 | |
6244 | /// Determine whether we can perform an elementwise array copy for this kind |
6245 | /// of entity. |
6246 | static bool canPerformArrayCopy(const InitializedEntity &Entity) { |
6247 | switch (Entity.getKind()) { |
6248 | case InitializedEntity::EK_LambdaCapture: |
6249 | // C++ [expr.prim.lambda]p24: |
6250 | // For array members, the array elements are direct-initialized in |
6251 | // increasing subscript order. |
6252 | return true; |
6253 | |
6254 | case InitializedEntity::EK_Variable: |
6255 | // C++ [dcl.decomp]p1: |
6256 | // [...] each element is copy-initialized or direct-initialized from the |
6257 | // corresponding element of the assignment-expression [...] |
6258 | return isa<DecompositionDecl>(Val: Entity.getDecl()); |
6259 | |
6260 | case InitializedEntity::EK_Member: |
6261 | // C++ [class.copy.ctor]p14: |
6262 | // - if the member is an array, each element is direct-initialized with |
6263 | // the corresponding subobject of x |
6264 | return Entity.isImplicitMemberInitializer(); |
6265 | |
6266 | case InitializedEntity::EK_ArrayElement: |
6267 | // All the above cases are intended to apply recursively, even though none |
6268 | // of them actually say that. |
6269 | if (auto *E = Entity.getParent()) |
6270 | return canPerformArrayCopy(Entity: *E); |
6271 | break; |
6272 | |
6273 | default: |
6274 | break; |
6275 | } |
6276 | |
6277 | return false; |
6278 | } |
6279 | |
6280 | void InitializationSequence::InitializeFrom(Sema &S, |
6281 | const InitializedEntity &Entity, |
6282 | const InitializationKind &Kind, |
6283 | MultiExprArg Args, |
6284 | bool TopLevelOfInitList, |
6285 | bool TreatUnavailableAsInvalid) { |
6286 | ASTContext &Context = S.Context; |
6287 | |
6288 | // Eliminate non-overload placeholder types in the arguments. We |
6289 | // need to do this before checking whether types are dependent |
6290 | // because lowering a pseudo-object expression might well give us |
6291 | // something of dependent type. |
6292 | for (unsigned I = 0, E = Args.size(); I != E; ++I) |
6293 | if (Args[I]->getType()->isNonOverloadPlaceholderType()) { |
6294 | // FIXME: should we be doing this here? |
6295 | ExprResult result = S.CheckPlaceholderExpr(E: Args[I]); |
6296 | if (result.isInvalid()) { |
6297 | SetFailed(FK_PlaceholderType); |
6298 | return; |
6299 | } |
6300 | Args[I] = result.get(); |
6301 | } |
6302 | |
6303 | // C++0x [dcl.init]p16: |
6304 | // The semantics of initializers are as follows. The destination type is |
6305 | // the type of the object or reference being initialized and the source |
6306 | // type is the type of the initializer expression. The source type is not |
6307 | // defined when the initializer is a braced-init-list or when it is a |
6308 | // parenthesized list of expressions. |
6309 | QualType DestType = Entity.getType(); |
6310 | |
6311 | if (DestType->isDependentType() || |
6312 | Expr::hasAnyTypeDependentArguments(Exprs: Args)) { |
6313 | SequenceKind = DependentSequence; |
6314 | return; |
6315 | } |
6316 | |
6317 | // Almost everything is a normal sequence. |
6318 | setSequenceKind(NormalSequence); |
6319 | |
6320 | QualType SourceType; |
6321 | Expr *Initializer = nullptr; |
6322 | if (Args.size() == 1) { |
6323 | Initializer = Args[0]; |
6324 | if (S.getLangOpts().ObjC) { |
6325 | if (S.ObjC().CheckObjCBridgeRelatedConversions( |
6326 | Loc: Initializer->getBeginLoc(), DestType, SrcType: Initializer->getType(), |
6327 | SrcExpr&: Initializer) || |
6328 | S.ObjC().CheckConversionToObjCLiteral(DstType: DestType, SrcExpr&: Initializer)) |
6329 | Args[0] = Initializer; |
6330 | } |
6331 | if (!isa<InitListExpr>(Val: Initializer)) |
6332 | SourceType = Initializer->getType(); |
6333 | } |
6334 | |
6335 | // - If the initializer is a (non-parenthesized) braced-init-list, the |
6336 | // object is list-initialized (8.5.4). |
6337 | if (Kind.getKind() != InitializationKind::IK_Direct) { |
6338 | if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Val: Initializer)) { |
6339 | TryListInitialization(S, Entity, Kind, InitList, Sequence&: *this, |
6340 | TreatUnavailableAsInvalid); |
6341 | return; |
6342 | } |
6343 | } |
6344 | |
6345 | // - If the destination type is a reference type, see 8.5.3. |
6346 | if (DestType->isReferenceType()) { |
6347 | // C++0x [dcl.init.ref]p1: |
6348 | // A variable declared to be a T& or T&&, that is, "reference to type T" |
6349 | // (8.3.2), shall be initialized by an object, or function, of type T or |
6350 | // by an object that can be converted into a T. |
6351 | // (Therefore, multiple arguments are not permitted.) |
6352 | if (Args.size() != 1) |
6353 | SetFailed(FK_TooManyInitsForReference); |
6354 | // C++17 [dcl.init.ref]p5: |
6355 | // A reference [...] is initialized by an expression [...] as follows: |
6356 | // If the initializer is not an expression, presumably we should reject, |
6357 | // but the standard fails to actually say so. |
6358 | else if (isa<InitListExpr>(Val: Args[0])) |
6359 | SetFailed(FK_ParenthesizedListInitForReference); |
6360 | else |
6361 | TryReferenceInitialization(S, Entity, Kind, Initializer: Args[0], Sequence&: *this, |
6362 | TopLevelOfInitList); |
6363 | return; |
6364 | } |
6365 | |
6366 | // - If the initializer is (), the object is value-initialized. |
6367 | if (Kind.getKind() == InitializationKind::IK_Value || |
6368 | (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { |
6369 | TryValueInitialization(S, Entity, Kind, Sequence&: *this); |
6370 | return; |
6371 | } |
6372 | |
6373 | // Handle default initialization. |
6374 | if (Kind.getKind() == InitializationKind::IK_Default) { |
6375 | TryDefaultInitialization(S, Entity, Kind, Sequence&: *this); |
6376 | return; |
6377 | } |
6378 | |
6379 | // - If the destination type is an array of characters, an array of |
6380 | // char16_t, an array of char32_t, or an array of wchar_t, and the |
6381 | // initializer is a string literal, see 8.5.2. |
6382 | // - Otherwise, if the destination type is an array, the program is |
6383 | // ill-formed. |
6384 | // - Except in HLSL, where non-decaying array parameters behave like |
6385 | // non-array types for initialization. |
6386 | if (DestType->isArrayType() && !DestType->isArrayParameterType()) { |
6387 | const ArrayType *DestAT = Context.getAsArrayType(T: DestType); |
6388 | if (Initializer && isa<VariableArrayType>(Val: DestAT)) { |
6389 | SetFailed(FK_VariableLengthArrayHasInitializer); |
6390 | return; |
6391 | } |
6392 | |
6393 | if (Initializer) { |
6394 | switch (IsStringInit(Init: Initializer, AT: DestAT, Context)) { |
6395 | case SIF_None: |
6396 | TryStringLiteralInitialization(S, Entity, Kind, Initializer, Sequence&: *this); |
6397 | return; |
6398 | case SIF_NarrowStringIntoWideChar: |
6399 | SetFailed(FK_NarrowStringIntoWideCharArray); |
6400 | return; |
6401 | case SIF_WideStringIntoChar: |
6402 | SetFailed(FK_WideStringIntoCharArray); |
6403 | return; |
6404 | case SIF_IncompatWideStringIntoWideChar: |
6405 | SetFailed(FK_IncompatWideStringIntoWideChar); |
6406 | return; |
6407 | case SIF_PlainStringIntoUTF8Char: |
6408 | SetFailed(FK_PlainStringIntoUTF8Char); |
6409 | return; |
6410 | case SIF_UTF8StringIntoPlainChar: |
6411 | SetFailed(FK_UTF8StringIntoPlainChar); |
6412 | return; |
6413 | case SIF_Other: |
6414 | break; |
6415 | } |
6416 | } |
6417 | |
6418 | // Some kinds of initialization permit an array to be initialized from |
6419 | // another array of the same type, and perform elementwise initialization. |
6420 | if (Initializer && isa<ConstantArrayType>(Val: DestAT) && |
6421 | S.Context.hasSameUnqualifiedType(T1: Initializer->getType(), |
6422 | T2: Entity.getType()) && |
6423 | canPerformArrayCopy(Entity)) { |
6424 | // If source is a prvalue, use it directly. |
6425 | if (Initializer->isPRValue()) { |
6426 | AddArrayInitStep(T: DestType, /*IsGNUExtension*/false); |
6427 | return; |
6428 | } |
6429 | |
6430 | // Emit element-at-a-time copy loop. |
6431 | InitializedEntity Element = |
6432 | InitializedEntity::InitializeElement(Context&: S.Context, Index: 0, Parent: Entity); |
6433 | QualType InitEltT = |
6434 | Context.getAsArrayType(T: Initializer->getType())->getElementType(); |
6435 | OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, |
6436 | Initializer->getValueKind(), |
6437 | Initializer->getObjectKind()); |
6438 | Expr *OVEAsExpr = &OVE; |
6439 | InitializeFrom(S, Entity: Element, Kind, Args: OVEAsExpr, TopLevelOfInitList, |
6440 | TreatUnavailableAsInvalid); |
6441 | if (!Failed()) |
6442 | AddArrayInitLoopStep(T: Entity.getType(), EltT: InitEltT); |
6443 | return; |
6444 | } |
6445 | |
6446 | // Note: as an GNU C extension, we allow initialization of an |
6447 | // array from a compound literal that creates an array of the same |
6448 | // type, so long as the initializer has no side effects. |
6449 | if (!S.getLangOpts().CPlusPlus && Initializer && |
6450 | isa<CompoundLiteralExpr>(Val: Initializer->IgnoreParens()) && |
6451 | Initializer->getType()->isArrayType()) { |
6452 | const ArrayType *SourceAT |
6453 | = Context.getAsArrayType(T: Initializer->getType()); |
6454 | if (!hasCompatibleArrayTypes(Context&: S.Context, Dest: DestAT, Source: SourceAT)) |
6455 | SetFailed(FK_ArrayTypeMismatch); |
6456 | else if (Initializer->HasSideEffects(Ctx: S.Context)) |
6457 | SetFailed(FK_NonConstantArrayInit); |
6458 | else { |
6459 | AddArrayInitStep(T: DestType, /*IsGNUExtension*/true); |
6460 | } |
6461 | } |
6462 | // Note: as a GNU C++ extension, we allow list-initialization of a |
6463 | // class member of array type from a parenthesized initializer list. |
6464 | else if (S.getLangOpts().CPlusPlus && |
6465 | Entity.getKind() == InitializedEntity::EK_Member && |
6466 | isa_and_nonnull<InitListExpr>(Val: Initializer)) { |
6467 | TryListInitialization(S, Entity, Kind, InitList: cast<InitListExpr>(Val: Initializer), |
6468 | Sequence&: *this, TreatUnavailableAsInvalid); |
6469 | AddParenthesizedArrayInitStep(T: DestType); |
6470 | } else if (S.getLangOpts().CPlusPlus20 && !TopLevelOfInitList && |
6471 | Kind.getKind() == InitializationKind::IK_Direct) |
6472 | TryOrBuildParenListInitialization(S, Entity, Kind, Args, Sequence&: *this, |
6473 | /*VerifyOnly=*/true); |
6474 | else if (DestAT->getElementType()->isCharType()) |
6475 | SetFailed(FK_ArrayNeedsInitListOrStringLiteral); |
6476 | else if (IsWideCharCompatible(T: DestAT->getElementType(), Context)) |
6477 | SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); |
6478 | else |
6479 | SetFailed(FK_ArrayNeedsInitList); |
6480 | |
6481 | return; |
6482 | } |
6483 | |
6484 | // Determine whether we should consider writeback conversions for |
6485 | // Objective-C ARC. |
6486 | bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && |
6487 | Entity.isParameterKind(); |
6488 | |
6489 | if (TryOCLSamplerInitialization(S, Sequence&: *this, DestType, Initializer)) |
6490 | return; |
6491 | |
6492 | // We're at the end of the line for C: it's either a write-back conversion |
6493 | // or it's a C assignment. There's no need to check anything else. |
6494 | if (!S.getLangOpts().CPlusPlus) { |
6495 | assert(Initializer && "Initializer must be non-null" ); |
6496 | // If allowed, check whether this is an Objective-C writeback conversion. |
6497 | if (allowObjCWritebackConversion && |
6498 | tryObjCWritebackConversion(S, Sequence&: *this, Entity, Initializer)) { |
6499 | return; |
6500 | } |
6501 | |
6502 | if (TryOCLZeroOpaqueTypeInitialization(S, Sequence&: *this, DestType, Initializer)) |
6503 | return; |
6504 | |
6505 | // Handle initialization in C |
6506 | AddCAssignmentStep(T: DestType); |
6507 | MaybeProduceObjCObject(S, Sequence&: *this, Entity); |
6508 | return; |
6509 | } |
6510 | |
6511 | assert(S.getLangOpts().CPlusPlus); |
6512 | |
6513 | // - If the destination type is a (possibly cv-qualified) class type: |
6514 | if (DestType->isRecordType()) { |
6515 | // - If the initialization is direct-initialization, or if it is |
6516 | // copy-initialization where the cv-unqualified version of the |
6517 | // source type is the same class as, or a derived class of, the |
6518 | // class of the destination, constructors are considered. [...] |
6519 | if (Kind.getKind() == InitializationKind::IK_Direct || |
6520 | (Kind.getKind() == InitializationKind::IK_Copy && |
6521 | (Context.hasSameUnqualifiedType(T1: SourceType, T2: DestType) || |
6522 | (Initializer && S.IsDerivedFrom(Loc: Initializer->getBeginLoc(), |
6523 | Derived: SourceType, Base: DestType))))) { |
6524 | TryConstructorInitialization(S, Entity, Kind, Args, DestType, DestArrayType: DestType, |
6525 | Sequence&: *this); |
6526 | |
6527 | // We fall back to the "no matching constructor" path if the |
6528 | // failed candidate set has functions other than the three default |
6529 | // constructors. For example, conversion function. |
6530 | if (const auto *RD = |
6531 | dyn_cast<CXXRecordDecl>(Val: DestType->getAs<RecordType>()->getDecl()); |
6532 | // In general, we should call isCompleteType for RD to check its |
6533 | // completeness, we don't call it here as it was already called in the |
6534 | // above TryConstructorInitialization. |
6535 | S.getLangOpts().CPlusPlus20 && RD && RD->hasDefinition() && |
6536 | RD->isAggregate() && Failed() && |
6537 | getFailureKind() == FK_ConstructorOverloadFailed) { |
6538 | // Do not attempt paren list initialization if overload resolution |
6539 | // resolves to a deleted function . |
6540 | // |
6541 | // We may reach this condition if we have a union wrapping a class with |
6542 | // a non-trivial copy or move constructor and we call one of those two |
6543 | // constructors. The union is an aggregate, but the matched constructor |
6544 | // is implicitly deleted, so we need to prevent aggregate initialization |
6545 | // (otherwise, it'll attempt aggregate initialization by initializing |
6546 | // the first element with a reference to the union). |
6547 | OverloadCandidateSet::iterator Best; |
6548 | OverloadingResult OR = getFailedCandidateSet().BestViableFunction( |
6549 | S, Loc: Kind.getLocation(), Best); |
6550 | if (OR != OverloadingResult::OR_Deleted) { |
6551 | // C++20 [dcl.init] 17.6.2.2: |
6552 | // - Otherwise, if no constructor is viable, the destination type is |
6553 | // an |
6554 | // aggregate class, and the initializer is a parenthesized |
6555 | // expression-list. |
6556 | TryOrBuildParenListInitialization(S, Entity, Kind, Args, Sequence&: *this, |
6557 | /*VerifyOnly=*/true); |
6558 | } |
6559 | } |
6560 | } else { |
6561 | // - Otherwise (i.e., for the remaining copy-initialization cases), |
6562 | // user-defined conversion sequences that can convert from the |
6563 | // source type to the destination type or (when a conversion |
6564 | // function is used) to a derived class thereof are enumerated as |
6565 | // described in 13.3.1.4, and the best one is chosen through |
6566 | // overload resolution (13.3). |
6567 | assert(Initializer && "Initializer must be non-null" ); |
6568 | TryUserDefinedConversion(S, DestType, Kind, Initializer, Sequence&: *this, |
6569 | TopLevelOfInitList); |
6570 | } |
6571 | return; |
6572 | } |
6573 | |
6574 | assert(Args.size() >= 1 && "Zero-argument case handled above" ); |
6575 | |
6576 | // For HLSL ext vector types we allow list initialization behavior for C++ |
6577 | // constructor syntax. This is accomplished by converting initialization |
6578 | // arguments an InitListExpr late. |
6579 | if (S.getLangOpts().HLSL && Args.size() > 1 && DestType->isExtVectorType() && |
6580 | (SourceType.isNull() || |
6581 | !Context.hasSameUnqualifiedType(T1: SourceType, T2: DestType))) { |
6582 | |
6583 | llvm::SmallVector<Expr *> InitArgs; |
6584 | for (auto *Arg : Args) { |
6585 | if (Arg->getType()->isExtVectorType()) { |
6586 | const auto *VTy = Arg->getType()->castAs<ExtVectorType>(); |
6587 | unsigned Elm = VTy->getNumElements(); |
6588 | for (unsigned Idx = 0; Idx < Elm; ++Idx) { |
6589 | InitArgs.emplace_back(Args: new (Context) ArraySubscriptExpr( |
6590 | Arg, |
6591 | IntegerLiteral::Create( |
6592 | C: Context, V: llvm::APInt(Context.getIntWidth(T: Context.IntTy), Idx), |
6593 | type: Context.IntTy, l: SourceLocation()), |
6594 | VTy->getElementType(), Arg->getValueKind(), Arg->getObjectKind(), |
6595 | SourceLocation())); |
6596 | } |
6597 | } else |
6598 | InitArgs.emplace_back(Args&: Arg); |
6599 | } |
6600 | InitListExpr *ILE = new (Context) InitListExpr( |
6601 | S.getASTContext(), SourceLocation(), InitArgs, SourceLocation()); |
6602 | Args[0] = ILE; |
6603 | AddListInitializationStep(T: DestType); |
6604 | return; |
6605 | } |
6606 | |
6607 | // The remaining cases all need a source type. |
6608 | if (Args.size() > 1) { |
6609 | SetFailed(FK_TooManyInitsForScalar); |
6610 | return; |
6611 | } else if (isa<InitListExpr>(Val: Args[0])) { |
6612 | SetFailed(FK_ParenthesizedListInitForScalar); |
6613 | return; |
6614 | } |
6615 | |
6616 | // - Otherwise, if the source type is a (possibly cv-qualified) class |
6617 | // type, conversion functions are considered. |
6618 | if (!SourceType.isNull() && SourceType->isRecordType()) { |
6619 | assert(Initializer && "Initializer must be non-null" ); |
6620 | // For a conversion to _Atomic(T) from either T or a class type derived |
6621 | // from T, initialize the T object then convert to _Atomic type. |
6622 | bool NeedAtomicConversion = false; |
6623 | if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { |
6624 | if (Context.hasSameUnqualifiedType(T1: SourceType, T2: Atomic->getValueType()) || |
6625 | S.IsDerivedFrom(Loc: Initializer->getBeginLoc(), Derived: SourceType, |
6626 | Base: Atomic->getValueType())) { |
6627 | DestType = Atomic->getValueType(); |
6628 | NeedAtomicConversion = true; |
6629 | } |
6630 | } |
6631 | |
6632 | TryUserDefinedConversion(S, DestType, Kind, Initializer, Sequence&: *this, |
6633 | TopLevelOfInitList); |
6634 | MaybeProduceObjCObject(S, Sequence&: *this, Entity); |
6635 | if (!Failed() && NeedAtomicConversion) |
6636 | AddAtomicConversionStep(Ty: Entity.getType()); |
6637 | return; |
6638 | } |
6639 | |
6640 | // - Otherwise, if the initialization is direct-initialization, the source |
6641 | // type is std::nullptr_t, and the destination type is bool, the initial |
6642 | // value of the object being initialized is false. |
6643 | if (!SourceType.isNull() && SourceType->isNullPtrType() && |
6644 | DestType->isBooleanType() && |
6645 | Kind.getKind() == InitializationKind::IK_Direct) { |
6646 | AddConversionSequenceStep( |
6647 | ICS: ImplicitConversionSequence::getNullptrToBool(SourceType, DestType, |
6648 | NeedLValToRVal: Initializer->isGLValue()), |
6649 | T: DestType); |
6650 | return; |
6651 | } |
6652 | |
6653 | // - Otherwise, the initial value of the object being initialized is the |
6654 | // (possibly converted) value of the initializer expression. Standard |
6655 | // conversions (Clause 4) will be used, if necessary, to convert the |
6656 | // initializer expression to the cv-unqualified version of the |
6657 | // destination type; no user-defined conversions are considered. |
6658 | |
6659 | ImplicitConversionSequence ICS |
6660 | = S.TryImplicitConversion(From: Initializer, ToType: DestType, |
6661 | /*SuppressUserConversions*/true, |
6662 | AllowExplicit: Sema::AllowedExplicit::None, |
6663 | /*InOverloadResolution*/ false, |
6664 | /*CStyle=*/Kind.isCStyleOrFunctionalCast(), |
6665 | AllowObjCWritebackConversion: allowObjCWritebackConversion); |
6666 | |
6667 | if (ICS.isStandard() && |
6668 | ICS.Standard.Second == ICK_Writeback_Conversion) { |
6669 | // Objective-C ARC writeback conversion. |
6670 | |
6671 | // We should copy unless we're passing to an argument explicitly |
6672 | // marked 'out'. |
6673 | bool ShouldCopy = true; |
6674 | if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Val: Entity.getDecl())) |
6675 | ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); |
6676 | |
6677 | // If there was an lvalue adjustment, add it as a separate conversion. |
6678 | if (ICS.Standard.First == ICK_Array_To_Pointer || |
6679 | ICS.Standard.First == ICK_Lvalue_To_Rvalue) { |
6680 | ImplicitConversionSequence LvalueICS; |
6681 | LvalueICS.setStandard(); |
6682 | LvalueICS.Standard.setAsIdentityConversion(); |
6683 | LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(Idx: 0)); |
6684 | LvalueICS.Standard.First = ICS.Standard.First; |
6685 | AddConversionSequenceStep(ICS: LvalueICS, T: ICS.Standard.getToType(Idx: 0)); |
6686 | } |
6687 | |
6688 | AddPassByIndirectCopyRestoreStep(type: DestType, shouldCopy: ShouldCopy); |
6689 | } else if (ICS.isBad()) { |
6690 | if (isLibstdcxxPointerReturnFalseHack(S, Entity, Init: Initializer)) |
