1 | //===--------------------- SemaLookup.cpp - Name Lookup ------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements name lookup for C, C++, Objective-C, and |
10 | // Objective-C++. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "clang/AST/ASTContext.h" |
15 | #include "clang/AST/CXXInheritance.h" |
16 | #include "clang/AST/Decl.h" |
17 | #include "clang/AST/DeclCXX.h" |
18 | #include "clang/AST/DeclLookups.h" |
19 | #include "clang/AST/DeclObjC.h" |
20 | #include "clang/AST/DeclTemplate.h" |
21 | #include "clang/AST/Expr.h" |
22 | #include "clang/AST/ExprCXX.h" |
23 | #include "clang/Basic/Builtins.h" |
24 | #include "clang/Basic/FileManager.h" |
25 | #include "clang/Basic/LangOptions.h" |
26 | #include "clang/Lex/HeaderSearch.h" |
27 | #include "clang/Lex/ModuleLoader.h" |
28 | #include "clang/Lex/Preprocessor.h" |
29 | #include "clang/Sema/DeclSpec.h" |
30 | #include "clang/Sema/Lookup.h" |
31 | #include "clang/Sema/Overload.h" |
32 | #include "clang/Sema/RISCVIntrinsicManager.h" |
33 | #include "clang/Sema/Scope.h" |
34 | #include "clang/Sema/ScopeInfo.h" |
35 | #include "clang/Sema/Sema.h" |
36 | #include "clang/Sema/SemaInternal.h" |
37 | #include "clang/Sema/SemaRISCV.h" |
38 | #include "clang/Sema/TemplateDeduction.h" |
39 | #include "clang/Sema/TypoCorrection.h" |
40 | #include "llvm/ADT/STLExtras.h" |
41 | #include "llvm/ADT/STLForwardCompat.h" |
42 | #include "llvm/ADT/SmallPtrSet.h" |
43 | #include "llvm/ADT/TinyPtrVector.h" |
44 | #include "llvm/ADT/edit_distance.h" |
45 | #include "llvm/Support/Casting.h" |
46 | #include "llvm/Support/ErrorHandling.h" |
47 | #include <algorithm> |
48 | #include <iterator> |
49 | #include <list> |
50 | #include <optional> |
51 | #include <set> |
52 | #include <utility> |
53 | #include <vector> |
54 | |
55 | #include "OpenCLBuiltins.inc" |
56 | |
57 | using namespace clang; |
58 | using namespace sema; |
59 | |
60 | namespace { |
61 | class UnqualUsingEntry { |
62 | const DeclContext *Nominated; |
63 | const DeclContext *CommonAncestor; |
64 | |
65 | public: |
66 | UnqualUsingEntry(const DeclContext *Nominated, |
67 | const DeclContext *CommonAncestor) |
68 | : Nominated(Nominated), CommonAncestor(CommonAncestor) { |
69 | } |
70 | |
71 | const DeclContext *getCommonAncestor() const { |
72 | return CommonAncestor; |
73 | } |
74 | |
75 | const DeclContext *getNominatedNamespace() const { |
76 | return Nominated; |
77 | } |
78 | |
79 | // Sort by the pointer value of the common ancestor. |
80 | struct Comparator { |
81 | bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { |
82 | return L.getCommonAncestor() < R.getCommonAncestor(); |
83 | } |
84 | |
85 | bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { |
86 | return E.getCommonAncestor() < DC; |
87 | } |
88 | |
89 | bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { |
90 | return DC < E.getCommonAncestor(); |
91 | } |
92 | }; |
93 | }; |
94 | |
95 | /// A collection of using directives, as used by C++ unqualified |
96 | /// lookup. |
97 | class UnqualUsingDirectiveSet { |
98 | Sema &SemaRef; |
99 | |
100 | typedef SmallVector<UnqualUsingEntry, 8> ListTy; |
101 | |
102 | ListTy list; |
103 | llvm::SmallPtrSet<DeclContext*, 8> visited; |
104 | |
105 | public: |
106 | UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {} |
107 | |
108 | void visitScopeChain(Scope *S, Scope *InnermostFileScope) { |
109 | // C++ [namespace.udir]p1: |
110 | // During unqualified name lookup, the names appear as if they |
111 | // were declared in the nearest enclosing namespace which contains |
112 | // both the using-directive and the nominated namespace. |
113 | DeclContext *InnermostFileDC = InnermostFileScope->getEntity(); |
114 | assert(InnermostFileDC && InnermostFileDC->isFileContext()); |
115 | |
116 | for (; S; S = S->getParent()) { |
117 | // C++ [namespace.udir]p1: |
118 | // A using-directive shall not appear in class scope, but may |
119 | // appear in namespace scope or in block scope. |
120 | DeclContext *Ctx = S->getEntity(); |
121 | if (Ctx && Ctx->isFileContext()) { |
122 | visit(DC: Ctx, EffectiveDC: Ctx); |
123 | } else if (!Ctx || Ctx->isFunctionOrMethod()) { |
124 | for (auto *I : S->using_directives()) |
125 | if (SemaRef.isVisible(D: I)) |
126 | visit(UD: I, EffectiveDC: InnermostFileDC); |
127 | } |
128 | } |
129 | } |
130 | |
131 | // Visits a context and collect all of its using directives |
132 | // recursively. Treats all using directives as if they were |
133 | // declared in the context. |
134 | // |
135 | // A given context is only every visited once, so it is important |
136 | // that contexts be visited from the inside out in order to get |
137 | // the effective DCs right. |
138 | void visit(DeclContext *DC, DeclContext *EffectiveDC) { |
139 | if (!visited.insert(Ptr: DC).second) |
140 | return; |
141 | |
142 | addUsingDirectives(DC, EffectiveDC); |
143 | } |
144 | |
145 | // Visits a using directive and collects all of its using |
146 | // directives recursively. Treats all using directives as if they |
147 | // were declared in the effective DC. |
148 | void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { |
149 | DeclContext *NS = UD->getNominatedNamespace(); |
150 | if (!visited.insert(Ptr: NS).second) |
151 | return; |
152 | |
153 | addUsingDirective(UD, EffectiveDC); |
154 | addUsingDirectives(DC: NS, EffectiveDC); |
155 | } |
156 | |
157 | // Adds all the using directives in a context (and those nominated |
158 | // by its using directives, transitively) as if they appeared in |
159 | // the given effective context. |
160 | void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { |
161 | SmallVector<DeclContext*, 4> queue; |
162 | while (true) { |
163 | for (auto *UD : DC->using_directives()) { |
164 | DeclContext *NS = UD->getNominatedNamespace(); |
165 | if (SemaRef.isVisible(D: UD) && visited.insert(Ptr: NS).second) { |
166 | addUsingDirective(UD, EffectiveDC); |
167 | queue.push_back(Elt: NS); |
168 | } |
169 | } |
170 | |
171 | if (queue.empty()) |
172 | return; |
173 | |
174 | DC = queue.pop_back_val(); |
175 | } |
176 | } |
177 | |
178 | // Add a using directive as if it had been declared in the given |
179 | // context. This helps implement C++ [namespace.udir]p3: |
180 | // The using-directive is transitive: if a scope contains a |
181 | // using-directive that nominates a second namespace that itself |
182 | // contains using-directives, the effect is as if the |
183 | // using-directives from the second namespace also appeared in |
184 | // the first. |
185 | void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { |
186 | // Find the common ancestor between the effective context and |
187 | // the nominated namespace. |
188 | DeclContext *Common = UD->getNominatedNamespace(); |
189 | while (!Common->Encloses(DC: EffectiveDC)) |
190 | Common = Common->getParent(); |
191 | Common = Common->getPrimaryContext(); |
192 | |
193 | list.push_back(Elt: UnqualUsingEntry(UD->getNominatedNamespace(), Common)); |
194 | } |
195 | |
196 | void done() { llvm::sort(C&: list, Comp: UnqualUsingEntry::Comparator()); } |
197 | |
198 | typedef ListTy::const_iterator const_iterator; |
199 | |
200 | const_iterator begin() const { return list.begin(); } |
201 | const_iterator end() const { return list.end(); } |
202 | |
203 | llvm::iterator_range<const_iterator> |
204 | getNamespacesFor(const DeclContext *DC) const { |
205 | return llvm::make_range(p: std::equal_range(first: begin(), last: end(), |
206 | val: DC->getPrimaryContext(), |
207 | comp: UnqualUsingEntry::Comparator())); |
208 | } |
209 | }; |
210 | } // end anonymous namespace |
211 | |
212 | // Retrieve the set of identifier namespaces that correspond to a |
213 | // specific kind of name lookup. |
214 | static inline unsigned getIDNS(Sema::LookupNameKind NameKind, |
215 | bool CPlusPlus, |
216 | bool Redeclaration) { |
217 | unsigned IDNS = 0; |
218 | switch (NameKind) { |
219 | case Sema::LookupObjCImplicitSelfParam: |
220 | case Sema::LookupOrdinaryName: |
221 | case Sema::LookupRedeclarationWithLinkage: |
222 | case Sema::LookupLocalFriendName: |
223 | case Sema::LookupDestructorName: |
224 | IDNS = Decl::IDNS_Ordinary; |
225 | if (CPlusPlus) { |
226 | IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace; |
227 | if (Redeclaration) |
228 | IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend; |
229 | } |
230 | if (Redeclaration) |
231 | IDNS |= Decl::IDNS_LocalExtern; |
232 | break; |
233 | |
234 | case Sema::LookupOperatorName: |
235 | // Operator lookup is its own crazy thing; it is not the same |
236 | // as (e.g.) looking up an operator name for redeclaration. |
237 | assert(!Redeclaration && "cannot do redeclaration operator lookup" ); |
238 | IDNS = Decl::IDNS_NonMemberOperator; |
239 | break; |
240 | |
241 | case Sema::LookupTagName: |
242 | if (CPlusPlus) { |
243 | IDNS = Decl::IDNS_Type; |
244 | |
245 | // When looking for a redeclaration of a tag name, we add: |
246 | // 1) TagFriend to find undeclared friend decls |
247 | // 2) Namespace because they can't "overload" with tag decls. |
248 | // 3) Tag because it includes class templates, which can't |
249 | // "overload" with tag decls. |
250 | if (Redeclaration) |
251 | IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace; |
252 | } else { |
253 | IDNS = Decl::IDNS_Tag; |
254 | } |
255 | break; |
256 | |
257 | case Sema::LookupLabel: |
258 | IDNS = Decl::IDNS_Label; |
259 | break; |
260 | |
261 | case Sema::LookupMemberName: |
262 | IDNS = Decl::IDNS_Member; |
263 | if (CPlusPlus) |
264 | IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; |
265 | break; |
266 | |
267 | case Sema::LookupNestedNameSpecifierName: |
268 | IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace; |
269 | break; |
270 | |
271 | case Sema::LookupNamespaceName: |
272 | IDNS = Decl::IDNS_Namespace; |
273 | break; |
274 | |
275 | case Sema::LookupUsingDeclName: |
276 | assert(Redeclaration && "should only be used for redecl lookup" ); |
277 | IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | |
278 | Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend | |
279 | Decl::IDNS_LocalExtern; |
280 | break; |
281 | |
282 | case Sema::LookupObjCProtocolName: |
283 | IDNS = Decl::IDNS_ObjCProtocol; |
284 | break; |
285 | |
286 | case Sema::LookupOMPReductionName: |
287 | IDNS = Decl::IDNS_OMPReduction; |
288 | break; |
289 | |
290 | case Sema::LookupOMPMapperName: |
291 | IDNS = Decl::IDNS_OMPMapper; |
292 | break; |
293 | |
294 | case Sema::LookupAnyName: |
295 | IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
296 | | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol |
297 | | Decl::IDNS_Type; |
298 | break; |
299 | } |
300 | return IDNS; |
301 | } |
302 | |
303 | void LookupResult::configure() { |
304 | IDNS = getIDNS(NameKind: LookupKind, CPlusPlus: getSema().getLangOpts().CPlusPlus, |
305 | Redeclaration: isForRedeclaration()); |
306 | |
307 | // If we're looking for one of the allocation or deallocation |
308 | // operators, make sure that the implicitly-declared new and delete |
309 | // operators can be found. |
310 | switch (NameInfo.getName().getCXXOverloadedOperator()) { |
311 | case OO_New: |
312 | case OO_Delete: |
313 | case OO_Array_New: |
314 | case OO_Array_Delete: |
315 | getSema().DeclareGlobalNewDelete(); |
316 | break; |
317 | |
318 | default: |
319 | break; |
320 | } |
321 | |
322 | // Compiler builtins are always visible, regardless of where they end |
323 | // up being declared. |
324 | if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) { |
325 | if (unsigned BuiltinID = Id->getBuiltinID()) { |
326 | if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(ID: BuiltinID)) |
327 | AllowHidden = true; |
328 | } |
329 | } |
330 | } |
331 | |
332 | bool LookupResult::checkDebugAssumptions() const { |
333 | // This function is never called by NDEBUG builds. |
334 | assert(ResultKind != NotFound || Decls.size() == 0); |
335 | assert(ResultKind != Found || Decls.size() == 1); |
336 | assert(ResultKind != FoundOverloaded || Decls.size() > 1 || |
337 | (Decls.size() == 1 && |
338 | isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))); |
339 | assert(ResultKind != FoundUnresolvedValue || checkUnresolved()); |
340 | assert(ResultKind != Ambiguous || Decls.size() > 1 || |
341 | (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || |
342 | Ambiguity == AmbiguousBaseSubobjectTypes))); |
343 | assert((Paths != nullptr) == (ResultKind == Ambiguous && |
344 | (Ambiguity == AmbiguousBaseSubobjectTypes || |
345 | Ambiguity == AmbiguousBaseSubobjects))); |
346 | return true; |
347 | } |
348 | |
349 | // Necessary because CXXBasePaths is not complete in Sema.h |
350 | void LookupResult::deletePaths(CXXBasePaths *Paths) { |
351 | delete Paths; |
352 | } |
353 | |
354 | /// Get a representative context for a declaration such that two declarations |
355 | /// will have the same context if they were found within the same scope. |
356 | static const DeclContext *getContextForScopeMatching(const Decl *D) { |
357 | // For function-local declarations, use that function as the context. This |
358 | // doesn't account for scopes within the function; the caller must deal with |
359 | // those. |
360 | if (const DeclContext *DC = D->getLexicalDeclContext(); |
361 | DC->isFunctionOrMethod()) |
362 | return DC; |
363 | |
364 | // Otherwise, look at the semantic context of the declaration. The |
365 | // declaration must have been found there. |
366 | return D->getDeclContext()->getRedeclContext(); |
367 | } |
368 | |
369 | /// Determine whether \p D is a better lookup result than \p Existing, |
370 | /// given that they declare the same entity. |
371 | static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind, |
372 | const NamedDecl *D, |
373 | const NamedDecl *Existing) { |
374 | // When looking up redeclarations of a using declaration, prefer a using |
375 | // shadow declaration over any other declaration of the same entity. |
376 | if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(Val: D) && |
377 | !isa<UsingShadowDecl>(Val: Existing)) |
378 | return true; |
379 | |
380 | const auto *DUnderlying = D->getUnderlyingDecl(); |
381 | const auto *EUnderlying = Existing->getUnderlyingDecl(); |
382 | |
383 | // If they have different underlying declarations, prefer a typedef over the |
384 | // original type (this happens when two type declarations denote the same |
385 | // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef |
386 | // might carry additional semantic information, such as an alignment override. |
387 | // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag |
388 | // declaration over a typedef. Also prefer a tag over a typedef for |
389 | // destructor name lookup because in some contexts we only accept a |
390 | // class-name in a destructor declaration. |
391 | if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) { |
392 | assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)); |
393 | bool HaveTag = isa<TagDecl>(Val: EUnderlying); |
394 | bool WantTag = |
395 | Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName; |
396 | return HaveTag != WantTag; |
397 | } |
398 | |
399 | // Pick the function with more default arguments. |
400 | // FIXME: In the presence of ambiguous default arguments, we should keep both, |
401 | // so we can diagnose the ambiguity if the default argument is needed. |
402 | // See C++ [over.match.best]p3. |
403 | if (const auto *DFD = dyn_cast<FunctionDecl>(Val: DUnderlying)) { |
404 | const auto *EFD = cast<FunctionDecl>(Val: EUnderlying); |
405 | unsigned DMin = DFD->getMinRequiredArguments(); |
406 | unsigned EMin = EFD->getMinRequiredArguments(); |
407 | // If D has more default arguments, it is preferred. |
408 | if (DMin != EMin) |
409 | return DMin < EMin; |
410 | // FIXME: When we track visibility for default function arguments, check |
411 | // that we pick the declaration with more visible default arguments. |
412 | } |
413 | |
414 | // Pick the template with more default template arguments. |
415 | if (const auto *DTD = dyn_cast<TemplateDecl>(Val: DUnderlying)) { |
416 | const auto *ETD = cast<TemplateDecl>(Val: EUnderlying); |
417 | unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments(); |
418 | unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments(); |
419 | // If D has more default arguments, it is preferred. Note that default |
420 | // arguments (and their visibility) is monotonically increasing across the |
421 | // redeclaration chain, so this is a quick proxy for "is more recent". |
422 | if (DMin != EMin) |
423 | return DMin < EMin; |
424 | // If D has more *visible* default arguments, it is preferred. Note, an |
425 | // earlier default argument being visible does not imply that a later |
426 | // default argument is visible, so we can't just check the first one. |
427 | for (unsigned I = DMin, N = DTD->getTemplateParameters()->size(); |
428 | I != N; ++I) { |
429 | if (!S.hasVisibleDefaultArgument( |
430 | D: ETD->getTemplateParameters()->getParam(Idx: I)) && |
431 | S.hasVisibleDefaultArgument( |
432 | D: DTD->getTemplateParameters()->getParam(Idx: I))) |
433 | return true; |
434 | } |
435 | } |
436 | |
437 | // VarDecl can have incomplete array types, prefer the one with more complete |
438 | // array type. |
439 | if (const auto *DVD = dyn_cast<VarDecl>(Val: DUnderlying)) { |
440 | const auto *EVD = cast<VarDecl>(Val: EUnderlying); |
441 | if (EVD->getType()->isIncompleteType() && |
442 | !DVD->getType()->isIncompleteType()) { |
443 | // Prefer the decl with a more complete type if visible. |
444 | return S.isVisible(D: DVD); |
445 | } |
446 | return false; // Avoid picking up a newer decl, just because it was newer. |
447 | } |
448 | |
449 | // For most kinds of declaration, it doesn't really matter which one we pick. |
450 | if (!isa<FunctionDecl>(Val: DUnderlying) && !isa<VarDecl>(Val: DUnderlying)) { |
451 | // If the existing declaration is hidden, prefer the new one. Otherwise, |
452 | // keep what we've got. |
453 | return !S.isVisible(D: Existing); |
454 | } |
455 | |
456 | // Pick the newer declaration; it might have a more precise type. |
457 | for (const Decl *Prev = DUnderlying->getPreviousDecl(); Prev; |
458 | Prev = Prev->getPreviousDecl()) |
459 | if (Prev == EUnderlying) |
460 | return true; |
461 | return false; |
462 | } |
463 | |
464 | /// Determine whether \p D can hide a tag declaration. |
465 | static bool canHideTag(const NamedDecl *D) { |
466 | // C++ [basic.scope.declarative]p4: |
467 | // Given a set of declarations in a single declarative region [...] |
468 | // exactly one declaration shall declare a class name or enumeration name |
469 | // that is not a typedef name and the other declarations shall all refer to |
470 | // the same variable, non-static data member, or enumerator, or all refer |
471 | // to functions and function templates; in this case the class name or |
472 | // enumeration name is hidden. |
473 | // C++ [basic.scope.hiding]p2: |
474 | // A class name or enumeration name can be hidden by the name of a |
475 | // variable, data member, function, or enumerator declared in the same |
476 | // scope. |
477 | // An UnresolvedUsingValueDecl always instantiates to one of these. |
478 | D = D->getUnderlyingDecl(); |
479 | return isa<VarDecl>(Val: D) || isa<EnumConstantDecl>(Val: D) || isa<FunctionDecl>(Val: D) || |
480 | isa<FunctionTemplateDecl>(Val: D) || isa<FieldDecl>(Val: D) || |
481 | isa<UnresolvedUsingValueDecl>(Val: D); |
482 | } |
483 | |
484 | /// Resolves the result kind of this lookup. |
485 | void LookupResult::resolveKind() { |
486 | unsigned N = Decls.size(); |
487 | |
488 | // Fast case: no possible ambiguity. |
489 | if (N == 0) { |
490 | assert(ResultKind == NotFound || |
491 | ResultKind == NotFoundInCurrentInstantiation); |
492 | return; |
493 | } |
494 | |
495 | // If there's a single decl, we need to examine it to decide what |
496 | // kind of lookup this is. |
497 | if (N == 1) { |
498 | const NamedDecl *D = (*Decls.begin())->getUnderlyingDecl(); |
499 | if (isa<FunctionTemplateDecl>(Val: D)) |
500 | ResultKind = FoundOverloaded; |
501 | else if (isa<UnresolvedUsingValueDecl>(Val: D)) |
502 | ResultKind = FoundUnresolvedValue; |
503 | return; |
504 | } |
505 | |
506 | // Don't do any extra resolution if we've already resolved as ambiguous. |
507 | if (ResultKind == Ambiguous) return; |
508 | |
509 | llvm::SmallDenseMap<const NamedDecl *, unsigned, 16> Unique; |
510 | llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes; |
511 | |
512 | bool Ambiguous = false; |
513 | bool ReferenceToPlaceHolderVariable = false; |
514 | bool HasTag = false, HasFunction = false; |
515 | bool HasFunctionTemplate = false, HasUnresolved = false; |
516 | const NamedDecl *HasNonFunction = nullptr; |
517 | |
518 | llvm::SmallVector<const NamedDecl *, 4> EquivalentNonFunctions; |
519 | llvm::BitVector RemovedDecls(N); |
520 | |
521 | for (unsigned I = 0; I < N; I++) { |
522 | const NamedDecl *D = Decls[I]->getUnderlyingDecl(); |
523 | D = cast<NamedDecl>(Val: D->getCanonicalDecl()); |
524 | |
525 | // Ignore an invalid declaration unless it's the only one left. |
526 | // Also ignore HLSLBufferDecl which not have name conflict with other Decls. |
527 | if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(Val: D)) && |
528 | N - RemovedDecls.count() > 1) { |
529 | RemovedDecls.set(I); |
530 | continue; |
531 | } |
532 | |
533 | // C++ [basic.scope.hiding]p2: |
534 | // A class name or enumeration name can be hidden by the name of |
535 | // an object, function, or enumerator declared in the same |
536 | // scope. If a class or enumeration name and an object, function, |
537 | // or enumerator are declared in the same scope (in any order) |
538 | // with the same name, the class or enumeration name is hidden |
539 | // wherever the object, function, or enumerator name is visible. |
540 | if (HideTags && isa<TagDecl>(Val: D)) { |
541 | bool Hidden = false; |
542 | for (auto *OtherDecl : Decls) { |
543 | if (canHideTag(D: OtherDecl) && !OtherDecl->isInvalidDecl() && |
544 | getContextForScopeMatching(D: OtherDecl)->Equals( |
545 | DC: getContextForScopeMatching(D: Decls[I]))) { |
546 | RemovedDecls.set(I); |
547 | Hidden = true; |
548 | break; |
549 | } |
550 | } |
551 | if (Hidden) |
552 | continue; |
553 | } |
554 | |
555 | std::optional<unsigned> ExistingI; |
556 | |
557 | // Redeclarations of types via typedef can occur both within a scope |
558 | // and, through using declarations and directives, across scopes. There is |
559 | // no ambiguity if they all refer to the same type, so unique based on the |
560 | // canonical type. |
561 | if (const auto *TD = dyn_cast<TypeDecl>(Val: D)) { |
562 | QualType T = getSema().Context.getTypeDeclType(Decl: TD); |
563 | auto UniqueResult = UniqueTypes.insert( |
564 | KV: std::make_pair(x: getSema().Context.getCanonicalType(T), y&: I)); |
565 | if (!UniqueResult.second) { |
566 | // The type is not unique. |
567 | ExistingI = UniqueResult.first->second; |
568 | } |
569 | } |
570 | |
571 | // For non-type declarations, check for a prior lookup result naming this |
572 | // canonical declaration. |
573 | if (!ExistingI) { |
574 | auto UniqueResult = Unique.insert(KV: std::make_pair(x&: D, y&: I)); |
575 | if (!UniqueResult.second) { |
576 | // We've seen this entity before. |
577 | ExistingI = UniqueResult.first->second; |
578 | } |
579 | } |
580 | |
581 | if (ExistingI) { |
582 | // This is not a unique lookup result. Pick one of the results and |
583 | // discard the other. |
584 | if (isPreferredLookupResult(S&: getSema(), Kind: getLookupKind(), D: Decls[I], |
585 | Existing: Decls[*ExistingI])) |
586 | Decls[*ExistingI] = Decls[I]; |
587 | RemovedDecls.set(I); |
588 | continue; |
589 | } |
590 | |
591 | // Otherwise, do some decl type analysis and then continue. |
592 | |
593 | if (isa<UnresolvedUsingValueDecl>(Val: D)) { |
594 | HasUnresolved = true; |
595 | } else if (isa<TagDecl>(Val: D)) { |
596 | if (HasTag) |
597 | Ambiguous = true; |
598 | HasTag = true; |
599 | } else if (isa<FunctionTemplateDecl>(Val: D)) { |
600 | HasFunction = true; |
601 | HasFunctionTemplate = true; |
602 | } else if (isa<FunctionDecl>(Val: D)) { |
603 | HasFunction = true; |
604 | } else { |
605 | if (HasNonFunction) { |
606 | // If we're about to create an ambiguity between two declarations that |
607 | // are equivalent, but one is an internal linkage declaration from one |
608 | // module and the other is an internal linkage declaration from another |
609 | // module, just skip it. |
610 | if (getSema().isEquivalentInternalLinkageDeclaration(A: HasNonFunction, |
611 | B: D)) { |
612 | EquivalentNonFunctions.push_back(Elt: D); |
613 | RemovedDecls.set(I); |
614 | continue; |
615 | } |
616 | if (D->isPlaceholderVar(LangOpts: getSema().getLangOpts()) && |
617 | getContextForScopeMatching(D) == |
618 | getContextForScopeMatching(D: Decls[I])) { |
619 | ReferenceToPlaceHolderVariable = true; |
620 | } |
621 | Ambiguous = true; |
622 | } |
623 | HasNonFunction = D; |
624 | } |
625 | } |
626 | |
627 | // FIXME: This diagnostic should really be delayed until we're done with |
628 | // the lookup result, in case the ambiguity is resolved by the caller. |
629 | if (!EquivalentNonFunctions.empty() && !Ambiguous) |
630 | getSema().diagnoseEquivalentInternalLinkageDeclarations( |
631 | Loc: getNameLoc(), D: HasNonFunction, Equiv: EquivalentNonFunctions); |
632 | |
633 | // Remove decls by replacing them with decls from the end (which |
634 | // means that we need to iterate from the end) and then truncating |
635 | // to the new size. |
636 | for (int I = RemovedDecls.find_last(); I >= 0; I = RemovedDecls.find_prev(PriorTo: I)) |
637 | Decls[I] = Decls[--N]; |
638 | Decls.truncate(N); |
639 | |
640 | if ((HasNonFunction && (HasFunction || HasUnresolved)) || |
641 | (HideTags && HasTag && (HasFunction || HasNonFunction || HasUnresolved))) |
642 | Ambiguous = true; |
643 | |
644 | if (Ambiguous && ReferenceToPlaceHolderVariable) |
645 | setAmbiguous(LookupResult::AmbiguousReferenceToPlaceholderVariable); |
646 | else if (Ambiguous) |
647 | setAmbiguous(LookupResult::AmbiguousReference); |
648 | else if (HasUnresolved) |
649 | ResultKind = LookupResult::FoundUnresolvedValue; |
650 | else if (N > 1 || HasFunctionTemplate) |
651 | ResultKind = LookupResult::FoundOverloaded; |
652 | else |
653 | ResultKind = LookupResult::Found; |
654 | } |
655 | |
656 | void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { |
657 | CXXBasePaths::const_paths_iterator I, E; |
658 | for (I = P.begin(), E = P.end(); I != E; ++I) |
659 | for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE; |
660 | ++DI) |
661 | addDecl(D: *DI); |
662 | } |
663 | |
664 | void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { |
665 | Paths = new CXXBasePaths; |
666 | Paths->swap(Other&: P); |
667 | addDeclsFromBasePaths(P: *Paths); |
668 | resolveKind(); |
669 | setAmbiguous(AmbiguousBaseSubobjects); |
670 | } |
671 | |
672 | void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { |
673 | Paths = new CXXBasePaths; |
674 | Paths->swap(Other&: P); |
675 | addDeclsFromBasePaths(P: *Paths); |
676 | resolveKind(); |
677 | setAmbiguous(AmbiguousBaseSubobjectTypes); |
678 | } |
679 | |
680 | void LookupResult::print(raw_ostream &Out) { |
681 | Out << Decls.size() << " result(s)" ; |
682 | if (isAmbiguous()) Out << ", ambiguous" ; |
683 | if (Paths) Out << ", base paths present" ; |
684 | |
685 | for (iterator I = begin(), E = end(); I != E; ++I) { |
686 | Out << "\n" ; |
687 | (*I)->print(Out, Indentation: 2); |
688 | } |
689 | } |
690 | |
691 | LLVM_DUMP_METHOD void LookupResult::dump() { |
692 | llvm::errs() << "lookup results for " << getLookupName().getAsString() |
693 | << ":\n" ; |
694 | for (NamedDecl *D : *this) |
695 | D->dump(); |
696 | } |
697 | |
698 | /// Diagnose a missing builtin type. |
699 | static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass, |
700 | llvm::StringRef Name) { |
701 | S.Diag(Loc: SourceLocation(), DiagID: diag::err_opencl_type_not_found) |
702 | << TypeClass << Name; |
703 | return S.Context.VoidTy; |
704 | } |
705 | |
706 | /// Lookup an OpenCL enum type. |
707 | static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) { |
708 | LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), |
709 | Sema::LookupTagName); |
710 | S.LookupName(R&: Result, S: S.TUScope); |
711 | if (Result.empty()) |
712 | return diagOpenCLBuiltinTypeError(S, TypeClass: "enum" , Name); |
713 | EnumDecl *Decl = Result.getAsSingle<EnumDecl>(); |
714 | if (!Decl) |
715 | return diagOpenCLBuiltinTypeError(S, TypeClass: "enum" , Name); |
716 | return S.Context.getEnumType(Decl); |
717 | } |
718 | |
719 | /// Lookup an OpenCL typedef type. |
720 | static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) { |
721 | LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), |
722 | Sema::LookupOrdinaryName); |
723 | S.LookupName(R&: Result, S: S.TUScope); |
724 | if (Result.empty()) |
725 | return diagOpenCLBuiltinTypeError(S, TypeClass: "typedef" , Name); |
726 | TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>(); |
727 | if (!Decl) |
728 | return diagOpenCLBuiltinTypeError(S, TypeClass: "typedef" , Name); |
729 | return S.Context.getTypedefType(Decl); |
730 | } |
731 | |
732 | /// Get the QualType instances of the return type and arguments for an OpenCL |
733 | /// builtin function signature. |
734 | /// \param S (in) The Sema instance. |
735 | /// \param OpenCLBuiltin (in) The signature currently handled. |
736 | /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic |
737 | /// type used as return type or as argument. |
738 | /// Only meaningful for generic types, otherwise equals 1. |
739 | /// \param RetTypes (out) List of the possible return types. |
740 | /// \param ArgTypes (out) List of the possible argument types. For each |
741 | /// argument, ArgTypes contains QualTypes for the Cartesian product |
742 | /// of (vector sizes) x (types) . |
743 | static void GetQualTypesForOpenCLBuiltin( |
744 | Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt, |
745 | SmallVector<QualType, 1> &RetTypes, |
746 | SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { |
747 | // Get the QualType instances of the return types. |
748 | unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex]; |
749 | OCL2Qual(S, Ty: TypeTable[Sig], QT&: RetTypes); |
750 | GenTypeMaxCnt = RetTypes.size(); |
751 | |
752 | // Get the QualType instances of the arguments. |
753 | // First type is the return type, skip it. |
754 | for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) { |
