1 | //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | //===----------------------------------------------------------------------===// |
7 | // |
8 | // This file implements semantic analysis for C++ templates. |
9 | //===----------------------------------------------------------------------===// |
10 | |
11 | #include "TreeTransform.h" |
12 | #include "clang/AST/ASTConsumer.h" |
13 | #include "clang/AST/ASTContext.h" |
14 | #include "clang/AST/Decl.h" |
15 | #include "clang/AST/DeclFriend.h" |
16 | #include "clang/AST/DeclTemplate.h" |
17 | #include "clang/AST/Expr.h" |
18 | #include "clang/AST/ExprCXX.h" |
19 | #include "clang/AST/RecursiveASTVisitor.h" |
20 | #include "clang/AST/TemplateName.h" |
21 | #include "clang/AST/TypeVisitor.h" |
22 | #include "clang/Basic/Builtins.h" |
23 | #include "clang/Basic/DiagnosticSema.h" |
24 | #include "clang/Basic/LangOptions.h" |
25 | #include "clang/Basic/PartialDiagnostic.h" |
26 | #include "clang/Basic/SourceLocation.h" |
27 | #include "clang/Basic/Stack.h" |
28 | #include "clang/Basic/TargetInfo.h" |
29 | #include "clang/Sema/DeclSpec.h" |
30 | #include "clang/Sema/EnterExpressionEvaluationContext.h" |
31 | #include "clang/Sema/Initialization.h" |
32 | #include "clang/Sema/Lookup.h" |
33 | #include "clang/Sema/Overload.h" |
34 | #include "clang/Sema/ParsedTemplate.h" |
35 | #include "clang/Sema/Scope.h" |
36 | #include "clang/Sema/SemaCUDA.h" |
37 | #include "clang/Sema/SemaInternal.h" |
38 | #include "clang/Sema/Template.h" |
39 | #include "clang/Sema/TemplateDeduction.h" |
40 | #include "llvm/ADT/BitVector.h" |
41 | #include "llvm/ADT/SmallBitVector.h" |
42 | #include "llvm/ADT/SmallString.h" |
43 | #include "llvm/ADT/StringExtras.h" |
44 | |
45 | #include <iterator> |
46 | #include <optional> |
47 | using namespace clang; |
48 | using namespace sema; |
49 | |
50 | // Exported for use by Parser. |
51 | SourceRange |
52 | clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, |
53 | unsigned N) { |
54 | if (!N) return SourceRange(); |
55 | return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); |
56 | } |
57 | |
58 | unsigned Sema::getTemplateDepth(Scope *S) const { |
59 | unsigned Depth = 0; |
60 | |
61 | // Each template parameter scope represents one level of template parameter |
62 | // depth. |
63 | for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope; |
64 | TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) { |
65 | ++Depth; |
66 | } |
67 | |
68 | // Note that there are template parameters with the given depth. |
69 | auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(a: Depth, b: D + 1); }; |
70 | |
71 | // Look for parameters of an enclosing generic lambda. We don't create a |
72 | // template parameter scope for these. |
73 | for (FunctionScopeInfo *FSI : getFunctionScopes()) { |
74 | if (auto *LSI = dyn_cast<LambdaScopeInfo>(Val: FSI)) { |
75 | if (!LSI->TemplateParams.empty()) { |
76 | ParamsAtDepth(LSI->AutoTemplateParameterDepth); |
77 | break; |
78 | } |
79 | if (LSI->GLTemplateParameterList) { |
80 | ParamsAtDepth(LSI->GLTemplateParameterList->getDepth()); |
81 | break; |
82 | } |
83 | } |
84 | } |
85 | |
86 | // Look for parameters of an enclosing terse function template. We don't |
87 | // create a template parameter scope for these either. |
88 | for (const InventedTemplateParameterInfo &Info : |
89 | getInventedParameterInfos()) { |
90 | if (!Info.TemplateParams.empty()) { |
91 | ParamsAtDepth(Info.AutoTemplateParameterDepth); |
92 | break; |
93 | } |
94 | } |
95 | |
96 | return Depth; |
97 | } |
98 | |
99 | /// \brief Determine whether the declaration found is acceptable as the name |
100 | /// of a template and, if so, return that template declaration. Otherwise, |
101 | /// returns null. |
102 | /// |
103 | /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent |
104 | /// is true. In all other cases it will return a TemplateDecl (or null). |
105 | NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D, |
106 | bool AllowFunctionTemplates, |
107 | bool AllowDependent) { |
108 | D = D->getUnderlyingDecl(); |
109 | |
110 | if (isa<TemplateDecl>(Val: D)) { |
111 | if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(Val: D)) |
112 | return nullptr; |
113 | |
114 | return D; |
115 | } |
116 | |
117 | if (const auto *Record = dyn_cast<CXXRecordDecl>(Val: D)) { |
118 | // C++ [temp.local]p1: |
119 | // Like normal (non-template) classes, class templates have an |
120 | // injected-class-name (Clause 9). The injected-class-name |
121 | // can be used with or without a template-argument-list. When |
122 | // it is used without a template-argument-list, it is |
123 | // equivalent to the injected-class-name followed by the |
124 | // template-parameters of the class template enclosed in |
125 | // <>. When it is used with a template-argument-list, it |
126 | // refers to the specified class template specialization, |
127 | // which could be the current specialization or another |
128 | // specialization. |
129 | if (Record->isInjectedClassName()) { |
130 | Record = cast<CXXRecordDecl>(Val: Record->getDeclContext()); |
131 | if (Record->getDescribedClassTemplate()) |
132 | return Record->getDescribedClassTemplate(); |
133 | |
134 | if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: Record)) |
135 | return Spec->getSpecializedTemplate(); |
136 | } |
137 | |
138 | return nullptr; |
139 | } |
140 | |
141 | // 'using Dependent::foo;' can resolve to a template name. |
142 | // 'using typename Dependent::foo;' cannot (not even if 'foo' is an |
143 | // injected-class-name). |
144 | if (AllowDependent && isa<UnresolvedUsingValueDecl>(Val: D)) |
145 | return D; |
146 | |
147 | return nullptr; |
148 | } |
149 | |
150 | void Sema::FilterAcceptableTemplateNames(LookupResult &R, |
151 | bool AllowFunctionTemplates, |
152 | bool AllowDependent) { |
153 | LookupResult::Filter filter = R.makeFilter(); |
154 | while (filter.hasNext()) { |
155 | NamedDecl *Orig = filter.next(); |
156 | if (!getAsTemplateNameDecl(D: Orig, AllowFunctionTemplates, AllowDependent)) |
157 | filter.erase(); |
158 | } |
159 | filter.done(); |
160 | } |
161 | |
162 | bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, |
163 | bool AllowFunctionTemplates, |
164 | bool AllowDependent, |
165 | bool AllowNonTemplateFunctions) { |
166 | for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { |
167 | if (getAsTemplateNameDecl(D: *I, AllowFunctionTemplates, AllowDependent)) |
168 | return true; |
169 | if (AllowNonTemplateFunctions && |
170 | isa<FunctionDecl>(Val: (*I)->getUnderlyingDecl())) |
171 | return true; |
172 | } |
173 | |
174 | return false; |
175 | } |
176 | |
177 | TemplateNameKind Sema::isTemplateName(Scope *S, |
178 | CXXScopeSpec &SS, |
179 | bool hasTemplateKeyword, |
180 | const UnqualifiedId &Name, |
181 | ParsedType ObjectTypePtr, |
182 | bool EnteringContext, |
183 | TemplateTy &TemplateResult, |
184 | bool &MemberOfUnknownSpecialization, |
185 | bool Disambiguation) { |
186 | assert(getLangOpts().CPlusPlus && "No template names in C!" ); |
187 | |
188 | DeclarationName TName; |
189 | MemberOfUnknownSpecialization = false; |
190 | |
191 | switch (Name.getKind()) { |
192 | case UnqualifiedIdKind::IK_Identifier: |
193 | TName = DeclarationName(Name.Identifier); |
194 | break; |
195 | |
196 | case UnqualifiedIdKind::IK_OperatorFunctionId: |
197 | TName = Context.DeclarationNames.getCXXOperatorName( |
198 | Op: Name.OperatorFunctionId.Operator); |
199 | break; |
200 | |
201 | case UnqualifiedIdKind::IK_LiteralOperatorId: |
202 | TName = Context.DeclarationNames.getCXXLiteralOperatorName(II: Name.Identifier); |
203 | break; |
204 | |
205 | default: |
206 | return TNK_Non_template; |
207 | } |
208 | |
209 | QualType ObjectType = ObjectTypePtr.get(); |
210 | |
211 | AssumedTemplateKind AssumedTemplate; |
212 | LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName); |
213 | if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext, |
214 | /*RequiredTemplate=*/SourceLocation(), |
215 | ATK: &AssumedTemplate, |
216 | /*AllowTypoCorrection=*/!Disambiguation)) |
217 | return TNK_Non_template; |
218 | MemberOfUnknownSpecialization = R.wasNotFoundInCurrentInstantiation(); |
219 | |
220 | if (AssumedTemplate != AssumedTemplateKind::None) { |
221 | TemplateResult = TemplateTy::make(P: Context.getAssumedTemplateName(Name: TName)); |
222 | // Let the parser know whether we found nothing or found functions; if we |
223 | // found nothing, we want to more carefully check whether this is actually |
224 | // a function template name versus some other kind of undeclared identifier. |
225 | return AssumedTemplate == AssumedTemplateKind::FoundNothing |
226 | ? TNK_Undeclared_template |
227 | : TNK_Function_template; |
228 | } |
229 | |
230 | if (R.empty()) |
231 | return TNK_Non_template; |
232 | |
233 | NamedDecl *D = nullptr; |
234 | UsingShadowDecl *FoundUsingShadow = dyn_cast<UsingShadowDecl>(Val: *R.begin()); |
235 | if (R.isAmbiguous()) { |
236 | // If we got an ambiguity involving a non-function template, treat this |
237 | // as a template name, and pick an arbitrary template for error recovery. |
238 | bool AnyFunctionTemplates = false; |
239 | for (NamedDecl *FoundD : R) { |
240 | if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(D: FoundD)) { |
241 | if (isa<FunctionTemplateDecl>(Val: FoundTemplate)) |
242 | AnyFunctionTemplates = true; |
243 | else { |
244 | D = FoundTemplate; |
245 | FoundUsingShadow = dyn_cast<UsingShadowDecl>(Val: FoundD); |
246 | break; |
247 | } |
248 | } |
249 | } |
250 | |
251 | // If we didn't find any templates at all, this isn't a template name. |
252 | // Leave the ambiguity for a later lookup to diagnose. |
253 | if (!D && !AnyFunctionTemplates) { |
254 | R.suppressDiagnostics(); |
255 | return TNK_Non_template; |
256 | } |
257 | |
258 | // If the only templates were function templates, filter out the rest. |
259 | // We'll diagnose the ambiguity later. |
260 | if (!D) |
261 | FilterAcceptableTemplateNames(R); |
262 | } |
263 | |
264 | // At this point, we have either picked a single template name declaration D |
265 | // or we have a non-empty set of results R containing either one template name |
266 | // declaration or a set of function templates. |
267 | |
268 | TemplateName Template; |
269 | TemplateNameKind TemplateKind; |
270 | |
271 | unsigned ResultCount = R.end() - R.begin(); |
272 | if (!D && ResultCount > 1) { |
273 | // We assume that we'll preserve the qualifier from a function |
274 | // template name in other ways. |
275 | Template = Context.getOverloadedTemplateName(Begin: R.begin(), End: R.end()); |
276 | TemplateKind = TNK_Function_template; |
277 | |
278 | // We'll do this lookup again later. |
279 | R.suppressDiagnostics(); |
280 | } else { |
281 | if (!D) { |
282 | D = getAsTemplateNameDecl(D: *R.begin()); |
283 | assert(D && "unambiguous result is not a template name" ); |
284 | } |
285 | |
286 | if (isa<UnresolvedUsingValueDecl>(Val: D)) { |
287 | // We don't yet know whether this is a template-name or not. |
288 | MemberOfUnknownSpecialization = true; |
289 | return TNK_Non_template; |
290 | } |
291 | |
292 | TemplateDecl *TD = cast<TemplateDecl>(Val: D); |
293 | Template = |
294 | FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD); |
295 | assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD); |
296 | if (!SS.isInvalid()) { |
297 | NestedNameSpecifier *Qualifier = SS.getScopeRep(); |
298 | Template = Context.getQualifiedTemplateName(NNS: Qualifier, TemplateKeyword: hasTemplateKeyword, |
299 | Template); |
300 | } |
301 | |
302 | if (isa<FunctionTemplateDecl>(Val: TD)) { |
303 | TemplateKind = TNK_Function_template; |
304 | |
305 | // We'll do this lookup again later. |
306 | R.suppressDiagnostics(); |
307 | } else { |
308 | assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || |
309 | isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || |
310 | isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD)); |
311 | TemplateKind = |
312 | isa<VarTemplateDecl>(Val: TD) ? TNK_Var_template : |
313 | isa<ConceptDecl>(Val: TD) ? TNK_Concept_template : |
314 | TNK_Type_template; |
315 | } |
316 | } |
317 | |
318 | TemplateResult = TemplateTy::make(P: Template); |
319 | return TemplateKind; |
320 | } |
321 | |
322 | bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name, |
323 | SourceLocation NameLoc, CXXScopeSpec &SS, |
324 | ParsedTemplateTy *Template /*=nullptr*/) { |
325 | // We could use redeclaration lookup here, but we don't need to: the |
326 | // syntactic form of a deduction guide is enough to identify it even |
327 | // if we can't look up the template name at all. |
328 | LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName); |
329 | if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(), |
330 | /*EnteringContext*/ false)) |
331 | return false; |
332 | |
333 | if (R.empty()) return false; |
334 | if (R.isAmbiguous()) { |
335 | // FIXME: Diagnose an ambiguity if we find at least one template. |
336 | R.suppressDiagnostics(); |
337 | return false; |
338 | } |
339 | |
340 | // We only treat template-names that name type templates as valid deduction |
341 | // guide names. |
342 | TemplateDecl *TD = R.getAsSingle<TemplateDecl>(); |
343 | if (!TD || !getAsTypeTemplateDecl(D: TD)) |
344 | return false; |
345 | |
346 | if (Template) { |
347 | TemplateName Name = Context.getQualifiedTemplateName( |
348 | NNS: SS.getScopeRep(), /*TemplateKeyword=*/false, Template: TemplateName(TD)); |
349 | *Template = TemplateTy::make(P: Name); |
350 | } |
351 | return true; |
352 | } |
353 | |
354 | bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, |
355 | SourceLocation IILoc, |
356 | Scope *S, |
357 | const CXXScopeSpec *SS, |
358 | TemplateTy &SuggestedTemplate, |
359 | TemplateNameKind &SuggestedKind) { |
360 | // We can't recover unless there's a dependent scope specifier preceding the |
361 | // template name. |
362 | // FIXME: Typo correction? |
363 | if (!SS || !SS->isSet() || !isDependentScopeSpecifier(SS: *SS) || |
364 | computeDeclContext(SS: *SS)) |
365 | return false; |
366 | |
367 | // The code is missing a 'template' keyword prior to the dependent template |
368 | // name. |
369 | NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); |
370 | Diag(Loc: IILoc, DiagID: diag::err_template_kw_missing) |
371 | << Qualifier << II.getName() |
372 | << FixItHint::CreateInsertion(InsertionLoc: IILoc, Code: "template " ); |
373 | SuggestedTemplate |
374 | = TemplateTy::make(P: Context.getDependentTemplateName(NNS: Qualifier, Name: &II)); |
375 | SuggestedKind = TNK_Dependent_template_name; |
376 | return true; |
377 | } |
378 | |
379 | bool Sema::LookupTemplateName(LookupResult &Found, Scope *S, CXXScopeSpec &SS, |
380 | QualType ObjectType, bool EnteringContext, |
381 | RequiredTemplateKind RequiredTemplate, |
382 | AssumedTemplateKind *ATK, |
383 | bool AllowTypoCorrection) { |
384 | if (ATK) |
385 | *ATK = AssumedTemplateKind::None; |
386 | |
387 | if (SS.isInvalid()) |
388 | return true; |
389 | |
390 | Found.setTemplateNameLookup(true); |
391 | |
392 | // Determine where to perform name lookup |
393 | DeclContext *LookupCtx = nullptr; |
394 | bool IsDependent = false; |
395 | if (!ObjectType.isNull()) { |
396 | // This nested-name-specifier occurs in a member access expression, e.g., |
397 | // x->B::f, and we are looking into the type of the object. |
398 | assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist" ); |
399 | LookupCtx = computeDeclContext(T: ObjectType); |
400 | IsDependent = !LookupCtx && ObjectType->isDependentType(); |
401 | assert((IsDependent || !ObjectType->isIncompleteType() || |
402 | !ObjectType->getAs<TagType>() || |
403 | ObjectType->castAs<TagType>()->isBeingDefined()) && |
404 | "Caller should have completed object type" ); |
405 | |
406 | // Template names cannot appear inside an Objective-C class or object type |
407 | // or a vector type. |
408 | // |
409 | // FIXME: This is wrong. For example: |
410 | // |
411 | // template<typename T> using Vec = T __attribute__((ext_vector_type(4))); |
412 | // Vec<int> vi; |
413 | // vi.Vec<int>::~Vec<int>(); |
414 | // |
415 | // ... should be accepted but we will not treat 'Vec' as a template name |
416 | // here. The right thing to do would be to check if the name is a valid |
417 | // vector component name, and look up a template name if not. And similarly |
418 | // for lookups into Objective-C class and object types, where the same |
419 | // problem can arise. |
420 | if (ObjectType->isObjCObjectOrInterfaceType() || |
421 | ObjectType->isVectorType()) { |
422 | Found.clear(); |
423 | return false; |
424 | } |
425 | } else if (SS.isNotEmpty()) { |
426 | // This nested-name-specifier occurs after another nested-name-specifier, |
427 | // so long into the context associated with the prior nested-name-specifier. |
428 | LookupCtx = computeDeclContext(SS, EnteringContext); |
429 | IsDependent = !LookupCtx && isDependentScopeSpecifier(SS); |
430 | |
431 | // The declaration context must be complete. |
432 | if (LookupCtx && RequireCompleteDeclContext(SS, DC: LookupCtx)) |
433 | return true; |
434 | } |
435 | |
436 | bool ObjectTypeSearchedInScope = false; |
437 | bool AllowFunctionTemplatesInLookup = true; |
438 | if (LookupCtx) { |
439 | // Perform "qualified" name lookup into the declaration context we |
440 | // computed, which is either the type of the base of a member access |
441 | // expression or the declaration context associated with a prior |
442 | // nested-name-specifier. |
443 | LookupQualifiedName(R&: Found, LookupCtx); |
444 | |
445 | // FIXME: The C++ standard does not clearly specify what happens in the |
446 | // case where the object type is dependent, and implementations vary. In |
447 | // Clang, we treat a name after a . or -> as a template-name if lookup |
448 | // finds a non-dependent member or member of the current instantiation that |
449 | // is a type template, or finds no such members and lookup in the context |
450 | // of the postfix-expression finds a type template. In the latter case, the |
451 | // name is nonetheless dependent, and we may resolve it to a member of an |
452 | // unknown specialization when we come to instantiate the template. |
453 | IsDependent |= Found.wasNotFoundInCurrentInstantiation(); |
454 | } |
455 | |
456 | if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) { |
457 | // C++ [basic.lookup.classref]p1: |
458 | // In a class member access expression (5.2.5), if the . or -> token is |
459 | // immediately followed by an identifier followed by a <, the |
460 | // identifier must be looked up to determine whether the < is the |
461 | // beginning of a template argument list (14.2) or a less-than operator. |
462 | // The identifier is first looked up in the class of the object |
463 | // expression. If the identifier is not found, it is then looked up in |
464 | // the context of the entire postfix-expression and shall name a class |
465 | // template. |
466 | if (S) |
467 | LookupName(R&: Found, S); |
468 | |
469 | if (!ObjectType.isNull()) { |
470 | // FIXME: We should filter out all non-type templates here, particularly |
471 | // variable templates and concepts. But the exclusion of alias templates |
472 | // and template template parameters is a wording defect. |
473 | AllowFunctionTemplatesInLookup = false; |
474 | ObjectTypeSearchedInScope = true; |
475 | } |
476 | |
477 | IsDependent |= Found.wasNotFoundInCurrentInstantiation(); |
478 | } |
479 | |
480 | if (Found.isAmbiguous()) |
481 | return false; |
482 | |
483 | if (ATK && SS.isEmpty() && ObjectType.isNull() && |
484 | !RequiredTemplate.hasTemplateKeyword()) { |
485 | // C++2a [temp.names]p2: |
486 | // A name is also considered to refer to a template if it is an |
487 | // unqualified-id followed by a < and name lookup finds either one or more |
488 | // functions or finds nothing. |
489 | // |
490 | // To keep our behavior consistent, we apply the "finds nothing" part in |
491 | // all language modes, and diagnose the empty lookup in ActOnCallExpr if we |
492 | // successfully form a call to an undeclared template-id. |
493 | bool AllFunctions = |
494 | getLangOpts().CPlusPlus20 && llvm::all_of(Range&: Found, P: [](NamedDecl *ND) { |
495 | return isa<FunctionDecl>(Val: ND->getUnderlyingDecl()); |
496 | }); |
497 | if (AllFunctions || (Found.empty() && !IsDependent)) { |
498 | // If lookup found any functions, or if this is a name that can only be |
499 | // used for a function, then strongly assume this is a function |
500 | // template-id. |
501 | *ATK = (Found.empty() && Found.getLookupName().isIdentifier()) |
502 | ? AssumedTemplateKind::FoundNothing |
503 | : AssumedTemplateKind::FoundFunctions; |
504 | Found.clear(); |
505 | return false; |
506 | } |
507 | } |
508 | |
509 | if (Found.empty() && !IsDependent && AllowTypoCorrection) { |
510 | // If we did not find any names, and this is not a disambiguation, attempt |
511 | // to correct any typos. |
512 | DeclarationName Name = Found.getLookupName(); |
513 | Found.clear(); |
514 | // Simple filter callback that, for keywords, only accepts the C++ *_cast |
515 | DefaultFilterCCC FilterCCC{}; |
516 | FilterCCC.WantTypeSpecifiers = false; |
517 | FilterCCC.WantExpressionKeywords = false; |
518 | FilterCCC.WantRemainingKeywords = false; |
519 | FilterCCC.WantCXXNamedCasts = true; |
520 | if (TypoCorrection Corrected = |
521 | CorrectTypo(Typo: Found.getLookupNameInfo(), LookupKind: Found.getLookupKind(), S, |
522 | SS: &SS, CCC&: FilterCCC, Mode: CTK_ErrorRecovery, MemberContext: LookupCtx)) { |
523 | if (auto *ND = Corrected.getFoundDecl()) |
524 | Found.addDecl(D: ND); |
525 | FilterAcceptableTemplateNames(R&: Found); |
526 | if (Found.isAmbiguous()) { |
527 | Found.clear(); |
528 | } else if (!Found.empty()) { |
529 | Found.setLookupName(Corrected.getCorrection()); |
530 | if (LookupCtx) { |
531 | std::string CorrectedStr(Corrected.getAsString(LO: getLangOpts())); |
532 | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && |
533 | Name.getAsString() == CorrectedStr; |
534 | diagnoseTypo(Correction: Corrected, TypoDiag: PDiag(DiagID: diag::err_no_member_template_suggest) |
535 | << Name << LookupCtx << DroppedSpecifier |
536 | << SS.getRange()); |
537 | } else { |
538 | diagnoseTypo(Correction: Corrected, TypoDiag: PDiag(DiagID: diag::err_no_template_suggest) << Name); |
539 | } |
540 | } |
541 | } |
542 | } |
543 | |
544 | NamedDecl *ExampleLookupResult = |
545 | Found.empty() ? nullptr : Found.getRepresentativeDecl(); |
546 | FilterAcceptableTemplateNames(R&: Found, AllowFunctionTemplates: AllowFunctionTemplatesInLookup); |
547 | if (Found.empty()) { |
548 | if (IsDependent) { |
549 | Found.setNotFoundInCurrentInstantiation(); |
550 | return false; |
551 | } |
552 | |
553 | // If a 'template' keyword was used, a lookup that finds only non-template |
554 | // names is an error. |
555 | if (ExampleLookupResult && RequiredTemplate) { |
556 | Diag(Loc: Found.getNameLoc(), DiagID: diag::err_template_kw_refers_to_non_template) |
557 | << Found.getLookupName() << SS.getRange() |
558 | << RequiredTemplate.hasTemplateKeyword() |
559 | << RequiredTemplate.getTemplateKeywordLoc(); |
560 | Diag(Loc: ExampleLookupResult->getUnderlyingDecl()->getLocation(), |
561 | DiagID: diag::note_template_kw_refers_to_non_template) |
562 | << Found.getLookupName(); |
563 | return true; |
564 | } |
565 | |
566 | return false; |
567 | } |
568 | |
569 | if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && |
570 | !getLangOpts().CPlusPlus11) { |
571 | // C++03 [basic.lookup.classref]p1: |
572 | // [...] If the lookup in the class of the object expression finds a |
573 | // template, the name is also looked up in the context of the entire |
574 | // postfix-expression and [...] |
575 | // |
576 | // Note: C++11 does not perform this second lookup. |
577 | LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), |
578 | LookupOrdinaryName); |
579 | FoundOuter.setTemplateNameLookup(true); |
580 | LookupName(R&: FoundOuter, S); |
581 | // FIXME: We silently accept an ambiguous lookup here, in violation of |
582 | // [basic.lookup]/1. |
583 | FilterAcceptableTemplateNames(R&: FoundOuter, /*AllowFunctionTemplates=*/false); |
584 | |
585 | NamedDecl *OuterTemplate; |
586 | if (FoundOuter.empty()) { |
587 | // - if the name is not found, the name found in the class of the |
588 | // object expression is used, otherwise |
589 | } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() || |
590 | !(OuterTemplate = |
591 | getAsTemplateNameDecl(D: FoundOuter.getFoundDecl()))) { |
592 | // - if the name is found in the context of the entire |
593 | // postfix-expression and does not name a class template, the name |
594 | // found in the class of the object expression is used, otherwise |
595 | FoundOuter.clear(); |
596 | } else if (!Found.isSuppressingAmbiguousDiagnostics()) { |
597 | // - if the name found is a class template, it must refer to the same |
598 | // entity as the one found in the class of the object expression, |
599 | // otherwise the program is ill-formed. |
600 | if (!Found.isSingleResult() || |
601 | getAsTemplateNameDecl(D: Found.getFoundDecl())->getCanonicalDecl() != |
602 | OuterTemplate->getCanonicalDecl()) { |
603 | Diag(Loc: Found.getNameLoc(), |
604 | DiagID: diag::ext_nested_name_member_ref_lookup_ambiguous) |
605 | << Found.getLookupName() |
606 | << ObjectType; |
607 | Diag(Loc: Found.getRepresentativeDecl()->getLocation(), |
608 | DiagID: diag::note_ambig_member_ref_object_type) |
609 | << ObjectType; |
610 | Diag(Loc: FoundOuter.getFoundDecl()->getLocation(), |
611 | DiagID: diag::note_ambig_member_ref_scope); |
612 | |
613 | // Recover by taking the template that we found in the object |
614 | // expression's type. |
615 | } |
616 | } |
617 | } |
618 | |
619 | return false; |
620 | } |
621 | |
622 | void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, |
623 | SourceLocation Less, |
624 | SourceLocation Greater) { |
625 | if (TemplateName.isInvalid()) |
626 | return; |
627 | |
628 | DeclarationNameInfo NameInfo; |
629 | CXXScopeSpec SS; |
630 | LookupNameKind LookupKind; |
631 | |
632 | DeclContext *LookupCtx = nullptr; |
633 | NamedDecl *Found = nullptr; |
634 | bool MissingTemplateKeyword = false; |
635 | |
636 | // Figure out what name we looked up. |
637 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: TemplateName.get())) { |
638 | NameInfo = DRE->getNameInfo(); |
639 | SS.Adopt(Other: DRE->getQualifierLoc()); |
640 | LookupKind = LookupOrdinaryName; |
641 | Found = DRE->getFoundDecl(); |
642 | } else if (auto *ME = dyn_cast<MemberExpr>(Val: TemplateName.get())) { |
643 | NameInfo = ME->getMemberNameInfo(); |
644 | SS.Adopt(Other: ME->getQualifierLoc()); |
645 | LookupKind = LookupMemberName; |
646 | LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl(); |
647 | Found = ME->getMemberDecl(); |
648 | } else if (auto *DSDRE = |
649 | dyn_cast<DependentScopeDeclRefExpr>(Val: TemplateName.get())) { |
650 | NameInfo = DSDRE->getNameInfo(); |
651 | SS.Adopt(Other: DSDRE->getQualifierLoc()); |
652 | MissingTemplateKeyword = true; |
653 | } else if (auto *DSME = |
654 | dyn_cast<CXXDependentScopeMemberExpr>(Val: TemplateName.get())) { |
655 | NameInfo = DSME->getMemberNameInfo(); |
656 | SS.Adopt(Other: DSME->getQualifierLoc()); |
657 | MissingTemplateKeyword = true; |
658 | } else { |
659 | llvm_unreachable("unexpected kind of potential template name" ); |
660 | } |
661 | |
662 | // If this is a dependent-scope lookup, diagnose that the 'template' keyword |
663 | // was missing. |
664 | if (MissingTemplateKeyword) { |
665 | Diag(Loc: NameInfo.getBeginLoc(), DiagID: diag::err_template_kw_missing) |
666 | << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater); |
667 | return; |
668 | } |
669 | |
670 | // Try to correct the name by looking for templates and C++ named casts. |
671 | struct TemplateCandidateFilter : CorrectionCandidateCallback { |
672 | Sema &S; |
673 | TemplateCandidateFilter(Sema &S) : S(S) { |
674 | WantTypeSpecifiers = false; |
675 | WantExpressionKeywords = false; |
676 | WantRemainingKeywords = false; |
677 | WantCXXNamedCasts = true; |
678 | }; |
679 | bool ValidateCandidate(const TypoCorrection &Candidate) override { |
680 | if (auto *ND = Candidate.getCorrectionDecl()) |
681 | return S.getAsTemplateNameDecl(D: ND); |
682 | return Candidate.isKeyword(); |
683 | } |
684 | |
685 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
686 | return std::make_unique<TemplateCandidateFilter>(args&: *this); |
687 | } |
688 | }; |
689 | |
690 | DeclarationName Name = NameInfo.getName(); |
691 | TemplateCandidateFilter CCC(*this); |
692 | if (TypoCorrection Corrected = CorrectTypo(Typo: NameInfo, LookupKind, S, SS: &SS, CCC, |
693 | Mode: CTK_ErrorRecovery, MemberContext: LookupCtx)) { |
694 | auto *ND = Corrected.getFoundDecl(); |
695 | if (ND) |
696 | ND = getAsTemplateNameDecl(D: ND); |
697 | if (ND || Corrected.isKeyword()) { |
698 | if (LookupCtx) { |
699 | std::string CorrectedStr(Corrected.getAsString(LO: getLangOpts())); |
700 | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && |
701 | Name.getAsString() == CorrectedStr; |
702 | diagnoseTypo(Correction: Corrected, |
703 | TypoDiag: PDiag(DiagID: diag::err_non_template_in_member_template_id_suggest) |
704 | << Name << LookupCtx << DroppedSpecifier |
705 | << SS.getRange(), ErrorRecovery: false); |
706 | } else { |
707 | diagnoseTypo(Correction: Corrected, |
708 | TypoDiag: PDiag(DiagID: diag::err_non_template_in_template_id_suggest) |
709 | << Name, ErrorRecovery: false); |
710 | } |
711 | if (Found) |
712 | Diag(Loc: Found->getLocation(), |
713 | DiagID: diag::note_non_template_in_template_id_found); |
714 | return; |
715 | } |
716 | } |
717 | |
718 | Diag(Loc: NameInfo.getLoc(), DiagID: diag::err_non_template_in_template_id) |
719 | << Name << SourceRange(Less, Greater); |
720 | if (Found) |
721 | Diag(Loc: Found->getLocation(), DiagID: diag::note_non_template_in_template_id_found); |
722 | } |
723 | |
724 | ExprResult |
725 | Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, |
726 | SourceLocation TemplateKWLoc, |
727 | const DeclarationNameInfo &NameInfo, |
728 | bool isAddressOfOperand, |
729 | const TemplateArgumentListInfo *TemplateArgs) { |
730 | if (SS.isEmpty()) { |
731 | // FIXME: This codepath is only used by dependent unqualified names |
732 | // (e.g. a dependent conversion-function-id, or operator= once we support |
733 | // it). It doesn't quite do the right thing, and it will silently fail if |
734 | // getCurrentThisType() returns null. |
735 | QualType ThisType = getCurrentThisType(); |
736 | if (ThisType.isNull()) |
737 | return ExprError(); |
738 | |
739 | return CXXDependentScopeMemberExpr::Create( |
740 | Ctx: Context, /*Base=*/nullptr, BaseType: ThisType, |
741 | /*IsArrow=*/!Context.getLangOpts().HLSL, |
742 | /*OperatorLoc=*/SourceLocation(), |
743 | /*QualifierLoc=*/NestedNameSpecifierLoc(), TemplateKWLoc, |
744 | /*FirstQualifierFoundInScope=*/nullptr, MemberNameInfo: NameInfo, TemplateArgs); |
745 | } |
746 | return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); |
747 | } |
748 | |
749 | ExprResult |
750 | Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, |
751 | SourceLocation TemplateKWLoc, |
752 | const DeclarationNameInfo &NameInfo, |
753 | const TemplateArgumentListInfo *TemplateArgs) { |
754 | // DependentScopeDeclRefExpr::Create requires a valid NestedNameSpecifierLoc |
755 | if (!SS.isValid()) |
756 | return CreateRecoveryExpr( |
757 | Begin: SS.getBeginLoc(), |
758 | End: TemplateArgs ? TemplateArgs->getRAngleLoc() : NameInfo.getEndLoc(), SubExprs: {}); |
759 | |
760 | return DependentScopeDeclRefExpr::Create( |
761 | Context, QualifierLoc: SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, |
762 | TemplateArgs); |
763 | } |
764 | |
765 | bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, |
766 | NamedDecl *Instantiation, |
767 | bool InstantiatedFromMember, |
768 | const NamedDecl *Pattern, |
769 | const NamedDecl *PatternDef, |
770 | TemplateSpecializationKind TSK, |
771 | bool Complain /*= true*/) { |
772 | assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || |
773 | isa<VarDecl>(Instantiation)); |
774 | |
775 | bool IsEntityBeingDefined = false; |
776 | if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(Val: PatternDef)) |
777 | IsEntityBeingDefined = TD->isBeingDefined(); |
778 | |
779 | if (PatternDef && !IsEntityBeingDefined) { |
780 | NamedDecl *SuggestedDef = nullptr; |
781 | if (!hasReachableDefinition(D: const_cast<NamedDecl *>(PatternDef), |
782 | Suggested: &SuggestedDef, |
783 | /*OnlyNeedComplete*/ false)) { |
784 | // If we're allowed to diagnose this and recover, do so. |
785 | bool Recover = Complain && !isSFINAEContext(); |
786 | if (Complain) |
787 | diagnoseMissingImport(Loc: PointOfInstantiation, Decl: SuggestedDef, |
788 | MIK: Sema::MissingImportKind::Definition, Recover); |
789 | return !Recover; |
790 | } |
791 | return false; |
792 | } |
793 | |
794 | if (!Complain || (PatternDef && PatternDef->isInvalidDecl())) |
795 | return true; |
796 | |
797 | QualType InstantiationTy; |
798 | if (TagDecl *TD = dyn_cast<TagDecl>(Val: Instantiation)) |
799 | InstantiationTy = Context.getTypeDeclType(Decl: TD); |
800 | if (PatternDef) { |
801 | Diag(Loc: PointOfInstantiation, |
802 | DiagID: diag::err_template_instantiate_within_definition) |
803 | << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation) |
804 | << InstantiationTy; |
805 | // Not much point in noting the template declaration here, since |
806 | // we're lexically inside it. |
807 | Instantiation->setInvalidDecl(); |
808 | } else if (InstantiatedFromMember) { |
809 | if (isa<FunctionDecl>(Val: Instantiation)) { |
810 | Diag(Loc: PointOfInstantiation, |
811 | DiagID: diag::err_explicit_instantiation_undefined_member) |
812 | << /*member function*/ 1 << Instantiation->getDeclName() |
813 | << Instantiation->getDeclContext(); |
814 | Diag(Loc: Pattern->getLocation(), DiagID: diag::note_explicit_instantiation_here); |
815 | } else { |
816 | assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!" ); |
817 | Diag(Loc: PointOfInstantiation, |
818 | DiagID: diag::err_implicit_instantiate_member_undefined) |
819 | << InstantiationTy; |
820 | Diag(Loc: Pattern->getLocation(), DiagID: diag::note_member_declared_at); |
821 | } |
822 | } else { |
823 | if (isa<FunctionDecl>(Val: Instantiation)) { |
824 | Diag(Loc: PointOfInstantiation, |
825 | DiagID: diag::err_explicit_instantiation_undefined_func_template) |
826 | << Pattern; |
827 | Diag(Loc: Pattern->getLocation(), DiagID: diag::note_explicit_instantiation_here); |
828 | } else if (isa<TagDecl>(Val: Instantiation)) { |
829 | Diag(Loc: PointOfInstantiation, DiagID: diag::err_template_instantiate_undefined) |
830 | << (TSK != TSK_ImplicitInstantiation) |
831 | << InstantiationTy; |
832 | NoteTemplateLocation(Decl: *Pattern); |
833 | } else { |
834 | assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!" ); |
835 | if (isa<VarTemplateSpecializationDecl>(Val: Instantiation)) { |
836 | Diag(Loc: PointOfInstantiation, |
837 | DiagID: diag::err_explicit_instantiation_undefined_var_template) |
838 | << Instantiation; |
839 | Instantiation->setInvalidDecl(); |
840 | } else |
841 | Diag(Loc: PointOfInstantiation, |
842 | DiagID: diag::err_explicit_instantiation_undefined_member) |
843 | << /*static data member*/ 2 << Instantiation->getDeclName() |
844 | << Instantiation->getDeclContext(); |
845 | Diag(Loc: Pattern->getLocation(), DiagID: diag::note_explicit_instantiation_here); |
846 | } |
847 | } |
848 | |
849 | // In general, Instantiation isn't marked invalid to get more than one |
850 | // error for multiple undefined instantiations. But the code that does |
851 | // explicit declaration -> explicit definition conversion can't handle |
852 | // invalid declarations, so mark as invalid in that case. |
853 | if (TSK == TSK_ExplicitInstantiationDeclaration) |
854 | Instantiation->setInvalidDecl(); |
855 | return true; |
856 | } |
857 | |
858 | void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl, |
859 | bool SupportedForCompatibility) { |