6691 | AddZeroInitializationStep(T: Entity.getType()); |
6692 | else if (DeclAccessPair Found; |
6693 | Initializer->getType() == Context.OverloadTy && |
6694 | !S.ResolveAddressOfOverloadedFunction(AddressOfExpr: Initializer, TargetType: DestType, |
6695 | /*Complain=*/false, Found)) |
6696 | SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
6697 | else if (Initializer->getType()->isFunctionType() && |
6698 | isExprAnUnaddressableFunction(S, E: Initializer)) |
6699 | SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); |
6700 | else |
6701 | SetFailed(InitializationSequence::FK_ConversionFailed); |
6702 | } else { |
6703 | AddConversionSequenceStep(ICS, T: DestType, TopLevelOfInitList); |
6704 | |
6705 | MaybeProduceObjCObject(S, Sequence&: *this, Entity); |
6706 | } |
6707 | } |
6708 | |
6709 | InitializationSequence::~InitializationSequence() { |
6710 | for (auto &S : Steps) |
6711 | S.Destroy(); |
6712 | } |
6713 | |
6714 | //===----------------------------------------------------------------------===// |
6715 | // Perform initialization |
6716 | //===----------------------------------------------------------------------===// |
6717 | static Sema::AssignmentAction |
6718 | getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { |
6719 | switch(Entity.getKind()) { |
6720 | case InitializedEntity::EK_Variable: |
6721 | case InitializedEntity::EK_New: |
6722 | case InitializedEntity::EK_Exception: |
6723 | case InitializedEntity::EK_Base: |
6724 | case InitializedEntity::EK_Delegating: |
6725 | return Sema::AA_Initializing; |
6726 | |
6727 | case InitializedEntity::EK_Parameter: |
6728 | if (Entity.getDecl() && |
6729 | isa<ObjCMethodDecl>(Val: Entity.getDecl()->getDeclContext())) |
6730 | return Sema::AA_Sending; |
6731 | |
6732 | return Sema::AA_Passing; |
6733 | |
6734 | case InitializedEntity::EK_Parameter_CF_Audited: |
6735 | if (Entity.getDecl() && |
6736 | isa<ObjCMethodDecl>(Val: Entity.getDecl()->getDeclContext())) |
6737 | return Sema::AA_Sending; |
6738 | |
6739 | return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; |
6740 | |
6741 | case InitializedEntity::EK_Result: |
6742 | case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. |
6743 | return Sema::AA_Returning; |
6744 | |
6745 | case InitializedEntity::EK_Temporary: |
6746 | case InitializedEntity::EK_RelatedResult: |
6747 | // FIXME: Can we tell apart casting vs. converting? |
6748 | return Sema::AA_Casting; |
6749 | |
6750 | case InitializedEntity::EK_TemplateParameter: |
6751 | // This is really initialization, but refer to it as conversion for |
6752 | // consistency with CheckConvertedConstantExpression. |
6753 | return Sema::AA_Converting; |
6754 | |
6755 | case InitializedEntity::EK_Member: |
6756 | case InitializedEntity::EK_ParenAggInitMember: |
6757 | case InitializedEntity::EK_Binding: |
6758 | case InitializedEntity::EK_ArrayElement: |
6759 | case InitializedEntity::EK_VectorElement: |
6760 | case InitializedEntity::EK_ComplexElement: |
6761 | case InitializedEntity::EK_BlockElement: |
6762 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
6763 | case InitializedEntity::EK_LambdaCapture: |
6764 | case InitializedEntity::EK_CompoundLiteralInit: |
6765 | return Sema::AA_Initializing; |
6766 | } |
6767 | |
6768 | llvm_unreachable("Invalid EntityKind!" ); |
6769 | } |
6770 | |
6771 | /// Whether we should bind a created object as a temporary when |
6772 | /// initializing the given entity. |
6773 | static bool shouldBindAsTemporary(const InitializedEntity &Entity) { |
6774 | switch (Entity.getKind()) { |
6775 | case InitializedEntity::EK_ArrayElement: |
6776 | case InitializedEntity::EK_Member: |
6777 | case InitializedEntity::EK_ParenAggInitMember: |
6778 | case InitializedEntity::EK_Result: |
6779 | case InitializedEntity::EK_StmtExprResult: |
6780 | case InitializedEntity::EK_New: |
6781 | case InitializedEntity::EK_Variable: |
6782 | case InitializedEntity::EK_Base: |
6783 | case InitializedEntity::EK_Delegating: |
6784 | case InitializedEntity::EK_VectorElement: |
6785 | case InitializedEntity::EK_ComplexElement: |
6786 | case InitializedEntity::EK_Exception: |
6787 | case InitializedEntity::EK_BlockElement: |
6788 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
6789 | case InitializedEntity::EK_LambdaCapture: |
6790 | case InitializedEntity::EK_CompoundLiteralInit: |
6791 | case InitializedEntity::EK_TemplateParameter: |
6792 | return false; |
6793 | |
6794 | case InitializedEntity::EK_Parameter: |
6795 | case InitializedEntity::EK_Parameter_CF_Audited: |
6796 | case InitializedEntity::EK_Temporary: |
6797 | case InitializedEntity::EK_RelatedResult: |
6798 | case InitializedEntity::EK_Binding: |
6799 | return true; |
6800 | } |
6801 | |
6802 | llvm_unreachable("missed an InitializedEntity kind?" ); |
6803 | } |
6804 | |
6805 | /// Whether the given entity, when initialized with an object |
6806 | /// created for that initialization, requires destruction. |
6807 | static bool shouldDestroyEntity(const InitializedEntity &Entity) { |
6808 | switch (Entity.getKind()) { |
6809 | case InitializedEntity::EK_Result: |
6810 | case InitializedEntity::EK_StmtExprResult: |
6811 | case InitializedEntity::EK_New: |
6812 | case InitializedEntity::EK_Base: |
6813 | case InitializedEntity::EK_Delegating: |
6814 | case InitializedEntity::EK_VectorElement: |
6815 | case InitializedEntity::EK_ComplexElement: |
6816 | case InitializedEntity::EK_BlockElement: |
6817 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
6818 | case InitializedEntity::EK_LambdaCapture: |
6819 | return false; |
6820 | |
6821 | case InitializedEntity::EK_Member: |
6822 | case InitializedEntity::EK_ParenAggInitMember: |
6823 | case InitializedEntity::EK_Binding: |
6824 | case InitializedEntity::EK_Variable: |
6825 | case InitializedEntity::EK_Parameter: |
6826 | case InitializedEntity::EK_Parameter_CF_Audited: |
6827 | case InitializedEntity::EK_TemplateParameter: |
6828 | case InitializedEntity::EK_Temporary: |
6829 | case InitializedEntity::EK_ArrayElement: |
6830 | case InitializedEntity::EK_Exception: |
6831 | case InitializedEntity::EK_CompoundLiteralInit: |
6832 | case InitializedEntity::EK_RelatedResult: |
6833 | return true; |
6834 | } |
6835 | |
6836 | llvm_unreachable("missed an InitializedEntity kind?" ); |
6837 | } |
6838 | |
6839 | /// Get the location at which initialization diagnostics should appear. |
6840 | static SourceLocation getInitializationLoc(const InitializedEntity &Entity, |
6841 | Expr *Initializer) { |
6842 | switch (Entity.getKind()) { |
6843 | case InitializedEntity::EK_Result: |
6844 | case InitializedEntity::EK_StmtExprResult: |
6845 | return Entity.getReturnLoc(); |
6846 | |
6847 | case InitializedEntity::EK_Exception: |
6848 | return Entity.getThrowLoc(); |
6849 | |
6850 | case InitializedEntity::EK_Variable: |
6851 | case InitializedEntity::EK_Binding: |
6852 | return Entity.getDecl()->getLocation(); |
6853 | |
6854 | case InitializedEntity::EK_LambdaCapture: |
6855 | return Entity.getCaptureLoc(); |
6856 | |
6857 | case InitializedEntity::EK_ArrayElement: |
6858 | case InitializedEntity::EK_Member: |
6859 | case InitializedEntity::EK_ParenAggInitMember: |
6860 | case InitializedEntity::EK_Parameter: |
6861 | case InitializedEntity::EK_Parameter_CF_Audited: |
6862 | case InitializedEntity::EK_TemplateParameter: |
6863 | case InitializedEntity::EK_Temporary: |
6864 | case InitializedEntity::EK_New: |
6865 | case InitializedEntity::EK_Base: |
6866 | case InitializedEntity::EK_Delegating: |
6867 | case InitializedEntity::EK_VectorElement: |
6868 | case InitializedEntity::EK_ComplexElement: |
6869 | case InitializedEntity::EK_BlockElement: |
6870 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
6871 | case InitializedEntity::EK_CompoundLiteralInit: |
6872 | case InitializedEntity::EK_RelatedResult: |
6873 | return Initializer->getBeginLoc(); |
6874 | } |
6875 | llvm_unreachable("missed an InitializedEntity kind?" ); |
6876 | } |
6877 | |
6878 | /// Make a (potentially elidable) temporary copy of the object |
6879 | /// provided by the given initializer by calling the appropriate copy |
6880 | /// constructor. |
6881 | /// |
6882 | /// \param S The Sema object used for type-checking. |
6883 | /// |
6884 | /// \param T The type of the temporary object, which must either be |
6885 | /// the type of the initializer expression or a superclass thereof. |
6886 | /// |
6887 | /// \param Entity The entity being initialized. |
6888 | /// |
6889 | /// \param CurInit The initializer expression. |
6890 | /// |
6891 | /// \param IsExtraneousCopy Whether this is an "extraneous" copy that |
6892 | /// is permitted in C++03 (but not C++0x) when binding a reference to |
6893 | /// an rvalue. |
6894 | /// |
6895 | /// \returns An expression that copies the initializer expression into |
6896 | /// a temporary object, or an error expression if a copy could not be |
6897 | /// created. |
6898 | static ExprResult CopyObject(Sema &S, |
6899 | QualType T, |
6900 | const InitializedEntity &Entity, |
6901 | ExprResult CurInit, |
6902 | bool ) { |
6903 | if (CurInit.isInvalid()) |
6904 | return CurInit; |
6905 | // Determine which class type we're copying to. |
6906 | Expr *CurInitExpr = (Expr *)CurInit.get(); |
6907 | CXXRecordDecl *Class = nullptr; |
6908 | if (const RecordType *Record = T->getAs<RecordType>()) |
6909 | Class = cast<CXXRecordDecl>(Val: Record->getDecl()); |
6910 | if (!Class) |
6911 | return CurInit; |
6912 | |
6913 | SourceLocation Loc = getInitializationLoc(Entity, Initializer: CurInit.get()); |
6914 | |
6915 | // Make sure that the type we are copying is complete. |
6916 | if (S.RequireCompleteType(Loc, T, DiagID: diag::err_temp_copy_incomplete)) |
6917 | return CurInit; |
6918 | |
6919 | // Perform overload resolution using the class's constructors. Per |
6920 | // C++11 [dcl.init]p16, second bullet for class types, this initialization |
6921 | // is direct-initialization. |
6922 | OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); |
6923 | DeclContext::lookup_result Ctors = S.LookupConstructors(Class); |
6924 | |
6925 | OverloadCandidateSet::iterator Best; |
6926 | switch (ResolveConstructorOverload( |
6927 | S, DeclLoc: Loc, Args: CurInitExpr, CandidateSet, DestType: T, Ctors, Best, |
6928 | /*CopyInitializing=*/false, /*AllowExplicit=*/true, |
6929 | /*OnlyListConstructors=*/false, /*IsListInit=*/false, |
6930 | /*RequireActualConstructor=*/false, |
6931 | /*SecondStepOfCopyInit=*/true)) { |
6932 | case OR_Success: |
6933 | break; |
6934 | |
6935 | case OR_No_Viable_Function: |
6936 | CandidateSet.NoteCandidates( |
6937 | PA: PartialDiagnosticAt( |
6938 | Loc, S.PDiag(DiagID: IsExtraneousCopy && !S.isSFINAEContext() |
6939 | ? diag::ext_rvalue_to_reference_temp_copy_no_viable |
6940 | : diag::err_temp_copy_no_viable) |
6941 | << (int)Entity.getKind() << CurInitExpr->getType() |
6942 | << CurInitExpr->getSourceRange()), |
6943 | S, OCD: OCD_AllCandidates, Args: CurInitExpr); |
6944 | if (!IsExtraneousCopy || S.isSFINAEContext()) |
6945 | return ExprError(); |
6946 | return CurInit; |
6947 | |
6948 | case OR_Ambiguous: |
6949 | CandidateSet.NoteCandidates( |
6950 | PA: PartialDiagnosticAt(Loc, S.PDiag(DiagID: diag::err_temp_copy_ambiguous) |
6951 | << (int)Entity.getKind() |
6952 | << CurInitExpr->getType() |
6953 | << CurInitExpr->getSourceRange()), |
6954 | S, OCD: OCD_AmbiguousCandidates, Args: CurInitExpr); |
6955 | return ExprError(); |
6956 | |
6957 | case OR_Deleted: |
6958 | S.Diag(Loc, DiagID: diag::err_temp_copy_deleted) |
6959 | << (int)Entity.getKind() << CurInitExpr->getType() |
6960 | << CurInitExpr->getSourceRange(); |
6961 | S.NoteDeletedFunction(FD: Best->Function); |
6962 | return ExprError(); |
6963 | } |
6964 | |
6965 | bool HadMultipleCandidates = CandidateSet.size() > 1; |
6966 | |
6967 | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Val: Best->Function); |
6968 | SmallVector<Expr*, 8> ConstructorArgs; |
6969 | CurInit.get(); // Ownership transferred into MultiExprArg, below. |
6970 | |
6971 | S.CheckConstructorAccess(Loc, D: Constructor, FoundDecl: Best->FoundDecl, Entity, |
6972 | IsCopyBindingRefToTemp: IsExtraneousCopy); |
6973 | |
6974 | if (IsExtraneousCopy) { |
6975 | // If this is a totally extraneous copy for C++03 reference |
6976 | // binding purposes, just return the original initialization |
6977 | // expression. We don't generate an (elided) copy operation here |
6978 | // because doing so would require us to pass down a flag to avoid |
6979 | // infinite recursion, where each step adds another extraneous, |
6980 | // elidable copy. |
6981 | |
6982 | // Instantiate the default arguments of any extra parameters in |
6983 | // the selected copy constructor, as if we were going to create a |
6984 | // proper call to the copy constructor. |
6985 | for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { |
6986 | ParmVarDecl *Parm = Constructor->getParamDecl(i: I); |
6987 | if (S.RequireCompleteType(Loc, T: Parm->getType(), |
6988 | DiagID: diag::err_call_incomplete_argument)) |
6989 | break; |
6990 | |
6991 | // Build the default argument expression; we don't actually care |
6992 | // if this succeeds or not, because this routine will complain |
6993 | // if there was a problem. |
6994 | S.BuildCXXDefaultArgExpr(CallLoc: Loc, FD: Constructor, Param: Parm); |
6995 | } |
6996 | |
6997 | return CurInitExpr; |
6998 | } |
6999 | |
7000 | // Determine the arguments required to actually perform the |
7001 | // constructor call (we might have derived-to-base conversions, or |
7002 | // the copy constructor may have default arguments). |
7003 | if (S.CompleteConstructorCall(Constructor, DeclInitType: T, ArgsPtr: CurInitExpr, Loc, |
7004 | ConvertedArgs&: ConstructorArgs)) |
7005 | return ExprError(); |
7006 | |
7007 | // C++0x [class.copy]p32: |
7008 | // When certain criteria are met, an implementation is allowed to |
7009 | // omit the copy/move construction of a class object, even if the |
7010 | // copy/move constructor and/or destructor for the object have |
7011 | // side effects. [...] |
7012 | // - when a temporary class object that has not been bound to a |
7013 | // reference (12.2) would be copied/moved to a class object |
7014 | // with the same cv-unqualified type, the copy/move operation |
7015 | // can be omitted by constructing the temporary object |
7016 | // directly into the target of the omitted copy/move |
7017 | // |
7018 | // Note that the other three bullets are handled elsewhere. Copy |
7019 | // elision for return statements and throw expressions are handled as part |
7020 | // of constructor initialization, while copy elision for exception handlers |
7021 | // is handled by the run-time. |
7022 | // |
7023 | // FIXME: If the function parameter is not the same type as the temporary, we |
7024 | // should still be able to elide the copy, but we don't have a way to |
7025 | // represent in the AST how much should be elided in this case. |
7026 | bool Elidable = |
7027 | CurInitExpr->isTemporaryObject(Ctx&: S.Context, TempTy: Class) && |
7028 | S.Context.hasSameUnqualifiedType( |
7029 | T1: Best->Function->getParamDecl(i: 0)->getType().getNonReferenceType(), |
7030 | T2: CurInitExpr->getType()); |
7031 | |
7032 | // Actually perform the constructor call. |
7033 | CurInit = S.BuildCXXConstructExpr( |
7034 | ConstructLoc: Loc, DeclInitType: T, FoundDecl: Best->FoundDecl, Constructor, Elidable, Exprs: ConstructorArgs, |
7035 | HadMultipleCandidates, |
7036 | /*ListInit*/ IsListInitialization: false, |
7037 | /*StdInitListInit*/ IsStdInitListInitialization: false, |
7038 | /*ZeroInit*/ RequiresZeroInit: false, ConstructKind: CXXConstructionKind::Complete, ParenRange: SourceRange()); |
7039 | |
7040 | // If we're supposed to bind temporaries, do so. |
7041 | if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) |
7042 | CurInit = S.MaybeBindToTemporary(E: CurInit.getAs<Expr>()); |
7043 | return CurInit; |
7044 | } |
7045 | |
7046 | /// Check whether elidable copy construction for binding a reference to |
7047 | /// a temporary would have succeeded if we were building in C++98 mode, for |
7048 | /// -Wc++98-compat. |
7049 | static void CheckCXX98CompatAccessibleCopy(Sema &S, |
7050 | const InitializedEntity &Entity, |
7051 | Expr *CurInitExpr) { |
7052 | assert(S.getLangOpts().CPlusPlus11); |
7053 | |
7054 | const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); |
7055 | if (!Record) |
7056 | return; |
7057 | |
7058 | SourceLocation Loc = getInitializationLoc(Entity, Initializer: CurInitExpr); |
7059 | if (S.Diags.isIgnored(DiagID: diag::warn_cxx98_compat_temp_copy, Loc)) |
7060 | return; |
7061 | |
7062 | // Find constructors which would have been considered. |
7063 | OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); |
7064 | DeclContext::lookup_result Ctors = |
7065 | S.LookupConstructors(Class: cast<CXXRecordDecl>(Val: Record->getDecl())); |
7066 | |
7067 | // Perform overload resolution. |
7068 | OverloadCandidateSet::iterator Best; |
7069 | OverloadingResult OR = ResolveConstructorOverload( |
7070 | S, DeclLoc: Loc, Args: CurInitExpr, CandidateSet, DestType: CurInitExpr->getType(), Ctors, Best, |
7071 | /*CopyInitializing=*/false, /*AllowExplicit=*/true, |
7072 | /*OnlyListConstructors=*/false, /*IsListInit=*/false, |
7073 | /*RequireActualConstructor=*/false, |
7074 | /*SecondStepOfCopyInit=*/true); |
7075 | |
7076 | PartialDiagnostic Diag = S.PDiag(DiagID: diag::warn_cxx98_compat_temp_copy) |
7077 | << OR << (int)Entity.getKind() << CurInitExpr->getType() |
7078 | << CurInitExpr->getSourceRange(); |
7079 | |
7080 | switch (OR) { |
7081 | case OR_Success: |
7082 | S.CheckConstructorAccess(Loc, D: cast<CXXConstructorDecl>(Val: Best->Function), |
7083 | FoundDecl: Best->FoundDecl, Entity, PDiag: Diag); |
7084 | // FIXME: Check default arguments as far as that's possible. |
7085 | break; |
7086 | |
7087 | case OR_No_Viable_Function: |
7088 | CandidateSet.NoteCandidates(PA: PartialDiagnosticAt(Loc, Diag), S, |
7089 | OCD: OCD_AllCandidates, Args: CurInitExpr); |
7090 | break; |
7091 | |
7092 | case OR_Ambiguous: |
7093 | CandidateSet.NoteCandidates(PA: PartialDiagnosticAt(Loc, Diag), S, |
7094 | OCD: OCD_AmbiguousCandidates, Args: CurInitExpr); |
7095 | break; |
7096 | |
7097 | case OR_Deleted: |
7098 | S.Diag(Loc, PD: Diag); |
7099 | S.NoteDeletedFunction(FD: Best->Function); |
7100 | break; |
7101 | } |
7102 | } |
7103 | |
7104 | void InitializationSequence::PrintInitLocationNote(Sema &S, |
7105 | const InitializedEntity &Entity) { |
7106 | if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) { |
7107 | if (Entity.getDecl()->getLocation().isInvalid()) |
7108 | return; |
7109 | |
7110 | if (Entity.getDecl()->getDeclName()) |
7111 | S.Diag(Loc: Entity.getDecl()->getLocation(), DiagID: diag::note_parameter_named_here) |
7112 | << Entity.getDecl()->getDeclName(); |
7113 | else |
7114 | S.Diag(Loc: Entity.getDecl()->getLocation(), DiagID: diag::note_parameter_here); |
7115 | } |
7116 | else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && |
7117 | Entity.getMethodDecl()) |
7118 | S.Diag(Loc: Entity.getMethodDecl()->getLocation(), |
7119 | DiagID: diag::note_method_return_type_change) |
7120 | << Entity.getMethodDecl()->getDeclName(); |
7121 | } |
7122 | |
7123 | /// Returns true if the parameters describe a constructor initialization of |
7124 | /// an explicit temporary object, e.g. "Point(x, y)". |
7125 | static bool isExplicitTemporary(const InitializedEntity &Entity, |
7126 | const InitializationKind &Kind, |
7127 | unsigned NumArgs) { |
7128 | switch (Entity.getKind()) { |
7129 | case InitializedEntity::EK_Temporary: |
7130 | case InitializedEntity::EK_CompoundLiteralInit: |
7131 | case InitializedEntity::EK_RelatedResult: |
7132 | break; |
7133 | default: |
7134 | return false; |
7135 | } |
7136 | |
7137 | switch (Kind.getKind()) { |
7138 | case InitializationKind::IK_DirectList: |
7139 | return true; |
7140 | // FIXME: Hack to work around cast weirdness. |
7141 | case InitializationKind::IK_Direct: |
7142 | case InitializationKind::IK_Value: |
7143 | return NumArgs != 1; |
7144 | default: |
7145 | return false; |
7146 | } |
7147 | } |
7148 | |
7149 | static ExprResult |
7150 | PerformConstructorInitialization(Sema &S, |
7151 | const InitializedEntity &Entity, |
7152 | const InitializationKind &Kind, |
7153 | MultiExprArg Args, |
7154 | const InitializationSequence::Step& Step, |
7155 | bool &ConstructorInitRequiresZeroInit, |
7156 | bool IsListInitialization, |
7157 | bool IsStdInitListInitialization, |
7158 | SourceLocation LBraceLoc, |
7159 | SourceLocation RBraceLoc) { |
7160 | unsigned NumArgs = Args.size(); |