755 | SmallVector<QualType, 1> Ty; |
756 | OCL2Qual(S, Ty: TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], |
757 | QT&: Ty); |
758 | GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt; |
759 | ArgTypes.push_back(Elt: std::move(Ty)); |
760 | } |
761 | } |
762 | |
763 | /// Create a list of the candidate function overloads for an OpenCL builtin |
764 | /// function. |
765 | /// \param Context (in) The ASTContext instance. |
766 | /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic |
767 | /// type used as return type or as argument. |
768 | /// Only meaningful for generic types, otherwise equals 1. |
769 | /// \param FunctionList (out) List of FunctionTypes. |
770 | /// \param RetTypes (in) List of the possible return types. |
771 | /// \param ArgTypes (in) List of the possible types for the arguments. |
772 | static void GetOpenCLBuiltinFctOverloads( |
773 | ASTContext &Context, unsigned GenTypeMaxCnt, |
774 | std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes, |
775 | SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { |
776 | FunctionProtoType::ExtProtoInfo PI( |
777 | Context.getDefaultCallingConvention(IsVariadic: false, IsCXXMethod: false, IsBuiltin: true)); |
778 | PI.Variadic = false; |
779 | |
780 | // Do not attempt to create any FunctionTypes if there are no return types, |
781 | // which happens when a type belongs to a disabled extension. |
782 | if (RetTypes.size() == 0) |
783 | return; |
784 | |
785 | // Create FunctionTypes for each (gen)type. |
786 | for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) { |
787 | SmallVector<QualType, 5> ArgList; |
788 | |
789 | for (unsigned A = 0; A < ArgTypes.size(); A++) { |
790 | // Bail out if there is an argument that has no available types. |
791 | if (ArgTypes[A].size() == 0) |
792 | return; |
793 | |
794 | // Builtins such as "max" have an "sgentype" argument that represents |
795 | // the corresponding scalar type of a gentype. The number of gentypes |
796 | // must be a multiple of the number of sgentypes. |
797 | assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 && |
798 | "argument type count not compatible with gentype type count" ); |
799 | unsigned Idx = IGenType % ArgTypes[A].size(); |
800 | ArgList.push_back(Elt: ArgTypes[A][Idx]); |
801 | } |
802 | |
803 | FunctionList.push_back(x: Context.getFunctionType( |
804 | ResultTy: RetTypes[(RetTypes.size() != 1) ? IGenType : 0], Args: ArgList, EPI: PI)); |
805 | } |
806 | } |
807 | |
808 | /// When trying to resolve a function name, if isOpenCLBuiltin() returns a |
809 | /// non-null <Index, Len> pair, then the name is referencing an OpenCL |
810 | /// builtin function. Add all candidate signatures to the LookUpResult. |
811 | /// |
812 | /// \param S (in) The Sema instance. |
813 | /// \param LR (inout) The LookupResult instance. |
814 | /// \param II (in) The identifier being resolved. |
815 | /// \param FctIndex (in) Starting index in the BuiltinTable. |
816 | /// \param Len (in) The signature list has Len elements. |
817 | static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR, |
818 | IdentifierInfo *II, |
819 | const unsigned FctIndex, |
820 | const unsigned Len) { |
821 | // The builtin function declaration uses generic types (gentype). |
822 | bool HasGenType = false; |
823 | |
824 | // Maximum number of types contained in a generic type used as return type or |
825 | // as argument. Only meaningful for generic types, otherwise equals 1. |
826 | unsigned GenTypeMaxCnt; |
827 | |
828 | ASTContext &Context = S.Context; |
829 | |
830 | for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) { |
831 | const OpenCLBuiltinStruct &OpenCLBuiltin = |
832 | BuiltinTable[FctIndex + SignatureIndex]; |
833 | |
834 | // Ignore this builtin function if it is not available in the currently |
835 | // selected language version. |
836 | if (!isOpenCLVersionContainedInMask(LO: Context.getLangOpts(), |
837 | Mask: OpenCLBuiltin.Versions)) |
838 | continue; |
839 | |
840 | // Ignore this builtin function if it carries an extension macro that is |
841 | // not defined. This indicates that the extension is not supported by the |
842 | // target, so the builtin function should not be available. |
843 | StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension]; |
844 | if (!Extensions.empty()) { |
845 | SmallVector<StringRef, 2> ExtVec; |
846 | Extensions.split(A&: ExtVec, Separator: " " ); |
847 | bool AllExtensionsDefined = true; |
848 | for (StringRef Ext : ExtVec) { |
849 | if (!S.getPreprocessor().isMacroDefined(Id: Ext)) { |
850 | AllExtensionsDefined = false; |
851 | break; |
852 | } |
853 | } |
854 | if (!AllExtensionsDefined) |
855 | continue; |
856 | } |
857 | |
858 | SmallVector<QualType, 1> RetTypes; |
859 | SmallVector<SmallVector<QualType, 1>, 5> ArgTypes; |
860 | |
861 | // Obtain QualType lists for the function signature. |
862 | GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes, |
863 | ArgTypes); |
864 | if (GenTypeMaxCnt > 1) { |
865 | HasGenType = true; |
866 | } |
867 | |
868 | // Create function overload for each type combination. |
869 | std::vector<QualType> FunctionList; |
870 | GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes, |
871 | ArgTypes); |
872 | |
873 | SourceLocation Loc = LR.getNameLoc(); |
874 | DeclContext *Parent = Context.getTranslationUnitDecl(); |
875 | FunctionDecl *NewOpenCLBuiltin; |
876 | |
877 | for (const auto &FTy : FunctionList) { |
878 | NewOpenCLBuiltin = FunctionDecl::Create( |
879 | C&: Context, DC: Parent, StartLoc: Loc, NLoc: Loc, N: II, T: FTy, /*TInfo=*/nullptr, SC: SC_Extern, |
880 | UsesFPIntrin: S.getCurFPFeatures().isFPConstrained(), isInlineSpecified: false, |
881 | hasWrittenPrototype: FTy->isFunctionProtoType()); |
882 | NewOpenCLBuiltin->setImplicit(); |
883 | |
884 | // Create Decl objects for each parameter, adding them to the |
885 | // FunctionDecl. |
886 | const auto *FP = cast<FunctionProtoType>(Val: FTy); |
887 | SmallVector<ParmVarDecl *, 4> ParmList; |
888 | for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) { |
889 | ParmVarDecl *Parm = ParmVarDecl::Create( |
890 | C&: Context, DC: NewOpenCLBuiltin, StartLoc: SourceLocation(), IdLoc: SourceLocation(), |
891 | Id: nullptr, T: FP->getParamType(i: IParm), TInfo: nullptr, S: SC_None, DefArg: nullptr); |
892 | Parm->setScopeInfo(scopeDepth: 0, parameterIndex: IParm); |
893 | ParmList.push_back(Elt: Parm); |
894 | } |
895 | NewOpenCLBuiltin->setParams(ParmList); |
896 | |
897 | // Add function attributes. |
898 | if (OpenCLBuiltin.IsPure) |
899 | NewOpenCLBuiltin->addAttr(A: PureAttr::CreateImplicit(Ctx&: Context)); |
900 | if (OpenCLBuiltin.IsConst) |
901 | NewOpenCLBuiltin->addAttr(A: ConstAttr::CreateImplicit(Ctx&: Context)); |
902 | if (OpenCLBuiltin.IsConv) |
903 | NewOpenCLBuiltin->addAttr(A: ConvergentAttr::CreateImplicit(Ctx&: Context)); |
904 | |
905 | if (!S.getLangOpts().OpenCLCPlusPlus) |
906 | NewOpenCLBuiltin->addAttr(A: OverloadableAttr::CreateImplicit(Ctx&: Context)); |
907 | |
908 | LR.addDecl(D: NewOpenCLBuiltin); |
909 | } |
910 | } |
911 | |
912 | // If we added overloads, need to resolve the lookup result. |
913 | if (Len > 1 || HasGenType) |
914 | LR.resolveKind(); |
915 | } |
916 | |
917 | bool Sema::LookupBuiltin(LookupResult &R) { |
918 | Sema::LookupNameKind NameKind = R.getLookupKind(); |
919 | |
920 | // If we didn't find a use of this identifier, and if the identifier |
921 | // corresponds to a compiler builtin, create the decl object for the builtin |
922 | // now, injecting it into translation unit scope, and return it. |
923 | if (NameKind == Sema::LookupOrdinaryName || |
924 | NameKind == Sema::LookupRedeclarationWithLinkage) { |
925 | IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo(); |
926 | if (II) { |
927 | if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) { |
928 | if (II == getASTContext().getMakeIntegerSeqName()) { |
929 | R.addDecl(D: getASTContext().getMakeIntegerSeqDecl()); |
930 | return true; |
931 | } else if (II == getASTContext().getTypePackElementName()) { |
932 | R.addDecl(D: getASTContext().getTypePackElementDecl()); |
933 | return true; |
934 | } |
935 | } |
936 | |
937 | // Check if this is an OpenCL Builtin, and if so, insert its overloads. |
938 | if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) { |
939 | auto Index = isOpenCLBuiltin(Name: II->getName()); |
940 | if (Index.first) { |
941 | InsertOCLBuiltinDeclarationsFromTable(S&: *this, LR&: R, II, FctIndex: Index.first - 1, |
942 | Len: Index.second); |
943 | return true; |
944 | } |
945 | } |
946 | |
947 | if (RISCV().DeclareRVVBuiltins || RISCV().DeclareSiFiveVectorBuiltins) { |
948 | if (!RISCV().IntrinsicManager) |
949 | RISCV().IntrinsicManager = CreateRISCVIntrinsicManager(S&: *this); |
950 | |
951 | RISCV().IntrinsicManager->InitIntrinsicList(); |
952 | |
953 | if (RISCV().IntrinsicManager->CreateIntrinsicIfFound(LR&: R, II, PP)) |
954 | return true; |
955 | } |
956 | |
957 | // If this is a builtin on this (or all) targets, create the decl. |
958 | if (unsigned BuiltinID = II->getBuiltinID()) { |
959 | // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined |
960 | // library functions like 'malloc'. Instead, we'll just error. |
961 | if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) && |
962 | Context.BuiltinInfo.isPredefinedLibFunction(ID: BuiltinID)) |
963 | return false; |
964 | |
965 | if (NamedDecl *D = |
966 | LazilyCreateBuiltin(II, ID: BuiltinID, S: TUScope, |
967 | ForRedeclaration: R.isForRedeclaration(), Loc: R.getNameLoc())) { |
968 | R.addDecl(D); |
969 | return true; |
970 | } |
971 | } |
972 | } |
973 | } |
974 | |
975 | return false; |
976 | } |
977 | |
978 | /// Looks up the declaration of "struct objc_super" and |
979 | /// saves it for later use in building builtin declaration of |
980 | /// objc_msgSendSuper and objc_msgSendSuper_stret. |
981 | static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) { |
982 | ASTContext &Context = Sema.Context; |
983 | LookupResult Result(Sema, &Context.Idents.get(Name: "objc_super" ), SourceLocation(), |
984 | Sema::LookupTagName); |
985 | Sema.LookupName(R&: Result, S); |
986 | if (Result.getResultKind() == LookupResult::Found) |
987 | if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) |
988 | Context.setObjCSuperType(Context.getTagDeclType(Decl: TD)); |
989 | } |
990 | |
991 | void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) { |
992 | if (ID == Builtin::BIobjc_msgSendSuper) |
993 | LookupPredefedObjCSuperType(Sema&: *this, S); |
994 | } |
995 | |
996 | /// Determine whether we can declare a special member function within |
997 | /// the class at this point. |
998 | static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) { |
999 | // We need to have a definition for the class. |
1000 | if (!Class->getDefinition() || Class->isDependentContext()) |
1001 | return false; |
1002 | |
1003 | // We can't be in the middle of defining the class. |
1004 | return !Class->isBeingDefined(); |
1005 | } |
1006 | |
1007 | void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) { |
1008 | if (!CanDeclareSpecialMemberFunction(Class)) |
1009 | return; |
1010 | |
1011 | // If the default constructor has not yet been declared, do so now. |
1012 | if (Class->needsImplicitDefaultConstructor()) |
1013 | DeclareImplicitDefaultConstructor(ClassDecl: Class); |
1014 | |
1015 | // If the copy constructor has not yet been declared, do so now. |
1016 | if (Class->needsImplicitCopyConstructor()) |
1017 | DeclareImplicitCopyConstructor(ClassDecl: Class); |
1018 | |
1019 | // If the copy assignment operator has not yet been declared, do so now. |
1020 | if (Class->needsImplicitCopyAssignment()) |
1021 | DeclareImplicitCopyAssignment(ClassDecl: Class); |
1022 | |
1023 | if (getLangOpts().CPlusPlus11) { |
1024 | // If the move constructor has not yet been declared, do so now. |
1025 | if (Class->needsImplicitMoveConstructor()) |
1026 | DeclareImplicitMoveConstructor(ClassDecl: Class); |
1027 | |
1028 | // If the move assignment operator has not yet been declared, do so now. |
1029 | if (Class->needsImplicitMoveAssignment()) |
1030 | DeclareImplicitMoveAssignment(ClassDecl: Class); |
1031 | } |
1032 | |
1033 | // If the destructor has not yet been declared, do so now. |
1034 | if (Class->needsImplicitDestructor()) |
1035 | DeclareImplicitDestructor(ClassDecl: Class); |
1036 | } |
1037 | |
1038 | /// Determine whether this is the name of an implicitly-declared |
1039 | /// special member function. |
1040 | static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) { |
1041 | switch (Name.getNameKind()) { |
1042 | case DeclarationName::CXXConstructorName: |
1043 | case DeclarationName::CXXDestructorName: |
1044 | return true; |
1045 | |
1046 | case DeclarationName::CXXOperatorName: |
1047 | return Name.getCXXOverloadedOperator() == OO_Equal; |
1048 | |
1049 | default: |
1050 | break; |
1051 | } |
1052 | |
1053 | return false; |
1054 | } |
1055 | |
1056 | /// If there are any implicit member functions with the given name |
1057 | /// that need to be declared in the given declaration context, do so. |
1058 | static void DeclareImplicitMemberFunctionsWithName(Sema &S, |
1059 | DeclarationName Name, |
1060 | SourceLocation Loc, |
1061 | const DeclContext *DC) { |
1062 | if (!DC) |
1063 | return; |
1064 | |
1065 | switch (Name.getNameKind()) { |
1066 | case DeclarationName::CXXConstructorName: |
1067 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: DC)) |
1068 | if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Class: Record)) { |
1069 | CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); |
1070 | if (Record->needsImplicitDefaultConstructor()) |
1071 | S.DeclareImplicitDefaultConstructor(ClassDecl: Class); |
1072 | if (Record->needsImplicitCopyConstructor()) |
1073 | S.DeclareImplicitCopyConstructor(ClassDecl: Class); |
1074 | if (S.getLangOpts().CPlusPlus11 && |
1075 | Record->needsImplicitMoveConstructor()) |
1076 | S.DeclareImplicitMoveConstructor(ClassDecl: Class); |
1077 | } |
1078 | break; |
1079 | |
1080 | case DeclarationName::CXXDestructorName: |
1081 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: DC)) |
1082 | if (Record->getDefinition() && Record->needsImplicitDestructor() && |
1083 | CanDeclareSpecialMemberFunction(Class: Record)) |
1084 | S.DeclareImplicitDestructor(ClassDecl: const_cast<CXXRecordDecl *>(Record)); |
1085 | break; |
1086 | |
1087 | case DeclarationName::CXXOperatorName: |
1088 | if (Name.getCXXOverloadedOperator() != OO_Equal) |
1089 | break; |
1090 | |
1091 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: DC)) { |
1092 | if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Class: Record)) { |
1093 | CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); |
1094 | if (Record->needsImplicitCopyAssignment()) |
1095 | S.DeclareImplicitCopyAssignment(ClassDecl: Class); |
1096 | if (S.getLangOpts().CPlusPlus11 && |
1097 | Record->needsImplicitMoveAssignment()) |
1098 | S.DeclareImplicitMoveAssignment(ClassDecl: Class); |
1099 | } |
1100 | } |
1101 | break; |
1102 | |
1103 | case DeclarationName::CXXDeductionGuideName: |
1104 | S.DeclareImplicitDeductionGuides(Template: Name.getCXXDeductionGuideTemplate(), Loc); |
1105 | break; |
1106 | |
1107 | default: |
1108 | break; |
1109 | } |
1110 | } |
1111 | |
1112 | // Adds all qualifying matches for a name within a decl context to the |
1113 | // given lookup result. Returns true if any matches were found. |
1114 | static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) { |
1115 | bool Found = false; |
1116 | |
1117 | // Lazily declare C++ special member functions. |
1118 | if (S.getLangOpts().CPlusPlus) |
1119 | DeclareImplicitMemberFunctionsWithName(S, Name: R.getLookupName(), Loc: R.getNameLoc(), |
1120 | DC); |
1121 | |
1122 | // Perform lookup into this declaration context. |
1123 | DeclContext::lookup_result DR = DC->lookup(Name: R.getLookupName()); |
1124 | for (NamedDecl *D : DR) { |
1125 | if ((D = R.getAcceptableDecl(D))) { |
1126 | R.addDecl(D); |
1127 | Found = true; |
1128 | } |
1129 | } |
1130 | |
1131 | if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R)) |
1132 | return true; |
1133 | |
1134 | if (R.getLookupName().getNameKind() |
1135 | != DeclarationName::CXXConversionFunctionName || |
1136 | R.getLookupName().getCXXNameType()->isDependentType() || |
1137 | !isa<CXXRecordDecl>(Val: DC)) |
1138 | return Found; |
1139 | |
1140 | // C++ [temp.mem]p6: |
1141 | // A specialization of a conversion function template is not found by |
1142 | // name lookup. Instead, any conversion function templates visible in the |
1143 | // context of the use are considered. [...] |
1144 | const CXXRecordDecl *Record = cast<CXXRecordDecl>(Val: DC); |
1145 | if (!Record->isCompleteDefinition()) |
1146 | return Found; |
1147 | |
1148 | // For conversion operators, 'operator auto' should only match |
1149 | // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered |
1150 | // as a candidate for template substitution. |
1151 | auto *ContainedDeducedType = |
1152 | R.getLookupName().getCXXNameType()->getContainedDeducedType(); |
1153 | if (R.getLookupName().getNameKind() == |
1154 | DeclarationName::CXXConversionFunctionName && |
1155 | ContainedDeducedType && ContainedDeducedType->isUndeducedType()) |
1156 | return Found; |
1157 | |
1158 | for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(), |
1159 | UEnd = Record->conversion_end(); U != UEnd; ++U) { |
1160 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(Val: *U); |
1161 | if (!ConvTemplate) |
1162 | continue; |
1163 | |
1164 | // When we're performing lookup for the purposes of redeclaration, just |
1165 | // add the conversion function template. When we deduce template |
1166 | // arguments for specializations, we'll end up unifying the return |
1167 | // type of the new declaration with the type of the function template. |
1168 | if (R.isForRedeclaration()) { |
1169 | R.addDecl(D: ConvTemplate); |
1170 | Found = true; |
1171 | continue; |
1172 | } |
1173 | |
1174 | // C++ [temp.mem]p6: |
1175 | // [...] For each such operator, if argument deduction succeeds |
1176 | // (14.9.2.3), the resulting specialization is used as if found by |
1177 | // name lookup. |
1178 | // |
1179 | // When referencing a conversion function for any purpose other than |
1180 | // a redeclaration (such that we'll be building an expression with the |
1181 | // result), perform template argument deduction and place the |
1182 | // specialization into the result set. We do this to avoid forcing all |
1183 | // callers to perform special deduction for conversion functions. |
1184 | TemplateDeductionInfo Info(R.getNameLoc()); |
1185 | FunctionDecl *Specialization = nullptr; |
1186 | |
1187 | const FunctionProtoType *ConvProto |
1188 | = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>(); |
1189 | assert(ConvProto && "Nonsensical conversion function template type" ); |
1190 | |
1191 | // Compute the type of the function that we would expect the conversion |
1192 | // function to have, if it were to match the name given. |
1193 | // FIXME: Calling convention! |
1194 | FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo(); |
1195 | EPI.ExtInfo = EPI.ExtInfo.withCallingConv(cc: CC_C); |
1196 | EPI.ExceptionSpec = EST_None; |
1197 | QualType ExpectedType = R.getSema().Context.getFunctionType( |
1198 | ResultTy: R.getLookupName().getCXXNameType(), Args: std::nullopt, EPI); |
1199 | |
1200 | // Perform template argument deduction against the type that we would |
1201 | // expect the function to have. |
1202 | if (R.getSema().DeduceTemplateArguments(FunctionTemplate: ConvTemplate, ExplicitTemplateArgs: nullptr, ArgFunctionType: ExpectedType, |
1203 | Specialization, Info) == |
1204 | TemplateDeductionResult::Success) { |
1205 | R.addDecl(D: Specialization); |
1206 | Found = true; |
1207 | } |
1208 | } |
1209 | |
1210 | return Found; |
1211 | } |
1212 | |
1213 | // Performs C++ unqualified lookup into the given file context. |
1214 | static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, |
1215 | const DeclContext *NS, |
1216 | UnqualUsingDirectiveSet &UDirs) { |
1217 | |
1218 | assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!" ); |
1219 | |
1220 | // Perform direct name lookup into the LookupCtx. |
1221 | bool Found = LookupDirect(S, R, DC: NS); |
1222 | |
1223 | // Perform direct name lookup into the namespaces nominated by the |
1224 | // using directives whose common ancestor is this namespace. |
1225 | for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(DC: NS)) |
1226 | if (LookupDirect(S, R, DC: UUE.getNominatedNamespace())) |
1227 | Found = true; |
1228 | |
1229 | R.resolveKind(); |
1230 | |
1231 | return Found; |
1232 | } |
1233 | |
1234 | static bool isNamespaceOrTranslationUnitScope(Scope *S) { |
1235 | if (DeclContext *Ctx = S->getEntity()) |
1236 | return Ctx->isFileContext(); |
1237 | return false; |
1238 | } |
1239 | |
1240 | /// Find the outer declaration context from this scope. This indicates the |
1241 | /// context that we should search up to (exclusive) before considering the |
1242 | /// parent of the specified scope. |
1243 | static DeclContext *findOuterContext(Scope *S) { |
1244 | for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent()) |
1245 | if (DeclContext *DC = OuterS->getLookupEntity()) |
1246 | return DC; |
1247 | return nullptr; |
1248 | } |
1249 | |
1250 | namespace { |
1251 | /// An RAII object to specify that we want to find block scope extern |
1252 | /// declarations. |
1253 | struct FindLocalExternScope { |
1254 | FindLocalExternScope(LookupResult &R) |
1255 | : R(R), OldFindLocalExtern(R.getIdentifierNamespace() & |
1256 | Decl::IDNS_LocalExtern) { |
1257 | R.setFindLocalExtern(R.getIdentifierNamespace() & |
1258 | (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator)); |
1259 | } |
1260 | void restore() { |
1261 | R.setFindLocalExtern(OldFindLocalExtern); |
1262 | } |
1263 | ~FindLocalExternScope() { |
1264 | restore(); |
1265 | } |
1266 | LookupResult &R; |
1267 | bool OldFindLocalExtern; |
1268 | }; |
1269 | } // end anonymous namespace |
1270 | |
1271 | bool Sema::CppLookupName(LookupResult &R, Scope *S) { |
1272 | assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup" ); |
1273 | |
1274 | DeclarationName Name = R.getLookupName(); |
1275 | Sema::LookupNameKind NameKind = R.getLookupKind(); |
1276 | |
1277 | // If this is the name of an implicitly-declared special member function, |
1278 | // go through the scope stack to implicitly declare |
1279 | if (isImplicitlyDeclaredMemberFunctionName(Name)) { |
1280 | for (Scope *PreS = S; PreS; PreS = PreS->getParent()) |
1281 | if (DeclContext *DC = PreS->getEntity()) |
1282 | DeclareImplicitMemberFunctionsWithName(S&: *this, Name, Loc: R.getNameLoc(), DC); |
1283 | } |
1284 | |
1285 | // C++23 [temp.dep.general]p2: |
1286 | // The component name of an unqualified-id is dependent if |
1287 | // - it is a conversion-function-id whose conversion-type-id |
1288 | // is dependent, or |
1289 | // - it is operator= and the current class is a templated entity, or |
1290 | // - the unqualified-id is the postfix-expression in a dependent call. |
1291 | if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && |
1292 | Name.getCXXNameType()->isDependentType()) { |
1293 | R.setNotFoundInCurrentInstantiation(); |
1294 | return false; |
1295 | } |
1296 | |
1297 | // Implicitly declare member functions with the name we're looking for, if in |
1298 | // fact we are in a scope where it matters. |
1299 | |
1300 | Scope *Initial = S; |
1301 | IdentifierResolver::iterator |
1302 | I = IdResolver.begin(Name), |
1303 | IEnd = IdResolver.end(); |
1304 | |
1305 | // First we lookup local scope. |
1306 | // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] |
1307 | // ...During unqualified name lookup (3.4.1), the names appear as if |
1308 | // they were declared in the nearest enclosing namespace which contains |
1309 | // both the using-directive and the nominated namespace. |
1310 | // [Note: in this context, "contains" means "contains directly or |
1311 | // indirectly". |
1312 | // |
1313 | // For example: |
1314 | // namespace A { int i; } |
1315 | // void foo() { |
1316 | // int i; |
1317 | // { |
1318 | // using namespace A; |
1319 | // ++i; // finds local 'i', A::i appears at global scope |
1320 | // } |
1321 | // } |
1322 | // |
1323 | UnqualUsingDirectiveSet UDirs(*this); |
1324 | bool VisitedUsingDirectives = false; |
1325 | bool LeftStartingScope = false; |
1326 | |
1327 | // When performing a scope lookup, we want to find local extern decls. |
1328 | FindLocalExternScope FindLocals(R); |
1329 | |
1330 | for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { |
1331 | bool SearchNamespaceScope = true; |
1332 | // Check whether the IdResolver has anything in this scope. |
1333 | for (; I != IEnd && S->isDeclScope(D: *I); ++I) { |
1334 | if (NamedDecl *ND = R.getAcceptableDecl(D: *I)) { |
1335 | if (NameKind == LookupRedeclarationWithLinkage && |
1336 | !(*I)->isTemplateParameter()) { |
1337 | // If it's a template parameter, we still find it, so we can diagnose |
1338 | // the invalid redeclaration. |
1339 | |
1340 | // Determine whether this (or a previous) declaration is |
1341 | // out-of-scope. |
1342 | if (!LeftStartingScope && !Initial->isDeclScope(D: *I)) |
1343 | LeftStartingScope = true; |
1344 | |
1345 | // If we found something outside of our starting scope that |
1346 | // does not have linkage, skip it. |
1347 | if (LeftStartingScope && !((*I)->hasLinkage())) { |
1348 | R.setShadowed(); |
1349 | continue; |
1350 | } |
1351 | } else { |
1352 | // We found something in this scope, we should not look at the |
1353 | // namespace scope |
1354 | SearchNamespaceScope = false; |
1355 | } |
1356 | R.addDecl(D: ND); |
1357 | } |
1358 | } |
1359 | if (!SearchNamespaceScope) { |
1360 | R.resolveKind(); |
1361 | if (S->isClassScope()) |
1362 | if (auto *Record = dyn_cast_if_present<CXXRecordDecl>(Val: S->getEntity())) |
1363 | R.setNamingClass(Record); |
1364 | return true; |
1365 | } |
1366 | |
1367 | if (NameKind == LookupLocalFriendName && !S->isClassScope()) { |
1368 | // C++11 [class.friend]p11: |
1369 | // If a friend declaration appears in a local class and the name |
1370 | // specified is an unqualified name, a prior declaration is |
1371 | // looked up without considering scopes that are outside the |
1372 | // innermost enclosing non-class scope. |
1373 | return false; |
1374 | } |
1375 | |
1376 | if (DeclContext *Ctx = S->getLookupEntity()) { |
1377 | DeclContext *OuterCtx = findOuterContext(S); |
1378 | for (; Ctx && !Ctx->Equals(DC: OuterCtx); Ctx = Ctx->getLookupParent()) { |
1379 | // We do not directly look into transparent contexts, since |
1380 | // those entities will be found in the nearest enclosing |
1381 | // non-transparent context. |
1382 | if (Ctx->isTransparentContext()) |
1383 | continue; |
1384 | |
1385 | // We do not look directly into function or method contexts, |
1386 | // since all of the local variables and parameters of the |
1387 | // function/method are present within the Scope. |
1388 | if (Ctx->isFunctionOrMethod()) { |
1389 | // If we have an Objective-C instance method, look for ivars |
1390 | // in the corresponding interface. |
1391 | if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Val: Ctx)) { |
1392 | if (Method->isInstanceMethod() && Name.getAsIdentifierInfo()) |
1393 | if (ObjCInterfaceDecl *Class = Method->getClassInterface()) { |
1394 | ObjCInterfaceDecl *ClassDeclared; |
1395 | if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable( |
1396 | IVarName: Name.getAsIdentifierInfo(), |
1397 | ClassDeclared)) { |
1398 | if (NamedDecl *ND = R.getAcceptableDecl(D: Ivar)) { |
1399 | R.addDecl(D: ND); |
1400 | R.resolveKind(); |
1401 | return true; |
1402 | } |
1403 | } |
1404 | } |
1405 | } |
1406 | |
1407 | continue; |
1408 | } |
1409 | |
1410 | // If this is a file context, we need to perform unqualified name |
1411 | // lookup considering using directives. |
1412 | if (Ctx->isFileContext()) { |
1413 | // If we haven't handled using directives yet, do so now. |
1414 | if (!VisitedUsingDirectives) { |
1415 | // Add using directives from this context up to the top level. |
1416 | for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) { |
1417 | if (UCtx->isTransparentContext()) |
1418 | continue; |
1419 | |
1420 | UDirs.visit(DC: UCtx, EffectiveDC: UCtx); |
1421 | } |
1422 | |
1423 | // Find the innermost file scope, so we can add using directives |
1424 | // from local scopes. |
1425 | Scope *InnermostFileScope = S; |
1426 | while (InnermostFileScope && |
1427 | !isNamespaceOrTranslationUnitScope(S: InnermostFileScope)) |
1428 | InnermostFileScope = InnermostFileScope->getParent(); |
1429 | UDirs.visitScopeChain(S: Initial, InnermostFileScope); |
1430 | |
1431 | UDirs.done(); |
1432 | |
1433 | VisitedUsingDirectives = true; |
1434 | } |
1435 | |
1436 | if (CppNamespaceLookup(S&: *this, R, Context, NS: Ctx, UDirs)) { |
1437 | R.resolveKind(); |
1438 | return true; |
1439 | } |
1440 | |
1441 | continue; |
1442 | } |
1443 | |
1444 | // Perform qualified name lookup into this context. |
1445 | // FIXME: In some cases, we know that every name that could be found by |
1446 | // this qualified name lookup will also be on the identifier chain. For |
1447 | // example, inside a class without any base classes, we never need to |
1448 | // perform qualified lookup because all of the members are on top of the |
1449 | // identifier chain. |
1450 | if (LookupQualifiedName(R, LookupCtx: Ctx, /*InUnqualifiedLookup=*/true)) |
1451 | return true; |
1452 | } |
1453 | } |
1454 | } |
1455 | |
1456 | // Stop if we ran out of scopes. |
1457 | // FIXME: This really, really shouldn't be happening. |
1458 | if (!S) return false; |
1459 | |
1460 | // If we are looking for members, no need to look into global/namespace scope. |
1461 | if (NameKind == LookupMemberName) |
1462 | return false; |
1463 | |
1464 | // Collect UsingDirectiveDecls in all scopes, and recursively all |
1465 | // nominated namespaces by those using-directives. |
1466 | // |
1467 | // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we |
1468 | // don't build it for each lookup! |
1469 | if (!VisitedUsingDirectives) { |
1470 | UDirs.visitScopeChain(S: Initial, InnermostFileScope: S); |
1471 | UDirs.done(); |
1472 | } |
1473 | |
1474 | // If we're not performing redeclaration lookup, do not look for local |
1475 | // extern declarations outside of a function scope. |
1476 | if (!R.isForRedeclaration()) |
1477 | FindLocals.restore(); |
1478 | |