860 | assert(PrevDecl->isTemplateParameter() && "Not a template parameter" ); |
861 | |
862 | // C++23 [temp.local]p6: |
863 | // The name of a template-parameter shall not be bound to any following. |
864 | // declaration whose locus is contained by the scope to which the |
865 | // template-parameter belongs. |
866 | // |
867 | // When MSVC compatibility is enabled, the diagnostic is always a warning |
868 | // by default. Otherwise, it an error unless SupportedForCompatibility is |
869 | // true, in which case it is a default-to-error warning. |
870 | unsigned DiagId = |
871 | getLangOpts().MSVCCompat |
872 | ? diag::ext_template_param_shadow |
873 | : (SupportedForCompatibility ? diag::ext_compat_template_param_shadow |
874 | : diag::err_template_param_shadow); |
875 | const auto *ND = cast<NamedDecl>(Val: PrevDecl); |
876 | Diag(Loc, DiagID: DiagId) << ND->getDeclName(); |
877 | NoteTemplateParameterLocation(Decl: *ND); |
878 | } |
879 | |
880 | TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { |
881 | if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(Val: D)) { |
882 | D = Temp->getTemplatedDecl(); |
883 | return Temp; |
884 | } |
885 | return nullptr; |
886 | } |
887 | |
888 | ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( |
889 | SourceLocation EllipsisLoc) const { |
890 | assert(Kind == Template && |
891 | "Only template template arguments can be pack expansions here" ); |
892 | assert(getAsTemplate().get().containsUnexpandedParameterPack() && |
893 | "Template template argument pack expansion without packs" ); |
894 | ParsedTemplateArgument Result(*this); |
895 | Result.EllipsisLoc = EllipsisLoc; |
896 | return Result; |
897 | } |
898 | |
899 | static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, |
900 | const ParsedTemplateArgument &Arg) { |
901 | |
902 | switch (Arg.getKind()) { |
903 | case ParsedTemplateArgument::Type: { |
904 | TypeSourceInfo *DI; |
905 | QualType T = SemaRef.GetTypeFromParser(Ty: Arg.getAsType(), TInfo: &DI); |
906 | if (!DI) |
907 | DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Loc: Arg.getLocation()); |
908 | return TemplateArgumentLoc(TemplateArgument(T), DI); |
909 | } |
910 | |
911 | case ParsedTemplateArgument::NonType: { |
912 | Expr *E = static_cast<Expr *>(Arg.getAsExpr()); |
913 | return TemplateArgumentLoc(TemplateArgument(E), E); |
914 | } |
915 | |
916 | case ParsedTemplateArgument::Template: { |
917 | TemplateName Template = Arg.getAsTemplate().get(); |
918 | TemplateArgument TArg; |
919 | if (Arg.getEllipsisLoc().isValid()) |
920 | TArg = TemplateArgument(Template, std::optional<unsigned int>()); |
921 | else |
922 | TArg = Template; |
923 | return TemplateArgumentLoc( |
924 | SemaRef.Context, TArg, |
925 | Arg.getScopeSpec().getWithLocInContext(Context&: SemaRef.Context), |
926 | Arg.getLocation(), Arg.getEllipsisLoc()); |
927 | } |
928 | } |
929 | |
930 | llvm_unreachable("Unhandled parsed template argument" ); |
931 | } |
932 | |
933 | void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, |
934 | TemplateArgumentListInfo &TemplateArgs) { |
935 | for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) |
936 | TemplateArgs.addArgument(Loc: translateTemplateArgument(SemaRef&: *this, |
937 | Arg: TemplateArgsIn[I])); |
938 | } |
939 | |
940 | static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, |
941 | SourceLocation Loc, |
942 | const IdentifierInfo *Name) { |
943 | NamedDecl *PrevDecl = |
944 | SemaRef.LookupSingleName(S, Name, Loc, NameKind: Sema::LookupOrdinaryName, |
945 | Redecl: RedeclarationKind::ForVisibleRedeclaration); |
946 | if (PrevDecl && PrevDecl->isTemplateParameter()) |
947 | SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); |
948 | } |
949 | |
950 | ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) { |
951 | TypeSourceInfo *TInfo; |
952 | QualType T = GetTypeFromParser(Ty: ParsedType.get(), TInfo: &TInfo); |
953 | if (T.isNull()) |
954 | return ParsedTemplateArgument(); |
955 | assert(TInfo && "template argument with no location" ); |
956 | |
957 | // If we might have formed a deduced template specialization type, convert |
958 | // it to a template template argument. |
959 | if (getLangOpts().CPlusPlus17) { |
960 | TypeLoc TL = TInfo->getTypeLoc(); |
961 | SourceLocation EllipsisLoc; |
962 | if (auto PET = TL.getAs<PackExpansionTypeLoc>()) { |
963 | EllipsisLoc = PET.getEllipsisLoc(); |
964 | TL = PET.getPatternLoc(); |
965 | } |
966 | |
967 | CXXScopeSpec SS; |
968 | if (auto ET = TL.getAs<ElaboratedTypeLoc>()) { |
969 | SS.Adopt(Other: ET.getQualifierLoc()); |
970 | TL = ET.getNamedTypeLoc(); |
971 | } |
972 | |
973 | if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) { |
974 | TemplateName Name = DTST.getTypePtr()->getTemplateName(); |
975 | ParsedTemplateArgument Result(SS, TemplateTy::make(P: Name), |
976 | DTST.getTemplateNameLoc()); |
977 | if (EllipsisLoc.isValid()) |
978 | Result = Result.getTemplatePackExpansion(EllipsisLoc); |
979 | return Result; |
980 | } |
981 | } |
982 | |
983 | // This is a normal type template argument. Note, if the type template |
984 | // argument is an injected-class-name for a template, it has a dual nature |
985 | // and can be used as either a type or a template. We handle that in |
986 | // convertTypeTemplateArgumentToTemplate. |
987 | return ParsedTemplateArgument(ParsedTemplateArgument::Type, |
988 | ParsedType.get().getAsOpaquePtr(), |
989 | TInfo->getTypeLoc().getBeginLoc()); |
990 | } |
991 | |
992 | NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename, |
993 | SourceLocation EllipsisLoc, |
994 | SourceLocation KeyLoc, |
995 | IdentifierInfo *ParamName, |
996 | SourceLocation ParamNameLoc, |
997 | unsigned Depth, unsigned Position, |
998 | SourceLocation EqualLoc, |
999 | ParsedType DefaultArg, |
1000 | bool HasTypeConstraint) { |
1001 | assert(S->isTemplateParamScope() && |
1002 | "Template type parameter not in template parameter scope!" ); |
1003 | |
1004 | bool IsParameterPack = EllipsisLoc.isValid(); |
1005 | TemplateTypeParmDecl *Param |
1006 | = TemplateTypeParmDecl::Create(C: Context, DC: Context.getTranslationUnitDecl(), |
1007 | KeyLoc, NameLoc: ParamNameLoc, D: Depth, P: Position, |
1008 | Id: ParamName, Typename, ParameterPack: IsParameterPack, |
1009 | HasTypeConstraint); |
1010 | Param->setAccess(AS_public); |
1011 | |
1012 | if (Param->isParameterPack()) |
1013 | if (auto *LSI = getEnclosingLambda()) |
1014 | LSI->LocalPacks.push_back(Elt: Param); |
1015 | |
1016 | if (ParamName) { |
1017 | maybeDiagnoseTemplateParameterShadow(SemaRef&: *this, S, Loc: ParamNameLoc, Name: ParamName); |
1018 | |
1019 | // Add the template parameter into the current scope. |
1020 | S->AddDecl(D: Param); |
1021 | IdResolver.AddDecl(D: Param); |
1022 | } |
1023 | |
1024 | // C++0x [temp.param]p9: |
1025 | // A default template-argument may be specified for any kind of |
1026 | // template-parameter that is not a template parameter pack. |
1027 | if (DefaultArg && IsParameterPack) { |
1028 | Diag(Loc: EqualLoc, DiagID: diag::err_template_param_pack_default_arg); |
1029 | DefaultArg = nullptr; |
1030 | } |
1031 | |
1032 | // Handle the default argument, if provided. |
1033 | if (DefaultArg) { |
1034 | TypeSourceInfo *DefaultTInfo; |
1035 | GetTypeFromParser(Ty: DefaultArg, TInfo: &DefaultTInfo); |
1036 | |
1037 | assert(DefaultTInfo && "expected source information for type" ); |
1038 | |
1039 | // Check for unexpanded parameter packs. |
1040 | if (DiagnoseUnexpandedParameterPack(Loc: ParamNameLoc, T: DefaultTInfo, |
1041 | UPPC: UPPC_DefaultArgument)) |
1042 | return Param; |
1043 | |
1044 | // Check the template argument itself. |
1045 | if (CheckTemplateArgument(Arg: DefaultTInfo)) { |
1046 | Param->setInvalidDecl(); |
1047 | return Param; |
1048 | } |
1049 | |
1050 | Param->setDefaultArgument( |
1051 | C: Context, DefArg: TemplateArgumentLoc(DefaultTInfo->getType(), DefaultTInfo)); |
1052 | } |
1053 | |
1054 | return Param; |
1055 | } |
1056 | |
1057 | /// Convert the parser's template argument list representation into our form. |
1058 | static TemplateArgumentListInfo |
1059 | makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) { |
1060 | TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc, |
1061 | TemplateId.RAngleLoc); |
1062 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(), |
1063 | TemplateId.NumArgs); |
1064 | S.translateTemplateArguments(TemplateArgsIn: TemplateArgsPtr, TemplateArgs); |
1065 | return TemplateArgs; |
1066 | } |
1067 | |
1068 | bool Sema::CheckTypeConstraint(TemplateIdAnnotation *TypeConstr) { |
1069 | |
1070 | TemplateName TN = TypeConstr->Template.get(); |
1071 | ConceptDecl *CD = cast<ConceptDecl>(Val: TN.getAsTemplateDecl()); |
1072 | |
1073 | // C++2a [temp.param]p4: |
1074 | // [...] The concept designated by a type-constraint shall be a type |
1075 | // concept ([temp.concept]). |
1076 | if (!CD->isTypeConcept()) { |
1077 | Diag(Loc: TypeConstr->TemplateNameLoc, |
1078 | DiagID: diag::err_type_constraint_non_type_concept); |
1079 | return true; |
1080 | } |
1081 | |
1082 | bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid(); |
1083 | |
1084 | if (!WereArgsSpecified && |
1085 | CD->getTemplateParameters()->getMinRequiredArguments() > 1) { |
1086 | Diag(Loc: TypeConstr->TemplateNameLoc, |
1087 | DiagID: diag::err_type_constraint_missing_arguments) |
1088 | << CD; |
1089 | return true; |
1090 | } |
1091 | return false; |
1092 | } |
1093 | |
1094 | bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS, |
1095 | TemplateIdAnnotation *TypeConstr, |
1096 | TemplateTypeParmDecl *ConstrainedParameter, |
1097 | SourceLocation EllipsisLoc) { |
1098 | return BuildTypeConstraint(SS, TypeConstraint: TypeConstr, ConstrainedParameter, EllipsisLoc, |
1099 | AllowUnexpandedPack: false); |
1100 | } |
1101 | |
1102 | bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS, |
1103 | TemplateIdAnnotation *TypeConstr, |
1104 | TemplateTypeParmDecl *ConstrainedParameter, |
1105 | SourceLocation EllipsisLoc, |
1106 | bool AllowUnexpandedPack) { |
1107 | |
1108 | if (CheckTypeConstraint(TypeConstr)) |
1109 | return true; |
1110 | |
1111 | TemplateName TN = TypeConstr->Template.get(); |
1112 | ConceptDecl *CD = cast<ConceptDecl>(Val: TN.getAsTemplateDecl()); |
1113 | UsingShadowDecl *USD = TN.getAsUsingShadowDecl(); |
1114 | |
1115 | DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name), |
1116 | TypeConstr->TemplateNameLoc); |
1117 | |
1118 | TemplateArgumentListInfo TemplateArgs; |
1119 | if (TypeConstr->LAngleLoc.isValid()) { |
1120 | TemplateArgs = |
1121 | makeTemplateArgumentListInfo(S&: *this, TemplateId&: *TypeConstr); |
1122 | |
1123 | if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) { |
1124 | for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) { |
1125 | if (DiagnoseUnexpandedParameterPack(Arg, UPPC: UPPC_TypeConstraint)) |
1126 | return true; |
1127 | } |
1128 | } |
1129 | } |
1130 | return AttachTypeConstraint( |
1131 | NS: SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(), |
1132 | NameInfo: ConceptName, NamedConcept: CD, /*FoundDecl=*/USD ? cast<NamedDecl>(Val: USD) : CD, |
1133 | TemplateArgs: TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr, |
1134 | ConstrainedParameter, EllipsisLoc); |
1135 | } |
1136 | |
1137 | template <typename ArgumentLocAppender> |
1138 | static ExprResult formImmediatelyDeclaredConstraint( |
1139 | Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo, |
1140 | ConceptDecl *NamedConcept, NamedDecl *FoundDecl, SourceLocation LAngleLoc, |
1141 | SourceLocation RAngleLoc, QualType ConstrainedType, |
1142 | SourceLocation ParamNameLoc, ArgumentLocAppender Appender, |
1143 | SourceLocation EllipsisLoc) { |
1144 | |
1145 | TemplateArgumentListInfo ConstraintArgs; |
1146 | ConstraintArgs.addArgument( |
1147 | Loc: S.getTrivialTemplateArgumentLoc(Arg: TemplateArgument(ConstrainedType), |
1148 | /*NTTPType=*/QualType(), Loc: ParamNameLoc)); |
1149 | |
1150 | ConstraintArgs.setRAngleLoc(RAngleLoc); |
1151 | ConstraintArgs.setLAngleLoc(LAngleLoc); |
1152 | Appender(ConstraintArgs); |
1153 | |
1154 | // C++2a [temp.param]p4: |
1155 | // [...] This constraint-expression E is called the immediately-declared |
1156 | // constraint of T. [...] |
1157 | CXXScopeSpec SS; |
1158 | SS.Adopt(Other: NS); |
1159 | ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId( |
1160 | SS, /*TemplateKWLoc=*/SourceLocation(), ConceptNameInfo: NameInfo, |
1161 | /*FoundDecl=*/FoundDecl ? FoundDecl : NamedConcept, NamedConcept, |
1162 | TemplateArgs: &ConstraintArgs); |
1163 | if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid()) |
1164 | return ImmediatelyDeclaredConstraint; |
1165 | |
1166 | // C++2a [temp.param]p4: |
1167 | // [...] If T is not a pack, then E is E', otherwise E is (E' && ...). |
1168 | // |
1169 | // We have the following case: |
1170 | // |
1171 | // template<typename T> concept C1 = true; |
1172 | // template<C1... T> struct s1; |
1173 | // |
1174 | // The constraint: (C1<T> && ...) |
1175 | // |
1176 | // Note that the type of C1<T> is known to be 'bool', so we don't need to do |
1177 | // any unqualified lookups for 'operator&&' here. |
1178 | return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/Callee: nullptr, |
1179 | /*LParenLoc=*/SourceLocation(), |
1180 | LHS: ImmediatelyDeclaredConstraint.get(), Operator: BO_LAnd, |
1181 | EllipsisLoc, /*RHS=*/nullptr, |
1182 | /*RParenLoc=*/SourceLocation(), |
1183 | /*NumExpansions=*/std::nullopt); |
1184 | } |
1185 | |
1186 | bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS, |
1187 | DeclarationNameInfo NameInfo, |
1188 | ConceptDecl *NamedConcept, NamedDecl *FoundDecl, |
1189 | const TemplateArgumentListInfo *TemplateArgs, |
1190 | TemplateTypeParmDecl *ConstrainedParameter, |
1191 | SourceLocation EllipsisLoc) { |
1192 | // C++2a [temp.param]p4: |
1193 | // [...] If Q is of the form C<A1, ..., An>, then let E' be |
1194 | // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...] |
1195 | const ASTTemplateArgumentListInfo *ArgsAsWritten = |
1196 | TemplateArgs ? ASTTemplateArgumentListInfo::Create(C: Context, |
1197 | List: *TemplateArgs) : nullptr; |
1198 | |
1199 | QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0); |
1200 | |
1201 | ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint( |
1202 | S&: *this, NS, NameInfo, NamedConcept, FoundDecl, |
1203 | LAngleLoc: TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(), |
1204 | RAngleLoc: TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(), |
1205 | ConstrainedType: ParamAsArgument, ParamNameLoc: ConstrainedParameter->getLocation(), |
1206 | Appender: [&](TemplateArgumentListInfo &ConstraintArgs) { |
1207 | if (TemplateArgs) |
1208 | for (const auto &ArgLoc : TemplateArgs->arguments()) |
1209 | ConstraintArgs.addArgument(Loc: ArgLoc); |
1210 | }, |
1211 | EllipsisLoc); |
1212 | if (ImmediatelyDeclaredConstraint.isInvalid()) |
1213 | return true; |
1214 | |
1215 | auto *CL = ConceptReference::Create(C: Context, /*NNS=*/NS, |
1216 | /*TemplateKWLoc=*/SourceLocation{}, |
1217 | /*ConceptNameInfo=*/NameInfo, |
1218 | /*FoundDecl=*/FoundDecl, |
1219 | /*NamedConcept=*/NamedConcept, |
1220 | /*ArgsWritten=*/ArgsAsWritten); |
1221 | ConstrainedParameter->setTypeConstraint(CR: CL, |
1222 | ImmediatelyDeclaredConstraint: ImmediatelyDeclaredConstraint.get()); |
1223 | return false; |
1224 | } |
1225 | |
1226 | bool Sema::AttachTypeConstraint(AutoTypeLoc TL, |
1227 | NonTypeTemplateParmDecl *NewConstrainedParm, |
1228 | NonTypeTemplateParmDecl *OrigConstrainedParm, |
1229 | SourceLocation EllipsisLoc) { |
1230 | if (NewConstrainedParm->getType() != TL.getType() || |
1231 | TL.getAutoKeyword() != AutoTypeKeyword::Auto) { |
1232 | Diag(Loc: NewConstrainedParm->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), |
1233 | DiagID: diag::err_unsupported_placeholder_constraint) |
1234 | << NewConstrainedParm->getTypeSourceInfo() |
1235 | ->getTypeLoc() |
1236 | .getSourceRange(); |
1237 | return true; |
1238 | } |
1239 | // FIXME: Concepts: This should be the type of the placeholder, but this is |
1240 | // unclear in the wording right now. |
1241 | DeclRefExpr *Ref = |
1242 | BuildDeclRefExpr(D: OrigConstrainedParm, Ty: OrigConstrainedParm->getType(), |
1243 | VK: VK_PRValue, Loc: OrigConstrainedParm->getLocation()); |
1244 | if (!Ref) |
1245 | return true; |
1246 | ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint( |
1247 | S&: *this, NS: TL.getNestedNameSpecifierLoc(), NameInfo: TL.getConceptNameInfo(), |
1248 | NamedConcept: TL.getNamedConcept(), /*FoundDecl=*/TL.getFoundDecl(), LAngleLoc: TL.getLAngleLoc(), |
1249 | RAngleLoc: TL.getRAngleLoc(), ConstrainedType: BuildDecltypeType(E: Ref), |
1250 | ParamNameLoc: OrigConstrainedParm->getLocation(), |
1251 | Appender: [&](TemplateArgumentListInfo &ConstraintArgs) { |
1252 | for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I) |
1253 | ConstraintArgs.addArgument(Loc: TL.getArgLoc(i: I)); |
1254 | }, |
1255 | EllipsisLoc); |
1256 | if (ImmediatelyDeclaredConstraint.isInvalid() || |
1257 | !ImmediatelyDeclaredConstraint.isUsable()) |
1258 | return true; |
1259 | |
1260 | NewConstrainedParm->setPlaceholderTypeConstraint( |
1261 | ImmediatelyDeclaredConstraint.get()); |
1262 | return false; |
1263 | } |
1264 | |
1265 | QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, |
1266 | SourceLocation Loc) { |
1267 | if (TSI->getType()->isUndeducedType()) { |
1268 | // C++17 [temp.dep.expr]p3: |
1269 | // An id-expression is type-dependent if it contains |
1270 | // - an identifier associated by name lookup with a non-type |
1271 | // template-parameter declared with a type that contains a |
1272 | // placeholder type (7.1.7.4), |
1273 | TSI = SubstAutoTypeSourceInfoDependent(TypeWithAuto: TSI); |
1274 | } |
1275 | |
1276 | return CheckNonTypeTemplateParameterType(T: TSI->getType(), Loc); |
1277 | } |
1278 | |
1279 | bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) { |
1280 | if (T->isDependentType()) |
1281 | return false; |
1282 | |
1283 | if (RequireCompleteType(Loc, T, DiagID: diag::err_template_nontype_parm_incomplete)) |
1284 | return true; |
1285 | |
1286 | if (T->isStructuralType()) |
1287 | return false; |
1288 | |
1289 | // Structural types are required to be object types or lvalue references. |
1290 | if (T->isRValueReferenceType()) { |
1291 | Diag(Loc, DiagID: diag::err_template_nontype_parm_rvalue_ref) << T; |
1292 | return true; |
1293 | } |
1294 | |
1295 | // Don't mention structural types in our diagnostic prior to C++20. Also, |
1296 | // there's not much more we can say about non-scalar non-class types -- |
1297 | // because we can't see functions or arrays here, those can only be language |
1298 | // extensions. |
1299 | if (!getLangOpts().CPlusPlus20 || |
1300 | (!T->isScalarType() && !T->isRecordType())) { |
1301 | Diag(Loc, DiagID: diag::err_template_nontype_parm_bad_type) << T; |
1302 | return true; |
1303 | } |
1304 | |
1305 | // Structural types are required to be literal types. |
1306 | if (RequireLiteralType(Loc, T, DiagID: diag::err_template_nontype_parm_not_literal)) |
1307 | return true; |
1308 | |
1309 | Diag(Loc, DiagID: diag::err_template_nontype_parm_not_structural) << T; |
1310 | |
1311 | // Drill down into the reason why the class is non-structural. |
1312 | while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { |
1313 | // All members are required to be public and non-mutable, and can't be of |
1314 | // rvalue reference type. Check these conditions first to prefer a "local" |
1315 | // reason over a more distant one. |
1316 | for (const FieldDecl *FD : RD->fields()) { |
1317 | if (FD->getAccess() != AS_public) { |
1318 | Diag(Loc: FD->getLocation(), DiagID: diag::note_not_structural_non_public) << T << 0; |
1319 | return true; |
1320 | } |
1321 | if (FD->isMutable()) { |
1322 | Diag(Loc: FD->getLocation(), DiagID: diag::note_not_structural_mutable_field) << T; |
1323 | return true; |
1324 | } |
1325 | if (FD->getType()->isRValueReferenceType()) { |
1326 | Diag(Loc: FD->getLocation(), DiagID: diag::note_not_structural_rvalue_ref_field) |
1327 | << T; |
1328 | return true; |
1329 | } |
1330 | } |
1331 | |
1332 | // All bases are required to be public. |
1333 | for (const auto &BaseSpec : RD->bases()) { |
1334 | if (BaseSpec.getAccessSpecifier() != AS_public) { |
1335 | Diag(Loc: BaseSpec.getBaseTypeLoc(), DiagID: diag::note_not_structural_non_public) |
1336 | << T << 1; |
1337 | return true; |
1338 | } |
1339 | } |
1340 | |
1341 | // All subobjects are required to be of structural types. |
1342 | SourceLocation SubLoc; |
1343 | QualType SubType; |
1344 | int Kind = -1; |
1345 | |
1346 | for (const FieldDecl *FD : RD->fields()) { |
1347 | QualType T = Context.getBaseElementType(QT: FD->getType()); |
1348 | if (!T->isStructuralType()) { |
1349 | SubLoc = FD->getLocation(); |
1350 | SubType = T; |
1351 | Kind = 0; |
1352 | break; |
1353 | } |
1354 | } |
1355 | |
1356 | if (Kind == -1) { |
1357 | for (const auto &BaseSpec : RD->bases()) { |
1358 | QualType T = BaseSpec.getType(); |
1359 | if (!T->isStructuralType()) { |
1360 | SubLoc = BaseSpec.getBaseTypeLoc(); |
1361 | SubType = T; |
1362 | Kind = 1; |
1363 | break; |
1364 | } |
1365 | } |
1366 | } |
1367 | |
1368 | assert(Kind != -1 && "couldn't find reason why type is not structural" ); |
1369 | Diag(Loc: SubLoc, DiagID: diag::note_not_structural_subobject) |
1370 | << T << Kind << SubType; |
1371 | T = SubType; |
1372 | RD = T->getAsCXXRecordDecl(); |
1373 | } |
1374 | |
1375 | return true; |
1376 | } |
1377 | |
1378 | QualType Sema::CheckNonTypeTemplateParameterType(QualType T, |
1379 | SourceLocation Loc) { |
1380 | // We don't allow variably-modified types as the type of non-type template |
1381 | // parameters. |
1382 | if (T->isVariablyModifiedType()) { |
1383 | Diag(Loc, DiagID: diag::err_variably_modified_nontype_template_param) |
1384 | << T; |
1385 | return QualType(); |
1386 | } |
1387 | |
1388 | // C++ [temp.param]p4: |
1389 | // |
1390 | // A non-type template-parameter shall have one of the following |
1391 | // (optionally cv-qualified) types: |
1392 | // |
1393 | // -- integral or enumeration type, |
1394 | if (T->isIntegralOrEnumerationType() || |
1395 | // -- pointer to object or pointer to function, |
1396 | T->isPointerType() || |
1397 | // -- lvalue reference to object or lvalue reference to function, |
1398 | T->isLValueReferenceType() || |
1399 | // -- pointer to member, |
1400 | T->isMemberPointerType() || |
1401 | // -- std::nullptr_t, or |
1402 | T->isNullPtrType() || |
1403 | // -- a type that contains a placeholder type. |
1404 | T->isUndeducedType()) { |
1405 | // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter |
1406 | // are ignored when determining its type. |
1407 | return T.getUnqualifiedType(); |
1408 | } |
1409 | |
1410 | // C++ [temp.param]p8: |
1411 | // |
1412 | // A non-type template-parameter of type "array of T" or |
1413 | // "function returning T" is adjusted to be of type "pointer to |
1414 | // T" or "pointer to function returning T", respectively. |
1415 | if (T->isArrayType() || T->isFunctionType()) |
1416 | return Context.getDecayedType(T); |
1417 | |
1418 | // If T is a dependent type, we can't do the check now, so we |
1419 | // assume that it is well-formed. Note that stripping off the |
1420 | // qualifiers here is not really correct if T turns out to be |
1421 | // an array type, but we'll recompute the type everywhere it's |
1422 | // used during instantiation, so that should be OK. (Using the |
1423 | // qualified type is equally wrong.) |
1424 | if (T->isDependentType()) |
1425 | return T.getUnqualifiedType(); |
1426 | |
1427 | // C++20 [temp.param]p6: |
1428 | // -- a structural type |
1429 | if (RequireStructuralType(T, Loc)) |
1430 | return QualType(); |
1431 | |
1432 | if (!getLangOpts().CPlusPlus20) { |
1433 | // FIXME: Consider allowing structural types as an extension in C++17. (In |
1434 | // earlier language modes, the template argument evaluation rules are too |
1435 | // inflexible.) |
1436 | Diag(Loc, DiagID: diag::err_template_nontype_parm_bad_structural_type) << T; |
1437 | return QualType(); |
1438 | } |
1439 | |
1440 | Diag(Loc, DiagID: diag::warn_cxx17_compat_template_nontype_parm_type) << T; |
1441 | return T.getUnqualifiedType(); |
1442 | } |
1443 | |
1444 | NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, |
1445 | unsigned Depth, |
1446 | unsigned Position, |
1447 | SourceLocation EqualLoc, |
1448 | Expr *Default) { |
1449 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D); |
1450 | |
1451 | // Check that we have valid decl-specifiers specified. |
1452 | auto CheckValidDeclSpecifiers = [this, &D] { |
1453 | // C++ [temp.param] |
1454 | // p1 |
1455 | // template-parameter: |
1456 | // ... |
1457 | // parameter-declaration |
1458 | // p2 |
1459 | // ... A storage class shall not be specified in a template-parameter |
1460 | // declaration. |
1461 | // [dcl.typedef]p1: |
1462 | // The typedef specifier [...] shall not be used in the decl-specifier-seq |
1463 | // of a parameter-declaration |
1464 | const DeclSpec &DS = D.getDeclSpec(); |
1465 | auto EmitDiag = [this](SourceLocation Loc) { |
1466 | Diag(Loc, DiagID: diag::err_invalid_decl_specifier_in_nontype_parm) |
1467 | << FixItHint::CreateRemoval(RemoveRange: Loc); |
1468 | }; |
1469 | if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) |
1470 | EmitDiag(DS.getStorageClassSpecLoc()); |
1471 | |
1472 | if (DS.getThreadStorageClassSpec() != TSCS_unspecified) |
1473 | EmitDiag(DS.getThreadStorageClassSpecLoc()); |
1474 | |
1475 | // [dcl.inline]p1: |
1476 | // The inline specifier can be applied only to the declaration or |
1477 | // definition of a variable or function. |
1478 | |
1479 | if (DS.isInlineSpecified()) |
1480 | EmitDiag(DS.getInlineSpecLoc()); |
1481 | |
1482 | // [dcl.constexpr]p1: |
1483 | // The constexpr specifier shall be applied only to the definition of a |
1484 | // variable or variable template or the declaration of a function or |
1485 | // function template. |
1486 | |
1487 | if (DS.hasConstexprSpecifier()) |
1488 | EmitDiag(DS.getConstexprSpecLoc()); |
1489 | |
1490 | // [dcl.fct.spec]p1: |
1491 | // Function-specifiers can be used only in function declarations. |
1492 | |
1493 | if (DS.isVirtualSpecified()) |
1494 | EmitDiag(DS.getVirtualSpecLoc()); |
1495 | |
1496 | if (DS.hasExplicitSpecifier()) |
1497 | EmitDiag(DS.getExplicitSpecLoc()); |
1498 | |
1499 | if (DS.isNoreturnSpecified()) |
1500 | EmitDiag(DS.getNoreturnSpecLoc()); |
1501 | }; |
1502 | |
1503 | CheckValidDeclSpecifiers(); |
1504 | |
1505 | if (const auto *T = TInfo->getType()->getContainedDeducedType()) |
1506 | if (isa<AutoType>(Val: T)) |
1507 | Diag(Loc: D.getIdentifierLoc(), |
1508 | DiagID: diag::warn_cxx14_compat_template_nontype_parm_auto_type) |
1509 | << QualType(TInfo->getType()->getContainedAutoType(), 0); |
1510 | |
1511 | assert(S->isTemplateParamScope() && |
1512 | "Non-type template parameter not in template parameter scope!" ); |
1513 | bool Invalid = false; |
1514 | |
1515 | QualType T = CheckNonTypeTemplateParameterType(TSI&: TInfo, Loc: D.getIdentifierLoc()); |
1516 | if (T.isNull()) { |
1517 | T = Context.IntTy; // Recover with an 'int' type. |
1518 | Invalid = true; |
1519 | } |
1520 | |
1521 | CheckFunctionOrTemplateParamDeclarator(S, D); |
1522 | |
1523 | const IdentifierInfo *ParamName = D.getIdentifier(); |
1524 | bool IsParameterPack = D.hasEllipsis(); |
1525 | NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create( |
1526 | C: Context, DC: Context.getTranslationUnitDecl(), StartLoc: D.getBeginLoc(), |
1527 | IdLoc: D.getIdentifierLoc(), D: Depth, P: Position, Id: ParamName, T, ParameterPack: IsParameterPack, |
1528 | TInfo); |
1529 | Param->setAccess(AS_public); |
1530 | |
1531 | if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) |
1532 | if (TL.isConstrained()) |
1533 | if (AttachTypeConstraint(TL, NewConstrainedParm: Param, OrigConstrainedParm: Param, EllipsisLoc: D.getEllipsisLoc())) |
1534 | Invalid = true; |
1535 | |
1536 | if (Invalid) |
1537 | Param->setInvalidDecl(); |
1538 | |
1539 | if (Param->isParameterPack()) |
1540 | if (auto *LSI = getEnclosingLambda()) |
1541 | LSI->LocalPacks.push_back(Elt: Param); |
1542 | |
1543 | if (ParamName) { |
1544 | maybeDiagnoseTemplateParameterShadow(SemaRef&: *this, S, Loc: D.getIdentifierLoc(), |
1545 | Name: ParamName); |
1546 | |
1547 | // Add the template parameter into the current scope. |
1548 | S->AddDecl(D: Param); |
1549 | IdResolver.AddDecl(D: Param); |
1550 | } |
1551 | |
1552 | // C++0x [temp.param]p9: |
1553 | // A default template-argument may be specified for any kind of |
1554 | // template-parameter that is not a template parameter pack. |
1555 | if (Default && IsParameterPack) { |
1556 | Diag(Loc: EqualLoc, DiagID: diag::err_template_param_pack_default_arg); |
1557 | Default = nullptr; |
1558 | } |
1559 | |
1560 | // Check the well-formedness of the default template argument, if provided. |
1561 | if (Default) { |
1562 | // Check for unexpanded parameter packs. |
1563 | if (DiagnoseUnexpandedParameterPack(E: Default, UPPC: UPPC_DefaultArgument)) |
1564 | return Param; |
1565 | |
1566 | Param->setDefaultArgument( |
1567 | C: Context, DefArg: getTrivialTemplateArgumentLoc(Arg: TemplateArgument(Default), |
1568 | NTTPType: QualType(), Loc: SourceLocation())); |
1569 | } |
1570 | |
1571 | return Param; |
1572 | } |
1573 | |
1574 | NamedDecl *Sema::ActOnTemplateTemplateParameter( |
1575 | Scope *S, SourceLocation TmpLoc, TemplateParameterList *Params, |
1576 | bool Typename, SourceLocation EllipsisLoc, IdentifierInfo *Name, |
1577 | SourceLocation NameLoc, unsigned Depth, unsigned Position, |
1578 | SourceLocation EqualLoc, ParsedTemplateArgument Default) { |
1579 | assert(S->isTemplateParamScope() && |
1580 | "Template template parameter not in template parameter scope!" ); |
1581 | |
1582 | // Construct the parameter object. |
1583 | bool IsParameterPack = EllipsisLoc.isValid(); |
1584 | TemplateTemplateParmDecl *Param = TemplateTemplateParmDecl::Create( |
1585 | C: Context, DC: Context.getTranslationUnitDecl(), |
1586 | L: NameLoc.isInvalid() ? TmpLoc : NameLoc, D: Depth, P: Position, ParameterPack: IsParameterPack, |
1587 | Id: Name, Typename, Params); |
1588 | Param->setAccess(AS_public); |
1589 | |
1590 | if (Param->isParameterPack()) |
1591 | if (auto *LSI = getEnclosingLambda()) |
1592 | LSI->LocalPacks.push_back(Elt: Param); |
1593 | |
1594 | // If the template template parameter has a name, then link the identifier |
1595 | // into the scope and lookup mechanisms. |
1596 | if (Name) { |
1597 | maybeDiagnoseTemplateParameterShadow(SemaRef&: *this, S, Loc: NameLoc, Name); |
1598 | |
1599 | S->AddDecl(D: Param); |
1600 | IdResolver.AddDecl(D: Param); |
1601 | } |
1602 | |
1603 | if (Params->size() == 0) { |
1604 | Diag(Loc: Param->getLocation(), DiagID: diag::err_template_template_parm_no_parms) |
1605 | << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); |
1606 | Param->setInvalidDecl(); |
1607 | } |
1608 | |
1609 | // C++0x [temp.param]p9: |
1610 | // A default template-argument may be specified for any kind of |
1611 | // template-parameter that is not a template parameter pack. |
1612 | if (IsParameterPack && !Default.isInvalid()) { |
1613 | Diag(Loc: EqualLoc, DiagID: diag::err_template_param_pack_default_arg); |
1614 | Default = ParsedTemplateArgument(); |
1615 | } |
1616 | |
1617 | if (!Default.isInvalid()) { |
1618 | // Check only that we have a template template argument. We don't want to |
1619 | // try to check well-formedness now, because our template template parameter |
1620 | // might have dependent types in its template parameters, which we wouldn't |
1621 | // be able to match now. |
1622 | // |
1623 | // If none of the template template parameter's template arguments mention |
1624 | // other template parameters, we could actually perform more checking here. |
1625 | // However, it isn't worth doing. |
1626 | TemplateArgumentLoc DefaultArg = translateTemplateArgument(SemaRef&: *this, Arg: Default); |
1627 | if (DefaultArg.getArgument().getAsTemplate().isNull()) { |
1628 | Diag(Loc: DefaultArg.getLocation(), DiagID: diag::err_template_arg_not_valid_template) |
1629 | << DefaultArg.getSourceRange(); |
1630 | return Param; |
1631 | } |
1632 | |
1633 | // Check for unexpanded parameter packs. |
1634 | if (DiagnoseUnexpandedParameterPack(Loc: DefaultArg.getLocation(), |
1635 | Template: DefaultArg.getArgument().getAsTemplate(), |
1636 | UPPC: UPPC_DefaultArgument)) |
1637 | return Param; |
1638 | |
1639 | Param->setDefaultArgument(C: Context, DefArg: DefaultArg); |
1640 | } |
1641 | |
1642 | return Param; |
1643 | } |
1644 | |
1645 | namespace { |
1646 | class ConstraintRefersToContainingTemplateChecker |
1647 | : public TreeTransform<ConstraintRefersToContainingTemplateChecker> { |
1648 | bool Result = false; |
1649 | const FunctionDecl *Friend = nullptr; |
1650 | unsigned TemplateDepth = 0; |
1651 | |
1652 | // Check a record-decl that we've seen to see if it is a lexical parent of the |
1653 | // Friend, likely because it was referred to without its template arguments. |
1654 | void CheckIfContainingRecord(const CXXRecordDecl *CheckingRD) { |
1655 | CheckingRD = CheckingRD->getMostRecentDecl(); |
1656 | if (!CheckingRD->isTemplated()) |
1657 | return; |
1658 | |
1659 | for (const DeclContext *DC = Friend->getLexicalDeclContext(); |
1660 | DC && !DC->isFileContext(); DC = DC->getParent()) |
1661 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: DC)) |
1662 | if (CheckingRD == RD->getMostRecentDecl()) |
1663 | Result = true; |
1664 | } |
1665 | |
1666 | void CheckNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) { |
1667 | assert(D->getDepth() <= TemplateDepth && |
1668 | "Nothing should reference a value below the actual template depth, " |
1669 | "depth is likely wrong" ); |
1670 | if (D->getDepth() != TemplateDepth) |
1671 | Result = true; |
1672 | |
1673 | // Necessary because the type of the NTTP might be what refers to the parent |
1674 | // constriant. |
1675 | TransformType(T: D->getType()); |
1676 | } |
1677 | |
1678 | public: |
1679 | using inherited = TreeTransform<ConstraintRefersToContainingTemplateChecker>; |
1680 | |
1681 | ConstraintRefersToContainingTemplateChecker(Sema &SemaRef, |
1682 | const FunctionDecl *Friend, |
1683 | unsigned TemplateDepth) |
1684 | : inherited(SemaRef), Friend(Friend), TemplateDepth(TemplateDepth) {} |
1685 | bool getResult() const { return Result; } |
1686 | |
1687 | // This should be the only template parm type that we have to deal with. |
1688 | // SubstTempalteTypeParmPack, SubstNonTypeTemplateParmPack, and |
1689 | // FunctionParmPackExpr are all partially substituted, which cannot happen |
1690 | // with concepts at this point in translation. |
1691 | using inherited::TransformTemplateTypeParmType; |
1692 | QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB, |
1693 | TemplateTypeParmTypeLoc TL, bool) { |
1694 | assert(TL.getDecl()->getDepth() <= TemplateDepth && |
1695 | "Nothing should reference a value below the actual template depth, " |
1696 | "depth is likely wrong" ); |
1697 | if (TL.getDecl()->getDepth() != TemplateDepth) |
1698 | Result = true; |
1699 | return inherited::TransformTemplateTypeParmType( |
1700 | TLB, TL, |
1701 | /*SuppressObjCLifetime=*/false); |
1702 | } |
1703 | |
1704 | Decl *TransformDecl(SourceLocation Loc, Decl *D) { |
1705 | if (!D) |
1706 | return D; |
1707 | // FIXME : This is possibly an incomplete list, but it is unclear what other |
1708 | // Decl kinds could be used to refer to the template parameters. This is a |
1709 | // best guess so far based on examples currently available, but the |
1710 | // unreachable should catch future instances/cases. |
1711 | if (auto *TD = dyn_cast<TypedefNameDecl>(Val: D)) |
1712 | TransformType(T: TD->getUnderlyingType()); |
1713 | else if (auto *NTTPD = dyn_cast<NonTypeTemplateParmDecl>(Val: D)) |
1714 | CheckNonTypeTemplateParmDecl(D: NTTPD); |
1715 | else if (auto *VD = dyn_cast<ValueDecl>(Val: D)) |
1716 | TransformType(T: VD->getType()); |
1717 | else if (auto *TD = dyn_cast<TemplateDecl>(Val: D)) |