7161 | CXXConstructorDecl *Constructor |
7162 | = cast<CXXConstructorDecl>(Val: Step.Function.Function); |
7163 | bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; |
7164 | |
7165 | // Build a call to the selected constructor. |
7166 | SmallVector<Expr*, 8> ConstructorArgs; |
7167 | SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) |
7168 | ? Kind.getEqualLoc() |
7169 | : Kind.getLocation(); |
7170 | |
7171 | if (Kind.getKind() == InitializationKind::IK_Default) { |
7172 | // Force even a trivial, implicit default constructor to be |
7173 | // semantically checked. We do this explicitly because we don't build |
7174 | // the definition for completely trivial constructors. |
7175 | assert(Constructor->getParent() && "No parent class for constructor." ); |
7176 | if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && |
7177 | Constructor->isTrivial() && !Constructor->isUsed(CheckUsedAttr: false)) { |
7178 | S.runWithSufficientStackSpace(Loc, Fn: [&] { |
7179 | S.DefineImplicitDefaultConstructor(CurrentLocation: Loc, Constructor); |
7180 | }); |
7181 | } |
7182 | } |
7183 | |
7184 | ExprResult CurInit((Expr *)nullptr); |
7185 | |
7186 | // C++ [over.match.copy]p1: |
7187 | // - When initializing a temporary to be bound to the first parameter |
7188 | // of a constructor that takes a reference to possibly cv-qualified |
7189 | // T as its first argument, called with a single argument in the |
7190 | // context of direct-initialization, explicit conversion functions |
7191 | // are also considered. |
7192 | bool AllowExplicitConv = |
7193 | Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && |
7194 | hasCopyOrMoveCtorParam(Ctx&: S.Context, |
7195 | Info: getConstructorInfo(ND: Step.Function.FoundDecl)); |
7196 | |
7197 | // A smart pointer constructed from a nullable pointer is nullable. |
7198 | if (NumArgs == 1 && !Kind.isExplicitCast()) |
7199 | S.diagnoseNullableToNonnullConversion( |
7200 | DstType: Entity.getType(), SrcType: Args.front()->getType(), Loc: Kind.getLocation()); |
7201 | |
7202 | // Determine the arguments required to actually perform the constructor |
7203 | // call. |
7204 | if (S.CompleteConstructorCall(Constructor, DeclInitType: Step.Type, ArgsPtr: Args, Loc, |
7205 | ConvertedArgs&: ConstructorArgs, AllowExplicit: AllowExplicitConv, |
7206 | IsListInitialization)) |
7207 | return ExprError(); |
7208 | |
7209 | if (isExplicitTemporary(Entity, Kind, NumArgs)) { |
7210 | // An explicitly-constructed temporary, e.g., X(1, 2). |
7211 | if (S.DiagnoseUseOfDecl(D: Step.Function.FoundDecl, Locs: Loc)) |
7212 | return ExprError(); |
7213 | |
7214 | TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); |
7215 | if (!TSInfo) |
7216 | TSInfo = S.Context.getTrivialTypeSourceInfo(T: Entity.getType(), Loc); |
7217 | SourceRange ParenOrBraceRange = |
7218 | (Kind.getKind() == InitializationKind::IK_DirectList) |
7219 | ? SourceRange(LBraceLoc, RBraceLoc) |
7220 | : Kind.getParenOrBraceRange(); |
7221 | |
7222 | CXXConstructorDecl *CalleeDecl = Constructor; |
7223 | if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( |
7224 | Val: Step.Function.FoundDecl.getDecl())) { |
7225 | CalleeDecl = S.findInheritingConstructor(Loc, BaseCtor: Constructor, DerivedShadow: Shadow); |
7226 | } |
7227 | S.MarkFunctionReferenced(Loc, Func: CalleeDecl); |
7228 | |
7229 | CurInit = S.CheckForImmediateInvocation( |
7230 | E: CXXTemporaryObjectExpr::Create( |
7231 | Ctx: S.Context, Cons: CalleeDecl, |
7232 | Ty: Entity.getType().getNonLValueExprType(Context: S.Context), TSI: TSInfo, |
7233 | Args: ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, |
7234 | ListInitialization: IsListInitialization, StdInitListInitialization: IsStdInitListInitialization, |
7235 | ZeroInitialization: ConstructorInitRequiresZeroInit), |
7236 | Decl: CalleeDecl); |
7237 | } else { |
7238 | CXXConstructionKind ConstructKind = CXXConstructionKind::Complete; |
7239 | |
7240 | if (Entity.getKind() == InitializedEntity::EK_Base) { |
7241 | ConstructKind = Entity.getBaseSpecifier()->isVirtual() |
7242 | ? CXXConstructionKind::VirtualBase |
7243 | : CXXConstructionKind::NonVirtualBase; |
7244 | } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { |
7245 | ConstructKind = CXXConstructionKind::Delegating; |
7246 | } |
7247 | |
7248 | // Only get the parenthesis or brace range if it is a list initialization or |
7249 | // direct construction. |
7250 | SourceRange ParenOrBraceRange; |
7251 | if (IsListInitialization) |
7252 | ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); |
7253 | else if (Kind.getKind() == InitializationKind::IK_Direct) |
7254 | ParenOrBraceRange = Kind.getParenOrBraceRange(); |
7255 | |
7256 | // If the entity allows NRVO, mark the construction as elidable |
7257 | // unconditionally. |
7258 | if (Entity.allowsNRVO()) |
7259 | CurInit = S.BuildCXXConstructExpr(ConstructLoc: Loc, DeclInitType: Step.Type, |
7260 | FoundDecl: Step.Function.FoundDecl, |
7261 | Constructor, /*Elidable=*/true, |
7262 | Exprs: ConstructorArgs, |
7263 | HadMultipleCandidates, |
7264 | IsListInitialization, |
7265 | IsStdInitListInitialization, |
7266 | RequiresZeroInit: ConstructorInitRequiresZeroInit, |
7267 | ConstructKind, |
7268 | ParenRange: ParenOrBraceRange); |
7269 | else |
7270 | CurInit = S.BuildCXXConstructExpr(ConstructLoc: Loc, DeclInitType: Step.Type, |
7271 | FoundDecl: Step.Function.FoundDecl, |
7272 | Constructor, |
7273 | Exprs: ConstructorArgs, |
7274 | HadMultipleCandidates, |
7275 | IsListInitialization, |
7276 | IsStdInitListInitialization, |
7277 | RequiresZeroInit: ConstructorInitRequiresZeroInit, |
7278 | ConstructKind, |
7279 | ParenRange: ParenOrBraceRange); |
7280 | } |
7281 | if (CurInit.isInvalid()) |
7282 | return ExprError(); |
7283 | |
7284 | // Only check access if all of that succeeded. |
7285 | S.CheckConstructorAccess(Loc, D: Constructor, FoundDecl: Step.Function.FoundDecl, Entity); |
7286 | if (S.DiagnoseUseOfDecl(D: Step.Function.FoundDecl, Locs: Loc)) |
7287 | return ExprError(); |
7288 | |
7289 | if (const ArrayType *AT = S.Context.getAsArrayType(T: Entity.getType())) |
7290 | if (checkDestructorReference(ElementType: S.Context.getBaseElementType(VAT: AT), Loc, SemaRef&: S)) |
7291 | return ExprError(); |
7292 | |
7293 | if (shouldBindAsTemporary(Entity)) |
7294 | CurInit = S.MaybeBindToTemporary(E: CurInit.get()); |
7295 | |
7296 | return CurInit; |
7297 | } |
7298 | |
7299 | void Sema::checkInitializerLifetime(const InitializedEntity &Entity, |
7300 | Expr *Init) { |
7301 | return sema::checkExprLifetime(SemaRef&: *this, Entity, Init); |
7302 | } |
7303 | |
7304 | static void DiagnoseNarrowingInInitList(Sema &S, |
7305 | const ImplicitConversionSequence &ICS, |
7306 | QualType PreNarrowingType, |
7307 | QualType EntityType, |
7308 | const Expr *PostInit); |
7309 | |
7310 | static void CheckC23ConstexprInitConversion(Sema &S, QualType FromType, |
7311 | QualType ToType, Expr *Init); |
7312 | |
7313 | /// Provide warnings when std::move is used on construction. |
7314 | static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, |
7315 | bool IsReturnStmt) { |
7316 | if (!InitExpr) |
7317 | return; |
7318 | |
7319 | if (S.inTemplateInstantiation()) |
7320 | return; |
7321 | |
7322 | QualType DestType = InitExpr->getType(); |
7323 | if (!DestType->isRecordType()) |
7324 | return; |
7325 | |
7326 | unsigned DiagID = 0; |
7327 | if (IsReturnStmt) { |
7328 | const CXXConstructExpr *CCE = |
7329 | dyn_cast<CXXConstructExpr>(Val: InitExpr->IgnoreParens()); |
7330 | if (!CCE || CCE->getNumArgs() != 1) |
7331 | return; |
7332 | |
7333 | if (!CCE->getConstructor()->isCopyOrMoveConstructor()) |
7334 | return; |
7335 | |
7336 | InitExpr = CCE->getArg(Arg: 0)->IgnoreImpCasts(); |
7337 | } |
7338 | |
7339 | // Find the std::move call and get the argument. |
7340 | const CallExpr *CE = dyn_cast<CallExpr>(Val: InitExpr->IgnoreParens()); |
7341 | if (!CE || !CE->isCallToStdMove()) |
7342 | return; |
7343 | |
7344 | const Expr *Arg = CE->getArg(Arg: 0)->IgnoreImplicit(); |
7345 | |
7346 | if (IsReturnStmt) { |
7347 | const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Arg->IgnoreParenImpCasts()); |
7348 | if (!DRE || DRE->refersToEnclosingVariableOrCapture()) |
7349 | return; |
7350 | |
7351 | const VarDecl *VD = dyn_cast<VarDecl>(Val: DRE->getDecl()); |
7352 | if (!VD || !VD->hasLocalStorage()) |
7353 | return; |
7354 | |
7355 | // __block variables are not moved implicitly. |
7356 | if (VD->hasAttr<BlocksAttr>()) |
7357 | return; |
7358 | |
7359 | QualType SourceType = VD->getType(); |
7360 | if (!SourceType->isRecordType()) |
7361 | return; |
7362 | |
7363 | if (!S.Context.hasSameUnqualifiedType(T1: DestType, T2: SourceType)) { |
7364 | return; |
7365 | } |
7366 | |
7367 | // If we're returning a function parameter, copy elision |
7368 | // is not possible. |
7369 | if (isa<ParmVarDecl>(Val: VD)) |
7370 | DiagID = diag::warn_redundant_move_on_return; |
7371 | else |
7372 | DiagID = diag::warn_pessimizing_move_on_return; |
7373 | } else { |
7374 | DiagID = diag::warn_pessimizing_move_on_initialization; |
7375 | const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); |
7376 | if (!ArgStripped->isPRValue() || !ArgStripped->getType()->isRecordType()) |
7377 | return; |
7378 | } |
7379 | |
7380 | S.Diag(Loc: CE->getBeginLoc(), DiagID); |
7381 | |
7382 | // Get all the locations for a fix-it. Don't emit the fix-it if any location |
7383 | // is within a macro. |
7384 | SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); |
7385 | if (CallBegin.isMacroID()) |
7386 | return; |
7387 | SourceLocation RParen = CE->getRParenLoc(); |
7388 | if (RParen.isMacroID()) |
7389 | return; |
7390 | SourceLocation LParen; |
7391 | SourceLocation ArgLoc = Arg->getBeginLoc(); |
7392 | |
7393 | // Special testing for the argument location. Since the fix-it needs the |
7394 | // location right before the argument, the argument location can be in a |
7395 | // macro only if it is at the beginning of the macro. |
7396 | while (ArgLoc.isMacroID() && |
7397 | S.getSourceManager().isAtStartOfImmediateMacroExpansion(Loc: ArgLoc)) { |
7398 | ArgLoc = S.getSourceManager().getImmediateExpansionRange(Loc: ArgLoc).getBegin(); |
7399 | } |
7400 | |
7401 | if (LParen.isMacroID()) |
7402 | return; |
7403 | |
7404 | LParen = ArgLoc.getLocWithOffset(Offset: -1); |
7405 | |
7406 | S.Diag(Loc: CE->getBeginLoc(), DiagID: diag::note_remove_move) |
7407 | << FixItHint::CreateRemoval(RemoveRange: SourceRange(CallBegin, LParen)) |
7408 | << FixItHint::CreateRemoval(RemoveRange: SourceRange(RParen, RParen)); |
7409 | } |
7410 | |
7411 | static void CheckForNullPointerDereference(Sema &S, const Expr *E) { |
7412 | // Check to see if we are dereferencing a null pointer. If so, this is |
7413 | // undefined behavior, so warn about it. This only handles the pattern |
7414 | // "*null", which is a very syntactic check. |
7415 | if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: E->IgnoreParenCasts())) |
7416 | if (UO->getOpcode() == UO_Deref && |
7417 | UO->getSubExpr()->IgnoreParenCasts()-> |
7418 | isNullPointerConstant(Ctx&: S.Context, NPC: Expr::NPC_ValueDependentIsNotNull)) { |
7419 | S.DiagRuntimeBehavior(Loc: UO->getOperatorLoc(), Statement: UO, |
7420 | PD: S.PDiag(DiagID: diag::warn_binding_null_to_reference) |
7421 | << UO->getSubExpr()->getSourceRange()); |
7422 | } |
7423 | } |
7424 | |
7425 | MaterializeTemporaryExpr * |
7426 | Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, |
7427 | bool BoundToLvalueReference) { |
7428 | auto MTE = new (Context) |
7429 | MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); |
7430 | |
7431 | // Order an ExprWithCleanups for lifetime marks. |
7432 | // |
7433 | // TODO: It'll be good to have a single place to check the access of the |
7434 | // destructor and generate ExprWithCleanups for various uses. Currently these |
7435 | // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, |
7436 | // but there may be a chance to merge them. |
7437 | Cleanup.setExprNeedsCleanups(false); |
7438 | if (isInLifetimeExtendingContext()) { |
7439 | auto &Record = ExprEvalContexts.back(); |
7440 | Record.ForRangeLifetimeExtendTemps.push_back(Elt: MTE); |
7441 | } |
7442 | return MTE; |
7443 | } |
7444 | |
7445 | ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { |
7446 | // In C++98, we don't want to implicitly create an xvalue. |
7447 | // FIXME: This means that AST consumers need to deal with "prvalues" that |
7448 | // denote materialized temporaries. Maybe we should add another ValueKind |
7449 | // for "xvalue pretending to be a prvalue" for C++98 support. |
7450 | if (!E->isPRValue() || !getLangOpts().CPlusPlus11) |
7451 | return E; |
7452 | |
7453 | // C++1z [conv.rval]/1: T shall be a complete type. |
7454 | // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? |
7455 | // If so, we should check for a non-abstract class type here too. |
7456 | QualType T = E->getType(); |
7457 | if (RequireCompleteType(Loc: E->getExprLoc(), T, DiagID: diag::err_incomplete_type)) |
7458 | return ExprError(); |
7459 | |
7460 | return CreateMaterializeTemporaryExpr(T: E->getType(), Temporary: E, BoundToLvalueReference: false); |
7461 | } |
7462 | |
7463 | ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, |
7464 | ExprValueKind VK, |
7465 | CheckedConversionKind CCK) { |
7466 | |
7467 | CastKind CK = CK_NoOp; |
7468 | |
7469 | if (VK == VK_PRValue) { |
7470 | auto PointeeTy = Ty->getPointeeType(); |
7471 | auto ExprPointeeTy = E->getType()->getPointeeType(); |
7472 | if (!PointeeTy.isNull() && |
7473 | PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) |
7474 | CK = CK_AddressSpaceConversion; |
7475 | } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { |
7476 | CK = CK_AddressSpaceConversion; |
7477 | } |
7478 | |
7479 | return ImpCastExprToType(E, Type: Ty, CK, VK, /*BasePath=*/nullptr, CCK); |
7480 | } |
7481 | |
7482 | ExprResult InitializationSequence::Perform(Sema &S, |
7483 | const InitializedEntity &Entity, |
7484 | const InitializationKind &Kind, |
7485 | MultiExprArg Args, |
7486 | QualType *ResultType) { |
7487 | if (Failed()) { |
7488 | Diagnose(S, Entity, Kind, Args); |
7489 | return ExprError(); |
7490 | } |
7491 | if (!ZeroInitializationFixit.empty()) { |
7492 | const Decl *D = Entity.getDecl(); |
7493 | const auto *VD = dyn_cast_or_null<VarDecl>(Val: D); |
7494 | QualType DestType = Entity.getType(); |
7495 | |
7496 | // The initialization would have succeeded with this fixit. Since the fixit |
7497 | // is on the error, we need to build a valid AST in this case, so this isn't |
7498 | // handled in the Failed() branch above. |
7499 | if (!DestType->isRecordType() && VD && VD->isConstexpr()) { |
7500 | // Use a more useful diagnostic for constexpr variables. |
7501 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_constexpr_var_requires_const_init) |
7502 | << VD |
7503 | << FixItHint::CreateInsertion(InsertionLoc: ZeroInitializationFixitLoc, |
7504 | Code: ZeroInitializationFixit); |
7505 | } else { |
7506 | unsigned DiagID = diag::err_default_init_const; |
7507 | if (S.getLangOpts().MSVCCompat && D && D->hasAttr<SelectAnyAttr>()) |
7508 | DiagID = diag::ext_default_init_const; |
7509 | |
7510 | S.Diag(Loc: Kind.getLocation(), DiagID) |
7511 | << DestType << (bool)DestType->getAs<RecordType>() |
7512 | << FixItHint::CreateInsertion(InsertionLoc: ZeroInitializationFixitLoc, |
7513 | Code: ZeroInitializationFixit); |
7514 | } |
7515 | } |
7516 | |
7517 | if (getKind() == DependentSequence) { |
7518 | // If the declaration is a non-dependent, incomplete array type |
7519 | // that has an initializer, then its type will be completed once |
7520 | // the initializer is instantiated. |
7521 | if (ResultType && !Entity.getType()->isDependentType() && |
7522 | Args.size() == 1) { |
7523 | QualType DeclType = Entity.getType(); |
7524 | if (const IncompleteArrayType *ArrayT |
7525 | = S.Context.getAsIncompleteArrayType(T: DeclType)) { |
7526 | // FIXME: We don't currently have the ability to accurately |
7527 | // compute the length of an initializer list without |
7528 | // performing full type-checking of the initializer list |
7529 | // (since we have to determine where braces are implicitly |
7530 | // introduced and such). So, we fall back to making the array |
7531 | // type a dependently-sized array type with no specified |
7532 | // bound. |
7533 | if (isa<InitListExpr>(Val: (Expr *)Args[0])) { |
7534 | SourceRange Brackets; |
7535 | |
7536 | // Scavange the location of the brackets from the entity, if we can. |
7537 | if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Val: Entity.getDecl())) { |
7538 | if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { |
7539 | TypeLoc TL = TInfo->getTypeLoc(); |
7540 | if (IncompleteArrayTypeLoc ArrayLoc = |
7541 | TL.getAs<IncompleteArrayTypeLoc>()) |
7542 | Brackets = ArrayLoc.getBracketsRange(); |
7543 | } |
7544 | } |
7545 | |
7546 | *ResultType |
7547 | = S.Context.getDependentSizedArrayType(EltTy: ArrayT->getElementType(), |
7548 | /*NumElts=*/nullptr, |
7549 | ASM: ArrayT->getSizeModifier(), |
7550 | IndexTypeQuals: ArrayT->getIndexTypeCVRQualifiers(), |
7551 | Brackets); |
7552 | } |
7553 | |
7554 | } |
7555 | } |
7556 | if (Kind.getKind() == InitializationKind::IK_Direct && |
7557 | !Kind.isExplicitCast()) { |
7558 | // Rebuild the ParenListExpr. |
7559 | SourceRange ParenRange = Kind.getParenOrBraceRange(); |
7560 | return S.ActOnParenListExpr(L: ParenRange.getBegin(), R: ParenRange.getEnd(), |
7561 | Val: Args); |
7562 | } |
7563 | assert(Kind.getKind() == InitializationKind::IK_Copy || |
7564 | Kind.isExplicitCast() || |
7565 | Kind.getKind() == InitializationKind::IK_DirectList); |
7566 | return ExprResult(Args[0]); |
7567 | } |
7568 | |
7569 | // No steps means no initialization. |
7570 | if (Steps.empty()) |
7571 | return ExprResult((Expr *)nullptr); |
7572 | |
7573 | if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && |
7574 | Args.size() == 1 && isa<InitListExpr>(Val: Args[0]) && |
7575 | !Entity.isParamOrTemplateParamKind()) { |
7576 | // Produce a C++98 compatibility warning if we are initializing a reference |
7577 | // from an initializer list. For parameters, we produce a better warning |
7578 | // elsewhere. |
7579 | Expr *Init = Args[0]; |
7580 | S.Diag(Loc: Init->getBeginLoc(), DiagID: diag::warn_cxx98_compat_reference_list_init) |
7581 | << Init->getSourceRange(); |
7582 | } |
7583 | |
7584 | if (S.getLangOpts().MicrosoftExt && Args.size() == 1 && |
7585 | isa<PredefinedExpr>(Val: Args[0]) && Entity.getType()->isArrayType()) { |
7586 | // Produce a Microsoft compatibility warning when initializing from a |
7587 | // predefined expression since MSVC treats predefined expressions as string |
7588 | // literals. |
7589 | Expr *Init = Args[0]; |
7590 | S.Diag(Loc: Init->getBeginLoc(), DiagID: diag::ext_init_from_predefined) << Init; |
7591 | } |
7592 | |
7593 | // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope |
7594 | QualType ETy = Entity.getType(); |
7595 | bool HasGlobalAS = ETy.hasAddressSpace() && |
7596 | ETy.getAddressSpace() == LangAS::opencl_global; |
7597 | |
7598 | if (S.getLangOpts().OpenCLVersion >= 200 && |
7599 | ETy->isAtomicType() && !HasGlobalAS && |
7600 | Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { |
7601 | S.Diag(Loc: Args[0]->getBeginLoc(), DiagID: diag::err_opencl_atomic_init) |
7602 | << 1 |
7603 | << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); |
7604 | return ExprError(); |
7605 | } |
7606 | |
7607 | QualType DestType = Entity.getType().getNonReferenceType(); |
7608 | // FIXME: Ugly hack around the fact that Entity.getType() is not |
7609 | // the same as Entity.getDecl()->getType() in cases involving type merging, |
7610 | // and we want latter when it makes sense. |
7611 | if (ResultType) |
7612 | *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : |
7613 | Entity.getType(); |
7614 | |
7615 | ExprResult CurInit((Expr *)nullptr); |
7616 | SmallVector<Expr*, 4> ArrayLoopCommonExprs; |
7617 | |
7618 | // HLSL allows vector initialization to function like list initialization, but |
7619 | // use the syntax of a C++-like constructor. |
7620 | bool IsHLSLVectorInit = S.getLangOpts().HLSL && DestType->isExtVectorType() && |
7621 | isa<InitListExpr>(Val: Args[0]); |
7622 | (void)IsHLSLVectorInit; |
7623 | |
7624 | // For initialization steps that start with a single initializer, |
7625 | // grab the only argument out the Args and place it into the "current" |
7626 | // initializer. |
7627 | switch (Steps.front().Kind) { |
7628 | case SK_ResolveAddressOfOverloadedFunction: |
7629 | case SK_CastDerivedToBasePRValue: |
7630 | case SK_CastDerivedToBaseXValue: |