1479 | // Lookup namespace scope, and global scope. |
1480 | // Unqualified name lookup in C++ requires looking into scopes |
1481 | // that aren't strictly lexical, and therefore we walk through the |
1482 | // context as well as walking through the scopes. |
1483 | for (; S; S = S->getParent()) { |
1484 | // Check whether the IdResolver has anything in this scope. |
1485 | bool Found = false; |
1486 | for (; I != IEnd && S->isDeclScope(D: *I); ++I) { |
1487 | if (NamedDecl *ND = R.getAcceptableDecl(D: *I)) { |
1488 | // We found something. Look for anything else in our scope |
1489 | // with this same name and in an acceptable identifier |
1490 | // namespace, so that we can construct an overload set if we |
1491 | // need to. |
1492 | Found = true; |
1493 | R.addDecl(D: ND); |
1494 | } |
1495 | } |
1496 | |
1497 | if (Found && S->isTemplateParamScope()) { |
1498 | R.resolveKind(); |
1499 | return true; |
1500 | } |
1501 | |
1502 | DeclContext *Ctx = S->getLookupEntity(); |
1503 | if (Ctx) { |
1504 | DeclContext *OuterCtx = findOuterContext(S); |
1505 | for (; Ctx && !Ctx->Equals(DC: OuterCtx); Ctx = Ctx->getLookupParent()) { |
1506 | // We do not directly look into transparent contexts, since |
1507 | // those entities will be found in the nearest enclosing |
1508 | // non-transparent context. |
1509 | if (Ctx->isTransparentContext()) |
1510 | continue; |
1511 | |
1512 | // If we have a context, and it's not a context stashed in the |
1513 | // template parameter scope for an out-of-line definition, also |
1514 | // look into that context. |
1515 | if (!(Found && S->isTemplateParamScope())) { |
1516 | assert(Ctx->isFileContext() && |
1517 | "We should have been looking only at file context here already." ); |
1518 | |
1519 | // Look into context considering using-directives. |
1520 | if (CppNamespaceLookup(S&: *this, R, Context, NS: Ctx, UDirs)) |
1521 | Found = true; |
1522 | } |
1523 | |
1524 | if (Found) { |
1525 | R.resolveKind(); |
1526 | return true; |
1527 | } |
1528 | |
1529 | if (R.isForRedeclaration() && !Ctx->isTransparentContext()) |
1530 | return false; |
1531 | } |
1532 | } |
1533 | |
1534 | if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext()) |
1535 | return false; |
1536 | } |
1537 | |
1538 | return !R.empty(); |
1539 | } |
1540 | |
1541 | void Sema::makeMergedDefinitionVisible(NamedDecl *ND) { |
1542 | if (auto *M = getCurrentModule()) |
1543 | Context.mergeDefinitionIntoModule(ND, M); |
1544 | else |
1545 | // We're not building a module; just make the definition visible. |
1546 | ND->setVisibleDespiteOwningModule(); |
1547 | |
1548 | // If ND is a template declaration, make the template parameters |
1549 | // visible too. They're not (necessarily) within a mergeable DeclContext. |
1550 | if (auto *TD = dyn_cast<TemplateDecl>(Val: ND)) |
1551 | for (auto *Param : *TD->getTemplateParameters()) |
1552 | makeMergedDefinitionVisible(ND: Param); |
1553 | } |
1554 | |
1555 | /// Find the module in which the given declaration was defined. |
1556 | static Module *getDefiningModule(Sema &S, Decl *Entity) { |
1557 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: Entity)) { |
1558 | // If this function was instantiated from a template, the defining module is |
1559 | // the module containing the pattern. |
1560 | if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) |
1561 | Entity = Pattern; |
1562 | } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: Entity)) { |
1563 | if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern()) |
1564 | Entity = Pattern; |
1565 | } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Val: Entity)) { |
1566 | if (auto *Pattern = ED->getTemplateInstantiationPattern()) |
1567 | Entity = Pattern; |
1568 | } else if (VarDecl *VD = dyn_cast<VarDecl>(Val: Entity)) { |
1569 | if (VarDecl *Pattern = VD->getTemplateInstantiationPattern()) |
1570 | Entity = Pattern; |
1571 | } |
1572 | |
1573 | // Walk up to the containing context. That might also have been instantiated |
1574 | // from a template. |
1575 | DeclContext *Context = Entity->getLexicalDeclContext(); |
1576 | if (Context->isFileContext()) |
1577 | return S.getOwningModule(Entity); |
1578 | return getDefiningModule(S, Entity: cast<Decl>(Val: Context)); |
1579 | } |
1580 | |
1581 | llvm::DenseSet<Module*> &Sema::getLookupModules() { |
1582 | unsigned N = CodeSynthesisContexts.size(); |
1583 | for (unsigned I = CodeSynthesisContextLookupModules.size(); |
1584 | I != N; ++I) { |
1585 | Module *M = CodeSynthesisContexts[I].Entity ? |
1586 | getDefiningModule(S&: *this, Entity: CodeSynthesisContexts[I].Entity) : |
1587 | nullptr; |
1588 | if (M && !LookupModulesCache.insert(V: M).second) |
1589 | M = nullptr; |
1590 | CodeSynthesisContextLookupModules.push_back(Elt: M); |
1591 | } |
1592 | return LookupModulesCache; |
1593 | } |
1594 | |
1595 | bool Sema::isUsableModule(const Module *M) { |
1596 | assert(M && "We shouldn't check nullness for module here" ); |
1597 | // Return quickly if we cached the result. |
1598 | if (UsableModuleUnitsCache.count(V: M)) |
1599 | return true; |
1600 | |
1601 | // If M is the global module fragment of the current translation unit. So it |
1602 | // should be usable. |
1603 | // [module.global.frag]p1: |
1604 | // The global module fragment can be used to provide declarations that are |
1605 | // attached to the global module and usable within the module unit. |
1606 | if (M == TheGlobalModuleFragment || M == TheImplicitGlobalModuleFragment) { |
1607 | UsableModuleUnitsCache.insert(V: M); |
1608 | return true; |
1609 | } |
1610 | |
1611 | // Otherwise, the global module fragment from other translation unit is not |
1612 | // directly usable. |
1613 | if (M->isGlobalModule()) |
1614 | return false; |
1615 | |
1616 | Module *Current = getCurrentModule(); |
1617 | |
1618 | // If we're not parsing a module, we can't use all the declarations from |
1619 | // another module easily. |
1620 | if (!Current) |
1621 | return false; |
1622 | |
1623 | // If M is the module we're parsing or M and the current module unit lives in |
1624 | // the same module, M should be usable. |
1625 | // |
1626 | // Note: It should be fine to search the vector `ModuleScopes` linearly since |
1627 | // it should be generally small enough. There should be rare module fragments |
1628 | // in a named module unit. |
1629 | if (llvm::count_if(Range&: ModuleScopes, |
1630 | P: [&M](const ModuleScope &MS) { return MS.Module == M; }) || |
1631 | getASTContext().isInSameModule(M1: M, M2: Current)) { |
1632 | UsableModuleUnitsCache.insert(V: M); |
1633 | return true; |
1634 | } |
1635 | |
1636 | return false; |
1637 | } |
1638 | |
1639 | bool Sema::hasVisibleMergedDefinition(const NamedDecl *Def) { |
1640 | for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) |
1641 | if (isModuleVisible(M: Merged)) |
1642 | return true; |
1643 | return false; |
1644 | } |
1645 | |
1646 | bool Sema::hasMergedDefinitionInCurrentModule(const NamedDecl *Def) { |
1647 | for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) |
1648 | if (isUsableModule(M: Merged)) |
1649 | return true; |
1650 | return false; |
1651 | } |
1652 | |
1653 | template <typename ParmDecl> |
1654 | static bool |
1655 | hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D, |
1656 | llvm::SmallVectorImpl<Module *> *Modules, |
1657 | Sema::AcceptableKind Kind) { |
1658 | if (!D->hasDefaultArgument()) |
1659 | return false; |
1660 | |
1661 | llvm::SmallPtrSet<const ParmDecl *, 4> Visited; |
1662 | while (D && Visited.insert(D).second) { |
1663 | auto &DefaultArg = D->getDefaultArgStorage(); |
1664 | if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind)) |
1665 | return true; |
1666 | |
1667 | if (!DefaultArg.isInherited() && Modules) { |
1668 | auto *NonConstD = const_cast<ParmDecl*>(D); |
1669 | Modules->push_back(Elt: S.getOwningModule(Entity: NonConstD)); |
1670 | } |
1671 | |
1672 | // If there was a previous default argument, maybe its parameter is |
1673 | // acceptable. |
1674 | D = DefaultArg.getInheritedFrom(); |
1675 | } |
1676 | return false; |
1677 | } |
1678 | |
1679 | bool Sema::hasAcceptableDefaultArgument( |
1680 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules, |
1681 | Sema::AcceptableKind Kind) { |
1682 | if (auto *P = dyn_cast<TemplateTypeParmDecl>(Val: D)) |
1683 | return ::hasAcceptableDefaultArgument(S&: *this, D: P, Modules, Kind); |
1684 | |
1685 | if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(Val: D)) |
1686 | return ::hasAcceptableDefaultArgument(S&: *this, D: P, Modules, Kind); |
1687 | |
1688 | return ::hasAcceptableDefaultArgument( |
1689 | S&: *this, D: cast<TemplateTemplateParmDecl>(Val: D), Modules, Kind); |
1690 | } |
1691 | |
1692 | bool Sema::hasVisibleDefaultArgument(const NamedDecl *D, |
1693 | llvm::SmallVectorImpl<Module *> *Modules) { |
1694 | return hasAcceptableDefaultArgument(D, Modules, |
1695 | Kind: Sema::AcceptableKind::Visible); |
1696 | } |
1697 | |
1698 | bool Sema::hasReachableDefaultArgument( |
1699 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
1700 | return hasAcceptableDefaultArgument(D, Modules, |
1701 | Kind: Sema::AcceptableKind::Reachable); |
1702 | } |
1703 | |
1704 | template <typename Filter> |
1705 | static bool |
1706 | hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D, |
1707 | llvm::SmallVectorImpl<Module *> *Modules, Filter F, |
1708 | Sema::AcceptableKind Kind) { |
1709 | bool HasFilteredRedecls = false; |
1710 | |
1711 | for (auto *Redecl : D->redecls()) { |
1712 | auto *R = cast<NamedDecl>(Val: Redecl); |
1713 | if (!F(R)) |
1714 | continue; |
1715 | |
1716 | if (S.isAcceptable(D: R, Kind)) |
1717 | return true; |
1718 | |
1719 | HasFilteredRedecls = true; |
1720 | |
1721 | if (Modules) |
1722 | Modules->push_back(Elt: R->getOwningModule()); |
1723 | } |
1724 | |
1725 | // Only return false if there is at least one redecl that is not filtered out. |
1726 | if (HasFilteredRedecls) |
1727 | return false; |
1728 | |
1729 | return true; |
1730 | } |
1731 | |
1732 | static bool |
1733 | hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D, |
1734 | llvm::SmallVectorImpl<Module *> *Modules, |
1735 | Sema::AcceptableKind Kind) { |
1736 | return hasAcceptableDeclarationImpl( |
1737 | S, D, Modules, |
1738 | F: [](const NamedDecl *D) { |
1739 | if (auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) |
1740 | return RD->getTemplateSpecializationKind() == |
1741 | TSK_ExplicitSpecialization; |
1742 | if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
1743 | return FD->getTemplateSpecializationKind() == |
1744 | TSK_ExplicitSpecialization; |
1745 | if (auto *VD = dyn_cast<VarDecl>(Val: D)) |
1746 | return VD->getTemplateSpecializationKind() == |
1747 | TSK_ExplicitSpecialization; |
1748 | llvm_unreachable("unknown explicit specialization kind" ); |
1749 | }, |
1750 | Kind); |
1751 | } |
1752 | |
1753 | bool Sema::hasVisibleExplicitSpecialization( |
1754 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
1755 | return ::hasAcceptableExplicitSpecialization(S&: *this, D, Modules, |
1756 | Kind: Sema::AcceptableKind::Visible); |
1757 | } |
1758 | |
1759 | bool Sema::hasReachableExplicitSpecialization( |
1760 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
1761 | return ::hasAcceptableExplicitSpecialization(S&: *this, D, Modules, |
1762 | Kind: Sema::AcceptableKind::Reachable); |
1763 | } |
1764 | |
1765 | static bool |
1766 | hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D, |
1767 | llvm::SmallVectorImpl<Module *> *Modules, |
1768 | Sema::AcceptableKind Kind) { |
1769 | assert(isa<CXXRecordDecl>(D->getDeclContext()) && |
1770 | "not a member specialization" ); |
1771 | return hasAcceptableDeclarationImpl( |
1772 | S, D, Modules, |
1773 | F: [](const NamedDecl *D) { |
1774 | // If the specialization is declared at namespace scope, then it's a |
1775 | // member specialization declaration. If it's lexically inside the class |
1776 | // definition then it was instantiated. |
1777 | // |
1778 | // FIXME: This is a hack. There should be a better way to determine |
1779 | // this. |
1780 | // FIXME: What about MS-style explicit specializations declared within a |
1781 | // class definition? |
1782 | return D->getLexicalDeclContext()->isFileContext(); |
1783 | }, |
1784 | Kind); |
1785 | } |
1786 | |
1787 | bool Sema::hasVisibleMemberSpecialization( |
1788 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
1789 | return hasAcceptableMemberSpecialization(S&: *this, D, Modules, |
1790 | Kind: Sema::AcceptableKind::Visible); |
1791 | } |
1792 | |
1793 | bool Sema::hasReachableMemberSpecialization( |
1794 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
1795 | return hasAcceptableMemberSpecialization(S&: *this, D, Modules, |
1796 | Kind: Sema::AcceptableKind::Reachable); |
1797 | } |
1798 | |
1799 | /// Determine whether a declaration is acceptable to name lookup. |
1800 | /// |
1801 | /// This routine determines whether the declaration D is acceptable in the |
1802 | /// current lookup context, taking into account the current template |
1803 | /// instantiation stack. During template instantiation, a declaration is |
1804 | /// acceptable if it is acceptable from a module containing any entity on the |
1805 | /// template instantiation path (by instantiating a template, you allow it to |
1806 | /// see the declarations that your module can see, including those later on in |
1807 | /// your module). |
1808 | bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D, |
1809 | Sema::AcceptableKind Kind) { |
1810 | assert(!D->isUnconditionallyVisible() && |
1811 | "should not call this: not in slow case" ); |
1812 | |
1813 | Module *DeclModule = SemaRef.getOwningModule(Entity: D); |
1814 | assert(DeclModule && "hidden decl has no owning module" ); |
1815 | |
1816 | // If the owning module is visible, the decl is acceptable. |
1817 | if (SemaRef.isModuleVisible(M: DeclModule, |
1818 | ModulePrivate: D->isInvisibleOutsideTheOwningModule())) |
1819 | return true; |
1820 | |
1821 | // Determine whether a decl context is a file context for the purpose of |
1822 | // visibility/reachability. This looks through some (export and linkage spec) |
1823 | // transparent contexts, but not others (enums). |
1824 | auto IsEffectivelyFileContext = [](const DeclContext *DC) { |
1825 | return DC->isFileContext() || isa<LinkageSpecDecl>(Val: DC) || |
1826 | isa<ExportDecl>(Val: DC); |
1827 | }; |
1828 | |
1829 | // If this declaration is not at namespace scope |
1830 | // then it is acceptable if its lexical parent has a acceptable definition. |
1831 | DeclContext *DC = D->getLexicalDeclContext(); |
1832 | if (DC && !IsEffectivelyFileContext(DC)) { |
1833 | // For a parameter, check whether our current template declaration's |
1834 | // lexical context is acceptable, not whether there's some other acceptable |
1835 | // definition of it, because parameters aren't "within" the definition. |
1836 | // |
1837 | // In C++ we need to check for a acceptable definition due to ODR merging, |
1838 | // and in C we must not because each declaration of a function gets its own |
1839 | // set of declarations for tags in prototype scope. |
1840 | bool AcceptableWithinParent; |
1841 | if (D->isTemplateParameter()) { |
1842 | bool SearchDefinitions = true; |
1843 | if (const auto *DCD = dyn_cast<Decl>(Val: DC)) { |
1844 | if (const auto *TD = DCD->getDescribedTemplate()) { |
1845 | TemplateParameterList *TPL = TD->getTemplateParameters(); |
1846 | auto Index = getDepthAndIndex(ND: D).second; |
1847 | SearchDefinitions = Index >= TPL->size() || TPL->getParam(Idx: Index) != D; |
1848 | } |
1849 | } |
1850 | if (SearchDefinitions) |
1851 | AcceptableWithinParent = |
1852 | SemaRef.hasAcceptableDefinition(D: cast<NamedDecl>(Val: DC), Kind); |
1853 | else |
1854 | AcceptableWithinParent = |
1855 | isAcceptable(SemaRef, D: cast<NamedDecl>(Val: DC), Kind); |
1856 | } else if (isa<ParmVarDecl>(Val: D) || |
1857 | (isa<FunctionDecl>(Val: DC) && !SemaRef.getLangOpts().CPlusPlus)) |
1858 | AcceptableWithinParent = isAcceptable(SemaRef, D: cast<NamedDecl>(Val: DC), Kind); |
1859 | else if (D->isModulePrivate()) { |
1860 | // A module-private declaration is only acceptable if an enclosing lexical |
1861 | // parent was merged with another definition in the current module. |
1862 | AcceptableWithinParent = false; |
1863 | do { |
1864 | if (SemaRef.hasMergedDefinitionInCurrentModule(Def: cast<NamedDecl>(Val: DC))) { |
1865 | AcceptableWithinParent = true; |
1866 | break; |
1867 | } |
1868 | DC = DC->getLexicalParent(); |
1869 | } while (!IsEffectivelyFileContext(DC)); |
1870 | } else { |
1871 | AcceptableWithinParent = |
1872 | SemaRef.hasAcceptableDefinition(D: cast<NamedDecl>(Val: DC), Kind); |
1873 | } |
1874 | |
1875 | if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() && |
1876 | Kind == Sema::AcceptableKind::Visible && |
1877 | // FIXME: Do something better in this case. |
1878 | !SemaRef.getLangOpts().ModulesLocalVisibility) { |
1879 | // Cache the fact that this declaration is implicitly visible because |
1880 | // its parent has a visible definition. |
1881 | D->setVisibleDespiteOwningModule(); |
1882 | } |
1883 | return AcceptableWithinParent; |
1884 | } |
1885 | |
1886 | if (Kind == Sema::AcceptableKind::Visible) |
1887 | return false; |
1888 | |
1889 | assert(Kind == Sema::AcceptableKind::Reachable && |
1890 | "Additional Sema::AcceptableKind?" ); |
1891 | return isReachableSlow(SemaRef, D); |
1892 | } |
1893 | |
1894 | bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) { |
1895 | // The module might be ordinarily visible. For a module-private query, that |
1896 | // means it is part of the current module. |
1897 | if (ModulePrivate && isUsableModule(M)) |
1898 | return true; |
1899 | |
1900 | // For a query which is not module-private, that means it is in our visible |
1901 | // module set. |
1902 | if (!ModulePrivate && VisibleModules.isVisible(M)) |
1903 | return true; |
1904 | |
1905 | // Otherwise, it might be visible by virtue of the query being within a |
1906 | // template instantiation or similar that is permitted to look inside M. |
1907 | |
1908 | // Find the extra places where we need to look. |
1909 | const auto &LookupModules = getLookupModules(); |
1910 | if (LookupModules.empty()) |
1911 | return false; |
1912 | |
1913 | // If our lookup set contains the module, it's visible. |
1914 | if (LookupModules.count(V: M)) |
1915 | return true; |
1916 | |
1917 | // The global module fragments are visible to its corresponding module unit. |
1918 | // So the global module fragment should be visible if the its corresponding |
1919 | // module unit is visible. |
1920 | if (M->isGlobalModule() && LookupModules.count(V: M->getTopLevelModule())) |
1921 | return true; |
1922 | |
1923 | // For a module-private query, that's everywhere we get to look. |
1924 | if (ModulePrivate) |
1925 | return false; |
1926 | |
1927 | // Check whether M is transitively exported to an import of the lookup set. |
1928 | return llvm::any_of(Range: LookupModules, P: [&](const Module *LookupM) { |
1929 | return LookupM->isModuleVisible(M); |
1930 | }); |
1931 | } |
1932 | |
1933 | // FIXME: Return false directly if we don't have an interface dependency on the |
1934 | // translation unit containing D. |
1935 | bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) { |
1936 | assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n" ); |
1937 | |
1938 | Module *DeclModule = SemaRef.getOwningModule(Entity: D); |
1939 | assert(DeclModule && "hidden decl has no owning module" ); |
1940 | |
1941 | // Entities in header like modules are reachable only if they're visible. |
1942 | if (DeclModule->isHeaderLikeModule()) |
1943 | return false; |
1944 | |
1945 | if (!D->isInAnotherModuleUnit()) |
1946 | return true; |
1947 | |
1948 | // [module.reach]/p3: |
1949 | // A declaration D is reachable from a point P if: |
1950 | // ... |
1951 | // - D is not discarded ([module.global.frag]), appears in a translation unit |
1952 | // that is reachable from P, and does not appear within a private module |
1953 | // fragment. |
1954 | // |
1955 | // A declaration that's discarded in the GMF should be module-private. |
1956 | if (D->isModulePrivate()) |
1957 | return false; |
1958 | |
1959 | // [module.reach]/p1 |
1960 | // A translation unit U is necessarily reachable from a point P if U is a |
1961 | // module interface unit on which the translation unit containing P has an |
1962 | // interface dependency, or the translation unit containing P imports U, in |
1963 | // either case prior to P ([module.import]). |
1964 | // |
1965 | // [module.import]/p10 |
1966 | // A translation unit has an interface dependency on a translation unit U if |
1967 | // it contains a declaration (possibly a module-declaration) that imports U |
1968 | // or if it has an interface dependency on a translation unit that has an |
1969 | // interface dependency on U. |
1970 | // |
1971 | // So we could conclude the module unit U is necessarily reachable if: |
1972 | // (1) The module unit U is module interface unit. |
1973 | // (2) The current unit has an interface dependency on the module unit U. |
1974 | // |
1975 | // Here we only check for the first condition. Since we couldn't see |
1976 | // DeclModule if it isn't (transitively) imported. |
1977 | if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit()) |
1978 | return true; |
1979 | |
1980 | // [module.reach]/p2 |
1981 | // Additional translation units on |
1982 | // which the point within the program has an interface dependency may be |
1983 | // considered reachable, but it is unspecified which are and under what |
1984 | // circumstances. |
1985 | // |
1986 | // The decision here is to treat all additional tranditional units as |
1987 | // unreachable. |
1988 | return false; |
1989 | } |
1990 | |
1991 | bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) { |
1992 | return LookupResult::isAcceptable(SemaRef&: *this, D: const_cast<NamedDecl *>(D), Kind); |
1993 | } |
1994 | |
1995 | bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) { |
1996 | // FIXME: If there are both visible and hidden declarations, we need to take |
1997 | // into account whether redeclaration is possible. Example: |
1998 | // |
1999 | // Non-imported module: |
2000 | // int f(T); // #1 |
2001 | // Some TU: |
2002 | // static int f(U); // #2, not a redeclaration of #1 |
2003 | // int f(T); // #3, finds both, should link with #1 if T != U, but |
2004 | // // with #2 if T == U; neither should be ambiguous. |
2005 | for (auto *D : R) { |
2006 | if (isVisible(D)) |
2007 | return true; |
2008 | assert(D->isExternallyDeclarable() && |
2009 | "should not have hidden, non-externally-declarable result here" ); |
2010 | } |
2011 | |
2012 | // This function is called once "New" is essentially complete, but before a |
2013 | // previous declaration is attached. We can't query the linkage of "New" in |
2014 | // general, because attaching the previous declaration can change the |
2015 | // linkage of New to match the previous declaration. |
2016 | // |
2017 | // However, because we've just determined that there is no *visible* prior |
2018 | // declaration, we can compute the linkage here. There are two possibilities: |
2019 | // |
2020 | // * This is not a redeclaration; it's safe to compute the linkage now. |
2021 | // |
2022 | // * This is a redeclaration of a prior declaration that is externally |
2023 | // redeclarable. In that case, the linkage of the declaration is not |
2024 | // changed by attaching the prior declaration, because both are externally |
2025 | // declarable (and thus ExternalLinkage or VisibleNoLinkage). |
2026 | // |
2027 | // FIXME: This is subtle and fragile. |
2028 | return New->isExternallyDeclarable(); |
2029 | } |
2030 | |
2031 | /// Retrieve the visible declaration corresponding to D, if any. |
2032 | /// |
2033 | /// This routine determines whether the declaration D is visible in the current |
2034 | /// module, with the current imports. If not, it checks whether any |
2035 | /// redeclaration of D is visible, and if so, returns that declaration. |
2036 | /// |
2037 | /// \returns D, or a visible previous declaration of D, whichever is more recent |
2038 | /// and visible. If no declaration of D is visible, returns null. |
2039 | static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D, |
2040 | unsigned IDNS) { |
2041 | assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case" ); |
2042 | |
2043 | for (auto *RD : D->redecls()) { |
2044 | // Don't bother with extra checks if we already know this one isn't visible. |
2045 | if (RD == D) |
2046 | continue; |
2047 | |
2048 | auto ND = cast<NamedDecl>(Val: RD); |
2049 | // FIXME: This is wrong in the case where the previous declaration is not |
2050 | // visible in the same scope as D. This needs to be done much more |
2051 | // carefully. |
2052 | if (ND->isInIdentifierNamespace(NS: IDNS) && |
2053 | LookupResult::isAvailableForLookup(SemaRef, ND)) |
2054 | return ND; |
2055 | } |
2056 | |
2057 | return nullptr; |
2058 | } |
2059 | |
2060 | bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D, |
2061 | llvm::SmallVectorImpl<Module *> *Modules) { |
2062 | assert(!isVisible(D) && "not in slow case" ); |
2063 | return hasAcceptableDeclarationImpl( |
2064 | S&: *this, D, Modules, F: [](const NamedDecl *) { return true; }, |
2065 | Kind: Sema::AcceptableKind::Visible); |
2066 | } |
2067 | |
2068 | bool Sema::hasReachableDeclarationSlow( |
2069 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
2070 | assert(!isReachable(D) && "not in slow case" ); |
2071 | return hasAcceptableDeclarationImpl( |
2072 | S&: *this, D, Modules, F: [](const NamedDecl *) { return true; }, |
2073 | Kind: Sema::AcceptableKind::Reachable); |
2074 | } |
2075 | |
2076 | NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const { |
2077 | if (auto *ND = dyn_cast<NamespaceDecl>(Val: D)) { |
2078 | // Namespaces are a bit of a special case: we expect there to be a lot of |
2079 | // redeclarations of some namespaces, all declarations of a namespace are |
2080 | // essentially interchangeable, all declarations are found by name lookup |
2081 | // if any is, and namespaces are never looked up during template |
2082 | // instantiation. So we benefit from caching the check in this case, and |
2083 | // it is correct to do so. |
2084 | auto *Key = ND->getCanonicalDecl(); |
2085 | if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Val: Key)) |
2086 | return Acceptable; |
2087 | auto *Acceptable = isVisible(SemaRef&: getSema(), D: Key) |
2088 | ? Key |
2089 | : findAcceptableDecl(SemaRef&: getSema(), D: Key, IDNS); |
2090 | if (Acceptable) |
2091 | getSema().VisibleNamespaceCache.insert(KV: std::make_pair(x&: Key, y&: Acceptable)); |
2092 | return Acceptable; |
2093 | } |
2094 | |
2095 | return findAcceptableDecl(SemaRef&: getSema(), D, IDNS); |
2096 | } |
2097 | |
2098 | bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) { |
2099 | // If this declaration is already visible, return it directly. |
2100 | if (D->isUnconditionallyVisible()) |
2101 | return true; |
2102 | |
2103 | // During template instantiation, we can refer to hidden declarations, if |
2104 | // they were visible in any module along the path of instantiation. |
2105 | return isAcceptableSlow(SemaRef, D, Kind: Sema::AcceptableKind::Visible); |
2106 | } |
2107 | |
2108 | bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) { |
2109 | if (D->isUnconditionallyVisible()) |
2110 | return true; |
2111 | |
2112 | return isAcceptableSlow(SemaRef, D, Kind: Sema::AcceptableKind::Reachable); |
2113 | } |
2114 | |
2115 | bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) { |
2116 | // We should check the visibility at the callsite already. |
2117 | if (isVisible(SemaRef, D: ND)) |
2118 | return true; |
2119 | |
2120 | // Deduction guide lives in namespace scope generally, but it is just a |
2121 | // hint to the compilers. What we actually lookup for is the generated member |
2122 | // of the corresponding template. So it is sufficient to check the |
2123 | // reachability of the template decl. |
2124 | if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate()) |
2125 | return SemaRef.hasReachableDefinition(D: DeductionGuide); |
2126 | |
2127 | // FIXME: The lookup for allocation function is a standalone process. |
2128 | // (We can find the logics in Sema::FindAllocationFunctions) |
2129 | // |
2130 | // Such structure makes it a problem when we instantiate a template |
2131 | // declaration using placement allocation function if the placement |
2132 | // allocation function is invisible. |
2133 | // (See https://github.com/llvm/llvm-project/issues/59601) |
2134 | // |
2135 | // Here we workaround it by making the placement allocation functions |
2136 | // always acceptable. The downside is that we can't diagnose the direct |
2137 | // use of the invisible placement allocation functions. (Although such uses |
2138 | // should be rare). |
2139 | if (auto *FD = dyn_cast<FunctionDecl>(Val: ND); |
2140 | FD && FD->isReservedGlobalPlacementOperator()) |
2141 | return true; |
2142 | |
2143 | auto *DC = ND->getDeclContext(); |
2144 | // If ND is not visible and it is at namespace scope, it shouldn't be found |
2145 | // by name lookup. |
2146 | if (DC->isFileContext()) |
2147 | return false; |
2148 | |
2149 | // [module.interface]p7 |
2150 | // Class and enumeration member names can be found by name lookup in any |
2151 | // context in which a definition of the type is reachable. |
2152 | // |
2153 | // FIXME: The current implementation didn't consider about scope. For example, |
2154 | // ``` |
2155 | // // m.cppm |
2156 | // export module m; |
2157 | // enum E1 { e1 }; |
2158 | // // Use.cpp |
2159 | // import m; |
2160 | // void test() { |
2161 | // auto a = E1::e1; // Error as expected. |
2162 | // auto b = e1; // Should be error. namespace-scope name e1 is not visible |
2163 | // } |
2164 | // ``` |
2165 | // For the above example, the current implementation would emit error for `a` |
2166 | // correctly. However, the implementation wouldn't diagnose about `b` now. |
2167 | // Since we only check the reachability for the parent only. |
2168 | // See clang/test/CXX/module/module.interface/p7.cpp for example. |
2169 | if (auto *TD = dyn_cast<TagDecl>(Val: DC)) |
2170 | return SemaRef.hasReachableDefinition(D: TD); |
2171 | |
2172 | return false; |
2173 | } |
2174 | |
2175 | bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation, |
2176 | bool ForceNoCPlusPlus) { |
2177 | DeclarationName Name = R.getLookupName(); |
2178 | if (!Name) return false; |