1718 | TransformTemplateParameterList(TPL: TD->getTemplateParameters()); |
1719 | else if (auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) |
1720 | CheckIfContainingRecord(CheckingRD: RD); |
1721 | else if (isa<NamedDecl>(Val: D)) { |
1722 | // No direct types to visit here I believe. |
1723 | } else |
1724 | llvm_unreachable("Don't know how to handle this declaration type yet" ); |
1725 | return D; |
1726 | } |
1727 | }; |
1728 | } // namespace |
1729 | |
1730 | bool Sema::ConstraintExpressionDependsOnEnclosingTemplate( |
1731 | const FunctionDecl *Friend, unsigned TemplateDepth, |
1732 | const Expr *Constraint) { |
1733 | assert(Friend->getFriendObjectKind() && "Only works on a friend" ); |
1734 | ConstraintRefersToContainingTemplateChecker Checker(*this, Friend, |
1735 | TemplateDepth); |
1736 | Checker.TransformExpr(E: const_cast<Expr *>(Constraint)); |
1737 | return Checker.getResult(); |
1738 | } |
1739 | |
1740 | TemplateParameterList * |
1741 | Sema::ActOnTemplateParameterList(unsigned Depth, |
1742 | SourceLocation ExportLoc, |
1743 | SourceLocation TemplateLoc, |
1744 | SourceLocation LAngleLoc, |
1745 | ArrayRef<NamedDecl *> Params, |
1746 | SourceLocation RAngleLoc, |
1747 | Expr *RequiresClause) { |
1748 | if (ExportLoc.isValid()) |
1749 | Diag(Loc: ExportLoc, DiagID: diag::warn_template_export_unsupported); |
1750 | |
1751 | for (NamedDecl *P : Params) |
1752 | warnOnReservedIdentifier(D: P); |
1753 | |
1754 | return TemplateParameterList::Create( |
1755 | C: Context, TemplateLoc, LAngleLoc, |
1756 | Params: llvm::ArrayRef(Params.data(), Params.size()), RAngleLoc, RequiresClause); |
1757 | } |
1758 | |
1759 | static void SetNestedNameSpecifier(Sema &S, TagDecl *T, |
1760 | const CXXScopeSpec &SS) { |
1761 | if (SS.isSet()) |
1762 | T->setQualifierInfo(SS.getWithLocInContext(Context&: S.Context)); |
1763 | } |
1764 | |
1765 | // Returns the template parameter list with all default template argument |
1766 | // information. |
1767 | TemplateParameterList *Sema::GetTemplateParameterList(TemplateDecl *TD) { |
1768 | // Make sure we get the template parameter list from the most |
1769 | // recent declaration, since that is the only one that is guaranteed to |
1770 | // have all the default template argument information. |
1771 | Decl *D = TD->getMostRecentDecl(); |
1772 | // C++11 N3337 [temp.param]p12: |
1773 | // A default template argument shall not be specified in a friend class |
1774 | // template declaration. |
1775 | // |
1776 | // Skip past friend *declarations* because they are not supposed to contain |
1777 | // default template arguments. Moreover, these declarations may introduce |
1778 | // template parameters living in different template depths than the |
1779 | // corresponding template parameters in TD, causing unmatched constraint |
1780 | // substitution. |
1781 | // |
1782 | // FIXME: Diagnose such cases within a class template: |
1783 | // template <class T> |
1784 | // struct S { |
1785 | // template <class = void> friend struct C; |
1786 | // }; |
1787 | // template struct S<int>; |
1788 | while (D->getFriendObjectKind() != Decl::FriendObjectKind::FOK_None && |
1789 | D->getPreviousDecl()) |
1790 | D = D->getPreviousDecl(); |
1791 | return cast<TemplateDecl>(Val: D)->getTemplateParameters(); |
1792 | } |
1793 | |
1794 | DeclResult Sema::CheckClassTemplate( |
1795 | Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, |
1796 | CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, |
1797 | const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams, |
1798 | AccessSpecifier AS, SourceLocation ModulePrivateLoc, |
1799 | SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists, |
1800 | TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) { |
1801 | assert(TemplateParams && TemplateParams->size() > 0 && |
1802 | "No template parameters" ); |
1803 | assert(TUK != TagUseKind::Reference && |
1804 | "Can only declare or define class templates" ); |
1805 | bool Invalid = false; |
1806 | |
1807 | // Check that we can declare a template here. |
1808 | if (CheckTemplateDeclScope(S, TemplateParams)) |
1809 | return true; |
1810 | |
1811 | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec); |
1812 | assert(Kind != TagTypeKind::Enum && |
1813 | "can't build template of enumerated type" ); |
1814 | |
1815 | // There is no such thing as an unnamed class template. |
1816 | if (!Name) { |
1817 | Diag(Loc: KWLoc, DiagID: diag::err_template_unnamed_class); |
1818 | return true; |
1819 | } |
1820 | |
1821 | // Find any previous declaration with this name. For a friend with no |
1822 | // scope explicitly specified, we only look for tag declarations (per |
1823 | // C++11 [basic.lookup.elab]p2). |
1824 | DeclContext *SemanticContext; |
1825 | LookupResult Previous(*this, Name, NameLoc, |
1826 | (SS.isEmpty() && TUK == TagUseKind::Friend) |
1827 | ? LookupTagName |
1828 | : LookupOrdinaryName, |
1829 | forRedeclarationInCurContext()); |
1830 | if (SS.isNotEmpty() && !SS.isInvalid()) { |
1831 | SemanticContext = computeDeclContext(SS, EnteringContext: true); |
1832 | if (!SemanticContext) { |
1833 | // FIXME: Horrible, horrible hack! We can't currently represent this |
1834 | // in the AST, and historically we have just ignored such friend |
1835 | // class templates, so don't complain here. |
1836 | Diag(Loc: NameLoc, DiagID: TUK == TagUseKind::Friend |
1837 | ? diag::warn_template_qualified_friend_ignored |
1838 | : diag::err_template_qualified_declarator_no_match) |
1839 | << SS.getScopeRep() << SS.getRange(); |
1840 | return TUK != TagUseKind::Friend; |
1841 | } |
1842 | |
1843 | if (RequireCompleteDeclContext(SS, DC: SemanticContext)) |
1844 | return true; |
1845 | |
1846 | // If we're adding a template to a dependent context, we may need to |
1847 | // rebuilding some of the types used within the template parameter list, |
1848 | // now that we know what the current instantiation is. |
1849 | if (SemanticContext->isDependentContext()) { |
1850 | ContextRAII SavedContext(*this, SemanticContext); |
1851 | if (RebuildTemplateParamsInCurrentInstantiation(Params: TemplateParams)) |
1852 | Invalid = true; |
1853 | } |
1854 | |
1855 | if (TUK != TagUseKind::Friend && TUK != TagUseKind::Reference) |
1856 | diagnoseQualifiedDeclaration(SS, DC: SemanticContext, Name, Loc: NameLoc, |
1857 | /*TemplateId-*/ TemplateId: nullptr, |
1858 | /*IsMemberSpecialization*/ false); |
1859 | |
1860 | LookupQualifiedName(R&: Previous, LookupCtx: SemanticContext); |
1861 | } else { |
1862 | SemanticContext = CurContext; |
1863 | |
1864 | // C++14 [class.mem]p14: |
1865 | // If T is the name of a class, then each of the following shall have a |
1866 | // name different from T: |
1867 | // -- every member template of class T |
1868 | if (TUK != TagUseKind::Friend && |
1869 | DiagnoseClassNameShadow(DC: SemanticContext, |
1870 | Info: DeclarationNameInfo(Name, NameLoc))) |
1871 | return true; |
1872 | |
1873 | LookupName(R&: Previous, S); |
1874 | } |
1875 | |
1876 | if (Previous.isAmbiguous()) |
1877 | return true; |
1878 | |
1879 | NamedDecl *PrevDecl = nullptr; |
1880 | if (Previous.begin() != Previous.end()) |
1881 | PrevDecl = (*Previous.begin())->getUnderlyingDecl(); |
1882 | |
1883 | if (PrevDecl && PrevDecl->isTemplateParameter()) { |
1884 | // Maybe we will complain about the shadowed template parameter. |
1885 | DiagnoseTemplateParameterShadow(Loc: NameLoc, PrevDecl); |
1886 | // Just pretend that we didn't see the previous declaration. |
1887 | PrevDecl = nullptr; |
1888 | } |
1889 | |
1890 | // If there is a previous declaration with the same name, check |
1891 | // whether this is a valid redeclaration. |
1892 | ClassTemplateDecl *PrevClassTemplate = |
1893 | dyn_cast_or_null<ClassTemplateDecl>(Val: PrevDecl); |
1894 | |
1895 | // We may have found the injected-class-name of a class template, |
1896 | // class template partial specialization, or class template specialization. |
1897 | // In these cases, grab the template that is being defined or specialized. |
1898 | if (!PrevClassTemplate && isa_and_nonnull<CXXRecordDecl>(Val: PrevDecl) && |
1899 | cast<CXXRecordDecl>(Val: PrevDecl)->isInjectedClassName()) { |
1900 | PrevDecl = cast<CXXRecordDecl>(Val: PrevDecl->getDeclContext()); |
1901 | PrevClassTemplate |
1902 | = cast<CXXRecordDecl>(Val: PrevDecl)->getDescribedClassTemplate(); |
1903 | if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(Val: PrevDecl)) { |
1904 | PrevClassTemplate |
1905 | = cast<ClassTemplateSpecializationDecl>(Val: PrevDecl) |
1906 | ->getSpecializedTemplate(); |
1907 | } |
1908 | } |
1909 | |
1910 | if (TUK == TagUseKind::Friend) { |
1911 | // C++ [namespace.memdef]p3: |
1912 | // [...] When looking for a prior declaration of a class or a function |
1913 | // declared as a friend, and when the name of the friend class or |
1914 | // function is neither a qualified name nor a template-id, scopes outside |
1915 | // the innermost enclosing namespace scope are not considered. |
1916 | if (!SS.isSet()) { |
1917 | DeclContext *OutermostContext = CurContext; |
1918 | while (!OutermostContext->isFileContext()) |
1919 | OutermostContext = OutermostContext->getLookupParent(); |
1920 | |
1921 | if (PrevDecl && |
1922 | (OutermostContext->Equals(DC: PrevDecl->getDeclContext()) || |
1923 | OutermostContext->Encloses(DC: PrevDecl->getDeclContext()))) { |
1924 | SemanticContext = PrevDecl->getDeclContext(); |
1925 | } else { |
1926 | // Declarations in outer scopes don't matter. However, the outermost |
1927 | // context we computed is the semantic context for our new |
1928 | // declaration. |
1929 | PrevDecl = PrevClassTemplate = nullptr; |
1930 | SemanticContext = OutermostContext; |
1931 | |
1932 | // Check that the chosen semantic context doesn't already contain a |
1933 | // declaration of this name as a non-tag type. |
1934 | Previous.clear(Kind: LookupOrdinaryName); |
1935 | DeclContext *LookupContext = SemanticContext; |
1936 | while (LookupContext->isTransparentContext()) |
1937 | LookupContext = LookupContext->getLookupParent(); |
1938 | LookupQualifiedName(R&: Previous, LookupCtx: LookupContext); |
1939 | |
1940 | if (Previous.isAmbiguous()) |
1941 | return true; |
1942 | |
1943 | if (Previous.begin() != Previous.end()) |
1944 | PrevDecl = (*Previous.begin())->getUnderlyingDecl(); |
1945 | } |
1946 | } |
1947 | } else if (PrevDecl && !isDeclInScope(D: Previous.getRepresentativeDecl(), |
1948 | Ctx: SemanticContext, S, AllowInlineNamespace: SS.isValid())) |
1949 | PrevDecl = PrevClassTemplate = nullptr; |
1950 | |
1951 | if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>( |
1952 | Val: PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) { |
1953 | if (SS.isEmpty() && |
1954 | !(PrevClassTemplate && |
1955 | PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals( |
1956 | DC: SemanticContext->getRedeclContext()))) { |
1957 | Diag(Loc: KWLoc, DiagID: diag::err_using_decl_conflict_reverse); |
1958 | Diag(Loc: Shadow->getTargetDecl()->getLocation(), |
1959 | DiagID: diag::note_using_decl_target); |
1960 | Diag(Loc: Shadow->getIntroducer()->getLocation(), DiagID: diag::note_using_decl) << 0; |
1961 | // Recover by ignoring the old declaration. |
1962 | PrevDecl = PrevClassTemplate = nullptr; |
1963 | } |
1964 | } |
1965 | |
1966 | if (PrevClassTemplate) { |
1967 | // Ensure that the template parameter lists are compatible. Skip this check |
1968 | // for a friend in a dependent context: the template parameter list itself |
1969 | // could be dependent. |
1970 | if (!(TUK == TagUseKind::Friend && CurContext->isDependentContext()) && |
1971 | !TemplateParameterListsAreEqual( |
1972 | NewInstFrom: TemplateCompareNewDeclInfo(SemanticContext ? SemanticContext |
1973 | : CurContext, |
1974 | CurContext, KWLoc), |
1975 | New: TemplateParams, OldInstFrom: PrevClassTemplate, |
1976 | Old: PrevClassTemplate->getTemplateParameters(), /*Complain=*/true, |
1977 | Kind: TPL_TemplateMatch)) |
1978 | return true; |
1979 | |
1980 | // C++ [temp.class]p4: |
1981 | // In a redeclaration, partial specialization, explicit |
1982 | // specialization or explicit instantiation of a class template, |
1983 | // the class-key shall agree in kind with the original class |
1984 | // template declaration (7.1.5.3). |
1985 | RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); |
1986 | if (!isAcceptableTagRedeclaration( |
1987 | Previous: PrevRecordDecl, NewTag: Kind, isDefinition: TUK == TagUseKind::Definition, NewTagLoc: KWLoc, Name)) { |
1988 | Diag(Loc: KWLoc, DiagID: diag::err_use_with_wrong_tag) |
1989 | << Name |
1990 | << FixItHint::CreateReplacement(RemoveRange: KWLoc, Code: PrevRecordDecl->getKindName()); |
1991 | Diag(Loc: PrevRecordDecl->getLocation(), DiagID: diag::note_previous_use); |
1992 | Kind = PrevRecordDecl->getTagKind(); |
1993 | } |
1994 | |
1995 | // Check for redefinition of this class template. |
1996 | if (TUK == TagUseKind::Definition) { |
1997 | if (TagDecl *Def = PrevRecordDecl->getDefinition()) { |
1998 | // If we have a prior definition that is not visible, treat this as |
1999 | // simply making that previous definition visible. |
2000 | NamedDecl *Hidden = nullptr; |
2001 | if (SkipBody && !hasVisibleDefinition(D: Def, Suggested: &Hidden)) { |
2002 | SkipBody->ShouldSkip = true; |
2003 | SkipBody->Previous = Def; |
2004 | auto *Tmpl = cast<CXXRecordDecl>(Val: Hidden)->getDescribedClassTemplate(); |
2005 | assert(Tmpl && "original definition of a class template is not a " |
2006 | "class template?" ); |
2007 | makeMergedDefinitionVisible(ND: Hidden); |
2008 | makeMergedDefinitionVisible(ND: Tmpl); |
2009 | } else { |
2010 | Diag(Loc: NameLoc, DiagID: diag::err_redefinition) << Name; |
2011 | Diag(Loc: Def->getLocation(), DiagID: diag::note_previous_definition); |
2012 | // FIXME: Would it make sense to try to "forget" the previous |
2013 | // definition, as part of error recovery? |
2014 | return true; |
2015 | } |
2016 | } |
2017 | } |
2018 | } else if (PrevDecl) { |
2019 | // C++ [temp]p5: |
2020 | // A class template shall not have the same name as any other |
2021 | // template, class, function, object, enumeration, enumerator, |
2022 | // namespace, or type in the same scope (3.3), except as specified |
2023 | // in (14.5.4). |
2024 | Diag(Loc: NameLoc, DiagID: diag::err_redefinition_different_kind) << Name; |
2025 | Diag(Loc: PrevDecl->getLocation(), DiagID: diag::note_previous_definition); |
2026 | return true; |
2027 | } |
2028 | |
2029 | // Check the template parameter list of this declaration, possibly |
2030 | // merging in the template parameter list from the previous class |
2031 | // template declaration. Skip this check for a friend in a dependent |
2032 | // context, because the template parameter list might be dependent. |
2033 | if (!(TUK == TagUseKind::Friend && CurContext->isDependentContext()) && |
2034 | CheckTemplateParameterList( |
2035 | NewParams: TemplateParams, |
2036 | OldParams: PrevClassTemplate ? GetTemplateParameterList(TD: PrevClassTemplate) |
2037 | : nullptr, |
2038 | TPC: (SS.isSet() && SemanticContext && SemanticContext->isRecord() && |
2039 | SemanticContext->isDependentContext()) |
2040 | ? TPC_ClassTemplateMember |
2041 | : TUK == TagUseKind::Friend ? TPC_FriendClassTemplate |
2042 | : TPC_ClassTemplate, |
2043 | SkipBody)) |
2044 | Invalid = true; |
2045 | |
2046 | if (SS.isSet()) { |
2047 | // If the name of the template was qualified, we must be defining the |
2048 | // template out-of-line. |
2049 | if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { |
2050 | Diag(Loc: NameLoc, DiagID: TUK == TagUseKind::Friend |
2051 | ? diag::err_friend_decl_does_not_match |
2052 | : diag::err_member_decl_does_not_match) |
2053 | << Name << SemanticContext << /*IsDefinition*/ true << SS.getRange(); |
2054 | Invalid = true; |
2055 | } |
2056 | } |
2057 | |
2058 | // If this is a templated friend in a dependent context we should not put it |
2059 | // on the redecl chain. In some cases, the templated friend can be the most |
2060 | // recent declaration tricking the template instantiator to make substitutions |
2061 | // there. |
2062 | // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious |
2063 | bool ShouldAddRedecl = |
2064 | !(TUK == TagUseKind::Friend && CurContext->isDependentContext()); |
2065 | |
2066 | CXXRecordDecl *NewClass = |
2067 | CXXRecordDecl::Create(C: Context, TK: Kind, DC: SemanticContext, StartLoc: KWLoc, IdLoc: NameLoc, Id: Name, |
2068 | PrevDecl: PrevClassTemplate && ShouldAddRedecl ? |
2069 | PrevClassTemplate->getTemplatedDecl() : nullptr, |
2070 | /*DelayTypeCreation=*/true); |
2071 | SetNestedNameSpecifier(S&: *this, T: NewClass, SS); |
2072 | if (NumOuterTemplateParamLists > 0) |
2073 | NewClass->setTemplateParameterListsInfo( |
2074 | Context, |
2075 | TPLists: llvm::ArrayRef(OuterTemplateParamLists, NumOuterTemplateParamLists)); |
2076 | |
2077 | // Add alignment attributes if necessary; these attributes are checked when |
2078 | // the ASTContext lays out the structure. |
2079 | if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) { |
2080 | AddAlignmentAttributesForRecord(RD: NewClass); |
2081 | AddMsStructLayoutForRecord(RD: NewClass); |
2082 | } |
2083 | |
2084 | ClassTemplateDecl *NewTemplate |
2085 | = ClassTemplateDecl::Create(C&: Context, DC: SemanticContext, L: NameLoc, |
2086 | Name: DeclarationName(Name), Params: TemplateParams, |
2087 | Decl: NewClass); |
2088 | |
2089 | if (ShouldAddRedecl) |
2090 | NewTemplate->setPreviousDecl(PrevClassTemplate); |
2091 | |
2092 | NewClass->setDescribedClassTemplate(NewTemplate); |
2093 | |
2094 | if (ModulePrivateLoc.isValid()) |
2095 | NewTemplate->setModulePrivate(); |
2096 | |
2097 | // Build the type for the class template declaration now. |
2098 | QualType T = NewTemplate->getInjectedClassNameSpecialization(); |
2099 | T = Context.getInjectedClassNameType(Decl: NewClass, TST: T); |
2100 | assert(T->isDependentType() && "Class template type is not dependent?" ); |
2101 | (void)T; |
2102 | |
2103 | // If we are providing an explicit specialization of a member that is a |
2104 | // class template, make a note of that. |
2105 | if (PrevClassTemplate && |
2106 | PrevClassTemplate->getInstantiatedFromMemberTemplate()) |
2107 | PrevClassTemplate->setMemberSpecialization(); |
2108 | |
2109 | // Set the access specifier. |
2110 | if (!Invalid && TUK != TagUseKind::Friend && |
2111 | NewTemplate->getDeclContext()->isRecord()) |
2112 | SetMemberAccessSpecifier(MemberDecl: NewTemplate, PrevMemberDecl: PrevClassTemplate, LexicalAS: AS); |
2113 | |
2114 | // Set the lexical context of these templates |
2115 | NewClass->setLexicalDeclContext(CurContext); |
2116 | NewTemplate->setLexicalDeclContext(CurContext); |
2117 | |
2118 | if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) |
2119 | NewClass->startDefinition(); |
2120 | |
2121 | ProcessDeclAttributeList(S, D: NewClass, AttrList: Attr); |
2122 | ProcessAPINotes(D: NewClass); |
2123 | |
2124 | if (PrevClassTemplate) |
2125 | mergeDeclAttributes(New: NewClass, Old: PrevClassTemplate->getTemplatedDecl()); |
2126 | |
2127 | AddPushedVisibilityAttribute(RD: NewClass); |
2128 | inferGslOwnerPointerAttribute(Record: NewClass); |
2129 | inferNullableClassAttribute(CRD: NewClass); |
2130 | |
2131 | if (TUK != TagUseKind::Friend) { |
2132 | // Per C++ [basic.scope.temp]p2, skip the template parameter scopes. |
2133 | Scope *Outer = S; |
2134 | while ((Outer->getFlags() & Scope::TemplateParamScope) != 0) |
2135 | Outer = Outer->getParent(); |
2136 | PushOnScopeChains(D: NewTemplate, S: Outer); |
2137 | } else { |
2138 | if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { |
2139 | NewTemplate->setAccess(PrevClassTemplate->getAccess()); |
2140 | NewClass->setAccess(PrevClassTemplate->getAccess()); |
2141 | } |
2142 | |
2143 | NewTemplate->setObjectOfFriendDecl(); |
2144 | |
2145 | // Friend templates are visible in fairly strange ways. |
2146 | if (!CurContext->isDependentContext()) { |
2147 | DeclContext *DC = SemanticContext->getRedeclContext(); |
2148 | DC->makeDeclVisibleInContext(D: NewTemplate); |
2149 | if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) |
2150 | PushOnScopeChains(D: NewTemplate, S: EnclosingScope, |
2151 | /* AddToContext = */ false); |
2152 | } |
2153 | |
2154 | FriendDecl *Friend = FriendDecl::Create( |
2155 | C&: Context, DC: CurContext, L: NewClass->getLocation(), Friend_: NewTemplate, FriendL: FriendLoc); |
2156 | Friend->setAccess(AS_public); |
2157 | CurContext->addDecl(D: Friend); |
2158 | } |
2159 | |
2160 | if (PrevClassTemplate) |
2161 | CheckRedeclarationInModule(New: NewTemplate, Old: PrevClassTemplate); |
2162 | |
2163 | if (Invalid) { |
2164 | NewTemplate->setInvalidDecl(); |
2165 | NewClass->setInvalidDecl(); |
2166 | } |
2167 | |
2168 | ActOnDocumentableDecl(D: NewTemplate); |
2169 | |
2170 | if (SkipBody && SkipBody->ShouldSkip) |
2171 | return SkipBody->Previous; |
2172 | |
2173 | return NewTemplate; |
2174 | } |
2175 | |
2176 | /// Diagnose the presence of a default template argument on a |
2177 | /// template parameter, which is ill-formed in certain contexts. |
2178 | /// |
2179 | /// \returns true if the default template argument should be dropped. |
2180 | static bool DiagnoseDefaultTemplateArgument(Sema &S, |
2181 | Sema::TemplateParamListContext TPC, |
2182 | SourceLocation ParamLoc, |
2183 | SourceRange DefArgRange) { |
2184 | switch (TPC) { |
2185 | case Sema::TPC_ClassTemplate: |
2186 | case Sema::TPC_VarTemplate: |
2187 | case Sema::TPC_TypeAliasTemplate: |
2188 | return false; |
2189 | |
2190 | case Sema::TPC_FunctionTemplate: |
2191 | case Sema::TPC_FriendFunctionTemplateDefinition: |
2192 | // C++ [temp.param]p9: |
2193 | // A default template-argument shall not be specified in a |
2194 | // function template declaration or a function template |
2195 | // definition [...] |
2196 | // If a friend function template declaration specifies a default |
2197 | // template-argument, that declaration shall be a definition and shall be |
2198 | // the only declaration of the function template in the translation unit. |
2199 | // (C++98/03 doesn't have this wording; see DR226). |
2200 | S.Diag(Loc: ParamLoc, DiagID: S.getLangOpts().CPlusPlus11 ? |
2201 | diag::warn_cxx98_compat_template_parameter_default_in_function_template |
2202 | : diag::ext_template_parameter_default_in_function_template) |
2203 | << DefArgRange; |
2204 | return false; |
2205 | |
2206 | case Sema::TPC_ClassTemplateMember: |
2207 | // C++0x [temp.param]p9: |
2208 | // A default template-argument shall not be specified in the |
2209 | // template-parameter-lists of the definition of a member of a |
2210 | // class template that appears outside of the member's class. |
2211 | S.Diag(Loc: ParamLoc, DiagID: diag::err_template_parameter_default_template_member) |
2212 | << DefArgRange; |
2213 | return true; |
2214 | |
2215 | case Sema::TPC_FriendClassTemplate: |
2216 | case Sema::TPC_FriendFunctionTemplate: |
2217 | // C++ [temp.param]p9: |
2218 | // A default template-argument shall not be specified in a |
2219 | // friend template declaration. |
2220 | S.Diag(Loc: ParamLoc, DiagID: diag::err_template_parameter_default_friend_template) |
2221 | << DefArgRange; |
2222 | return true; |
2223 | |
2224 | // FIXME: C++0x [temp.param]p9 allows default template-arguments |
2225 | // for friend function templates if there is only a single |
2226 | // declaration (and it is a definition). Strange! |
2227 | } |
2228 | |
2229 | llvm_unreachable("Invalid TemplateParamListContext!" ); |
2230 | } |
2231 | |
2232 | /// Check for unexpanded parameter packs within the template parameters |
2233 | /// of a template template parameter, recursively. |
2234 | static bool DiagnoseUnexpandedParameterPacks(Sema &S, |
2235 | TemplateTemplateParmDecl *TTP) { |
2236 | // A template template parameter which is a parameter pack is also a pack |
2237 | // expansion. |
2238 | if (TTP->isParameterPack()) |
2239 | return false; |
2240 | |
2241 | TemplateParameterList *Params = TTP->getTemplateParameters(); |
2242 | for (unsigned I = 0, N = Params->size(); I != N; ++I) { |
2243 | NamedDecl *P = Params->getParam(Idx: I); |
2244 | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: P)) { |
2245 | if (!TTP->isParameterPack()) |
2246 | if (const TypeConstraint *TC = TTP->getTypeConstraint()) |
2247 | if (TC->hasExplicitTemplateArgs()) |
2248 | for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments()) |
2249 | if (S.DiagnoseUnexpandedParameterPack(Arg: ArgLoc, |
2250 | UPPC: Sema::UPPC_TypeConstraint)) |
2251 | return true; |
2252 | continue; |
2253 | } |
2254 | |
2255 | if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: P)) { |
2256 | if (!NTTP->isParameterPack() && |
2257 | S.DiagnoseUnexpandedParameterPack(Loc: NTTP->getLocation(), |
2258 | T: NTTP->getTypeSourceInfo(), |
2259 | UPPC: Sema::UPPC_NonTypeTemplateParameterType)) |
2260 | return true; |
2261 | |
2262 | continue; |
2263 | } |
2264 | |
2265 | if (TemplateTemplateParmDecl *InnerTTP |
2266 | = dyn_cast<TemplateTemplateParmDecl>(Val: P)) |
2267 | if (DiagnoseUnexpandedParameterPacks(S, TTP: InnerTTP)) |
2268 | return true; |
2269 | } |
2270 | |
2271 | return false; |
2272 | } |
2273 | |
2274 | bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, |
2275 | TemplateParameterList *OldParams, |
2276 | TemplateParamListContext TPC, |
2277 | SkipBodyInfo *SkipBody) { |
2278 | bool Invalid = false; |
2279 | |
2280 | // C++ [temp.param]p10: |
2281 | // The set of default template-arguments available for use with a |
2282 | // template declaration or definition is obtained by merging the |
2283 | // default arguments from the definition (if in scope) and all |
2284 | // declarations in scope in the same way default function |
2285 | // arguments are (8.3.6). |
2286 | bool SawDefaultArgument = false; |
2287 | SourceLocation PreviousDefaultArgLoc; |
2288 | |
2289 | // Dummy initialization to avoid warnings. |
2290 | TemplateParameterList::iterator OldParam = NewParams->end(); |
2291 | if (OldParams) |
2292 | OldParam = OldParams->begin(); |
2293 | |
2294 | bool RemoveDefaultArguments = false; |
2295 | for (TemplateParameterList::iterator NewParam = NewParams->begin(), |
2296 | NewParamEnd = NewParams->end(); |
2297 | NewParam != NewParamEnd; ++NewParam) { |
2298 | // Whether we've seen a duplicate default argument in the same translation |
2299 | // unit. |
2300 | bool RedundantDefaultArg = false; |
2301 | // Whether we've found inconsis inconsitent default arguments in different |
2302 | // translation unit. |
2303 | bool InconsistentDefaultArg = false; |
2304 | // The name of the module which contains the inconsistent default argument. |
2305 | std::string PrevModuleName; |
2306 | |
2307 | SourceLocation OldDefaultLoc; |
2308 | SourceLocation NewDefaultLoc; |
2309 | |
2310 | // Variable used to diagnose missing default arguments |
2311 | bool MissingDefaultArg = false; |
2312 | |
2313 | // Variable used to diagnose non-final parameter packs |
2314 | bool SawParameterPack = false; |
2315 | |
2316 | if (TemplateTypeParmDecl *NewTypeParm |
2317 | = dyn_cast<TemplateTypeParmDecl>(Val: *NewParam)) { |
2318 | // Check the presence of a default argument here. |
2319 | if (NewTypeParm->hasDefaultArgument() && |
2320 | DiagnoseDefaultTemplateArgument( |
2321 | S&: *this, TPC, ParamLoc: NewTypeParm->getLocation(), |
2322 | DefArgRange: NewTypeParm->getDefaultArgument().getSourceRange())) |
2323 | NewTypeParm->removeDefaultArgument(); |
2324 | |
2325 | // Merge default arguments for template type parameters. |
2326 | TemplateTypeParmDecl *OldTypeParm |
2327 | = OldParams? cast<TemplateTypeParmDecl>(Val: *OldParam) : nullptr; |
2328 | if (NewTypeParm->isParameterPack()) { |
2329 | assert(!NewTypeParm->hasDefaultArgument() && |
2330 | "Parameter packs can't have a default argument!" ); |
2331 | SawParameterPack = true; |
2332 | } else if (OldTypeParm && hasVisibleDefaultArgument(D: OldTypeParm) && |
2333 | NewTypeParm->hasDefaultArgument() && |
2334 | (!SkipBody || !SkipBody->ShouldSkip)) { |
2335 | OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); |
2336 | NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); |
2337 | SawDefaultArgument = true; |
2338 | |
2339 | if (!OldTypeParm->getOwningModule()) |
2340 | RedundantDefaultArg = true; |
2341 | else if (!getASTContext().isSameDefaultTemplateArgument(X: OldTypeParm, |
2342 | Y: NewTypeParm)) { |
2343 | InconsistentDefaultArg = true; |
2344 | PrevModuleName = |
2345 | OldTypeParm->getImportedOwningModule()->getFullModuleName(); |
2346 | } |
2347 | PreviousDefaultArgLoc = NewDefaultLoc; |
2348 | } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { |
2349 | // Merge the default argument from the old declaration to the |
2350 | // new declaration. |
2351 | NewTypeParm->setInheritedDefaultArgument(C: Context, Prev: OldTypeParm); |
2352 | PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); |
2353 | } else if (NewTypeParm->hasDefaultArgument()) { |
2354 | SawDefaultArgument = true; |
2355 | PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); |
2356 | } else if (SawDefaultArgument) |
2357 | MissingDefaultArg = true; |
2358 | } else if (NonTypeTemplateParmDecl *NewNonTypeParm |
2359 | = dyn_cast<NonTypeTemplateParmDecl>(Val: *NewParam)) { |
2360 | // Check for unexpanded parameter packs. |
2361 | if (!NewNonTypeParm->isParameterPack() && |
2362 | DiagnoseUnexpandedParameterPack(Loc: NewNonTypeParm->getLocation(), |
2363 | T: NewNonTypeParm->getTypeSourceInfo(), |
2364 | UPPC: UPPC_NonTypeTemplateParameterType)) { |
2365 | Invalid = true; |
2366 | continue; |
2367 | } |
2368 | |
2369 | // Check the presence of a default argument here. |
2370 | if (NewNonTypeParm->hasDefaultArgument() && |
2371 | DiagnoseDefaultTemplateArgument( |
2372 | S&: *this, TPC, ParamLoc: NewNonTypeParm->getLocation(), |
2373 | DefArgRange: NewNonTypeParm->getDefaultArgument().getSourceRange())) { |
2374 | NewNonTypeParm->removeDefaultArgument(); |
2375 | } |
2376 | |
2377 | // Merge default arguments for non-type template parameters |
2378 | NonTypeTemplateParmDecl *OldNonTypeParm |
2379 | = OldParams? cast<NonTypeTemplateParmDecl>(Val: *OldParam) : nullptr; |
2380 | if (NewNonTypeParm->isParameterPack()) { |
2381 | assert(!NewNonTypeParm->hasDefaultArgument() && |
2382 | "Parameter packs can't have a default argument!" ); |
2383 | if (!NewNonTypeParm->isPackExpansion()) |
2384 | SawParameterPack = true; |
2385 | } else if (OldNonTypeParm && hasVisibleDefaultArgument(D: OldNonTypeParm) && |
2386 | NewNonTypeParm->hasDefaultArgument() && |
2387 | (!SkipBody || !SkipBody->ShouldSkip)) { |
2388 | OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); |
2389 | NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); |
2390 | SawDefaultArgument = true; |
2391 | if (!OldNonTypeParm->getOwningModule()) |
2392 | RedundantDefaultArg = true; |
2393 | else if (!getASTContext().isSameDefaultTemplateArgument( |
2394 | X: OldNonTypeParm, Y: NewNonTypeParm)) { |
2395 | InconsistentDefaultArg = true; |
2396 | PrevModuleName = |
2397 | OldNonTypeParm->getImportedOwningModule()->getFullModuleName(); |
2398 | } |
2399 | PreviousDefaultArgLoc = NewDefaultLoc; |
2400 | } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { |
2401 | // Merge the default argument from the old declaration to the |
2402 | // new declaration. |
2403 | NewNonTypeParm->setInheritedDefaultArgument(C: Context, Parm: OldNonTypeParm); |
2404 | PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); |
2405 | } else if (NewNonTypeParm->hasDefaultArgument()) { |
2406 | SawDefaultArgument = true; |
2407 | PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); |
2408 | } else if (SawDefaultArgument) |
2409 | MissingDefaultArg = true; |
2410 | } else { |
2411 | TemplateTemplateParmDecl *NewTemplateParm |
2412 | = cast<TemplateTemplateParmDecl>(Val: *NewParam); |
2413 | |
2414 | // Check for unexpanded parameter packs, recursively. |
2415 | if (::DiagnoseUnexpandedParameterPacks(S&: *this, TTP: NewTemplateParm)) { |
2416 | Invalid = true; |
2417 | continue; |
2418 | } |
2419 | |
2420 | // Check the presence of a default argument here. |
2421 | if (NewTemplateParm->hasDefaultArgument() && |
2422 | DiagnoseDefaultTemplateArgument(S&: *this, TPC, |
2423 | ParamLoc: NewTemplateParm->getLocation(), |
2424 | DefArgRange: NewTemplateParm->getDefaultArgument().getSourceRange())) |
2425 | NewTemplateParm->removeDefaultArgument(); |
2426 | |
2427 | // Merge default arguments for template template parameters |
2428 | TemplateTemplateParmDecl *OldTemplateParm |
2429 | = OldParams? cast<TemplateTemplateParmDecl>(Val: *OldParam) : nullptr; |
2430 | if (NewTemplateParm->isParameterPack()) { |
2431 | assert(!NewTemplateParm->hasDefaultArgument() && |
2432 | "Parameter packs can't have a default argument!" ); |
2433 | if (!NewTemplateParm->isPackExpansion()) |
2434 | SawParameterPack = true; |
2435 | } else if (OldTemplateParm && |
2436 | hasVisibleDefaultArgument(D: OldTemplateParm) && |
2437 | NewTemplateParm->hasDefaultArgument() && |
2438 | (!SkipBody || !SkipBody->ShouldSkip)) { |
2439 | OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); |
2440 | NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); |
2441 | SawDefaultArgument = true; |
2442 | if (!OldTemplateParm->getOwningModule()) |
2443 | RedundantDefaultArg = true; |
2444 | else if (!getASTContext().isSameDefaultTemplateArgument( |
2445 | X: OldTemplateParm, Y: NewTemplateParm)) { |
2446 | InconsistentDefaultArg = true; |
2447 | PrevModuleName = |
2448 | OldTemplateParm->getImportedOwningModule()->getFullModuleName(); |
2449 | } |
2450 | PreviousDefaultArgLoc = NewDefaultLoc; |
2451 | } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { |
2452 | // Merge the default argument from the old declaration to the |
2453 | // new declaration. |
2454 | NewTemplateParm->setInheritedDefaultArgument(C: Context, Prev: OldTemplateParm); |
2455 | PreviousDefaultArgLoc |
2456 | = OldTemplateParm->getDefaultArgument().getLocation(); |
2457 | } else if (NewTemplateParm->hasDefaultArgument()) { |
2458 | SawDefaultArgument = true; |
2459 | PreviousDefaultArgLoc |
2460 | = NewTemplateParm->getDefaultArgument().getLocation(); |
2461 | } else if (SawDefaultArgument) |
2462 | MissingDefaultArg = true; |
2463 | } |
2464 | |
2465 | // C++11 [temp.param]p11: |
2466 | // If a template parameter of a primary class template or alias template |
2467 | // is a template parameter pack, it shall be the last template parameter. |
2468 | if (SawParameterPack && (NewParam + 1) != NewParamEnd && |
2469 | (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate || |
2470 | TPC == TPC_TypeAliasTemplate)) { |
2471 | Diag(Loc: (*NewParam)->getLocation(), |
2472 | DiagID: diag::err_template_param_pack_must_be_last_template_parameter); |
2473 | Invalid = true; |
2474 | } |
2475 | |
2476 | // [basic.def.odr]/13: |
2477 | // There can be more than one definition of a |
2478 | // ... |
2479 | // default template argument |
2480 | // ... |
2481 | // in a program provided that each definition appears in a different |
2482 | // translation unit and the definitions satisfy the [same-meaning |
2483 | // criteria of the ODR]. |
2484 | // |
2485 | // Simply, the design of modules allows the definition of template default |
2486 | // argument to be repeated across translation unit. Note that the ODR is |
2487 | // checked elsewhere. But it is still not allowed to repeat template default |
2488 | // argument in the same translation unit. |
2489 | if (RedundantDefaultArg) { |
2490 | Diag(Loc: NewDefaultLoc, DiagID: diag::err_template_param_default_arg_redefinition); |
2491 | Diag(Loc: OldDefaultLoc, DiagID: diag::note_template_param_prev_default_arg); |
2492 | Invalid = true; |
2493 | } else if (InconsistentDefaultArg) { |
2494 | // We could only diagnose about the case that the OldParam is imported. |
2495 | // The case NewParam is imported should be handled in ASTReader. |
2496 | Diag(Loc: NewDefaultLoc, |
2497 | DiagID: diag::err_template_param_default_arg_inconsistent_redefinition); |
2498 | Diag(Loc: OldDefaultLoc, |
2499 | DiagID: diag::note_template_param_prev_default_arg_in_other_module) |