7631 | case SK_CastDerivedToBaseLValue: |
7632 | case SK_BindReference: |
7633 | case SK_BindReferenceToTemporary: |
7634 | case SK_FinalCopy: |
7635 | case SK_ExtraneousCopyToTemporary: |
7636 | case SK_UserConversion: |
7637 | case SK_QualificationConversionLValue: |
7638 | case SK_QualificationConversionXValue: |
7639 | case SK_QualificationConversionPRValue: |
7640 | case SK_FunctionReferenceConversion: |
7641 | case SK_AtomicConversion: |
7642 | case SK_ConversionSequence: |
7643 | case SK_ConversionSequenceNoNarrowing: |
7644 | case SK_ListInitialization: |
7645 | case SK_UnwrapInitList: |
7646 | case SK_RewrapInitList: |
7647 | case SK_CAssignment: |
7648 | case SK_StringInit: |
7649 | case SK_ObjCObjectConversion: |
7650 | case SK_ArrayLoopIndex: |
7651 | case SK_ArrayLoopInit: |
7652 | case SK_ArrayInit: |
7653 | case SK_GNUArrayInit: |
7654 | case SK_ParenthesizedArrayInit: |
7655 | case SK_PassByIndirectCopyRestore: |
7656 | case SK_PassByIndirectRestore: |
7657 | case SK_ProduceObjCObject: |
7658 | case SK_StdInitializerList: |
7659 | case SK_OCLSamplerInit: |
7660 | case SK_OCLZeroOpaqueType: { |
7661 | assert(Args.size() == 1 || IsHLSLVectorInit); |
7662 | CurInit = Args[0]; |
7663 | if (!CurInit.get()) return ExprError(); |
7664 | break; |
7665 | } |
7666 | |
7667 | case SK_ConstructorInitialization: |
7668 | case SK_ConstructorInitializationFromList: |
7669 | case SK_StdInitializerListConstructorCall: |
7670 | case SK_ZeroInitialization: |
7671 | case SK_ParenthesizedListInit: |
7672 | break; |
7673 | } |
7674 | |
7675 | // Promote from an unevaluated context to an unevaluated list context in |
7676 | // C++11 list-initialization; we need to instantiate entities usable in |
7677 | // constant expressions here in order to perform narrowing checks =( |
7678 | EnterExpressionEvaluationContext Evaluated( |
7679 | S, EnterExpressionEvaluationContext::InitList, |
7680 | isa_and_nonnull<InitListExpr>(Val: CurInit.get())); |
7681 | |
7682 | // C++ [class.abstract]p2: |
7683 | // no objects of an abstract class can be created except as subobjects |
7684 | // of a class derived from it |
7685 | auto checkAbstractType = [&](QualType T) -> bool { |
7686 | if (Entity.getKind() == InitializedEntity::EK_Base || |
7687 | Entity.getKind() == InitializedEntity::EK_Delegating) |
7688 | return false; |
7689 | return S.RequireNonAbstractType(Loc: Kind.getLocation(), T, |
7690 | DiagID: diag::err_allocation_of_abstract_type); |
7691 | }; |
7692 | |
7693 | // Walk through the computed steps for the initialization sequence, |
7694 | // performing the specified conversions along the way. |
7695 | bool ConstructorInitRequiresZeroInit = false; |
7696 | for (step_iterator Step = step_begin(), StepEnd = step_end(); |
7697 | Step != StepEnd; ++Step) { |
7698 | if (CurInit.isInvalid()) |
7699 | return ExprError(); |
7700 | |
7701 | QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); |
7702 | |
7703 | switch (Step->Kind) { |
7704 | case SK_ResolveAddressOfOverloadedFunction: |
7705 | // Overload resolution determined which function invoke; update the |
7706 | // initializer to reflect that choice. |
7707 | S.CheckAddressOfMemberAccess(OvlExpr: CurInit.get(), FoundDecl: Step->Function.FoundDecl); |
7708 | if (S.DiagnoseUseOfDecl(D: Step->Function.FoundDecl, Locs: Kind.getLocation())) |
7709 | return ExprError(); |
7710 | CurInit = S.FixOverloadedFunctionReference(CurInit, |
7711 | FoundDecl: Step->Function.FoundDecl, |
7712 | Fn: Step->Function.Function); |
7713 | // We might get back another placeholder expression if we resolved to a |
7714 | // builtin. |
7715 | if (!CurInit.isInvalid()) |
7716 | CurInit = S.CheckPlaceholderExpr(E: CurInit.get()); |
7717 | break; |
7718 | |
7719 | case SK_CastDerivedToBasePRValue: |
7720 | case SK_CastDerivedToBaseXValue: |
7721 | case SK_CastDerivedToBaseLValue: { |
7722 | // We have a derived-to-base cast that produces either an rvalue or an |
7723 | // lvalue. Perform that cast. |
7724 | |
7725 | CXXCastPath BasePath; |
7726 | |
7727 | // Casts to inaccessible base classes are allowed with C-style casts. |
7728 | bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); |
7729 | if (S.CheckDerivedToBaseConversion( |
7730 | Derived: SourceType, Base: Step->Type, Loc: CurInit.get()->getBeginLoc(), |
7731 | Range: CurInit.get()->getSourceRange(), BasePath: &BasePath, IgnoreAccess: IgnoreBaseAccess)) |
7732 | return ExprError(); |
7733 | |
7734 | ExprValueKind VK = |
7735 | Step->Kind == SK_CastDerivedToBaseLValue |
7736 | ? VK_LValue |
7737 | : (Step->Kind == SK_CastDerivedToBaseXValue ? VK_XValue |
7738 | : VK_PRValue); |
7739 | CurInit = ImplicitCastExpr::Create(Context: S.Context, T: Step->Type, |
7740 | Kind: CK_DerivedToBase, Operand: CurInit.get(), |
7741 | BasePath: &BasePath, Cat: VK, FPO: FPOptionsOverride()); |
7742 | break; |
7743 | } |
7744 | |
7745 | case SK_BindReference: |
7746 | // Reference binding does not have any corresponding ASTs. |
7747 | |
7748 | // Check exception specifications |
7749 | if (S.CheckExceptionSpecCompatibility(From: CurInit.get(), ToType: DestType)) |
7750 | return ExprError(); |
7751 | |
7752 | // We don't check for e.g. function pointers here, since address |
7753 | // availability checks should only occur when the function first decays |
7754 | // into a pointer or reference. |
7755 | if (CurInit.get()->getType()->isFunctionProtoType()) { |
7756 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: CurInit.get()->IgnoreParens())) { |
7757 | if (auto *FD = dyn_cast<FunctionDecl>(Val: DRE->getDecl())) { |
7758 | if (!S.checkAddressOfFunctionIsAvailable(Function: FD, /*Complain=*/true, |
7759 | Loc: DRE->getBeginLoc())) |
7760 | return ExprError(); |
7761 | } |
7762 | } |
7763 | } |
7764 | |
7765 | CheckForNullPointerDereference(S, E: CurInit.get()); |
7766 | break; |
7767 | |
7768 | case SK_BindReferenceToTemporary: { |
7769 | // Make sure the "temporary" is actually an rvalue. |
7770 | assert(CurInit.get()->isPRValue() && "not a temporary" ); |
7771 | |
7772 | // Check exception specifications |
7773 | if (S.CheckExceptionSpecCompatibility(From: CurInit.get(), ToType: DestType)) |
7774 | return ExprError(); |
7775 | |
7776 | QualType MTETy = Step->Type; |
7777 | |
7778 | // When this is an incomplete array type (such as when this is |
7779 | // initializing an array of unknown bounds from an init list), use THAT |
7780 | // type instead so that we propagate the array bounds. |
7781 | if (MTETy->isIncompleteArrayType() && |
7782 | !CurInit.get()->getType()->isIncompleteArrayType() && |
7783 | S.Context.hasSameType( |
7784 | T1: MTETy->getPointeeOrArrayElementType(), |
7785 | T2: CurInit.get()->getType()->getPointeeOrArrayElementType())) |
7786 | MTETy = CurInit.get()->getType(); |
7787 | |
7788 | // Materialize the temporary into memory. |
7789 | MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( |
7790 | T: MTETy, Temporary: CurInit.get(), BoundToLvalueReference: Entity.getType()->isLValueReferenceType()); |
7791 | CurInit = MTE; |
7792 | |
7793 | // If we're extending this temporary to automatic storage duration -- we |
7794 | // need to register its cleanup during the full-expression's cleanups. |
7795 | if (MTE->getStorageDuration() == SD_Automatic && |
7796 | MTE->getType().isDestructedType()) |
7797 | S.Cleanup.setExprNeedsCleanups(true); |
7798 | break; |
7799 | } |
7800 | |
7801 | case SK_FinalCopy: |
7802 | if (checkAbstractType(Step->Type)) |
7803 | return ExprError(); |
7804 | |
7805 | // If the overall initialization is initializing a temporary, we already |
7806 | // bound our argument if it was necessary to do so. If not (if we're |
7807 | // ultimately initializing a non-temporary), our argument needs to be |
7808 | // bound since it's initializing a function parameter. |
7809 | // FIXME: This is a mess. Rationalize temporary destruction. |
7810 | if (!shouldBindAsTemporary(Entity)) |
7811 | CurInit = S.MaybeBindToTemporary(E: CurInit.get()); |
7812 | CurInit = CopyObject(S, T: Step->Type, Entity, CurInit, |
7813 | /*IsExtraneousCopy=*/false); |
7814 | break; |
7815 | |
7816 | case SK_ExtraneousCopyToTemporary: |
7817 | CurInit = CopyObject(S, T: Step->Type, Entity, CurInit, |
7818 | /*IsExtraneousCopy=*/true); |
7819 | break; |
7820 | |
7821 | case SK_UserConversion: { |
7822 | // We have a user-defined conversion that invokes either a constructor |
7823 | // or a conversion function. |
7824 | CastKind CastKind; |
7825 | FunctionDecl *Fn = Step->Function.Function; |
7826 | DeclAccessPair FoundFn = Step->Function.FoundDecl; |
7827 | bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; |
7828 | bool CreatedObject = false; |
7829 | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Val: Fn)) { |
7830 | // Build a call to the selected constructor. |
7831 | SmallVector<Expr*, 8> ConstructorArgs; |
7832 | SourceLocation Loc = CurInit.get()->getBeginLoc(); |
7833 | |
7834 | // Determine the arguments required to actually perform the constructor |
7835 | // call. |
7836 | Expr *Arg = CurInit.get(); |
7837 | if (S.CompleteConstructorCall(Constructor, DeclInitType: Step->Type, |
7838 | ArgsPtr: MultiExprArg(&Arg, 1), Loc, |
7839 | ConvertedArgs&: ConstructorArgs)) |
7840 | return ExprError(); |
7841 | |
7842 | // Build an expression that constructs a temporary. |
7843 | CurInit = S.BuildCXXConstructExpr( |
7844 | ConstructLoc: Loc, DeclInitType: Step->Type, FoundDecl: FoundFn, Constructor, Exprs: ConstructorArgs, |
7845 | HadMultipleCandidates, |
7846 | /*ListInit*/ IsListInitialization: false, |
7847 | /*StdInitListInit*/ IsStdInitListInitialization: false, |
7848 | /*ZeroInit*/ RequiresZeroInit: false, ConstructKind: CXXConstructionKind::Complete, ParenRange: SourceRange()); |
7849 | if (CurInit.isInvalid()) |
7850 | return ExprError(); |
7851 | |
7852 | S.CheckConstructorAccess(Loc: Kind.getLocation(), D: Constructor, FoundDecl: FoundFn, |
7853 | Entity); |
7854 | if (S.DiagnoseUseOfDecl(D: FoundFn, Locs: Kind.getLocation())) |
7855 | return ExprError(); |
7856 | |
7857 | CastKind = CK_ConstructorConversion; |
7858 | CreatedObject = true; |
7859 | } else { |
7860 | // Build a call to the conversion function. |
7861 | CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Val: Fn); |
7862 | S.CheckMemberOperatorAccess(Loc: Kind.getLocation(), ObjectExpr: CurInit.get(), ArgExpr: nullptr, |
7863 | FoundDecl: FoundFn); |
7864 | if (S.DiagnoseUseOfDecl(D: FoundFn, Locs: Kind.getLocation())) |
7865 | return ExprError(); |
7866 | |
7867 | CurInit = S.BuildCXXMemberCallExpr(Exp: CurInit.get(), FoundDecl: FoundFn, Method: Conversion, |
7868 | HadMultipleCandidates); |
7869 | if (CurInit.isInvalid()) |
7870 | return ExprError(); |
7871 | |
7872 | CastKind = CK_UserDefinedConversion; |
7873 | CreatedObject = Conversion->getReturnType()->isRecordType(); |
7874 | } |
7875 | |
7876 | if (CreatedObject && checkAbstractType(CurInit.get()->getType())) |
7877 | return ExprError(); |
7878 | |
7879 | CurInit = ImplicitCastExpr::Create( |
7880 | Context: S.Context, T: CurInit.get()->getType(), Kind: CastKind, Operand: CurInit.get(), BasePath: nullptr, |
7881 | Cat: CurInit.get()->getValueKind(), FPO: S.CurFPFeatureOverrides()); |
7882 | |
7883 | if (shouldBindAsTemporary(Entity)) |
7884 | // The overall entity is temporary, so this expression should be |
7885 | // destroyed at the end of its full-expression. |
7886 | CurInit = S.MaybeBindToTemporary(E: CurInit.getAs<Expr>()); |
7887 | else if (CreatedObject && shouldDestroyEntity(Entity)) { |
7888 | // The object outlasts the full-expression, but we need to prepare for |
7889 | // a destructor being run on it. |
7890 | // FIXME: It makes no sense to do this here. This should happen |
7891 | // regardless of how we initialized the entity. |
7892 | QualType T = CurInit.get()->getType(); |
7893 | if (const RecordType *Record = T->getAs<RecordType>()) { |
7894 | CXXDestructorDecl *Destructor |
7895 | = S.LookupDestructor(Class: cast<CXXRecordDecl>(Val: Record->getDecl())); |
7896 | S.CheckDestructorAccess(Loc: CurInit.get()->getBeginLoc(), Dtor: Destructor, |
7897 | PDiag: S.PDiag(DiagID: diag::err_access_dtor_temp) << T); |
7898 | S.MarkFunctionReferenced(Loc: CurInit.get()->getBeginLoc(), Func: Destructor); |
7899 | if (S.DiagnoseUseOfDecl(D: Destructor, Locs: CurInit.get()->getBeginLoc())) |
7900 | return ExprError(); |
7901 | } |
7902 | } |
7903 | break; |
7904 | } |
7905 | |
7906 | case SK_QualificationConversionLValue: |
7907 | case SK_QualificationConversionXValue: |
7908 | case SK_QualificationConversionPRValue: { |
7909 | // Perform a qualification conversion; these can never go wrong. |
7910 | ExprValueKind VK = |
7911 | Step->Kind == SK_QualificationConversionLValue |
7912 | ? VK_LValue |
7913 | : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue |
7914 | : VK_PRValue); |
7915 | CurInit = S.PerformQualificationConversion(E: CurInit.get(), Ty: Step->Type, VK); |
7916 | break; |
7917 | } |
7918 | |
7919 | case SK_FunctionReferenceConversion: |
7920 | assert(CurInit.get()->isLValue() && |
7921 | "function reference should be lvalue" ); |
7922 | CurInit = |
7923 | S.ImpCastExprToType(E: CurInit.get(), Type: Step->Type, CK: CK_NoOp, VK: VK_LValue); |
7924 | break; |
7925 | |
7926 | case SK_AtomicConversion: { |
7927 | assert(CurInit.get()->isPRValue() && "cannot convert glvalue to atomic" ); |
7928 | CurInit = S.ImpCastExprToType(E: CurInit.get(), Type: Step->Type, |
7929 | CK: CK_NonAtomicToAtomic, VK: VK_PRValue); |
7930 | break; |
7931 | } |
7932 | |
7933 | case SK_ConversionSequence: |
7934 | case SK_ConversionSequenceNoNarrowing: { |
7935 | if (const auto *FromPtrType = |
7936 | CurInit.get()->getType()->getAs<PointerType>()) { |
7937 | if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) { |
7938 | if (FromPtrType->getPointeeType()->hasAttr(AK: attr::NoDeref) && |
7939 | !ToPtrType->getPointeeType()->hasAttr(AK: attr::NoDeref)) { |
7940 | // Do not check static casts here because they are checked earlier |
7941 | // in Sema::ActOnCXXNamedCast() |
7942 | if (!Kind.isStaticCast()) { |
7943 | S.Diag(Loc: CurInit.get()->getExprLoc(), |
7944 | DiagID: diag::warn_noderef_to_dereferenceable_pointer) |
7945 | << CurInit.get()->getSourceRange(); |
7946 | } |
7947 | } |
7948 | } |
7949 | } |
7950 | Expr *Init = CurInit.get(); |
7951 | CheckedConversionKind CCK = |
7952 | Kind.isCStyleCast() ? CheckedConversionKind::CStyleCast |
7953 | : Kind.isFunctionalCast() ? CheckedConversionKind::FunctionalCast |
7954 | : Kind.isExplicitCast() ? CheckedConversionKind::OtherCast |
7955 | : CheckedConversionKind::Implicit; |
7956 | ExprResult CurInitExprRes = S.PerformImplicitConversion( |
7957 | From: Init, ToType: Step->Type, ICS: *Step->ICS, Action: getAssignmentAction(Entity), CCK); |
7958 | if (CurInitExprRes.isInvalid()) |
7959 | return ExprError(); |
7960 | |
7961 | S.DiscardMisalignedMemberAddress(T: Step->Type.getTypePtr(), E: Init); |
7962 | |
7963 | CurInit = CurInitExprRes; |
7964 | |
7965 | if (Step->Kind == SK_ConversionSequenceNoNarrowing && |
7966 | S.getLangOpts().CPlusPlus) |
7967 | DiagnoseNarrowingInInitList(S, ICS: *Step->ICS, PreNarrowingType: SourceType, EntityType: Entity.getType(), |
7968 | PostInit: CurInit.get()); |
7969 | |
7970 | break; |
7971 | } |
7972 | |
7973 | case SK_ListInitialization: { |
7974 | if (checkAbstractType(Step->Type)) |
7975 | return ExprError(); |
7976 | |
7977 | InitListExpr *InitList = cast<InitListExpr>(Val: CurInit.get()); |
7978 | // If we're not initializing the top-level entity, we need to create an |
7979 | // InitializeTemporary entity for our target type. |
7980 | QualType Ty = Step->Type; |
7981 | bool IsTemporary = !S.Context.hasSameType(T1: Entity.getType(), T2: Ty); |
7982 | InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Type: Ty); |
7983 | InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; |
7984 | InitListChecker PerformInitList(S, InitEntity, |
7985 | InitList, Ty, /*VerifyOnly=*/false, |
7986 | /*TreatUnavailableAsInvalid=*/false); |
7987 | if (PerformInitList.HadError()) |
7988 | return ExprError(); |
7989 | |
7990 | // Hack: We must update *ResultType if available in order to set the |
7991 | // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. |
7992 | // Worst case: 'const int (&arref)[] = {1, 2, 3};'. |
7993 | if (ResultType && |
7994 | ResultType->getNonReferenceType()->isIncompleteArrayType()) { |
7995 | if ((*ResultType)->isRValueReferenceType()) |
7996 | Ty = S.Context.getRValueReferenceType(T: Ty); |
7997 | else if ((*ResultType)->isLValueReferenceType()) |
7998 | Ty = S.Context.getLValueReferenceType(T: Ty, |
7999 | SpelledAsLValue: (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue()); |
8000 | *ResultType = Ty; |
8001 | } |
8002 | |
8003 | InitListExpr *StructuredInitList = |
8004 | PerformInitList.getFullyStructuredList(); |
8005 | CurInit.get(); |
8006 | CurInit = shouldBindAsTemporary(Entity: InitEntity) |
8007 | ? S.MaybeBindToTemporary(E: StructuredInitList) |
8008 | : StructuredInitList; |
8009 | break; |
8010 | } |
8011 | |
8012 | case SK_ConstructorInitializationFromList: { |
8013 | if (checkAbstractType(Step->Type)) |
8014 | return ExprError(); |
8015 | |
8016 | // When an initializer list is passed for a parameter of type "reference |
8017 | // to object", we don't get an EK_Temporary entity, but instead an |
8018 | // EK_Parameter entity with reference type. |
8019 | // FIXME: This is a hack. What we really should do is create a user |
8020 | // conversion step for this case, but this makes it considerably more |
8021 | // complicated. For now, this will do. |
8022 | InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( |
8023 | Type: Entity.getType().getNonReferenceType()); |
8024 | bool UseTemporary = Entity.getType()->isReferenceType(); |
8025 | assert(Args.size() == 1 && "expected a single argument for list init" ); |
8026 | InitListExpr *InitList = cast<InitListExpr>(Val: Args[0]); |
8027 | S.Diag(Loc: InitList->getExprLoc(), DiagID: diag::warn_cxx98_compat_ctor_list_init) |
8028 | << InitList->getSourceRange(); |
8029 | MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); |
8030 | CurInit = PerformConstructorInitialization(S, Entity: UseTemporary ? TempEntity : |
8031 | Entity, |
8032 | Kind, Args: Arg, Step: *Step, |
8033 | ConstructorInitRequiresZeroInit, |
8034 | /*IsListInitialization*/true, |
8035 | /*IsStdInitListInit*/IsStdInitListInitialization: false, |
8036 | LBraceLoc: InitList->getLBraceLoc(), |
8037 | RBraceLoc: InitList->getRBraceLoc()); |
8038 | break; |
8039 | } |
8040 | |
8041 | case SK_UnwrapInitList: |
8042 | CurInit = cast<InitListExpr>(Val: CurInit.get())->getInit(Init: 0); |
8043 | break; |
8044 | |
8045 | case SK_RewrapInitList: { |
8046 | Expr *E = CurInit.get(); |
8047 | InitListExpr *Syntactic = Step->WrappingSyntacticList; |
8048 | InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, |
8049 | Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); |
8050 | ILE->setSyntacticForm(Syntactic); |
8051 | ILE->setType(E->getType()); |
8052 | ILE->setValueKind(E->getValueKind()); |
8053 | CurInit = ILE; |
8054 | break; |
8055 | } |
8056 | |
8057 | case SK_ConstructorInitialization: |
8058 | case SK_StdInitializerListConstructorCall: { |
8059 | if (checkAbstractType(Step->Type)) |
8060 | return ExprError(); |
8061 | |
8062 | // When an initializer list is passed for a parameter of type "reference |
8063 | // to object", we don't get an EK_Temporary entity, but instead an |
8064 | // EK_Parameter entity with reference type. |
8065 | // FIXME: This is a hack. What we really should do is create a user |
8066 | // conversion step for this case, but this makes it considerably more |
8067 | // complicated. For now, this will do. |
8068 | InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( |
8069 | Type: Entity.getType().getNonReferenceType()); |
8070 | bool UseTemporary = Entity.getType()->isReferenceType(); |
8071 | bool IsStdInitListInit = |
8072 | Step->Kind == SK_StdInitializerListConstructorCall; |
8073 | Expr *Source = CurInit.get(); |
8074 | SourceRange Range = Kind.hasParenOrBraceRange() |
8075 | ? Kind.getParenOrBraceRange() |
8076 | : SourceRange(); |
8077 | CurInit = PerformConstructorInitialization( |
8078 | S, Entity: UseTemporary ? TempEntity : Entity, Kind, |
8079 | Args: Source ? MultiExprArg(Source) : Args, Step: *Step, |
8080 | ConstructorInitRequiresZeroInit, |
8081 | /*IsListInitialization*/ IsStdInitListInit, |
8082 | /*IsStdInitListInitialization*/ IsStdInitListInit, |
8083 | /*LBraceLoc*/ Range.getBegin(), |
8084 | /*RBraceLoc*/ Range.getEnd()); |
8085 | break; |
8086 | } |
8087 | |
8088 | case SK_ZeroInitialization: { |
8089 | step_iterator NextStep = Step; |