2179 | |
2180 | LookupNameKind NameKind = R.getLookupKind(); |
2181 | |
2182 | if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) { |
2183 | // Unqualified name lookup in C/Objective-C is purely lexical, so |
2184 | // search in the declarations attached to the name. |
2185 | if (NameKind == Sema::LookupRedeclarationWithLinkage) { |
2186 | // Find the nearest non-transparent declaration scope. |
2187 | while (!(S->getFlags() & Scope::DeclScope) || |
2188 | (S->getEntity() && S->getEntity()->isTransparentContext())) |
2189 | S = S->getParent(); |
2190 | } |
2191 | |
2192 | // When performing a scope lookup, we want to find local extern decls. |
2193 | FindLocalExternScope FindLocals(R); |
2194 | |
2195 | // Scan up the scope chain looking for a decl that matches this |
2196 | // identifier that is in the appropriate namespace. This search |
2197 | // should not take long, as shadowing of names is uncommon, and |
2198 | // deep shadowing is extremely uncommon. |
2199 | bool LeftStartingScope = false; |
2200 | |
2201 | for (IdentifierResolver::iterator I = IdResolver.begin(Name), |
2202 | IEnd = IdResolver.end(); |
2203 | I != IEnd; ++I) |
2204 | if (NamedDecl *D = R.getAcceptableDecl(D: *I)) { |
2205 | if (NameKind == LookupRedeclarationWithLinkage) { |
2206 | // Determine whether this (or a previous) declaration is |
2207 | // out-of-scope. |
2208 | if (!LeftStartingScope && !S->isDeclScope(D: *I)) |
2209 | LeftStartingScope = true; |
2210 | |
2211 | // If we found something outside of our starting scope that |
2212 | // does not have linkage, skip it. |
2213 | if (LeftStartingScope && !((*I)->hasLinkage())) { |
2214 | R.setShadowed(); |
2215 | continue; |
2216 | } |
2217 | } |
2218 | else if (NameKind == LookupObjCImplicitSelfParam && |
2219 | !isa<ImplicitParamDecl>(Val: *I)) |
2220 | continue; |
2221 | |
2222 | R.addDecl(D); |
2223 | |
2224 | // Check whether there are any other declarations with the same name |
2225 | // and in the same scope. |
2226 | if (I != IEnd) { |
2227 | // Find the scope in which this declaration was declared (if it |
2228 | // actually exists in a Scope). |
2229 | while (S && !S->isDeclScope(D)) |
2230 | S = S->getParent(); |
2231 | |
2232 | // If the scope containing the declaration is the translation unit, |
2233 | // then we'll need to perform our checks based on the matching |
2234 | // DeclContexts rather than matching scopes. |
2235 | if (S && isNamespaceOrTranslationUnitScope(S)) |
2236 | S = nullptr; |
2237 | |
2238 | // Compute the DeclContext, if we need it. |
2239 | DeclContext *DC = nullptr; |
2240 | if (!S) |
2241 | DC = (*I)->getDeclContext()->getRedeclContext(); |
2242 | |
2243 | IdentifierResolver::iterator LastI = I; |
2244 | for (++LastI; LastI != IEnd; ++LastI) { |
2245 | if (S) { |
2246 | // Match based on scope. |
2247 | if (!S->isDeclScope(D: *LastI)) |
2248 | break; |
2249 | } else { |
2250 | // Match based on DeclContext. |
2251 | DeclContext *LastDC |
2252 | = (*LastI)->getDeclContext()->getRedeclContext(); |
2253 | if (!LastDC->Equals(DC)) |
2254 | break; |
2255 | } |
2256 | |
2257 | // If the declaration is in the right namespace and visible, add it. |
2258 | if (NamedDecl *LastD = R.getAcceptableDecl(D: *LastI)) |
2259 | R.addDecl(D: LastD); |
2260 | } |
2261 | |
2262 | R.resolveKind(); |
2263 | } |
2264 | |
2265 | return true; |
2266 | } |
2267 | } else { |
2268 | // Perform C++ unqualified name lookup. |
2269 | if (CppLookupName(R, S)) |
2270 | return true; |
2271 | } |
2272 | |
2273 | // If we didn't find a use of this identifier, and if the identifier |
2274 | // corresponds to a compiler builtin, create the decl object for the builtin |
2275 | // now, injecting it into translation unit scope, and return it. |
2276 | if (AllowBuiltinCreation && LookupBuiltin(R)) |
2277 | return true; |
2278 | |
2279 | // If we didn't find a use of this identifier, the ExternalSource |
2280 | // may be able to handle the situation. |
2281 | // Note: some lookup failures are expected! |
2282 | // See e.g. R.isForRedeclaration(). |
2283 | return (ExternalSource && ExternalSource->LookupUnqualified(R, S)); |
2284 | } |
2285 | |
2286 | /// Perform qualified name lookup in the namespaces nominated by |
2287 | /// using directives by the given context. |
2288 | /// |
2289 | /// C++98 [namespace.qual]p2: |
2290 | /// Given X::m (where X is a user-declared namespace), or given \::m |
2291 | /// (where X is the global namespace), let S be the set of all |
2292 | /// declarations of m in X and in the transitive closure of all |
2293 | /// namespaces nominated by using-directives in X and its used |
2294 | /// namespaces, except that using-directives are ignored in any |
2295 | /// namespace, including X, directly containing one or more |
2296 | /// declarations of m. No namespace is searched more than once in |
2297 | /// the lookup of a name. If S is the empty set, the program is |
2298 | /// ill-formed. Otherwise, if S has exactly one member, or if the |
2299 | /// context of the reference is a using-declaration |
2300 | /// (namespace.udecl), S is the required set of declarations of |
2301 | /// m. Otherwise if the use of m is not one that allows a unique |
2302 | /// declaration to be chosen from S, the program is ill-formed. |
2303 | /// |
2304 | /// C++98 [namespace.qual]p5: |
2305 | /// During the lookup of a qualified namespace member name, if the |
2306 | /// lookup finds more than one declaration of the member, and if one |
2307 | /// declaration introduces a class name or enumeration name and the |
2308 | /// other declarations either introduce the same object, the same |
2309 | /// enumerator or a set of functions, the non-type name hides the |
2310 | /// class or enumeration name if and only if the declarations are |
2311 | /// from the same namespace; otherwise (the declarations are from |
2312 | /// different namespaces), the program is ill-formed. |
2313 | static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, |
2314 | DeclContext *StartDC) { |
2315 | assert(StartDC->isFileContext() && "start context is not a file context" ); |
2316 | |
2317 | // We have not yet looked into these namespaces, much less added |
2318 | // their "using-children" to the queue. |
2319 | SmallVector<NamespaceDecl*, 8> Queue; |
2320 | |
2321 | // We have at least added all these contexts to the queue. |
2322 | llvm::SmallPtrSet<DeclContext*, 8> Visited; |
2323 | Visited.insert(Ptr: StartDC); |
2324 | |
2325 | // We have already looked into the initial namespace; seed the queue |
2326 | // with its using-children. |
2327 | for (auto *I : StartDC->using_directives()) { |
2328 | NamespaceDecl *ND = I->getNominatedNamespace()->getFirstDecl(); |
2329 | if (S.isVisible(D: I) && Visited.insert(Ptr: ND).second) |
2330 | Queue.push_back(Elt: ND); |
2331 | } |
2332 | |
2333 | // The easiest way to implement the restriction in [namespace.qual]p5 |
2334 | // is to check whether any of the individual results found a tag |
2335 | // and, if so, to declare an ambiguity if the final result is not |
2336 | // a tag. |
2337 | bool FoundTag = false; |
2338 | bool FoundNonTag = false; |
2339 | |
2340 | LookupResult LocalR(LookupResult::Temporary, R); |
2341 | |
2342 | bool Found = false; |
2343 | while (!Queue.empty()) { |
2344 | NamespaceDecl *ND = Queue.pop_back_val(); |
2345 | |
2346 | // We go through some convolutions here to avoid copying results |
2347 | // between LookupResults. |
2348 | bool UseLocal = !R.empty(); |
2349 | LookupResult &DirectR = UseLocal ? LocalR : R; |
2350 | bool FoundDirect = LookupDirect(S, R&: DirectR, DC: ND); |
2351 | |
2352 | if (FoundDirect) { |
2353 | // First do any local hiding. |
2354 | DirectR.resolveKind(); |
2355 | |
2356 | // If the local result is a tag, remember that. |
2357 | if (DirectR.isSingleTagDecl()) |
2358 | FoundTag = true; |
2359 | else |
2360 | FoundNonTag = true; |
2361 | |
2362 | // Append the local results to the total results if necessary. |
2363 | if (UseLocal) { |
2364 | R.addAllDecls(Other: LocalR); |
2365 | LocalR.clear(); |
2366 | } |
2367 | } |
2368 | |
2369 | // If we find names in this namespace, ignore its using directives. |
2370 | if (FoundDirect) { |
2371 | Found = true; |
2372 | continue; |
2373 | } |
2374 | |
2375 | for (auto *I : ND->using_directives()) { |
2376 | NamespaceDecl *Nom = I->getNominatedNamespace(); |
2377 | if (S.isVisible(D: I) && Visited.insert(Ptr: Nom).second) |
2378 | Queue.push_back(Elt: Nom); |
2379 | } |
2380 | } |
2381 | |
2382 | if (Found) { |
2383 | if (FoundTag && FoundNonTag) |
2384 | R.setAmbiguousQualifiedTagHiding(); |
2385 | else |
2386 | R.resolveKind(); |
2387 | } |
2388 | |
2389 | return Found; |
2390 | } |
2391 | |
2392 | bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, |
2393 | bool InUnqualifiedLookup) { |
2394 | assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context" ); |
2395 | |
2396 | if (!R.getLookupName()) |
2397 | return false; |
2398 | |
2399 | // Make sure that the declaration context is complete. |
2400 | assert((!isa<TagDecl>(LookupCtx) || |
2401 | LookupCtx->isDependentContext() || |
2402 | cast<TagDecl>(LookupCtx)->isCompleteDefinition() || |
2403 | cast<TagDecl>(LookupCtx)->isBeingDefined()) && |
2404 | "Declaration context must already be complete!" ); |
2405 | |
2406 | struct QualifiedLookupInScope { |
2407 | bool oldVal; |
2408 | DeclContext *Context; |
2409 | // Set flag in DeclContext informing debugger that we're looking for qualified name |
2410 | QualifiedLookupInScope(DeclContext *ctx) |
2411 | : oldVal(ctx->shouldUseQualifiedLookup()), Context(ctx) { |
2412 | ctx->setUseQualifiedLookup(); |
2413 | } |
2414 | ~QualifiedLookupInScope() { |
2415 | Context->setUseQualifiedLookup(oldVal); |
2416 | } |
2417 | } QL(LookupCtx); |
2418 | |
2419 | CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(Val: LookupCtx); |
2420 | // FIXME: Per [temp.dep.general]p2, an unqualified name is also dependent |
2421 | // if it's a dependent conversion-function-id or operator= where the current |
2422 | // class is a templated entity. This should be handled in LookupName. |
2423 | if (!InUnqualifiedLookup && !R.isForRedeclaration()) { |
2424 | // C++23 [temp.dep.type]p5: |
2425 | // A qualified name is dependent if |
2426 | // - it is a conversion-function-id whose conversion-type-id |
2427 | // is dependent, or |
2428 | // - [...] |
2429 | // - its lookup context is the current instantiation and it |
2430 | // is operator=, or |
2431 | // - [...] |
2432 | if (DeclarationName Name = R.getLookupName(); |
2433 | Name.getNameKind() == DeclarationName::CXXConversionFunctionName && |
2434 | Name.getCXXNameType()->isDependentType()) { |
2435 | R.setNotFoundInCurrentInstantiation(); |
2436 | return false; |
2437 | } |
2438 | } |
2439 | |
2440 | if (LookupDirect(S&: *this, R, DC: LookupCtx)) { |
2441 | R.resolveKind(); |
2442 | if (LookupRec) |
2443 | R.setNamingClass(LookupRec); |
2444 | return true; |
2445 | } |
2446 | |
2447 | // Don't descend into implied contexts for redeclarations. |
2448 | // C++98 [namespace.qual]p6: |
2449 | // In a declaration for a namespace member in which the |
2450 | // declarator-id is a qualified-id, given that the qualified-id |
2451 | // for the namespace member has the form |
2452 | // nested-name-specifier unqualified-id |
2453 | // the unqualified-id shall name a member of the namespace |
2454 | // designated by the nested-name-specifier. |
2455 | // See also [class.mfct]p5 and [class.static.data]p2. |
2456 | if (R.isForRedeclaration()) |
2457 | return false; |
2458 | |
2459 | // If this is a namespace, look it up in the implied namespaces. |
2460 | if (LookupCtx->isFileContext()) |
2461 | return LookupQualifiedNameInUsingDirectives(S&: *this, R, StartDC: LookupCtx); |
2462 | |
2463 | // If this isn't a C++ class, we aren't allowed to look into base |
2464 | // classes, we're done. |
2465 | if (!LookupRec || !LookupRec->getDefinition()) |
2466 | return false; |
2467 | |
2468 | // We're done for lookups that can never succeed for C++ classes. |
2469 | if (R.getLookupKind() == LookupOperatorName || |
2470 | R.getLookupKind() == LookupNamespaceName || |
2471 | R.getLookupKind() == LookupObjCProtocolName || |
2472 | R.getLookupKind() == LookupLabel) |
2473 | return false; |
2474 | |
2475 | // If we're performing qualified name lookup into a dependent class, |
2476 | // then we are actually looking into a current instantiation. If we have any |
2477 | // dependent base classes, then we either have to delay lookup until |
2478 | // template instantiation time (at which point all bases will be available) |
2479 | // or we have to fail. |
2480 | if (!InUnqualifiedLookup && LookupRec->isDependentContext() && |
2481 | LookupRec->hasAnyDependentBases()) { |
2482 | R.setNotFoundInCurrentInstantiation(); |
2483 | return false; |
2484 | } |
2485 | |
2486 | // Perform lookup into our base classes. |
2487 | |
2488 | DeclarationName Name = R.getLookupName(); |
2489 | unsigned IDNS = R.getIdentifierNamespace(); |
2490 | |
2491 | // Look for this member in our base classes. |
2492 | auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier, |
2493 | CXXBasePath &Path) -> bool { |
2494 | CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl(); |
2495 | // Drop leading non-matching lookup results from the declaration list so |
2496 | // we don't need to consider them again below. |
2497 | for (Path.Decls = BaseRecord->lookup(Name).begin(); |
2498 | Path.Decls != Path.Decls.end(); ++Path.Decls) { |
2499 | if ((*Path.Decls)->isInIdentifierNamespace(NS: IDNS)) |
2500 | return true; |
2501 | } |
2502 | return false; |
2503 | }; |
2504 | |
2505 | CXXBasePaths Paths; |
2506 | Paths.setOrigin(LookupRec); |
2507 | if (!LookupRec->lookupInBases(BaseMatches: BaseCallback, Paths)) |
2508 | return false; |
2509 | |
2510 | R.setNamingClass(LookupRec); |
2511 | |
2512 | // C++ [class.member.lookup]p2: |
2513 | // [...] If the resulting set of declarations are not all from |
2514 | // sub-objects of the same type, or the set has a nonstatic member |
2515 | // and includes members from distinct sub-objects, there is an |
2516 | // ambiguity and the program is ill-formed. Otherwise that set is |
2517 | // the result of the lookup. |
2518 | QualType SubobjectType; |
2519 | int SubobjectNumber = 0; |
2520 | AccessSpecifier SubobjectAccess = AS_none; |
2521 | |
2522 | // Check whether the given lookup result contains only static members. |
2523 | auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) { |
2524 | for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I) |
2525 | if ((*I)->isInIdentifierNamespace(NS: IDNS) && (*I)->isCXXInstanceMember()) |
2526 | return false; |
2527 | return true; |
2528 | }; |
2529 | |
2530 | bool TemplateNameLookup = R.isTemplateNameLookup(); |
2531 | |
2532 | // Determine whether two sets of members contain the same members, as |
2533 | // required by C++ [class.member.lookup]p6. |
2534 | auto HasSameDeclarations = [&](DeclContext::lookup_iterator A, |
2535 | DeclContext::lookup_iterator B) { |
2536 | using Iterator = DeclContextLookupResult::iterator; |
2537 | using Result = const void *; |
2538 | |
2539 | auto Next = [&](Iterator &It, Iterator End) -> Result { |
2540 | while (It != End) { |
2541 | NamedDecl *ND = *It++; |
2542 | if (!ND->isInIdentifierNamespace(NS: IDNS)) |
2543 | continue; |
2544 | |
2545 | // C++ [temp.local]p3: |
2546 | // A lookup that finds an injected-class-name (10.2) can result in |
2547 | // an ambiguity in certain cases (for example, if it is found in |
2548 | // more than one base class). If all of the injected-class-names |
2549 | // that are found refer to specializations of the same class |
2550 | // template, and if the name is used as a template-name, the |
2551 | // reference refers to the class template itself and not a |
2552 | // specialization thereof, and is not ambiguous. |
2553 | if (TemplateNameLookup) |
2554 | if (auto *TD = getAsTemplateNameDecl(D: ND)) |
2555 | ND = TD; |
2556 | |
2557 | // C++ [class.member.lookup]p3: |
2558 | // type declarations (including injected-class-names) are replaced by |
2559 | // the types they designate |
2560 | if (const TypeDecl *TD = dyn_cast<TypeDecl>(Val: ND->getUnderlyingDecl())) { |
2561 | QualType T = Context.getTypeDeclType(Decl: TD); |
2562 | return T.getCanonicalType().getAsOpaquePtr(); |
2563 | } |
2564 | |
2565 | return ND->getUnderlyingDecl()->getCanonicalDecl(); |
2566 | } |
2567 | return nullptr; |
2568 | }; |
2569 | |
2570 | // We'll often find the declarations are in the same order. Handle this |
2571 | // case (and the special case of only one declaration) efficiently. |
2572 | Iterator AIt = A, BIt = B, AEnd, BEnd; |
2573 | while (true) { |
2574 | Result AResult = Next(AIt, AEnd); |
2575 | Result BResult = Next(BIt, BEnd); |
2576 | if (!AResult && !BResult) |
2577 | return true; |
2578 | if (!AResult || !BResult) |
2579 | return false; |
2580 | if (AResult != BResult) { |
2581 | // Found a mismatch; carefully check both lists, accounting for the |
2582 | // possibility of declarations appearing more than once. |
2583 | llvm::SmallDenseMap<Result, bool, 32> AResults; |
2584 | for (; AResult; AResult = Next(AIt, AEnd)) |
2585 | AResults.insert(KV: {AResult, /*FoundInB*/false}); |
2586 | unsigned Found = 0; |
2587 | for (; BResult; BResult = Next(BIt, BEnd)) { |
2588 | auto It = AResults.find(Val: BResult); |
2589 | if (It == AResults.end()) |
2590 | return false; |
2591 | if (!It->second) { |
2592 | It->second = true; |
2593 | ++Found; |
2594 | } |
2595 | } |
2596 | return AResults.size() == Found; |
2597 | } |
2598 | } |
2599 | }; |
2600 | |
2601 | for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); |
2602 | Path != PathEnd; ++Path) { |
2603 | const CXXBasePathElement &PathElement = Path->back(); |
2604 | |
2605 | // Pick the best (i.e. most permissive i.e. numerically lowest) access |
2606 | // across all paths. |
2607 | SubobjectAccess = std::min(a: SubobjectAccess, b: Path->Access); |
2608 | |
2609 | // Determine whether we're looking at a distinct sub-object or not. |
2610 | if (SubobjectType.isNull()) { |
2611 | // This is the first subobject we've looked at. Record its type. |
2612 | SubobjectType = Context.getCanonicalType(T: PathElement.Base->getType()); |
2613 | SubobjectNumber = PathElement.SubobjectNumber; |
2614 | continue; |
2615 | } |
2616 | |
2617 | if (SubobjectType != |
2618 | Context.getCanonicalType(T: PathElement.Base->getType())) { |
2619 | // We found members of the given name in two subobjects of |
2620 | // different types. If the declaration sets aren't the same, this |
2621 | // lookup is ambiguous. |
2622 | // |
2623 | // FIXME: The language rule says that this applies irrespective of |
2624 | // whether the sets contain only static members. |
2625 | if (HasOnlyStaticMembers(Path->Decls) && |
2626 | HasSameDeclarations(Paths.begin()->Decls, Path->Decls)) |
2627 | continue; |
2628 | |
2629 | R.setAmbiguousBaseSubobjectTypes(Paths); |
2630 | return true; |
2631 | } |
2632 | |
2633 | // FIXME: This language rule no longer exists. Checking for ambiguous base |
2634 | // subobjects should be done as part of formation of a class member access |
2635 | // expression (when converting the object parameter to the member's type). |
2636 | if (SubobjectNumber != PathElement.SubobjectNumber) { |
2637 | // We have a different subobject of the same type. |
2638 | |
2639 | // C++ [class.member.lookup]p5: |
2640 | // A static member, a nested type or an enumerator defined in |
2641 | // a base class T can unambiguously be found even if an object |
2642 | // has more than one base class subobject of type T. |
2643 | if (HasOnlyStaticMembers(Path->Decls)) |
2644 | continue; |
2645 | |
2646 | // We have found a nonstatic member name in multiple, distinct |
2647 | // subobjects. Name lookup is ambiguous. |
2648 | R.setAmbiguousBaseSubobjects(Paths); |
2649 | return true; |
2650 | } |
2651 | } |
2652 | |
2653 | // Lookup in a base class succeeded; return these results. |
2654 | |
2655 | for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end(); |
2656 | I != E; ++I) { |
2657 | AccessSpecifier AS = CXXRecordDecl::MergeAccess(PathAccess: SubobjectAccess, |
2658 | DeclAccess: (*I)->getAccess()); |
2659 | if (NamedDecl *ND = R.getAcceptableDecl(D: *I)) |
2660 | R.addDecl(D: ND, AS); |
2661 | } |
2662 | R.resolveKind(); |
2663 | return true; |
2664 | } |
2665 | |
2666 | bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, |
2667 | CXXScopeSpec &SS) { |
2668 | auto *NNS = SS.getScopeRep(); |
2669 | if (NNS && NNS->getKind() == NestedNameSpecifier::Super) |
2670 | return LookupInSuper(R, Class: NNS->getAsRecordDecl()); |
2671 | else |
2672 | |
2673 | return LookupQualifiedName(R, LookupCtx); |
2674 | } |
2675 | |
2676 | bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, |
2677 | QualType ObjectType, bool AllowBuiltinCreation, |
2678 | bool EnteringContext) { |
2679 | // When the scope specifier is invalid, don't even look for anything. |
2680 | if (SS && SS->isInvalid()) |
2681 | return false; |
2682 | |
2683 | // Determine where to perform name lookup |
2684 | DeclContext *DC = nullptr; |
2685 | bool IsDependent = false; |
2686 | if (!ObjectType.isNull()) { |
2687 | // This nested-name-specifier occurs in a member access expression, e.g., |
2688 | // x->B::f, and we are looking into the type of the object. |
2689 | assert((!SS || SS->isEmpty()) && |
2690 | "ObjectType and scope specifier cannot coexist" ); |
2691 | DC = computeDeclContext(T: ObjectType); |
2692 | IsDependent = !DC && ObjectType->isDependentType(); |
2693 | assert(((!DC && ObjectType->isDependentType()) || |
2694 | !ObjectType->isIncompleteType() || !ObjectType->getAs<TagType>() || |
2695 | ObjectType->castAs<TagType>()->isBeingDefined()) && |
2696 | "Caller should have completed object type" ); |
2697 | } else if (SS && SS->isNotEmpty()) { |
2698 | // This nested-name-specifier occurs after another nested-name-specifier, |
2699 | // so long into the context associated with the prior nested-name-specifier. |
2700 | if ((DC = computeDeclContext(SS: *SS, EnteringContext))) { |
2701 | // The declaration context must be complete. |
2702 | if (!DC->isDependentContext() && RequireCompleteDeclContext(SS&: *SS, DC)) |
2703 | return false; |
2704 | R.setContextRange(SS->getRange()); |
2705 | // FIXME: '__super' lookup semantics could be implemented by a |
2706 | // LookupResult::isSuperLookup flag which skips the initial search of |
2707 | // the lookup context in LookupQualified. |
2708 | if (NestedNameSpecifier *NNS = SS->getScopeRep(); |
2709 | NNS->getKind() == NestedNameSpecifier::Super) |
2710 | return LookupInSuper(R, Class: NNS->getAsRecordDecl()); |
2711 | } |
2712 | IsDependent = !DC && isDependentScopeSpecifier(SS: *SS); |
2713 | } else { |
2714 | // Perform unqualified name lookup starting in the given scope. |
2715 | return LookupName(R, S, AllowBuiltinCreation); |
2716 | } |
2717 | |
2718 | // If we were able to compute a declaration context, perform qualified name |
2719 | // lookup in that context. |
2720 | if (DC) |
2721 | return LookupQualifiedName(R, LookupCtx: DC); |
2722 | else if (IsDependent) |
2723 | // We could not resolve the scope specified to a specific declaration |
2724 | // context, which means that SS refers to an unknown specialization. |
2725 | // Name lookup can't find anything in this case. |
2726 | R.setNotFoundInCurrentInstantiation(); |
2727 | return false; |
2728 | } |
2729 | |
2730 | bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) { |
2731 | // The access-control rules we use here are essentially the rules for |
2732 | // doing a lookup in Class that just magically skipped the direct |
2733 | // members of Class itself. That is, the naming class is Class, and the |
2734 | // access includes the access of the base. |
2735 | for (const auto &BaseSpec : Class->bases()) { |
2736 | CXXRecordDecl *RD = cast<CXXRecordDecl>( |
2737 | Val: BaseSpec.getType()->castAs<RecordType>()->getDecl()); |
2738 | LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind()); |
2739 | Result.setBaseObjectType(Context.getRecordType(Decl: Class)); |
2740 | LookupQualifiedName(R&: Result, LookupCtx: RD); |
2741 | |
2742 | // Copy the lookup results into the target, merging the base's access into |
2743 | // the path access. |
2744 | for (auto I = Result.begin(), E = Result.end(); I != E; ++I) { |
2745 | R.addDecl(D: I.getDecl(), |
2746 | AS: CXXRecordDecl::MergeAccess(PathAccess: BaseSpec.getAccessSpecifier(), |
2747 | DeclAccess: I.getAccess())); |
2748 | } |
2749 | |
2750 | Result.suppressDiagnostics(); |
2751 | } |
2752 | |
2753 | R.resolveKind(); |
2754 | R.setNamingClass(Class); |
2755 | |
2756 | return !R.empty(); |
2757 | } |
2758 | |
2759 | void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { |
2760 | assert(Result.isAmbiguous() && "Lookup result must be ambiguous" ); |
2761 | |
2762 | DeclarationName Name = Result.getLookupName(); |
2763 | SourceLocation NameLoc = Result.getNameLoc(); |
2764 | SourceRange LookupRange = Result.getContextRange(); |
2765 | |
2766 | switch (Result.getAmbiguityKind()) { |
2767 | case LookupResult::AmbiguousBaseSubobjects: { |
2768 | CXXBasePaths *Paths = Result.getBasePaths(); |
2769 | QualType SubobjectType = Paths->front().back().Base->getType(); |
2770 | Diag(Loc: NameLoc, DiagID: diag::err_ambiguous_member_multiple_subobjects) |
2771 | << Name << SubobjectType << getAmbiguousPathsDisplayString(Paths&: *Paths) |
2772 | << LookupRange; |
2773 | |
2774 | DeclContext::lookup_iterator Found = Paths->front().Decls; |
2775 | while (isa<CXXMethodDecl>(Val: *Found) && |
2776 | cast<CXXMethodDecl>(Val: *Found)->isStatic()) |
2777 | ++Found; |
2778 | |
2779 | Diag(Loc: (*Found)->getLocation(), DiagID: diag::note_ambiguous_member_found); |
2780 | break; |
2781 | } |
2782 | |
2783 | case LookupResult::AmbiguousBaseSubobjectTypes: { |
2784 | Diag(Loc: NameLoc, DiagID: diag::err_ambiguous_member_multiple_subobject_types) |
2785 | << Name << LookupRange; |
2786 | |
2787 | CXXBasePaths *Paths = Result.getBasePaths(); |
2788 | std::set<const NamedDecl *> DeclsPrinted; |
2789 | for (CXXBasePaths::paths_iterator Path = Paths->begin(), |
2790 | PathEnd = Paths->end(); |
2791 | Path != PathEnd; ++Path) { |
2792 | const NamedDecl *D = *Path->Decls; |
2793 | if (!D->isInIdentifierNamespace(NS: Result.getIdentifierNamespace())) |
2794 | continue; |
2795 | if (DeclsPrinted.insert(x: D).second) { |
2796 | if (const auto *TD = dyn_cast<TypedefNameDecl>(Val: D->getUnderlyingDecl())) |
2797 | Diag(Loc: D->getLocation(), DiagID: diag::note_ambiguous_member_type_found) |
2798 | << TD->getUnderlyingType(); |
2799 | else if (const auto *TD = dyn_cast<TypeDecl>(Val: D->getUnderlyingDecl())) |
2800 | Diag(Loc: D->getLocation(), DiagID: diag::note_ambiguous_member_type_found) |
2801 | << Context.getTypeDeclType(Decl: TD); |
2802 | else |
2803 | Diag(Loc: D->getLocation(), DiagID: diag::note_ambiguous_member_found); |
2804 | } |
2805 | } |
2806 | break; |
2807 | } |
2808 | |
2809 | case LookupResult::AmbiguousTagHiding: { |
2810 | Diag(Loc: NameLoc, DiagID: diag::err_ambiguous_tag_hiding) << Name << LookupRange; |
2811 | |
2812 | llvm::SmallPtrSet<NamedDecl*, 8> TagDecls; |
2813 | |
2814 | for (auto *D : Result) |
2815 | if (TagDecl *TD = dyn_cast<TagDecl>(Val: D)) { |
2816 | TagDecls.insert(Ptr: TD); |
2817 | Diag(Loc: TD->getLocation(), DiagID: diag::note_hidden_tag); |
2818 | } |
2819 | |
2820 | for (auto *D : Result) |
2821 | if (!isa<TagDecl>(Val: D)) |
2822 | Diag(Loc: D->getLocation(), DiagID: diag::note_hiding_object); |
2823 | |
2824 | // For recovery purposes, go ahead and implement the hiding. |
2825 | LookupResult::Filter F = Result.makeFilter(); |
2826 | while (F.hasNext()) { |
2827 | if (TagDecls.count(Ptr: F.next())) |
2828 | F.erase(); |
2829 | } |
2830 | F.done(); |
2831 | break; |
2832 | } |
2833 | |
2834 | case LookupResult::AmbiguousReferenceToPlaceholderVariable: { |
2835 | Diag(Loc: NameLoc, DiagID: diag::err_using_placeholder_variable) << Name << LookupRange; |
2836 | DeclContext *DC = nullptr; |
2837 | for (auto *D : Result) { |
2838 | Diag(Loc: D->getLocation(), DiagID: diag::note_reference_placeholder) << D; |
2839 | if (DC != nullptr && DC != D->getDeclContext()) |
2840 | break; |
2841 | DC = D->getDeclContext(); |
2842 | } |
2843 | break; |
2844 | } |
2845 | |
2846 | case LookupResult::AmbiguousReference: { |
2847 | Diag(Loc: NameLoc, DiagID: diag::err_ambiguous_reference) << Name << LookupRange; |
2848 | |
2849 | for (auto *D : Result) |
2850 | Diag(Loc: D->getLocation(), DiagID: diag::note_ambiguous_candidate) << D; |
2851 | break; |
2852 | } |
2853 | } |
2854 | } |
2855 | |
2856 | namespace { |
2857 | struct AssociatedLookup { |
2858 | AssociatedLookup(Sema &S, SourceLocation InstantiationLoc, |
2859 | Sema::AssociatedNamespaceSet &Namespaces, |
2860 | Sema::AssociatedClassSet &Classes) |
2861 | : S(S), Namespaces(Namespaces), Classes(Classes), |
2862 | InstantiationLoc(InstantiationLoc) { |
2863 | } |
2864 | |
2865 | bool addClassTransitive(CXXRecordDecl *RD) { |
2866 | Classes.insert(X: RD); |
2867 | return ClassesTransitive.insert(X: RD); |
2868 | } |
2869 | |
2870 | Sema &S; |
2871 | Sema::AssociatedNamespaceSet &Namespaces; |
2872 | Sema::AssociatedClassSet &Classes; |
2873 | SourceLocation InstantiationLoc; |
2874 | |
2875 | private: |
2876 | Sema::AssociatedClassSet ClassesTransitive; |
2877 | }; |
2878 | } // end anonymous namespace |
2879 | |
2880 | static void |
2881 | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T); |
2882 | |
2883 | // Given the declaration context \param Ctx of a class, class template or |
2884 | // enumeration, add the associated namespaces to \param Namespaces as described |
2885 | // in [basic.lookup.argdep]p2. |
2886 | static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces, |
2887 | DeclContext *Ctx) { |
2888 | // The exact wording has been changed in C++14 as a result of |
2889 | // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally |
2890 | // to all language versions since it is possible to return a local type |
2891 | // from a lambda in C++11. |
2892 | // |
2893 | // C++14 [basic.lookup.argdep]p2: |
2894 | // If T is a class type [...]. Its associated namespaces are the innermost |
2895 | // enclosing namespaces of its associated classes. [...] |
2896 | // |
2897 | // If T is an enumeration type, its associated namespace is the innermost |
2898 | // enclosing namespace of its declaration. [...] |
2899 | |
2900 | // We additionally skip inline namespaces. The innermost non-inline namespace |