2500 | << PrevModuleName; |
2501 | Invalid = true; |
2502 | } else if (MissingDefaultArg && |
2503 | (TPC == TPC_ClassTemplate || TPC == TPC_FriendClassTemplate || |
2504 | TPC == TPC_VarTemplate || TPC == TPC_TypeAliasTemplate)) { |
2505 | // C++ 23[temp.param]p14: |
2506 | // If a template-parameter of a class template, variable template, or |
2507 | // alias template has a default template argument, each subsequent |
2508 | // template-parameter shall either have a default template argument |
2509 | // supplied or be a template parameter pack. |
2510 | Diag(Loc: (*NewParam)->getLocation(), |
2511 | DiagID: diag::err_template_param_default_arg_missing); |
2512 | Diag(Loc: PreviousDefaultArgLoc, DiagID: diag::note_template_param_prev_default_arg); |
2513 | Invalid = true; |
2514 | RemoveDefaultArguments = true; |
2515 | } |
2516 | |
2517 | // If we have an old template parameter list that we're merging |
2518 | // in, move on to the next parameter. |
2519 | if (OldParams) |
2520 | ++OldParam; |
2521 | } |
2522 | |
2523 | // We were missing some default arguments at the end of the list, so remove |
2524 | // all of the default arguments. |
2525 | if (RemoveDefaultArguments) { |
2526 | for (TemplateParameterList::iterator NewParam = NewParams->begin(), |
2527 | NewParamEnd = NewParams->end(); |
2528 | NewParam != NewParamEnd; ++NewParam) { |
2529 | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: *NewParam)) |
2530 | TTP->removeDefaultArgument(); |
2531 | else if (NonTypeTemplateParmDecl *NTTP |
2532 | = dyn_cast<NonTypeTemplateParmDecl>(Val: *NewParam)) |
2533 | NTTP->removeDefaultArgument(); |
2534 | else |
2535 | cast<TemplateTemplateParmDecl>(Val: *NewParam)->removeDefaultArgument(); |
2536 | } |
2537 | } |
2538 | |
2539 | return Invalid; |
2540 | } |
2541 | |
2542 | namespace { |
2543 | |
2544 | /// A class which looks for a use of a certain level of template |
2545 | /// parameter. |
2546 | struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { |
2547 | typedef RecursiveASTVisitor<DependencyChecker> super; |
2548 | |
2549 | unsigned Depth; |
2550 | |
2551 | // Whether we're looking for a use of a template parameter that makes the |
2552 | // overall construct type-dependent / a dependent type. This is strictly |
2553 | // best-effort for now; we may fail to match at all for a dependent type |
2554 | // in some cases if this is set. |
2555 | bool IgnoreNonTypeDependent; |
2556 | |
2557 | bool Match; |
2558 | SourceLocation MatchLoc; |
2559 | |
2560 | DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent) |
2561 | : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent), |
2562 | Match(false) {} |
2563 | |
2564 | DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent) |
2565 | : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) { |
2566 | NamedDecl *ND = Params->getParam(Idx: 0); |
2567 | if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(Val: ND)) { |
2568 | Depth = PD->getDepth(); |
2569 | } else if (NonTypeTemplateParmDecl *PD = |
2570 | dyn_cast<NonTypeTemplateParmDecl>(Val: ND)) { |
2571 | Depth = PD->getDepth(); |
2572 | } else { |
2573 | Depth = cast<TemplateTemplateParmDecl>(Val: ND)->getDepth(); |
2574 | } |
2575 | } |
2576 | |
2577 | bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) { |
2578 | if (ParmDepth >= Depth) { |
2579 | Match = true; |
2580 | MatchLoc = Loc; |
2581 | return true; |
2582 | } |
2583 | return false; |
2584 | } |
2585 | |
2586 | bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) { |
2587 | // Prune out non-type-dependent expressions if requested. This can |
2588 | // sometimes result in us failing to find a template parameter reference |
2589 | // (if a value-dependent expression creates a dependent type), but this |
2590 | // mode is best-effort only. |
2591 | if (auto *E = dyn_cast_or_null<Expr>(Val: S)) |
2592 | if (IgnoreNonTypeDependent && !E->isTypeDependent()) |
2593 | return true; |
2594 | return super::TraverseStmt(S, Queue: Q); |
2595 | } |
2596 | |
2597 | bool TraverseTypeLoc(TypeLoc TL) { |
2598 | if (IgnoreNonTypeDependent && !TL.isNull() && |
2599 | !TL.getType()->isDependentType()) |
2600 | return true; |
2601 | return super::TraverseTypeLoc(TL); |
2602 | } |
2603 | |
2604 | bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { |
2605 | return !Matches(ParmDepth: TL.getTypePtr()->getDepth(), Loc: TL.getNameLoc()); |
2606 | } |
2607 | |
2608 | bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { |
2609 | // For a best-effort search, keep looking until we find a location. |
2610 | return IgnoreNonTypeDependent || !Matches(ParmDepth: T->getDepth()); |
2611 | } |
2612 | |
2613 | bool TraverseTemplateName(TemplateName N) { |
2614 | if (TemplateTemplateParmDecl *PD = |
2615 | dyn_cast_or_null<TemplateTemplateParmDecl>(Val: N.getAsTemplateDecl())) |
2616 | if (Matches(ParmDepth: PD->getDepth())) |
2617 | return false; |
2618 | return super::TraverseTemplateName(Template: N); |
2619 | } |
2620 | |
2621 | bool VisitDeclRefExpr(DeclRefExpr *E) { |
2622 | if (NonTypeTemplateParmDecl *PD = |
2623 | dyn_cast<NonTypeTemplateParmDecl>(Val: E->getDecl())) |
2624 | if (Matches(ParmDepth: PD->getDepth(), Loc: E->getExprLoc())) |
2625 | return false; |
2626 | return super::VisitDeclRefExpr(S: E); |
2627 | } |
2628 | |
2629 | bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { |
2630 | return TraverseType(T: T->getReplacementType()); |
2631 | } |
2632 | |
2633 | bool |
2634 | VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) { |
2635 | return TraverseTemplateArgument(Arg: T->getArgumentPack()); |
2636 | } |
2637 | |
2638 | bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { |
2639 | return TraverseType(T: T->getInjectedSpecializationType()); |
2640 | } |
2641 | }; |
2642 | } // end anonymous namespace |
2643 | |
2644 | /// Determines whether a given type depends on the given parameter |
2645 | /// list. |
2646 | static bool |
2647 | DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { |
2648 | if (!Params->size()) |
2649 | return false; |
2650 | |
2651 | DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false); |
2652 | Checker.TraverseType(T); |
2653 | return Checker.Match; |
2654 | } |
2655 | |
2656 | // Find the source range corresponding to the named type in the given |
2657 | // nested-name-specifier, if any. |
2658 | static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, |
2659 | QualType T, |
2660 | const CXXScopeSpec &SS) { |
2661 | NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); |
2662 | while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { |
2663 | if (const Type *CurType = NNS->getAsType()) { |
2664 | if (Context.hasSameUnqualifiedType(T1: T, T2: QualType(CurType, 0))) |
2665 | return NNSLoc.getTypeLoc().getSourceRange(); |
2666 | } else |
2667 | break; |
2668 | |
2669 | NNSLoc = NNSLoc.getPrefix(); |
2670 | } |
2671 | |
2672 | return SourceRange(); |
2673 | } |
2674 | |
2675 | TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier( |
2676 | SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, |
2677 | TemplateIdAnnotation *TemplateId, |
2678 | ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend, |
2679 | bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) { |
2680 | IsMemberSpecialization = false; |
2681 | Invalid = false; |
2682 | |
2683 | // The sequence of nested types to which we will match up the template |
2684 | // parameter lists. We first build this list by starting with the type named |
2685 | // by the nested-name-specifier and walking out until we run out of types. |
2686 | SmallVector<QualType, 4> NestedTypes; |
2687 | QualType T; |
2688 | if (SS.getScopeRep()) { |
2689 | if (CXXRecordDecl *Record |
2690 | = dyn_cast_or_null<CXXRecordDecl>(Val: computeDeclContext(SS, EnteringContext: true))) |
2691 | T = Context.getTypeDeclType(Decl: Record); |
2692 | else |
2693 | T = QualType(SS.getScopeRep()->getAsType(), 0); |
2694 | } |
2695 | |
2696 | // If we found an explicit specialization that prevents us from needing |
2697 | // 'template<>' headers, this will be set to the location of that |
2698 | // explicit specialization. |
2699 | SourceLocation ExplicitSpecLoc; |
2700 | |
2701 | while (!T.isNull()) { |
2702 | NestedTypes.push_back(Elt: T); |
2703 | |
2704 | // Retrieve the parent of a record type. |
2705 | if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { |
2706 | // If this type is an explicit specialization, we're done. |
2707 | if (ClassTemplateSpecializationDecl *Spec |
2708 | = dyn_cast<ClassTemplateSpecializationDecl>(Val: Record)) { |
2709 | if (!isa<ClassTemplatePartialSpecializationDecl>(Val: Spec) && |
2710 | Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { |
2711 | ExplicitSpecLoc = Spec->getLocation(); |
2712 | break; |
2713 | } |
2714 | } else if (Record->getTemplateSpecializationKind() |
2715 | == TSK_ExplicitSpecialization) { |
2716 | ExplicitSpecLoc = Record->getLocation(); |
2717 | break; |
2718 | } |
2719 | |
2720 | if (TypeDecl *Parent = dyn_cast<TypeDecl>(Val: Record->getParent())) |
2721 | T = Context.getTypeDeclType(Decl: Parent); |
2722 | else |
2723 | T = QualType(); |
2724 | continue; |
2725 | } |
2726 | |
2727 | if (const TemplateSpecializationType *TST |
2728 | = T->getAs<TemplateSpecializationType>()) { |
2729 | if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { |
2730 | if (TypeDecl *Parent = dyn_cast<TypeDecl>(Val: Template->getDeclContext())) |
2731 | T = Context.getTypeDeclType(Decl: Parent); |
2732 | else |
2733 | T = QualType(); |
2734 | continue; |
2735 | } |
2736 | } |
2737 | |
2738 | // Look one step prior in a dependent template specialization type. |
2739 | if (const DependentTemplateSpecializationType *DependentTST |
2740 | = T->getAs<DependentTemplateSpecializationType>()) { |
2741 | if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) |
2742 | T = QualType(NNS->getAsType(), 0); |
2743 | else |
2744 | T = QualType(); |
2745 | continue; |
2746 | } |
2747 | |
2748 | // Look one step prior in a dependent name type. |
2749 | if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ |
2750 | if (NestedNameSpecifier *NNS = DependentName->getQualifier()) |
2751 | T = QualType(NNS->getAsType(), 0); |
2752 | else |
2753 | T = QualType(); |
2754 | continue; |
2755 | } |
2756 | |
2757 | // Retrieve the parent of an enumeration type. |
2758 | if (const EnumType *EnumT = T->getAs<EnumType>()) { |
2759 | // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization |
2760 | // check here. |
2761 | EnumDecl *Enum = EnumT->getDecl(); |
2762 | |
2763 | // Get to the parent type. |
2764 | if (TypeDecl *Parent = dyn_cast<TypeDecl>(Val: Enum->getParent())) |
2765 | T = Context.getTypeDeclType(Decl: Parent); |
2766 | else |
2767 | T = QualType(); |
2768 | continue; |
2769 | } |
2770 | |
2771 | T = QualType(); |
2772 | } |
2773 | // Reverse the nested types list, since we want to traverse from the outermost |
2774 | // to the innermost while checking template-parameter-lists. |
2775 | std::reverse(first: NestedTypes.begin(), last: NestedTypes.end()); |
2776 | |
2777 | // C++0x [temp.expl.spec]p17: |
2778 | // A member or a member template may be nested within many |
2779 | // enclosing class templates. In an explicit specialization for |
2780 | // such a member, the member declaration shall be preceded by a |
2781 | // template<> for each enclosing class template that is |
2782 | // explicitly specialized. |
2783 | bool SawNonEmptyTemplateParameterList = false; |
2784 | |
2785 | auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) { |
2786 | if (SawNonEmptyTemplateParameterList) { |
2787 | if (!SuppressDiagnostic) |
2788 | Diag(Loc: DeclLoc, DiagID: diag::err_specialize_member_of_template) |
2789 | << !Recovery << Range; |
2790 | Invalid = true; |
2791 | IsMemberSpecialization = false; |
2792 | return true; |
2793 | } |
2794 | |
2795 | return false; |
2796 | }; |
2797 | |
2798 | auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) { |
2799 | // Check that we can have an explicit specialization here. |
2800 | if (CheckExplicitSpecialization(Range, true)) |
2801 | return true; |
2802 | |
2803 | // We don't have a template header, but we should. |
2804 | SourceLocation ExpectedTemplateLoc; |
2805 | if (!ParamLists.empty()) |
2806 | ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); |
2807 | else |
2808 | ExpectedTemplateLoc = DeclStartLoc; |
2809 | |
2810 | if (!SuppressDiagnostic) |
2811 | Diag(Loc: DeclLoc, DiagID: diag::err_template_spec_needs_header) |
2812 | << Range |
2813 | << FixItHint::CreateInsertion(InsertionLoc: ExpectedTemplateLoc, Code: "template<> " ); |
2814 | return false; |
2815 | }; |
2816 | |
2817 | unsigned ParamIdx = 0; |
2818 | for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; |
2819 | ++TypeIdx) { |
2820 | T = NestedTypes[TypeIdx]; |
2821 | |
2822 | // Whether we expect a 'template<>' header. |
2823 | bool = false; |
2824 | |
2825 | // Whether we expect a template header with parameters. |
2826 | bool = false; |
2827 | |
2828 | // For a dependent type, the set of template parameters that we |
2829 | // expect to see. |
2830 | TemplateParameterList *ExpectedTemplateParams = nullptr; |
2831 | |
2832 | // C++0x [temp.expl.spec]p15: |
2833 | // A member or a member template may be nested within many enclosing |
2834 | // class templates. In an explicit specialization for such a member, the |
2835 | // member declaration shall be preceded by a template<> for each |
2836 | // enclosing class template that is explicitly specialized. |
2837 | if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { |
2838 | if (ClassTemplatePartialSpecializationDecl *Partial |
2839 | = dyn_cast<ClassTemplatePartialSpecializationDecl>(Val: Record)) { |
2840 | ExpectedTemplateParams = Partial->getTemplateParameters(); |
2841 | NeedNonemptyTemplateHeader = true; |
2842 | } else if (Record->isDependentType()) { |
2843 | if (Record->getDescribedClassTemplate()) { |
2844 | ExpectedTemplateParams = Record->getDescribedClassTemplate() |
2845 | ->getTemplateParameters(); |
2846 | NeedNonemptyTemplateHeader = true; |
2847 | } |
2848 | } else if (ClassTemplateSpecializationDecl *Spec |
2849 | = dyn_cast<ClassTemplateSpecializationDecl>(Val: Record)) { |
2850 | // C++0x [temp.expl.spec]p4: |
2851 | // Members of an explicitly specialized class template are defined |
2852 | // in the same manner as members of normal classes, and not using |
2853 | // the template<> syntax. |
2854 | if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) |
2855 | NeedEmptyTemplateHeader = true; |
2856 | else |
2857 | continue; |
2858 | } else if (Record->getTemplateSpecializationKind()) { |
2859 | if (Record->getTemplateSpecializationKind() |
2860 | != TSK_ExplicitSpecialization && |
2861 | TypeIdx == NumTypes - 1) |
2862 | IsMemberSpecialization = true; |
2863 | |
2864 | continue; |
2865 | } |
2866 | } else if (const TemplateSpecializationType *TST |
2867 | = T->getAs<TemplateSpecializationType>()) { |
2868 | if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { |
2869 | ExpectedTemplateParams = Template->getTemplateParameters(); |
2870 | NeedNonemptyTemplateHeader = true; |
2871 | } |
2872 | } else if (T->getAs<DependentTemplateSpecializationType>()) { |
2873 | // FIXME: We actually could/should check the template arguments here |
2874 | // against the corresponding template parameter list. |
2875 | NeedNonemptyTemplateHeader = false; |
2876 | } |
2877 | |
2878 | // C++ [temp.expl.spec]p16: |
2879 | // In an explicit specialization declaration for a member of a class |
2880 | // template or a member template that appears in namespace scope, the |
2881 | // member template and some of its enclosing class templates may remain |
2882 | // unspecialized, except that the declaration shall not explicitly |
2883 | // specialize a class member template if its enclosing class templates |
2884 | // are not explicitly specialized as well. |
2885 | if (ParamIdx < ParamLists.size()) { |
2886 | if (ParamLists[ParamIdx]->size() == 0) { |
2887 | if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), |
2888 | false)) |
2889 | return nullptr; |
2890 | } else |
2891 | SawNonEmptyTemplateParameterList = true; |
2892 | } |
2893 | |
2894 | if (NeedEmptyTemplateHeader) { |
2895 | // If we're on the last of the types, and we need a 'template<>' header |
2896 | // here, then it's a member specialization. |
2897 | if (TypeIdx == NumTypes - 1) |
2898 | IsMemberSpecialization = true; |
2899 | |
2900 | if (ParamIdx < ParamLists.size()) { |
2901 | if (ParamLists[ParamIdx]->size() > 0) { |
2902 | // The header has template parameters when it shouldn't. Complain. |
2903 | if (!SuppressDiagnostic) |
2904 | Diag(Loc: ParamLists[ParamIdx]->getTemplateLoc(), |
2905 | DiagID: diag::err_template_param_list_matches_nontemplate) |
2906 | << T |
2907 | << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), |
2908 | ParamLists[ParamIdx]->getRAngleLoc()) |
2909 | << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); |
2910 | Invalid = true; |
2911 | return nullptr; |
2912 | } |
2913 | |
2914 | // Consume this template header. |
2915 | ++ParamIdx; |
2916 | continue; |
2917 | } |
2918 | |
2919 | if (!IsFriend) |
2920 | if (DiagnoseMissingExplicitSpecialization( |
2921 | getRangeOfTypeInNestedNameSpecifier(Context, T, SS))) |
2922 | return nullptr; |
2923 | |
2924 | continue; |
2925 | } |
2926 | |
2927 | if (NeedNonemptyTemplateHeader) { |
2928 | // In friend declarations we can have template-ids which don't |
2929 | // depend on the corresponding template parameter lists. But |
2930 | // assume that empty parameter lists are supposed to match this |
2931 | // template-id. |
2932 | if (IsFriend && T->isDependentType()) { |
2933 | if (ParamIdx < ParamLists.size() && |
2934 | DependsOnTemplateParameters(T, Params: ParamLists[ParamIdx])) |
2935 | ExpectedTemplateParams = nullptr; |
2936 | else |
2937 | continue; |
2938 | } |
2939 | |
2940 | if (ParamIdx < ParamLists.size()) { |
2941 | // Check the template parameter list, if we can. |
2942 | if (ExpectedTemplateParams && |
2943 | !TemplateParameterListsAreEqual(New: ParamLists[ParamIdx], |
2944 | Old: ExpectedTemplateParams, |
2945 | Complain: !SuppressDiagnostic, Kind: TPL_TemplateMatch)) |
2946 | Invalid = true; |
2947 | |
2948 | if (!Invalid && |
2949 | CheckTemplateParameterList(NewParams: ParamLists[ParamIdx], OldParams: nullptr, |
2950 | TPC: TPC_ClassTemplateMember)) |
2951 | Invalid = true; |
2952 | |
2953 | ++ParamIdx; |
2954 | continue; |
2955 | } |
2956 | |
2957 | if (!SuppressDiagnostic) |
2958 | Diag(Loc: DeclLoc, DiagID: diag::err_template_spec_needs_template_parameters) |
2959 | << T |
2960 | << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); |
2961 | Invalid = true; |
2962 | continue; |
2963 | } |
2964 | } |
2965 | |
2966 | // If there were at least as many template-ids as there were template |
2967 | // parameter lists, then there are no template parameter lists remaining for |
2968 | // the declaration itself. |
2969 | if (ParamIdx >= ParamLists.size()) { |
2970 | if (TemplateId && !IsFriend) { |
2971 | // We don't have a template header for the declaration itself, but we |
2972 | // should. |
2973 | DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc, |
2974 | TemplateId->RAngleLoc)); |
2975 | |
2976 | // Fabricate an empty template parameter list for the invented header. |
2977 | return TemplateParameterList::Create(C: Context, TemplateLoc: SourceLocation(), |
2978 | LAngleLoc: SourceLocation(), Params: std::nullopt, |
2979 | RAngleLoc: SourceLocation(), RequiresClause: nullptr); |
2980 | } |
2981 | |
2982 | return nullptr; |
2983 | } |
2984 | |
2985 | // If there were too many template parameter lists, complain about that now. |
2986 | if (ParamIdx < ParamLists.size() - 1) { |
2987 | bool = false; |
2988 | bool = true; |
2989 | for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) { |
2990 | if (ParamLists[I]->size() == 0) |
2991 | HasAnyExplicitSpecHeader = true; |
2992 | else |
2993 | AllExplicitSpecHeaders = false; |
2994 | } |
2995 | |
2996 | if (!SuppressDiagnostic) |
2997 | Diag(Loc: ParamLists[ParamIdx]->getTemplateLoc(), |
2998 | DiagID: AllExplicitSpecHeaders ? diag::ext_template_spec_extra_headers |
2999 | : diag::err_template_spec_extra_headers) |
3000 | << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), |
3001 | ParamLists[ParamLists.size() - 2]->getRAngleLoc()); |
3002 | |
3003 | // If there was a specialization somewhere, such that 'template<>' is |
3004 | // not required, and there were any 'template<>' headers, note where the |
3005 | // specialization occurred. |
3006 | if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader && |
3007 | !SuppressDiagnostic) |
3008 | Diag(Loc: ExplicitSpecLoc, |
3009 | DiagID: diag::note_explicit_template_spec_does_not_need_header) |
3010 | << NestedTypes.back(); |
3011 | |
3012 | // We have a template parameter list with no corresponding scope, which |
3013 | // means that the resulting template declaration can't be instantiated |
3014 | // properly (we'll end up with dependent nodes when we shouldn't). |
3015 | if (!AllExplicitSpecHeaders) |
3016 | Invalid = true; |
3017 | } |
3018 | |
3019 | // C++ [temp.expl.spec]p16: |
3020 | // In an explicit specialization declaration for a member of a class |
3021 | // template or a member template that ap- pears in namespace scope, the |
3022 | // member template and some of its enclosing class templates may remain |
3023 | // unspecialized, except that the declaration shall not explicitly |
3024 | // specialize a class member template if its en- closing class templates |
3025 | // are not explicitly specialized as well. |
3026 | if (ParamLists.back()->size() == 0 && |
3027 | CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), |
3028 | false)) |
3029 | return nullptr; |
3030 | |
3031 | // Return the last template parameter list, which corresponds to the |
3032 | // entity being declared. |
3033 | return ParamLists.back(); |
3034 | } |
3035 | |
3036 | void Sema::NoteAllFoundTemplates(TemplateName Name) { |
3037 | if (TemplateDecl *Template = Name.getAsTemplateDecl()) { |
3038 | Diag(Loc: Template->getLocation(), DiagID: diag::note_template_declared_here) |
3039 | << (isa<FunctionTemplateDecl>(Val: Template) |
3040 | ? 0 |
3041 | : isa<ClassTemplateDecl>(Val: Template) |
3042 | ? 1 |
3043 | : isa<VarTemplateDecl>(Val: Template) |
3044 | ? 2 |
3045 | : isa<TypeAliasTemplateDecl>(Val: Template) ? 3 : 4) |
3046 | << Template->getDeclName(); |
3047 | return; |
3048 | } |
3049 | |
3050 | if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { |
3051 | for (OverloadedTemplateStorage::iterator I = OST->begin(), |
3052 | IEnd = OST->end(); |
3053 | I != IEnd; ++I) |
3054 | Diag(Loc: (*I)->getLocation(), DiagID: diag::note_template_declared_here) |
3055 | << 0 << (*I)->getDeclName(); |
3056 | |
3057 | return; |
3058 | } |
3059 | } |
3060 | |
3061 | static QualType |
3062 | checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD, |
3063 | ArrayRef<TemplateArgument> Converted, |
3064 | SourceLocation TemplateLoc, |
3065 | TemplateArgumentListInfo &TemplateArgs) { |
3066 | ASTContext &Context = SemaRef.getASTContext(); |
3067 | |
3068 | switch (BTD->getBuiltinTemplateKind()) { |
3069 | case BTK__make_integer_seq: { |
3070 | // Specializations of __make_integer_seq<S, T, N> are treated like |
3071 | // S<T, 0, ..., N-1>. |
3072 | |
3073 | QualType OrigType = Converted[1].getAsType(); |
3074 | // C++14 [inteseq.intseq]p1: |
3075 | // T shall be an integer type. |
3076 | if (!OrigType->isDependentType() && !OrigType->isIntegralType(Ctx: Context)) { |
3077 | SemaRef.Diag(Loc: TemplateArgs[1].getLocation(), |
3078 | DiagID: diag::err_integer_sequence_integral_element_type); |
3079 | return QualType(); |
3080 | } |
3081 | |
3082 | TemplateArgument NumArgsArg = Converted[2]; |
3083 | if (NumArgsArg.isDependent()) |
3084 | return Context.getCanonicalTemplateSpecializationType(T: TemplateName(BTD), |
3085 | Args: Converted); |
3086 | |
3087 | TemplateArgumentListInfo SyntheticTemplateArgs; |
3088 | // The type argument, wrapped in substitution sugar, gets reused as the |
3089 | // first template argument in the synthetic template argument list. |
3090 | SyntheticTemplateArgs.addArgument( |
3091 | Loc: TemplateArgumentLoc(TemplateArgument(OrigType), |
3092 | SemaRef.Context.getTrivialTypeSourceInfo( |
3093 | T: OrigType, Loc: TemplateArgs[1].getLocation()))); |
3094 | |
3095 | if (llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); NumArgs >= 0) { |
3096 | // Expand N into 0 ... N-1. |
3097 | for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned()); |
3098 | I < NumArgs; ++I) { |
3099 | TemplateArgument TA(Context, I, OrigType); |
3100 | SyntheticTemplateArgs.addArgument(Loc: SemaRef.getTrivialTemplateArgumentLoc( |
3101 | Arg: TA, NTTPType: OrigType, Loc: TemplateArgs[2].getLocation())); |
3102 | } |
3103 | } else { |
3104 | // C++14 [inteseq.make]p1: |
3105 | // If N is negative the program is ill-formed. |
3106 | SemaRef.Diag(Loc: TemplateArgs[2].getLocation(), |
3107 | DiagID: diag::err_integer_sequence_negative_length); |
3108 | return QualType(); |
3109 | } |
3110 | |
3111 | // The first template argument will be reused as the template decl that |
3112 | // our synthetic template arguments will be applied to. |
3113 | return SemaRef.CheckTemplateIdType(Template: Converted[0].getAsTemplate(), |
3114 | TemplateLoc, TemplateArgs&: SyntheticTemplateArgs); |
3115 | } |
3116 | |
3117 | case BTK__type_pack_element: |
3118 | // Specializations of |
3119 | // __type_pack_element<Index, T_1, ..., T_N> |
3120 | // are treated like T_Index. |
3121 | assert(Converted.size() == 2 && |
3122 | "__type_pack_element should be given an index and a parameter pack" ); |
3123 | |
3124 | TemplateArgument IndexArg = Converted[0], Ts = Converted[1]; |
3125 | if (IndexArg.isDependent() || Ts.isDependent()) |
3126 | return Context.getCanonicalTemplateSpecializationType(T: TemplateName(BTD), |
3127 | Args: Converted); |
3128 | |
3129 | llvm::APSInt Index = IndexArg.getAsIntegral(); |
3130 | assert(Index >= 0 && "the index used with __type_pack_element should be of " |
3131 | "type std::size_t, and hence be non-negative" ); |
3132 | // If the Index is out of bounds, the program is ill-formed. |
3133 | if (Index >= Ts.pack_size()) { |
3134 | SemaRef.Diag(Loc: TemplateArgs[0].getLocation(), |
3135 | DiagID: diag::err_type_pack_element_out_of_bounds); |
3136 | return QualType(); |
3137 | } |
3138 | |
3139 | // We simply return the type at index `Index`. |
3140 | int64_t N = Index.getExtValue(); |
3141 | return Ts.getPackAsArray()[N].getAsType(); |
3142 | } |
3143 | llvm_unreachable("unexpected BuiltinTemplateDecl!" ); |
3144 | } |
3145 | |
3146 | /// Determine whether this alias template is "enable_if_t". |
3147 | /// libc++ >=14 uses "__enable_if_t" in C++11 mode. |
3148 | static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) { |
3149 | return AliasTemplate->getName() == "enable_if_t" || |
3150 | AliasTemplate->getName() == "__enable_if_t" ; |
3151 | } |
3152 | |
3153 | /// Collect all of the separable terms in the given condition, which |
3154 | /// might be a conjunction. |
3155 | /// |
3156 | /// FIXME: The right answer is to convert the logical expression into |
3157 | /// disjunctive normal form, so we can find the first failed term |
3158 | /// within each possible clause. |
3159 | static void collectConjunctionTerms(Expr *Clause, |
3160 | SmallVectorImpl<Expr *> &Terms) { |
3161 | if (auto BinOp = dyn_cast<BinaryOperator>(Val: Clause->IgnoreParenImpCasts())) { |
3162 | if (BinOp->getOpcode() == BO_LAnd) { |
3163 | collectConjunctionTerms(Clause: BinOp->getLHS(), Terms); |
3164 | collectConjunctionTerms(Clause: BinOp->getRHS(), Terms); |
3165 | return; |
3166 | } |
3167 | } |
3168 | |
3169 | Terms.push_back(Elt: Clause); |
3170 | } |
3171 | |
3172 | // The ranges-v3 library uses an odd pattern of a top-level "||" with |
3173 | // a left-hand side that is value-dependent but never true. Identify |
3174 | // the idiom and ignore that term. |
3175 | static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) { |
3176 | // Top-level '||'. |
3177 | auto *BinOp = dyn_cast<BinaryOperator>(Val: Cond->IgnoreParenImpCasts()); |
3178 | if (!BinOp) return Cond; |
3179 | |
3180 | if (BinOp->getOpcode() != BO_LOr) return Cond; |
3181 | |
3182 | // With an inner '==' that has a literal on the right-hand side. |
3183 | Expr *LHS = BinOp->getLHS(); |
3184 | auto *InnerBinOp = dyn_cast<BinaryOperator>(Val: LHS->IgnoreParenImpCasts()); |
3185 | if (!InnerBinOp) return Cond; |
3186 | |
3187 | if (InnerBinOp->getOpcode() != BO_EQ || |
3188 | !isa<IntegerLiteral>(Val: InnerBinOp->getRHS())) |
3189 | return Cond; |
3190 | |
3191 | // If the inner binary operation came from a macro expansion named |
3192 | // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side |
3193 | // of the '||', which is the real, user-provided condition. |
3194 | SourceLocation Loc = InnerBinOp->getExprLoc(); |
3195 | if (!Loc.isMacroID()) return Cond; |
3196 | |
3197 | StringRef MacroName = PP.getImmediateMacroName(Loc); |
3198 | if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_" ) |
3199 | return BinOp->getRHS(); |
3200 | |
3201 | return Cond; |
3202 | } |
3203 | |
3204 | namespace { |
3205 | |
3206 | // A PrinterHelper that prints more helpful diagnostics for some sub-expressions |
3207 | // within failing boolean expression, such as substituting template parameters |
3208 | // for actual types. |
3209 | class FailedBooleanConditionPrinterHelper : public PrinterHelper { |
3210 | public: |
3211 | explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P) |
3212 | : Policy(P) {} |
3213 | |
3214 | bool handledStmt(Stmt *E, raw_ostream &OS) override { |
3215 | const auto *DR = dyn_cast<DeclRefExpr>(Val: E); |
3216 | if (DR && DR->getQualifier()) { |
3217 | // If this is a qualified name, expand the template arguments in nested |
3218 | // qualifiers. |
3219 | DR->getQualifier()->print(OS, Policy, ResolveTemplateArguments: true); |
3220 | // Then print the decl itself. |
3221 | const ValueDecl *VD = DR->getDecl(); |
3222 | OS << VD->getName(); |
3223 | if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(Val: VD)) { |
3224 | // This is a template variable, print the expanded template arguments. |
3225 | printTemplateArgumentList( |
3226 | OS, Args: IV->getTemplateArgs().asArray(), Policy, |
3227 | TPL: IV->getSpecializedTemplate()->getTemplateParameters()); |
3228 | } |
3229 | return true; |
3230 | } |
3231 | return false; |
3232 | } |
3233 | |
3234 | private: |
3235 | const PrintingPolicy Policy; |
3236 | }; |
3237 | |
3238 | } // end anonymous namespace |
3239 | |
3240 | std::pair<Expr *, std::string> |
3241 | Sema::findFailedBooleanCondition(Expr *Cond) { |
3242 | Cond = lookThroughRangesV3Condition(PP, Cond); |
3243 | |
3244 | // Separate out all of the terms in a conjunction. |
3245 | SmallVector<Expr *, 4> Terms; |
3246 | collectConjunctionTerms(Clause: Cond, Terms); |
3247 | |
3248 | // Determine which term failed. |
3249 | Expr *FailedCond = nullptr; |
3250 | for (Expr *Term : Terms) { |
3251 | Expr *TermAsWritten = Term->IgnoreParenImpCasts(); |
3252 | |
3253 | // Literals are uninteresting. |
3254 | if (isa<CXXBoolLiteralExpr>(Val: TermAsWritten) || |
3255 | isa<IntegerLiteral>(Val: TermAsWritten)) |
3256 | continue; |
3257 | |
3258 | // The initialization of the parameter from the argument is |
3259 | // a constant-evaluated context. |
3260 | EnterExpressionEvaluationContext ConstantEvaluated( |
3261 | *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
3262 | |
3263 | bool Succeeded; |
3264 | if (Term->EvaluateAsBooleanCondition(Result&: Succeeded, Ctx: Context) && |
3265 | !Succeeded) { |
3266 | FailedCond = TermAsWritten; |
3267 | break; |
3268 | } |
3269 | } |
3270 | if (!FailedCond) |
3271 | FailedCond = Cond->IgnoreParenImpCasts(); |
3272 | |
3273 | std::string Description; |
3274 | { |
3275 | llvm::raw_string_ostream Out(Description); |
3276 | PrintingPolicy Policy = getPrintingPolicy(); |
3277 | Policy.PrintCanonicalTypes = true; |
3278 | FailedBooleanConditionPrinterHelper Helper(Policy); |
3279 | FailedCond->printPretty(OS&: Out, Helper: &Helper, Policy, Indentation: 0, NewlineSymbol: "\n" , Context: nullptr); |
3280 | } |
3281 | return { FailedCond, Description }; |
3282 | } |
3283 | |
3284 | QualType Sema::CheckTemplateIdType(TemplateName Name, |
3285 | SourceLocation TemplateLoc, |
3286 | TemplateArgumentListInfo &TemplateArgs) { |
3287 | DependentTemplateName *DTN |
3288 | = Name.getUnderlying().getAsDependentTemplateName(); |
3289 | if (DTN && DTN->isIdentifier()) |
3290 | // When building a template-id where the template-name is dependent, |
3291 | // assume the template is a type template. Either our assumption is |
3292 | // correct, or the code is ill-formed and will be diagnosed when the |
3293 | // dependent name is substituted. |
3294 | return Context.getDependentTemplateSpecializationType( |
3295 | Keyword: ElaboratedTypeKeyword::None, NNS: DTN->getQualifier(), Name: DTN->getIdentifier(), |
3296 | Args: TemplateArgs.arguments()); |
3297 | |
3298 | if (Name.getAsAssumedTemplateName() && |
3299 | resolveAssumedTemplateNameAsType(/*Scope*/S: nullptr, Name, NameLoc: TemplateLoc)) |
3300 | return QualType(); |
3301 | |
3302 | TemplateDecl *Template = Name.getAsTemplateDecl(); |
3303 | if (!Template || isa<FunctionTemplateDecl>(Val: Template) || |
3304 | isa<VarTemplateDecl>(Val: Template) || isa<ConceptDecl>(Val: Template)) { |
3305 | // We might have a substituted template template parameter pack. If so, |
3306 | // build a template specialization type for it. |
3307 | if (Name.getAsSubstTemplateTemplateParmPack()) |
3308 | return Context.getTemplateSpecializationType(T: Name, |
3309 | Args: TemplateArgs.arguments()); |
3310 | |
3311 | Diag(Loc: TemplateLoc, DiagID: diag::err_template_id_not_a_type) |
3312 | << Name; |
3313 | NoteAllFoundTemplates(Name); |
3314 | return QualType(); |
3315 | } |
3316 | |
3317 | // Check that the template argument list is well-formed for this |
3318 | // template. |
3319 | SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; |
3320 | if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, PartialTemplateArgs: false, |
3321 | SugaredConverted, CanonicalConverted, |
3322 | /*UpdateArgsWithConversions=*/true)) |
3323 | return QualType(); |
3324 | |
3325 | QualType CanonType; |
3326 | |
3327 | if (TypeAliasTemplateDecl *AliasTemplate = |
3328 | dyn_cast<TypeAliasTemplateDecl>(Val: Template)) { |
3329 | |
3330 | // Find the canonical type for this type alias template specialization. |
3331 | TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); |
3332 | if (Pattern->isInvalidDecl()) |
3333 | return QualType(); |
3334 | |
3335 | // Only substitute for the innermost template argument list. |
3336 | MultiLevelTemplateArgumentList TemplateArgLists; |
3337 | TemplateArgLists.addOuterTemplateArguments(AssociatedDecl: Template, Args: CanonicalConverted, |
3338 | /*Final=*/false); |
3339 | TemplateArgLists.addOuterRetainedLevels( |
3340 | Num: AliasTemplate->getTemplateParameters()->getDepth()); |
3341 | |
3342 | LocalInstantiationScope Scope(*this); |
3343 | InstantiatingTemplate Inst( |
3344 | *this, /*PointOfInstantiation=*/TemplateLoc, |
3345 | /*Entity=*/AliasTemplate, |
3346 | /*TemplateArgs=*/TemplateArgLists.getInnermost()); |
3347 | |
3348 | // Diagnose uses of this alias. |
3349 | (void)DiagnoseUseOfDecl(D: AliasTemplate, Locs: TemplateLoc); |
3350 | |
3351 | if (Inst.isInvalid()) |
3352 | return QualType(); |
3353 | |
3354 | std::optional<ContextRAII> SavedContext; |
3355 | if (!AliasTemplate->getDeclContext()->isFileContext()) |
3356 | SavedContext.emplace(args&: *this, args: AliasTemplate->getDeclContext()); |
3357 | |
3358 | CanonType = |
3359 | SubstType(T: Pattern->getUnderlyingType(), TemplateArgs: TemplateArgLists, |
3360 | Loc: AliasTemplate->getLocation(), Entity: AliasTemplate->getDeclName()); |
3361 | if (CanonType.isNull()) { |
3362 | // If this was enable_if and we failed to find the nested type |
3363 | // within enable_if in a SFINAE context, dig out the specific |