8090 | ++NextStep; |
8091 | if (NextStep != StepEnd && |
8092 | (NextStep->Kind == SK_ConstructorInitialization || |
8093 | NextStep->Kind == SK_ConstructorInitializationFromList)) { |
8094 | // The need for zero-initialization is recorded directly into |
8095 | // the call to the object's constructor within the next step. |
8096 | ConstructorInitRequiresZeroInit = true; |
8097 | } else if (Kind.getKind() == InitializationKind::IK_Value && |
8098 | S.getLangOpts().CPlusPlus && |
8099 | !Kind.isImplicitValueInit()) { |
8100 | TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); |
8101 | if (!TSInfo) |
8102 | TSInfo = S.Context.getTrivialTypeSourceInfo(T: Step->Type, |
8103 | Loc: Kind.getRange().getBegin()); |
8104 | |
8105 | CurInit = new (S.Context) CXXScalarValueInitExpr( |
8106 | Entity.getType().getNonLValueExprType(Context: S.Context), TSInfo, |
8107 | Kind.getRange().getEnd()); |
8108 | } else { |
8109 | CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); |
8110 | } |
8111 | break; |
8112 | } |
8113 | |
8114 | case SK_CAssignment: { |
8115 | QualType SourceType = CurInit.get()->getType(); |
8116 | Expr *Init = CurInit.get(); |
8117 | |
8118 | // Save off the initial CurInit in case we need to emit a diagnostic |
8119 | ExprResult InitialCurInit = Init; |
8120 | ExprResult Result = Init; |
8121 | Sema::AssignConvertType ConvTy = |
8122 | S.CheckSingleAssignmentConstraints(LHSType: Step->Type, RHS&: Result, Diagnose: true, |
8123 | DiagnoseCFAudited: Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); |
8124 | if (Result.isInvalid()) |
8125 | return ExprError(); |
8126 | CurInit = Result; |
8127 | |
8128 | // If this is a call, allow conversion to a transparent union. |
8129 | ExprResult CurInitExprRes = CurInit; |
8130 | if (ConvTy != Sema::Compatible && |
8131 | Entity.isParameterKind() && |
8132 | S.CheckTransparentUnionArgumentConstraints(ArgType: Step->Type, RHS&: CurInitExprRes) |
8133 | == Sema::Compatible) |
8134 | ConvTy = Sema::Compatible; |
8135 | if (CurInitExprRes.isInvalid()) |
8136 | return ExprError(); |
8137 | CurInit = CurInitExprRes; |
8138 | |
8139 | if (S.getLangOpts().C23 && initializingConstexprVariable(Entity)) { |
8140 | CheckC23ConstexprInitConversion(S, FromType: SourceType, ToType: Entity.getType(), |
8141 | Init: CurInit.get()); |
8142 | |
8143 | // C23 6.7.1p6: If an object or subobject declared with storage-class |
8144 | // specifier constexpr has pointer, integer, or arithmetic type, any |
8145 | // explicit initializer value for it shall be null, an integer |
8146 | // constant expression, or an arithmetic constant expression, |
8147 | // respectively. |
8148 | Expr::EvalResult ER; |
8149 | if (Entity.getType()->getAs<PointerType>() && |
8150 | CurInit.get()->EvaluateAsRValue(Result&: ER, Ctx: S.Context) && |
8151 | !ER.Val.isNullPointer()) { |
8152 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_c23_constexpr_pointer_not_null); |
8153 | } |
8154 | } |
8155 | |
8156 | bool Complained; |
8157 | if (S.DiagnoseAssignmentResult(ConvTy, Loc: Kind.getLocation(), |
8158 | DstType: Step->Type, SrcType: SourceType, |
8159 | SrcExpr: InitialCurInit.get(), |
8160 | Action: getAssignmentAction(Entity, Diagnose: true), |
8161 | Complained: &Complained)) { |
8162 | PrintInitLocationNote(S, Entity); |
8163 | return ExprError(); |
8164 | } else if (Complained) |
8165 | PrintInitLocationNote(S, Entity); |
8166 | break; |
8167 | } |
8168 | |
8169 | case SK_StringInit: { |
8170 | QualType Ty = Step->Type; |
8171 | bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType(); |
8172 | CheckStringInit(Str: CurInit.get(), DeclT&: UpdateType ? *ResultType : Ty, |
8173 | AT: S.Context.getAsArrayType(T: Ty), S, |
8174 | CheckC23ConstexprInit: S.getLangOpts().C23 && |
8175 | initializingConstexprVariable(Entity)); |
8176 | break; |
8177 | } |
8178 | |
8179 | case SK_ObjCObjectConversion: |
8180 | CurInit = S.ImpCastExprToType(E: CurInit.get(), Type: Step->Type, |
8181 | CK: CK_ObjCObjectLValueCast, |
8182 | VK: CurInit.get()->getValueKind()); |
8183 | break; |
8184 | |
8185 | case SK_ArrayLoopIndex: { |
8186 | Expr *Cur = CurInit.get(); |
8187 | Expr *BaseExpr = new (S.Context) |
8188 | OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), |
8189 | Cur->getValueKind(), Cur->getObjectKind(), Cur); |
8190 | Expr *IndexExpr = |
8191 | new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); |
8192 | CurInit = S.CreateBuiltinArraySubscriptExpr( |
8193 | Base: BaseExpr, LLoc: Kind.getLocation(), Idx: IndexExpr, RLoc: Kind.getLocation()); |
8194 | ArrayLoopCommonExprs.push_back(Elt: BaseExpr); |
8195 | break; |
8196 | } |
8197 | |
8198 | case SK_ArrayLoopInit: { |
8199 | assert(!ArrayLoopCommonExprs.empty() && |
8200 | "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit" ); |
8201 | Expr *Common = ArrayLoopCommonExprs.pop_back_val(); |
8202 | CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, |
8203 | CurInit.get()); |
8204 | break; |
8205 | } |
8206 | |
8207 | case SK_GNUArrayInit: |
8208 | // Okay: we checked everything before creating this step. Note that |
8209 | // this is a GNU extension. |
8210 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::ext_array_init_copy) |
8211 | << Step->Type << CurInit.get()->getType() |
8212 | << CurInit.get()->getSourceRange(); |
8213 | updateGNUCompoundLiteralRValue(E: CurInit.get()); |
8214 | [[fallthrough]]; |
8215 | case SK_ArrayInit: |
8216 | // If the destination type is an incomplete array type, update the |
8217 | // type accordingly. |
8218 | if (ResultType) { |
8219 | if (const IncompleteArrayType *IncompleteDest |
8220 | = S.Context.getAsIncompleteArrayType(T: Step->Type)) { |
8221 | if (const ConstantArrayType *ConstantSource |
8222 | = S.Context.getAsConstantArrayType(T: CurInit.get()->getType())) { |
8223 | *ResultType = S.Context.getConstantArrayType( |
8224 | EltTy: IncompleteDest->getElementType(), ArySize: ConstantSource->getSize(), |
8225 | SizeExpr: ConstantSource->getSizeExpr(), ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
8226 | } |
8227 | } |
8228 | } |
8229 | break; |
8230 | |
8231 | case SK_ParenthesizedArrayInit: |
8232 | // Okay: we checked everything before creating this step. Note that |
8233 | // this is a GNU extension. |
8234 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::ext_array_init_parens) |
8235 | << CurInit.get()->getSourceRange(); |
8236 | break; |
8237 | |
8238 | case SK_PassByIndirectCopyRestore: |
8239 | case SK_PassByIndirectRestore: |
8240 | checkIndirectCopyRestoreSource(S, src: CurInit.get()); |
8241 | CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( |
8242 | CurInit.get(), Step->Type, |
8243 | Step->Kind == SK_PassByIndirectCopyRestore); |
8244 | break; |
8245 | |
8246 | case SK_ProduceObjCObject: |
8247 | CurInit = ImplicitCastExpr::Create( |
8248 | Context: S.Context, T: Step->Type, Kind: CK_ARCProduceObject, Operand: CurInit.get(), BasePath: nullptr, |
8249 | Cat: VK_PRValue, FPO: FPOptionsOverride()); |
8250 | break; |
8251 | |
8252 | case SK_StdInitializerList: { |
8253 | S.Diag(Loc: CurInit.get()->getExprLoc(), |
8254 | DiagID: diag::warn_cxx98_compat_initializer_list_init) |
8255 | << CurInit.get()->getSourceRange(); |
8256 | |
8257 | // Materialize the temporary into memory. |
8258 | MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( |
8259 | T: CurInit.get()->getType(), Temporary: CurInit.get(), |
8260 | /*BoundToLvalueReference=*/false); |
8261 | |
8262 | // Wrap it in a construction of a std::initializer_list<T>. |
8263 | CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); |
8264 | |
8265 | if (!Step->Type->isDependentType()) { |
8266 | QualType ElementType; |
8267 | [[maybe_unused]] bool IsStdInitializerList = |
8268 | S.isStdInitializerList(Ty: Step->Type, Element: &ElementType); |
8269 | assert(IsStdInitializerList && |
8270 | "StdInitializerList step to non-std::initializer_list" ); |
8271 | const CXXRecordDecl *Record = |
8272 | Step->Type->getAsCXXRecordDecl()->getDefinition(); |
8273 | assert(Record && Record->isCompleteDefinition() && |
8274 | "std::initializer_list should have already be " |
8275 | "complete/instantiated by this point" ); |
8276 | |
8277 | auto InvalidType = [&] { |
8278 | S.Diag(Loc: Record->getLocation(), |
8279 | DiagID: diag::err_std_initializer_list_malformed) |
8280 | << Step->Type.getUnqualifiedType(); |
8281 | return ExprError(); |
8282 | }; |
8283 | |
8284 | if (Record->isUnion() || Record->getNumBases() != 0 || |
8285 | Record->isPolymorphic()) |
8286 | return InvalidType(); |
8287 | |
8288 | RecordDecl::field_iterator Field = Record->field_begin(); |
8289 | if (Field == Record->field_end()) |
8290 | return InvalidType(); |
8291 | |
8292 | // Start pointer |
8293 | if (!Field->getType()->isPointerType() || |
8294 | !S.Context.hasSameType(T1: Field->getType()->getPointeeType(), |
8295 | T2: ElementType.withConst())) |
8296 | return InvalidType(); |
8297 | |
8298 | if (++Field == Record->field_end()) |
8299 | return InvalidType(); |
8300 | |
8301 | // Size or end pointer |
8302 | if (const auto *PT = Field->getType()->getAs<PointerType>()) { |
8303 | if (!S.Context.hasSameType(T1: PT->getPointeeType(), |
8304 | T2: ElementType.withConst())) |
8305 | return InvalidType(); |
8306 | } else { |
8307 | if (Field->isBitField() || |
8308 | !S.Context.hasSameType(T1: Field->getType(), T2: S.Context.getSizeType())) |
8309 | return InvalidType(); |
8310 | } |
8311 | |
8312 | if (++Field != Record->field_end()) |
8313 | return InvalidType(); |
8314 | } |
8315 | |
8316 | // Bind the result, in case the library has given initializer_list a |
8317 | // non-trivial destructor. |
8318 | if (shouldBindAsTemporary(Entity)) |
8319 | CurInit = S.MaybeBindToTemporary(E: CurInit.get()); |
8320 | break; |
8321 | } |
8322 | |
8323 | case SK_OCLSamplerInit: { |
8324 | // Sampler initialization have 5 cases: |
8325 | // 1. function argument passing |
8326 | // 1a. argument is a file-scope variable |
8327 | // 1b. argument is a function-scope variable |
8328 | // 1c. argument is one of caller function's parameters |
8329 | // 2. variable initialization |
8330 | // 2a. initializing a file-scope variable |
8331 | // 2b. initializing a function-scope variable |
8332 | // |
8333 | // For file-scope variables, since they cannot be initialized by function |
8334 | // call of __translate_sampler_initializer in LLVM IR, their references |
8335 | // need to be replaced by a cast from their literal initializers to |
8336 | // sampler type. Since sampler variables can only be used in function |
8337 | // calls as arguments, we only need to replace them when handling the |
8338 | // argument passing. |
8339 | assert(Step->Type->isSamplerT() && |
8340 | "Sampler initialization on non-sampler type." ); |
8341 | Expr *Init = CurInit.get()->IgnoreParens(); |
8342 | QualType SourceType = Init->getType(); |
8343 | // Case 1 |
8344 | if (Entity.isParameterKind()) { |
8345 | if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { |
8346 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_sampler_argument_required) |
8347 | << SourceType; |
8348 | break; |
8349 | } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Init)) { |
8350 | auto Var = cast<VarDecl>(Val: DRE->getDecl()); |
8351 | // Case 1b and 1c |
8352 | // No cast from integer to sampler is needed. |
8353 | if (!Var->hasGlobalStorage()) { |
8354 | CurInit = ImplicitCastExpr::Create( |
8355 | Context: S.Context, T: Step->Type, Kind: CK_LValueToRValue, Operand: Init, |
8356 | /*BasePath=*/nullptr, Cat: VK_PRValue, FPO: FPOptionsOverride()); |
8357 | break; |
8358 | } |
8359 | // Case 1a |
8360 | // For function call with a file-scope sampler variable as argument, |
8361 | // get the integer literal. |
8362 | // Do not diagnose if the file-scope variable does not have initializer |
8363 | // since this has already been diagnosed when parsing the variable |
8364 | // declaration. |
8365 | if (!Var->getInit() || !isa<ImplicitCastExpr>(Val: Var->getInit())) |
8366 | break; |
8367 | Init = cast<ImplicitCastExpr>(Val: const_cast<Expr*>( |
8368 | Var->getInit()))->getSubExpr(); |
8369 | SourceType = Init->getType(); |
8370 | } |
8371 | } else { |
8372 | // Case 2 |
8373 | // Check initializer is 32 bit integer constant. |
8374 | // If the initializer is taken from global variable, do not diagnose since |
8375 | // this has already been done when parsing the variable declaration. |
8376 | if (!Init->isConstantInitializer(Ctx&: S.Context, ForRef: false)) |
8377 | break; |
8378 | |
8379 | if (!SourceType->isIntegerType() || |
8380 | 32 != S.Context.getIntWidth(T: SourceType)) { |
8381 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_sampler_initializer_not_integer) |
8382 | << SourceType; |
8383 | break; |
8384 | } |
8385 | |
8386 | Expr::EvalResult EVResult; |
8387 | Init->EvaluateAsInt(Result&: EVResult, Ctx: S.Context); |
8388 | llvm::APSInt Result = EVResult.Val.getInt(); |
8389 | const uint64_t SamplerValue = Result.getLimitedValue(); |
8390 | // 32-bit value of sampler's initializer is interpreted as |
8391 | // bit-field with the following structure: |
8392 | // |unspecified|Filter|Addressing Mode| Normalized Coords| |
8393 | // |31 6|5 4|3 1| 0| |
8394 | // This structure corresponds to enum values of sampler properties |
8395 | // defined in SPIR spec v1.2 and also opencl-c.h |
8396 | unsigned AddressingMode = (0x0E & SamplerValue) >> 1; |
8397 | unsigned FilterMode = (0x30 & SamplerValue) >> 4; |
8398 | if (FilterMode != 1 && FilterMode != 2 && |
8399 | !S.getOpenCLOptions().isAvailableOption( |
8400 | Ext: "cl_intel_device_side_avc_motion_estimation" , LO: S.getLangOpts())) |
8401 | S.Diag(Loc: Kind.getLocation(), |
8402 | DiagID: diag::warn_sampler_initializer_invalid_bits) |
8403 | << "Filter Mode" ; |
8404 | if (AddressingMode > 4) |
8405 | S.Diag(Loc: Kind.getLocation(), |
8406 | DiagID: diag::warn_sampler_initializer_invalid_bits) |
8407 | << "Addressing Mode" ; |
8408 | } |
8409 | |
8410 | // Cases 1a, 2a and 2b |
8411 | // Insert cast from integer to sampler. |
8412 | CurInit = S.ImpCastExprToType(E: Init, Type: S.Context.OCLSamplerTy, |
8413 | CK: CK_IntToOCLSampler); |
8414 | break; |
8415 | } |
8416 | case SK_OCLZeroOpaqueType: { |
8417 | assert((Step->Type->isEventT() || Step->Type->isQueueT() || |
8418 | Step->Type->isOCLIntelSubgroupAVCType()) && |
8419 | "Wrong type for initialization of OpenCL opaque type." ); |
8420 | |
8421 | CurInit = S.ImpCastExprToType(E: CurInit.get(), Type: Step->Type, |
8422 | CK: CK_ZeroToOCLOpaqueType, |
8423 | VK: CurInit.get()->getValueKind()); |
8424 | break; |
8425 | } |
8426 | case SK_ParenthesizedListInit: { |
8427 | CurInit = nullptr; |
8428 | TryOrBuildParenListInitialization(S, Entity, Kind, Args, Sequence&: *this, |
8429 | /*VerifyOnly=*/false, Result: &CurInit); |
8430 | if (CurInit.get() && ResultType) |
8431 | *ResultType = CurInit.get()->getType(); |
8432 | if (shouldBindAsTemporary(Entity)) |
8433 | CurInit = S.MaybeBindToTemporary(E: CurInit.get()); |
8434 | break; |
8435 | } |
8436 | } |
8437 | } |
8438 | |
8439 | Expr *Init = CurInit.get(); |
8440 | if (!Init) |
8441 | return ExprError(); |
8442 | |
8443 | // Check whether the initializer has a shorter lifetime than the initialized |
8444 | // entity, and if not, either lifetime-extend or warn as appropriate. |
8445 | S.checkInitializerLifetime(Entity, Init); |
8446 | |
8447 | // Diagnose non-fatal problems with the completed initialization. |
8448 | if (InitializedEntity::EntityKind EK = Entity.getKind(); |
8449 | (EK == InitializedEntity::EK_Member || |
8450 | EK == InitializedEntity::EK_ParenAggInitMember) && |
8451 | cast<FieldDecl>(Val: Entity.getDecl())->isBitField()) |
8452 | S.CheckBitFieldInitialization(InitLoc: Kind.getLocation(), |
8453 | Field: cast<FieldDecl>(Val: Entity.getDecl()), Init); |
8454 | |
8455 | // Check for std::move on construction. |
8456 | CheckMoveOnConstruction(S, InitExpr: Init, |
8457 | IsReturnStmt: Entity.getKind() == InitializedEntity::EK_Result); |
8458 | |
8459 | return Init; |
8460 | } |
8461 | |
8462 | /// Somewhere within T there is an uninitialized reference subobject. |
8463 | /// Dig it out and diagnose it. |
8464 | static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, |
8465 | QualType T) { |
8466 | if (T->isReferenceType()) { |
8467 | S.Diag(Loc, DiagID: diag::err_reference_without_init) |
8468 | << T.getNonReferenceType(); |
8469 | return true; |
8470 | } |
8471 | |
8472 | CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
8473 | if (!RD || !RD->hasUninitializedReferenceMember()) |
8474 | return false; |
8475 | |
8476 | for (const auto *FI : RD->fields()) { |
8477 | if (FI->isUnnamedBitField()) |
8478 | continue; |
8479 | |
8480 | if (DiagnoseUninitializedReference(S, Loc: FI->getLocation(), T: FI->getType())) { |
8481 | S.Diag(Loc, DiagID: diag::note_value_initialization_here) << RD; |
8482 | return true; |
8483 | } |
8484 | } |
8485 | |
8486 | for (const auto &BI : RD->bases()) { |
8487 | if (DiagnoseUninitializedReference(S, Loc: BI.getBeginLoc(), T: BI.getType())) { |
8488 | S.Diag(Loc, DiagID: diag::note_value_initialization_here) << RD; |
8489 | return true; |
8490 | } |
8491 | } |
8492 | |
8493 | return false; |
8494 | } |
8495 | |
8496 | |
8497 | //===----------------------------------------------------------------------===// |
8498 | // Diagnose initialization failures |
8499 | //===----------------------------------------------------------------------===// |
8500 | |
8501 | /// Emit notes associated with an initialization that failed due to a |
8502 | /// "simple" conversion failure. |
8503 | static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, |
8504 | Expr *op) { |
8505 | QualType destType = entity.getType(); |
8506 | if (destType.getNonReferenceType()->isObjCObjectPointerType() && |
8507 | op->getType()->isObjCObjectPointerType()) { |
8508 | |
8509 | // Emit a possible note about the conversion failing because the |
8510 | // operand is a message send with a related result type. |
8511 | S.ObjC().EmitRelatedResultTypeNote(E: op); |
8512 | |
8513 | // Emit a possible note about a return failing because we're |
8514 | // expecting a related result type. |
8515 | if (entity.getKind() == InitializedEntity::EK_Result) |
8516 | S.ObjC().EmitRelatedResultTypeNoteForReturn(destType); |
8517 | } |
8518 | QualType fromType = op->getType(); |
8519 | QualType fromPointeeType = fromType.getCanonicalType()->getPointeeType(); |
8520 | QualType destPointeeType = destType.getCanonicalType()->getPointeeType(); |
8521 | auto *fromDecl = fromType->getPointeeCXXRecordDecl(); |
8522 | auto *destDecl = destType->getPointeeCXXRecordDecl(); |
8523 | if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord && |
8524 | destDecl->getDeclKind() == Decl::CXXRecord && |
8525 | !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() && |
8526 | !fromDecl->hasDefinition() && |
8527 | destPointeeType.getQualifiers().compatiblyIncludes( |
8528 | other: fromPointeeType.getQualifiers())) |
8529 | S.Diag(Loc: fromDecl->getLocation(), DiagID: diag::note_forward_class_conversion) |
8530 | << S.getASTContext().getTagDeclType(Decl: fromDecl) |
8531 | << S.getASTContext().getTagDeclType(Decl: destDecl); |
8532 | } |
8533 | |
8534 | static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, |
8535 | InitListExpr *InitList) { |
8536 | QualType DestType = Entity.getType(); |
8537 | |
8538 | QualType E; |
8539 | if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(Ty: DestType, Element: &E)) { |
8540 | QualType ArrayType = S.Context.getConstantArrayType( |
8541 | EltTy: E.withConst(), |
8542 | ArySize: llvm::APInt(S.Context.getTypeSize(T: S.Context.getSizeType()), |
8543 | InitList->getNumInits()), |
8544 | SizeExpr: nullptr, ASM: clang::ArraySizeModifier::Normal, IndexTypeQuals: 0); |
8545 | InitializedEntity HiddenArray = |
8546 | InitializedEntity::InitializeTemporary(Type: ArrayType); |
8547 | return diagnoseListInit(S, Entity: HiddenArray, InitList); |
8548 | } |
8549 | |
8550 | if (DestType->isReferenceType()) { |
8551 | // A list-initialization failure for a reference means that we tried to |
8552 | // create a temporary of the inner type (per [dcl.init.list]p3.6) and the |
8553 | // inner initialization failed. |
8554 | QualType T = DestType->castAs<ReferenceType>()->getPointeeType(); |
8555 | diagnoseListInit(S, Entity: InitializedEntity::InitializeTemporary(Type: T), InitList); |
8556 | SourceLocation Loc = InitList->getBeginLoc(); |
8557 | if (auto *D = Entity.getDecl()) |
8558 | Loc = D->getLocation(); |
8559 | S.Diag(Loc, DiagID: diag::note_in_reference_temporary_list_initializer) << T; |
8560 | return; |
8561 | } |