2901 | // contains all names of all its nested inline namespaces anyway, so we can |
2902 | // replace the entire inline namespace tree with its root. |
2903 | while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) |
2904 | Ctx = Ctx->getParent(); |
2905 | |
2906 | Namespaces.insert(X: Ctx->getPrimaryContext()); |
2907 | } |
2908 | |
2909 | // Add the associated classes and namespaces for argument-dependent |
2910 | // lookup that involves a template argument (C++ [basic.lookup.argdep]p2). |
2911 | static void |
2912 | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, |
2913 | const TemplateArgument &Arg) { |
2914 | // C++ [basic.lookup.argdep]p2, last bullet: |
2915 | // -- [...] ; |
2916 | switch (Arg.getKind()) { |
2917 | case TemplateArgument::Null: |
2918 | break; |
2919 | |
2920 | case TemplateArgument::Type: |
2921 | // [...] the namespaces and classes associated with the types of the |
2922 | // template arguments provided for template type parameters (excluding |
2923 | // template template parameters) |
2924 | addAssociatedClassesAndNamespaces(Result, T: Arg.getAsType()); |
2925 | break; |
2926 | |
2927 | case TemplateArgument::Template: |
2928 | case TemplateArgument::TemplateExpansion: { |
2929 | // [...] the namespaces in which any template template arguments are |
2930 | // defined; and the classes in which any member templates used as |
2931 | // template template arguments are defined. |
2932 | TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); |
2933 | if (ClassTemplateDecl *ClassTemplate |
2934 | = dyn_cast<ClassTemplateDecl>(Val: Template.getAsTemplateDecl())) { |
2935 | DeclContext *Ctx = ClassTemplate->getDeclContext(); |
2936 | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Val: Ctx)) |
2937 | Result.Classes.insert(X: EnclosingClass); |
2938 | // Add the associated namespace for this class. |
2939 | CollectEnclosingNamespace(Namespaces&: Result.Namespaces, Ctx); |
2940 | } |
2941 | break; |
2942 | } |
2943 | |
2944 | case TemplateArgument::Declaration: |
2945 | case TemplateArgument::Integral: |
2946 | case TemplateArgument::Expression: |
2947 | case TemplateArgument::NullPtr: |
2948 | case TemplateArgument::StructuralValue: |
2949 | // [Note: non-type template arguments do not contribute to the set of |
2950 | // associated namespaces. ] |
2951 | break; |
2952 | |
2953 | case TemplateArgument::Pack: |
2954 | for (const auto &P : Arg.pack_elements()) |
2955 | addAssociatedClassesAndNamespaces(Result, Arg: P); |
2956 | break; |
2957 | } |
2958 | } |
2959 | |
2960 | // Add the associated classes and namespaces for argument-dependent lookup |
2961 | // with an argument of class type (C++ [basic.lookup.argdep]p2). |
2962 | static void |
2963 | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, |
2964 | CXXRecordDecl *Class) { |
2965 | |
2966 | // Just silently ignore anything whose name is __va_list_tag. |
2967 | if (Class->getDeclName() == Result.S.VAListTagName) |
2968 | return; |
2969 | |
2970 | // C++ [basic.lookup.argdep]p2: |
2971 | // [...] |
2972 | // -- If T is a class type (including unions), its associated |
2973 | // classes are: the class itself; the class of which it is a |
2974 | // member, if any; and its direct and indirect base classes. |
2975 | // Its associated namespaces are the innermost enclosing |
2976 | // namespaces of its associated classes. |
2977 | |
2978 | // Add the class of which it is a member, if any. |
2979 | DeclContext *Ctx = Class->getDeclContext(); |
2980 | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Val: Ctx)) |
2981 | Result.Classes.insert(X: EnclosingClass); |
2982 | |
2983 | // Add the associated namespace for this class. |
2984 | CollectEnclosingNamespace(Namespaces&: Result.Namespaces, Ctx); |
2985 | |
2986 | // -- If T is a template-id, its associated namespaces and classes are |
2987 | // the namespace in which the template is defined; for member |
2988 | // templates, the member template's class; the namespaces and classes |
2989 | // associated with the types of the template arguments provided for |
2990 | // template type parameters (excluding template template parameters); the |
2991 | // namespaces in which any template template arguments are defined; and |
2992 | // the classes in which any member templates used as template template |
2993 | // arguments are defined. [Note: non-type template arguments do not |
2994 | // contribute to the set of associated namespaces. ] |
2995 | if (ClassTemplateSpecializationDecl *Spec |
2996 | = dyn_cast<ClassTemplateSpecializationDecl>(Val: Class)) { |
2997 | DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); |
2998 | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Val: Ctx)) |
2999 | Result.Classes.insert(X: EnclosingClass); |
3000 | // Add the associated namespace for this class. |
3001 | CollectEnclosingNamespace(Namespaces&: Result.Namespaces, Ctx); |
3002 | |
3003 | const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); |
3004 | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
3005 | addAssociatedClassesAndNamespaces(Result, Arg: TemplateArgs[I]); |
3006 | } |
3007 | |
3008 | // Add the class itself. If we've already transitively visited this class, |
3009 | // we don't need to visit base classes. |
3010 | if (!Result.addClassTransitive(RD: Class)) |
3011 | return; |
3012 | |
3013 | // Only recurse into base classes for complete types. |
3014 | if (!Result.S.isCompleteType(Loc: Result.InstantiationLoc, |
3015 | T: Result.S.Context.getRecordType(Decl: Class))) |
3016 | return; |
3017 | |
3018 | // Add direct and indirect base classes along with their associated |
3019 | // namespaces. |
3020 | SmallVector<CXXRecordDecl *, 32> Bases; |
3021 | Bases.push_back(Elt: Class); |
3022 | while (!Bases.empty()) { |
3023 | // Pop this class off the stack. |
3024 | Class = Bases.pop_back_val(); |
3025 | |
3026 | // Visit the base classes. |
3027 | for (const auto &Base : Class->bases()) { |
3028 | const RecordType *BaseType = Base.getType()->getAs<RecordType>(); |
3029 | // In dependent contexts, we do ADL twice, and the first time around, |
3030 | // the base type might be a dependent TemplateSpecializationType, or a |
3031 | // TemplateTypeParmType. If that happens, simply ignore it. |
3032 | // FIXME: If we want to support export, we probably need to add the |
3033 | // namespace of the template in a TemplateSpecializationType, or even |
3034 | // the classes and namespaces of known non-dependent arguments. |
3035 | if (!BaseType) |
3036 | continue; |
3037 | CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Val: BaseType->getDecl()); |
3038 | if (Result.addClassTransitive(RD: BaseDecl)) { |
3039 | // Find the associated namespace for this base class. |
3040 | DeclContext *BaseCtx = BaseDecl->getDeclContext(); |
3041 | CollectEnclosingNamespace(Namespaces&: Result.Namespaces, Ctx: BaseCtx); |
3042 | |
3043 | // Make sure we visit the bases of this base class. |
3044 | if (BaseDecl->bases_begin() != BaseDecl->bases_end()) |
3045 | Bases.push_back(Elt: BaseDecl); |
3046 | } |
3047 | } |
3048 | } |
3049 | } |
3050 | |
3051 | // Add the associated classes and namespaces for |
3052 | // argument-dependent lookup with an argument of type T |
3053 | // (C++ [basic.lookup.koenig]p2). |
3054 | static void |
3055 | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) { |
3056 | // C++ [basic.lookup.koenig]p2: |
3057 | // |
3058 | // For each argument type T in the function call, there is a set |
3059 | // of zero or more associated namespaces and a set of zero or more |
3060 | // associated classes to be considered. The sets of namespaces and |
3061 | // classes is determined entirely by the types of the function |
3062 | // arguments (and the namespace of any template template |
3063 | // argument). Typedef names and using-declarations used to specify |
3064 | // the types do not contribute to this set. The sets of namespaces |
3065 | // and classes are determined in the following way: |
3066 | |
3067 | SmallVector<const Type *, 16> Queue; |
3068 | const Type *T = Ty->getCanonicalTypeInternal().getTypePtr(); |
3069 | |
3070 | while (true) { |
3071 | switch (T->getTypeClass()) { |
3072 | |
3073 | #define TYPE(Class, Base) |
3074 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
3075 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
3076 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
3077 | #define ABSTRACT_TYPE(Class, Base) |
3078 | #include "clang/AST/TypeNodes.inc" |
3079 | // T is canonical. We can also ignore dependent types because |
3080 | // we don't need to do ADL at the definition point, but if we |
3081 | // wanted to implement template export (or if we find some other |
3082 | // use for associated classes and namespaces...) this would be |
3083 | // wrong. |
3084 | break; |
3085 | |
3086 | // -- If T is a pointer to U or an array of U, its associated |
3087 | // namespaces and classes are those associated with U. |
3088 | case Type::Pointer: |
3089 | T = cast<PointerType>(Val: T)->getPointeeType().getTypePtr(); |
3090 | continue; |
3091 | case Type::ConstantArray: |
3092 | case Type::IncompleteArray: |
3093 | case Type::VariableArray: |
3094 | T = cast<ArrayType>(Val: T)->getElementType().getTypePtr(); |
3095 | continue; |
3096 | |
3097 | // -- If T is a fundamental type, its associated sets of |
3098 | // namespaces and classes are both empty. |
3099 | case Type::Builtin: |
3100 | break; |
3101 | |
3102 | // -- If T is a class type (including unions), its associated |
3103 | // classes are: the class itself; the class of which it is |
3104 | // a member, if any; and its direct and indirect base classes. |
3105 | // Its associated namespaces are the innermost enclosing |
3106 | // namespaces of its associated classes. |
3107 | case Type::Record: { |
3108 | CXXRecordDecl *Class = |
3109 | cast<CXXRecordDecl>(Val: cast<RecordType>(Val: T)->getDecl()); |
3110 | addAssociatedClassesAndNamespaces(Result, Class); |
3111 | break; |
3112 | } |
3113 | |
3114 | // -- If T is an enumeration type, its associated namespace |
3115 | // is the innermost enclosing namespace of its declaration. |
3116 | // If it is a class member, its associated class is the |
3117 | // member’s class; else it has no associated class. |
3118 | case Type::Enum: { |
3119 | EnumDecl *Enum = cast<EnumType>(Val: T)->getDecl(); |
3120 | |
3121 | DeclContext *Ctx = Enum->getDeclContext(); |
3122 | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Val: Ctx)) |
3123 | Result.Classes.insert(X: EnclosingClass); |
3124 | |
3125 | // Add the associated namespace for this enumeration. |
3126 | CollectEnclosingNamespace(Namespaces&: Result.Namespaces, Ctx); |
3127 | |
3128 | break; |
3129 | } |
3130 | |
3131 | // -- If T is a function type, its associated namespaces and |
3132 | // classes are those associated with the function parameter |
3133 | // types and those associated with the return type. |
3134 | case Type::FunctionProto: { |
3135 | const FunctionProtoType *Proto = cast<FunctionProtoType>(Val: T); |
3136 | for (const auto &Arg : Proto->param_types()) |
3137 | Queue.push_back(Elt: Arg.getTypePtr()); |
3138 | // fallthrough |
3139 | [[fallthrough]]; |
3140 | } |
3141 | case Type::FunctionNoProto: { |
3142 | const FunctionType *FnType = cast<FunctionType>(Val: T); |
3143 | T = FnType->getReturnType().getTypePtr(); |
3144 | continue; |
3145 | } |
3146 | |
3147 | // -- If T is a pointer to a member function of a class X, its |
3148 | // associated namespaces and classes are those associated |
3149 | // with the function parameter types and return type, |
3150 | // together with those associated with X. |
3151 | // |
3152 | // -- If T is a pointer to a data member of class X, its |
3153 | // associated namespaces and classes are those associated |
3154 | // with the member type together with those associated with |
3155 | // X. |
3156 | case Type::MemberPointer: { |
3157 | const MemberPointerType *MemberPtr = cast<MemberPointerType>(Val: T); |
3158 | |
3159 | // Queue up the class type into which this points. |
3160 | Queue.push_back(Elt: MemberPtr->getClass()); |
3161 | |
3162 | // And directly continue with the pointee type. |
3163 | T = MemberPtr->getPointeeType().getTypePtr(); |
3164 | continue; |
3165 | } |
3166 | |
3167 | // As an extension, treat this like a normal pointer. |
3168 | case Type::BlockPointer: |
3169 | T = cast<BlockPointerType>(Val: T)->getPointeeType().getTypePtr(); |
3170 | continue; |
3171 | |
3172 | // References aren't covered by the standard, but that's such an |
3173 | // obvious defect that we cover them anyway. |
3174 | case Type::LValueReference: |
3175 | case Type::RValueReference: |
3176 | T = cast<ReferenceType>(Val: T)->getPointeeType().getTypePtr(); |
3177 | continue; |
3178 | |
3179 | // These are fundamental types. |
3180 | case Type::Vector: |
3181 | case Type::ExtVector: |
3182 | case Type::ConstantMatrix: |
3183 | case Type::Complex: |
3184 | case Type::BitInt: |
3185 | break; |
3186 | |
3187 | // Non-deduced auto types only get here for error cases. |
3188 | case Type::Auto: |
3189 | case Type::DeducedTemplateSpecialization: |
3190 | break; |
3191 | |
3192 | // If T is an Objective-C object or interface type, or a pointer to an |
3193 | // object or interface type, the associated namespace is the global |
3194 | // namespace. |
3195 | case Type::ObjCObject: |
3196 | case Type::ObjCInterface: |
3197 | case Type::ObjCObjectPointer: |
3198 | Result.Namespaces.insert(X: Result.S.Context.getTranslationUnitDecl()); |
3199 | break; |
3200 | |
3201 | // Atomic types are just wrappers; use the associations of the |
3202 | // contained type. |
3203 | case Type::Atomic: |
3204 | T = cast<AtomicType>(Val: T)->getValueType().getTypePtr(); |
3205 | continue; |
3206 | case Type::Pipe: |
3207 | T = cast<PipeType>(Val: T)->getElementType().getTypePtr(); |
3208 | continue; |
3209 | |
3210 | // Array parameter types are treated as fundamental types. |
3211 | case Type::ArrayParameter: |
3212 | break; |
3213 | } |
3214 | |
3215 | if (Queue.empty()) |
3216 | break; |
3217 | T = Queue.pop_back_val(); |
3218 | } |
3219 | } |
3220 | |
3221 | void Sema::FindAssociatedClassesAndNamespaces( |
3222 | SourceLocation InstantiationLoc, ArrayRef<Expr *> Args, |
3223 | AssociatedNamespaceSet &AssociatedNamespaces, |
3224 | AssociatedClassSet &AssociatedClasses) { |
3225 | AssociatedNamespaces.clear(); |
3226 | AssociatedClasses.clear(); |
3227 | |
3228 | AssociatedLookup Result(*this, InstantiationLoc, |
3229 | AssociatedNamespaces, AssociatedClasses); |
3230 | |
3231 | // C++ [basic.lookup.koenig]p2: |
3232 | // For each argument type T in the function call, there is a set |
3233 | // of zero or more associated namespaces and a set of zero or more |
3234 | // associated classes to be considered. The sets of namespaces and |
3235 | // classes is determined entirely by the types of the function |
3236 | // arguments (and the namespace of any template template |
3237 | // argument). |
3238 | for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { |
3239 | Expr *Arg = Args[ArgIdx]; |
3240 | |
3241 | if (Arg->getType() != Context.OverloadTy) { |
3242 | addAssociatedClassesAndNamespaces(Result, Ty: Arg->getType()); |
3243 | continue; |
3244 | } |
3245 | |
3246 | // [...] In addition, if the argument is the name or address of a |
3247 | // set of overloaded functions and/or function templates, its |
3248 | // associated classes and namespaces are the union of those |
3249 | // associated with each of the members of the set: the namespace |
3250 | // in which the function or function template is defined and the |
3251 | // classes and namespaces associated with its (non-dependent) |
3252 | // parameter types and return type. |
3253 | OverloadExpr *OE = OverloadExpr::find(E: Arg).Expression; |
3254 | |
3255 | for (const NamedDecl *D : OE->decls()) { |
3256 | // Look through any using declarations to find the underlying function. |
3257 | const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction(); |
3258 | |
3259 | // Add the classes and namespaces associated with the parameter |
3260 | // types and return type of this function. |
3261 | addAssociatedClassesAndNamespaces(Result, Ty: FDecl->getType()); |
3262 | } |
3263 | } |
3264 | } |
3265 | |
3266 | NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, |
3267 | SourceLocation Loc, |
3268 | LookupNameKind NameKind, |
3269 | RedeclarationKind Redecl) { |
3270 | LookupResult R(*this, Name, Loc, NameKind, Redecl); |
3271 | LookupName(R, S); |
3272 | return R.getAsSingle<NamedDecl>(); |
3273 | } |
3274 | |
3275 | void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, |
3276 | UnresolvedSetImpl &Functions) { |
3277 | // C++ [over.match.oper]p3: |
3278 | // -- The set of non-member candidates is the result of the |
3279 | // unqualified lookup of operator@ in the context of the |
3280 | // expression according to the usual rules for name lookup in |
3281 | // unqualified function calls (3.4.2) except that all member |
3282 | // functions are ignored. |
3283 | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
3284 | LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); |
3285 | LookupName(R&: Operators, S); |
3286 | |
3287 | assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous" ); |
3288 | Functions.append(I: Operators.begin(), E: Operators.end()); |
3289 | } |
3290 | |
3291 | Sema::SpecialMemberOverloadResult |
3292 | Sema::LookupSpecialMember(CXXRecordDecl *RD, CXXSpecialMemberKind SM, |
3293 | bool ConstArg, bool VolatileArg, bool RValueThis, |
3294 | bool ConstThis, bool VolatileThis) { |
3295 | assert(CanDeclareSpecialMemberFunction(RD) && |
3296 | "doing special member lookup into record that isn't fully complete" ); |
3297 | RD = RD->getDefinition(); |
3298 | if (RValueThis || ConstThis || VolatileThis) |
3299 | assert((SM == CXXSpecialMemberKind::CopyAssignment || |
3300 | SM == CXXSpecialMemberKind::MoveAssignment) && |
3301 | "constructors and destructors always have unqualified lvalue this" ); |
3302 | if (ConstArg || VolatileArg) |
3303 | assert((SM != CXXSpecialMemberKind::DefaultConstructor && |
3304 | SM != CXXSpecialMemberKind::Destructor) && |
3305 | "parameter-less special members can't have qualified arguments" ); |
3306 | |
3307 | // FIXME: Get the caller to pass in a location for the lookup. |
3308 | SourceLocation LookupLoc = RD->getLocation(); |
3309 | |
3310 | llvm::FoldingSetNodeID ID; |
3311 | ID.AddPointer(Ptr: RD); |
3312 | ID.AddInteger(I: llvm::to_underlying(E: SM)); |
3313 | ID.AddInteger(I: ConstArg); |
3314 | ID.AddInteger(I: VolatileArg); |
3315 | ID.AddInteger(I: RValueThis); |
3316 | ID.AddInteger(I: ConstThis); |
3317 | ID.AddInteger(I: VolatileThis); |
3318 | |
3319 | void *InsertPoint; |
3320 | SpecialMemberOverloadResultEntry *Result = |
3321 | SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPos&: InsertPoint); |
3322 | |
3323 | // This was already cached |
3324 | if (Result) |
3325 | return *Result; |
3326 | |
3327 | Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>(); |
3328 | Result = new (Result) SpecialMemberOverloadResultEntry(ID); |
3329 | SpecialMemberCache.InsertNode(N: Result, InsertPos: InsertPoint); |
3330 | |
3331 | if (SM == CXXSpecialMemberKind::Destructor) { |
3332 | if (RD->needsImplicitDestructor()) { |
3333 | runWithSufficientStackSpace(Loc: RD->getLocation(), Fn: [&] { |
3334 | DeclareImplicitDestructor(ClassDecl: RD); |
3335 | }); |
3336 | } |
3337 | CXXDestructorDecl *DD = RD->getDestructor(); |
3338 | Result->setMethod(DD); |
3339 | Result->setKind(DD && !DD->isDeleted() |
3340 | ? SpecialMemberOverloadResult::Success |
3341 | : SpecialMemberOverloadResult::NoMemberOrDeleted); |
3342 | return *Result; |
3343 | } |
3344 | |
3345 | // Prepare for overload resolution. Here we construct a synthetic argument |
3346 | // if necessary and make sure that implicit functions are declared. |
3347 | CanQualType CanTy = Context.getCanonicalType(T: Context.getTagDeclType(Decl: RD)); |
3348 | DeclarationName Name; |
3349 | Expr *Arg = nullptr; |
3350 | unsigned NumArgs; |
3351 | |
3352 | QualType ArgType = CanTy; |
3353 | ExprValueKind VK = VK_LValue; |
3354 | |
3355 | if (SM == CXXSpecialMemberKind::DefaultConstructor) { |
3356 | Name = Context.DeclarationNames.getCXXConstructorName(Ty: CanTy); |
3357 | NumArgs = 0; |
3358 | if (RD->needsImplicitDefaultConstructor()) { |
3359 | runWithSufficientStackSpace(Loc: RD->getLocation(), Fn: [&] { |
3360 | DeclareImplicitDefaultConstructor(ClassDecl: RD); |
3361 | }); |
3362 | } |
3363 | } else { |
3364 | if (SM == CXXSpecialMemberKind::CopyConstructor || |
3365 | SM == CXXSpecialMemberKind::MoveConstructor) { |
3366 | Name = Context.DeclarationNames.getCXXConstructorName(Ty: CanTy); |
3367 | if (RD->needsImplicitCopyConstructor()) { |
3368 | runWithSufficientStackSpace(Loc: RD->getLocation(), Fn: [&] { |
3369 | DeclareImplicitCopyConstructor(ClassDecl: RD); |
3370 | }); |
3371 | } |
3372 | if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) { |
3373 | runWithSufficientStackSpace(Loc: RD->getLocation(), Fn: [&] { |
3374 | DeclareImplicitMoveConstructor(ClassDecl: RD); |
3375 | }); |
3376 | } |
3377 | } else { |
3378 | Name = Context.DeclarationNames.getCXXOperatorName(Op: OO_Equal); |
3379 | if (RD->needsImplicitCopyAssignment()) { |
3380 | runWithSufficientStackSpace(Loc: RD->getLocation(), Fn: [&] { |
3381 | DeclareImplicitCopyAssignment(ClassDecl: RD); |
3382 | }); |
3383 | } |
3384 | if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) { |
3385 | runWithSufficientStackSpace(Loc: RD->getLocation(), Fn: [&] { |
3386 | DeclareImplicitMoveAssignment(ClassDecl: RD); |
3387 | }); |
3388 | } |
3389 | } |
3390 | |
3391 | if (ConstArg) |
3392 | ArgType.addConst(); |
3393 | if (VolatileArg) |
3394 | ArgType.addVolatile(); |
3395 | |
3396 | // This isn't /really/ specified by the standard, but it's implied |
3397 | // we should be working from a PRValue in the case of move to ensure |
3398 | // that we prefer to bind to rvalue references, and an LValue in the |
3399 | // case of copy to ensure we don't bind to rvalue references. |
3400 | // Possibly an XValue is actually correct in the case of move, but |
3401 | // there is no semantic difference for class types in this restricted |
3402 | // case. |
3403 | if (SM == CXXSpecialMemberKind::CopyConstructor || |
3404 | SM == CXXSpecialMemberKind::CopyAssignment) |
3405 | VK = VK_LValue; |
3406 | else |
3407 | VK = VK_PRValue; |
3408 | } |
3409 | |
3410 | OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK); |
3411 | |
3412 | if (SM != CXXSpecialMemberKind::DefaultConstructor) { |
3413 | NumArgs = 1; |
3414 | Arg = &FakeArg; |
3415 | } |
3416 | |
3417 | // Create the object argument |
3418 | QualType ThisTy = CanTy; |
3419 | if (ConstThis) |
3420 | ThisTy.addConst(); |
3421 | if (VolatileThis) |
3422 | ThisTy.addVolatile(); |
3423 | Expr::Classification Classification = |
3424 | OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue) |
3425 | .Classify(Ctx&: Context); |
3426 | |
3427 | // Now we perform lookup on the name we computed earlier and do overload |
3428 | // resolution. Lookup is only performed directly into the class since there |
3429 | // will always be a (possibly implicit) declaration to shadow any others. |
3430 | OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal); |
3431 | DeclContext::lookup_result R = RD->lookup(Name); |
3432 | |
3433 | if (R.empty()) { |
3434 | // We might have no default constructor because we have a lambda's closure |
3435 | // type, rather than because there's some other declared constructor. |
3436 | // Every class has a copy/move constructor, copy/move assignment, and |
3437 | // destructor. |
3438 | assert(SM == CXXSpecialMemberKind::DefaultConstructor && |
3439 | "lookup for a constructor or assignment operator was empty" ); |
3440 | Result->setMethod(nullptr); |
3441 | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); |
3442 | return *Result; |
3443 | } |
3444 | |
3445 | // Copy the candidates as our processing of them may load new declarations |
3446 | // from an external source and invalidate lookup_result. |
3447 | SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end()); |
3448 | |
3449 | for (NamedDecl *CandDecl : Candidates) { |
3450 | if (CandDecl->isInvalidDecl()) |
3451 | continue; |
3452 | |
3453 | DeclAccessPair Cand = DeclAccessPair::make(D: CandDecl, AS: AS_public); |
3454 | auto CtorInfo = getConstructorInfo(ND: Cand); |
3455 | if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Val: Cand->getUnderlyingDecl())) { |
3456 | if (SM == CXXSpecialMemberKind::CopyAssignment || |
3457 | SM == CXXSpecialMemberKind::MoveAssignment) |
3458 | AddMethodCandidate(Method: M, FoundDecl: Cand, ActingContext: RD, ObjectType: ThisTy, ObjectClassification: Classification, |
3459 | Args: llvm::ArrayRef(&Arg, NumArgs), CandidateSet&: OCS, SuppressUserConversions: true); |
3460 | else if (CtorInfo) |
3461 | AddOverloadCandidate(Function: CtorInfo.Constructor, FoundDecl: CtorInfo.FoundDecl, |
3462 | Args: llvm::ArrayRef(&Arg, NumArgs), CandidateSet&: OCS, |
3463 | /*SuppressUserConversions*/ true); |
3464 | else |
3465 | AddOverloadCandidate(Function: M, FoundDecl: Cand, Args: llvm::ArrayRef(&Arg, NumArgs), CandidateSet&: OCS, |
3466 | /*SuppressUserConversions*/ true); |
3467 | } else if (FunctionTemplateDecl *Tmpl = |
3468 | dyn_cast<FunctionTemplateDecl>(Val: Cand->getUnderlyingDecl())) { |
3469 | if (SM == CXXSpecialMemberKind::CopyAssignment || |
3470 | SM == CXXSpecialMemberKind::MoveAssignment) |
3471 | AddMethodTemplateCandidate(MethodTmpl: Tmpl, FoundDecl: Cand, ActingContext: RD, ExplicitTemplateArgs: nullptr, ObjectType: ThisTy, |
3472 | ObjectClassification: Classification, |
3473 | Args: llvm::ArrayRef(&Arg, NumArgs), CandidateSet&: OCS, SuppressUserConversions: true); |
3474 | else if (CtorInfo) |
3475 | AddTemplateOverloadCandidate(FunctionTemplate: CtorInfo.ConstructorTmpl, |
3476 | FoundDecl: CtorInfo.FoundDecl, ExplicitTemplateArgs: nullptr, |
3477 | Args: llvm::ArrayRef(&Arg, NumArgs), CandidateSet&: OCS, SuppressUserConversions: true); |
3478 | else |
3479 | AddTemplateOverloadCandidate(FunctionTemplate: Tmpl, FoundDecl: Cand, ExplicitTemplateArgs: nullptr, |
3480 | Args: llvm::ArrayRef(&Arg, NumArgs), CandidateSet&: OCS, SuppressUserConversions: true); |
3481 | } else { |
3482 | assert(isa<UsingDecl>(Cand.getDecl()) && |
3483 | "illegal Kind of operator = Decl" ); |
3484 | } |
3485 | } |
3486 | |
3487 | OverloadCandidateSet::iterator Best; |
3488 | switch (OCS.BestViableFunction(S&: *this, Loc: LookupLoc, Best)) { |
3489 | case OR_Success: |
3490 | Result->setMethod(cast<CXXMethodDecl>(Val: Best->Function)); |
3491 | Result->setKind(SpecialMemberOverloadResult::Success); |
3492 | break; |
3493 | |
3494 | case OR_Deleted: |
3495 | Result->setMethod(cast<CXXMethodDecl>(Val: Best->Function)); |
3496 | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); |
3497 | break; |
3498 | |
3499 | case OR_Ambiguous: |
3500 | Result->setMethod(nullptr); |
3501 | Result->setKind(SpecialMemberOverloadResult::Ambiguous); |
3502 | break; |
3503 | |
3504 | case OR_No_Viable_Function: |
3505 | Result->setMethod(nullptr); |
3506 | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); |
3507 | break; |
3508 | } |
3509 | |
3510 | return *Result; |
3511 | } |
3512 | |
3513 | CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) { |
3514 | SpecialMemberOverloadResult Result = |
3515 | LookupSpecialMember(RD: Class, SM: CXXSpecialMemberKind::DefaultConstructor, |
3516 | ConstArg: false, VolatileArg: false, RValueThis: false, ConstThis: false, VolatileThis: false); |
3517 | |
3518 | return cast_or_null<CXXConstructorDecl>(Val: Result.getMethod()); |
3519 | } |
3520 | |
3521 | CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class, |
3522 | unsigned Quals) { |
3523 | assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && |
3524 | "non-const, non-volatile qualifiers for copy ctor arg" ); |
3525 | SpecialMemberOverloadResult Result = LookupSpecialMember( |
3526 | RD: Class, SM: CXXSpecialMemberKind::CopyConstructor, ConstArg: Quals & Qualifiers::Const, |
3527 | VolatileArg: Quals & Qualifiers::Volatile, RValueThis: false, ConstThis: false, VolatileThis: false); |
3528 | |
3529 | return cast_or_null<CXXConstructorDecl>(Val: Result.getMethod()); |
3530 | } |
3531 | |
3532 | CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class, |
3533 | unsigned Quals) { |
3534 | SpecialMemberOverloadResult Result = LookupSpecialMember( |
3535 | RD: Class, SM: CXXSpecialMemberKind::MoveConstructor, ConstArg: Quals & Qualifiers::Const, |
3536 | VolatileArg: Quals & Qualifiers::Volatile, RValueThis: false, ConstThis: false, VolatileThis: false); |
3537 | |
3538 | return cast_or_null<CXXConstructorDecl>(Val: Result.getMethod()); |
3539 | } |
3540 | |
3541 | DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) { |
3542 | // If the implicit constructors have not yet been declared, do so now. |
3543 | if (CanDeclareSpecialMemberFunction(Class)) { |
3544 | runWithSufficientStackSpace(Loc: Class->getLocation(), Fn: [&] { |
3545 | if (Class->needsImplicitDefaultConstructor()) |
3546 | DeclareImplicitDefaultConstructor(ClassDecl: Class); |
3547 | if (Class->needsImplicitCopyConstructor()) |
3548 | DeclareImplicitCopyConstructor(ClassDecl: Class); |
3549 | if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor()) |
3550 | DeclareImplicitMoveConstructor(ClassDecl: Class); |
3551 | }); |
3552 | } |
3553 | |
3554 | CanQualType T = Context.getCanonicalType(T: Context.getTypeDeclType(Decl: Class)); |
3555 | DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(Ty: T); |
3556 | return Class->lookup(Name); |
3557 | } |
3558 | |
3559 | CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class, |
3560 | unsigned Quals, bool RValueThis, |
3561 | unsigned ThisQuals) { |
3562 | assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && |
3563 | "non-const, non-volatile qualifiers for copy assignment arg" ); |
3564 | assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && |
3565 | "non-const, non-volatile qualifiers for copy assignment this" ); |
3566 | SpecialMemberOverloadResult Result = LookupSpecialMember( |
3567 | RD: Class, SM: CXXSpecialMemberKind::CopyAssignment, ConstArg: Quals & Qualifiers::Const, |
3568 | VolatileArg: Quals & Qualifiers::Volatile, RValueThis, ConstThis: ThisQuals & Qualifiers::Const, |
3569 | VolatileThis: ThisQuals & Qualifiers::Volatile); |
3570 | |
3571 | return Result.getMethod(); |
3572 | } |
3573 | |
3574 | CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class, |
3575 | unsigned Quals, |