3364 | // enable_if condition that failed and present that instead. |
3365 | if (isEnableIfAliasTemplate(AliasTemplate)) { |
3366 | if (auto DeductionInfo = isSFINAEContext()) { |
3367 | if (*DeductionInfo && |
3368 | (*DeductionInfo)->hasSFINAEDiagnostic() && |
3369 | (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() == |
3370 | diag::err_typename_nested_not_found_enable_if && |
3371 | TemplateArgs[0].getArgument().getKind() |
3372 | == TemplateArgument::Expression) { |
3373 | Expr *FailedCond; |
3374 | std::string FailedDescription; |
3375 | std::tie(args&: FailedCond, args&: FailedDescription) = |
3376 | findFailedBooleanCondition(Cond: TemplateArgs[0].getSourceExpression()); |
3377 | |
3378 | // Remove the old SFINAE diagnostic. |
3379 | PartialDiagnosticAt OldDiag = |
3380 | {SourceLocation(), PartialDiagnostic::NullDiagnostic()}; |
3381 | (*DeductionInfo)->takeSFINAEDiagnostic(PD&: OldDiag); |
3382 | |
3383 | // Add a new SFINAE diagnostic specifying which condition |
3384 | // failed. |
3385 | (*DeductionInfo)->addSFINAEDiagnostic( |
3386 | Loc: OldDiag.first, |
3387 | PD: PDiag(DiagID: diag::err_typename_nested_not_found_requirement) |
3388 | << FailedDescription |
3389 | << FailedCond->getSourceRange()); |
3390 | } |
3391 | } |
3392 | } |
3393 | |
3394 | return QualType(); |
3395 | } |
3396 | } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Val: Template)) { |
3397 | CanonType = checkBuiltinTemplateIdType(SemaRef&: *this, BTD, Converted: SugaredConverted, |
3398 | TemplateLoc, TemplateArgs); |
3399 | } else if (Name.isDependent() || |
3400 | TemplateSpecializationType::anyDependentTemplateArguments( |
3401 | TemplateArgs, Converted: CanonicalConverted)) { |
3402 | // This class template specialization is a dependent |
3403 | // type. Therefore, its canonical type is another class template |
3404 | // specialization type that contains all of the converted |
3405 | // arguments in canonical form. This ensures that, e.g., A<T> and |
3406 | // A<T, T> have identical types when A is declared as: |
3407 | // |
3408 | // template<typename T, typename U = T> struct A; |
3409 | CanonType = Context.getCanonicalTemplateSpecializationType( |
3410 | T: Name, Args: CanonicalConverted); |
3411 | |
3412 | // This might work out to be a current instantiation, in which |
3413 | // case the canonical type needs to be the InjectedClassNameType. |
3414 | // |
3415 | // TODO: in theory this could be a simple hashtable lookup; most |
3416 | // changes to CurContext don't change the set of current |
3417 | // instantiations. |
3418 | if (isa<ClassTemplateDecl>(Val: Template)) { |
3419 | for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { |
3420 | // If we get out to a namespace, we're done. |
3421 | if (Ctx->isFileContext()) break; |
3422 | |
3423 | // If this isn't a record, keep looking. |
3424 | CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: Ctx); |
3425 | if (!Record) continue; |
3426 | |
3427 | // Look for one of the two cases with InjectedClassNameTypes |
3428 | // and check whether it's the same template. |
3429 | if (!isa<ClassTemplatePartialSpecializationDecl>(Val: Record) && |
3430 | !Record->getDescribedClassTemplate()) |
3431 | continue; |
3432 | |
3433 | // Fetch the injected class name type and check whether its |
3434 | // injected type is equal to the type we just built. |
3435 | QualType ICNT = Context.getTypeDeclType(Decl: Record); |
3436 | QualType Injected = cast<InjectedClassNameType>(Val&: ICNT) |
3437 | ->getInjectedSpecializationType(); |
3438 | |
3439 | if (CanonType != Injected->getCanonicalTypeInternal()) |
3440 | continue; |
3441 | |
3442 | // If so, the canonical type of this TST is the injected |
3443 | // class name type of the record we just found. |
3444 | assert(ICNT.isCanonical()); |
3445 | CanonType = ICNT; |
3446 | break; |
3447 | } |
3448 | } |
3449 | } else if (ClassTemplateDecl *ClassTemplate = |
3450 | dyn_cast<ClassTemplateDecl>(Val: Template)) { |
3451 | // Find the class template specialization declaration that |
3452 | // corresponds to these arguments. |
3453 | void *InsertPos = nullptr; |
3454 | ClassTemplateSpecializationDecl *Decl = |
3455 | ClassTemplate->findSpecialization(Args: CanonicalConverted, InsertPos); |
3456 | if (!Decl) { |
3457 | // This is the first time we have referenced this class template |
3458 | // specialization. Create the canonical declaration and add it to |
3459 | // the set of specializations. |
3460 | Decl = ClassTemplateSpecializationDecl::Create( |
3461 | Context, TK: ClassTemplate->getTemplatedDecl()->getTagKind(), |
3462 | DC: ClassTemplate->getDeclContext(), |
3463 | StartLoc: ClassTemplate->getTemplatedDecl()->getBeginLoc(), |
3464 | IdLoc: ClassTemplate->getLocation(), SpecializedTemplate: ClassTemplate, Args: CanonicalConverted, |
3465 | PrevDecl: nullptr); |
3466 | ClassTemplate->AddSpecialization(D: Decl, InsertPos); |
3467 | if (ClassTemplate->isOutOfLine()) |
3468 | Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); |
3469 | } |
3470 | |
3471 | if (Decl->getSpecializationKind() == TSK_Undeclared && |
3472 | ClassTemplate->getTemplatedDecl()->hasAttrs()) { |
3473 | InstantiatingTemplate Inst(*this, TemplateLoc, Decl); |
3474 | if (!Inst.isInvalid()) { |
3475 | MultiLevelTemplateArgumentList TemplateArgLists(Template, |
3476 | CanonicalConverted, |
3477 | /*Final=*/false); |
3478 | InstantiateAttrsForDecl(TemplateArgs: TemplateArgLists, |
3479 | Pattern: ClassTemplate->getTemplatedDecl(), Inst: Decl); |
3480 | } |
3481 | } |
3482 | |
3483 | // Diagnose uses of this specialization. |
3484 | (void)DiagnoseUseOfDecl(D: Decl, Locs: TemplateLoc); |
3485 | |
3486 | CanonType = Context.getTypeDeclType(Decl); |
3487 | assert(isa<RecordType>(CanonType) && |
3488 | "type of non-dependent specialization is not a RecordType" ); |
3489 | } else { |
3490 | llvm_unreachable("Unhandled template kind" ); |
3491 | } |
3492 | |
3493 | // Build the fully-sugared type for this class template |
3494 | // specialization, which refers back to the class template |
3495 | // specialization we created or found. |
3496 | return Context.getTemplateSpecializationType(T: Name, Args: TemplateArgs.arguments(), |
3497 | Canon: CanonType); |
3498 | } |
3499 | |
3500 | void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName, |
3501 | TemplateNameKind &TNK, |
3502 | SourceLocation NameLoc, |
3503 | IdentifierInfo *&II) { |
3504 | assert(TNK == TNK_Undeclared_template && "not an undeclared template name" ); |
3505 | |
3506 | TemplateName Name = ParsedName.get(); |
3507 | auto *ATN = Name.getAsAssumedTemplateName(); |
3508 | assert(ATN && "not an assumed template name" ); |
3509 | II = ATN->getDeclName().getAsIdentifierInfo(); |
3510 | |
3511 | if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) { |
3512 | // Resolved to a type template name. |
3513 | ParsedName = TemplateTy::make(P: Name); |
3514 | TNK = TNK_Type_template; |
3515 | } |
3516 | } |
3517 | |
3518 | bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name, |
3519 | SourceLocation NameLoc, |
3520 | bool Diagnose) { |
3521 | // We assumed this undeclared identifier to be an (ADL-only) function |
3522 | // template name, but it was used in a context where a type was required. |
3523 | // Try to typo-correct it now. |
3524 | AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName(); |
3525 | assert(ATN && "not an assumed template name" ); |
3526 | |
3527 | LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName); |
3528 | struct CandidateCallback : CorrectionCandidateCallback { |
3529 | bool ValidateCandidate(const TypoCorrection &TC) override { |
3530 | return TC.getCorrectionDecl() && |
3531 | getAsTypeTemplateDecl(D: TC.getCorrectionDecl()); |
3532 | } |
3533 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
3534 | return std::make_unique<CandidateCallback>(args&: *this); |
3535 | } |
3536 | } FilterCCC; |
3537 | |
3538 | TypoCorrection Corrected = |
3539 | CorrectTypo(Typo: R.getLookupNameInfo(), LookupKind: R.getLookupKind(), S, SS: nullptr, |
3540 | CCC&: FilterCCC, Mode: CTK_ErrorRecovery); |
3541 | if (Corrected && Corrected.getFoundDecl()) { |
3542 | diagnoseTypo(Correction: Corrected, TypoDiag: PDiag(DiagID: diag::err_no_template_suggest) |
3543 | << ATN->getDeclName()); |
3544 | Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>()); |
3545 | return false; |
3546 | } |
3547 | |
3548 | if (Diagnose) |
3549 | Diag(Loc: R.getNameLoc(), DiagID: diag::err_no_template) << R.getLookupName(); |
3550 | return true; |
3551 | } |
3552 | |
3553 | TypeResult Sema::ActOnTemplateIdType( |
3554 | Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, |
3555 | TemplateTy TemplateD, const IdentifierInfo *TemplateII, |
3556 | SourceLocation TemplateIILoc, SourceLocation LAngleLoc, |
3557 | ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc, |
3558 | bool IsCtorOrDtorName, bool IsClassName, |
3559 | ImplicitTypenameContext AllowImplicitTypename) { |
3560 | if (SS.isInvalid()) |
3561 | return true; |
3562 | |
3563 | if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) { |
3564 | DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false); |
3565 | |
3566 | // C++ [temp.res]p3: |
3567 | // A qualified-id that refers to a type and in which the |
3568 | // nested-name-specifier depends on a template-parameter (14.6.2) |
3569 | // shall be prefixed by the keyword typename to indicate that the |
3570 | // qualified-id denotes a type, forming an |
3571 | // elaborated-type-specifier (7.1.5.3). |
3572 | if (!LookupCtx && isDependentScopeSpecifier(SS)) { |
3573 | // C++2a relaxes some of those restrictions in [temp.res]p5. |
3574 | if (AllowImplicitTypename == ImplicitTypenameContext::Yes) { |
3575 | if (getLangOpts().CPlusPlus20) |
3576 | Diag(Loc: SS.getBeginLoc(), DiagID: diag::warn_cxx17_compat_implicit_typename); |
3577 | else |
3578 | Diag(Loc: SS.getBeginLoc(), DiagID: diag::ext_implicit_typename) |
3579 | << SS.getScopeRep() << TemplateII->getName() |
3580 | << FixItHint::CreateInsertion(InsertionLoc: SS.getBeginLoc(), Code: "typename " ); |
3581 | } else |
3582 | Diag(Loc: SS.getBeginLoc(), DiagID: diag::err_typename_missing_template) |
3583 | << SS.getScopeRep() << TemplateII->getName(); |
3584 | |
3585 | // FIXME: This is not quite correct recovery as we don't transform SS |
3586 | // into the corresponding dependent form (and we don't diagnose missing |
3587 | // 'template' keywords within SS as a result). |
3588 | return ActOnTypenameType(S: nullptr, TypenameLoc: SourceLocation(), SS, TemplateLoc: TemplateKWLoc, |
3589 | TemplateName: TemplateD, TemplateII, TemplateIILoc, LAngleLoc, |
3590 | TemplateArgs: TemplateArgsIn, RAngleLoc); |
3591 | } |
3592 | |
3593 | // Per C++ [class.qual]p2, if the template-id was an injected-class-name, |
3594 | // it's not actually allowed to be used as a type in most cases. Because |
3595 | // we annotate it before we know whether it's valid, we have to check for |
3596 | // this case here. |
3597 | auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Val: LookupCtx); |
3598 | if (LookupRD && LookupRD->getIdentifier() == TemplateII) { |
3599 | Diag(Loc: TemplateIILoc, |
3600 | DiagID: TemplateKWLoc.isInvalid() |
3601 | ? diag::err_out_of_line_qualified_id_type_names_constructor |
3602 | : diag::ext_out_of_line_qualified_id_type_names_constructor) |
3603 | << TemplateII << 0 /*injected-class-name used as template name*/ |
3604 | << 1 /*if any keyword was present, it was 'template'*/; |
3605 | } |
3606 | } |
3607 | |
3608 | TemplateName Template = TemplateD.get(); |
3609 | if (Template.getAsAssumedTemplateName() && |
3610 | resolveAssumedTemplateNameAsType(S, Name&: Template, NameLoc: TemplateIILoc)) |
3611 | return true; |
3612 | |
3613 | // Translate the parser's template argument list in our AST format. |
3614 | TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); |
3615 | translateTemplateArguments(TemplateArgsIn, TemplateArgs); |
3616 | |
3617 | if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { |
3618 | assert(SS.getScopeRep() == DTN->getQualifier()); |
3619 | QualType T = Context.getDependentTemplateSpecializationType( |
3620 | Keyword: ElaboratedTypeKeyword::None, NNS: DTN->getQualifier(), Name: DTN->getIdentifier(), |
3621 | Args: TemplateArgs.arguments()); |
3622 | // Build type-source information. |
3623 | TypeLocBuilder TLB; |
3624 | DependentTemplateSpecializationTypeLoc SpecTL |
3625 | = TLB.push<DependentTemplateSpecializationTypeLoc>(T); |
3626 | SpecTL.setElaboratedKeywordLoc(SourceLocation()); |
3627 | SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
3628 | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
3629 | SpecTL.setTemplateNameLoc(TemplateIILoc); |
3630 | SpecTL.setLAngleLoc(LAngleLoc); |
3631 | SpecTL.setRAngleLoc(RAngleLoc); |
3632 | for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) |
3633 | SpecTL.setArgLocInfo(i: I, AI: TemplateArgs[I].getLocInfo()); |
3634 | return CreateParsedType(T, TInfo: TLB.getTypeSourceInfo(Context, T)); |
3635 | } |
3636 | |
3637 | QualType SpecTy = CheckTemplateIdType(Name: Template, TemplateLoc: TemplateIILoc, TemplateArgs); |
3638 | if (SpecTy.isNull()) |
3639 | return true; |
3640 | |
3641 | // Build type-source information. |
3642 | TypeLocBuilder TLB; |
3643 | TemplateSpecializationTypeLoc SpecTL = |
3644 | TLB.push<TemplateSpecializationTypeLoc>(T: SpecTy); |
3645 | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
3646 | SpecTL.setTemplateNameLoc(TemplateIILoc); |
3647 | SpecTL.setLAngleLoc(LAngleLoc); |
3648 | SpecTL.setRAngleLoc(RAngleLoc); |
3649 | for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) |
3650 | SpecTL.setArgLocInfo(i, AI: TemplateArgs[i].getLocInfo()); |
3651 | |
3652 | // Create an elaborated-type-specifier containing the nested-name-specifier. |
3653 | QualType ElTy = |
3654 | getElaboratedType(Keyword: ElaboratedTypeKeyword::None, |
3655 | SS: !IsCtorOrDtorName ? SS : CXXScopeSpec(), T: SpecTy); |
3656 | ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(T: ElTy); |
3657 | ElabTL.setElaboratedKeywordLoc(SourceLocation()); |
3658 | if (!ElabTL.isEmpty()) |
3659 | ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
3660 | return CreateParsedType(T: ElTy, TInfo: TLB.getTypeSourceInfo(Context, T: ElTy)); |
3661 | } |
3662 | |
3663 | TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, |
3664 | TypeSpecifierType TagSpec, |
3665 | SourceLocation TagLoc, |
3666 | CXXScopeSpec &SS, |
3667 | SourceLocation TemplateKWLoc, |
3668 | TemplateTy TemplateD, |
3669 | SourceLocation TemplateLoc, |
3670 | SourceLocation LAngleLoc, |
3671 | ASTTemplateArgsPtr TemplateArgsIn, |
3672 | SourceLocation RAngleLoc) { |
3673 | if (SS.isInvalid()) |
3674 | return TypeResult(true); |
3675 | |
3676 | TemplateName Template = TemplateD.get(); |
3677 | |
3678 | // Translate the parser's template argument list in our AST format. |
3679 | TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); |
3680 | translateTemplateArguments(TemplateArgsIn, TemplateArgs); |
3681 | |
3682 | // Determine the tag kind |
3683 | TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec); |
3684 | ElaboratedTypeKeyword Keyword |
3685 | = TypeWithKeyword::getKeywordForTagTypeKind(Tag: TagKind); |
3686 | |
3687 | if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { |
3688 | assert(SS.getScopeRep() == DTN->getQualifier()); |
3689 | QualType T = Context.getDependentTemplateSpecializationType( |
3690 | Keyword, NNS: DTN->getQualifier(), Name: DTN->getIdentifier(), |
3691 | Args: TemplateArgs.arguments()); |
3692 | |
3693 | // Build type-source information. |
3694 | TypeLocBuilder TLB; |
3695 | DependentTemplateSpecializationTypeLoc SpecTL |
3696 | = TLB.push<DependentTemplateSpecializationTypeLoc>(T); |
3697 | SpecTL.setElaboratedKeywordLoc(TagLoc); |
3698 | SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
3699 | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
3700 | SpecTL.setTemplateNameLoc(TemplateLoc); |
3701 | SpecTL.setLAngleLoc(LAngleLoc); |
3702 | SpecTL.setRAngleLoc(RAngleLoc); |
3703 | for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) |
3704 | SpecTL.setArgLocInfo(i: I, AI: TemplateArgs[I].getLocInfo()); |
3705 | return CreateParsedType(T, TInfo: TLB.getTypeSourceInfo(Context, T)); |
3706 | } |
3707 | |
3708 | if (TypeAliasTemplateDecl *TAT = |
3709 | dyn_cast_or_null<TypeAliasTemplateDecl>(Val: Template.getAsTemplateDecl())) { |
3710 | // C++0x [dcl.type.elab]p2: |
3711 | // If the identifier resolves to a typedef-name or the simple-template-id |
3712 | // resolves to an alias template specialization, the |
3713 | // elaborated-type-specifier is ill-formed. |
3714 | Diag(Loc: TemplateLoc, DiagID: diag::err_tag_reference_non_tag) |
3715 | << TAT << NTK_TypeAliasTemplate << llvm::to_underlying(E: TagKind); |
3716 | Diag(Loc: TAT->getLocation(), DiagID: diag::note_declared_at); |
3717 | } |
3718 | |
3719 | QualType Result = CheckTemplateIdType(Name: Template, TemplateLoc, TemplateArgs); |
3720 | if (Result.isNull()) |
3721 | return TypeResult(true); |
3722 | |
3723 | // Check the tag kind |
3724 | if (const RecordType *RT = Result->getAs<RecordType>()) { |
3725 | RecordDecl *D = RT->getDecl(); |
3726 | |
3727 | IdentifierInfo *Id = D->getIdentifier(); |
3728 | assert(Id && "templated class must have an identifier" ); |
3729 | |
3730 | if (!isAcceptableTagRedeclaration(Previous: D, NewTag: TagKind, isDefinition: TUK == TagUseKind::Definition, |
3731 | NewTagLoc: TagLoc, Name: Id)) { |
3732 | Diag(Loc: TagLoc, DiagID: diag::err_use_with_wrong_tag) |
3733 | << Result |
3734 | << FixItHint::CreateReplacement(RemoveRange: SourceRange(TagLoc), Code: D->getKindName()); |
3735 | Diag(Loc: D->getLocation(), DiagID: diag::note_previous_use); |
3736 | } |
3737 | } |
3738 | |
3739 | // Provide source-location information for the template specialization. |
3740 | TypeLocBuilder TLB; |
3741 | TemplateSpecializationTypeLoc SpecTL |
3742 | = TLB.push<TemplateSpecializationTypeLoc>(T: Result); |
3743 | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
3744 | SpecTL.setTemplateNameLoc(TemplateLoc); |
3745 | SpecTL.setLAngleLoc(LAngleLoc); |
3746 | SpecTL.setRAngleLoc(RAngleLoc); |
3747 | for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) |
3748 | SpecTL.setArgLocInfo(i, AI: TemplateArgs[i].getLocInfo()); |
3749 | |
3750 | // Construct an elaborated type containing the nested-name-specifier (if any) |
3751 | // and tag keyword. |
3752 | Result = Context.getElaboratedType(Keyword, NNS: SS.getScopeRep(), NamedType: Result); |
3753 | ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(T: Result); |
3754 | ElabTL.setElaboratedKeywordLoc(TagLoc); |
3755 | ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
3756 | return CreateParsedType(T: Result, TInfo: TLB.getTypeSourceInfo(Context, T: Result)); |
3757 | } |
3758 | |
3759 | static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized, |
3760 | NamedDecl *PrevDecl, |
3761 | SourceLocation Loc, |
3762 | bool IsPartialSpecialization); |
3763 | |
3764 | static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D); |
3765 | |
3766 | static bool isTemplateArgumentTemplateParameter( |
3767 | const TemplateArgument &Arg, unsigned Depth, unsigned Index) { |
3768 | switch (Arg.getKind()) { |
3769 | case TemplateArgument::Null: |
3770 | case TemplateArgument::NullPtr: |
3771 | case TemplateArgument::Integral: |
3772 | case TemplateArgument::Declaration: |
3773 | case TemplateArgument::StructuralValue: |
3774 | case TemplateArgument::Pack: |
3775 | case TemplateArgument::TemplateExpansion: |
3776 | return false; |
3777 | |
3778 | case TemplateArgument::Type: { |
3779 | QualType Type = Arg.getAsType(); |
3780 | const TemplateTypeParmType *TPT = |
3781 | Arg.getAsType()->getAs<TemplateTypeParmType>(); |
3782 | return TPT && !Type.hasQualifiers() && |
3783 | TPT->getDepth() == Depth && TPT->getIndex() == Index; |
3784 | } |
3785 | |
3786 | case TemplateArgument::Expression: { |
3787 | DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Arg.getAsExpr()); |
3788 | if (!DRE || !DRE->getDecl()) |
3789 | return false; |
3790 | const NonTypeTemplateParmDecl *NTTP = |
3791 | dyn_cast<NonTypeTemplateParmDecl>(Val: DRE->getDecl()); |
3792 | return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index; |
3793 | } |
3794 | |
3795 | case TemplateArgument::Template: |
3796 | const TemplateTemplateParmDecl *TTP = |
3797 | dyn_cast_or_null<TemplateTemplateParmDecl>( |
3798 | Val: Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()); |
3799 | return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index; |
3800 | } |
3801 | llvm_unreachable("unexpected kind of template argument" ); |
3802 | } |
3803 | |
3804 | static bool isSameAsPrimaryTemplate(TemplateParameterList *Params, |
3805 | ArrayRef<TemplateArgument> Args) { |
3806 | if (Params->size() != Args.size()) |
3807 | return false; |
3808 | |
3809 | unsigned Depth = Params->getDepth(); |
3810 | |
3811 | for (unsigned I = 0, N = Args.size(); I != N; ++I) { |
3812 | TemplateArgument Arg = Args[I]; |
3813 | |
3814 | // If the parameter is a pack expansion, the argument must be a pack |
3815 | // whose only element is a pack expansion. |
3816 | if (Params->getParam(Idx: I)->isParameterPack()) { |
3817 | if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 || |
3818 | !Arg.pack_begin()->isPackExpansion()) |
3819 | return false; |
3820 | Arg = Arg.pack_begin()->getPackExpansionPattern(); |
3821 | } |
3822 | |
3823 | if (!isTemplateArgumentTemplateParameter(Arg, Depth, Index: I)) |
3824 | return false; |
3825 | } |
3826 | |
3827 | return true; |
3828 | } |
3829 | |
3830 | template<typename PartialSpecDecl> |
3831 | static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) { |
3832 | if (Partial->getDeclContext()->isDependentContext()) |
3833 | return; |
3834 | |
3835 | // FIXME: Get the TDK from deduction in order to provide better diagnostics |
3836 | // for non-substitution-failure issues? |
3837 | TemplateDeductionInfo Info(Partial->getLocation()); |
3838 | if (S.isMoreSpecializedThanPrimary(Partial, Info)) |
3839 | return; |
3840 | |
3841 | auto *Template = Partial->getSpecializedTemplate(); |
3842 | S.Diag(Partial->getLocation(), |
3843 | diag::ext_partial_spec_not_more_specialized_than_primary) |
3844 | << isa<VarTemplateDecl>(Template); |
3845 | |
3846 | if (Info.hasSFINAEDiagnostic()) { |
3847 | PartialDiagnosticAt Diag = {SourceLocation(), |
3848 | PartialDiagnostic::NullDiagnostic()}; |
3849 | Info.takeSFINAEDiagnostic(PD&: Diag); |
3850 | SmallString<128> SFINAEArgString; |
3851 | Diag.second.EmitToString(Diags&: S.getDiagnostics(), Buf&: SFINAEArgString); |
3852 | S.Diag(Loc: Diag.first, |
3853 | DiagID: diag::note_partial_spec_not_more_specialized_than_primary) |
3854 | << SFINAEArgString; |
3855 | } |
3856 | |
3857 | S.NoteTemplateLocation(Decl: *Template); |
3858 | SmallVector<const Expr *, 3> PartialAC, TemplateAC; |
3859 | Template->getAssociatedConstraints(TemplateAC); |
3860 | Partial->getAssociatedConstraints(PartialAC); |
3861 | S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(D1: Partial, AC1: PartialAC, D2: Template, |
3862 | AC2: TemplateAC); |
3863 | } |
3864 | |
3865 | static void |
3866 | noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams, |
3867 | const llvm::SmallBitVector &DeducibleParams) { |
3868 | for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { |
3869 | if (!DeducibleParams[I]) { |
3870 | NamedDecl *Param = TemplateParams->getParam(Idx: I); |
3871 | if (Param->getDeclName()) |
3872 | S.Diag(Loc: Param->getLocation(), DiagID: diag::note_non_deducible_parameter) |
3873 | << Param->getDeclName(); |
3874 | else |
3875 | S.Diag(Loc: Param->getLocation(), DiagID: diag::note_non_deducible_parameter) |
3876 | << "(anonymous)" ; |
3877 | } |
3878 | } |
3879 | } |
3880 | |
3881 | |
3882 | template<typename PartialSpecDecl> |
3883 | static void checkTemplatePartialSpecialization(Sema &S, |
3884 | PartialSpecDecl *Partial) { |
3885 | // C++1z [temp.class.spec]p8: (DR1495) |
3886 | // - The specialization shall be more specialized than the primary |
3887 | // template (14.5.5.2). |
3888 | checkMoreSpecializedThanPrimary(S, Partial); |
3889 | |
3890 | // C++ [temp.class.spec]p8: (DR1315) |
3891 | // - Each template-parameter shall appear at least once in the |
3892 | // template-id outside a non-deduced context. |
3893 | // C++1z [temp.class.spec.match]p3 (P0127R2) |
3894 | // If the template arguments of a partial specialization cannot be |
3895 | // deduced because of the structure of its template-parameter-list |
3896 | // and the template-id, the program is ill-formed. |
3897 | auto *TemplateParams = Partial->getTemplateParameters(); |
3898 | llvm::SmallBitVector DeducibleParams(TemplateParams->size()); |
3899 | S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, |
3900 | TemplateParams->getDepth(), DeducibleParams); |
3901 | |
3902 | if (!DeducibleParams.all()) { |
3903 | unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); |
3904 | S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible) |
3905 | << isa<VarTemplatePartialSpecializationDecl>(Partial) |
3906 | << (NumNonDeducible > 1) |
3907 | << SourceRange(Partial->getLocation(), |
3908 | Partial->getTemplateArgsAsWritten()->RAngleLoc); |
3909 | noteNonDeducibleParameters(S, TemplateParams, DeducibleParams); |
3910 | } |
3911 | } |
3912 | |
3913 | void Sema::CheckTemplatePartialSpecialization( |
3914 | ClassTemplatePartialSpecializationDecl *Partial) { |
3915 | checkTemplatePartialSpecialization(S&: *this, Partial); |
3916 | } |
3917 | |
3918 | void Sema::CheckTemplatePartialSpecialization( |
3919 | VarTemplatePartialSpecializationDecl *Partial) { |
3920 | checkTemplatePartialSpecialization(S&: *this, Partial); |
3921 | } |
3922 | |
3923 | void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) { |
3924 | // C++1z [temp.param]p11: |
3925 | // A template parameter of a deduction guide template that does not have a |
3926 | // default-argument shall be deducible from the parameter-type-list of the |
3927 | // deduction guide template. |
3928 | auto *TemplateParams = TD->getTemplateParameters(); |
3929 | llvm::SmallBitVector DeducibleParams(TemplateParams->size()); |
3930 | MarkDeducedTemplateParameters(FunctionTemplate: TD, Deduced&: DeducibleParams); |
3931 | for (unsigned I = 0; I != TemplateParams->size(); ++I) { |
3932 | // A parameter pack is deducible (to an empty pack). |
3933 | auto *Param = TemplateParams->getParam(Idx: I); |
3934 | if (Param->isParameterPack() || hasVisibleDefaultArgument(D: Param)) |
3935 | DeducibleParams[I] = true; |
3936 | } |
3937 | |
3938 | if (!DeducibleParams.all()) { |
3939 | unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); |
3940 | Diag(Loc: TD->getLocation(), DiagID: diag::err_deduction_guide_template_not_deducible) |
3941 | << (NumNonDeducible > 1); |
3942 | noteNonDeducibleParameters(S&: *this, TemplateParams, DeducibleParams); |
3943 | } |
3944 | } |
3945 | |
3946 | DeclResult Sema::ActOnVarTemplateSpecialization( |
3947 | Scope *S, Declarator &D, TypeSourceInfo *DI, LookupResult &Previous, |
3948 | SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams, |
3949 | StorageClass SC, bool IsPartialSpecialization) { |
3950 | // D must be variable template id. |
3951 | assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && |
3952 | "Variable template specialization is declared with a template id." ); |
3953 | |
3954 | TemplateIdAnnotation *TemplateId = D.getName().TemplateId; |
3955 | TemplateArgumentListInfo TemplateArgs = |
3956 | makeTemplateArgumentListInfo(S&: *this, TemplateId&: *TemplateId); |
3957 | SourceLocation TemplateNameLoc = D.getIdentifierLoc(); |
3958 | SourceLocation LAngleLoc = TemplateId->LAngleLoc; |
3959 | SourceLocation RAngleLoc = TemplateId->RAngleLoc; |
3960 | |
3961 | TemplateName Name = TemplateId->Template.get(); |
3962 | |
3963 | // The template-id must name a variable template. |
3964 | VarTemplateDecl *VarTemplate = |
3965 | dyn_cast_or_null<VarTemplateDecl>(Val: Name.getAsTemplateDecl()); |
3966 | if (!VarTemplate) { |
3967 | NamedDecl *FnTemplate; |
3968 | if (auto *OTS = Name.getAsOverloadedTemplate()) |
3969 | FnTemplate = *OTS->begin(); |
3970 | else |
3971 | FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Val: Name.getAsTemplateDecl()); |
3972 | if (FnTemplate) |
3973 | return Diag(Loc: D.getIdentifierLoc(), DiagID: diag::err_var_spec_no_template_but_method) |
3974 | << FnTemplate->getDeclName(); |
3975 | return Diag(Loc: D.getIdentifierLoc(), DiagID: diag::err_var_spec_no_template) |
3976 | << IsPartialSpecialization; |
3977 | } |
3978 | |
3979 | // Check for unexpanded parameter packs in any of the template arguments. |
3980 | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
3981 | if (DiagnoseUnexpandedParameterPack(Arg: TemplateArgs[I], |
3982 | UPPC: IsPartialSpecialization |
3983 | ? UPPC_PartialSpecialization |
3984 | : UPPC_ExplicitSpecialization)) |
3985 | return true; |
3986 | |
3987 | // Check that the template argument list is well-formed for this |
3988 | // template. |
3989 | SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; |
3990 | if (CheckTemplateArgumentList(Template: VarTemplate, TemplateLoc: TemplateNameLoc, TemplateArgs, |
3991 | PartialTemplateArgs: false, SugaredConverted, CanonicalConverted, |
3992 | /*UpdateArgsWithConversions=*/true)) |
3993 | return true; |
3994 | |
3995 | // Find the variable template (partial) specialization declaration that |
3996 | // corresponds to these arguments. |
3997 | if (IsPartialSpecialization) { |
3998 | if (CheckTemplatePartialSpecializationArgs(Loc: TemplateNameLoc, PrimaryTemplate: VarTemplate, |
3999 | NumExplicitArgs: TemplateArgs.size(), |
4000 | Args: CanonicalConverted)) |
4001 | return true; |
4002 | |
4003 | // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we |
4004 | // also do them during instantiation. |
4005 | if (!Name.isDependent() && |
4006 | !TemplateSpecializationType::anyDependentTemplateArguments( |
4007 | TemplateArgs, Converted: CanonicalConverted)) { |
4008 | Diag(Loc: TemplateNameLoc, DiagID: diag::err_partial_spec_fully_specialized) |
4009 | << VarTemplate->getDeclName(); |
4010 | IsPartialSpecialization = false; |
4011 | } |
4012 | |
4013 | if (isSameAsPrimaryTemplate(Params: VarTemplate->getTemplateParameters(), |
4014 | Args: CanonicalConverted) && |
4015 | (!Context.getLangOpts().CPlusPlus20 || |
4016 | !TemplateParams->hasAssociatedConstraints())) { |
4017 | // C++ [temp.class.spec]p9b3: |
4018 | // |
4019 | // -- The argument list of the specialization shall not be identical |
4020 | // to the implicit argument list of the primary template. |
4021 | Diag(Loc: TemplateNameLoc, DiagID: diag::err_partial_spec_args_match_primary_template) |
4022 | << /*variable template*/ 1 |
4023 | << /*is definition*/(SC != SC_Extern && !CurContext->isRecord()) |
4024 | << FixItHint::CreateRemoval(RemoveRange: SourceRange(LAngleLoc, RAngleLoc)); |
4025 | // FIXME: Recover from this by treating the declaration as a redeclaration |
4026 | // of the primary template. |
4027 | return true; |
4028 | } |
4029 | } |
4030 | |
4031 | void *InsertPos = nullptr; |
4032 | VarTemplateSpecializationDecl *PrevDecl = nullptr; |
4033 | |
4034 | if (IsPartialSpecialization) |
4035 | PrevDecl = VarTemplate->findPartialSpecialization( |
4036 | Args: CanonicalConverted, TPL: TemplateParams, InsertPos); |
4037 | else |
4038 | PrevDecl = VarTemplate->findSpecialization(Args: CanonicalConverted, InsertPos); |
4039 | |
4040 | VarTemplateSpecializationDecl *Specialization = nullptr; |
4041 | |
4042 | // Check whether we can declare a variable template specialization in |
4043 | // the current scope. |
4044 | if (CheckTemplateSpecializationScope(S&: *this, Specialized: VarTemplate, PrevDecl, |
4045 | Loc: TemplateNameLoc, |
4046 | IsPartialSpecialization)) |
4047 | return true; |
4048 | |
4049 | if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { |
4050 | // Since the only prior variable template specialization with these |
4051 | // arguments was referenced but not declared, reuse that |
4052 | // declaration node as our own, updating its source location and |
4053 | // the list of outer template parameters to reflect our new declaration. |
4054 | Specialization = PrevDecl; |
4055 | Specialization->setLocation(TemplateNameLoc); |
4056 | PrevDecl = nullptr; |
4057 | } else if (IsPartialSpecialization) { |
4058 | // Create a new class template partial specialization declaration node. |
4059 | VarTemplatePartialSpecializationDecl *PrevPartial = |
4060 | cast_or_null<VarTemplatePartialSpecializationDecl>(Val: PrevDecl); |
4061 | VarTemplatePartialSpecializationDecl *Partial = |
4062 | VarTemplatePartialSpecializationDecl::Create( |
4063 | Context, DC: VarTemplate->getDeclContext(), StartLoc: TemplateKWLoc, |
4064 | IdLoc: TemplateNameLoc, Params: TemplateParams, SpecializedTemplate: VarTemplate, T: DI->getType(), TInfo: DI, S: SC, |
4065 | Args: CanonicalConverted); |
4066 | Partial->setTemplateArgsAsWritten(TemplateArgs); |
4067 | |
4068 | if (!PrevPartial) |
4069 | VarTemplate->AddPartialSpecialization(D: Partial, InsertPos); |
4070 | Specialization = Partial; |
4071 | |
4072 | // If we are providing an explicit specialization of a member variable |
4073 | // template specialization, make a note of that. |
4074 | if (PrevPartial && PrevPartial->getInstantiatedFromMember()) |
4075 | PrevPartial->setMemberSpecialization(); |
4076 | |
4077 | CheckTemplatePartialSpecialization(Partial); |
4078 | } else { |
4079 | // Create a new class template specialization declaration node for |
4080 | // this explicit specialization or friend declaration. |
4081 | Specialization = VarTemplateSpecializationDecl::Create( |
4082 | Context, DC: VarTemplate->getDeclContext(), StartLoc: TemplateKWLoc, IdLoc: TemplateNameLoc, |
4083 | SpecializedTemplate: VarTemplate, T: DI->getType(), TInfo: DI, S: SC, Args: CanonicalConverted); |
4084 | Specialization->setTemplateArgsAsWritten(TemplateArgs); |
4085 | |
4086 | if (!PrevDecl) |
4087 | VarTemplate->AddSpecialization(D: Specialization, InsertPos); |
4088 | } |
4089 | |
4090 | // C++ [temp.expl.spec]p6: |
4091 | // If a template, a member template or the member of a class template is |
4092 | // explicitly specialized then that specialization shall be declared |
4093 | // before the first use of that specialization that would cause an implicit |
4094 | // instantiation to take place, in every translation unit in which such a |
4095 | // use occurs; no diagnostic is required. |
4096 | if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { |
4097 | bool Okay = false; |
4098 | for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { |
4099 | // Is there any previous explicit specialization declaration? |
4100 | if (getTemplateSpecializationKind(D: Prev) == TSK_ExplicitSpecialization) { |
4101 | Okay = true; |
4102 | break; |
4103 | } |
4104 | } |
4105 | |
4106 | if (!Okay) { |
4107 | SourceRange Range(TemplateNameLoc, RAngleLoc); |
4108 | Diag(Loc: TemplateNameLoc, DiagID: diag::err_specialization_after_instantiation) |
4109 | << Name << Range; |
4110 | |
4111 | Diag(Loc: PrevDecl->getPointOfInstantiation(), |
4112 | DiagID: diag::note_instantiation_required_here) |
4113 | << (PrevDecl->getTemplateSpecializationKind() != |
4114 | TSK_ImplicitInstantiation); |
4115 | return true; |
4116 | } |
4117 | } |
4118 | |
4119 | Specialization->setLexicalDeclContext(CurContext); |
4120 | |
4121 | // Add the specialization into its lexical context, so that it can |
4122 | // be seen when iterating through the list of declarations in that |
4123 | // context. However, specializations are not found by name lookup. |
4124 | CurContext->addDecl(D: Specialization); |
4125 | |
4126 | // Note that this is an explicit specialization. |
4127 | Specialization->setSpecializationKind(TSK_ExplicitSpecialization); |
4128 | |
4129 | Previous.clear(); |
4130 | if (PrevDecl) |
4131 | Previous.addDecl(D: PrevDecl); |
4132 | else if (Specialization->isStaticDataMember() && |
4133 | Specialization->isOutOfLine()) |
4134 | Specialization->setAccess(VarTemplate->getAccess()); |
4135 | |
4136 | return Specialization; |
4137 | } |