8562 | |
8563 | InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, |
8564 | /*VerifyOnly=*/false, |
8565 | /*TreatUnavailableAsInvalid=*/false); |
8566 | assert(DiagnoseInitList.HadError() && |
8567 | "Inconsistent init list check result." ); |
8568 | } |
8569 | |
8570 | bool InitializationSequence::Diagnose(Sema &S, |
8571 | const InitializedEntity &Entity, |
8572 | const InitializationKind &Kind, |
8573 | ArrayRef<Expr *> Args) { |
8574 | if (!Failed()) |
8575 | return false; |
8576 | |
8577 | QualType DestType = Entity.getType(); |
8578 | |
8579 | // When we want to diagnose only one element of a braced-init-list, |
8580 | // we need to factor it out. |
8581 | Expr *OnlyArg; |
8582 | if (Args.size() == 1) { |
8583 | auto *List = dyn_cast<InitListExpr>(Val: Args[0]); |
8584 | if (List && List->getNumInits() == 1) |
8585 | OnlyArg = List->getInit(Init: 0); |
8586 | else |
8587 | OnlyArg = Args[0]; |
8588 | |
8589 | if (OnlyArg->getType() == S.Context.OverloadTy) { |
8590 | DeclAccessPair Found; |
8591 | if (FunctionDecl *FD = S.ResolveAddressOfOverloadedFunction( |
8592 | AddressOfExpr: OnlyArg, TargetType: DestType.getNonReferenceType(), /*Complain=*/false, |
8593 | Found)) { |
8594 | if (Expr *Resolved = |
8595 | S.FixOverloadedFunctionReference(E: OnlyArg, FoundDecl: Found, Fn: FD).get()) |
8596 | OnlyArg = Resolved; |
8597 | } |
8598 | } |
8599 | } |
8600 | else |
8601 | OnlyArg = nullptr; |
8602 | |
8603 | switch (Failure) { |
8604 | case FK_TooManyInitsForReference: |
8605 | // FIXME: Customize for the initialized entity? |
8606 | if (Args.empty()) { |
8607 | // Dig out the reference subobject which is uninitialized and diagnose it. |
8608 | // If this is value-initialization, this could be nested some way within |
8609 | // the target type. |
8610 | assert(Kind.getKind() == InitializationKind::IK_Value || |
8611 | DestType->isReferenceType()); |
8612 | bool Diagnosed = |
8613 | DiagnoseUninitializedReference(S, Loc: Kind.getLocation(), T: DestType); |
8614 | assert(Diagnosed && "couldn't find uninitialized reference to diagnose" ); |
8615 | (void)Diagnosed; |
8616 | } else // FIXME: diagnostic below could be better! |
8617 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_reference_has_multiple_inits) |
8618 | << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); |
8619 | break; |
8620 | case FK_ParenthesizedListInitForReference: |
8621 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_list_init_in_parens) |
8622 | << 1 << Entity.getType() << Args[0]->getSourceRange(); |
8623 | break; |
8624 | |
8625 | case FK_ArrayNeedsInitList: |
8626 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_array_init_not_init_list) << 0; |
8627 | break; |
8628 | case FK_ArrayNeedsInitListOrStringLiteral: |
8629 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_array_init_not_init_list) << 1; |
8630 | break; |
8631 | case FK_ArrayNeedsInitListOrWideStringLiteral: |
8632 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_array_init_not_init_list) << 2; |
8633 | break; |
8634 | case FK_NarrowStringIntoWideCharArray: |
8635 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_array_init_narrow_string_into_wchar); |
8636 | break; |
8637 | case FK_WideStringIntoCharArray: |
8638 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_array_init_wide_string_into_char); |
8639 | break; |
8640 | case FK_IncompatWideStringIntoWideChar: |
8641 | S.Diag(Loc: Kind.getLocation(), |
8642 | DiagID: diag::err_array_init_incompat_wide_string_into_wchar); |
8643 | break; |
8644 | case FK_PlainStringIntoUTF8Char: |
8645 | S.Diag(Loc: Kind.getLocation(), |
8646 | DiagID: diag::err_array_init_plain_string_into_char8_t); |
8647 | S.Diag(Loc: Args.front()->getBeginLoc(), |
8648 | DiagID: diag::note_array_init_plain_string_into_char8_t) |
8649 | << FixItHint::CreateInsertion(InsertionLoc: Args.front()->getBeginLoc(), Code: "u8" ); |
8650 | break; |
8651 | case FK_UTF8StringIntoPlainChar: |
8652 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_array_init_utf8_string_into_char) |
8653 | << DestType->isSignedIntegerType() << S.getLangOpts().CPlusPlus20; |
8654 | break; |
8655 | case FK_ArrayTypeMismatch: |
8656 | case FK_NonConstantArrayInit: |
8657 | S.Diag(Loc: Kind.getLocation(), |
8658 | DiagID: (Failure == FK_ArrayTypeMismatch |
8659 | ? diag::err_array_init_different_type |
8660 | : diag::err_array_init_non_constant_array)) |
8661 | << DestType.getNonReferenceType() |
8662 | << OnlyArg->getType() |
8663 | << Args[0]->getSourceRange(); |
8664 | break; |
8665 | |
8666 | case FK_VariableLengthArrayHasInitializer: |
8667 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_variable_object_no_init) |
8668 | << Args[0]->getSourceRange(); |
8669 | break; |
8670 | |
8671 | case FK_AddressOfOverloadFailed: { |
8672 | DeclAccessPair Found; |
8673 | S.ResolveAddressOfOverloadedFunction(AddressOfExpr: OnlyArg, |
8674 | TargetType: DestType.getNonReferenceType(), |
8675 | Complain: true, |
8676 | Found); |
8677 | break; |
8678 | } |
8679 | |
8680 | case FK_AddressOfUnaddressableFunction: { |
8681 | auto *FD = cast<FunctionDecl>(Val: cast<DeclRefExpr>(Val: OnlyArg)->getDecl()); |
8682 | S.checkAddressOfFunctionIsAvailable(Function: FD, /*Complain=*/true, |
8683 | Loc: OnlyArg->getBeginLoc()); |
8684 | break; |
8685 | } |
8686 | |
8687 | case FK_ReferenceInitOverloadFailed: |
8688 | case FK_UserConversionOverloadFailed: |
8689 | switch (FailedOverloadResult) { |
8690 | case OR_Ambiguous: |
8691 | |
8692 | FailedCandidateSet.NoteCandidates( |
8693 | PA: PartialDiagnosticAt( |
8694 | Kind.getLocation(), |
8695 | Failure == FK_UserConversionOverloadFailed |
8696 | ? (S.PDiag(DiagID: diag::err_typecheck_ambiguous_condition) |
8697 | << OnlyArg->getType() << DestType |
8698 | << Args[0]->getSourceRange()) |
8699 | : (S.PDiag(DiagID: diag::err_ref_init_ambiguous) |
8700 | << DestType << OnlyArg->getType() |
8701 | << Args[0]->getSourceRange())), |
8702 | S, OCD: OCD_AmbiguousCandidates, Args); |
8703 | break; |
8704 | |
8705 | case OR_No_Viable_Function: { |
8706 | auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD: OCD_AllCandidates, Args); |
8707 | if (!S.RequireCompleteType(Loc: Kind.getLocation(), |
8708 | T: DestType.getNonReferenceType(), |
8709 | DiagID: diag::err_typecheck_nonviable_condition_incomplete, |
8710 | Args: OnlyArg->getType(), Args: Args[0]->getSourceRange())) |
8711 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_typecheck_nonviable_condition) |
8712 | << (Entity.getKind() == InitializedEntity::EK_Result) |
8713 | << OnlyArg->getType() << Args[0]->getSourceRange() |
8714 | << DestType.getNonReferenceType(); |
8715 | |
8716 | FailedCandidateSet.NoteCandidates(S, Args, Cands); |
8717 | break; |
8718 | } |
8719 | case OR_Deleted: { |
8720 | OverloadCandidateSet::iterator Best; |
8721 | OverloadingResult Ovl |
8722 | = FailedCandidateSet.BestViableFunction(S, Loc: Kind.getLocation(), Best); |
8723 | |
8724 | StringLiteral *Msg = Best->Function->getDeletedMessage(); |
8725 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_typecheck_deleted_function) |
8726 | << OnlyArg->getType() << DestType.getNonReferenceType() |
8727 | << (Msg != nullptr) << (Msg ? Msg->getString() : StringRef()) |
8728 | << Args[0]->getSourceRange(); |
8729 | if (Ovl == OR_Deleted) { |
8730 | S.NoteDeletedFunction(FD: Best->Function); |
8731 | } else { |
8732 | llvm_unreachable("Inconsistent overload resolution?" ); |
8733 | } |
8734 | break; |
8735 | } |
8736 | |
8737 | case OR_Success: |
8738 | llvm_unreachable("Conversion did not fail!" ); |
8739 | } |
8740 | break; |
8741 | |
8742 | case FK_NonConstLValueReferenceBindingToTemporary: |
8743 | if (isa<InitListExpr>(Val: Args[0])) { |
8744 | S.Diag(Loc: Kind.getLocation(), |
8745 | DiagID: diag::err_lvalue_reference_bind_to_initlist) |
8746 | << DestType.getNonReferenceType().isVolatileQualified() |
8747 | << DestType.getNonReferenceType() |
8748 | << Args[0]->getSourceRange(); |
8749 | break; |
8750 | } |
8751 | [[fallthrough]]; |
8752 | |
8753 | case FK_NonConstLValueReferenceBindingToUnrelated: |
8754 | S.Diag(Loc: Kind.getLocation(), |
8755 | DiagID: Failure == FK_NonConstLValueReferenceBindingToTemporary |
8756 | ? diag::err_lvalue_reference_bind_to_temporary |
8757 | : diag::err_lvalue_reference_bind_to_unrelated) |
8758 | << DestType.getNonReferenceType().isVolatileQualified() |
8759 | << DestType.getNonReferenceType() |
8760 | << OnlyArg->getType() |
8761 | << Args[0]->getSourceRange(); |
8762 | break; |
8763 | |
8764 | case FK_NonConstLValueReferenceBindingToBitfield: { |
8765 | // We don't necessarily have an unambiguous source bit-field. |
8766 | FieldDecl *BitField = Args[0]->getSourceBitField(); |
8767 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_reference_bind_to_bitfield) |
8768 | << DestType.isVolatileQualified() |
8769 | << (BitField ? BitField->getDeclName() : DeclarationName()) |
8770 | << (BitField != nullptr) |
8771 | << Args[0]->getSourceRange(); |
8772 | if (BitField) |
8773 | S.Diag(Loc: BitField->getLocation(), DiagID: diag::note_bitfield_decl); |
8774 | break; |
8775 | } |
8776 | |
8777 | case FK_NonConstLValueReferenceBindingToVectorElement: |
8778 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_reference_bind_to_vector_element) |
8779 | << DestType.isVolatileQualified() |
8780 | << Args[0]->getSourceRange(); |
8781 | break; |
8782 | |
8783 | case FK_NonConstLValueReferenceBindingToMatrixElement: |
8784 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_reference_bind_to_matrix_element) |
8785 | << DestType.isVolatileQualified() << Args[0]->getSourceRange(); |
8786 | break; |
8787 | |
8788 | case FK_RValueReferenceBindingToLValue: |
8789 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_lvalue_to_rvalue_ref) |
8790 | << DestType.getNonReferenceType() << OnlyArg->getType() |
8791 | << Args[0]->getSourceRange(); |
8792 | break; |
8793 | |
8794 | case FK_ReferenceAddrspaceMismatchTemporary: |
8795 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_reference_bind_temporary_addrspace) |
8796 | << DestType << Args[0]->getSourceRange(); |
8797 | break; |
8798 | |
8799 | case FK_ReferenceInitDropsQualifiers: { |
8800 | QualType SourceType = OnlyArg->getType(); |
8801 | QualType NonRefType = DestType.getNonReferenceType(); |
8802 | Qualifiers DroppedQualifiers = |
8803 | SourceType.getQualifiers() - NonRefType.getQualifiers(); |
8804 | |
8805 | if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf( |
8806 | other: SourceType.getQualifiers())) |
8807 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_reference_bind_drops_quals) |
8808 | << NonRefType << SourceType << 1 /*addr space*/ |
8809 | << Args[0]->getSourceRange(); |
8810 | else if (DroppedQualifiers.hasQualifiers()) |
8811 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_reference_bind_drops_quals) |
8812 | << NonRefType << SourceType << 0 /*cv quals*/ |
8813 | << Qualifiers::fromCVRMask(CVR: DroppedQualifiers.getCVRQualifiers()) |
8814 | << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange(); |
8815 | else |
8816 | // FIXME: Consider decomposing the type and explaining which qualifiers |
8817 | // were dropped where, or on which level a 'const' is missing, etc. |
8818 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_reference_bind_drops_quals) |
8819 | << NonRefType << SourceType << 2 /*incompatible quals*/ |
8820 | << Args[0]->getSourceRange(); |
8821 | break; |
8822 | } |
8823 | |
8824 | case FK_ReferenceInitFailed: |
8825 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_reference_bind_failed) |
8826 | << DestType.getNonReferenceType() |
8827 | << DestType.getNonReferenceType()->isIncompleteType() |
8828 | << OnlyArg->isLValue() |
8829 | << OnlyArg->getType() |
8830 | << Args[0]->getSourceRange(); |
8831 | emitBadConversionNotes(S, entity: Entity, op: Args[0]); |
8832 | break; |
8833 | |
8834 | case FK_ConversionFailed: { |
8835 | QualType FromType = OnlyArg->getType(); |
8836 | PartialDiagnostic PDiag = S.PDiag(DiagID: diag::err_init_conversion_failed) |
8837 | << (int)Entity.getKind() |
8838 | << DestType |
8839 | << OnlyArg->isLValue() |
8840 | << FromType |
8841 | << Args[0]->getSourceRange(); |
8842 | S.HandleFunctionTypeMismatch(PDiag, FromType, ToType: DestType); |
8843 | S.Diag(Loc: Kind.getLocation(), PD: PDiag); |
8844 | emitBadConversionNotes(S, entity: Entity, op: Args[0]); |
8845 | break; |
8846 | } |
8847 | |
8848 | case FK_ConversionFromPropertyFailed: |
8849 | // No-op. This error has already been reported. |
8850 | break; |
8851 | |
8852 | case FK_TooManyInitsForScalar: { |
8853 | SourceRange R; |
8854 | |
8855 | auto *InitList = dyn_cast<InitListExpr>(Val: Args[0]); |
8856 | if (InitList && InitList->getNumInits() >= 1) { |
8857 | R = SourceRange(InitList->getInit(Init: 0)->getEndLoc(), InitList->getEndLoc()); |
8858 | } else { |
8859 | assert(Args.size() > 1 && "Expected multiple initializers!" ); |
8860 | R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); |
8861 | } |
8862 | |
8863 | R.setBegin(S.getLocForEndOfToken(Loc: R.getBegin())); |
8864 | if (Kind.isCStyleOrFunctionalCast()) |
8865 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_builtin_func_cast_more_than_one_arg) |
8866 | << R; |
8867 | else |
8868 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_excess_initializers) |
8869 | << /*scalar=*/2 << R; |
8870 | break; |
8871 | } |
8872 | |
8873 | case FK_ParenthesizedListInitForScalar: |
8874 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_list_init_in_parens) |
8875 | << 0 << Entity.getType() << Args[0]->getSourceRange(); |
8876 | break; |
8877 | |
8878 | case FK_ReferenceBindingToInitList: |
8879 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_reference_bind_init_list) |
8880 | << DestType.getNonReferenceType() << Args[0]->getSourceRange(); |
8881 | break; |
8882 | |
8883 | case FK_InitListBadDestinationType: |
8884 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_init_list_bad_dest_type) |
8885 | << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); |
8886 | break; |
8887 | |
8888 | case FK_ListConstructorOverloadFailed: |
8889 | case FK_ConstructorOverloadFailed: { |
8890 | SourceRange ArgsRange; |
8891 | if (Args.size()) |
8892 | ArgsRange = |
8893 | SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); |
8894 | |
8895 | if (Failure == FK_ListConstructorOverloadFailed) { |
8896 | assert(Args.size() == 1 && |
8897 | "List construction from other than 1 argument." ); |
8898 | InitListExpr *InitList = cast<InitListExpr>(Val: Args[0]); |
8899 | Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); |
8900 | } |
8901 | |
8902 | // FIXME: Using "DestType" for the entity we're printing is probably |
8903 | // bad. |
8904 | switch (FailedOverloadResult) { |
8905 | case OR_Ambiguous: |
8906 | FailedCandidateSet.NoteCandidates( |
8907 | PA: PartialDiagnosticAt(Kind.getLocation(), |
8908 | S.PDiag(DiagID: diag::err_ovl_ambiguous_init) |
8909 | << DestType << ArgsRange), |
8910 | S, OCD: OCD_AmbiguousCandidates, Args); |
8911 | break; |
8912 | |
8913 | case OR_No_Viable_Function: |
8914 | if (Kind.getKind() == InitializationKind::IK_Default && |
8915 | (Entity.getKind() == InitializedEntity::EK_Base || |
8916 | Entity.getKind() == InitializedEntity::EK_Member || |
8917 | Entity.getKind() == InitializedEntity::EK_ParenAggInitMember) && |
8918 | isa<CXXConstructorDecl>(Val: S.CurContext)) { |
8919 | // This is implicit default initialization of a member or |
8920 | // base within a constructor. If no viable function was |
8921 | // found, notify the user that they need to explicitly |
8922 | // initialize this base/member. |
8923 | CXXConstructorDecl *Constructor |
8924 | = cast<CXXConstructorDecl>(Val: S.CurContext); |
8925 | const CXXRecordDecl *InheritedFrom = nullptr; |
8926 | if (auto Inherited = Constructor->getInheritedConstructor()) |
8927 | InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); |
8928 | if (Entity.getKind() == InitializedEntity::EK_Base) { |
8929 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_missing_default_ctor) |
8930 | << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) |
8931 | << S.Context.getTypeDeclType(Decl: Constructor->getParent()) |
8932 | << /*base=*/0 |
8933 | << Entity.getType() |
8934 | << InheritedFrom; |
8935 | |
8936 | RecordDecl *BaseDecl |
8937 | = Entity.getBaseSpecifier()->getType()->castAs<RecordType>() |
8938 | ->getDecl(); |
8939 | S.Diag(Loc: BaseDecl->getLocation(), DiagID: diag::note_previous_decl) |
8940 | << S.Context.getTagDeclType(Decl: BaseDecl); |
8941 | } else { |
8942 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_missing_default_ctor) |
8943 | << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) |
8944 | << S.Context.getTypeDeclType(Decl: Constructor->getParent()) |
8945 | << /*member=*/1 |
8946 | << Entity.getName() |
8947 | << InheritedFrom; |
8948 | S.Diag(Loc: Entity.getDecl()->getLocation(), |
8949 | DiagID: diag::note_member_declared_at); |
8950 | |
8951 | if (const RecordType *Record |
8952 | = Entity.getType()->getAs<RecordType>()) |
8953 | S.Diag(Loc: Record->getDecl()->getLocation(), |
8954 | DiagID: diag::note_previous_decl) |
8955 | << S.Context.getTagDeclType(Decl: Record->getDecl()); |
8956 | } |
8957 | break; |
8958 | } |
8959 | |
8960 | FailedCandidateSet.NoteCandidates( |
8961 | PA: PartialDiagnosticAt( |
8962 | Kind.getLocation(), |
8963 | S.PDiag(DiagID: diag::err_ovl_no_viable_function_in_init) |
8964 | << DestType << ArgsRange), |
8965 | S, OCD: OCD_AllCandidates, Args); |
8966 | break; |
8967 | |
8968 | case OR_Deleted: { |
8969 | OverloadCandidateSet::iterator Best; |
8970 | OverloadingResult Ovl |
8971 | = FailedCandidateSet.BestViableFunction(S, Loc: Kind.getLocation(), Best); |
8972 | if (Ovl != OR_Deleted) { |
8973 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_ovl_deleted_init) |
8974 | << DestType << ArgsRange; |
8975 | llvm_unreachable("Inconsistent overload resolution?" ); |
8976 | break; |
8977 | } |
8978 | |
8979 | // If this is a defaulted or implicitly-declared function, then |
8980 | // it was implicitly deleted. Make it clear that the deletion was |
8981 | // implicit. |
8982 | if (S.isImplicitlyDeleted(FD: Best->Function)) |
8983 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_ovl_deleted_special_init) |
8984 | << llvm::to_underlying( |
8985 | E: S.getSpecialMember(MD: cast<CXXMethodDecl>(Val: Best->Function))) |
8986 | << DestType << ArgsRange; |
8987 | else { |
8988 | StringLiteral *Msg = Best->Function->getDeletedMessage(); |
8989 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_ovl_deleted_init) |
8990 | << DestType << (Msg != nullptr) |
8991 | << (Msg ? Msg->getString() : StringRef()) << ArgsRange; |
8992 | } |
8993 | |
8994 | S.NoteDeletedFunction(FD: Best->Function); |
8995 | break; |
8996 | } |
8997 | |
8998 | case OR_Success: |
8999 | llvm_unreachable("Conversion did not fail!" ); |
9000 | } |
9001 | } |
9002 | break; |
9003 | |
9004 | case FK_DefaultInitOfConst: |
9005 | if (Entity.getKind() == InitializedEntity::EK_Member && |
9006 | isa<CXXConstructorDecl>(Val: S.CurContext)) { |
9007 | // This is implicit default-initialization of a const member in |
9008 | // a constructor. Complain that it needs to be explicitly |
9009 | // initialized. |
9010 | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Val: S.CurContext); |
9011 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_uninitialized_member_in_ctor) |
9012 | << (Constructor->getInheritedConstructor() ? 2 : |
9013 | Constructor->isImplicit() ? 1 : 0) |
9014 | << S.Context.getTypeDeclType(Decl: Constructor->getParent()) |
9015 | << /*const=*/1 |
9016 | << Entity.getName(); |
9017 | S.Diag(Loc: Entity.getDecl()->getLocation(), DiagID: diag::note_previous_decl) |
9018 | << Entity.getName(); |
9019 | } else if (const auto *VD = dyn_cast_if_present<VarDecl>(Val: Entity.getDecl()); |
9020 | VD && VD->isConstexpr()) { |
9021 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_constexpr_var_requires_const_init) |
9022 | << VD; |
9023 | } else { |
9024 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_default_init_const) |
9025 | << DestType << (bool)DestType->getAs<RecordType>(); |
9026 | } |
9027 | break; |
9028 | |
9029 | case FK_Incomplete: |
9030 | S.RequireCompleteType(Loc: Kind.getLocation(), T: FailedIncompleteType, |
9031 | DiagID: diag::err_init_incomplete_type); |
9032 | break; |
9033 | |
9034 | case FK_ListInitializationFailed: { |
9035 | // Run the init list checker again to emit diagnostics. |
9036 | InitListExpr *InitList = cast<InitListExpr>(Val: Args[0]); |
9037 | diagnoseListInit(S, Entity, InitList); |
9038 | break; |
9039 | } |
9040 | |
9041 | case FK_PlaceholderType: { |