3576 | bool RValueThis, |
3577 | unsigned ThisQuals) { |
3578 | assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && |
3579 | "non-const, non-volatile qualifiers for copy assignment this" ); |
3580 | SpecialMemberOverloadResult Result = LookupSpecialMember( |
3581 | RD: Class, SM: CXXSpecialMemberKind::MoveAssignment, ConstArg: Quals & Qualifiers::Const, |
3582 | VolatileArg: Quals & Qualifiers::Volatile, RValueThis, ConstThis: ThisQuals & Qualifiers::Const, |
3583 | VolatileThis: ThisQuals & Qualifiers::Volatile); |
3584 | |
3585 | return Result.getMethod(); |
3586 | } |
3587 | |
3588 | CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) { |
3589 | return cast_or_null<CXXDestructorDecl>( |
3590 | Val: LookupSpecialMember(RD: Class, SM: CXXSpecialMemberKind::Destructor, ConstArg: false, VolatileArg: false, |
3591 | RValueThis: false, ConstThis: false, VolatileThis: false) |
3592 | .getMethod()); |
3593 | } |
3594 | |
3595 | Sema::LiteralOperatorLookupResult |
3596 | Sema::LookupLiteralOperator(Scope *S, LookupResult &R, |
3597 | ArrayRef<QualType> ArgTys, bool AllowRaw, |
3598 | bool AllowTemplate, bool AllowStringTemplatePack, |
3599 | bool DiagnoseMissing, StringLiteral *StringLit) { |
3600 | LookupName(R, S); |
3601 | assert(R.getResultKind() != LookupResult::Ambiguous && |
3602 | "literal operator lookup can't be ambiguous" ); |
3603 | |
3604 | // Filter the lookup results appropriately. |
3605 | LookupResult::Filter F = R.makeFilter(); |
3606 | |
3607 | bool AllowCooked = true; |
3608 | bool FoundRaw = false; |
3609 | bool FoundTemplate = false; |
3610 | bool FoundStringTemplatePack = false; |
3611 | bool FoundCooked = false; |
3612 | |
3613 | while (F.hasNext()) { |
3614 | Decl *D = F.next(); |
3615 | if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(Val: D)) |
3616 | D = USD->getTargetDecl(); |
3617 | |
3618 | // If the declaration we found is invalid, skip it. |
3619 | if (D->isInvalidDecl()) { |
3620 | F.erase(); |
3621 | continue; |
3622 | } |
3623 | |
3624 | bool IsRaw = false; |
3625 | bool IsTemplate = false; |
3626 | bool IsStringTemplatePack = false; |
3627 | bool IsCooked = false; |
3628 | |
3629 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) { |
3630 | if (FD->getNumParams() == 1 && |
3631 | FD->getParamDecl(i: 0)->getType()->getAs<PointerType>()) |
3632 | IsRaw = true; |
3633 | else if (FD->getNumParams() == ArgTys.size()) { |
3634 | IsCooked = true; |
3635 | for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) { |
3636 | QualType ParamTy = FD->getParamDecl(i: ArgIdx)->getType(); |
3637 | if (!Context.hasSameUnqualifiedType(T1: ArgTys[ArgIdx], T2: ParamTy)) { |
3638 | IsCooked = false; |
3639 | break; |
3640 | } |
3641 | } |
3642 | } |
3643 | } |
3644 | if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(Val: D)) { |
3645 | TemplateParameterList *Params = FD->getTemplateParameters(); |
3646 | if (Params->size() == 1) { |
3647 | IsTemplate = true; |
3648 | if (!Params->getParam(Idx: 0)->isTemplateParameterPack() && !StringLit) { |
3649 | // Implied but not stated: user-defined integer and floating literals |
3650 | // only ever use numeric literal operator templates, not templates |
3651 | // taking a parameter of class type. |
3652 | F.erase(); |
3653 | continue; |
3654 | } |
3655 | |
3656 | // A string literal template is only considered if the string literal |
3657 | // is a well-formed template argument for the template parameter. |
3658 | if (StringLit) { |
3659 | SFINAETrap Trap(*this); |
3660 | SmallVector<TemplateArgument, 1> SugaredChecked, CanonicalChecked; |
3661 | TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit); |
3662 | if (CheckTemplateArgument( |
3663 | Param: Params->getParam(Idx: 0), Arg, Template: FD, TemplateLoc: R.getNameLoc(), RAngleLoc: R.getNameLoc(), |
3664 | ArgumentPackIndex: 0, SugaredConverted&: SugaredChecked, CanonicalConverted&: CanonicalChecked, CTAK: CTAK_Specified) || |
3665 | Trap.hasErrorOccurred()) |
3666 | IsTemplate = false; |
3667 | } |
3668 | } else { |
3669 | IsStringTemplatePack = true; |
3670 | } |
3671 | } |
3672 | |
3673 | if (AllowTemplate && StringLit && IsTemplate) { |
3674 | FoundTemplate = true; |
3675 | AllowRaw = false; |
3676 | AllowCooked = false; |
3677 | AllowStringTemplatePack = false; |
3678 | if (FoundRaw || FoundCooked || FoundStringTemplatePack) { |
3679 | F.restart(); |
3680 | FoundRaw = FoundCooked = FoundStringTemplatePack = false; |
3681 | } |
3682 | } else if (AllowCooked && IsCooked) { |
3683 | FoundCooked = true; |
3684 | AllowRaw = false; |
3685 | AllowTemplate = StringLit; |
3686 | AllowStringTemplatePack = false; |
3687 | if (FoundRaw || FoundTemplate || FoundStringTemplatePack) { |
3688 | // Go through again and remove the raw and template decls we've |
3689 | // already found. |
3690 | F.restart(); |
3691 | FoundRaw = FoundTemplate = FoundStringTemplatePack = false; |
3692 | } |
3693 | } else if (AllowRaw && IsRaw) { |
3694 | FoundRaw = true; |
3695 | } else if (AllowTemplate && IsTemplate) { |
3696 | FoundTemplate = true; |
3697 | } else if (AllowStringTemplatePack && IsStringTemplatePack) { |
3698 | FoundStringTemplatePack = true; |
3699 | } else { |
3700 | F.erase(); |
3701 | } |
3702 | } |
3703 | |
3704 | F.done(); |
3705 | |
3706 | // Per C++20 [lex.ext]p5, we prefer the template form over the non-template |
3707 | // form for string literal operator templates. |
3708 | if (StringLit && FoundTemplate) |
3709 | return LOLR_Template; |
3710 | |
3711 | // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching |
3712 | // parameter type, that is used in preference to a raw literal operator |
3713 | // or literal operator template. |
3714 | if (FoundCooked) |
3715 | return LOLR_Cooked; |
3716 | |
3717 | // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal |
3718 | // operator template, but not both. |
3719 | if (FoundRaw && FoundTemplate) { |
3720 | Diag(Loc: R.getNameLoc(), DiagID: diag::err_ovl_ambiguous_call) << R.getLookupName(); |
3721 | for (const NamedDecl *D : R) |
3722 | NoteOverloadCandidate(Found: D, Fn: D->getUnderlyingDecl()->getAsFunction()); |
3723 | return LOLR_Error; |
3724 | } |
3725 | |
3726 | if (FoundRaw) |
3727 | return LOLR_Raw; |
3728 | |
3729 | if (FoundTemplate) |
3730 | return LOLR_Template; |
3731 | |
3732 | if (FoundStringTemplatePack) |
3733 | return LOLR_StringTemplatePack; |
3734 | |
3735 | // Didn't find anything we could use. |
3736 | if (DiagnoseMissing) { |
3737 | Diag(Loc: R.getNameLoc(), DiagID: diag::err_ovl_no_viable_literal_operator) |
3738 | << R.getLookupName() << (int)ArgTys.size() << ArgTys[0] |
3739 | << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw |
3740 | << (AllowTemplate || AllowStringTemplatePack); |
3741 | return LOLR_Error; |
3742 | } |
3743 | |
3744 | return LOLR_ErrorNoDiagnostic; |
3745 | } |
3746 | |
3747 | void ADLResult::insert(NamedDecl *New) { |
3748 | NamedDecl *&Old = Decls[cast<NamedDecl>(Val: New->getCanonicalDecl())]; |
3749 | |
3750 | // If we haven't yet seen a decl for this key, or the last decl |
3751 | // was exactly this one, we're done. |
3752 | if (Old == nullptr || Old == New) { |
3753 | Old = New; |
3754 | return; |
3755 | } |
3756 | |
3757 | // Otherwise, decide which is a more recent redeclaration. |
3758 | FunctionDecl *OldFD = Old->getAsFunction(); |
3759 | FunctionDecl *NewFD = New->getAsFunction(); |
3760 | |
3761 | FunctionDecl *Cursor = NewFD; |
3762 | while (true) { |
3763 | Cursor = Cursor->getPreviousDecl(); |
3764 | |
3765 | // If we got to the end without finding OldFD, OldFD is the newer |
3766 | // declaration; leave things as they are. |
3767 | if (!Cursor) return; |
3768 | |
3769 | // If we do find OldFD, then NewFD is newer. |
3770 | if (Cursor == OldFD) break; |
3771 | |
3772 | // Otherwise, keep looking. |
3773 | } |
3774 | |
3775 | Old = New; |
3776 | } |
3777 | |
3778 | void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, |
3779 | ArrayRef<Expr *> Args, ADLResult &Result) { |
3780 | // Find all of the associated namespaces and classes based on the |
3781 | // arguments we have. |
3782 | AssociatedNamespaceSet AssociatedNamespaces; |
3783 | AssociatedClassSet AssociatedClasses; |
3784 | FindAssociatedClassesAndNamespaces(InstantiationLoc: Loc, Args, |
3785 | AssociatedNamespaces, |
3786 | AssociatedClasses); |
3787 | |
3788 | // C++ [basic.lookup.argdep]p3: |
3789 | // Let X be the lookup set produced by unqualified lookup (3.4.1) |
3790 | // and let Y be the lookup set produced by argument dependent |
3791 | // lookup (defined as follows). If X contains [...] then Y is |
3792 | // empty. Otherwise Y is the set of declarations found in the |
3793 | // namespaces associated with the argument types as described |
3794 | // below. The set of declarations found by the lookup of the name |
3795 | // is the union of X and Y. |
3796 | // |
3797 | // Here, we compute Y and add its members to the overloaded |
3798 | // candidate set. |
3799 | for (auto *NS : AssociatedNamespaces) { |
3800 | // When considering an associated namespace, the lookup is the |
3801 | // same as the lookup performed when the associated namespace is |
3802 | // used as a qualifier (3.4.3.2) except that: |
3803 | // |
3804 | // -- Any using-directives in the associated namespace are |
3805 | // ignored. |
3806 | // |
3807 | // -- Any namespace-scope friend functions declared in |
3808 | // associated classes are visible within their respective |
3809 | // namespaces even if they are not visible during an ordinary |
3810 | // lookup (11.4). |
3811 | // |
3812 | // C++20 [basic.lookup.argdep] p4.3 |
3813 | // -- are exported, are attached to a named module M, do not appear |
3814 | // in the translation unit containing the point of the lookup, and |
3815 | // have the same innermost enclosing non-inline namespace scope as |
3816 | // a declaration of an associated entity attached to M. |
3817 | DeclContext::lookup_result R = NS->lookup(Name); |
3818 | for (auto *D : R) { |
3819 | auto *Underlying = D; |
3820 | if (auto *USD = dyn_cast<UsingShadowDecl>(Val: D)) |
3821 | Underlying = USD->getTargetDecl(); |
3822 | |
3823 | if (!isa<FunctionDecl>(Val: Underlying) && |
3824 | !isa<FunctionTemplateDecl>(Val: Underlying)) |
3825 | continue; |
3826 | |
3827 | // The declaration is visible to argument-dependent lookup if either |
3828 | // it's ordinarily visible or declared as a friend in an associated |
3829 | // class. |
3830 | bool Visible = false; |
3831 | for (D = D->getMostRecentDecl(); D; |
3832 | D = cast_or_null<NamedDecl>(Val: D->getPreviousDecl())) { |
3833 | if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) { |
3834 | if (isVisible(D)) { |
3835 | Visible = true; |
3836 | break; |
3837 | } |
3838 | |
3839 | if (!getLangOpts().CPlusPlusModules) |
3840 | continue; |
3841 | |
3842 | if (D->isInExportDeclContext()) { |
3843 | Module *FM = D->getOwningModule(); |
3844 | // C++20 [basic.lookup.argdep] p4.3 .. are exported ... |
3845 | // exports are only valid in module purview and outside of any |
3846 | // PMF (although a PMF should not even be present in a module |
3847 | // with an import). |
3848 | assert(FM && FM->isNamedModule() && !FM->isPrivateModule() && |
3849 | "bad export context" ); |
3850 | // .. are attached to a named module M, do not appear in the |
3851 | // translation unit containing the point of the lookup.. |
3852 | if (D->isInAnotherModuleUnit() && |
3853 | llvm::any_of(Range&: AssociatedClasses, P: [&](auto *E) { |
3854 | // ... and have the same innermost enclosing non-inline |
3855 | // namespace scope as a declaration of an associated entity |
3856 | // attached to M |
3857 | if (E->getOwningModule() != FM) |
3858 | return false; |
3859 | // TODO: maybe this could be cached when generating the |
3860 | // associated namespaces / entities. |
3861 | DeclContext *Ctx = E->getDeclContext(); |
3862 | while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) |
3863 | Ctx = Ctx->getParent(); |
3864 | return Ctx == NS; |
3865 | })) { |
3866 | Visible = true; |
3867 | break; |
3868 | } |
3869 | } |
3870 | } else if (D->getFriendObjectKind()) { |
3871 | auto *RD = cast<CXXRecordDecl>(Val: D->getLexicalDeclContext()); |
3872 | // [basic.lookup.argdep]p4: |
3873 | // Argument-dependent lookup finds all declarations of functions and |
3874 | // function templates that |
3875 | // - ... |
3876 | // - are declared as a friend ([class.friend]) of any class with a |
3877 | // reachable definition in the set of associated entities, |
3878 | // |
3879 | // FIXME: If there's a merged definition of D that is reachable, then |
3880 | // the friend declaration should be considered. |
3881 | if (AssociatedClasses.count(key: RD) && isReachable(D)) { |
3882 | Visible = true; |
3883 | break; |
3884 | } |
3885 | } |
3886 | } |
3887 | |
3888 | // FIXME: Preserve D as the FoundDecl. |
3889 | if (Visible) |
3890 | Result.insert(New: Underlying); |
3891 | } |
3892 | } |
3893 | } |
3894 | |
3895 | //---------------------------------------------------------------------------- |
3896 | // Search for all visible declarations. |
3897 | //---------------------------------------------------------------------------- |
3898 | VisibleDeclConsumer::~VisibleDeclConsumer() { } |
3899 | |
3900 | bool VisibleDeclConsumer::includeHiddenDecls() const { return false; } |
3901 | |
3902 | namespace { |
3903 | |
3904 | class ShadowContextRAII; |
3905 | |
3906 | class VisibleDeclsRecord { |
3907 | public: |
3908 | /// An entry in the shadow map, which is optimized to store a |
3909 | /// single declaration (the common case) but can also store a list |
3910 | /// of declarations. |
3911 | typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry; |
3912 | |
3913 | private: |
3914 | /// A mapping from declaration names to the declarations that have |
3915 | /// this name within a particular scope. |
3916 | typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; |
3917 | |
3918 | /// A list of shadow maps, which is used to model name hiding. |
3919 | std::list<ShadowMap> ShadowMaps; |
3920 | |
3921 | /// The declaration contexts we have already visited. |
3922 | llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts; |
3923 | |
3924 | friend class ShadowContextRAII; |
3925 | |
3926 | public: |
3927 | /// Determine whether we have already visited this context |
3928 | /// (and, if not, note that we are going to visit that context now). |
3929 | bool visitedContext(DeclContext *Ctx) { |
3930 | return !VisitedContexts.insert(Ptr: Ctx).second; |
3931 | } |
3932 | |
3933 | bool alreadyVisitedContext(DeclContext *Ctx) { |
3934 | return VisitedContexts.count(Ptr: Ctx); |
3935 | } |
3936 | |
3937 | /// Determine whether the given declaration is hidden in the |
3938 | /// current scope. |
3939 | /// |
3940 | /// \returns the declaration that hides the given declaration, or |
3941 | /// NULL if no such declaration exists. |
3942 | NamedDecl *checkHidden(NamedDecl *ND); |
3943 | |
3944 | /// Add a declaration to the current shadow map. |
3945 | void add(NamedDecl *ND) { |
3946 | ShadowMaps.back()[ND->getDeclName()].push_back(NewVal: ND); |
3947 | } |
3948 | }; |
3949 | |
3950 | /// RAII object that records when we've entered a shadow context. |
3951 | class ShadowContextRAII { |
3952 | VisibleDeclsRecord &Visible; |
3953 | |
3954 | typedef VisibleDeclsRecord::ShadowMap ShadowMap; |
3955 | |
3956 | public: |
3957 | ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) { |
3958 | Visible.ShadowMaps.emplace_back(); |
3959 | } |
3960 | |
3961 | ~ShadowContextRAII() { |
3962 | Visible.ShadowMaps.pop_back(); |
3963 | } |
3964 | }; |
3965 | |
3966 | } // end anonymous namespace |
3967 | |
3968 | NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) { |
3969 | unsigned IDNS = ND->getIdentifierNamespace(); |
3970 | std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin(); |
3971 | for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend(); |
3972 | SM != SMEnd; ++SM) { |
3973 | ShadowMap::iterator Pos = SM->find(Val: ND->getDeclName()); |
3974 | if (Pos == SM->end()) |
3975 | continue; |
3976 | |
3977 | for (auto *D : Pos->second) { |
3978 | // A tag declaration does not hide a non-tag declaration. |
3979 | if (D->hasTagIdentifierNamespace() && |
3980 | (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | |
3981 | Decl::IDNS_ObjCProtocol))) |
3982 | continue; |
3983 | |
3984 | // Protocols are in distinct namespaces from everything else. |
3985 | if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) |
3986 | || (IDNS & Decl::IDNS_ObjCProtocol)) && |
3987 | D->getIdentifierNamespace() != IDNS) |
3988 | continue; |
3989 | |
3990 | // Functions and function templates in the same scope overload |
3991 | // rather than hide. FIXME: Look for hiding based on function |
3992 | // signatures! |
3993 | if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && |
3994 | ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && |
3995 | SM == ShadowMaps.rbegin()) |
3996 | continue; |
3997 | |
3998 | // A shadow declaration that's created by a resolved using declaration |
3999 | // is not hidden by the same using declaration. |
4000 | if (isa<UsingShadowDecl>(Val: ND) && isa<UsingDecl>(Val: D) && |
4001 | cast<UsingShadowDecl>(Val: ND)->getIntroducer() == D) |
4002 | continue; |
4003 | |
4004 | // We've found a declaration that hides this one. |
4005 | return D; |
4006 | } |
4007 | } |
4008 | |
4009 | return nullptr; |
4010 | } |
4011 | |
4012 | namespace { |
4013 | class LookupVisibleHelper { |
4014 | public: |
4015 | LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases, |
4016 | bool LoadExternal) |
4017 | : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases), |
4018 | LoadExternal(LoadExternal) {} |
4019 | |
4020 | void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind, |
4021 | bool IncludeGlobalScope) { |
4022 | // Determine the set of using directives available during |
4023 | // unqualified name lookup. |
4024 | Scope *Initial = S; |
4025 | UnqualUsingDirectiveSet UDirs(SemaRef); |
4026 | if (SemaRef.getLangOpts().CPlusPlus) { |
4027 | // Find the first namespace or translation-unit scope. |
4028 | while (S && !isNamespaceOrTranslationUnitScope(S)) |
4029 | S = S->getParent(); |
4030 | |
4031 | UDirs.visitScopeChain(S: Initial, InnermostFileScope: S); |
4032 | } |
4033 | UDirs.done(); |
4034 | |
4035 | // Look for visible declarations. |
4036 | LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); |
4037 | Result.setAllowHidden(Consumer.includeHiddenDecls()); |
4038 | if (!IncludeGlobalScope) |
4039 | Visited.visitedContext(Ctx: SemaRef.getASTContext().getTranslationUnitDecl()); |
4040 | ShadowContextRAII Shadow(Visited); |
4041 | lookupInScope(S: Initial, Result, UDirs); |
4042 | } |
4043 | |
4044 | void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx, |
4045 | Sema::LookupNameKind Kind, bool IncludeGlobalScope) { |
4046 | LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); |
4047 | Result.setAllowHidden(Consumer.includeHiddenDecls()); |
4048 | if (!IncludeGlobalScope) |
4049 | Visited.visitedContext(Ctx: SemaRef.getASTContext().getTranslationUnitDecl()); |
4050 | |
4051 | ShadowContextRAII Shadow(Visited); |
4052 | lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true, |
4053 | /*InBaseClass=*/false); |
4054 | } |
4055 | |
4056 | private: |
4057 | void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result, |
4058 | bool QualifiedNameLookup, bool InBaseClass) { |
4059 | if (!Ctx) |
4060 | return; |
4061 | |
4062 | // Make sure we don't visit the same context twice. |
4063 | if (Visited.visitedContext(Ctx: Ctx->getPrimaryContext())) |
4064 | return; |
4065 | |
4066 | Consumer.EnteredContext(Ctx); |
4067 | |
4068 | // Outside C++, lookup results for the TU live on identifiers. |
4069 | if (isa<TranslationUnitDecl>(Val: Ctx) && |
4070 | !Result.getSema().getLangOpts().CPlusPlus) { |
4071 | auto &S = Result.getSema(); |
4072 | auto &Idents = S.Context.Idents; |
4073 | |
4074 | // Ensure all external identifiers are in the identifier table. |
4075 | if (LoadExternal) |
4076 | if (IdentifierInfoLookup *External = |
4077 | Idents.getExternalIdentifierLookup()) { |
4078 | std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); |
4079 | for (StringRef Name = Iter->Next(); !Name.empty(); |
4080 | Name = Iter->Next()) |
4081 | Idents.get(Name); |
4082 | } |
4083 | |
4084 | // Walk all lookup results in the TU for each identifier. |
4085 | for (const auto &Ident : Idents) { |
4086 | for (auto I = S.IdResolver.begin(Name: Ident.getValue()), |
4087 | E = S.IdResolver.end(); |
4088 | I != E; ++I) { |
4089 | if (S.IdResolver.isDeclInScope(D: *I, Ctx)) { |
4090 | if (NamedDecl *ND = Result.getAcceptableDecl(D: *I)) { |
4091 | Consumer.FoundDecl(ND, Hiding: Visited.checkHidden(ND), Ctx, InBaseClass); |
4092 | Visited.add(ND); |
4093 | } |
4094 | } |
4095 | } |
4096 | } |
4097 | |
4098 | return; |
4099 | } |
4100 | |
4101 | if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Val: Ctx)) |
4102 | Result.getSema().ForceDeclarationOfImplicitMembers(Class); |
4103 | |
4104 | llvm::SmallVector<NamedDecl *, 4> DeclsToVisit; |
4105 | // We sometimes skip loading namespace-level results (they tend to be huge). |
4106 | bool Load = LoadExternal || |
4107 | !(isa<TranslationUnitDecl>(Val: Ctx) || isa<NamespaceDecl>(Val: Ctx)); |
4108 | // Enumerate all of the results in this context. |
4109 | for (DeclContextLookupResult R : |
4110 | Load ? Ctx->lookups() |
4111 | : Ctx->noload_lookups(/*PreserveInternalState=*/false)) |
4112 | for (auto *D : R) |
4113 | // Rather than visit immediately, we put ND into a vector and visit |
4114 | // all decls, in order, outside of this loop. The reason is that |
4115 | // Consumer.FoundDecl() and LookupResult::getAcceptableDecl(D) |
4116 | // may invalidate the iterators used in the two |
4117 | // loops above. |
4118 | DeclsToVisit.push_back(Elt: D); |
4119 | |
4120 | for (auto *D : DeclsToVisit) |
4121 | if (auto *ND = Result.getAcceptableDecl(D)) { |
4122 | Consumer.FoundDecl(ND, Hiding: Visited.checkHidden(ND), Ctx, InBaseClass); |
4123 | Visited.add(ND); |
4124 | } |
4125 | |
4126 | DeclsToVisit.clear(); |
4127 | |
4128 | // Traverse using directives for qualified name lookup. |
4129 | if (QualifiedNameLookup) { |
4130 | ShadowContextRAII Shadow(Visited); |
4131 | for (auto *I : Ctx->using_directives()) { |
4132 | if (!Result.getSema().isVisible(D: I)) |
4133 | continue; |
4134 | lookupInDeclContext(Ctx: I->getNominatedNamespace(), Result, |
4135 | QualifiedNameLookup, InBaseClass); |
4136 | } |
4137 | } |
4138 | |
4139 | // Traverse the contexts of inherited C++ classes. |
4140 | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: Ctx)) { |
4141 | if (!Record->hasDefinition()) |
4142 | return; |
4143 | |
4144 | for (const auto &B : Record->bases()) { |
4145 | QualType BaseType = B.getType(); |
4146 | |
4147 | RecordDecl *RD; |
4148 | if (BaseType->isDependentType()) { |
4149 | if (!IncludeDependentBases) { |
4150 | // Don't look into dependent bases, because name lookup can't look |
4151 | // there anyway. |
4152 | continue; |
4153 | } |
4154 | const auto *TST = BaseType->getAs<TemplateSpecializationType>(); |
4155 | if (!TST) |
4156 | continue; |
4157 | TemplateName TN = TST->getTemplateName(); |
4158 | const auto *TD = |
4159 | dyn_cast_or_null<ClassTemplateDecl>(Val: TN.getAsTemplateDecl()); |
4160 | if (!TD) |
4161 | continue; |
4162 | RD = TD->getTemplatedDecl(); |
4163 | } else { |
4164 | const auto *Record = BaseType->getAs<RecordType>(); |
4165 | if (!Record) |
4166 | continue; |
4167 | RD = Record->getDecl(); |
4168 | } |
4169 | |
4170 | // FIXME: It would be nice to be able to determine whether referencing |
4171 | // a particular member would be ambiguous. For example, given |
4172 | // |
4173 | // struct A { int member; }; |
4174 | // struct B { int member; }; |
4175 | // struct C : A, B { }; |
4176 | // |
4177 | // void f(C *c) { c->### } |
4178 | // |
4179 | // accessing 'member' would result in an ambiguity. However, we |
4180 | // could be smart enough to qualify the member with the base |
4181 | // class, e.g., |
4182 | // |
4183 | // c->B::member |
4184 | // |
4185 | // or |
4186 | // |
4187 | // c->A::member |
4188 | |
4189 | // Find results in this base class (and its bases). |
4190 | ShadowContextRAII Shadow(Visited); |
4191 | lookupInDeclContext(Ctx: RD, Result, QualifiedNameLookup, |
4192 | /*InBaseClass=*/true); |
4193 | } |
4194 | } |
4195 | |
4196 | // Traverse the contexts of Objective-C classes. |
4197 | if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Val: Ctx)) { |
4198 | // Traverse categories. |
4199 | for (auto *Cat : IFace->visible_categories()) { |
4200 | ShadowContextRAII Shadow(Visited); |
4201 | lookupInDeclContext(Ctx: Cat, Result, QualifiedNameLookup, |
4202 | /*InBaseClass=*/false); |
4203 | } |
4204 | |
4205 | // Traverse protocols. |
4206 | for (auto *I : IFace->all_referenced_protocols()) { |
4207 | ShadowContextRAII Shadow(Visited); |
4208 | lookupInDeclContext(Ctx: I, Result, QualifiedNameLookup, |
4209 | /*InBaseClass=*/false); |
4210 | } |
4211 | |
4212 | // Traverse the superclass. |
4213 | if (IFace->getSuperClass()) { |
4214 | ShadowContextRAII Shadow(Visited); |
4215 | lookupInDeclContext(Ctx: IFace->getSuperClass(), Result, QualifiedNameLookup, |
4216 | /*InBaseClass=*/true); |
4217 | } |
4218 | |
4219 | // If there is an implementation, traverse it. We do this to find |
4220 | // synthesized ivars. |
4221 | if (IFace->getImplementation()) { |
4222 | ShadowContextRAII Shadow(Visited); |
4223 | lookupInDeclContext(Ctx: IFace->getImplementation(), Result, |
4224 | QualifiedNameLookup, InBaseClass); |
4225 | } |
4226 | } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Val: Ctx)) { |
4227 | for (auto *I : Protocol->protocols()) { |
4228 | ShadowContextRAII Shadow(Visited); |
4229 | lookupInDeclContext(Ctx: I, Result, QualifiedNameLookup, |
4230 | /*InBaseClass=*/false); |
4231 | } |
4232 | } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Val: Ctx)) { |
4233 | for (auto *I : Category->protocols()) { |
4234 | ShadowContextRAII Shadow(Visited); |
4235 | lookupInDeclContext(Ctx: I, Result, QualifiedNameLookup, |
4236 | /*InBaseClass=*/false); |
4237 | } |
4238 | |
4239 | // If there is an implementation, traverse it. |
4240 | if (Category->getImplementation()) { |
4241 | ShadowContextRAII Shadow(Visited); |
4242 | lookupInDeclContext(Ctx: Category->getImplementation(), Result, |
4243 | QualifiedNameLookup, /*InBaseClass=*/true); |
4244 | } |
4245 | } |
4246 | } |
4247 | |
4248 | void lookupInScope(Scope *S, LookupResult &Result, |
4249 | UnqualUsingDirectiveSet &UDirs) { |
4250 | // No clients run in this mode and it's not supported. Please add tests and |
4251 | // remove the assertion if you start relying on it. |
4252 | assert(!IncludeDependentBases && "Unsupported flag for lookupInScope" ); |
4253 | |
4254 | if (!S) |
4255 | return; |
4256 | |
4257 | if (!S->getEntity() || |
4258 | (!S->getParent() && !Visited.alreadyVisitedContext(Ctx: S->getEntity())) || |
4259 | (S->getEntity())->isFunctionOrMethod()) { |
4260 | FindLocalExternScope FindLocals(Result); |
4261 | // Walk through the declarations in this Scope. The consumer might add new |
4262 | // decls to the scope as part of deserialization, so make a copy first. |
4263 | SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end()); |
4264 | for (Decl *D : ScopeDecls) { |
4265 | if (NamedDecl *ND = dyn_cast<NamedDecl>(Val: D)) |
4266 | if ((ND = Result.getAcceptableDecl(D: ND))) { |
4267 | Consumer.FoundDecl(ND, Hiding: Visited.checkHidden(ND), Ctx: nullptr, InBaseClass: false); |
4268 | Visited.add(ND); |
4269 | } |
4270 | } |
4271 | } |
4272 | |
4273 | DeclContext *Entity = S->getLookupEntity(); |
4274 | if (Entity) { |
4275 | // Look into this scope's declaration context, along with any of its |
4276 | // parent lookup contexts (e.g., enclosing classes), up to the point |
4277 | // where we hit the context stored in the next outer scope. |
4278 | DeclContext *OuterCtx = findOuterContext(S); |
4279 | |
4280 | for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(DC: OuterCtx); |
4281 | Ctx = Ctx->getLookupParent()) { |
4282 | if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Val: Ctx)) { |
4283 | if (Method->isInstanceMethod()) { |
4284 | // For instance methods, look for ivars in the method's interface. |
4285 | LookupResult IvarResult(Result.getSema(), Result.getLookupName(), |
4286 | Result.getNameLoc(), |
4287 | Sema::LookupMemberName); |
4288 | if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) { |
4289 | lookupInDeclContext(Ctx: IFace, Result&: IvarResult, |
4290 | /*QualifiedNameLookup=*/false, |
4291 | /*InBaseClass=*/false); |
4292 | } |
4293 | } |
4294 | |
4295 | // We've already performed all of the name lookup that we need |
4296 | // to for Objective-C methods; the next context will be the |
4297 | // outer scope. |
4298 | break; |
4299 | } |
4300 | |
4301 | if (Ctx->isFunctionOrMethod()) |
4302 | continue; |
4303 | |
4304 | lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false, |
4305 | /*InBaseClass=*/false); |
4306 | } |
4307 | } else if (!S->getParent()) { |
4308 | // Look into the translation unit scope. We walk through the translation |
4309 | // unit's declaration context, because the Scope itself won't have all of |
4310 | // the declarations if we loaded a precompiled header. |
4311 | // FIXME: We would like the translation unit's Scope object to point to |
4312 | // the translation unit, so we don't need this special "if" branch. |
4313 | // However, doing so would force the normal C++ name-lookup code to look |
4314 | // into the translation unit decl when the IdentifierInfo chains would |
4315 | // suffice. Once we fix that problem (which is part of a more general |
4316 | // "don't look in DeclContexts unless we have to" optimization), we can |
4317 | // eliminate this. |
4318 | Entity = Result.getSema().Context.getTranslationUnitDecl(); |
4319 | lookupInDeclContext(Ctx: Entity, Result, /*QualifiedNameLookup=*/false, |
4320 | /*InBaseClass=*/false); |
4321 | } |
4322 | |
4323 | if (Entity) { |
4324 | // Lookup visible declarations in any namespaces found by using |
4325 | // directives. |
4326 | for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(DC: Entity)) |
4327 | lookupInDeclContext( |
4328 | Ctx: const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result, |
4329 | /*QualifiedNameLookup=*/false, |
4330 | /*InBaseClass=*/false); |
4331 | } |
4332 | |
4333 | // Lookup names in the parent scope. |
4334 | ShadowContextRAII Shadow(Visited); |