4138 | |
4139 | namespace { |
4140 | /// A partial specialization whose template arguments have matched |
4141 | /// a given template-id. |
4142 | struct PartialSpecMatchResult { |
4143 | VarTemplatePartialSpecializationDecl *Partial; |
4144 | TemplateArgumentList *Args; |
4145 | }; |
4146 | } // end anonymous namespace |
4147 | |
4148 | DeclResult |
4149 | Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, |
4150 | SourceLocation TemplateNameLoc, |
4151 | const TemplateArgumentListInfo &TemplateArgs) { |
4152 | assert(Template && "A variable template id without template?" ); |
4153 | |
4154 | // Check that the template argument list is well-formed for this template. |
4155 | SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; |
4156 | if (CheckTemplateArgumentList( |
4157 | Template, TemplateLoc: TemplateNameLoc, |
4158 | TemplateArgs&: const_cast<TemplateArgumentListInfo &>(TemplateArgs), PartialTemplateArgs: false, |
4159 | SugaredConverted, CanonicalConverted, |
4160 | /*UpdateArgsWithConversions=*/true)) |
4161 | return true; |
4162 | |
4163 | // Produce a placeholder value if the specialization is dependent. |
4164 | if (Template->getDeclContext()->isDependentContext() || |
4165 | TemplateSpecializationType::anyDependentTemplateArguments( |
4166 | TemplateArgs, Converted: CanonicalConverted)) |
4167 | return DeclResult(); |
4168 | |
4169 | // Find the variable template specialization declaration that |
4170 | // corresponds to these arguments. |
4171 | void *InsertPos = nullptr; |
4172 | if (VarTemplateSpecializationDecl *Spec = |
4173 | Template->findSpecialization(Args: CanonicalConverted, InsertPos)) { |
4174 | checkSpecializationReachability(Loc: TemplateNameLoc, Spec); |
4175 | // If we already have a variable template specialization, return it. |
4176 | return Spec; |
4177 | } |
4178 | |
4179 | // This is the first time we have referenced this variable template |
4180 | // specialization. Create the canonical declaration and add it to |
4181 | // the set of specializations, based on the closest partial specialization |
4182 | // that it represents. That is, |
4183 | VarDecl *InstantiationPattern = Template->getTemplatedDecl(); |
4184 | const TemplateArgumentList *PartialSpecArgs = nullptr; |
4185 | bool AmbiguousPartialSpec = false; |
4186 | typedef PartialSpecMatchResult MatchResult; |
4187 | SmallVector<MatchResult, 4> Matched; |
4188 | SourceLocation PointOfInstantiation = TemplateNameLoc; |
4189 | TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation, |
4190 | /*ForTakingAddress=*/false); |
4191 | |
4192 | // 1. Attempt to find the closest partial specialization that this |
4193 | // specializes, if any. |
4194 | // TODO: Unify with InstantiateClassTemplateSpecialization()? |
4195 | // Perhaps better after unification of DeduceTemplateArguments() and |
4196 | // getMoreSpecializedPartialSpecialization(). |
4197 | SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; |
4198 | Template->getPartialSpecializations(PS&: PartialSpecs); |
4199 | |
4200 | for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) { |
4201 | VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I]; |
4202 | TemplateDeductionInfo Info(FailedCandidates.getLocation()); |
4203 | |
4204 | if (TemplateDeductionResult Result = |
4205 | DeduceTemplateArguments(Partial, TemplateArgs: CanonicalConverted, Info); |
4206 | Result != TemplateDeductionResult::Success) { |
4207 | // Store the failed-deduction information for use in diagnostics, later. |
4208 | // TODO: Actually use the failed-deduction info? |
4209 | FailedCandidates.addCandidate().set( |
4210 | Found: DeclAccessPair::make(D: Template, AS: AS_public), Spec: Partial, |
4211 | Info: MakeDeductionFailureInfo(Context, TDK: Result, Info)); |
4212 | (void)Result; |
4213 | } else { |
4214 | Matched.push_back(Elt: PartialSpecMatchResult()); |
4215 | Matched.back().Partial = Partial; |
4216 | Matched.back().Args = Info.takeCanonical(); |
4217 | } |
4218 | } |
4219 | |
4220 | if (Matched.size() >= 1) { |
4221 | SmallVector<MatchResult, 4>::iterator Best = Matched.begin(); |
4222 | if (Matched.size() == 1) { |
4223 | // -- If exactly one matching specialization is found, the |
4224 | // instantiation is generated from that specialization. |
4225 | // We don't need to do anything for this. |
4226 | } else { |
4227 | // -- If more than one matching specialization is found, the |
4228 | // partial order rules (14.5.4.2) are used to determine |
4229 | // whether one of the specializations is more specialized |
4230 | // than the others. If none of the specializations is more |
4231 | // specialized than all of the other matching |
4232 | // specializations, then the use of the variable template is |
4233 | // ambiguous and the program is ill-formed. |
4234 | for (SmallVector<MatchResult, 4>::iterator P = Best + 1, |
4235 | PEnd = Matched.end(); |
4236 | P != PEnd; ++P) { |
4237 | if (getMoreSpecializedPartialSpecialization(PS1: P->Partial, PS2: Best->Partial, |
4238 | Loc: PointOfInstantiation) == |
4239 | P->Partial) |
4240 | Best = P; |
4241 | } |
4242 | |
4243 | // Determine if the best partial specialization is more specialized than |
4244 | // the others. |
4245 | for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), |
4246 | PEnd = Matched.end(); |
4247 | P != PEnd; ++P) { |
4248 | if (P != Best && getMoreSpecializedPartialSpecialization( |
4249 | PS1: P->Partial, PS2: Best->Partial, |
4250 | Loc: PointOfInstantiation) != Best->Partial) { |
4251 | AmbiguousPartialSpec = true; |
4252 | break; |
4253 | } |
4254 | } |
4255 | } |
4256 | |
4257 | // Instantiate using the best variable template partial specialization. |
4258 | InstantiationPattern = Best->Partial; |
4259 | PartialSpecArgs = Best->Args; |
4260 | } else { |
4261 | // -- If no match is found, the instantiation is generated |
4262 | // from the primary template. |
4263 | // InstantiationPattern = Template->getTemplatedDecl(); |
4264 | } |
4265 | |
4266 | // 2. Create the canonical declaration. |
4267 | // Note that we do not instantiate a definition until we see an odr-use |
4268 | // in DoMarkVarDeclReferenced(). |
4269 | // FIXME: LateAttrs et al.? |
4270 | VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation( |
4271 | VarTemplate: Template, FromVar: InstantiationPattern, PartialSpecArgs, TemplateArgsInfo: TemplateArgs, |
4272 | Converted&: CanonicalConverted, PointOfInstantiation: TemplateNameLoc /*, LateAttrs, StartingScope*/); |
4273 | if (!Decl) |
4274 | return true; |
4275 | |
4276 | if (AmbiguousPartialSpec) { |
4277 | // Partial ordering did not produce a clear winner. Complain. |
4278 | Decl->setInvalidDecl(); |
4279 | Diag(Loc: PointOfInstantiation, DiagID: diag::err_partial_spec_ordering_ambiguous) |
4280 | << Decl; |
4281 | |
4282 | // Print the matching partial specializations. |
4283 | for (MatchResult P : Matched) |
4284 | Diag(Loc: P.Partial->getLocation(), DiagID: diag::note_partial_spec_match) |
4285 | << getTemplateArgumentBindingsText(Params: P.Partial->getTemplateParameters(), |
4286 | Args: *P.Args); |
4287 | return true; |
4288 | } |
4289 | |
4290 | if (VarTemplatePartialSpecializationDecl *D = |
4291 | dyn_cast<VarTemplatePartialSpecializationDecl>(Val: InstantiationPattern)) |
4292 | Decl->setInstantiationOf(PartialSpec: D, TemplateArgs: PartialSpecArgs); |
4293 | |
4294 | checkSpecializationReachability(Loc: TemplateNameLoc, Spec: Decl); |
4295 | |
4296 | assert(Decl && "No variable template specialization?" ); |
4297 | return Decl; |
4298 | } |
4299 | |
4300 | ExprResult Sema::CheckVarTemplateId( |
4301 | const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, |
4302 | VarTemplateDecl *Template, NamedDecl *FoundD, SourceLocation TemplateLoc, |
4303 | const TemplateArgumentListInfo *TemplateArgs) { |
4304 | |
4305 | DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, TemplateNameLoc: NameInfo.getLoc(), |
4306 | TemplateArgs: *TemplateArgs); |
4307 | if (Decl.isInvalid()) |
4308 | return ExprError(); |
4309 | |
4310 | if (!Decl.get()) |
4311 | return ExprResult(); |
4312 | |
4313 | VarDecl *Var = cast<VarDecl>(Val: Decl.get()); |
4314 | if (!Var->getTemplateSpecializationKind()) |
4315 | Var->setTemplateSpecializationKind(TSK: TSK_ImplicitInstantiation, |
4316 | PointOfInstantiation: NameInfo.getLoc()); |
4317 | |
4318 | // Build an ordinary singleton decl ref. |
4319 | return BuildDeclarationNameExpr(SS, NameInfo, D: Var, FoundD, TemplateArgs); |
4320 | } |
4321 | |
4322 | void Sema::diagnoseMissingTemplateArguments(TemplateName Name, |
4323 | SourceLocation Loc) { |
4324 | Diag(Loc, DiagID: diag::err_template_missing_args) |
4325 | << (int)getTemplateNameKindForDiagnostics(Name) << Name; |
4326 | if (TemplateDecl *TD = Name.getAsTemplateDecl()) { |
4327 | NoteTemplateLocation(Decl: *TD, ParamRange: TD->getTemplateParameters()->getSourceRange()); |
4328 | } |
4329 | } |
4330 | |
4331 | void Sema::diagnoseMissingTemplateArguments(const CXXScopeSpec &SS, |
4332 | bool TemplateKeyword, |
4333 | TemplateDecl *TD, |
4334 | SourceLocation Loc) { |
4335 | TemplateName Name = Context.getQualifiedTemplateName( |
4336 | NNS: SS.getScopeRep(), TemplateKeyword, Template: TemplateName(TD)); |
4337 | diagnoseMissingTemplateArguments(Name, Loc); |
4338 | } |
4339 | |
4340 | ExprResult |
4341 | Sema::CheckConceptTemplateId(const CXXScopeSpec &SS, |
4342 | SourceLocation TemplateKWLoc, |
4343 | const DeclarationNameInfo &ConceptNameInfo, |
4344 | NamedDecl *FoundDecl, |
4345 | ConceptDecl *NamedConcept, |
4346 | const TemplateArgumentListInfo *TemplateArgs) { |
4347 | assert(NamedConcept && "A concept template id without a template?" ); |
4348 | |
4349 | llvm::SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; |
4350 | if (CheckTemplateArgumentList( |
4351 | Template: NamedConcept, TemplateLoc: ConceptNameInfo.getLoc(), |
4352 | TemplateArgs&: const_cast<TemplateArgumentListInfo &>(*TemplateArgs), |
4353 | /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted, |
4354 | /*UpdateArgsWithConversions=*/false)) |
4355 | return ExprError(); |
4356 | |
4357 | DiagnoseUseOfDecl(D: NamedConcept, Locs: ConceptNameInfo.getLoc()); |
4358 | |
4359 | auto *CSD = ImplicitConceptSpecializationDecl::Create( |
4360 | C: Context, DC: NamedConcept->getDeclContext(), SL: NamedConcept->getLocation(), |
4361 | ConvertedArgs: CanonicalConverted); |
4362 | ConstraintSatisfaction Satisfaction; |
4363 | bool AreArgsDependent = |
4364 | TemplateSpecializationType::anyDependentTemplateArguments( |
4365 | *TemplateArgs, Converted: CanonicalConverted); |
4366 | MultiLevelTemplateArgumentList MLTAL(NamedConcept, CanonicalConverted, |
4367 | /*Final=*/false); |
4368 | LocalInstantiationScope Scope(*this); |
4369 | |
4370 | EnterExpressionEvaluationContext EECtx{ |
4371 | *this, ExpressionEvaluationContext::Unevaluated, CSD}; |
4372 | |
4373 | if (!AreArgsDependent && |
4374 | CheckConstraintSatisfaction( |
4375 | Template: NamedConcept, ConstraintExprs: {NamedConcept->getConstraintExpr()}, TemplateArgLists: MLTAL, |
4376 | TemplateIDRange: SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(), |
4377 | TemplateArgs->getRAngleLoc()), |
4378 | Satisfaction)) |
4379 | return ExprError(); |
4380 | auto *CL = ConceptReference::Create( |
4381 | C: Context, |
4382 | NNS: SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{}, |
4383 | TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept, |
4384 | ArgsAsWritten: ASTTemplateArgumentListInfo::Create(C: Context, List: *TemplateArgs)); |
4385 | return ConceptSpecializationExpr::Create( |
4386 | C: Context, ConceptRef: CL, SpecDecl: CSD, Satisfaction: AreArgsDependent ? nullptr : &Satisfaction); |
4387 | } |
4388 | |
4389 | ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, |
4390 | SourceLocation TemplateKWLoc, |
4391 | LookupResult &R, |
4392 | bool RequiresADL, |
4393 | const TemplateArgumentListInfo *TemplateArgs) { |
4394 | // FIXME: Can we do any checking at this point? I guess we could check the |
4395 | // template arguments that we have against the template name, if the template |
4396 | // name refers to a single template. That's not a terribly common case, |
4397 | // though. |
4398 | // foo<int> could identify a single function unambiguously |
4399 | // This approach does NOT work, since f<int>(1); |
4400 | // gets resolved prior to resorting to overload resolution |
4401 | // i.e., template<class T> void f(double); |
4402 | // vs template<class T, class U> void f(U); |
4403 | |
4404 | // These should be filtered out by our callers. |
4405 | assert(!R.isAmbiguous() && "ambiguous lookup when building templateid" ); |
4406 | |
4407 | // Non-function templates require a template argument list. |
4408 | if (auto *TD = R.getAsSingle<TemplateDecl>()) { |
4409 | if (!TemplateArgs && !isa<FunctionTemplateDecl>(Val: TD)) { |
4410 | diagnoseMissingTemplateArguments( |
4411 | SS, /*TemplateKeyword=*/TemplateKWLoc.isValid(), TD, Loc: R.getNameLoc()); |
4412 | return ExprError(); |
4413 | } |
4414 | } |
4415 | bool KnownDependent = false; |
4416 | // In C++1y, check variable template ids. |
4417 | if (R.getAsSingle<VarTemplateDecl>()) { |
4418 | ExprResult Res = CheckVarTemplateId( |
4419 | SS, NameInfo: R.getLookupNameInfo(), Template: R.getAsSingle<VarTemplateDecl>(), |
4420 | FoundD: R.getRepresentativeDecl(), TemplateLoc: TemplateKWLoc, TemplateArgs); |
4421 | if (Res.isInvalid() || Res.isUsable()) |
4422 | return Res; |
4423 | // Result is dependent. Carry on to build an UnresolvedLookupExpr. |
4424 | KnownDependent = true; |
4425 | } |
4426 | |
4427 | if (R.getAsSingle<ConceptDecl>()) { |
4428 | return CheckConceptTemplateId(SS, TemplateKWLoc, ConceptNameInfo: R.getLookupNameInfo(), |
4429 | FoundDecl: R.getRepresentativeDecl(), |
4430 | NamedConcept: R.getAsSingle<ConceptDecl>(), TemplateArgs); |
4431 | } |
4432 | |
4433 | // We don't want lookup warnings at this point. |
4434 | R.suppressDiagnostics(); |
4435 | |
4436 | UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create( |
4437 | Context, NamingClass: R.getNamingClass(), QualifierLoc: SS.getWithLocInContext(Context), |
4438 | TemplateKWLoc, NameInfo: R.getLookupNameInfo(), RequiresADL, Args: TemplateArgs, |
4439 | Begin: R.begin(), End: R.end(), KnownDependent, |
4440 | /*KnownInstantiationDependent=*/false); |
4441 | |
4442 | // Model the templates with UnresolvedTemplateTy. The expression should then |
4443 | // either be transformed in an instantiation or be diagnosed in |
4444 | // CheckPlaceholderExpr. |
4445 | if (ULE->getType() == Context.OverloadTy && R.isSingleResult() && |
4446 | !R.getFoundDecl()->getAsFunction()) |
4447 | ULE->setType(Context.UnresolvedTemplateTy); |
4448 | |
4449 | return ULE; |
4450 | } |
4451 | |
4452 | ExprResult Sema::BuildQualifiedTemplateIdExpr( |
4453 | CXXScopeSpec &SS, SourceLocation TemplateKWLoc, |
4454 | const DeclarationNameInfo &NameInfo, |
4455 | const TemplateArgumentListInfo *TemplateArgs, bool IsAddressOfOperand) { |
4456 | assert(TemplateArgs || TemplateKWLoc.isValid()); |
4457 | |
4458 | LookupResult R(*this, NameInfo, LookupOrdinaryName); |
4459 | if (LookupTemplateName(Found&: R, /*S=*/nullptr, SS, /*ObjectType=*/QualType(), |
4460 | /*EnteringContext=*/false, RequiredTemplate: TemplateKWLoc)) |
4461 | return ExprError(); |
4462 | |
4463 | if (R.isAmbiguous()) |
4464 | return ExprError(); |
4465 | |
4466 | if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid()) |
4467 | return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); |
4468 | |
4469 | if (R.empty()) { |
4470 | DeclContext *DC = computeDeclContext(SS); |
4471 | Diag(Loc: NameInfo.getLoc(), DiagID: diag::err_no_member) |
4472 | << NameInfo.getName() << DC << SS.getRange(); |
4473 | return ExprError(); |
4474 | } |
4475 | |
4476 | // If necessary, build an implicit class member access. |
4477 | if (isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand)) |
4478 | return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, |
4479 | /*S=*/nullptr); |
4480 | |
4481 | return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL=*/RequiresADL: false, TemplateArgs); |
4482 | } |
4483 | |
4484 | TemplateNameKind Sema::ActOnTemplateName(Scope *S, |
4485 | CXXScopeSpec &SS, |
4486 | SourceLocation TemplateKWLoc, |
4487 | const UnqualifiedId &Name, |
4488 | ParsedType ObjectType, |
4489 | bool EnteringContext, |
4490 | TemplateTy &Result, |
4491 | bool AllowInjectedClassName) { |
4492 | if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) |
4493 | Diag(Loc: TemplateKWLoc, |
4494 | DiagID: getLangOpts().CPlusPlus11 ? |
4495 | diag::warn_cxx98_compat_template_outside_of_template : |
4496 | diag::ext_template_outside_of_template) |
4497 | << FixItHint::CreateRemoval(RemoveRange: TemplateKWLoc); |
4498 | |
4499 | if (SS.isInvalid()) |
4500 | return TNK_Non_template; |
4501 | |
4502 | // Figure out where isTemplateName is going to look. |
4503 | DeclContext *LookupCtx = nullptr; |
4504 | if (SS.isNotEmpty()) |
4505 | LookupCtx = computeDeclContext(SS, EnteringContext); |
4506 | else if (ObjectType) |
4507 | LookupCtx = computeDeclContext(T: GetTypeFromParser(Ty: ObjectType)); |
4508 | |
4509 | // C++0x [temp.names]p5: |
4510 | // If a name prefixed by the keyword template is not the name of |
4511 | // a template, the program is ill-formed. [Note: the keyword |
4512 | // template may not be applied to non-template members of class |
4513 | // templates. -end note ] [ Note: as is the case with the |
4514 | // typename prefix, the template prefix is allowed in cases |
4515 | // where it is not strictly necessary; i.e., when the |
4516 | // nested-name-specifier or the expression on the left of the -> |
4517 | // or . is not dependent on a template-parameter, or the use |
4518 | // does not appear in the scope of a template. -end note] |
4519 | // |
4520 | // Note: C++03 was more strict here, because it banned the use of |
4521 | // the "template" keyword prior to a template-name that was not a |
4522 | // dependent name. C++ DR468 relaxed this requirement (the |
4523 | // "template" keyword is now permitted). We follow the C++0x |
4524 | // rules, even in C++03 mode with a warning, retroactively applying the DR. |
4525 | bool MemberOfUnknownSpecialization; |
4526 | TemplateNameKind TNK = isTemplateName(S, SS, hasTemplateKeyword: TemplateKWLoc.isValid(), Name, |
4527 | ObjectTypePtr: ObjectType, EnteringContext, TemplateResult&: Result, |
4528 | MemberOfUnknownSpecialization); |
4529 | if (TNK != TNK_Non_template) { |
4530 | // We resolved this to a (non-dependent) template name. Return it. |
4531 | auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Val: LookupCtx); |
4532 | if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD && |
4533 | Name.getKind() == UnqualifiedIdKind::IK_Identifier && |
4534 | Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) { |
4535 | // C++14 [class.qual]p2: |
4536 | // In a lookup in which function names are not ignored and the |
4537 | // nested-name-specifier nominates a class C, if the name specified |
4538 | // [...] is the injected-class-name of C, [...] the name is instead |
4539 | // considered to name the constructor |
4540 | // |
4541 | // We don't get here if naming the constructor would be valid, so we |
4542 | // just reject immediately and recover by treating the |
4543 | // injected-class-name as naming the template. |
4544 | Diag(Loc: Name.getBeginLoc(), |
4545 | DiagID: diag::ext_out_of_line_qualified_id_type_names_constructor) |
4546 | << Name.Identifier |
4547 | << 0 /*injected-class-name used as template name*/ |
4548 | << TemplateKWLoc.isValid(); |
4549 | } |
4550 | return TNK; |
4551 | } |
4552 | |
4553 | if (!MemberOfUnknownSpecialization) { |
4554 | // Didn't find a template name, and the lookup wasn't dependent. |
4555 | // Do the lookup again to determine if this is a "nothing found" case or |
4556 | // a "not a template" case. FIXME: Refactor isTemplateName so we don't |
4557 | // need to do this. |
4558 | DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name); |
4559 | LookupResult R(*this, DNI.getName(), Name.getBeginLoc(), |
4560 | LookupOrdinaryName); |
4561 | // Tell LookupTemplateName that we require a template so that it diagnoses |
4562 | // cases where it finds a non-template. |
4563 | RequiredTemplateKind RTK = TemplateKWLoc.isValid() |
4564 | ? RequiredTemplateKind(TemplateKWLoc) |
4565 | : TemplateNameIsRequired; |
4566 | if (!LookupTemplateName(Found&: R, S, SS, ObjectType: ObjectType.get(), EnteringContext, RequiredTemplate: RTK, |
4567 | /*ATK=*/nullptr, /*AllowTypoCorrection=*/false) && |
4568 | !R.isAmbiguous()) { |
4569 | if (LookupCtx) |
4570 | Diag(Loc: Name.getBeginLoc(), DiagID: diag::err_no_member) |
4571 | << DNI.getName() << LookupCtx << SS.getRange(); |
4572 | else |
4573 | Diag(Loc: Name.getBeginLoc(), DiagID: diag::err_undeclared_use) |
4574 | << DNI.getName() << SS.getRange(); |
4575 | } |
4576 | return TNK_Non_template; |
4577 | } |
4578 | |
4579 | NestedNameSpecifier *Qualifier = SS.getScopeRep(); |
4580 | |
4581 | switch (Name.getKind()) { |
4582 | case UnqualifiedIdKind::IK_Identifier: |
4583 | Result = TemplateTy::make( |
4584 | P: Context.getDependentTemplateName(NNS: Qualifier, Name: Name.Identifier)); |
4585 | return TNK_Dependent_template_name; |
4586 | |
4587 | case UnqualifiedIdKind::IK_OperatorFunctionId: |
4588 | Result = TemplateTy::make(P: Context.getDependentTemplateName( |
4589 | NNS: Qualifier, Operator: Name.OperatorFunctionId.Operator)); |
4590 | return TNK_Function_template; |
4591 | |
4592 | case UnqualifiedIdKind::IK_LiteralOperatorId: |
4593 | // This is a kind of template name, but can never occur in a dependent |
4594 | // scope (literal operators can only be declared at namespace scope). |
4595 | break; |
4596 | |
4597 | default: |
4598 | break; |
4599 | } |
4600 | |
4601 | // This name cannot possibly name a dependent template. Diagnose this now |
4602 | // rather than building a dependent template name that can never be valid. |
4603 | Diag(Loc: Name.getBeginLoc(), |
4604 | DiagID: diag::err_template_kw_refers_to_dependent_non_template) |
4605 | << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange() |
4606 | << TemplateKWLoc.isValid() << TemplateKWLoc; |
4607 | return TNK_Non_template; |
4608 | } |
4609 | |
4610 | bool Sema::CheckTemplateTypeArgument( |
4611 | TemplateTypeParmDecl *Param, TemplateArgumentLoc &AL, |
4612 | SmallVectorImpl<TemplateArgument> &SugaredConverted, |
4613 | SmallVectorImpl<TemplateArgument> &CanonicalConverted) { |
4614 | const TemplateArgument &Arg = AL.getArgument(); |
4615 | QualType ArgType; |
4616 | TypeSourceInfo *TSI = nullptr; |
4617 | |
4618 | // Check template type parameter. |
4619 | switch(Arg.getKind()) { |
4620 | case TemplateArgument::Type: |
4621 | // C++ [temp.arg.type]p1: |
4622 | // A template-argument for a template-parameter which is a |
4623 | // type shall be a type-id. |
4624 | ArgType = Arg.getAsType(); |
4625 | TSI = AL.getTypeSourceInfo(); |
4626 | break; |
4627 | case TemplateArgument::Template: |
4628 | case TemplateArgument::TemplateExpansion: { |
4629 | // We have a template type parameter but the template argument |
4630 | // is a template without any arguments. |
4631 | SourceRange SR = AL.getSourceRange(); |
4632 | TemplateName Name = Arg.getAsTemplateOrTemplatePattern(); |
4633 | diagnoseMissingTemplateArguments(Name, Loc: SR.getEnd()); |
4634 | return true; |
4635 | } |
4636 | case TemplateArgument::Expression: { |
4637 | // We have a template type parameter but the template argument is an |
4638 | // expression; see if maybe it is missing the "typename" keyword. |
4639 | CXXScopeSpec SS; |
4640 | DeclarationNameInfo NameInfo; |
4641 | |
4642 | if (DependentScopeDeclRefExpr *ArgExpr = |
4643 | dyn_cast<DependentScopeDeclRefExpr>(Val: Arg.getAsExpr())) { |
4644 | SS.Adopt(Other: ArgExpr->getQualifierLoc()); |
4645 | NameInfo = ArgExpr->getNameInfo(); |
4646 | } else if (CXXDependentScopeMemberExpr *ArgExpr = |
4647 | dyn_cast<CXXDependentScopeMemberExpr>(Val: Arg.getAsExpr())) { |
4648 | if (ArgExpr->isImplicitAccess()) { |
4649 | SS.Adopt(Other: ArgExpr->getQualifierLoc()); |
4650 | NameInfo = ArgExpr->getMemberNameInfo(); |
4651 | } |
4652 | } |
4653 | |
4654 | if (auto *II = NameInfo.getName().getAsIdentifierInfo()) { |
4655 | LookupResult Result(*this, NameInfo, LookupOrdinaryName); |
4656 | LookupParsedName(R&: Result, S: CurScope, SS: &SS, /*ObjectType=*/QualType()); |
4657 | |
4658 | if (Result.getAsSingle<TypeDecl>() || |
4659 | Result.wasNotFoundInCurrentInstantiation()) { |
4660 | assert(SS.getScopeRep() && "dependent scope expr must has a scope!" ); |
4661 | // Suggest that the user add 'typename' before the NNS. |
4662 | SourceLocation Loc = AL.getSourceRange().getBegin(); |
4663 | Diag(Loc, DiagID: getLangOpts().MSVCCompat |
4664 | ? diag::ext_ms_template_type_arg_missing_typename |
4665 | : diag::err_template_arg_must_be_type_suggest) |
4666 | << FixItHint::CreateInsertion(InsertionLoc: Loc, Code: "typename " ); |
4667 | NoteTemplateParameterLocation(Decl: *Param); |
4668 | |
4669 | // Recover by synthesizing a type using the location information that we |
4670 | // already have. |
4671 | ArgType = Context.getDependentNameType(Keyword: ElaboratedTypeKeyword::Typename, |
4672 | NNS: SS.getScopeRep(), Name: II); |
4673 | TypeLocBuilder TLB; |
4674 | DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(T: ArgType); |
4675 | TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/)); |
4676 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
4677 | TL.setNameLoc(NameInfo.getLoc()); |
4678 | TSI = TLB.getTypeSourceInfo(Context, T: ArgType); |
4679 | |
4680 | // Overwrite our input TemplateArgumentLoc so that we can recover |
4681 | // properly. |
4682 | AL = TemplateArgumentLoc(TemplateArgument(ArgType), |
4683 | TemplateArgumentLocInfo(TSI)); |
4684 | |
4685 | break; |
4686 | } |
4687 | } |
4688 | // fallthrough |
4689 | [[fallthrough]]; |
4690 | } |
4691 | default: { |
4692 | // We allow instantiateing a template with template argument packs when |
4693 | // building deduction guides. |
4694 | if (Arg.getKind() == TemplateArgument::Pack && |
4695 | CodeSynthesisContexts.back().Kind == |
4696 | Sema::CodeSynthesisContext::BuildingDeductionGuides) { |
4697 | SugaredConverted.push_back(Elt: Arg); |
4698 | CanonicalConverted.push_back(Elt: Arg); |
4699 | return false; |
4700 | } |
4701 | // We have a template type parameter but the template argument |
4702 | // is not a type. |
4703 | SourceRange SR = AL.getSourceRange(); |
4704 | Diag(Loc: SR.getBegin(), DiagID: diag::err_template_arg_must_be_type) << SR; |
4705 | NoteTemplateParameterLocation(Decl: *Param); |
4706 | |
4707 | return true; |
4708 | } |
4709 | } |
4710 | |
4711 | if (CheckTemplateArgument(Arg: TSI)) |
4712 | return true; |
4713 | |
4714 | // Objective-C ARC: |
4715 | // If an explicitly-specified template argument type is a lifetime type |
4716 | // with no lifetime qualifier, the __strong lifetime qualifier is inferred. |
4717 | if (getLangOpts().ObjCAutoRefCount && |
4718 | ArgType->isObjCLifetimeType() && |
4719 | !ArgType.getObjCLifetime()) { |
4720 | Qualifiers Qs; |
4721 | Qs.setObjCLifetime(Qualifiers::OCL_Strong); |
4722 | ArgType = Context.getQualifiedType(T: ArgType, Qs); |
4723 | } |
4724 | |
4725 | SugaredConverted.push_back(Elt: TemplateArgument(ArgType)); |
4726 | CanonicalConverted.push_back( |
4727 | Elt: TemplateArgument(Context.getCanonicalType(T: ArgType))); |
4728 | return false; |
4729 | } |
4730 | |
4731 | /// Substitute template arguments into the default template argument for |
4732 | /// the given template type parameter. |
4733 | /// |
4734 | /// \param SemaRef the semantic analysis object for which we are performing |
4735 | /// the substitution. |
4736 | /// |
4737 | /// \param Template the template that we are synthesizing template arguments |
4738 | /// for. |
4739 | /// |
4740 | /// \param TemplateLoc the location of the template name that started the |
4741 | /// template-id we are checking. |
4742 | /// |
4743 | /// \param RAngleLoc the location of the right angle bracket ('>') that |
4744 | /// terminates the template-id. |
4745 | /// |
4746 | /// \param Param the template template parameter whose default we are |
4747 | /// substituting into. |
4748 | /// |
4749 | /// \param Converted the list of template arguments provided for template |
4750 | /// parameters that precede \p Param in the template parameter list. |
4751 | /// |
4752 | /// \param Output the resulting substituted template argument. |
4753 | /// |
4754 | /// \returns true if an error occurred. |
4755 | static bool SubstDefaultTemplateArgument( |
4756 | Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, |
4757 | SourceLocation RAngleLoc, TemplateTypeParmDecl *Param, |
4758 | ArrayRef<TemplateArgument> SugaredConverted, |
4759 | ArrayRef<TemplateArgument> CanonicalConverted, |
4760 | TemplateArgumentLoc &Output) { |
4761 | Output = Param->getDefaultArgument(); |
4762 | |
4763 | // If the argument type is dependent, instantiate it now based |
4764 | // on the previously-computed template arguments. |
4765 | if (Output.getArgument().isInstantiationDependent()) { |
4766 | Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template, |
4767 | SugaredConverted, |
4768 | SourceRange(TemplateLoc, RAngleLoc)); |
4769 | if (Inst.isInvalid()) |
4770 | return true; |
4771 | |
4772 | // Only substitute for the innermost template argument list. |
4773 | MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, |
4774 | /*Final=*/true); |
4775 | for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) |
4776 | TemplateArgLists.addOuterTemplateArguments(std::nullopt); |
4777 | |
4778 | bool ForLambdaCallOperator = false; |
4779 | if (const auto *Rec = dyn_cast<CXXRecordDecl>(Val: Template->getDeclContext())) |
4780 | ForLambdaCallOperator = Rec->isLambda(); |
4781 | Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(), |
4782 | !ForLambdaCallOperator); |
4783 | |
4784 | if (SemaRef.SubstTemplateArgument(Input: Output, TemplateArgs: TemplateArgLists, Output, |
4785 | Loc: Param->getDefaultArgumentLoc(), |
4786 | Entity: Param->getDeclName())) |
4787 | return true; |
4788 | } |
4789 | |
4790 | return false; |
4791 | } |
4792 | |
4793 | /// Substitute template arguments into the default template argument for |
4794 | /// the given non-type template parameter. |
4795 | /// |
4796 | /// \param SemaRef the semantic analysis object for which we are performing |
4797 | /// the substitution. |
4798 | /// |
4799 | /// \param Template the template that we are synthesizing template arguments |
4800 | /// for. |
4801 | /// |
4802 | /// \param TemplateLoc the location of the template name that started the |
4803 | /// template-id we are checking. |
4804 | /// |
4805 | /// \param RAngleLoc the location of the right angle bracket ('>') that |
4806 | /// terminates the template-id. |
4807 | /// |
4808 | /// \param Param the non-type template parameter whose default we are |
4809 | /// substituting into. |
4810 | /// |
4811 | /// \param Converted the list of template arguments provided for template |
4812 | /// parameters that precede \p Param in the template parameter list. |
4813 | /// |
4814 | /// \returns the substituted template argument, or NULL if an error occurred. |
4815 | static bool SubstDefaultTemplateArgument( |
4816 | Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, |
4817 | SourceLocation RAngleLoc, NonTypeTemplateParmDecl *Param, |
4818 | ArrayRef<TemplateArgument> SugaredConverted, |
4819 | ArrayRef<TemplateArgument> CanonicalConverted, |
4820 | TemplateArgumentLoc &Output) { |
4821 | Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template, |
4822 | SugaredConverted, |
4823 | SourceRange(TemplateLoc, RAngleLoc)); |
4824 | if (Inst.isInvalid()) |
4825 | return true; |
4826 | |
4827 | // Only substitute for the innermost template argument list. |
4828 | MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, |
4829 | /*Final=*/true); |
4830 | for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) |
4831 | TemplateArgLists.addOuterTemplateArguments(std::nullopt); |
4832 | |
4833 | Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); |
4834 | EnterExpressionEvaluationContext ConstantEvaluated( |
4835 | SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
4836 | return SemaRef.SubstTemplateArgument(Input: Param->getDefaultArgument(), |
4837 | TemplateArgs: TemplateArgLists, Output); |
4838 | } |
4839 | |
4840 | /// Substitute template arguments into the default template argument for |
4841 | /// the given template template parameter. |
4842 | /// |
4843 | /// \param SemaRef the semantic analysis object for which we are performing |
4844 | /// the substitution. |
4845 | /// |
4846 | /// \param Template the template that we are synthesizing template arguments |
4847 | /// for. |
4848 | /// |
4849 | /// \param TemplateLoc the location of the template name that started the |
4850 | /// template-id we are checking. |
4851 | /// |
4852 | /// \param RAngleLoc the location of the right angle bracket ('>') that |
4853 | /// terminates the template-id. |
4854 | /// |
4855 | /// \param Param the template template parameter whose default we are |
4856 | /// substituting into. |
4857 | /// |
4858 | /// \param Converted the list of template arguments provided for template |
4859 | /// parameters that precede \p Param in the template parameter list. |
4860 | /// |
4861 | /// \param QualifierLoc Will be set to the nested-name-specifier (with |
4862 | /// source-location information) that precedes the template name. |
4863 | /// |
4864 | /// \returns the substituted template argument, or NULL if an error occurred. |
4865 | static TemplateName SubstDefaultTemplateArgument( |
4866 | Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, |
4867 | SourceLocation RAngleLoc, TemplateTemplateParmDecl *Param, |
4868 | ArrayRef<TemplateArgument> SugaredConverted, |
4869 | ArrayRef<TemplateArgument> CanonicalConverted, |
4870 | NestedNameSpecifierLoc &QualifierLoc) { |
4871 | Sema::InstantiatingTemplate Inst( |
4872 | SemaRef, TemplateLoc, TemplateParameter(Param), Template, |
4873 | SugaredConverted, SourceRange(TemplateLoc, RAngleLoc)); |
4874 | if (Inst.isInvalid()) |
4875 | return TemplateName(); |
4876 | |
4877 | // Only substitute for the innermost template argument list. |
4878 | MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, |
4879 | /*Final=*/true); |
4880 | for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) |
4881 | TemplateArgLists.addOuterTemplateArguments(std::nullopt); |
4882 | |
4883 | Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); |
4884 | // Substitute into the nested-name-specifier first, |
4885 | QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); |
4886 | if (QualifierLoc) { |
4887 | QualifierLoc = |
4888 | SemaRef.SubstNestedNameSpecifierLoc(NNS: QualifierLoc, TemplateArgs: TemplateArgLists); |
4889 | if (!QualifierLoc) |
4890 | return TemplateName(); |
4891 | } |
4892 | |
4893 | return SemaRef.SubstTemplateName( |
4894 | QualifierLoc, |
4895 | Name: Param->getDefaultArgument().getArgument().getAsTemplate(), |
4896 | Loc: Param->getDefaultArgument().getTemplateNameLoc(), |
4897 | TemplateArgs: TemplateArgLists); |
4898 | } |
4899 | |
4900 | TemplateArgumentLoc Sema::SubstDefaultTemplateArgumentIfAvailable( |
4901 | TemplateDecl *Template, SourceLocation TemplateLoc, |
4902 | SourceLocation RAngleLoc, Decl *Param, |
4903 | ArrayRef<TemplateArgument> SugaredConverted, |
4904 | ArrayRef<TemplateArgument> CanonicalConverted, bool &HasDefaultArg) { |
4905 | HasDefaultArg = false; |
4906 | |
4907 | if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Val: Param)) { |
4908 | if (!hasReachableDefaultArgument(D: TypeParm)) |
4909 | return TemplateArgumentLoc(); |
4910 | |
4911 | HasDefaultArg = true; |
4912 | TemplateArgumentLoc Output; |
4913 | if (SubstDefaultTemplateArgument(SemaRef&: *this, Template, TemplateLoc, RAngleLoc, |
4914 | Param: TypeParm, SugaredConverted, |
4915 | CanonicalConverted, Output)) |
4916 | return TemplateArgumentLoc(); |
4917 | return Output; |
4918 | } |
4919 | |
4920 | if (NonTypeTemplateParmDecl *NonTypeParm |