9042 | // FIXME: Already diagnosed! |
9043 | break; |
9044 | } |
9045 | |
9046 | case FK_ExplicitConstructor: { |
9047 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_selected_explicit_constructor) |
9048 | << Args[0]->getSourceRange(); |
9049 | OverloadCandidateSet::iterator Best; |
9050 | OverloadingResult Ovl |
9051 | = FailedCandidateSet.BestViableFunction(S, Loc: Kind.getLocation(), Best); |
9052 | (void)Ovl; |
9053 | assert(Ovl == OR_Success && "Inconsistent overload resolution" ); |
9054 | CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Val: Best->Function); |
9055 | S.Diag(Loc: CtorDecl->getLocation(), |
9056 | DiagID: diag::note_explicit_ctor_deduction_guide_here) << false; |
9057 | break; |
9058 | } |
9059 | |
9060 | case FK_ParenthesizedListInitFailed: |
9061 | TryOrBuildParenListInitialization(S, Entity, Kind, Args, Sequence&: *this, |
9062 | /*VerifyOnly=*/false); |
9063 | break; |
9064 | |
9065 | case FK_DesignatedInitForNonAggregate: |
9066 | InitListExpr *InitList = cast<InitListExpr>(Val: Args[0]); |
9067 | S.Diag(Loc: Kind.getLocation(), DiagID: diag::err_designated_init_for_non_aggregate) |
9068 | << Entity.getType() << InitList->getSourceRange(); |
9069 | break; |
9070 | } |
9071 | |
9072 | PrintInitLocationNote(S, Entity); |
9073 | return true; |
9074 | } |
9075 | |
9076 | void InitializationSequence::dump(raw_ostream &OS) const { |
9077 | switch (SequenceKind) { |
9078 | case FailedSequence: { |
9079 | OS << "Failed sequence: " ; |
9080 | switch (Failure) { |
9081 | case FK_TooManyInitsForReference: |
9082 | OS << "too many initializers for reference" ; |
9083 | break; |
9084 | |
9085 | case FK_ParenthesizedListInitForReference: |
9086 | OS << "parenthesized list init for reference" ; |
9087 | break; |
9088 | |
9089 | case FK_ArrayNeedsInitList: |
9090 | OS << "array requires initializer list" ; |
9091 | break; |
9092 | |
9093 | case FK_AddressOfUnaddressableFunction: |
9094 | OS << "address of unaddressable function was taken" ; |
9095 | break; |
9096 | |
9097 | case FK_ArrayNeedsInitListOrStringLiteral: |
9098 | OS << "array requires initializer list or string literal" ; |
9099 | break; |
9100 | |
9101 | case FK_ArrayNeedsInitListOrWideStringLiteral: |
9102 | OS << "array requires initializer list or wide string literal" ; |
9103 | break; |
9104 | |
9105 | case FK_NarrowStringIntoWideCharArray: |
9106 | OS << "narrow string into wide char array" ; |
9107 | break; |
9108 | |
9109 | case FK_WideStringIntoCharArray: |
9110 | OS << "wide string into char array" ; |
9111 | break; |
9112 | |
9113 | case FK_IncompatWideStringIntoWideChar: |
9114 | OS << "incompatible wide string into wide char array" ; |
9115 | break; |
9116 | |
9117 | case FK_PlainStringIntoUTF8Char: |
9118 | OS << "plain string literal into char8_t array" ; |
9119 | break; |
9120 | |
9121 | case FK_UTF8StringIntoPlainChar: |
9122 | OS << "u8 string literal into char array" ; |
9123 | break; |
9124 | |
9125 | case FK_ArrayTypeMismatch: |
9126 | OS << "array type mismatch" ; |
9127 | break; |
9128 | |
9129 | case FK_NonConstantArrayInit: |
9130 | OS << "non-constant array initializer" ; |
9131 | break; |
9132 | |
9133 | case FK_AddressOfOverloadFailed: |
9134 | OS << "address of overloaded function failed" ; |
9135 | break; |
9136 | |
9137 | case FK_ReferenceInitOverloadFailed: |
9138 | OS << "overload resolution for reference initialization failed" ; |
9139 | break; |
9140 | |
9141 | case FK_NonConstLValueReferenceBindingToTemporary: |
9142 | OS << "non-const lvalue reference bound to temporary" ; |
9143 | break; |
9144 | |
9145 | case FK_NonConstLValueReferenceBindingToBitfield: |
9146 | OS << "non-const lvalue reference bound to bit-field" ; |
9147 | break; |
9148 | |
9149 | case FK_NonConstLValueReferenceBindingToVectorElement: |
9150 | OS << "non-const lvalue reference bound to vector element" ; |
9151 | break; |
9152 | |
9153 | case FK_NonConstLValueReferenceBindingToMatrixElement: |
9154 | OS << "non-const lvalue reference bound to matrix element" ; |
9155 | break; |
9156 | |
9157 | case FK_NonConstLValueReferenceBindingToUnrelated: |
9158 | OS << "non-const lvalue reference bound to unrelated type" ; |
9159 | break; |
9160 | |
9161 | case FK_RValueReferenceBindingToLValue: |
9162 | OS << "rvalue reference bound to an lvalue" ; |
9163 | break; |
9164 | |
9165 | case FK_ReferenceInitDropsQualifiers: |
9166 | OS << "reference initialization drops qualifiers" ; |
9167 | break; |
9168 | |
9169 | case FK_ReferenceAddrspaceMismatchTemporary: |
9170 | OS << "reference with mismatching address space bound to temporary" ; |
9171 | break; |
9172 | |
9173 | case FK_ReferenceInitFailed: |
9174 | OS << "reference initialization failed" ; |
9175 | break; |
9176 | |
9177 | case FK_ConversionFailed: |
9178 | OS << "conversion failed" ; |
9179 | break; |
9180 | |
9181 | case FK_ConversionFromPropertyFailed: |
9182 | OS << "conversion from property failed" ; |
9183 | break; |
9184 | |
9185 | case FK_TooManyInitsForScalar: |
9186 | OS << "too many initializers for scalar" ; |
9187 | break; |
9188 | |
9189 | case FK_ParenthesizedListInitForScalar: |
9190 | OS << "parenthesized list init for reference" ; |
9191 | break; |
9192 | |
9193 | case FK_ReferenceBindingToInitList: |
9194 | OS << "referencing binding to initializer list" ; |
9195 | break; |
9196 | |
9197 | case FK_InitListBadDestinationType: |
9198 | OS << "initializer list for non-aggregate, non-scalar type" ; |
9199 | break; |
9200 | |
9201 | case FK_UserConversionOverloadFailed: |
9202 | OS << "overloading failed for user-defined conversion" ; |
9203 | break; |
9204 | |
9205 | case FK_ConstructorOverloadFailed: |
9206 | OS << "constructor overloading failed" ; |
9207 | break; |
9208 | |
9209 | case FK_DefaultInitOfConst: |
9210 | OS << "default initialization of a const variable" ; |
9211 | break; |
9212 | |
9213 | case FK_Incomplete: |
9214 | OS << "initialization of incomplete type" ; |
9215 | break; |
9216 | |
9217 | case FK_ListInitializationFailed: |
9218 | OS << "list initialization checker failure" ; |
9219 | break; |
9220 | |
9221 | case FK_VariableLengthArrayHasInitializer: |
9222 | OS << "variable length array has an initializer" ; |
9223 | break; |
9224 | |
9225 | case FK_PlaceholderType: |
9226 | OS << "initializer expression isn't contextually valid" ; |
9227 | break; |
9228 | |
9229 | case FK_ListConstructorOverloadFailed: |
9230 | OS << "list constructor overloading failed" ; |
9231 | break; |
9232 | |
9233 | case FK_ExplicitConstructor: |
9234 | OS << "list copy initialization chose explicit constructor" ; |
9235 | break; |
9236 | |
9237 | case FK_ParenthesizedListInitFailed: |
9238 | OS << "parenthesized list initialization failed" ; |
9239 | break; |
9240 | |
9241 | case FK_DesignatedInitForNonAggregate: |
9242 | OS << "designated initializer for non-aggregate type" ; |
9243 | break; |
9244 | } |
9245 | OS << '\n'; |
9246 | return; |
9247 | } |
9248 | |
9249 | case DependentSequence: |
9250 | OS << "Dependent sequence\n" ; |
9251 | return; |
9252 | |
9253 | case NormalSequence: |
9254 | OS << "Normal sequence: " ; |
9255 | break; |
9256 | } |
9257 | |
9258 | for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { |
9259 | if (S != step_begin()) { |
9260 | OS << " -> " ; |
9261 | } |
9262 | |
9263 | switch (S->Kind) { |
9264 | case SK_ResolveAddressOfOverloadedFunction: |
9265 | OS << "resolve address of overloaded function" ; |
9266 | break; |
9267 | |
9268 | case SK_CastDerivedToBasePRValue: |
9269 | OS << "derived-to-base (prvalue)" ; |
9270 | break; |
9271 | |
9272 | case SK_CastDerivedToBaseXValue: |
9273 | OS << "derived-to-base (xvalue)" ; |
9274 | break; |
9275 | |
9276 | case SK_CastDerivedToBaseLValue: |
9277 | OS << "derived-to-base (lvalue)" ; |
9278 | break; |
9279 | |
9280 | case SK_BindReference: |
9281 | OS << "bind reference to lvalue" ; |
9282 | break; |
9283 | |
9284 | case SK_BindReferenceToTemporary: |
9285 | OS << "bind reference to a temporary" ; |
9286 | break; |
9287 | |
9288 | case SK_FinalCopy: |
9289 | OS << "final copy in class direct-initialization" ; |
9290 | break; |
9291 | |
9292 | case SK_ExtraneousCopyToTemporary: |
9293 | OS << "extraneous C++03 copy to temporary" ; |
9294 | break; |
9295 | |
9296 | case SK_UserConversion: |
9297 | OS << "user-defined conversion via " << *S->Function.Function; |
9298 | break; |
9299 | |
9300 | case SK_QualificationConversionPRValue: |
9301 | OS << "qualification conversion (prvalue)" ; |
9302 | break; |
9303 | |
9304 | case SK_QualificationConversionXValue: |
9305 | OS << "qualification conversion (xvalue)" ; |
9306 | break; |
9307 | |
9308 | case SK_QualificationConversionLValue: |
9309 | OS << "qualification conversion (lvalue)" ; |
9310 | break; |
9311 | |
9312 | case SK_FunctionReferenceConversion: |
9313 | OS << "function reference conversion" ; |
9314 | break; |
9315 | |
9316 | case SK_AtomicConversion: |
9317 | OS << "non-atomic-to-atomic conversion" ; |
9318 | break; |
9319 | |
9320 | case SK_ConversionSequence: |
9321 | OS << "implicit conversion sequence (" ; |
9322 | S->ICS->dump(); // FIXME: use OS |
9323 | OS << ")" ; |
9324 | break; |
9325 | |
9326 | case SK_ConversionSequenceNoNarrowing: |
9327 | OS << "implicit conversion sequence with narrowing prohibited (" ; |
9328 | S->ICS->dump(); // FIXME: use OS |
9329 | OS << ")" ; |
9330 | break; |
9331 | |
9332 | case SK_ListInitialization: |
9333 | OS << "list aggregate initialization" ; |
9334 | break; |
9335 | |
9336 | case SK_UnwrapInitList: |
9337 | OS << "unwrap reference initializer list" ; |
9338 | break; |
9339 | |
9340 | case SK_RewrapInitList: |
9341 | OS << "rewrap reference initializer list" ; |
9342 | break; |
9343 | |
9344 | case SK_ConstructorInitialization: |
9345 | OS << "constructor initialization" ; |
9346 | break; |
9347 | |
9348 | case SK_ConstructorInitializationFromList: |
9349 | OS << "list initialization via constructor" ; |
9350 | break; |
9351 | |
9352 | case SK_ZeroInitialization: |
9353 | OS << "zero initialization" ; |
9354 | break; |
9355 | |
9356 | case SK_CAssignment: |
9357 | OS << "C assignment" ; |
9358 | break; |
9359 | |
9360 | case SK_StringInit: |
9361 | OS << "string initialization" ; |
9362 | break; |
9363 | |
9364 | case SK_ObjCObjectConversion: |
9365 | OS << "Objective-C object conversion" ; |
9366 | break; |
9367 | |
9368 | case SK_ArrayLoopIndex: |
9369 | OS << "indexing for array initialization loop" ; |
9370 | break; |
9371 | |
9372 | case SK_ArrayLoopInit: |
9373 | OS << "array initialization loop" ; |
9374 | break; |
9375 | |
9376 | case SK_ArrayInit: |
9377 | OS << "array initialization" ; |
9378 | break; |
9379 | |
9380 | case SK_GNUArrayInit: |
9381 | OS << "array initialization (GNU extension)" ; |
9382 | break; |
9383 | |
9384 | case SK_ParenthesizedArrayInit: |
9385 | OS << "parenthesized array initialization" ; |
9386 | break; |
9387 | |
9388 | case SK_PassByIndirectCopyRestore: |
9389 | OS << "pass by indirect copy and restore" ; |
9390 | break; |
9391 | |
9392 | case SK_PassByIndirectRestore: |
9393 | OS << "pass by indirect restore" ; |
9394 | break; |
9395 | |
9396 | case SK_ProduceObjCObject: |
9397 | OS << "Objective-C object retension" ; |
9398 | break; |
9399 | |
9400 | case SK_StdInitializerList: |
9401 | OS << "std::initializer_list from initializer list" ; |
9402 | break; |
9403 | |
9404 | case SK_StdInitializerListConstructorCall: |
9405 | OS << "list initialization from std::initializer_list" ; |
9406 | break; |
9407 | |
9408 | case SK_OCLSamplerInit: |
9409 | OS << "OpenCL sampler_t from integer constant" ; |
9410 | break; |
9411 | |
9412 | case SK_OCLZeroOpaqueType: |
9413 | OS << "OpenCL opaque type from zero" ; |
9414 | break; |
9415 | case SK_ParenthesizedListInit: |
9416 | OS << "initialization from a parenthesized list of values" ; |
9417 | break; |
9418 | } |
9419 | |
9420 | OS << " [" << S->Type << ']'; |
9421 | } |
9422 | |
9423 | OS << '\n'; |
9424 | } |
9425 | |
9426 | void InitializationSequence::dump() const { |
9427 | dump(OS&: llvm::errs()); |
9428 | } |
9429 | |
9430 | static void DiagnoseNarrowingInInitList(Sema &S, |
9431 | const ImplicitConversionSequence &ICS, |
9432 | QualType PreNarrowingType, |
9433 | QualType EntityType, |
9434 | const Expr *PostInit) { |
9435 | const StandardConversionSequence *SCS = nullptr; |
9436 | switch (ICS.getKind()) { |
9437 | case ImplicitConversionSequence::StandardConversion: |
9438 | SCS = &ICS.Standard; |
9439 | break; |
9440 | case ImplicitConversionSequence::UserDefinedConversion: |
9441 | SCS = &ICS.UserDefined.After; |
9442 | break; |
9443 | case ImplicitConversionSequence::AmbiguousConversion: |
9444 | case ImplicitConversionSequence::StaticObjectArgumentConversion: |
9445 | case ImplicitConversionSequence::EllipsisConversion: |
9446 | case ImplicitConversionSequence::BadConversion: |
9447 | return; |
9448 | } |
9449 | |
9450 | auto MakeDiag = [&](bool IsConstRef, unsigned DefaultDiagID, |
9451 | unsigned ConstRefDiagID, unsigned WarnDiagID) { |
9452 | unsigned DiagID; |
9453 | auto &L = S.getLangOpts(); |
9454 | if (L.CPlusPlus11 && |
9455 | (!L.MicrosoftExt || L.isCompatibleWithMSVC(MajorVersion: LangOptions::MSVC2015))) |
9456 | DiagID = IsConstRef ? ConstRefDiagID : DefaultDiagID; |
9457 | else |
9458 | DiagID = WarnDiagID; |
9459 | return S.Diag(Loc: PostInit->getBeginLoc(), DiagID) |
9460 | << PostInit->getSourceRange(); |
9461 | }; |
9462 | |
9463 | // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. |
9464 | APValue ConstantValue; |
9465 | QualType ConstantType; |
9466 | switch (SCS->getNarrowingKind(Context&: S.Context, Converted: PostInit, ConstantValue, |
9467 | ConstantType)) { |
9468 | case NK_Not_Narrowing: |
9469 | case NK_Dependent_Narrowing: |
9470 | // No narrowing occurred. |
9471 | return; |
9472 | |
9473 | case NK_Type_Narrowing: { |
9474 | // This was a floating-to-integer conversion, which is always considered a |
9475 | // narrowing conversion even if the value is a constant and can be |
9476 | // represented exactly as an integer. |
9477 | QualType T = EntityType.getNonReferenceType(); |
9478 | MakeDiag(T != EntityType, diag::ext_init_list_type_narrowing, |
9479 | diag::ext_init_list_type_narrowing_const_reference, |
9480 | diag::warn_init_list_type_narrowing) |
9481 | << PreNarrowingType.getLocalUnqualifiedType() |
9482 | << T.getLocalUnqualifiedType(); |
9483 | break; |
9484 | } |
9485 | |
9486 | case NK_Constant_Narrowing: { |
9487 | // A constant value was narrowed. |
9488 | MakeDiag(EntityType.getNonReferenceType() != EntityType, |
9489 | diag::ext_init_list_constant_narrowing, |
9490 | diag::ext_init_list_constant_narrowing_const_reference, |
9491 | diag::warn_init_list_constant_narrowing) |
9492 | << ConstantValue.getAsString(Ctx: S.getASTContext(), Ty: ConstantType) |
9493 | << EntityType.getNonReferenceType().getLocalUnqualifiedType(); |
9494 | break; |
9495 | } |
9496 | |
9497 | case NK_Variable_Narrowing: { |
9498 | // A variable's value may have been narrowed. |
9499 | MakeDiag(EntityType.getNonReferenceType() != EntityType, |
9500 | diag::ext_init_list_variable_narrowing, |
9501 | diag::ext_init_list_variable_narrowing_const_reference, |
9502 | diag::warn_init_list_variable_narrowing) |
9503 | << PreNarrowingType.getLocalUnqualifiedType() |
9504 | << EntityType.getNonReferenceType().getLocalUnqualifiedType(); |
9505 | break; |
9506 | } |
9507 | } |
9508 | |
9509 | SmallString<128> StaticCast; |
9510 | llvm::raw_svector_ostream OS(StaticCast); |
9511 | OS << "static_cast<" ; |
9512 | if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { |
9513 | // It's important to use the typedef's name if there is one so that the |
9514 | // fixit doesn't break code using types like int64_t. |
9515 | // |
9516 | // FIXME: This will break if the typedef requires qualification. But |
9517 | // getQualifiedNameAsString() includes non-machine-parsable components. |
9518 | OS << *TT->getDecl(); |
9519 | } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) |
9520 | OS << BT->getName(Policy: S.getLangOpts()); |
9521 | else { |
9522 | // Oops, we didn't find the actual type of the variable. Don't emit a fixit |
9523 | // with a broken cast. |
9524 | return; |
9525 | } |
9526 | OS << ">(" ; |
9527 | S.Diag(Loc: PostInit->getBeginLoc(), DiagID: diag::note_init_list_narrowing_silence) |
9528 | << PostInit->getSourceRange() |
9529 | << FixItHint::CreateInsertion(InsertionLoc: PostInit->getBeginLoc(), Code: OS.str()) |
9530 | << FixItHint::CreateInsertion( |
9531 | InsertionLoc: S.getLocForEndOfToken(Loc: PostInit->getEndLoc()), Code: ")" ); |
9532 | } |
9533 | |
9534 | static void CheckC23ConstexprInitConversion(Sema &S, QualType FromType, |
9535 | QualType ToType, Expr *Init) { |
9536 | assert(S.getLangOpts().C23); |
9537 | ImplicitConversionSequence ICS = S.TryImplicitConversion( |
9538 | From: Init->IgnoreParenImpCasts(), ToType, /*SuppressUserConversions*/ false, |
9539 | AllowExplicit: Sema::AllowedExplicit::None, |
9540 | /*InOverloadResolution*/ false, |
9541 | /*CStyle*/ false, |
9542 | /*AllowObjCWritebackConversion=*/false); |
9543 | |
9544 | if (!ICS.isStandard()) |
9545 | return; |
9546 | |
9547 | APValue Value; |
9548 | QualType PreNarrowingType; |
9549 | // Reuse C++ narrowing check. |
9550 | switch (ICS.Standard.getNarrowingKind( |
9551 | Context&: S.Context, Converted: Init, ConstantValue&: Value, ConstantType&: PreNarrowingType, |
9552 | /*IgnoreFloatToIntegralConversion*/ false)) { |
9553 | // The value doesn't fit. |
9554 | case NK_Constant_Narrowing: |
9555 | S.Diag(Loc: Init->getBeginLoc(), DiagID: diag::err_c23_constexpr_init_not_representable) |
9556 | << Value.getAsString(Ctx: S.Context, Ty: PreNarrowingType) << ToType; |
9557 | return; |
9558 | |
9559 | // Conversion to a narrower type. |
9560 | case NK_Type_Narrowing: |
9561 | S.Diag(Loc: Init->getBeginLoc(), DiagID: diag::err_c23_constexpr_init_type_mismatch) |
9562 | << ToType << FromType; |
9563 | return; |
9564 | |
9565 | // Since we only reuse narrowing check for C23 constexpr variables here, we're |
9566 | // not really interested in these cases. |
9567 | case NK_Dependent_Narrowing: |
9568 | case NK_Variable_Narrowing: |
9569 | case NK_Not_Narrowing: |
9570 | return; |
9571 | } |
9572 | llvm_unreachable("unhandled case in switch" ); |
9573 | } |
9574 | |
9575 | static void CheckC23ConstexprInitStringLiteral(const StringLiteral *SE, |
9576 | Sema &SemaRef, QualType &TT) { |
9577 | assert(SemaRef.getLangOpts().C23); |
9578 | // character that string literal contains fits into TT - target type. |
9579 | const ArrayType *AT = SemaRef.Context.getAsArrayType(T: TT); |
9580 | QualType CharType = AT->getElementType(); |
9581 | uint32_t BitWidth = SemaRef.Context.getTypeSize(T: CharType); |
9582 | bool isUnsigned = CharType->isUnsignedIntegerType(); |
9583 | llvm::APSInt Value(BitWidth, isUnsigned); |
9584 | for (unsigned I = 0, N = SE->getLength(); I != N; ++I) { |
9585 | int64_t C = SE->getCodeUnitS(I, BitWidth: SemaRef.Context.getCharWidth()); |
9586 | Value = C; |
9587 | if (Value != C) { |
9588 | SemaRef.Diag(Loc: SemaRef.getLocationOfStringLiteralByte(SL: SE, ByteNo: I), |
9589 | DiagID: diag::err_c23_constexpr_init_not_representable) |
9590 | << C << CharType; |
9591 | return; |
9592 | } |
9593 | } |
9594 | return; |
9595 | } |
9596 | |
9597 | //===----------------------------------------------------------------------===// |
9598 | // Initialization helper functions |
9599 | //===----------------------------------------------------------------------===// |
9600 | bool |
9601 | Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, |
9602 | ExprResult Init) { |
9603 | if (Init.isInvalid()) |
9604 | return false; |
9605 | |
9606 | Expr *InitE = Init.get(); |
9607 | assert(InitE && "No initialization expression" ); |
9608 | |
9609 | InitializationKind Kind = |
9610 | InitializationKind::CreateCopy(InitLoc: InitE->getBeginLoc(), EqualLoc: SourceLocation()); |
9611 | InitializationSequence Seq(*this, Entity, Kind, InitE); |
9612 | return !Seq.Failed(); |
9613 | } |
9614 | |
9615 | ExprResult |
9616 | Sema::PerformCopyInitialization(const InitializedEntity &Entity, |
9617 | SourceLocation EqualLoc, |
9618 | ExprResult Init, |
9619 | bool TopLevelOfInitList, |
9620 | bool AllowExplicit) { |
9621 | if (Init.isInvalid()) |
9622 | return ExprError(); |
9623 | |
9624 | Expr *InitE = Init.get(); |
9625 | assert(InitE && "No initialization expression?" ); |
9626 | |
9627 | if (EqualLoc.isInvalid()) |
9628 | EqualLoc = InitE->getBeginLoc(); |
9629 | |
9630 | InitializationKind Kind = InitializationKind::CreateCopy( |
9631 | InitLoc: InitE->getBeginLoc(), EqualLoc, AllowExplicitConvs: AllowExplicit); |