4335 | lookupInScope(S: S->getParent(), Result, UDirs); |
4336 | } |
4337 | |
4338 | private: |
4339 | VisibleDeclsRecord Visited; |
4340 | VisibleDeclConsumer &Consumer; |
4341 | bool IncludeDependentBases; |
4342 | bool LoadExternal; |
4343 | }; |
4344 | } // namespace |
4345 | |
4346 | void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind, |
4347 | VisibleDeclConsumer &Consumer, |
4348 | bool IncludeGlobalScope, bool LoadExternal) { |
4349 | LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false, |
4350 | LoadExternal); |
4351 | H.lookupVisibleDecls(SemaRef&: *this, S, Kind, IncludeGlobalScope); |
4352 | } |
4353 | |
4354 | void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, |
4355 | VisibleDeclConsumer &Consumer, |
4356 | bool IncludeGlobalScope, |
4357 | bool IncludeDependentBases, bool LoadExternal) { |
4358 | LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal); |
4359 | H.lookupVisibleDecls(SemaRef&: *this, Ctx, Kind, IncludeGlobalScope); |
4360 | } |
4361 | |
4362 | LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc, |
4363 | SourceLocation GnuLabelLoc) { |
4364 | // Do a lookup to see if we have a label with this name already. |
4365 | NamedDecl *Res = nullptr; |
4366 | |
4367 | if (GnuLabelLoc.isValid()) { |
4368 | // Local label definitions always shadow existing labels. |
4369 | Res = LabelDecl::Create(C&: Context, DC: CurContext, IdentL: Loc, II, GnuLabelL: GnuLabelLoc); |
4370 | Scope *S = CurScope; |
4371 | PushOnScopeChains(D: Res, S, AddToContext: true); |
4372 | return cast<LabelDecl>(Val: Res); |
4373 | } |
4374 | |
4375 | // Not a GNU local label. |
4376 | Res = LookupSingleName(S: CurScope, Name: II, Loc, NameKind: LookupLabel, |
4377 | Redecl: RedeclarationKind::NotForRedeclaration); |
4378 | // If we found a label, check to see if it is in the same context as us. |
4379 | // When in a Block, we don't want to reuse a label in an enclosing function. |
4380 | if (Res && Res->getDeclContext() != CurContext) |
4381 | Res = nullptr; |
4382 | if (!Res) { |
4383 | // If not forward referenced or defined already, create the backing decl. |
4384 | Res = LabelDecl::Create(C&: Context, DC: CurContext, IdentL: Loc, II); |
4385 | Scope *S = CurScope->getFnParent(); |
4386 | assert(S && "Not in a function?" ); |
4387 | PushOnScopeChains(D: Res, S, AddToContext: true); |
4388 | } |
4389 | return cast<LabelDecl>(Val: Res); |
4390 | } |
4391 | |
4392 | //===----------------------------------------------------------------------===// |
4393 | // Typo correction |
4394 | //===----------------------------------------------------------------------===// |
4395 | |
4396 | static bool isCandidateViable(CorrectionCandidateCallback &CCC, |
4397 | TypoCorrection &Candidate) { |
4398 | Candidate.setCallbackDistance(CCC.RankCandidate(candidate: Candidate)); |
4399 | return Candidate.getEditDistance(Normalized: false) != TypoCorrection::InvalidDistance; |
4400 | } |
4401 | |
4402 | static void LookupPotentialTypoResult(Sema &SemaRef, |
4403 | LookupResult &Res, |
4404 | IdentifierInfo *Name, |
4405 | Scope *S, CXXScopeSpec *SS, |
4406 | DeclContext *MemberContext, |
4407 | bool EnteringContext, |
4408 | bool isObjCIvarLookup, |
4409 | bool FindHidden); |
4410 | |
4411 | /// Check whether the declarations found for a typo correction are |
4412 | /// visible. Set the correction's RequiresImport flag to true if none of the |
4413 | /// declarations are visible, false otherwise. |
4414 | static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) { |
4415 | TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end(); |
4416 | |
4417 | for (/**/; DI != DE; ++DI) |
4418 | if (!LookupResult::isVisible(SemaRef, D: *DI)) |
4419 | break; |
4420 | // No filtering needed if all decls are visible. |
4421 | if (DI == DE) { |
4422 | TC.setRequiresImport(false); |
4423 | return; |
4424 | } |
4425 | |
4426 | llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI); |
4427 | bool AnyVisibleDecls = !NewDecls.empty(); |
4428 | |
4429 | for (/**/; DI != DE; ++DI) { |
4430 | if (LookupResult::isVisible(SemaRef, D: *DI)) { |
4431 | if (!AnyVisibleDecls) { |
4432 | // Found a visible decl, discard all hidden ones. |
4433 | AnyVisibleDecls = true; |
4434 | NewDecls.clear(); |
4435 | } |
4436 | NewDecls.push_back(Elt: *DI); |
4437 | } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate()) |
4438 | NewDecls.push_back(Elt: *DI); |
4439 | } |
4440 | |
4441 | if (NewDecls.empty()) |
4442 | TC = TypoCorrection(); |
4443 | else { |
4444 | TC.setCorrectionDecls(NewDecls); |
4445 | TC.setRequiresImport(!AnyVisibleDecls); |
4446 | } |
4447 | } |
4448 | |
4449 | // Fill the supplied vector with the IdentifierInfo pointers for each piece of |
4450 | // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::", |
4451 | // fill the vector with the IdentifierInfo pointers for "foo" and "bar"). |
4452 | static void getNestedNameSpecifierIdentifiers( |
4453 | NestedNameSpecifier *NNS, |
4454 | SmallVectorImpl<const IdentifierInfo*> &Identifiers) { |
4455 | if (NestedNameSpecifier *Prefix = NNS->getPrefix()) |
4456 | getNestedNameSpecifierIdentifiers(NNS: Prefix, Identifiers); |
4457 | else |
4458 | Identifiers.clear(); |
4459 | |
4460 | const IdentifierInfo *II = nullptr; |
4461 | |
4462 | switch (NNS->getKind()) { |
4463 | case NestedNameSpecifier::Identifier: |
4464 | II = NNS->getAsIdentifier(); |
4465 | break; |
4466 | |
4467 | case NestedNameSpecifier::Namespace: |
4468 | if (NNS->getAsNamespace()->isAnonymousNamespace()) |
4469 | return; |
4470 | II = NNS->getAsNamespace()->getIdentifier(); |
4471 | break; |
4472 | |
4473 | case NestedNameSpecifier::NamespaceAlias: |
4474 | II = NNS->getAsNamespaceAlias()->getIdentifier(); |
4475 | break; |
4476 | |
4477 | case NestedNameSpecifier::TypeSpecWithTemplate: |
4478 | case NestedNameSpecifier::TypeSpec: |
4479 | II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier(); |
4480 | break; |
4481 | |
4482 | case NestedNameSpecifier::Global: |
4483 | case NestedNameSpecifier::Super: |
4484 | return; |
4485 | } |
4486 | |
4487 | if (II) |
4488 | Identifiers.push_back(Elt: II); |
4489 | } |
4490 | |
4491 | void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding, |
4492 | DeclContext *Ctx, bool InBaseClass) { |
4493 | // Don't consider hidden names for typo correction. |
4494 | if (Hiding) |
4495 | return; |
4496 | |
4497 | // Only consider entities with identifiers for names, ignoring |
4498 | // special names (constructors, overloaded operators, selectors, |
4499 | // etc.). |
4500 | IdentifierInfo *Name = ND->getIdentifier(); |
4501 | if (!Name) |
4502 | return; |
4503 | |
4504 | // Only consider visible declarations and declarations from modules with |
4505 | // names that exactly match. |
4506 | if (!LookupResult::isVisible(SemaRef, D: ND) && Name != Typo) |
4507 | return; |
4508 | |
4509 | FoundName(Name: Name->getName()); |
4510 | } |
4511 | |
4512 | void TypoCorrectionConsumer::FoundName(StringRef Name) { |
4513 | // Compute the edit distance between the typo and the name of this |
4514 | // entity, and add the identifier to the list of results. |
4515 | addName(Name, ND: nullptr); |
4516 | } |
4517 | |
4518 | void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) { |
4519 | // Compute the edit distance between the typo and this keyword, |
4520 | // and add the keyword to the list of results. |
4521 | addName(Name: Keyword, ND: nullptr, NNS: nullptr, isKeyword: true); |
4522 | } |
4523 | |
4524 | void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND, |
4525 | NestedNameSpecifier *NNS, bool isKeyword) { |
4526 | // Use a simple length-based heuristic to determine the minimum possible |
4527 | // edit distance. If the minimum isn't good enough, bail out early. |
4528 | StringRef TypoStr = Typo->getName(); |
4529 | unsigned MinED = abs(x: (int)Name.size() - (int)TypoStr.size()); |
4530 | if (MinED && TypoStr.size() / MinED < 3) |
4531 | return; |
4532 | |
4533 | // Compute an upper bound on the allowable edit distance, so that the |
4534 | // edit-distance algorithm can short-circuit. |
4535 | unsigned UpperBound = (TypoStr.size() + 2) / 3; |
4536 | unsigned ED = TypoStr.edit_distance(Other: Name, AllowReplacements: true, MaxEditDistance: UpperBound); |
4537 | if (ED > UpperBound) return; |
4538 | |
4539 | TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED); |
4540 | if (isKeyword) TC.makeKeyword(); |
4541 | TC.setCorrectionRange(SS: nullptr, TypoName: Result.getLookupNameInfo()); |
4542 | addCorrection(Correction: TC); |
4543 | } |
4544 | |
4545 | static const unsigned MaxTypoDistanceResultSets = 5; |
4546 | |
4547 | void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) { |
4548 | StringRef TypoStr = Typo->getName(); |
4549 | StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName(); |
4550 | |
4551 | // For very short typos, ignore potential corrections that have a different |
4552 | // base identifier from the typo or which have a normalized edit distance |
4553 | // longer than the typo itself. |
4554 | if (TypoStr.size() < 3 && |
4555 | (Name != TypoStr || Correction.getEditDistance(Normalized: true) > TypoStr.size())) |
4556 | return; |
4557 | |
4558 | // If the correction is resolved but is not viable, ignore it. |
4559 | if (Correction.isResolved()) { |
4560 | checkCorrectionVisibility(SemaRef, TC&: Correction); |
4561 | if (!Correction || !isCandidateViable(CCC&: *CorrectionValidator, Candidate&: Correction)) |
4562 | return; |
4563 | } |
4564 | |
4565 | TypoResultList &CList = |
4566 | CorrectionResults[Correction.getEditDistance(Normalized: false)][Name]; |
4567 | |
4568 | if (!CList.empty() && !CList.back().isResolved()) |
4569 | CList.pop_back(); |
4570 | if (NamedDecl *NewND = Correction.getCorrectionDecl()) { |
4571 | auto RI = llvm::find_if(Range&: CList, P: [NewND](const TypoCorrection &TypoCorr) { |
4572 | return TypoCorr.getCorrectionDecl() == NewND; |
4573 | }); |
4574 | if (RI != CList.end()) { |
4575 | // The Correction refers to a decl already in the list. No insertion is |
4576 | // necessary and all further cases will return. |
4577 | |
4578 | auto IsDeprecated = [](Decl *D) { |
4579 | while (D) { |
4580 | if (D->isDeprecated()) |
4581 | return true; |
4582 | D = llvm::dyn_cast_or_null<NamespaceDecl>(Val: D->getDeclContext()); |
4583 | } |
4584 | return false; |
4585 | }; |
4586 | |
4587 | // Prefer non deprecated Corrections over deprecated and only then |
4588 | // sort using an alphabetical order. |
4589 | std::pair<bool, std::string> NewKey = { |
4590 | IsDeprecated(Correction.getFoundDecl()), |
4591 | Correction.getAsString(LO: SemaRef.getLangOpts())}; |
4592 | |
4593 | std::pair<bool, std::string> PrevKey = { |
4594 | IsDeprecated(RI->getFoundDecl()), |
4595 | RI->getAsString(LO: SemaRef.getLangOpts())}; |
4596 | |
4597 | if (NewKey < PrevKey) |
4598 | *RI = Correction; |
4599 | return; |
4600 | } |
4601 | } |
4602 | if (CList.empty() || Correction.isResolved()) |
4603 | CList.push_back(Elt: Correction); |
4604 | |
4605 | while (CorrectionResults.size() > MaxTypoDistanceResultSets) |
4606 | CorrectionResults.erase(position: std::prev(x: CorrectionResults.end())); |
4607 | } |
4608 | |
4609 | void TypoCorrectionConsumer::addNamespaces( |
4610 | const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) { |
4611 | SearchNamespaces = true; |
4612 | |
4613 | for (auto KNPair : KnownNamespaces) |
4614 | Namespaces.addNameSpecifier(Ctx: KNPair.first); |
4615 | |
4616 | bool SSIsTemplate = false; |
4617 | if (NestedNameSpecifier *NNS = |
4618 | (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) { |
4619 | if (const Type *T = NNS->getAsType()) |
4620 | SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization; |
4621 | } |
4622 | // Do not transform this into an iterator-based loop. The loop body can |
4623 | // trigger the creation of further types (through lazy deserialization) and |
4624 | // invalid iterators into this list. |
4625 | auto &Types = SemaRef.getASTContext().getTypes(); |
4626 | for (unsigned I = 0; I != Types.size(); ++I) { |
4627 | const auto *TI = Types[I]; |
4628 | if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) { |
4629 | CD = CD->getCanonicalDecl(); |
4630 | if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() && |
4631 | !CD->isUnion() && CD->getIdentifier() && |
4632 | (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(Val: CD)) && |
4633 | (CD->isBeingDefined() || CD->isCompleteDefinition())) |
4634 | Namespaces.addNameSpecifier(Ctx: CD); |
4635 | } |
4636 | } |
4637 | } |
4638 | |
4639 | const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() { |
4640 | if (++CurrentTCIndex < ValidatedCorrections.size()) |
4641 | return ValidatedCorrections[CurrentTCIndex]; |
4642 | |
4643 | CurrentTCIndex = ValidatedCorrections.size(); |
4644 | while (!CorrectionResults.empty()) { |
4645 | auto DI = CorrectionResults.begin(); |
4646 | if (DI->second.empty()) { |
4647 | CorrectionResults.erase(position: DI); |
4648 | continue; |
4649 | } |
4650 | |
4651 | auto RI = DI->second.begin(); |
4652 | if (RI->second.empty()) { |
4653 | DI->second.erase(I: RI); |
4654 | performQualifiedLookups(); |
4655 | continue; |
4656 | } |
4657 | |
4658 | TypoCorrection TC = RI->second.pop_back_val(); |
4659 | if (TC.isResolved() || TC.requiresImport() || resolveCorrection(Candidate&: TC)) { |
4660 | ValidatedCorrections.push_back(Elt: TC); |
4661 | return ValidatedCorrections[CurrentTCIndex]; |
4662 | } |
4663 | } |
4664 | return ValidatedCorrections[0]; // The empty correction. |
4665 | } |
4666 | |
4667 | bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) { |
4668 | IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo(); |
4669 | DeclContext *TempMemberContext = MemberContext; |
4670 | CXXScopeSpec *TempSS = SS.get(); |
4671 | retry_lookup: |
4672 | LookupPotentialTypoResult(SemaRef, Res&: Result, Name, S, SS: TempSS, MemberContext: TempMemberContext, |
4673 | EnteringContext, |
4674 | isObjCIvarLookup: CorrectionValidator->IsObjCIvarLookup, |
4675 | FindHidden: Name == Typo && !Candidate.WillReplaceSpecifier()); |
4676 | switch (Result.getResultKind()) { |
4677 | case LookupResult::NotFound: |
4678 | case LookupResult::NotFoundInCurrentInstantiation: |
4679 | case LookupResult::FoundUnresolvedValue: |
4680 | if (TempSS) { |
4681 | // Immediately retry the lookup without the given CXXScopeSpec |
4682 | TempSS = nullptr; |
4683 | Candidate.WillReplaceSpecifier(ForceReplacement: true); |
4684 | goto retry_lookup; |
4685 | } |
4686 | if (TempMemberContext) { |
4687 | if (SS && !TempSS) |
4688 | TempSS = SS.get(); |
4689 | TempMemberContext = nullptr; |
4690 | goto retry_lookup; |
4691 | } |
4692 | if (SearchNamespaces) |
4693 | QualifiedResults.push_back(Elt: Candidate); |
4694 | break; |
4695 | |
4696 | case LookupResult::Ambiguous: |
4697 | // We don't deal with ambiguities. |
4698 | break; |
4699 | |
4700 | case LookupResult::Found: |
4701 | case LookupResult::FoundOverloaded: |
4702 | // Store all of the Decls for overloaded symbols |
4703 | for (auto *TRD : Result) |
4704 | Candidate.addCorrectionDecl(CDecl: TRD); |
4705 | checkCorrectionVisibility(SemaRef, TC&: Candidate); |
4706 | if (!isCandidateViable(CCC&: *CorrectionValidator, Candidate)) { |
4707 | if (SearchNamespaces) |
4708 | QualifiedResults.push_back(Elt: Candidate); |
4709 | break; |
4710 | } |
4711 | Candidate.setCorrectionRange(SS: SS.get(), TypoName: Result.getLookupNameInfo()); |
4712 | return true; |
4713 | } |
4714 | return false; |
4715 | } |
4716 | |
4717 | void TypoCorrectionConsumer::performQualifiedLookups() { |
4718 | unsigned TypoLen = Typo->getName().size(); |
4719 | for (const TypoCorrection &QR : QualifiedResults) { |
4720 | for (const auto &NSI : Namespaces) { |
4721 | DeclContext *Ctx = NSI.DeclCtx; |
4722 | const Type *NSType = NSI.NameSpecifier->getAsType(); |
4723 | |
4724 | // If the current NestedNameSpecifier refers to a class and the |
4725 | // current correction candidate is the name of that class, then skip |
4726 | // it as it is unlikely a qualified version of the class' constructor |
4727 | // is an appropriate correction. |
4728 | if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : |
4729 | nullptr) { |
4730 | if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo()) |
4731 | continue; |
4732 | } |
4733 | |
4734 | TypoCorrection TC(QR); |
4735 | TC.ClearCorrectionDecls(); |
4736 | TC.setCorrectionSpecifier(NSI.NameSpecifier); |
4737 | TC.setQualifierDistance(NSI.EditDistance); |
4738 | TC.setCallbackDistance(0); // Reset the callback distance |
4739 | |
4740 | // If the current correction candidate and namespace combination are |
4741 | // too far away from the original typo based on the normalized edit |
4742 | // distance, then skip performing a qualified name lookup. |
4743 | unsigned TmpED = TC.getEditDistance(Normalized: true); |
4744 | if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED && |
4745 | TypoLen / TmpED < 3) |
4746 | continue; |
4747 | |
4748 | Result.clear(); |
4749 | Result.setLookupName(QR.getCorrectionAsIdentifierInfo()); |
4750 | if (!SemaRef.LookupQualifiedName(R&: Result, LookupCtx: Ctx)) |
4751 | continue; |
4752 | |
4753 | // Any corrections added below will be validated in subsequent |
4754 | // iterations of the main while() loop over the Consumer's contents. |
4755 | switch (Result.getResultKind()) { |
4756 | case LookupResult::Found: |
4757 | case LookupResult::FoundOverloaded: { |
4758 | if (SS && SS->isValid()) { |
4759 | std::string NewQualified = TC.getAsString(LO: SemaRef.getLangOpts()); |
4760 | std::string OldQualified; |
4761 | llvm::raw_string_ostream OldOStream(OldQualified); |
4762 | SS->getScopeRep()->print(OS&: OldOStream, Policy: SemaRef.getPrintingPolicy()); |
4763 | OldOStream << Typo->getName(); |
4764 | // If correction candidate would be an identical written qualified |
4765 | // identifier, then the existing CXXScopeSpec probably included a |
4766 | // typedef that didn't get accounted for properly. |
4767 | if (OldOStream.str() == NewQualified) |
4768 | break; |
4769 | } |
4770 | for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end(); |
4771 | TRD != TRDEnd; ++TRD) { |
4772 | if (SemaRef.CheckMemberAccess(UseLoc: TC.getCorrectionRange().getBegin(), |
4773 | NamingClass: NSType ? NSType->getAsCXXRecordDecl() |
4774 | : nullptr, |
4775 | Found: TRD.getPair()) == Sema::AR_accessible) |
4776 | TC.addCorrectionDecl(CDecl: *TRD); |
4777 | } |
4778 | if (TC.isResolved()) { |
4779 | TC.setCorrectionRange(SS: SS.get(), TypoName: Result.getLookupNameInfo()); |
4780 | addCorrection(Correction: TC); |
4781 | } |
4782 | break; |
4783 | } |
4784 | case LookupResult::NotFound: |
4785 | case LookupResult::NotFoundInCurrentInstantiation: |
4786 | case LookupResult::Ambiguous: |
4787 | case LookupResult::FoundUnresolvedValue: |
4788 | break; |
4789 | } |
4790 | } |
4791 | } |
4792 | QualifiedResults.clear(); |
4793 | } |
4794 | |
4795 | TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet( |
4796 | ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec) |
4797 | : Context(Context), CurContextChain(buildContextChain(Start: CurContext)) { |
4798 | if (NestedNameSpecifier *NNS = |
4799 | CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) { |
4800 | llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier); |
4801 | NNS->print(OS&: SpecifierOStream, Policy: Context.getPrintingPolicy()); |
4802 | |
4803 | getNestedNameSpecifierIdentifiers(NNS, Identifiers&: CurNameSpecifierIdentifiers); |
4804 | } |
4805 | // Build the list of identifiers that would be used for an absolute |
4806 | // (from the global context) NestedNameSpecifier referring to the current |
4807 | // context. |
4808 | for (DeclContext *C : llvm::reverse(C&: CurContextChain)) { |
4809 | if (auto *ND = dyn_cast_or_null<NamespaceDecl>(Val: C)) |
4810 | CurContextIdentifiers.push_back(Elt: ND->getIdentifier()); |
4811 | } |
4812 | |
4813 | // Add the global context as a NestedNameSpecifier |
4814 | SpecifierInfo SI = {.DeclCtx: cast<DeclContext>(Val: Context.getTranslationUnitDecl()), |
4815 | .NameSpecifier: NestedNameSpecifier::GlobalSpecifier(Context), .EditDistance: 1}; |
4816 | DistanceMap[1].push_back(Elt: SI); |
4817 | } |
4818 | |
4819 | auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain( |
4820 | DeclContext *Start) -> DeclContextList { |
4821 | assert(Start && "Building a context chain from a null context" ); |
4822 | DeclContextList Chain; |
4823 | for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr; |
4824 | DC = DC->getLookupParent()) { |
4825 | NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(Val: DC); |
4826 | if (!DC->isInlineNamespace() && !DC->isTransparentContext() && |
4827 | !(ND && ND->isAnonymousNamespace())) |
4828 | Chain.push_back(Elt: DC->getPrimaryContext()); |
4829 | } |
4830 | return Chain; |
4831 | } |
4832 | |
4833 | unsigned |
4834 | TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier( |
4835 | DeclContextList &DeclChain, NestedNameSpecifier *&NNS) { |
4836 | unsigned NumSpecifiers = 0; |
4837 | for (DeclContext *C : llvm::reverse(C&: DeclChain)) { |
4838 | if (auto *ND = dyn_cast_or_null<NamespaceDecl>(Val: C)) { |
4839 | NNS = NestedNameSpecifier::Create(Context, Prefix: NNS, NS: ND); |
4840 | ++NumSpecifiers; |
4841 | } else if (auto *RD = dyn_cast_or_null<RecordDecl>(Val: C)) { |
4842 | NNS = NestedNameSpecifier::Create(Context, Prefix: NNS, Template: RD->isTemplateDecl(), |
4843 | T: RD->getTypeForDecl()); |
4844 | ++NumSpecifiers; |
4845 | } |
4846 | } |
4847 | return NumSpecifiers; |
4848 | } |
4849 | |
4850 | void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier( |
4851 | DeclContext *Ctx) { |
4852 | NestedNameSpecifier *NNS = nullptr; |
4853 | unsigned NumSpecifiers = 0; |
4854 | DeclContextList NamespaceDeclChain(buildContextChain(Start: Ctx)); |
4855 | DeclContextList FullNamespaceDeclChain(NamespaceDeclChain); |
4856 | |
4857 | // Eliminate common elements from the two DeclContext chains. |
4858 | for (DeclContext *C : llvm::reverse(C&: CurContextChain)) { |
4859 | if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C) |
4860 | break; |
4861 | NamespaceDeclChain.pop_back(); |
4862 | } |
4863 | |
4864 | // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain |
4865 | NumSpecifiers = buildNestedNameSpecifier(DeclChain&: NamespaceDeclChain, NNS); |
4866 | |
4867 | // Add an explicit leading '::' specifier if needed. |
4868 | if (NamespaceDeclChain.empty()) { |
4869 | // Rebuild the NestedNameSpecifier as a globally-qualified specifier. |
4870 | NNS = NestedNameSpecifier::GlobalSpecifier(Context); |
4871 | NumSpecifiers = |
4872 | buildNestedNameSpecifier(DeclChain&: FullNamespaceDeclChain, NNS); |
4873 | } else if (NamedDecl *ND = |
4874 | dyn_cast_or_null<NamedDecl>(Val: NamespaceDeclChain.back())) { |
4875 | IdentifierInfo *Name = ND->getIdentifier(); |
4876 | bool SameNameSpecifier = false; |
4877 | if (llvm::is_contained(Range&: CurNameSpecifierIdentifiers, Element: Name)) { |
4878 | std::string NewNameSpecifier; |
4879 | llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier); |
4880 | SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers; |
4881 | getNestedNameSpecifierIdentifiers(NNS, Identifiers&: NewNameSpecifierIdentifiers); |
4882 | NNS->print(OS&: SpecifierOStream, Policy: Context.getPrintingPolicy()); |
4883 | SpecifierOStream.flush(); |
4884 | SameNameSpecifier = NewNameSpecifier == CurNameSpecifier; |
4885 | } |
4886 | if (SameNameSpecifier || llvm::is_contained(Range&: CurContextIdentifiers, Element: Name)) { |
4887 | // Rebuild the NestedNameSpecifier as a globally-qualified specifier. |
4888 | NNS = NestedNameSpecifier::GlobalSpecifier(Context); |
4889 | NumSpecifiers = |
4890 | buildNestedNameSpecifier(DeclChain&: FullNamespaceDeclChain, NNS); |
4891 | } |
4892 | } |
4893 | |
4894 | // If the built NestedNameSpecifier would be replacing an existing |
4895 | // NestedNameSpecifier, use the number of component identifiers that |
4896 | // would need to be changed as the edit distance instead of the number |
4897 | // of components in the built NestedNameSpecifier. |
4898 | if (NNS && !CurNameSpecifierIdentifiers.empty()) { |
4899 | SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers; |
4900 | getNestedNameSpecifierIdentifiers(NNS, Identifiers&: NewNameSpecifierIdentifiers); |
4901 | NumSpecifiers = |
4902 | llvm::ComputeEditDistance(FromArray: llvm::ArrayRef(CurNameSpecifierIdentifiers), |
4903 | ToArray: llvm::ArrayRef(NewNameSpecifierIdentifiers)); |
4904 | } |
4905 | |
4906 | SpecifierInfo SI = {.DeclCtx: Ctx, .NameSpecifier: NNS, .EditDistance: NumSpecifiers}; |
4907 | DistanceMap[NumSpecifiers].push_back(Elt: SI); |
4908 | } |
4909 | |
4910 | /// Perform name lookup for a possible result for typo correction. |
4911 | static void LookupPotentialTypoResult(Sema &SemaRef, |
4912 | LookupResult &Res, |
4913 | IdentifierInfo *Name, |
4914 | Scope *S, CXXScopeSpec *SS, |
4915 | DeclContext *MemberContext, |
4916 | bool EnteringContext, |
4917 | bool isObjCIvarLookup, |
4918 | bool FindHidden) { |
4919 | Res.suppressDiagnostics(); |
4920 | Res.clear(); |
4921 | Res.setLookupName(Name); |
4922 | Res.setAllowHidden(FindHidden); |
4923 | if (MemberContext) { |
4924 | if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(Val: MemberContext)) { |
4925 | if (isObjCIvarLookup) { |
4926 | if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(IVarName: Name)) { |
4927 | Res.addDecl(D: Ivar); |
4928 | Res.resolveKind(); |
4929 | return; |
4930 | } |
4931 | } |
4932 | |
4933 | if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration( |
4934 | PropertyId: Name, QueryKind: ObjCPropertyQueryKind::OBJC_PR_query_instance)) { |
4935 | Res.addDecl(D: Prop); |
4936 | Res.resolveKind(); |
4937 | return; |
4938 | } |
4939 | } |
4940 | |
4941 | SemaRef.LookupQualifiedName(R&: Res, LookupCtx: MemberContext); |
4942 | return; |
4943 | } |
4944 | |
4945 | SemaRef.LookupParsedName(R&: Res, S, SS, |
4946 | /*ObjectType=*/QualType(), |
4947 | /*AllowBuiltinCreation=*/false, EnteringContext); |
4948 | |
4949 | // Fake ivar lookup; this should really be part of |
4950 | // LookupParsedName. |
4951 | if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) { |
4952 | if (Method->isInstanceMethod() && Method->getClassInterface() && |
4953 | (Res.empty() || |
4954 | (Res.isSingleResult() && |
4955 | Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) { |
4956 | if (ObjCIvarDecl *IV |
4957 | = Method->getClassInterface()->lookupInstanceVariable(IVarName: Name)) { |
4958 | Res.addDecl(D: IV); |
4959 | Res.resolveKind(); |
4960 | } |
4961 | } |
4962 | } |
4963 | } |
4964 | |
4965 | /// Add keywords to the consumer as possible typo corrections. |
4966 | static void AddKeywordsToConsumer(Sema &SemaRef, |
4967 | TypoCorrectionConsumer &Consumer, |
4968 | Scope *S, CorrectionCandidateCallback &CCC, |
4969 | bool AfterNestedNameSpecifier) { |
4970 | if (AfterNestedNameSpecifier) { |
4971 | // For 'X::', we know exactly which keywords can appear next. |
4972 | Consumer.addKeywordResult(Keyword: "template" ); |
4973 | if (CCC.WantExpressionKeywords) |
4974 | Consumer.addKeywordResult(Keyword: "operator" ); |
4975 | return; |
4976 | } |
4977 | |
4978 | if (CCC.WantObjCSuper) |
4979 | Consumer.addKeywordResult(Keyword: "super" ); |
4980 | |
4981 | if (CCC.WantTypeSpecifiers) { |
4982 | // Add type-specifier keywords to the set of results. |
4983 | static const char *const CTypeSpecs[] = { |
4984 | "char" , "const" , "double" , "enum" , "float" , "int" , "long" , "short" , |
4985 | "signed" , "struct" , "union" , "unsigned" , "void" , "volatile" , |
4986 | "_Complex" , |
4987 | // storage-specifiers as well |
4988 | "extern" , "inline" , "static" , "typedef" |
4989 | }; |
4990 | |
4991 | for (const auto *CTS : CTypeSpecs) |
4992 | Consumer.addKeywordResult(Keyword: CTS); |
4993 | |
4994 | if (SemaRef.getLangOpts().C99 && !SemaRef.getLangOpts().C2y) |
4995 | Consumer.addKeywordResult(Keyword: "_Imaginary" ); |
4996 | |
4997 | if (SemaRef.getLangOpts().C99) |
4998 | Consumer.addKeywordResult(Keyword: "restrict" ); |
4999 | if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) |
5000 | Consumer.addKeywordResult(Keyword: "bool" ); |
5001 | else if (SemaRef.getLangOpts().C99) |
5002 | Consumer.addKeywordResult(Keyword: "_Bool" ); |
5003 | |
5004 | if (SemaRef.getLangOpts().CPlusPlus) { |
5005 | Consumer.addKeywordResult(Keyword: "class" ); |
5006 | Consumer.addKeywordResult(Keyword: "typename" ); |
5007 | Consumer.addKeywordResult(Keyword: "wchar_t" ); |
5008 | |
5009 | if (SemaRef.getLangOpts().CPlusPlus11) { |
5010 | Consumer.addKeywordResult(Keyword: "char16_t" ); |
5011 | Consumer.addKeywordResult(Keyword: "char32_t" ); |
5012 | Consumer.addKeywordResult(Keyword: "constexpr" ); |
5013 | Consumer.addKeywordResult(Keyword: "decltype" ); |
5014 | Consumer.addKeywordResult(Keyword: "thread_local" ); |
5015 | } |
5016 | } |
5017 | |
5018 | if (SemaRef.getLangOpts().GNUKeywords) |
5019 | Consumer.addKeywordResult(Keyword: "typeof" ); |
5020 | } else if (CCC.WantFunctionLikeCasts) { |
5021 | static const char *const CastableTypeSpecs[] = { |
5022 | "char" , "double" , "float" , "int" , "long" , "short" , |
5023 | "signed" , "unsigned" , "void" |
5024 | }; |
5025 | for (auto *kw : CastableTypeSpecs) |
5026 | Consumer.addKeywordResult(Keyword: kw); |
5027 | } |
5028 | |
5029 | if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) { |
5030 | Consumer.addKeywordResult(Keyword: "const_cast" ); |
5031 | Consumer.addKeywordResult(Keyword: "dynamic_cast" ); |
5032 | Consumer.addKeywordResult(Keyword: "reinterpret_cast" ); |
5033 | Consumer.addKeywordResult(Keyword: "static_cast" ); |
5034 | } |
5035 | |
5036 | if (CCC.WantExpressionKeywords) { |
5037 | Consumer.addKeywordResult(Keyword: "sizeof" ); |
5038 | if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) { |
5039 | Consumer.addKeywordResult(Keyword: "false" ); |
5040 | Consumer.addKeywordResult(Keyword: "true" ); |
5041 | } |
5042 | |
5043 | if (SemaRef.getLangOpts().CPlusPlus) { |
5044 | static const char *const CXXExprs[] = { |
5045 | "delete" , "new" , "operator" , "throw" , "typeid" |
5046 | }; |
5047 | for (const auto *CE : CXXExprs) |
5048 | Consumer.addKeywordResult(Keyword: CE); |
5049 | |
5050 | if (isa<CXXMethodDecl>(Val: SemaRef.CurContext) && |
5051 | cast<CXXMethodDecl>(Val: SemaRef.CurContext)->isInstance()) |
5052 | Consumer.addKeywordResult(Keyword: "this" ); |
5053 | |
5054 | if (SemaRef.getLangOpts().CPlusPlus11) { |
5055 | Consumer.addKeywordResult(Keyword: "alignof" ); |
5056 | Consumer.addKeywordResult(Keyword: "nullptr" ); |