9632 | InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); |
9633 | |
9634 | // Prevent infinite recursion when performing parameter copy-initialization. |
9635 | const bool ShouldTrackCopy = |
9636 | Entity.isParameterKind() && Seq.isConstructorInitialization(); |
9637 | if (ShouldTrackCopy) { |
9638 | if (llvm::is_contained(Range&: CurrentParameterCopyTypes, Element: Entity.getType())) { |
9639 | Seq.SetOverloadFailure( |
9640 | Failure: InitializationSequence::FK_ConstructorOverloadFailed, |
9641 | Result: OR_No_Viable_Function); |
9642 | |
9643 | // Try to give a meaningful diagnostic note for the problematic |
9644 | // constructor. |
9645 | const auto LastStep = Seq.step_end() - 1; |
9646 | assert(LastStep->Kind == |
9647 | InitializationSequence::SK_ConstructorInitialization); |
9648 | const FunctionDecl *Function = LastStep->Function.Function; |
9649 | auto Candidate = |
9650 | llvm::find_if(Range&: Seq.getFailedCandidateSet(), |
9651 | P: [Function](const OverloadCandidate &Candidate) -> bool { |
9652 | return Candidate.Viable && |
9653 | Candidate.Function == Function && |
9654 | Candidate.Conversions.size() > 0; |
9655 | }); |
9656 | if (Candidate != Seq.getFailedCandidateSet().end() && |
9657 | Function->getNumParams() > 0) { |
9658 | Candidate->Viable = false; |
9659 | Candidate->FailureKind = ovl_fail_bad_conversion; |
9660 | Candidate->Conversions[0].setBad(Failure: BadConversionSequence::no_conversion, |
9661 | FromExpr: InitE, |
9662 | ToType: Function->getParamDecl(i: 0)->getType()); |
9663 | } |
9664 | } |
9665 | CurrentParameterCopyTypes.push_back(Elt: Entity.getType()); |
9666 | } |
9667 | |
9668 | ExprResult Result = Seq.Perform(S&: *this, Entity, Kind, Args: InitE); |
9669 | |
9670 | if (ShouldTrackCopy) |
9671 | CurrentParameterCopyTypes.pop_back(); |
9672 | |
9673 | return Result; |
9674 | } |
9675 | |
9676 | /// Determine whether RD is, or is derived from, a specialization of CTD. |
9677 | static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, |
9678 | ClassTemplateDecl *CTD) { |
9679 | auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { |
9680 | auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Val: Candidate); |
9681 | return !CTSD || !declaresSameEntity(D1: CTSD->getSpecializedTemplate(), D2: CTD); |
9682 | }; |
9683 | return !(NotSpecialization(RD) && RD->forallBases(BaseMatches: NotSpecialization)); |
9684 | } |
9685 | |
9686 | QualType Sema::DeduceTemplateSpecializationFromInitializer( |
9687 | TypeSourceInfo *TSInfo, const InitializedEntity &Entity, |
9688 | const InitializationKind &Kind, MultiExprArg Inits) { |
9689 | auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( |
9690 | Val: TSInfo->getType()->getContainedDeducedType()); |
9691 | assert(DeducedTST && "not a deduced template specialization type" ); |
9692 | |
9693 | auto TemplateName = DeducedTST->getTemplateName(); |
9694 | if (TemplateName.isDependent()) |
9695 | return SubstAutoTypeDependent(TypeWithAuto: TSInfo->getType()); |
9696 | |
9697 | // We can only perform deduction for class templates or alias templates. |
9698 | auto *Template = |
9699 | dyn_cast_or_null<ClassTemplateDecl>(Val: TemplateName.getAsTemplateDecl()); |
9700 | TemplateDecl *LookupTemplateDecl = Template; |
9701 | if (!Template) { |
9702 | if (auto *AliasTemplate = dyn_cast_or_null<TypeAliasTemplateDecl>( |
9703 | Val: TemplateName.getAsTemplateDecl())) { |
9704 | Diag(Loc: Kind.getLocation(), |
9705 | DiagID: diag::warn_cxx17_compat_ctad_for_alias_templates); |
9706 | LookupTemplateDecl = AliasTemplate; |
9707 | auto UnderlyingType = AliasTemplate->getTemplatedDecl() |
9708 | ->getUnderlyingType() |
9709 | .getCanonicalType(); |
9710 | // C++ [over.match.class.deduct#3]: ..., the defining-type-id of A must be |
9711 | // of the form |
9712 | // [typename] [nested-name-specifier] [template] simple-template-id |
9713 | if (const auto *TST = |
9714 | UnderlyingType->getAs<TemplateSpecializationType>()) { |
9715 | Template = dyn_cast_or_null<ClassTemplateDecl>( |
9716 | Val: TST->getTemplateName().getAsTemplateDecl()); |
9717 | } else if (const auto *RT = UnderlyingType->getAs<RecordType>()) { |
9718 | // Cases where template arguments in the RHS of the alias are not |
9719 | // dependent. e.g. |
9720 | // using AliasFoo = Foo<bool>; |
9721 | if (const auto *CTSD = llvm::dyn_cast<ClassTemplateSpecializationDecl>( |
9722 | Val: RT->getAsCXXRecordDecl())) |
9723 | Template = CTSD->getSpecializedTemplate(); |
9724 | } |
9725 | } |
9726 | } |
9727 | if (!Template) { |
9728 | Diag(Loc: Kind.getLocation(), |
9729 | DiagID: diag::err_deduced_non_class_or_alias_template_specialization_type) |
9730 | << (int)getTemplateNameKindForDiagnostics(Name: TemplateName) << TemplateName; |
9731 | if (auto *TD = TemplateName.getAsTemplateDecl()) |
9732 | NoteTemplateLocation(Decl: *TD); |
9733 | return QualType(); |
9734 | } |
9735 | |
9736 | // Can't deduce from dependent arguments. |
9737 | if (Expr::hasAnyTypeDependentArguments(Exprs: Inits)) { |
9738 | Diag(Loc: TSInfo->getTypeLoc().getBeginLoc(), |
9739 | DiagID: diag::warn_cxx14_compat_class_template_argument_deduction) |
9740 | << TSInfo->getTypeLoc().getSourceRange() << 0; |
9741 | return SubstAutoTypeDependent(TypeWithAuto: TSInfo->getType()); |
9742 | } |
9743 | |
9744 | // FIXME: Perform "exact type" matching first, per CWG discussion? |
9745 | // Or implement this via an implied 'T(T) -> T' deduction guide? |
9746 | |
9747 | // Look up deduction guides, including those synthesized from constructors. |
9748 | // |
9749 | // C++1z [over.match.class.deduct]p1: |
9750 | // A set of functions and function templates is formed comprising: |
9751 | // - For each constructor of the class template designated by the |
9752 | // template-name, a function template [...] |
9753 | // - For each deduction-guide, a function or function template [...] |
9754 | DeclarationNameInfo NameInfo( |
9755 | Context.DeclarationNames.getCXXDeductionGuideName(TD: LookupTemplateDecl), |
9756 | TSInfo->getTypeLoc().getEndLoc()); |
9757 | LookupResult Guides(*this, NameInfo, LookupOrdinaryName); |
9758 | LookupQualifiedName(R&: Guides, LookupCtx: LookupTemplateDecl->getDeclContext()); |
9759 | |
9760 | // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't |
9761 | // clear on this, but they're not found by name so access does not apply. |
9762 | Guides.suppressDiagnostics(); |
9763 | |
9764 | // Figure out if this is list-initialization. |
9765 | InitListExpr *ListInit = |
9766 | (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) |
9767 | ? dyn_cast<InitListExpr>(Val: Inits[0]) |
9768 | : nullptr; |
9769 | |
9770 | // C++1z [over.match.class.deduct]p1: |
9771 | // Initialization and overload resolution are performed as described in |
9772 | // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] |
9773 | // (as appropriate for the type of initialization performed) for an object |
9774 | // of a hypothetical class type, where the selected functions and function |
9775 | // templates are considered to be the constructors of that class type |
9776 | // |
9777 | // Since we know we're initializing a class type of a type unrelated to that |
9778 | // of the initializer, this reduces to something fairly reasonable. |
9779 | OverloadCandidateSet Candidates(Kind.getLocation(), |
9780 | OverloadCandidateSet::CSK_Normal); |
9781 | OverloadCandidateSet::iterator Best; |
9782 | |
9783 | bool AllowExplicit = !Kind.isCopyInit() || ListInit; |
9784 | |
9785 | // Return true if the candidate is added successfully, false otherwise. |
9786 | auto addDeductionCandidate = [&](FunctionTemplateDecl *TD, |
9787 | CXXDeductionGuideDecl *GD, |
9788 | DeclAccessPair FoundDecl, |
9789 | bool OnlyListConstructors, |
9790 | bool AllowAggregateDeductionCandidate) { |
9791 | // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) |
9792 | // For copy-initialization, the candidate functions are all the |
9793 | // converting constructors (12.3.1) of that class. |
9794 | // C++ [over.match.copy]p1: (non-list copy-initialization from class) |
9795 | // The converting constructors of T are candidate functions. |
9796 | if (!AllowExplicit) { |
9797 | // Overload resolution checks whether the deduction guide is declared |
9798 | // explicit for us. |
9799 | |
9800 | // When looking for a converting constructor, deduction guides that |
9801 | // could never be called with one argument are not interesting to |
9802 | // check or note. |
9803 | if (GD->getMinRequiredArguments() > 1 || |
9804 | (GD->getNumParams() == 0 && !GD->isVariadic())) |
9805 | return; |
9806 | } |
9807 | |
9808 | // C++ [over.match.list]p1.1: (first phase list initialization) |
9809 | // Initially, the candidate functions are the initializer-list |
9810 | // constructors of the class T |
9811 | if (OnlyListConstructors && !isInitListConstructor(Ctor: GD)) |
9812 | return; |
9813 | |
9814 | if (!AllowAggregateDeductionCandidate && |
9815 | GD->getDeductionCandidateKind() == DeductionCandidate::Aggregate) |
9816 | return; |
9817 | |
9818 | // C++ [over.match.list]p1.2: (second phase list initialization) |
9819 | // the candidate functions are all the constructors of the class T |
9820 | // C++ [over.match.ctor]p1: (all other cases) |
9821 | // the candidate functions are all the constructors of the class of |
9822 | // the object being initialized |
9823 | |
9824 | // C++ [over.best.ics]p4: |
9825 | // When [...] the constructor [...] is a candidate by |
9826 | // - [over.match.copy] (in all cases) |
9827 | if (TD) { |
9828 | SmallVector<Expr *, 8> TmpInits; |
9829 | for (Expr *E : Inits) |
9830 | if (auto *DI = dyn_cast<DesignatedInitExpr>(Val: E)) |
9831 | TmpInits.push_back(Elt: DI->getInit()); |
9832 | else |
9833 | TmpInits.push_back(Elt: E); |
9834 | AddTemplateOverloadCandidate( |
9835 | FunctionTemplate: TD, FoundDecl, /*ExplicitArgs=*/ExplicitTemplateArgs: nullptr, Args: TmpInits, CandidateSet&: Candidates, |
9836 | /*SuppressUserConversions=*/false, |
9837 | /*PartialOverloading=*/false, AllowExplicit, IsADLCandidate: ADLCallKind::NotADL, |
9838 | /*PO=*/{}, AggregateCandidateDeduction: AllowAggregateDeductionCandidate); |
9839 | } else { |
9840 | AddOverloadCandidate(Function: GD, FoundDecl, Args: Inits, CandidateSet&: Candidates, |
9841 | /*SuppressUserConversions=*/false, |
9842 | /*PartialOverloading=*/false, AllowExplicit); |
9843 | } |
9844 | }; |
9845 | |
9846 | bool FoundDeductionGuide = false; |
9847 | |
9848 | auto TryToResolveOverload = |
9849 | [&](bool OnlyListConstructors) -> OverloadingResult { |
9850 | Candidates.clear(CSK: OverloadCandidateSet::CSK_Normal); |
9851 | bool HasAnyDeductionGuide = false; |
9852 | |
9853 | auto SynthesizeAggrGuide = [&](InitListExpr *ListInit) { |
9854 | auto *Pattern = Template; |
9855 | while (Pattern->getInstantiatedFromMemberTemplate()) { |
9856 | if (Pattern->isMemberSpecialization()) |
9857 | break; |
9858 | Pattern = Pattern->getInstantiatedFromMemberTemplate(); |
9859 | } |
9860 | |
9861 | auto *RD = cast<CXXRecordDecl>(Val: Pattern->getTemplatedDecl()); |
9862 | if (!(RD->getDefinition() && RD->isAggregate())) |
9863 | return; |
9864 | QualType Ty = Context.getRecordType(Decl: RD); |
9865 | SmallVector<QualType, 8> ElementTypes; |
9866 | |
9867 | InitListChecker CheckInitList(*this, Entity, ListInit, Ty, ElementTypes); |
9868 | if (!CheckInitList.HadError()) { |
9869 | // C++ [over.match.class.deduct]p1.8: |
9870 | // if e_i is of array type and x_i is a braced-init-list, T_i is an |
9871 | // rvalue reference to the declared type of e_i and |
9872 | // C++ [over.match.class.deduct]p1.9: |
9873 | // if e_i is of array type and x_i is a string-literal, T_i is an |
9874 | // lvalue reference to the const-qualified declared type of e_i and |
9875 | // C++ [over.match.class.deduct]p1.10: |
9876 | // otherwise, T_i is the declared type of e_i |
9877 | for (int I = 0, E = ListInit->getNumInits(); |
9878 | I < E && !isa<PackExpansionType>(Val: ElementTypes[I]); ++I) |
9879 | if (ElementTypes[I]->isArrayType()) { |
9880 | if (isa<InitListExpr, DesignatedInitExpr>(Val: ListInit->getInit(Init: I))) |
9881 | ElementTypes[I] = Context.getRValueReferenceType(T: ElementTypes[I]); |
9882 | else if (isa<StringLiteral>( |
9883 | Val: ListInit->getInit(Init: I)->IgnoreParenImpCasts())) |
9884 | ElementTypes[I] = |
9885 | Context.getLValueReferenceType(T: ElementTypes[I].withConst()); |
9886 | } |
9887 | |
9888 | if (FunctionTemplateDecl *TD = |
9889 | DeclareAggregateDeductionGuideFromInitList( |
9890 | Template: LookupTemplateDecl, ParamTypes: ElementTypes, |
9891 | Loc: TSInfo->getTypeLoc().getEndLoc())) { |
9892 | auto *GD = cast<CXXDeductionGuideDecl>(Val: TD->getTemplatedDecl()); |
9893 | addDeductionCandidate(TD, GD, DeclAccessPair::make(D: TD, AS: AS_public), |
9894 | OnlyListConstructors, |
9895 | /*AllowAggregateDeductionCandidate=*/true); |
9896 | HasAnyDeductionGuide = true; |
9897 | } |
9898 | } |
9899 | }; |
9900 | |
9901 | for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { |
9902 | NamedDecl *D = (*I)->getUnderlyingDecl(); |
9903 | if (D->isInvalidDecl()) |
9904 | continue; |
9905 | |
9906 | auto *TD = dyn_cast<FunctionTemplateDecl>(Val: D); |
9907 | auto *GD = dyn_cast_if_present<CXXDeductionGuideDecl>( |
9908 | Val: TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(Val: D)); |
9909 | if (!GD) |
9910 | continue; |
9911 | |
9912 | if (!GD->isImplicit()) |
9913 | HasAnyDeductionGuide = true; |
9914 | |
9915 | addDeductionCandidate(TD, GD, I.getPair(), OnlyListConstructors, |
9916 | /*AllowAggregateDeductionCandidate=*/false); |
9917 | } |
9918 | |
9919 | // C++ [over.match.class.deduct]p1.4: |
9920 | // if C is defined and its definition satisfies the conditions for an |
9921 | // aggregate class ([dcl.init.aggr]) with the assumption that any |
9922 | // dependent base class has no virtual functions and no virtual base |
9923 | // classes, and the initializer is a non-empty braced-init-list or |
9924 | // parenthesized expression-list, and there are no deduction-guides for |
9925 | // C, the set contains an additional function template, called the |
9926 | // aggregate deduction candidate, defined as follows. |
9927 | if (getLangOpts().CPlusPlus20 && !HasAnyDeductionGuide) { |
9928 | if (ListInit && ListInit->getNumInits()) { |
9929 | SynthesizeAggrGuide(ListInit); |
9930 | } else if (Inits.size()) { // parenthesized expression-list |
9931 | // Inits are expressions inside the parentheses. We don't have |
9932 | // the parentheses source locations, use the begin/end of Inits as the |
9933 | // best heuristic. |
9934 | InitListExpr TempListInit(getASTContext(), Inits.front()->getBeginLoc(), |
9935 | Inits, Inits.back()->getEndLoc()); |
9936 | SynthesizeAggrGuide(&TempListInit); |
9937 | } |
9938 | } |
9939 | |
9940 | FoundDeductionGuide = FoundDeductionGuide || HasAnyDeductionGuide; |
9941 | |
9942 | return Candidates.BestViableFunction(S&: *this, Loc: Kind.getLocation(), Best); |
9943 | }; |
9944 | |
9945 | OverloadingResult Result = OR_No_Viable_Function; |
9946 | |
9947 | // C++11 [over.match.list]p1, per DR1467: for list-initialization, first |
9948 | // try initializer-list constructors. |
9949 | if (ListInit) { |
9950 | bool TryListConstructors = true; |
9951 | |
9952 | // Try list constructors unless the list is empty and the class has one or |
9953 | // more default constructors, in which case those constructors win. |
9954 | if (!ListInit->getNumInits()) { |
9955 | for (NamedDecl *D : Guides) { |
9956 | auto *FD = dyn_cast<FunctionDecl>(Val: D->getUnderlyingDecl()); |
9957 | if (FD && FD->getMinRequiredArguments() == 0) { |
9958 | TryListConstructors = false; |
9959 | break; |
9960 | } |
9961 | } |
9962 | } else if (ListInit->getNumInits() == 1) { |
9963 | // C++ [over.match.class.deduct]: |
9964 | // As an exception, the first phase in [over.match.list] (considering |
9965 | // initializer-list constructors) is omitted if the initializer list |
9966 | // consists of a single expression of type cv U, where U is a |
9967 | // specialization of C or a class derived from a specialization of C. |
9968 | Expr *E = ListInit->getInit(Init: 0); |
9969 | auto *RD = E->getType()->getAsCXXRecordDecl(); |
9970 | if (!isa<InitListExpr>(Val: E) && RD && |
9971 | isCompleteType(Loc: Kind.getLocation(), T: E->getType()) && |
9972 | isOrIsDerivedFromSpecializationOf(RD, CTD: Template)) |
9973 | TryListConstructors = false; |
9974 | } |
9975 | |
9976 | if (TryListConstructors) |
9977 | Result = TryToResolveOverload(/*OnlyListConstructor*/true); |
9978 | // Then unwrap the initializer list and try again considering all |
9979 | // constructors. |
9980 | Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); |
9981 | } |
9982 | |
9983 | // If list-initialization fails, or if we're doing any other kind of |
9984 | // initialization, we (eventually) consider constructors. |
9985 | if (Result == OR_No_Viable_Function) |
9986 | Result = TryToResolveOverload(/*OnlyListConstructor*/false); |
9987 | |
9988 | switch (Result) { |
9989 | case OR_Ambiguous: |
9990 | // FIXME: For list-initialization candidates, it'd usually be better to |
9991 | // list why they were not viable when given the initializer list itself as |
9992 | // an argument. |
9993 | Candidates.NoteCandidates( |
9994 | PA: PartialDiagnosticAt( |
9995 | Kind.getLocation(), |
9996 | PDiag(DiagID: diag::err_deduced_class_template_ctor_ambiguous) |
9997 | << TemplateName), |
9998 | S&: *this, OCD: OCD_AmbiguousCandidates, Args: Inits); |
9999 | return QualType(); |
10000 | |
10001 | case OR_No_Viable_Function: { |
10002 | CXXRecordDecl *Primary = |
10003 | cast<ClassTemplateDecl>(Val: Template)->getTemplatedDecl(); |
10004 | bool Complete = |
10005 | isCompleteType(Loc: Kind.getLocation(), T: Context.getTypeDeclType(Decl: Primary)); |
10006 | Candidates.NoteCandidates( |
10007 | PA: PartialDiagnosticAt( |
10008 | Kind.getLocation(), |
10009 | PDiag(DiagID: Complete ? diag::err_deduced_class_template_ctor_no_viable |
10010 | : diag::err_deduced_class_template_incomplete) |
10011 | << TemplateName << !Guides.empty()), |
10012 | S&: *this, OCD: OCD_AllCandidates, Args: Inits); |
10013 | return QualType(); |
10014 | } |
10015 | |
10016 | case OR_Deleted: { |
10017 | // FIXME: There are no tests for this diagnostic, and it doesn't seem |
10018 | // like we ever get here; attempts to trigger this seem to yield a |
10019 | // generic c'all to deleted function' diagnostic instead. |
10020 | Diag(Loc: Kind.getLocation(), DiagID: diag::err_deduced_class_template_deleted) |
10021 | << TemplateName; |
10022 | NoteDeletedFunction(FD: Best->Function); |
10023 | return QualType(); |
10024 | } |
10025 | |
10026 | case OR_Success: |
10027 | // C++ [over.match.list]p1: |
10028 | // In copy-list-initialization, if an explicit constructor is chosen, the |
10029 | // initialization is ill-formed. |
10030 | if (Kind.isCopyInit() && ListInit && |
10031 | cast<CXXDeductionGuideDecl>(Val: Best->Function)->isExplicit()) { |
10032 | bool IsDeductionGuide = !Best->Function->isImplicit(); |
10033 | Diag(Loc: Kind.getLocation(), DiagID: diag::err_deduced_class_template_explicit) |
10034 | << TemplateName << IsDeductionGuide; |
10035 | Diag(Loc: Best->Function->getLocation(), |
10036 | DiagID: diag::note_explicit_ctor_deduction_guide_here) |
10037 | << IsDeductionGuide; |
10038 | return QualType(); |
10039 | } |
10040 | |
10041 | // Make sure we didn't select an unusable deduction guide, and mark it |
10042 | // as referenced. |
10043 | DiagnoseUseOfDecl(D: Best->FoundDecl, Locs: Kind.getLocation()); |
10044 | MarkFunctionReferenced(Loc: Kind.getLocation(), Func: Best->Function); |
10045 | break; |
10046 | } |
10047 | |
10048 | // C++ [dcl.type.class.deduct]p1: |
10049 | // The placeholder is replaced by the return type of the function selected |
10050 | // by overload resolution for class template deduction. |
10051 | QualType DeducedType = |
10052 | SubstAutoType(TypeWithAuto: TSInfo->getType(), Replacement: Best->Function->getReturnType()); |
10053 | Diag(Loc: TSInfo->getTypeLoc().getBeginLoc(), |
10054 | DiagID: diag::warn_cxx14_compat_class_template_argument_deduction) |
10055 | << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; |
10056 | |
10057 | // Warn if CTAD was used on a type that does not have any user-defined |
10058 | // deduction guides. |
10059 | if (!FoundDeductionGuide) { |
10060 | Diag(Loc: TSInfo->getTypeLoc().getBeginLoc(), |
10061 | DiagID: diag::warn_ctad_maybe_unsupported) |
10062 | << TemplateName; |
10063 | Diag(Loc: Template->getLocation(), DiagID: diag::note_suppress_ctad_maybe_unsupported); |
10064 | } |
10065 | |
10066 | return DeducedType; |
10067 | } |
10068 | |