5057 | } |
5058 | } |
5059 | |
5060 | if (SemaRef.getLangOpts().C11) { |
5061 | // FIXME: We should not suggest _Alignof if the alignof macro |
5062 | // is present. |
5063 | Consumer.addKeywordResult(Keyword: "_Alignof" ); |
5064 | } |
5065 | } |
5066 | |
5067 | if (CCC.WantRemainingKeywords) { |
5068 | if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) { |
5069 | // Statements. |
5070 | static const char *const CStmts[] = { |
5071 | "do" , "else" , "for" , "goto" , "if" , "return" , "switch" , "while" }; |
5072 | for (const auto *CS : CStmts) |
5073 | Consumer.addKeywordResult(Keyword: CS); |
5074 | |
5075 | if (SemaRef.getLangOpts().CPlusPlus) { |
5076 | Consumer.addKeywordResult(Keyword: "catch" ); |
5077 | Consumer.addKeywordResult(Keyword: "try" ); |
5078 | } |
5079 | |
5080 | if (S && S->getBreakParent()) |
5081 | Consumer.addKeywordResult(Keyword: "break" ); |
5082 | |
5083 | if (S && S->getContinueParent()) |
5084 | Consumer.addKeywordResult(Keyword: "continue" ); |
5085 | |
5086 | if (SemaRef.getCurFunction() && |
5087 | !SemaRef.getCurFunction()->SwitchStack.empty()) { |
5088 | Consumer.addKeywordResult(Keyword: "case" ); |
5089 | Consumer.addKeywordResult(Keyword: "default" ); |
5090 | } |
5091 | } else { |
5092 | if (SemaRef.getLangOpts().CPlusPlus) { |
5093 | Consumer.addKeywordResult(Keyword: "namespace" ); |
5094 | Consumer.addKeywordResult(Keyword: "template" ); |
5095 | } |
5096 | |
5097 | if (S && S->isClassScope()) { |
5098 | Consumer.addKeywordResult(Keyword: "explicit" ); |
5099 | Consumer.addKeywordResult(Keyword: "friend" ); |
5100 | Consumer.addKeywordResult(Keyword: "mutable" ); |
5101 | Consumer.addKeywordResult(Keyword: "private" ); |
5102 | Consumer.addKeywordResult(Keyword: "protected" ); |
5103 | Consumer.addKeywordResult(Keyword: "public" ); |
5104 | Consumer.addKeywordResult(Keyword: "virtual" ); |
5105 | } |
5106 | } |
5107 | |
5108 | if (SemaRef.getLangOpts().CPlusPlus) { |
5109 | Consumer.addKeywordResult(Keyword: "using" ); |
5110 | |
5111 | if (SemaRef.getLangOpts().CPlusPlus11) |
5112 | Consumer.addKeywordResult(Keyword: "static_assert" ); |
5113 | } |
5114 | } |
5115 | } |
5116 | |
5117 | std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer( |
5118 | const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, |
5119 | Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, |
5120 | DeclContext *MemberContext, bool EnteringContext, |
5121 | const ObjCObjectPointerType *OPT, bool ErrorRecovery) { |
5122 | |
5123 | if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking || |
5124 | DisableTypoCorrection) |
5125 | return nullptr; |
5126 | |
5127 | // In Microsoft mode, don't perform typo correction in a template member |
5128 | // function dependent context because it interferes with the "lookup into |
5129 | // dependent bases of class templates" feature. |
5130 | if (getLangOpts().MSVCCompat && CurContext->isDependentContext() && |
5131 | isa<CXXMethodDecl>(Val: CurContext)) |
5132 | return nullptr; |
5133 | |
5134 | // We only attempt to correct typos for identifiers. |
5135 | IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); |
5136 | if (!Typo) |
5137 | return nullptr; |
5138 | |
5139 | // If the scope specifier itself was invalid, don't try to correct |
5140 | // typos. |
5141 | if (SS && SS->isInvalid()) |
5142 | return nullptr; |
5143 | |
5144 | // Never try to correct typos during any kind of code synthesis. |
5145 | if (!CodeSynthesisContexts.empty()) |
5146 | return nullptr; |
5147 | |
5148 | // Don't try to correct 'super'. |
5149 | if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier()) |
5150 | return nullptr; |
5151 | |
5152 | // Abort if typo correction already failed for this specific typo. |
5153 | IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Val: Typo); |
5154 | if (locs != TypoCorrectionFailures.end() && |
5155 | locs->second.count(V: TypoName.getLoc())) |
5156 | return nullptr; |
5157 | |
5158 | // Don't try to correct the identifier "vector" when in AltiVec mode. |
5159 | // TODO: Figure out why typo correction misbehaves in this case, fix it, and |
5160 | // remove this workaround. |
5161 | if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr(Str: "vector" )) |
5162 | return nullptr; |
5163 | |
5164 | // Provide a stop gap for files that are just seriously broken. Trying |
5165 | // to correct all typos can turn into a HUGE performance penalty, causing |
5166 | // some files to take minutes to get rejected by the parser. |
5167 | unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit; |
5168 | if (Limit && TyposCorrected >= Limit) |
5169 | return nullptr; |
5170 | ++TyposCorrected; |
5171 | |
5172 | // If we're handling a missing symbol error, using modules, and the |
5173 | // special search all modules option is used, look for a missing import. |
5174 | if (ErrorRecovery && getLangOpts().Modules && |
5175 | getLangOpts().ModulesSearchAll) { |
5176 | // The following has the side effect of loading the missing module. |
5177 | getModuleLoader().lookupMissingImports(Name: Typo->getName(), |
5178 | TriggerLoc: TypoName.getBeginLoc()); |
5179 | } |
5180 | |
5181 | // Extend the lifetime of the callback. We delayed this until here |
5182 | // to avoid allocations in the hot path (which is where no typo correction |
5183 | // occurs). Note that CorrectionCandidateCallback is polymorphic and |
5184 | // initially stack-allocated. |
5185 | std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone(); |
5186 | auto Consumer = std::make_unique<TypoCorrectionConsumer>( |
5187 | args&: *this, args: TypoName, args&: LookupKind, args&: S, args&: SS, args: std::move(ClonedCCC), args&: MemberContext, |
5188 | args&: EnteringContext); |
5189 | |
5190 | // Perform name lookup to find visible, similarly-named entities. |
5191 | bool IsUnqualifiedLookup = false; |
5192 | DeclContext *QualifiedDC = MemberContext; |
5193 | if (MemberContext) { |
5194 | LookupVisibleDecls(Ctx: MemberContext, Kind: LookupKind, Consumer&: *Consumer); |
5195 | |
5196 | // Look in qualified interfaces. |
5197 | if (OPT) { |
5198 | for (auto *I : OPT->quals()) |
5199 | LookupVisibleDecls(Ctx: I, Kind: LookupKind, Consumer&: *Consumer); |
5200 | } |
5201 | } else if (SS && SS->isSet()) { |
5202 | QualifiedDC = computeDeclContext(SS: *SS, EnteringContext); |
5203 | if (!QualifiedDC) |
5204 | return nullptr; |
5205 | |
5206 | LookupVisibleDecls(Ctx: QualifiedDC, Kind: LookupKind, Consumer&: *Consumer); |
5207 | } else { |
5208 | IsUnqualifiedLookup = true; |
5209 | } |
5210 | |
5211 | // Determine whether we are going to search in the various namespaces for |
5212 | // corrections. |
5213 | bool SearchNamespaces |
5214 | = getLangOpts().CPlusPlus && |
5215 | (IsUnqualifiedLookup || (SS && SS->isSet())); |
5216 | |
5217 | if (IsUnqualifiedLookup || SearchNamespaces) { |
5218 | // For unqualified lookup, look through all of the names that we have |
5219 | // seen in this translation unit. |
5220 | // FIXME: Re-add the ability to skip very unlikely potential corrections. |
5221 | for (const auto &I : Context.Idents) |
5222 | Consumer->FoundName(Name: I.getKey()); |
5223 | |
5224 | // Walk through identifiers in external identifier sources. |
5225 | // FIXME: Re-add the ability to skip very unlikely potential corrections. |
5226 | if (IdentifierInfoLookup *External |
5227 | = Context.Idents.getExternalIdentifierLookup()) { |
5228 | std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); |
5229 | do { |
5230 | StringRef Name = Iter->Next(); |
5231 | if (Name.empty()) |
5232 | break; |
5233 | |
5234 | Consumer->FoundName(Name); |
5235 | } while (true); |
5236 | } |
5237 | } |
5238 | |
5239 | AddKeywordsToConsumer(SemaRef&: *this, Consumer&: *Consumer, S, |
5240 | CCC&: *Consumer->getCorrectionValidator(), |
5241 | AfterNestedNameSpecifier: SS && SS->isNotEmpty()); |
5242 | |
5243 | // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going |
5244 | // to search those namespaces. |
5245 | if (SearchNamespaces) { |
5246 | // Load any externally-known namespaces. |
5247 | if (ExternalSource && !LoadedExternalKnownNamespaces) { |
5248 | SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces; |
5249 | LoadedExternalKnownNamespaces = true; |
5250 | ExternalSource->ReadKnownNamespaces(Namespaces&: ExternalKnownNamespaces); |
5251 | for (auto *N : ExternalKnownNamespaces) |
5252 | KnownNamespaces[N] = true; |
5253 | } |
5254 | |
5255 | Consumer->addNamespaces(KnownNamespaces); |
5256 | } |
5257 | |
5258 | return Consumer; |
5259 | } |
5260 | |
5261 | TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName, |
5262 | Sema::LookupNameKind LookupKind, |
5263 | Scope *S, CXXScopeSpec *SS, |
5264 | CorrectionCandidateCallback &CCC, |
5265 | CorrectTypoKind Mode, |
5266 | DeclContext *MemberContext, |
5267 | bool EnteringContext, |
5268 | const ObjCObjectPointerType *OPT, |
5269 | bool RecordFailure) { |
5270 | // Always let the ExternalSource have the first chance at correction, even |
5271 | // if we would otherwise have given up. |
5272 | if (ExternalSource) { |
5273 | if (TypoCorrection Correction = |
5274 | ExternalSource->CorrectTypo(Typo: TypoName, LookupKind, S, SS, CCC, |
5275 | MemberContext, EnteringContext, OPT)) |
5276 | return Correction; |
5277 | } |
5278 | |
5279 | // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver; |
5280 | // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for |
5281 | // some instances of CTC_Unknown, while WantRemainingKeywords is true |
5282 | // for CTC_Unknown but not for CTC_ObjCMessageReceiver. |
5283 | bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords; |
5284 | |
5285 | IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); |
5286 | auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, |
5287 | MemberContext, EnteringContext, |
5288 | OPT, ErrorRecovery: Mode == CTK_ErrorRecovery); |
5289 | |
5290 | if (!Consumer) |
5291 | return TypoCorrection(); |
5292 | |
5293 | // If we haven't found anything, we're done. |
5294 | if (Consumer->empty()) |
5295 | return FailedCorrection(Typo, TypoLoc: TypoName.getLoc(), RecordFailure); |
5296 | |
5297 | // Make sure the best edit distance (prior to adding any namespace qualifiers) |
5298 | // is not more that about a third of the length of the typo's identifier. |
5299 | unsigned ED = Consumer->getBestEditDistance(Normalized: true); |
5300 | unsigned TypoLen = Typo->getName().size(); |
5301 | if (ED > 0 && TypoLen / ED < 3) |
5302 | return FailedCorrection(Typo, TypoLoc: TypoName.getLoc(), RecordFailure); |
5303 | |
5304 | TypoCorrection BestTC = Consumer->getNextCorrection(); |
5305 | TypoCorrection SecondBestTC = Consumer->getNextCorrection(); |
5306 | if (!BestTC) |
5307 | return FailedCorrection(Typo, TypoLoc: TypoName.getLoc(), RecordFailure); |
5308 | |
5309 | ED = BestTC.getEditDistance(); |
5310 | |
5311 | if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) { |
5312 | // If this was an unqualified lookup and we believe the callback |
5313 | // object wouldn't have filtered out possible corrections, note |
5314 | // that no correction was found. |
5315 | return FailedCorrection(Typo, TypoLoc: TypoName.getLoc(), RecordFailure); |
5316 | } |
5317 | |
5318 | // If only a single name remains, return that result. |
5319 | if (!SecondBestTC || |
5320 | SecondBestTC.getEditDistance(Normalized: false) > BestTC.getEditDistance(Normalized: false)) { |
5321 | const TypoCorrection &Result = BestTC; |
5322 | |
5323 | // Don't correct to a keyword that's the same as the typo; the keyword |
5324 | // wasn't actually in scope. |
5325 | if (ED == 0 && Result.isKeyword()) |
5326 | return FailedCorrection(Typo, TypoLoc: TypoName.getLoc(), RecordFailure); |
5327 | |
5328 | TypoCorrection TC = Result; |
5329 | TC.setCorrectionRange(SS, TypoName); |
5330 | checkCorrectionVisibility(SemaRef&: *this, TC); |
5331 | return TC; |
5332 | } else if (SecondBestTC && ObjCMessageReceiver) { |
5333 | // Prefer 'super' when we're completing in a message-receiver |
5334 | // context. |
5335 | |
5336 | if (BestTC.getCorrection().getAsString() != "super" ) { |
5337 | if (SecondBestTC.getCorrection().getAsString() == "super" ) |
5338 | BestTC = SecondBestTC; |
5339 | else if ((*Consumer)["super" ].front().isKeyword()) |
5340 | BestTC = (*Consumer)["super" ].front(); |
5341 | } |
5342 | // Don't correct to a keyword that's the same as the typo; the keyword |
5343 | // wasn't actually in scope. |
5344 | if (BestTC.getEditDistance() == 0 || |
5345 | BestTC.getCorrection().getAsString() != "super" ) |
5346 | return FailedCorrection(Typo, TypoLoc: TypoName.getLoc(), RecordFailure); |
5347 | |
5348 | BestTC.setCorrectionRange(SS, TypoName); |
5349 | return BestTC; |
5350 | } |
5351 | |
5352 | // Record the failure's location if needed and return an empty correction. If |
5353 | // this was an unqualified lookup and we believe the callback object did not |
5354 | // filter out possible corrections, also cache the failure for the typo. |
5355 | return FailedCorrection(Typo, TypoLoc: TypoName.getLoc(), RecordFailure: RecordFailure && !SecondBestTC); |
5356 | } |
5357 | |
5358 | TypoExpr *Sema::CorrectTypoDelayed( |
5359 | const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, |
5360 | Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, |
5361 | TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode, |
5362 | DeclContext *MemberContext, bool EnteringContext, |
5363 | const ObjCObjectPointerType *OPT) { |
5364 | auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, |
5365 | MemberContext, EnteringContext, |
5366 | OPT, ErrorRecovery: Mode == CTK_ErrorRecovery); |
5367 | |
5368 | // Give the external sema source a chance to correct the typo. |
5369 | TypoCorrection ExternalTypo; |
5370 | if (ExternalSource && Consumer) { |
5371 | ExternalTypo = ExternalSource->CorrectTypo( |
5372 | Typo: TypoName, LookupKind, S, SS, CCC&: *Consumer->getCorrectionValidator(), |
5373 | MemberContext, EnteringContext, OPT); |
5374 | if (ExternalTypo) |
5375 | Consumer->addCorrection(Correction: ExternalTypo); |
5376 | } |
5377 | |
5378 | if (!Consumer || Consumer->empty()) |
5379 | return nullptr; |
5380 | |
5381 | // Make sure the best edit distance (prior to adding any namespace qualifiers) |
5382 | // is not more that about a third of the length of the typo's identifier. |
5383 | unsigned ED = Consumer->getBestEditDistance(Normalized: true); |
5384 | IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); |
5385 | if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3) |
5386 | return nullptr; |
5387 | ExprEvalContexts.back().NumTypos++; |
5388 | return createDelayedTypo(TCC: std::move(Consumer), TDG: std::move(TDG), TRC: std::move(TRC), |
5389 | TypoLoc: TypoName.getLoc()); |
5390 | } |
5391 | |
5392 | void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) { |
5393 | if (!CDecl) return; |
5394 | |
5395 | if (isKeyword()) |
5396 | CorrectionDecls.clear(); |
5397 | |
5398 | CorrectionDecls.push_back(Elt: CDecl); |
5399 | |
5400 | if (!CorrectionName) |
5401 | CorrectionName = CDecl->getDeclName(); |
5402 | } |
5403 | |
5404 | std::string TypoCorrection::getAsString(const LangOptions &LO) const { |
5405 | if (CorrectionNameSpec) { |
5406 | std::string tmpBuffer; |
5407 | llvm::raw_string_ostream PrefixOStream(tmpBuffer); |
5408 | CorrectionNameSpec->print(OS&: PrefixOStream, Policy: PrintingPolicy(LO)); |
5409 | PrefixOStream << CorrectionName; |
5410 | return PrefixOStream.str(); |
5411 | } |
5412 | |
5413 | return CorrectionName.getAsString(); |
5414 | } |
5415 | |
5416 | bool CorrectionCandidateCallback::ValidateCandidate( |
5417 | const TypoCorrection &candidate) { |
5418 | if (!candidate.isResolved()) |
5419 | return true; |
5420 | |
5421 | if (candidate.isKeyword()) |
5422 | return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts || |
5423 | WantRemainingKeywords || WantObjCSuper; |
5424 | |
5425 | bool HasNonType = false; |
5426 | bool HasStaticMethod = false; |
5427 | bool HasNonStaticMethod = false; |
5428 | for (Decl *D : candidate) { |
5429 | if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(Val: D)) |
5430 | D = FTD->getTemplatedDecl(); |
5431 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: D)) { |
5432 | if (Method->isStatic()) |
5433 | HasStaticMethod = true; |
5434 | else |
5435 | HasNonStaticMethod = true; |
5436 | } |
5437 | if (!isa<TypeDecl>(Val: D)) |
5438 | HasNonType = true; |
5439 | } |
5440 | |
5441 | if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod && |
5442 | !candidate.getCorrectionSpecifier()) |
5443 | return false; |
5444 | |
5445 | return WantTypeSpecifiers || HasNonType; |
5446 | } |
5447 | |
5448 | FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs, |
5449 | bool HasExplicitTemplateArgs, |
5450 | MemberExpr *ME) |
5451 | : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs), |
5452 | CurContext(SemaRef.CurContext), MemberFn(ME) { |
5453 | WantTypeSpecifiers = false; |
5454 | WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && |
5455 | !HasExplicitTemplateArgs && NumArgs == 1; |
5456 | WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1; |
5457 | WantRemainingKeywords = false; |
5458 | } |
5459 | |
5460 | bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) { |
5461 | if (!candidate.getCorrectionDecl()) |
5462 | return candidate.isKeyword(); |
5463 | |
5464 | for (auto *C : candidate) { |
5465 | FunctionDecl *FD = nullptr; |
5466 | NamedDecl *ND = C->getUnderlyingDecl(); |
5467 | if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(Val: ND)) |
5468 | FD = FTD->getTemplatedDecl(); |
5469 | if (!HasExplicitTemplateArgs && !FD) { |
5470 | if (!(FD = dyn_cast<FunctionDecl>(Val: ND)) && isa<ValueDecl>(Val: ND)) { |
5471 | // If the Decl is neither a function nor a template function, |
5472 | // determine if it is a pointer or reference to a function. If so, |
5473 | // check against the number of arguments expected for the pointee. |
5474 | QualType ValType = cast<ValueDecl>(Val: ND)->getType(); |
5475 | if (ValType.isNull()) |
5476 | continue; |
5477 | if (ValType->isAnyPointerType() || ValType->isReferenceType()) |
5478 | ValType = ValType->getPointeeType(); |
5479 | if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>()) |
5480 | if (FPT->getNumParams() == NumArgs) |
5481 | return true; |
5482 | } |
5483 | } |
5484 | |
5485 | // A typo for a function-style cast can look like a function call in C++. |
5486 | if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(D: ND) != nullptr |
5487 | : isa<TypeDecl>(Val: ND)) && |
5488 | CurContext->getParentASTContext().getLangOpts().CPlusPlus) |
5489 | // Only a class or class template can take two or more arguments. |
5490 | return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(Val: ND); |
5491 | |
5492 | // Skip the current candidate if it is not a FunctionDecl or does not accept |
5493 | // the current number of arguments. |
5494 | if (!FD || !(FD->getNumParams() >= NumArgs && |
5495 | FD->getMinRequiredArguments() <= NumArgs)) |
5496 | continue; |
5497 | |
5498 | // If the current candidate is a non-static C++ method, skip the candidate |
5499 | // unless the method being corrected--or the current DeclContext, if the |
5500 | // function being corrected is not a method--is a method in the same class |
5501 | // or a descendent class of the candidate's parent class. |
5502 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
5503 | if (MemberFn || !MD->isStatic()) { |
5504 | const auto *CurMD = |
5505 | MemberFn |
5506 | ? dyn_cast_if_present<CXXMethodDecl>(Val: MemberFn->getMemberDecl()) |
5507 | : dyn_cast_if_present<CXXMethodDecl>(Val: CurContext); |
5508 | const CXXRecordDecl *CurRD = |
5509 | CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr; |
5510 | const CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl(); |
5511 | if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(Base: RD))) |
5512 | continue; |
5513 | } |
5514 | } |
5515 | return true; |
5516 | } |
5517 | return false; |
5518 | } |
5519 | |
5520 | void Sema::diagnoseTypo(const TypoCorrection &Correction, |
5521 | const PartialDiagnostic &TypoDiag, |
5522 | bool ErrorRecovery) { |
5523 | diagnoseTypo(Correction, TypoDiag, PrevNote: PDiag(DiagID: diag::note_previous_decl), |
5524 | ErrorRecovery); |
5525 | } |
5526 | |
5527 | /// Find which declaration we should import to provide the definition of |
5528 | /// the given declaration. |
5529 | static const NamedDecl *getDefinitionToImport(const NamedDecl *D) { |
5530 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) |
5531 | return VD->getDefinition(); |
5532 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
5533 | return FD->getDefinition(); |
5534 | if (const auto *TD = dyn_cast<TagDecl>(Val: D)) |
5535 | return TD->getDefinition(); |
5536 | if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(Val: D)) |
5537 | return ID->getDefinition(); |
5538 | if (const auto *PD = dyn_cast<ObjCProtocolDecl>(Val: D)) |
5539 | return PD->getDefinition(); |
5540 | if (const auto *TD = dyn_cast<TemplateDecl>(Val: D)) |
5541 | if (const NamedDecl *TTD = TD->getTemplatedDecl()) |
5542 | return getDefinitionToImport(D: TTD); |
5543 | return nullptr; |
5544 | } |
5545 | |
5546 | void Sema::diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl, |
5547 | MissingImportKind MIK, bool Recover) { |
5548 | // Suggest importing a module providing the definition of this entity, if |
5549 | // possible. |
5550 | const NamedDecl *Def = getDefinitionToImport(D: Decl); |
5551 | if (!Def) |
5552 | Def = Decl; |
5553 | |
5554 | Module *Owner = getOwningModule(Entity: Def); |
5555 | assert(Owner && "definition of hidden declaration is not in a module" ); |
5556 | |
5557 | llvm::SmallVector<Module*, 8> OwningModules; |
5558 | OwningModules.push_back(Elt: Owner); |
5559 | auto Merged = Context.getModulesWithMergedDefinition(Def); |
5560 | OwningModules.insert(I: OwningModules.end(), From: Merged.begin(), To: Merged.end()); |
5561 | |
5562 | diagnoseMissingImport(Loc, Decl: Def, DeclLoc: Def->getLocation(), Modules: OwningModules, MIK, |
5563 | Recover); |
5564 | } |
5565 | |
5566 | /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic |
5567 | /// suggesting the addition of a #include of the specified file. |
5568 | static std::string (Preprocessor &PP, FileEntryRef E, |
5569 | llvm::StringRef IncludingFile) { |
5570 | bool IsAngled = false; |
5571 | auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics( |
5572 | File: E, MainFile: IncludingFile, IsAngled: &IsAngled); |
5573 | return (IsAngled ? '<' : '"') + Path + (IsAngled ? '>' : '"'); |
5574 | } |
5575 | |
5576 | void Sema::diagnoseMissingImport(SourceLocation UseLoc, const NamedDecl *Decl, |
5577 | SourceLocation DeclLoc, |
5578 | ArrayRef<Module *> Modules, |
5579 | MissingImportKind MIK, bool Recover) { |
5580 | assert(!Modules.empty()); |
5581 | |
5582 | // See https://github.com/llvm/llvm-project/issues/73893. It is generally |
5583 | // confusing than helpful to show the namespace is not visible. |
5584 | if (isa<NamespaceDecl>(Val: Decl)) |
5585 | return; |
5586 | |
5587 | auto NotePrevious = [&] { |
5588 | // FIXME: Suppress the note backtrace even under |
5589 | // -fdiagnostics-show-note-include-stack. We don't care how this |
5590 | // declaration was previously reached. |
5591 | Diag(Loc: DeclLoc, DiagID: diag::note_unreachable_entity) << (int)MIK; |
5592 | }; |
5593 | |
5594 | // Weed out duplicates from module list. |
5595 | llvm::SmallVector<Module*, 8> UniqueModules; |
5596 | llvm::SmallDenseSet<Module*, 8> UniqueModuleSet; |
5597 | for (auto *M : Modules) { |
5598 | if (M->isExplicitGlobalModule() || M->isPrivateModule()) |
5599 | continue; |
5600 | if (UniqueModuleSet.insert(V: M).second) |
5601 | UniqueModules.push_back(Elt: M); |
5602 | } |
5603 | |
5604 | // Try to find a suitable header-name to #include. |
5605 | std::string ; |
5606 | if (OptionalFileEntryRef = |
5607 | PP.getHeaderToIncludeForDiagnostics(IncLoc: UseLoc, MLoc: DeclLoc)) { |
5608 | if (const FileEntry *FE = |
5609 | SourceMgr.getFileEntryForID(FID: SourceMgr.getFileID(SpellingLoc: UseLoc))) |
5610 | HeaderName = |
5611 | getHeaderNameForHeader(PP, E: *Header, IncludingFile: FE->tryGetRealPathName()); |
5612 | } |
5613 | |
5614 | // If we have a #include we should suggest, or if all definition locations |
5615 | // were in global module fragments, don't suggest an import. |
5616 | if (!HeaderName.empty() || UniqueModules.empty()) { |
5617 | // FIXME: Find a smart place to suggest inserting a #include, and add |
5618 | // a FixItHint there. |
5619 | Diag(Loc: UseLoc, DiagID: diag::err_module_unimported_use_header) |
5620 | << (int)MIK << Decl << !HeaderName.empty() << HeaderName; |
5621 | // Produce a note showing where the entity was declared. |
5622 | NotePrevious(); |
5623 | if (Recover) |
5624 | createImplicitModuleImportForErrorRecovery(Loc: UseLoc, Mod: Modules[0]); |
5625 | return; |
5626 | } |
5627 | |
5628 | Modules = UniqueModules; |
5629 | |
5630 | auto GetModuleNameForDiagnostic = [this](const Module *M) -> std::string { |
5631 | if (M->isModuleMapModule()) |
5632 | return M->getFullModuleName(); |
5633 | |
5634 | if (M->isImplicitGlobalModule()) |
5635 | M = M->getTopLevelModule(); |
5636 | |
5637 | // If the current module unit is in the same module with M, it is OK to show |
5638 | // the partition name. Otherwise, it'll be sufficient to show the primary |
5639 | // module name. |
5640 | if (getASTContext().isInSameModule(M1: M, M2: getCurrentModule())) |
5641 | return M->getTopLevelModuleName().str(); |
5642 | else |
5643 | return M->getPrimaryModuleInterfaceName().str(); |
5644 | }; |
5645 | |
5646 | if (Modules.size() > 1) { |
5647 | std::string ModuleList; |
5648 | unsigned N = 0; |
5649 | for (const auto *M : Modules) { |
5650 | ModuleList += "\n " ; |
5651 | if (++N == 5 && N != Modules.size()) { |
5652 | ModuleList += "[...]" ; |
5653 | break; |
5654 | } |
5655 | ModuleList += GetModuleNameForDiagnostic(M); |
5656 | } |
5657 | |
5658 | Diag(Loc: UseLoc, DiagID: diag::err_module_unimported_use_multiple) |
5659 | << (int)MIK << Decl << ModuleList; |
5660 | } else { |
5661 | // FIXME: Add a FixItHint that imports the corresponding module. |
5662 | Diag(Loc: UseLoc, DiagID: diag::err_module_unimported_use) |
5663 | << (int)MIK << Decl << GetModuleNameForDiagnostic(Modules[0]); |
5664 | } |
5665 | |
5666 | NotePrevious(); |
5667 | |
5668 | // Try to recover by implicitly importing this module. |
5669 | if (Recover) |
5670 | createImplicitModuleImportForErrorRecovery(Loc: UseLoc, Mod: Modules[0]); |
5671 | } |
5672 | |
5673 | void Sema::diagnoseTypo(const TypoCorrection &Correction, |
5674 | const PartialDiagnostic &TypoDiag, |
5675 | const PartialDiagnostic &PrevNote, |
5676 | bool ErrorRecovery) { |
5677 | std::string CorrectedStr = Correction.getAsString(LO: getLangOpts()); |
5678 | std::string CorrectedQuotedStr = Correction.getQuoted(LO: getLangOpts()); |
5679 | FixItHint FixTypo = FixItHint::CreateReplacement( |
5680 | RemoveRange: Correction.getCorrectionRange(), Code: CorrectedStr); |
5681 | |
5682 | // Maybe we're just missing a module import. |
5683 | if (Correction.requiresImport()) { |
5684 | NamedDecl *Decl = Correction.getFoundDecl(); |
5685 | assert(Decl && "import required but no declaration to import" ); |
5686 | |
5687 | diagnoseMissingImport(Loc: Correction.getCorrectionRange().getBegin(), Decl, |
5688 | MIK: MissingImportKind::Declaration, Recover: ErrorRecovery); |
5689 | return; |
5690 | } |
5691 | |
5692 | Diag(Loc: Correction.getCorrectionRange().getBegin(), PD: TypoDiag) |
5693 | << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint()); |
5694 | |
5695 | NamedDecl *ChosenDecl = |
5696 | Correction.isKeyword() ? nullptr : Correction.getFoundDecl(); |
5697 | |
5698 | // For builtin functions which aren't declared anywhere in source, |
5699 | // don't emit the "declared here" note. |
5700 | if (const auto *FD = dyn_cast_if_present<FunctionDecl>(Val: ChosenDecl); |
5701 | FD && FD->getBuiltinID() && |
5702 | PrevNote.getDiagID() == diag::note_previous_decl && |
5703 | Correction.getCorrectionRange().getBegin() == FD->getBeginLoc()) { |
5704 | ChosenDecl = nullptr; |
5705 | } |
5706 | |
5707 | if (PrevNote.getDiagID() && ChosenDecl) |
5708 | Diag(Loc: ChosenDecl->getLocation(), PD: PrevNote) |
5709 | << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo); |
5710 | |
5711 | // Add any extra diagnostics. |
5712 | for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics()) |
5713 | Diag(Loc: Correction.getCorrectionRange().getBegin(), PD); |
5714 | } |
5715 | |
5716 | TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC, |
5717 | TypoDiagnosticGenerator TDG, |
5718 | TypoRecoveryCallback TRC, |
5719 | SourceLocation TypoLoc) { |
5720 | assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer" ); |
5721 | auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc); |
5722 | auto &State = DelayedTypos[TE]; |
5723 | State.Consumer = std::move(TCC); |
5724 | State.DiagHandler = std::move(TDG); |
5725 | State.RecoveryHandler = std::move(TRC); |
5726 | if (TE) |
5727 | TypoExprs.push_back(Elt: TE); |
5728 | return TE; |
5729 | } |
5730 | |
5731 | const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const { |
5732 | auto Entry = DelayedTypos.find(Key: TE); |
5733 | assert(Entry != DelayedTypos.end() && |
5734 | "Failed to get the state for a TypoExpr!" ); |
5735 | return Entry->second; |
5736 | } |
5737 | |
5738 | void Sema::clearDelayedTypo(TypoExpr *TE) { |
5739 | DelayedTypos.erase(Key: TE); |
5740 | } |
5741 | |
5742 | void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) { |
5743 | DeclarationNameInfo Name(II, IILoc); |
5744 | LookupResult R(*this, Name, LookupAnyName, |
5745 | RedeclarationKind::NotForRedeclaration); |
5746 | R.suppressDiagnostics(); |
5747 | R.setHideTags(false); |
5748 | LookupName(R, S); |
5749 | R.dump(); |
5750 | } |
5751 | |
5752 | void Sema::ActOnPragmaDump(Expr *E) { |
5753 | E->dump(); |
5754 | } |
5755 | |
5756 | RedeclarationKind Sema::forRedeclarationInCurContext() const { |
5757 | // A declaration with an owning module for linkage can never link against |
5758 | // anything that is not visible. We don't need to check linkage here; if |
5759 | // the context has internal linkage, redeclaration lookup won't find things |
5760 | // from other TUs, and we can't safely compute linkage yet in general. |
5761 | if (cast<Decl>(Val: CurContext)->getOwningModuleForLinkage()) |
5762 | return RedeclarationKind::ForVisibleRedeclaration; |
5763 | return RedeclarationKind::ForExternalRedeclaration; |
5764 | } |
5765 | |