4921 | = dyn_cast<NonTypeTemplateParmDecl>(Val: Param)) { |
4922 | if (!hasReachableDefaultArgument(D: NonTypeParm)) |
4923 | return TemplateArgumentLoc(); |
4924 | |
4925 | HasDefaultArg = true; |
4926 | TemplateArgumentLoc Output; |
4927 | if (SubstDefaultTemplateArgument(SemaRef&: *this, Template, TemplateLoc, RAngleLoc, |
4928 | Param: NonTypeParm, SugaredConverted, |
4929 | CanonicalConverted, Output)) |
4930 | return TemplateArgumentLoc(); |
4931 | return Output; |
4932 | } |
4933 | |
4934 | TemplateTemplateParmDecl *TempTempParm |
4935 | = cast<TemplateTemplateParmDecl>(Val: Param); |
4936 | if (!hasReachableDefaultArgument(D: TempTempParm)) |
4937 | return TemplateArgumentLoc(); |
4938 | |
4939 | HasDefaultArg = true; |
4940 | NestedNameSpecifierLoc QualifierLoc; |
4941 | TemplateName TName = SubstDefaultTemplateArgument( |
4942 | SemaRef&: *this, Template, TemplateLoc, RAngleLoc, Param: TempTempParm, SugaredConverted, |
4943 | CanonicalConverted, QualifierLoc); |
4944 | if (TName.isNull()) |
4945 | return TemplateArgumentLoc(); |
4946 | |
4947 | return TemplateArgumentLoc( |
4948 | Context, TemplateArgument(TName), |
4949 | TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), |
4950 | TempTempParm->getDefaultArgument().getTemplateNameLoc()); |
4951 | } |
4952 | |
4953 | /// Convert a template-argument that we parsed as a type into a template, if |
4954 | /// possible. C++ permits injected-class-names to perform dual service as |
4955 | /// template template arguments and as template type arguments. |
4956 | static TemplateArgumentLoc |
4957 | convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) { |
4958 | // Extract and step over any surrounding nested-name-specifier. |
4959 | NestedNameSpecifierLoc QualLoc; |
4960 | if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) { |
4961 | if (ETLoc.getTypePtr()->getKeyword() != ElaboratedTypeKeyword::None) |
4962 | return TemplateArgumentLoc(); |
4963 | |
4964 | QualLoc = ETLoc.getQualifierLoc(); |
4965 | TLoc = ETLoc.getNamedTypeLoc(); |
4966 | } |
4967 | // If this type was written as an injected-class-name, it can be used as a |
4968 | // template template argument. |
4969 | if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>()) |
4970 | return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(), |
4971 | QualLoc, InjLoc.getNameLoc()); |
4972 | |
4973 | // If this type was written as an injected-class-name, it may have been |
4974 | // converted to a RecordType during instantiation. If the RecordType is |
4975 | // *not* wrapped in a TemplateSpecializationType and denotes a class |
4976 | // template specialization, it must have come from an injected-class-name. |
4977 | if (auto RecLoc = TLoc.getAs<RecordTypeLoc>()) |
4978 | if (auto *CTSD = |
4979 | dyn_cast<ClassTemplateSpecializationDecl>(Val: RecLoc.getDecl())) |
4980 | return TemplateArgumentLoc(Context, |
4981 | TemplateName(CTSD->getSpecializedTemplate()), |
4982 | QualLoc, RecLoc.getNameLoc()); |
4983 | |
4984 | return TemplateArgumentLoc(); |
4985 | } |
4986 | |
4987 | bool Sema::CheckTemplateArgument( |
4988 | NamedDecl *Param, TemplateArgumentLoc &Arg, NamedDecl *Template, |
4989 | SourceLocation TemplateLoc, SourceLocation RAngleLoc, |
4990 | unsigned ArgumentPackIndex, |
4991 | SmallVectorImpl<TemplateArgument> &SugaredConverted, |
4992 | SmallVectorImpl<TemplateArgument> &CanonicalConverted, |
4993 | CheckTemplateArgumentKind CTAK) { |
4994 | // Check template type parameters. |
4995 | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: Param)) |
4996 | return CheckTemplateTypeArgument(Param: TTP, AL&: Arg, SugaredConverted, |
4997 | CanonicalConverted); |
4998 | |
4999 | // Check non-type template parameters. |
5000 | if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Val: Param)) { |
5001 | // Do substitution on the type of the non-type template parameter |
5002 | // with the template arguments we've seen thus far. But if the |
5003 | // template has a dependent context then we cannot substitute yet. |
5004 | QualType NTTPType = NTTP->getType(); |
5005 | if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) |
5006 | NTTPType = NTTP->getExpansionType(I: ArgumentPackIndex); |
5007 | |
5008 | if (NTTPType->isInstantiationDependentType() && |
5009 | !isa<TemplateTemplateParmDecl>(Val: Template) && |
5010 | !Template->getDeclContext()->isDependentContext()) { |
5011 | // Do substitution on the type of the non-type template parameter. |
5012 | InstantiatingTemplate Inst(*this, TemplateLoc, Template, NTTP, |
5013 | SugaredConverted, |
5014 | SourceRange(TemplateLoc, RAngleLoc)); |
5015 | if (Inst.isInvalid()) |
5016 | return true; |
5017 | |
5018 | MultiLevelTemplateArgumentList MLTAL(Template, SugaredConverted, |
5019 | /*Final=*/true); |
5020 | // If the parameter is a pack expansion, expand this slice of the pack. |
5021 | if (auto *PET = NTTPType->getAs<PackExpansionType>()) { |
5022 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, |
5023 | ArgumentPackIndex); |
5024 | NTTPType = SubstType(T: PET->getPattern(), TemplateArgs: MLTAL, Loc: NTTP->getLocation(), |
5025 | Entity: NTTP->getDeclName()); |
5026 | } else { |
5027 | NTTPType = SubstType(T: NTTPType, TemplateArgs: MLTAL, Loc: NTTP->getLocation(), |
5028 | Entity: NTTP->getDeclName()); |
5029 | } |
5030 | |
5031 | // If that worked, check the non-type template parameter type |
5032 | // for validity. |
5033 | if (!NTTPType.isNull()) |
5034 | NTTPType = CheckNonTypeTemplateParameterType(T: NTTPType, |
5035 | Loc: NTTP->getLocation()); |
5036 | if (NTTPType.isNull()) |
5037 | return true; |
5038 | } |
5039 | |
5040 | switch (Arg.getArgument().getKind()) { |
5041 | case TemplateArgument::Null: |
5042 | llvm_unreachable("Should never see a NULL template argument here" ); |
5043 | |
5044 | case TemplateArgument::Expression: { |
5045 | Expr *E = Arg.getArgument().getAsExpr(); |
5046 | TemplateArgument SugaredResult, CanonicalResult; |
5047 | unsigned CurSFINAEErrors = NumSFINAEErrors; |
5048 | ExprResult Res = CheckTemplateArgument(Param: NTTP, InstantiatedParamType: NTTPType, Arg: E, SugaredConverted&: SugaredResult, |
5049 | CanonicalConverted&: CanonicalResult, CTAK); |
5050 | if (Res.isInvalid()) |
5051 | return true; |
5052 | // If the current template argument causes an error, give up now. |
5053 | if (CurSFINAEErrors < NumSFINAEErrors) |
5054 | return true; |
5055 | |
5056 | // If the resulting expression is new, then use it in place of the |
5057 | // old expression in the template argument. |
5058 | if (Res.get() != E) { |
5059 | TemplateArgument TA(Res.get()); |
5060 | Arg = TemplateArgumentLoc(TA, Res.get()); |
5061 | } |
5062 | |
5063 | SugaredConverted.push_back(Elt: SugaredResult); |
5064 | CanonicalConverted.push_back(Elt: CanonicalResult); |
5065 | break; |
5066 | } |
5067 | |
5068 | case TemplateArgument::Declaration: |
5069 | case TemplateArgument::Integral: |
5070 | case TemplateArgument::StructuralValue: |
5071 | case TemplateArgument::NullPtr: |
5072 | // We've already checked this template argument, so just copy |
5073 | // it to the list of converted arguments. |
5074 | SugaredConverted.push_back(Elt: Arg.getArgument()); |
5075 | CanonicalConverted.push_back( |
5076 | Elt: Context.getCanonicalTemplateArgument(Arg: Arg.getArgument())); |
5077 | break; |
5078 | |
5079 | case TemplateArgument::Template: |
5080 | case TemplateArgument::TemplateExpansion: |
5081 | // We were given a template template argument. It may not be ill-formed; |
5082 | // see below. |
5083 | if (DependentTemplateName *DTN |
5084 | = Arg.getArgument().getAsTemplateOrTemplatePattern() |
5085 | .getAsDependentTemplateName()) { |
5086 | // We have a template argument such as \c T::template X, which we |
5087 | // parsed as a template template argument. However, since we now |
5088 | // know that we need a non-type template argument, convert this |
5089 | // template name into an expression. |
5090 | |
5091 | DeclarationNameInfo NameInfo(DTN->getIdentifier(), |
5092 | Arg.getTemplateNameLoc()); |
5093 | |
5094 | CXXScopeSpec SS; |
5095 | SS.Adopt(Other: Arg.getTemplateQualifierLoc()); |
5096 | // FIXME: the template-template arg was a DependentTemplateName, |
5097 | // so it was provided with a template keyword. However, its source |
5098 | // location is not stored in the template argument structure. |
5099 | SourceLocation TemplateKWLoc; |
5100 | ExprResult E = DependentScopeDeclRefExpr::Create( |
5101 | Context, QualifierLoc: SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, |
5102 | TemplateArgs: nullptr); |
5103 | |
5104 | // If we parsed the template argument as a pack expansion, create a |
5105 | // pack expansion expression. |
5106 | if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ |
5107 | E = ActOnPackExpansion(Pattern: E.get(), EllipsisLoc: Arg.getTemplateEllipsisLoc()); |
5108 | if (E.isInvalid()) |
5109 | return true; |
5110 | } |
5111 | |
5112 | TemplateArgument SugaredResult, CanonicalResult; |
5113 | E = CheckTemplateArgument(Param: NTTP, InstantiatedParamType: NTTPType, Arg: E.get(), SugaredConverted&: SugaredResult, |
5114 | CanonicalConverted&: CanonicalResult, CTAK: CTAK_Specified); |
5115 | if (E.isInvalid()) |
5116 | return true; |
5117 | |
5118 | SugaredConverted.push_back(Elt: SugaredResult); |
5119 | CanonicalConverted.push_back(Elt: CanonicalResult); |
5120 | break; |
5121 | } |
5122 | |
5123 | // We have a template argument that actually does refer to a class |
5124 | // template, alias template, or template template parameter, and |
5125 | // therefore cannot be a non-type template argument. |
5126 | Diag(Loc: Arg.getLocation(), DiagID: diag::err_template_arg_must_be_expr) |
5127 | << Arg.getSourceRange(); |
5128 | NoteTemplateParameterLocation(Decl: *Param); |
5129 | |
5130 | return true; |
5131 | |
5132 | case TemplateArgument::Type: { |
5133 | // We have a non-type template parameter but the template |
5134 | // argument is a type. |
5135 | |
5136 | // C++ [temp.arg]p2: |
5137 | // In a template-argument, an ambiguity between a type-id and |
5138 | // an expression is resolved to a type-id, regardless of the |
5139 | // form of the corresponding template-parameter. |
5140 | // |
5141 | // We warn specifically about this case, since it can be rather |
5142 | // confusing for users. |
5143 | QualType T = Arg.getArgument().getAsType(); |
5144 | SourceRange SR = Arg.getSourceRange(); |
5145 | if (T->isFunctionType()) |
5146 | Diag(Loc: SR.getBegin(), DiagID: diag::err_template_arg_nontype_ambig) << SR << T; |
5147 | else |
5148 | Diag(Loc: SR.getBegin(), DiagID: diag::err_template_arg_must_be_expr) << SR; |
5149 | NoteTemplateParameterLocation(Decl: *Param); |
5150 | return true; |
5151 | } |
5152 | |
5153 | case TemplateArgument::Pack: |
5154 | llvm_unreachable("Caller must expand template argument packs" ); |
5155 | } |
5156 | |
5157 | return false; |
5158 | } |
5159 | |
5160 | |
5161 | // Check template template parameters. |
5162 | TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Val: Param); |
5163 | |
5164 | TemplateParameterList *Params = TempParm->getTemplateParameters(); |
5165 | if (TempParm->isExpandedParameterPack()) |
5166 | Params = TempParm->getExpansionTemplateParameters(I: ArgumentPackIndex); |
5167 | |
5168 | // Substitute into the template parameter list of the template |
5169 | // template parameter, since previously-supplied template arguments |
5170 | // may appear within the template template parameter. |
5171 | // |
5172 | // FIXME: Skip this if the parameters aren't instantiation-dependent. |
5173 | { |
5174 | // Set up a template instantiation context. |
5175 | LocalInstantiationScope Scope(*this); |
5176 | InstantiatingTemplate Inst(*this, TemplateLoc, Template, TempParm, |
5177 | SugaredConverted, |
5178 | SourceRange(TemplateLoc, RAngleLoc)); |
5179 | if (Inst.isInvalid()) |
5180 | return true; |
5181 | |
5182 | Params = |
5183 | SubstTemplateParams(Params, Owner: CurContext, |
5184 | TemplateArgs: MultiLevelTemplateArgumentList( |
5185 | Template, SugaredConverted, /*Final=*/true), |
5186 | /*EvaluateConstraints=*/false); |
5187 | if (!Params) |
5188 | return true; |
5189 | } |
5190 | |
5191 | // C++1z [temp.local]p1: (DR1004) |
5192 | // When [the injected-class-name] is used [...] as a template-argument for |
5193 | // a template template-parameter [...] it refers to the class template |
5194 | // itself. |
5195 | if (Arg.getArgument().getKind() == TemplateArgument::Type) { |
5196 | TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate( |
5197 | Context, TLoc: Arg.getTypeSourceInfo()->getTypeLoc()); |
5198 | if (!ConvertedArg.getArgument().isNull()) |
5199 | Arg = ConvertedArg; |
5200 | } |
5201 | |
5202 | switch (Arg.getArgument().getKind()) { |
5203 | case TemplateArgument::Null: |
5204 | llvm_unreachable("Should never see a NULL template argument here" ); |
5205 | |
5206 | case TemplateArgument::Template: |
5207 | case TemplateArgument::TemplateExpansion: |
5208 | if (CheckTemplateTemplateArgument(Param: TempParm, Params, Arg, |
5209 | /*IsDeduced=*/CTAK != CTAK_Specified)) |
5210 | return true; |
5211 | |
5212 | SugaredConverted.push_back(Elt: Arg.getArgument()); |
5213 | CanonicalConverted.push_back( |
5214 | Elt: Context.getCanonicalTemplateArgument(Arg: Arg.getArgument())); |
5215 | break; |
5216 | |
5217 | case TemplateArgument::Expression: |
5218 | case TemplateArgument::Type: |
5219 | // We have a template template parameter but the template |
5220 | // argument does not refer to a template. |
5221 | Diag(Loc: Arg.getLocation(), DiagID: diag::err_template_arg_must_be_template) |
5222 | << getLangOpts().CPlusPlus11; |
5223 | return true; |
5224 | |
5225 | case TemplateArgument::Declaration: |
5226 | case TemplateArgument::Integral: |
5227 | case TemplateArgument::StructuralValue: |
5228 | case TemplateArgument::NullPtr: |
5229 | llvm_unreachable("non-type argument with template template parameter" ); |
5230 | |
5231 | case TemplateArgument::Pack: |
5232 | llvm_unreachable("Caller must expand template argument packs" ); |
5233 | } |
5234 | |
5235 | return false; |
5236 | } |
5237 | |
5238 | /// Diagnose a missing template argument. |
5239 | template<typename TemplateParmDecl> |
5240 | static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc, |
5241 | TemplateDecl *TD, |
5242 | const TemplateParmDecl *D, |
5243 | TemplateArgumentListInfo &Args) { |
5244 | // Dig out the most recent declaration of the template parameter; there may be |
5245 | // declarations of the template that are more recent than TD. |
5246 | D = cast<TemplateParmDecl>(cast<TemplateDecl>(Val: TD->getMostRecentDecl()) |
5247 | ->getTemplateParameters() |
5248 | ->getParam(D->getIndex())); |
5249 | |
5250 | // If there's a default argument that's not reachable, diagnose that we're |
5251 | // missing a module import. |
5252 | llvm::SmallVector<Module*, 8> Modules; |
5253 | if (D->hasDefaultArgument() && !S.hasReachableDefaultArgument(D, Modules: &Modules)) { |
5254 | S.diagnoseMissingImport(Loc, cast<NamedDecl>(Val: TD), |
5255 | D->getDefaultArgumentLoc(), Modules, |
5256 | Sema::MissingImportKind::DefaultArgument, |
5257 | /*Recover*/true); |
5258 | return true; |
5259 | } |
5260 | |
5261 | // FIXME: If there's a more recent default argument that *is* visible, |
5262 | // diagnose that it was declared too late. |
5263 | |
5264 | TemplateParameterList *Params = TD->getTemplateParameters(); |
5265 | |
5266 | S.Diag(Loc, DiagID: diag::err_template_arg_list_different_arity) |
5267 | << /*not enough args*/0 |
5268 | << (int)S.getTemplateNameKindForDiagnostics(Name: TemplateName(TD)) |
5269 | << TD; |
5270 | S.NoteTemplateLocation(Decl: *TD, ParamRange: Params->getSourceRange()); |
5271 | return true; |
5272 | } |
5273 | |
5274 | /// Check that the given template argument list is well-formed |
5275 | /// for specializing the given template. |
5276 | bool Sema::CheckTemplateArgumentList( |
5277 | TemplateDecl *Template, SourceLocation TemplateLoc, |
5278 | TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs, |
5279 | SmallVectorImpl<TemplateArgument> &SugaredConverted, |
5280 | SmallVectorImpl<TemplateArgument> &CanonicalConverted, |
5281 | bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied, |
5282 | bool PartialOrderingTTP) { |
5283 | |
5284 | if (ConstraintsNotSatisfied) |
5285 | *ConstraintsNotSatisfied = false; |
5286 | |
5287 | // Make a copy of the template arguments for processing. Only make the |
5288 | // changes at the end when successful in matching the arguments to the |
5289 | // template. |
5290 | TemplateArgumentListInfo NewArgs = TemplateArgs; |
5291 | |
5292 | TemplateParameterList *Params = GetTemplateParameterList(TD: Template); |
5293 | |
5294 | SourceLocation RAngleLoc = NewArgs.getRAngleLoc(); |
5295 | |
5296 | // C++ [temp.arg]p1: |
5297 | // [...] The type and form of each template-argument specified in |
5298 | // a template-id shall match the type and form specified for the |
5299 | // corresponding parameter declared by the template in its |
5300 | // template-parameter-list. |
5301 | bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Val: Template); |
5302 | SmallVector<TemplateArgument, 2> SugaredArgumentPack; |
5303 | SmallVector<TemplateArgument, 2> CanonicalArgumentPack; |
5304 | unsigned ArgIdx = 0, NumArgs = NewArgs.size(); |
5305 | LocalInstantiationScope InstScope(*this, true); |
5306 | for (TemplateParameterList::iterator Param = Params->begin(), |
5307 | ParamEnd = Params->end(); |
5308 | Param != ParamEnd; /* increment in loop */) { |
5309 | // If we have an expanded parameter pack, make sure we don't have too |
5310 | // many arguments. |
5311 | if (std::optional<unsigned> Expansions = getExpandedPackSize(Param: *Param)) { |
5312 | if (*Expansions == SugaredArgumentPack.size()) { |
5313 | // We're done with this parameter pack. Pack up its arguments and add |
5314 | // them to the list. |
5315 | SugaredConverted.push_back( |
5316 | Elt: TemplateArgument::CreatePackCopy(Context, Args: SugaredArgumentPack)); |
5317 | SugaredArgumentPack.clear(); |
5318 | |
5319 | CanonicalConverted.push_back( |
5320 | Elt: TemplateArgument::CreatePackCopy(Context, Args: CanonicalArgumentPack)); |
5321 | CanonicalArgumentPack.clear(); |
5322 | |
5323 | // This argument is assigned to the next parameter. |
5324 | ++Param; |
5325 | continue; |
5326 | } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { |
5327 | // Not enough arguments for this parameter pack. |
5328 | Diag(Loc: TemplateLoc, DiagID: diag::err_template_arg_list_different_arity) |
5329 | << /*not enough args*/0 |
5330 | << (int)getTemplateNameKindForDiagnostics(Name: TemplateName(Template)) |
5331 | << Template; |
5332 | NoteTemplateLocation(Decl: *Template, ParamRange: Params->getSourceRange()); |
5333 | return true; |
5334 | } |
5335 | } |
5336 | |
5337 | if (ArgIdx < NumArgs) { |
5338 | // Check the template argument we were given. |
5339 | if (CheckTemplateArgument(Param: *Param, Arg&: NewArgs[ArgIdx], Template, TemplateLoc, |
5340 | RAngleLoc, ArgumentPackIndex: SugaredArgumentPack.size(), |
5341 | SugaredConverted, CanonicalConverted, |
5342 | CTAK: CTAK_Specified)) |
5343 | return true; |
5344 | |
5345 | CanonicalConverted.back().setIsDefaulted( |
5346 | clang::isSubstitutedDefaultArgument( |
5347 | Ctx&: Context, Arg: NewArgs[ArgIdx].getArgument(), Param: *Param, |
5348 | Args: CanonicalConverted, Depth: Params->getDepth())); |
5349 | |
5350 | bool PackExpansionIntoNonPack = |
5351 | NewArgs[ArgIdx].getArgument().isPackExpansion() && |
5352 | (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(Param: *Param)); |
5353 | // CWG1430: Don't diagnose this pack expansion when partial |
5354 | // ordering template template parameters. Some uses of the template could |
5355 | // be valid, and invalid uses will be diagnosed later during |
5356 | // instantiation. |
5357 | if (PackExpansionIntoNonPack && !PartialOrderingTTP && |
5358 | (isa<TypeAliasTemplateDecl>(Val: Template) || |
5359 | isa<ConceptDecl>(Val: Template))) { |
5360 | // CWG1430: we have a pack expansion as an argument to an |
5361 | // alias template, and it's not part of a parameter pack. This |
5362 | // can't be canonicalized, so reject it now. |
5363 | // As for concepts - we cannot normalize constraints where this |
5364 | // situation exists. |
5365 | Diag(Loc: NewArgs[ArgIdx].getLocation(), |
5366 | DiagID: diag::err_template_expansion_into_fixed_list) |
5367 | << (isa<ConceptDecl>(Val: Template) ? 1 : 0) |
5368 | << NewArgs[ArgIdx].getSourceRange(); |
5369 | NoteTemplateParameterLocation(Decl: **Param); |
5370 | return true; |
5371 | } |
5372 | |
5373 | // We're now done with this argument. |
5374 | ++ArgIdx; |
5375 | |
5376 | if ((*Param)->isTemplateParameterPack()) { |
5377 | // The template parameter was a template parameter pack, so take the |
5378 | // deduced argument and place it on the argument pack. Note that we |
5379 | // stay on the same template parameter so that we can deduce more |
5380 | // arguments. |
5381 | SugaredArgumentPack.push_back(Elt: SugaredConverted.pop_back_val()); |
5382 | CanonicalArgumentPack.push_back(Elt: CanonicalConverted.pop_back_val()); |
5383 | } else { |
5384 | // Move to the next template parameter. |
5385 | ++Param; |
5386 | } |
5387 | |
5388 | // If we just saw a pack expansion into a non-pack, then directly convert |
5389 | // the remaining arguments, because we don't know what parameters they'll |
5390 | // match up with. |
5391 | if (PackExpansionIntoNonPack) { |
5392 | if (!SugaredArgumentPack.empty()) { |
5393 | // If we were part way through filling in an expanded parameter pack, |
5394 | // fall back to just producing individual arguments. |
5395 | SugaredConverted.insert(I: SugaredConverted.end(), |
5396 | From: SugaredArgumentPack.begin(), |
5397 | To: SugaredArgumentPack.end()); |
5398 | SugaredArgumentPack.clear(); |
5399 | |
5400 | CanonicalConverted.insert(I: CanonicalConverted.end(), |
5401 | From: CanonicalArgumentPack.begin(), |
5402 | To: CanonicalArgumentPack.end()); |
5403 | CanonicalArgumentPack.clear(); |
5404 | } |
5405 | |
5406 | while (ArgIdx < NumArgs) { |
5407 | const TemplateArgument &Arg = NewArgs[ArgIdx].getArgument(); |
5408 | SugaredConverted.push_back(Elt: Arg); |
5409 | CanonicalConverted.push_back( |
5410 | Elt: Context.getCanonicalTemplateArgument(Arg)); |
5411 | ++ArgIdx; |
5412 | } |
5413 | |
5414 | return false; |
5415 | } |
5416 | |
5417 | continue; |
5418 | } |
5419 | |
5420 | // If we're checking a partial template argument list, we're done. |
5421 | if (PartialTemplateArgs) { |
5422 | if ((*Param)->isTemplateParameterPack() && !SugaredArgumentPack.empty()) { |
5423 | SugaredConverted.push_back( |
5424 | Elt: TemplateArgument::CreatePackCopy(Context, Args: SugaredArgumentPack)); |
5425 | CanonicalConverted.push_back( |
5426 | Elt: TemplateArgument::CreatePackCopy(Context, Args: CanonicalArgumentPack)); |
5427 | } |
5428 | return false; |
5429 | } |
5430 | |
5431 | // If we have a template parameter pack with no more corresponding |
5432 | // arguments, just break out now and we'll fill in the argument pack below. |
5433 | if ((*Param)->isTemplateParameterPack()) { |
5434 | assert(!getExpandedPackSize(*Param) && |
5435 | "Should have dealt with this already" ); |
5436 | |
5437 | // A non-expanded parameter pack before the end of the parameter list |
5438 | // only occurs for an ill-formed template parameter list, unless we've |
5439 | // got a partial argument list for a function template, so just bail out. |
5440 | if (Param + 1 != ParamEnd) { |
5441 | assert( |
5442 | (Template->getMostRecentDecl()->getKind() != Decl::Kind::Concept) && |
5443 | "Concept templates must have parameter packs at the end." ); |
5444 | return true; |
5445 | } |
5446 | |
5447 | SugaredConverted.push_back( |
5448 | Elt: TemplateArgument::CreatePackCopy(Context, Args: SugaredArgumentPack)); |
5449 | SugaredArgumentPack.clear(); |
5450 | |
5451 | CanonicalConverted.push_back( |
5452 | Elt: TemplateArgument::CreatePackCopy(Context, Args: CanonicalArgumentPack)); |
5453 | CanonicalArgumentPack.clear(); |
5454 | |
5455 | ++Param; |
5456 | continue; |
5457 | } |
5458 | |
5459 | // Check whether we have a default argument. |
5460 | TemplateArgumentLoc Arg; |
5461 | |
5462 | // Retrieve the default template argument from the template |
5463 | // parameter. For each kind of template parameter, we substitute the |
5464 | // template arguments provided thus far and any "outer" template arguments |
5465 | // (when the template parameter was part of a nested template) into |
5466 | // the default argument. |
5467 | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: *Param)) { |
5468 | if (!hasReachableDefaultArgument(D: TTP)) |
5469 | return diagnoseMissingArgument(S&: *this, Loc: TemplateLoc, TD: Template, D: TTP, |
5470 | Args&: NewArgs); |
5471 | |
5472 | if (SubstDefaultTemplateArgument(SemaRef&: *this, Template, TemplateLoc, RAngleLoc, |
5473 | Param: TTP, SugaredConverted, |
5474 | CanonicalConverted, Output&: Arg)) |
5475 | return true; |
5476 | } else if (NonTypeTemplateParmDecl *NTTP |
5477 | = dyn_cast<NonTypeTemplateParmDecl>(Val: *Param)) { |
5478 | if (!hasReachableDefaultArgument(D: NTTP)) |
5479 | return diagnoseMissingArgument(S&: *this, Loc: TemplateLoc, TD: Template, D: NTTP, |
5480 | Args&: NewArgs); |
5481 | |
5482 | if (SubstDefaultTemplateArgument(SemaRef&: *this, Template, TemplateLoc, RAngleLoc, |
5483 | Param: NTTP, SugaredConverted, |
5484 | CanonicalConverted, Output&: Arg)) |
5485 | return true; |
5486 | } else { |
5487 | TemplateTemplateParmDecl *TempParm |
5488 | = cast<TemplateTemplateParmDecl>(Val: *Param); |
5489 | |
5490 | if (!hasReachableDefaultArgument(D: TempParm)) |
5491 | return diagnoseMissingArgument(S&: *this, Loc: TemplateLoc, TD: Template, D: TempParm, |
5492 | Args&: NewArgs); |
5493 | |
5494 | NestedNameSpecifierLoc QualifierLoc; |
5495 | TemplateName Name = SubstDefaultTemplateArgument( |
5496 | SemaRef&: *this, Template, TemplateLoc, RAngleLoc, Param: TempParm, SugaredConverted, |
5497 | CanonicalConverted, QualifierLoc); |
5498 | if (Name.isNull()) |
5499 | return true; |
5500 | |
5501 | Arg = TemplateArgumentLoc( |
5502 | Context, TemplateArgument(Name), QualifierLoc, |
5503 | TempParm->getDefaultArgument().getTemplateNameLoc()); |
5504 | } |
5505 | |
5506 | // Introduce an instantiation record that describes where we are using |
5507 | // the default template argument. We're not actually instantiating a |
5508 | // template here, we just create this object to put a note into the |
5509 | // context stack. |
5510 | InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, |
5511 | SugaredConverted, |
5512 | SourceRange(TemplateLoc, RAngleLoc)); |
5513 | if (Inst.isInvalid()) |
5514 | return true; |
5515 | |
5516 | // Check the default template argument. |
5517 | if (CheckTemplateArgument(Param: *Param, Arg, Template, TemplateLoc, RAngleLoc, ArgumentPackIndex: 0, |
5518 | SugaredConverted, CanonicalConverted, |
5519 | CTAK: CTAK_Specified)) |
5520 | return true; |
5521 | |
5522 | CanonicalConverted.back().setIsDefaulted(true); |
5523 | |
5524 | // Core issue 150 (assumed resolution): if this is a template template |
5525 | // parameter, keep track of the default template arguments from the |
5526 | // template definition. |
5527 | if (isTemplateTemplateParameter) |
5528 | NewArgs.addArgument(Loc: Arg); |
5529 | |
5530 | // Move to the next template parameter and argument. |
5531 | ++Param; |
5532 | ++ArgIdx; |
5533 | } |
5534 | |
5535 | // If we're performing a partial argument substitution, allow any trailing |
5536 | // pack expansions; they might be empty. This can happen even if |
5537 | // PartialTemplateArgs is false (the list of arguments is complete but |
5538 | // still dependent). |
5539 | if (ArgIdx < NumArgs && CurrentInstantiationScope && |
5540 | CurrentInstantiationScope->getPartiallySubstitutedPack()) { |
5541 | while (ArgIdx < NumArgs && |
5542 | NewArgs[ArgIdx].getArgument().isPackExpansion()) { |
5543 | const TemplateArgument &Arg = NewArgs[ArgIdx++].getArgument(); |
5544 | SugaredConverted.push_back(Elt: Arg); |
5545 | CanonicalConverted.push_back(Elt: Context.getCanonicalTemplateArgument(Arg)); |
5546 | } |
5547 | } |
5548 | |
5549 | // If we have any leftover arguments, then there were too many arguments. |
5550 | // Complain and fail. |
5551 | if (ArgIdx < NumArgs) { |
5552 | Diag(Loc: TemplateLoc, DiagID: diag::err_template_arg_list_different_arity) |
5553 | << /*too many args*/1 |
5554 | << (int)getTemplateNameKindForDiagnostics(Name: TemplateName(Template)) |
5555 | << Template |
5556 | << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc()); |
5557 | NoteTemplateLocation(Decl: *Template, ParamRange: Params->getSourceRange()); |
5558 | return true; |
5559 | } |
5560 | |
5561 | // No problems found with the new argument list, propagate changes back |
5562 | // to caller. |
5563 | if (UpdateArgsWithConversions) |
5564 | TemplateArgs = std::move(NewArgs); |
5565 | |
5566 | if (!PartialTemplateArgs) { |
5567 | // Setup the context/ThisScope for the case where we are needing to |
5568 | // re-instantiate constraints outside of normal instantiation. |
5569 | DeclContext *NewContext = Template->getDeclContext(); |
5570 | |
5571 | // If this template is in a template, make sure we extract the templated |
5572 | // decl. |
5573 | if (auto *TD = dyn_cast<TemplateDecl>(Val: NewContext)) |
5574 | NewContext = Decl::castToDeclContext(TD->getTemplatedDecl()); |
5575 | auto *RD = dyn_cast<CXXRecordDecl>(Val: NewContext); |
5576 | |
5577 | Qualifiers ThisQuals; |
5578 | if (const auto *Method = |
5579 | dyn_cast_or_null<CXXMethodDecl>(Val: Template->getTemplatedDecl())) |
5580 | ThisQuals = Method->getMethodQualifiers(); |
5581 | |
5582 | ContextRAII Context(*this, NewContext); |
5583 | CXXThisScopeRAII(*this, RD, ThisQuals, RD != nullptr); |
5584 | |
5585 | MultiLevelTemplateArgumentList MLTAL = getTemplateInstantiationArgs( |
5586 | D: Template, DC: NewContext, /*Final=*/false, Innermost: CanonicalConverted, |
5587 | /*RelativeToPrimary=*/true, |
5588 | /*Pattern=*/nullptr, |
5589 | /*ForConceptInstantiation=*/ForConstraintInstantiation: true); |
5590 | if (EnsureTemplateArgumentListConstraints( |
5591 | Template, TemplateArgs: MLTAL, |
5592 | TemplateIDRange: SourceRange(TemplateLoc, TemplateArgs.getRAngleLoc()))) { |
5593 | if (ConstraintsNotSatisfied) |
5594 | *ConstraintsNotSatisfied = true; |
5595 | return true; |
5596 | } |
5597 | } |
5598 | |
5599 | return false; |
5600 | } |
5601 | |
5602 | namespace { |
5603 | class UnnamedLocalNoLinkageFinder |
5604 | : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> |
5605 | { |
5606 | Sema &S; |
5607 | SourceRange SR; |
5608 | |
5609 | typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; |
5610 | |
5611 | public: |
5612 | UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } |
5613 | |
5614 | bool Visit(QualType T) { |
5615 | return T.isNull() ? false : inherited::Visit(T: T.getTypePtr()); |
5616 | } |
5617 | |
5618 | #define TYPE(Class, Parent) \ |
5619 | bool Visit##Class##Type(const Class##Type *); |
5620 | #define ABSTRACT_TYPE(Class, Parent) \ |
5621 | bool Visit##Class##Type(const Class##Type *) { return false; } |
5622 | #define NON_CANONICAL_TYPE(Class, Parent) \ |
5623 | bool Visit##Class##Type(const Class##Type *) { return false; } |
5624 | #include "clang/AST/TypeNodes.inc" |
5625 | |
5626 | bool VisitTagDecl(const TagDecl *Tag); |
5627 | bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); |
5628 | }; |
5629 | } // end anonymous namespace |
5630 | |
5631 | bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { |
5632 | return false; |
5633 | } |
5634 | |
5635 | bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { |
5636 | return Visit(T: T->getElementType()); |
5637 | } |
5638 | |
5639 | bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { |
5640 | return Visit(T: T->getPointeeType()); |
5641 | } |
5642 | |
5643 | bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( |
5644 | const BlockPointerType* T) { |
5645 | return Visit(T: T->getPointeeType()); |
5646 | } |
5647 | |
5648 | bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( |
5649 | const LValueReferenceType* T) { |
5650 | return Visit(T: T->getPointeeType()); |
5651 | } |
5652 | |
5653 | bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( |
5654 | const RValueReferenceType* T) { |
5655 | return Visit(T: T->getPointeeType()); |
5656 | } |
5657 | |
5658 | bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( |
5659 | const MemberPointerType* T) { |
5660 | return Visit(T: T->getPointeeType()) || Visit(T: QualType(T->getClass(), 0)); |
5661 | } |
5662 | |
5663 | bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( |
5664 | const ConstantArrayType* T) { |
5665 | return Visit(T: T->getElementType()); |
5666 | } |
5667 | |
5668 | bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( |
5669 | const IncompleteArrayType* T) { |
5670 | return Visit(T: T->getElementType()); |
5671 | } |
5672 | |
5673 | bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( |
5674 | const VariableArrayType* T) { |
5675 | return Visit(T: T->getElementType()); |
5676 | } |
5677 | |
5678 | bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( |
5679 | const DependentSizedArrayType* T) { |
5680 | return Visit(T: T->getElementType()); |
5681 | } |
5682 | |
5683 | bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( |
5684 | const DependentSizedExtVectorType* T) { |
5685 | return Visit(T: T->getElementType()); |
5686 | } |
5687 | |
5688 | bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType( |
5689 | const DependentSizedMatrixType *T) { |
5690 | return Visit(T: T->getElementType()); |
5691 | } |
5692 | |
5693 | bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType( |
5694 | const DependentAddressSpaceType *T) { |
5695 | return Visit(T: T->getPointeeType()); |
5696 | } |
5697 | |
5698 | bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { |
5699 | return Visit(T: T->getElementType()); |
5700 | } |
5701 | |
5702 | bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType( |
5703 | const DependentVectorType *T) { |
5704 | return Visit(T: T->getElementType()); |
5705 | } |
5706 | |
5707 | bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { |
5708 | return Visit(T: T->getElementType()); |
5709 | } |
5710 | |
5711 | bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType( |
5712 | const ConstantMatrixType *T) { |
5713 | return Visit(T: T->getElementType()); |
5714 | } |
5715 | |
5716 | bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( |
5717 | const FunctionProtoType* T) { |
5718 | for (const auto &A : T->param_types()) { |
5719 | if (Visit(T: A)) |
5720 | return true; |
5721 | } |
5722 | |
5723 | return Visit(T: T->getReturnType()); |
5724 | } |
5725 | |
5726 | bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( |
5727 | const FunctionNoProtoType* T) { |
5728 | return Visit(T: T->getReturnType()); |
5729 | } |
5730 | |
5731 | bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( |
5732 | const UnresolvedUsingType*) { |
5733 | return false; |
5734 | } |
5735 | |
5736 | bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { |
5737 | return false; |
5738 | } |
5739 | |
5740 | bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { |
5741 | return Visit(T: T->getUnmodifiedType()); |
5742 | } |
5743 | |
5744 | bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { |
5745 | return false; |
5746 | } |
5747 | |
5748 | bool UnnamedLocalNoLinkageFinder::VisitPackIndexingType( |
5749 | const PackIndexingType *) { |
5750 | return false; |
5751 | } |
5752 | |
5753 | bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( |
5754 | const UnaryTransformType*) { |
5755 | return false; |
5756 | } |
5757 | |
5758 | bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { |
5759 | return Visit(T: T->getDeducedType()); |
5760 | } |
5761 | |
5762 | bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType( |
5763 | const DeducedTemplateSpecializationType *T) { |
5764 | return Visit(T: T->getDeducedType()); |
5765 | } |
5766 | |
5767 | bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { |
5768 | return VisitTagDecl(Tag: T->getDecl()); |
5769 | } |
5770 | |
5771 | bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { |
5772 | return VisitTagDecl(Tag: T->getDecl()); |
5773 | } |
5774 | |
5775 | bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( |
5776 | const TemplateTypeParmType*) { |
5777 | return false; |
5778 | } |
5779 | |
5780 | bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( |
5781 | const SubstTemplateTypeParmPackType *) { |
5782 | return false; |
5783 | } |
5784 | |
5785 | bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( |
5786 | const TemplateSpecializationType*) { |
5787 | return false; |
5788 | } |
5789 | |
5790 | bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( |
5791 | const InjectedClassNameType* T) { |
5792 | return VisitTagDecl(Tag: T->getDecl()); |
5793 | } |
5794 | |
5795 | bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( |
5796 | const DependentNameType* T) { |
5797 | return VisitNestedNameSpecifier(NNS: T->getQualifier()); |
5798 | } |
5799 | |
5800 | bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( |
5801 | const DependentTemplateSpecializationType* T) { |
5802 | if (auto *Q = T->getQualifier()) |
5803 | return VisitNestedNameSpecifier(NNS: Q); |
5804 | return false; |
5805 | } |
5806 | |
5807 | bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( |
5808 | const PackExpansionType* T) { |
5809 | return Visit(T: T->getPattern()); |
5810 | } |
5811 | |
5812 | bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { |
5813 | return false; |
5814 | } |
5815 | |
5816 | bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( |
5817 | const ObjCInterfaceType *) { |
5818 | return false; |
5819 | } |
5820 | |
5821 | bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( |
5822 | const ObjCObjectPointerType *) { |
5823 | return false; |
5824 | } |
5825 | |
5826 | bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { |
5827 | return Visit(T: T->getValueType()); |
5828 | } |
5829 | |
5830 | bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) { |
5831 | return false; |
5832 | } |
5833 | |
5834 | bool UnnamedLocalNoLinkageFinder::VisitBitIntType(const BitIntType *T) { |
5835 | return false; |
5836 | } |
5837 | |
5838 | bool UnnamedLocalNoLinkageFinder::VisitArrayParameterType( |
5839 | const ArrayParameterType *T) { |
5840 | return VisitConstantArrayType(T); |
5841 | } |
5842 | |
5843 | bool UnnamedLocalNoLinkageFinder::VisitDependentBitIntType( |
5844 | const DependentBitIntType *T) { |
5845 | return false; |
5846 | } |
5847 | |
5848 | bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { |
5849 | if (Tag->getDeclContext()->isFunctionOrMethod()) { |
5850 | S.Diag(Loc: SR.getBegin(), |
5851 | DiagID: S.getLangOpts().CPlusPlus11 ? |
5852 | diag::warn_cxx98_compat_template_arg_local_type : |
5853 | diag::ext_template_arg_local_type) |
5854 | << S.Context.getTypeDeclType(Decl: Tag) << SR; |
5855 | return true; |
5856 | } |
5857 | |
5858 | if (!Tag->hasNameForLinkage()) { |
5859 | S.Diag(Loc: SR.getBegin(), |
5860 | DiagID: S.getLangOpts().CPlusPlus11 ? |
5861 | diag::warn_cxx98_compat_template_arg_unnamed_type : |
5862 | diag::ext_template_arg_unnamed_type) << SR; |
5863 | S.Diag(Loc: Tag->getLocation(), DiagID: diag::note_template_unnamed_type_here); |
5864 | return true; |
5865 | } |
5866 | |
5867 | return false; |
5868 | } |
5869 | |
5870 | bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( |
5871 | NestedNameSpecifier *NNS) { |
5872 | assert(NNS); |
5873 | if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS: NNS->getPrefix())) |
5874 | return true; |
5875 | |
5876 | switch (NNS->getKind()) { |
5877 | case NestedNameSpecifier::Identifier: |
5878 | case NestedNameSpecifier::Namespace: |
5879 | case NestedNameSpecifier::NamespaceAlias: |
5880 | case NestedNameSpecifier::Global: |
5881 | case NestedNameSpecifier::Super: |
5882 | return false; |
5883 | |
5884 | case NestedNameSpecifier::TypeSpec: |
5885 | case NestedNameSpecifier::TypeSpecWithTemplate: |
5886 | return Visit(T: QualType(NNS->getAsType(), 0)); |
5887 | } |
5888 | llvm_unreachable("Invalid NestedNameSpecifier::Kind!" ); |
5889 | } |
5890 | |
5891 | bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) { |
5892 | assert(ArgInfo && "invalid TypeSourceInfo" ); |
5893 | QualType Arg = ArgInfo->getType(); |
5894 | SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); |
5895 | QualType CanonArg = Context.getCanonicalType(T: Arg); |
5896 | |
5897 | if (CanonArg->isVariablyModifiedType()) { |
5898 | return Diag(Loc: SR.getBegin(), DiagID: diag::err_variably_modified_template_arg) << Arg; |
5899 | } else if (Context.hasSameUnqualifiedType(T1: Arg, T2: Context.OverloadTy)) { |
5900 | return Diag(Loc: SR.getBegin(), DiagID: diag::err_template_arg_overload_type) << SR; |
5901 | } |
5902 | |
5903 | // C++03 [temp.arg.type]p2: |
5904 | // A local type, a type with no linkage, an unnamed type or a type |
5905 | // compounded from any of these types shall not be used as a |
5906 | // template-argument for a template type-parameter. |
5907 | // |
5908 | // C++11 allows these, and even in C++03 we allow them as an extension with |
5909 | // a warning. |
5910 | if (LangOpts.CPlusPlus11 || CanonArg->hasUnnamedOrLocalType()) { |
5911 | UnnamedLocalNoLinkageFinder Finder(*this, SR); |
5912 | (void)Finder.Visit(T: CanonArg); |
5913 | } |
5914 | |
5915 | return false; |
5916 | } |
5917 | |
5918 | enum NullPointerValueKind { |
5919 | NPV_NotNullPointer, |
5920 | NPV_NullPointer, |
5921 | NPV_Error |
5922 | }; |
5923 | |
5924 | /// Determine whether the given template argument is a null pointer |
5925 | /// value of the appropriate type. |
5926 | static NullPointerValueKind |
5927 | isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, |
5928 | QualType ParamType, Expr *Arg, |
5929 | Decl *Entity = nullptr) { |
5930 | if (Arg->isValueDependent() || Arg->isTypeDependent()) |
5931 | return NPV_NotNullPointer; |
5932 | |
5933 | // dllimport'd entities aren't constant but are available inside of template |
5934 | // arguments. |
5935 | if (Entity && Entity->hasAttr<DLLImportAttr>()) |
5936 | return NPV_NotNullPointer; |
5937 | |
5938 | if (!S.isCompleteType(Loc: Arg->getExprLoc(), T: ParamType)) |
5939 | llvm_unreachable( |
5940 | "Incomplete parameter type in isNullPointerValueTemplateArgument!" ); |
5941 | |
5942 | if (!S.getLangOpts().CPlusPlus11) |
5943 | return NPV_NotNullPointer; |
5944 | |
5945 | // Determine whether we have a constant expression. |
5946 | ExprResult ArgRV = S.DefaultFunctionArrayConversion(E: Arg); |
5947 | if (ArgRV.isInvalid()) |
5948 | return NPV_Error; |
5949 | Arg = ArgRV.get(); |
5950 | |
5951 | Expr::EvalResult EvalResult; |
5952 | SmallVector<PartialDiagnosticAt, 8> Notes; |
5953 | EvalResult.Diag = &Notes; |
5954 | if (!Arg->EvaluateAsRValue(Result&: EvalResult, Ctx: S.Context) || |
5955 | EvalResult.HasSideEffects) { |
5956 | SourceLocation DiagLoc = Arg->getExprLoc(); |
5957 | |
5958 | // If our only note is the usual "invalid subexpression" note, just point |
5959 | // the caret at its location rather than producing an essentially |
5960 | // redundant note. |
5961 | if (Notes.size() == 1 && Notes[0].second.getDiagID() == |
5962 | diag::note_invalid_subexpr_in_const_expr) { |
5963 | DiagLoc = Notes[0].first; |
5964 | Notes.clear(); |
5965 | } |
5966 | |
5967 | S.Diag(Loc: DiagLoc, DiagID: diag::err_template_arg_not_address_constant) |
5968 | << Arg->getType() << Arg->getSourceRange(); |
5969 | for (unsigned I = 0, N = Notes.size(); I != N; ++I) |
5970 | S.Diag(Loc: Notes[I].first, PD: Notes[I].second); |
5971 | |
5972 | S.NoteTemplateParameterLocation(Decl: *Param); |
5973 | return NPV_Error; |
5974 | } |
5975 | |
5976 | // C++11 [temp.arg.nontype]p1: |
5977 | // - an address constant expression of type std::nullptr_t |
5978 | if (Arg->getType()->isNullPtrType()) |
5979 | return NPV_NullPointer; |
5980 | |
5981 | // - a constant expression that evaluates to a null pointer value (4.10); or |
5982 | // - a constant expression that evaluates to a null member pointer value |
5983 | // (4.11); or |
5984 | if ((EvalResult.Val.isLValue() && EvalResult.Val.isNullPointer()) || |
5985 | (EvalResult.Val.isMemberPointer() && |
5986 | !EvalResult.Val.getMemberPointerDecl())) { |
5987 | // If our expression has an appropriate type, we've succeeded. |
5988 | bool ObjCLifetimeConversion; |
5989 | if (S.Context.hasSameUnqualifiedType(T1: Arg->getType(), T2: ParamType) || |
5990 | S.IsQualificationConversion(FromType: Arg->getType(), ToType: ParamType, CStyle: false, |
5991 | ObjCLifetimeConversion)) |
5992 | return NPV_NullPointer; |
5993 | |
5994 | // The types didn't match, but we know we got a null pointer; complain, |
5995 | // then recover as if the types were correct. |
5996 | S.Diag(Loc: Arg->getExprLoc(), DiagID: diag::err_template_arg_wrongtype_null_constant) |
5997 | << Arg->getType() << ParamType << Arg->getSourceRange(); |
5998 | S.NoteTemplateParameterLocation(Decl: *Param); |
5999 | return NPV_NullPointer; |
6000 | } |
6001 | |
6002 | if (EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) { |
6003 | // We found a pointer that isn't null, but doesn't refer to an object. |
6004 | // We could just return NPV_NotNullPointer, but we can print a better |
6005 | // message with the information we have here. |
6006 | S.Diag(Loc: Arg->getExprLoc(), DiagID: diag::err_template_arg_invalid) |
6007 | << EvalResult.Val.getAsString(Ctx: S.Context, Ty: ParamType); |
6008 | S.NoteTemplateParameterLocation(Decl: *Param); |
6009 | return NPV_Error; |
6010 | } |
6011 | |
6012 | // If we don't have a null pointer value, but we do have a NULL pointer |
6013 | // constant, suggest a cast to the appropriate type. |
6014 | if (Arg->isNullPointerConstant(Ctx&: S.Context, NPC: Expr::NPC_NeverValueDependent)) { |
6015 | std::string Code = "static_cast<" + ParamType.getAsString() + ">(" ; |
6016 | S.Diag(Loc: Arg->getExprLoc(), DiagID: diag::err_template_arg_untyped_null_constant) |
6017 | << ParamType << FixItHint::CreateInsertion(InsertionLoc: Arg->getBeginLoc(), Code) |
6018 | << FixItHint::CreateInsertion(InsertionLoc: S.getLocForEndOfToken(Loc: Arg->getEndLoc()), |
6019 | Code: ")" ); |
6020 | S.NoteTemplateParameterLocation(Decl: *Param); |
6021 | return NPV_NullPointer; |
6022 | } |
6023 | |
6024 | // FIXME: If we ever want to support general, address-constant expressions |
6025 | // as non-type template arguments, we should return the ExprResult here to |
6026 | // be interpreted by the caller. |
6027 | return NPV_NotNullPointer; |
6028 | } |
6029 | |
6030 | /// Checks whether the given template argument is compatible with its |
6031 | /// template parameter. |
6032 | static bool CheckTemplateArgumentIsCompatibleWithParameter( |
6033 | Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, |
6034 | Expr *Arg, QualType ArgType) { |
6035 | bool ObjCLifetimeConversion; |
6036 | if (ParamType->isPointerType() && |
6037 | !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() && |
6038 | S.IsQualificationConversion(FromType: ArgType, ToType: ParamType, CStyle: false, |
6039 | ObjCLifetimeConversion)) { |
6040 | // For pointer-to-object types, qualification conversions are |
6041 | // permitted. |
6042 | } else { |
6043 | if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { |
6044 | if (!ParamRef->getPointeeType()->isFunctionType()) { |
6045 | // C++ [temp.arg.nontype]p5b3: |
6046 | // For a non-type template-parameter of type reference to |
6047 | // object, no conversions apply. The type referred to by the |
6048 | // reference may be more cv-qualified than the (otherwise |
6049 | // identical) type of the template- argument. The |
6050 | // template-parameter is bound directly to the |
6051 | // template-argument, which shall be an lvalue. |
6052 | |
6053 | // FIXME: Other qualifiers? |
6054 | unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); |
6055 | unsigned ArgQuals = ArgType.getCVRQualifiers(); |
6056 | |
6057 | if ((ParamQuals | ArgQuals) != ParamQuals) { |
6058 | S.Diag(Loc: Arg->getBeginLoc(), |
6059 | DiagID: diag::err_template_arg_ref_bind_ignores_quals) |
6060 | << ParamType << Arg->getType() << Arg->getSourceRange(); |
6061 | S.NoteTemplateParameterLocation(Decl: *Param); |
6062 | return true; |
6063 | } |
6064 | } |
6065 | } |
6066 | |
6067 | // At this point, the template argument refers to an object or |
6068 | // function with external linkage. We now need to check whether the |
6069 | // argument and parameter types are compatible. |
6070 | if (!S.Context.hasSameUnqualifiedType(T1: ArgType, |
6071 | T2: ParamType.getNonReferenceType())) { |
6072 | // We can't perform this conversion or binding. |
6073 | if (ParamType->isReferenceType()) |
6074 | S.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_template_arg_no_ref_bind) |
6075 | << ParamType << ArgIn->getType() << Arg->getSourceRange(); |
6076 | else |
6077 | S.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_template_arg_not_convertible) |
6078 | << ArgIn->getType() << ParamType << Arg->getSourceRange(); |
6079 | S.NoteTemplateParameterLocation(Decl: *Param); |
6080 | return true; |
6081 | } |
6082 | } |
6083 | |
6084 | return false; |
6085 | } |
6086 | |
6087 | /// Checks whether the given template argument is the address |
6088 | /// of an object or function according to C++ [temp.arg.nontype]p1. |
6089 | static bool CheckTemplateArgumentAddressOfObjectOrFunction( |
6090 | Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, |
6091 | TemplateArgument &SugaredConverted, TemplateArgument &CanonicalConverted) { |
6092 | bool Invalid = false; |
6093 | Expr *Arg = ArgIn; |
6094 | QualType ArgType = Arg->getType(); |
6095 | |
6096 | bool AddressTaken = false; |
6097 | SourceLocation AddrOpLoc; |
6098 | if (S.getLangOpts().MicrosoftExt) { |
6099 | // Microsoft Visual C++ strips all casts, allows an arbitrary number of |
6100 | // dereference and address-of operators. |
6101 | Arg = Arg->IgnoreParenCasts(); |
6102 | |
6103 | bool ExtWarnMSTemplateArg = false; |
6104 | UnaryOperatorKind FirstOpKind; |
6105 | SourceLocation FirstOpLoc; |
6106 | while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: Arg)) { |
6107 | UnaryOperatorKind UnOpKind = UnOp->getOpcode(); |
6108 | if (UnOpKind == UO_Deref) |
6109 | ExtWarnMSTemplateArg = true; |
6110 | if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) { |
6111 | Arg = UnOp->getSubExpr()->IgnoreParenCasts(); |
6112 | if (!AddrOpLoc.isValid()) { |
6113 | FirstOpKind = UnOpKind; |
6114 | FirstOpLoc = UnOp->getOperatorLoc(); |
6115 | } |
6116 | } else |
6117 | break; |
6118 | } |
6119 | if (FirstOpLoc.isValid()) { |
6120 | if (ExtWarnMSTemplateArg) |
6121 | S.Diag(Loc: ArgIn->getBeginLoc(), DiagID: diag::ext_ms_deref_template_argument) |
6122 | << ArgIn->getSourceRange(); |
6123 | |
6124 | if (FirstOpKind == UO_AddrOf) |
6125 | AddressTaken = true; |
6126 | else if (Arg->getType()->isPointerType()) { |
6127 | // We cannot let pointers get dereferenced here, that is obviously not a |
6128 | // constant expression. |
6129 | assert(FirstOpKind == UO_Deref); |
6130 | S.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_template_arg_not_decl_ref) |
6131 | << Arg->getSourceRange(); |
6132 | } |
6133 | } |
6134 | } else { |
6135 | // See through any implicit casts we added to fix the type. |
6136 | Arg = Arg->IgnoreImpCasts(); |
6137 | |
6138 | // C++ [temp.arg.nontype]p1: |
6139 | // |
6140 | // A template-argument for a non-type, non-template |
6141 | // template-parameter shall be one of: [...] |
6142 | // |
6143 | // -- the address of an object or function with external |
6144 | // linkage, including function templates and function |
6145 | // template-ids but excluding non-static class members, |
6146 | // expressed as & id-expression where the & is optional if |
6147 | // the name refers to a function or array, or if the |
6148 | // corresponding template-parameter is a reference; or |
6149 | |
6150 | // In C++98/03 mode, give an extension warning on any extra parentheses. |
6151 | // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 |
6152 | bool = false; |
6153 | while (ParenExpr *Parens = dyn_cast<ParenExpr>(Val: Arg)) { |
6154 | if (!Invalid && !ExtraParens) { |
6155 | S.Diag(Loc: Arg->getBeginLoc(), |
6156 | DiagID: S.getLangOpts().CPlusPlus11 |
6157 | ? diag::warn_cxx98_compat_template_arg_extra_parens |
6158 | : diag::ext_template_arg_extra_parens) |
6159 | << Arg->getSourceRange(); |
6160 | ExtraParens = true; |
6161 | } |
6162 | |
6163 | Arg = Parens->getSubExpr(); |
6164 | } |
6165 | |
6166 | while (SubstNonTypeTemplateParmExpr *subst = |
6167 | dyn_cast<SubstNonTypeTemplateParmExpr>(Val: Arg)) |
6168 | Arg = subst->getReplacement()->IgnoreImpCasts(); |
6169 | |
6170 | if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: Arg)) { |
6171 | if (UnOp->getOpcode() == UO_AddrOf) { |
6172 | Arg = UnOp->getSubExpr(); |
6173 | AddressTaken = true; |
6174 | AddrOpLoc = UnOp->getOperatorLoc(); |
6175 | } |
6176 | } |
6177 | |
6178 | while (SubstNonTypeTemplateParmExpr *subst = |
6179 | dyn_cast<SubstNonTypeTemplateParmExpr>(Val: Arg)) |
6180 | Arg = subst->getReplacement()->IgnoreImpCasts(); |
6181 | } |
6182 | |
6183 | ValueDecl *Entity = nullptr; |
6184 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Arg)) |
6185 | Entity = DRE->getDecl(); |
6186 | else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Val: Arg)) |
6187 | Entity = CUE->getGuidDecl(); |
6188 | |
6189 | // If our parameter has pointer type, check for a null template value. |
6190 | if (ParamType->isPointerType() || ParamType->isNullPtrType()) { |
6191 | switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg: ArgIn, |
6192 | Entity)) { |
6193 | case NPV_NullPointer: |
6194 | S.Diag(Loc: Arg->getExprLoc(), DiagID: diag::warn_cxx98_compat_template_arg_null); |
6195 | SugaredConverted = TemplateArgument(ParamType, |
6196 | /*isNullPtr=*/true); |
6197 | CanonicalConverted = |
6198 | TemplateArgument(S.Context.getCanonicalType(T: ParamType), |
6199 | /*isNullPtr=*/true); |
6200 | return false; |
6201 | |
6202 | case NPV_Error: |
6203 | return true; |
6204 | |
6205 | case NPV_NotNullPointer: |
6206 | break; |
6207 | } |
6208 | } |
6209 | |
6210 | // Stop checking the precise nature of the argument if it is value dependent, |
6211 | // it should be checked when instantiated. |
6212 | if (Arg->isValueDependent()) { |
6213 | SugaredConverted = TemplateArgument(ArgIn); |
6214 | CanonicalConverted = |
6215 | S.Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
6216 | return false; |
6217 | } |
6218 | |
6219 | if (!Entity) { |
6220 | S.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_template_arg_not_decl_ref) |
6221 | << Arg->getSourceRange(); |
6222 | S.NoteTemplateParameterLocation(Decl: *Param); |
6223 | return true; |
6224 | } |
6225 | |
6226 | // Cannot refer to non-static data members |
6227 | if (isa<FieldDecl>(Val: Entity) || isa<IndirectFieldDecl>(Val: Entity)) { |
6228 | S.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_template_arg_field) |
6229 | << Entity << Arg->getSourceRange(); |
6230 | S.NoteTemplateParameterLocation(Decl: *Param); |
6231 | return true; |
6232 | } |
6233 | |
6234 | // Cannot refer to non-static member functions |
6235 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: Entity)) { |
6236 | if (!Method->isStatic()) { |
6237 | S.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_template_arg_method) |
6238 | << Method << Arg->getSourceRange(); |
6239 | S.NoteTemplateParameterLocation(Decl: *Param); |
6240 | return true; |
6241 | } |
6242 | } |
6243 | |
6244 | FunctionDecl *Func = dyn_cast<FunctionDecl>(Val: Entity); |
6245 | VarDecl *Var = dyn_cast<VarDecl>(Val: Entity); |
6246 | MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Val: Entity); |
6247 | |
6248 | // A non-type template argument must refer to an object or function. |
6249 | if (!Func && !Var && !Guid) { |
6250 | // We found something, but we don't know specifically what it is. |
6251 | S.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_template_arg_not_object_or_func) |
6252 | << Arg->getSourceRange(); |
6253 | S.Diag(Loc: Entity->getLocation(), DiagID: diag::note_template_arg_refers_here); |
6254 | return true; |
6255 | } |
6256 | |
6257 | // Address / reference template args must have external linkage in C++98. |
6258 | if (Entity->getFormalLinkage() == Linkage::Internal) { |
6259 | S.Diag(Loc: Arg->getBeginLoc(), |
6260 | DiagID: S.getLangOpts().CPlusPlus11 |
6261 | ? diag::warn_cxx98_compat_template_arg_object_internal |
6262 | : diag::ext_template_arg_object_internal) |
6263 | << !Func << Entity << Arg->getSourceRange(); |
6264 | S.Diag(Loc: Entity->getLocation(), DiagID: diag::note_template_arg_internal_object) |
6265 | << !Func; |
6266 | } else if (!Entity->hasLinkage()) { |
6267 | S.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_template_arg_object_no_linkage) |
6268 | << !Func << Entity << Arg->getSourceRange(); |
6269 | S.Diag(Loc: Entity->getLocation(), DiagID: diag::note_template_arg_internal_object) |
6270 | << !Func; |
6271 | return true; |
6272 | } |
6273 | |
6274 | if (Var) { |
6275 | // A value of reference type is not an object. |
6276 | if (Var->getType()->isReferenceType()) { |
6277 | S.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_template_arg_reference_var) |
6278 | << Var->getType() << Arg->getSourceRange(); |
6279 | S.NoteTemplateParameterLocation(Decl: *Param); |
6280 | return true; |
6281 | } |
6282 | |
6283 | // A template argument must have static storage duration. |
6284 | if (Var->getTLSKind()) { |
6285 | S.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_template_arg_thread_local) |
6286 | << Arg->getSourceRange(); |
6287 | S.Diag(Loc: Var->getLocation(), DiagID: diag::note_template_arg_refers_here); |
6288 | return true; |
6289 | } |
6290 | } |
6291 | |
6292 | if (AddressTaken && ParamType->isReferenceType()) { |
6293 | // If we originally had an address-of operator, but the |
6294 | // parameter has reference type, complain and (if things look |
6295 | // like they will work) drop the address-of operator. |
6296 | if (!S.Context.hasSameUnqualifiedType(T1: Entity->getType(), |
6297 | T2: ParamType.getNonReferenceType())) { |
6298 | S.Diag(Loc: AddrOpLoc, DiagID: diag::err_template_arg_address_of_non_pointer) |
6299 | << ParamType; |
6300 | S.NoteTemplateParameterLocation(Decl: *Param); |
6301 | return true; |
6302 | } |
6303 | |
6304 | S.Diag(Loc: AddrOpLoc, DiagID: diag::err_template_arg_address_of_non_pointer) |
6305 | << ParamType |
6306 | << FixItHint::CreateRemoval(RemoveRange: AddrOpLoc); |
6307 | S.NoteTemplateParameterLocation(Decl: *Param); |
6308 | |
6309 | ArgType = Entity->getType(); |
6310 | } |
6311 | |
6312 | // If the template parameter has pointer type, either we must have taken the |
6313 | // address or the argument must decay to a pointer. |
6314 | if (!AddressTaken && ParamType->isPointerType()) { |
6315 | if (Func) { |
6316 | // Function-to-pointer decay. |
6317 | ArgType = S.Context.getPointerType(T: Func->getType()); |
6318 | } else if (Entity->getType()->isArrayType()) { |
6319 | // Array-to-pointer decay. |
6320 | ArgType = S.Context.getArrayDecayedType(T: Entity->getType()); |
6321 | } else { |
6322 | // If the template parameter has pointer type but the address of |
6323 | // this object was not taken, complain and (possibly) recover by |
6324 | // taking the address of the entity. |
6325 | ArgType = S.Context.getPointerType(T: Entity->getType()); |
6326 | if (!S.Context.hasSameUnqualifiedType(T1: ArgType, T2: ParamType)) { |
6327 | S.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_template_arg_not_address_of) |
6328 | << ParamType; |
6329 | S.NoteTemplateParameterLocation(Decl: *Param); |
6330 | return true; |
6331 | } |
6332 | |
6333 | S.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_template_arg_not_address_of) |
6334 | << ParamType << FixItHint::CreateInsertion(InsertionLoc: Arg->getBeginLoc(), Code: "&" ); |
6335 | |
6336 | S.NoteTemplateParameterLocation(Decl: *Param); |
6337 | } |
6338 | } |
6339 | |
6340 | if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn, |
6341 | Arg, ArgType)) |
6342 | return true; |
6343 | |
6344 | // Create the template argument. |
6345 | SugaredConverted = TemplateArgument(Entity, ParamType); |
6346 | CanonicalConverted = |
6347 | TemplateArgument(cast<ValueDecl>(Val: Entity->getCanonicalDecl()), |
6348 | S.Context.getCanonicalType(T: ParamType)); |
6349 | S.MarkAnyDeclReferenced(Loc: Arg->getBeginLoc(), D: Entity, MightBeOdrUse: false); |
6350 | return false; |
6351 | } |
6352 | |
6353 | /// Checks whether the given template argument is a pointer to |
6354 | /// member constant according to C++ [temp.arg.nontype]p1. |
6355 | static bool |
6356 | CheckTemplateArgumentPointerToMember(Sema &S, NonTypeTemplateParmDecl *Param, |
6357 | QualType ParamType, Expr *&ResultArg, |
6358 | TemplateArgument &SugaredConverted, |
6359 | TemplateArgument &CanonicalConverted) { |
6360 | bool Invalid = false; |
6361 | |
6362 | Expr *Arg = ResultArg; |
6363 | bool ObjCLifetimeConversion; |
6364 | |
6365 | // C++ [temp.arg.nontype]p1: |
6366 | // |
6367 | // A template-argument for a non-type, non-template |
6368 | // template-parameter shall be one of: [...] |
6369 | // |
6370 | // -- a pointer to member expressed as described in 5.3.1. |
6371 | DeclRefExpr *DRE = nullptr; |
6372 | |
6373 | // In C++98/03 mode, give an extension warning on any extra parentheses. |
6374 | // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 |
6375 | bool = false; |
6376 | while (ParenExpr *Parens = dyn_cast<ParenExpr>(Val: Arg)) { |
6377 | if (!Invalid && !ExtraParens) { |
6378 | S.Diag(Loc: Arg->getBeginLoc(), |
6379 | DiagID: S.getLangOpts().CPlusPlus11 |
6380 | ? diag::warn_cxx98_compat_template_arg_extra_parens |
6381 | : diag::ext_template_arg_extra_parens) |
6382 | << Arg->getSourceRange(); |
6383 | ExtraParens = true; |
6384 | } |
6385 | |
6386 | Arg = Parens->getSubExpr(); |
6387 | } |
6388 | |
6389 | while (SubstNonTypeTemplateParmExpr *subst = |
6390 | dyn_cast<SubstNonTypeTemplateParmExpr>(Val: Arg)) |
6391 | Arg = subst->getReplacement()->IgnoreImpCasts(); |
6392 | |
6393 | // A pointer-to-member constant written &Class::member. |
6394 | if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: Arg)) { |
6395 | if (UnOp->getOpcode() == UO_AddrOf) { |
6396 | DRE = dyn_cast<DeclRefExpr>(Val: UnOp->getSubExpr()); |
6397 | if (DRE && !DRE->getQualifier()) |
6398 | DRE = nullptr; |
6399 | } |
6400 | } |
6401 | // A constant of pointer-to-member type. |
6402 | else if ((DRE = dyn_cast<DeclRefExpr>(Val: Arg))) { |
6403 | ValueDecl *VD = DRE->getDecl(); |
6404 | if (VD->getType()->isMemberPointerType()) { |
6405 | if (isa<NonTypeTemplateParmDecl>(Val: VD)) { |
6406 | if (Arg->isTypeDependent() || Arg->isValueDependent()) { |
6407 | SugaredConverted = TemplateArgument(Arg); |
6408 | CanonicalConverted = |
6409 | S.Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
6410 | } else { |
6411 | SugaredConverted = TemplateArgument(VD, ParamType); |
6412 | CanonicalConverted = |
6413 | TemplateArgument(cast<ValueDecl>(Val: VD->getCanonicalDecl()), |
6414 | S.Context.getCanonicalType(T: ParamType)); |
6415 | } |
6416 | return Invalid; |
6417 | } |
6418 | } |
6419 | |
6420 | DRE = nullptr; |
6421 | } |
6422 | |
6423 | ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; |
6424 | |
6425 | // Check for a null pointer value. |
6426 | switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg: ResultArg, |
6427 | Entity)) { |
6428 | case NPV_Error: |
6429 | return true; |
6430 | case NPV_NullPointer: |
6431 | S.Diag(Loc: ResultArg->getExprLoc(), DiagID: diag::warn_cxx98_compat_template_arg_null); |
6432 | SugaredConverted = TemplateArgument(ParamType, |
6433 | /*isNullPtr*/ true); |
6434 | CanonicalConverted = TemplateArgument(S.Context.getCanonicalType(T: ParamType), |
6435 | /*isNullPtr*/ true); |
6436 | return false; |
6437 | case NPV_NotNullPointer: |
6438 | break; |
6439 | } |
6440 | |
6441 | if (S.IsQualificationConversion(FromType: ResultArg->getType(), |
6442 | ToType: ParamType.getNonReferenceType(), CStyle: false, |
6443 | ObjCLifetimeConversion)) { |
6444 | ResultArg = S.ImpCastExprToType(E: ResultArg, Type: ParamType, CK: CK_NoOp, |
6445 | VK: ResultArg->getValueKind()) |
6446 | .get(); |
6447 | } else if (!S.Context.hasSameUnqualifiedType( |
6448 | T1: ResultArg->getType(), T2: ParamType.getNonReferenceType())) { |
6449 | // We can't perform this conversion. |
6450 | S.Diag(Loc: ResultArg->getBeginLoc(), DiagID: diag::err_template_arg_not_convertible) |
6451 | << ResultArg->getType() << ParamType << ResultArg->getSourceRange(); |
6452 | S.NoteTemplateParameterLocation(Decl: *Param); |
6453 | return true; |
6454 | } |
6455 | |
6456 | if (!DRE) |
6457 | return S.Diag(Loc: Arg->getBeginLoc(), |
6458 | DiagID: diag::err_template_arg_not_pointer_to_member_form) |
6459 | << Arg->getSourceRange(); |
6460 | |
6461 | if (isa<FieldDecl>(Val: DRE->getDecl()) || |
6462 | isa<IndirectFieldDecl>(Val: DRE->getDecl()) || |
6463 | isa<CXXMethodDecl>(Val: DRE->getDecl())) { |
6464 | assert((isa<FieldDecl>(DRE->getDecl()) || |
6465 | isa<IndirectFieldDecl>(DRE->getDecl()) || |
6466 | cast<CXXMethodDecl>(DRE->getDecl()) |
6467 | ->isImplicitObjectMemberFunction()) && |
6468 | "Only non-static member pointers can make it here" ); |
6469 | |
6470 | // Okay: this is the address of a non-static member, and therefore |
6471 | // a member pointer constant. |
6472 | if (Arg->isTypeDependent() || Arg->isValueDependent()) { |
6473 | SugaredConverted = TemplateArgument(Arg); |
6474 | CanonicalConverted = |
6475 | S.Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
6476 | } else { |
6477 | ValueDecl *D = DRE->getDecl(); |
6478 | SugaredConverted = TemplateArgument(D, ParamType); |
6479 | CanonicalConverted = |
6480 | TemplateArgument(cast<ValueDecl>(Val: D->getCanonicalDecl()), |
6481 | S.Context.getCanonicalType(T: ParamType)); |
6482 | } |
6483 | return Invalid; |
6484 | } |
6485 | |
6486 | // We found something else, but we don't know specifically what it is. |
6487 | S.Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_template_arg_not_pointer_to_member_form) |
6488 | << Arg->getSourceRange(); |
6489 | S.Diag(Loc: DRE->getDecl()->getLocation(), DiagID: diag::note_template_arg_refers_here); |
6490 | return true; |
6491 | } |
6492 | |
6493 | ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, |
6494 | QualType ParamType, Expr *Arg, |
6495 | TemplateArgument &SugaredConverted, |
6496 | TemplateArgument &CanonicalConverted, |
6497 | CheckTemplateArgumentKind CTAK) { |
6498 | SourceLocation StartLoc = Arg->getBeginLoc(); |
6499 | |
6500 | // If the parameter type somehow involves auto, deduce the type now. |
6501 | DeducedType *DeducedT = ParamType->getContainedDeducedType(); |
6502 | if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) { |
6503 | // During template argument deduction, we allow 'decltype(auto)' to |
6504 | // match an arbitrary dependent argument. |
6505 | // FIXME: The language rules don't say what happens in this case. |
6506 | // FIXME: We get an opaque dependent type out of decltype(auto) if the |
6507 | // expression is merely instantiation-dependent; is this enough? |
6508 | if (Arg->isTypeDependent()) { |
6509 | auto *AT = dyn_cast<AutoType>(Val: DeducedT); |
6510 | if (AT && AT->isDecltypeAuto()) { |
6511 | SugaredConverted = TemplateArgument(Arg); |
6512 | CanonicalConverted = TemplateArgument( |
6513 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted)); |
6514 | return Arg; |
6515 | } |
6516 | } |
6517 | |
6518 | // When checking a deduced template argument, deduce from its type even if |
6519 | // the type is dependent, in order to check the types of non-type template |
6520 | // arguments line up properly in partial ordering. |
6521 | Expr *DeductionArg = Arg; |
6522 | if (auto *PE = dyn_cast<PackExpansionExpr>(Val: DeductionArg)) |
6523 | DeductionArg = PE->getPattern(); |
6524 | TypeSourceInfo *TSI = |
6525 | Context.getTrivialTypeSourceInfo(T: ParamType, Loc: Param->getLocation()); |
6526 | if (isa<DeducedTemplateSpecializationType>(Val: DeducedT)) { |
6527 | InitializedEntity Entity = |
6528 | InitializedEntity::InitializeTemplateParameter(T: ParamType, Param); |
6529 | InitializationKind Kind = InitializationKind::CreateForInit( |
6530 | Loc: DeductionArg->getBeginLoc(), /*DirectInit*/false, Init: DeductionArg); |
6531 | Expr *Inits[1] = {DeductionArg}; |
6532 | ParamType = |
6533 | DeduceTemplateSpecializationFromInitializer(TInfo: TSI, Entity, Kind, Init: Inits); |
6534 | if (ParamType.isNull()) |
6535 | return ExprError(); |
6536 | } else { |
6537 | TemplateDeductionInfo Info(DeductionArg->getExprLoc(), |
6538 | Param->getDepth() + 1); |
6539 | ParamType = QualType(); |
6540 | TemplateDeductionResult Result = |
6541 | DeduceAutoType(AutoTypeLoc: TSI->getTypeLoc(), Initializer: DeductionArg, Result&: ParamType, Info, |
6542 | /*DependentDeduction=*/true, |
6543 | // We do not check constraints right now because the |
6544 | // immediately-declared constraint of the auto type is |
6545 | // also an associated constraint, and will be checked |
6546 | // along with the other associated constraints after |
6547 | // checking the template argument list. |
6548 | /*IgnoreConstraints=*/true); |
6549 | if (Result == TemplateDeductionResult::AlreadyDiagnosed) { |
6550 | if (ParamType.isNull()) |
6551 | return ExprError(); |
6552 | } else if (Result != TemplateDeductionResult::Success) { |
6553 | Diag(Loc: Arg->getExprLoc(), |
6554 | DiagID: diag::err_non_type_template_parm_type_deduction_failure) |
6555 | << Param->getDeclName() << Param->getType() << Arg->getType() |
6556 | << Arg->getSourceRange(); |
6557 | NoteTemplateParameterLocation(Decl: *Param); |
6558 | return ExprError(); |
6559 | } |
6560 | } |
6561 | // CheckNonTypeTemplateParameterType will produce a diagnostic if there's |
6562 | // an error. The error message normally references the parameter |
6563 | // declaration, but here we'll pass the argument location because that's |
6564 | // where the parameter type is deduced. |
6565 | ParamType = CheckNonTypeTemplateParameterType(T: ParamType, Loc: Arg->getExprLoc()); |
6566 | if (ParamType.isNull()) { |
6567 | NoteTemplateParameterLocation(Decl: *Param); |
6568 | return ExprError(); |
6569 | } |
6570 | } |
6571 | |
6572 | // We should have already dropped all cv-qualifiers by now. |
6573 | assert(!ParamType.hasQualifiers() && |
6574 | "non-type template parameter type cannot be qualified" ); |
6575 | |
6576 | // FIXME: When Param is a reference, should we check that Arg is an lvalue? |
6577 | if (CTAK == CTAK_Deduced && |
6578 | (ParamType->isReferenceType() |
6579 | ? !Context.hasSameType(T1: ParamType.getNonReferenceType(), |
6580 | T2: Arg->getType()) |
6581 | : !Context.hasSameUnqualifiedType(T1: ParamType, T2: Arg->getType()))) { |
6582 | // FIXME: If either type is dependent, we skip the check. This isn't |
6583 | // correct, since during deduction we're supposed to have replaced each |
6584 | // template parameter with some unique (non-dependent) placeholder. |
6585 | // FIXME: If the argument type contains 'auto', we carry on and fail the |
6586 | // type check in order to force specific types to be more specialized than |
6587 | // 'auto'. It's not clear how partial ordering with 'auto' is supposed to |
6588 | // work. Similarly for CTAD, when comparing 'A<x>' against 'A'. |
6589 | if ((ParamType->isDependentType() || Arg->isTypeDependent()) && |
6590 | !Arg->getType()->getContainedDeducedType()) { |
6591 | SugaredConverted = TemplateArgument(Arg); |
6592 | CanonicalConverted = TemplateArgument( |
6593 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted)); |
6594 | return Arg; |
6595 | } |
6596 | // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770, |
6597 | // we should actually be checking the type of the template argument in P, |
6598 | // not the type of the template argument deduced from A, against the |
6599 | // template parameter type. |
6600 | Diag(Loc: StartLoc, DiagID: diag::err_deduced_non_type_template_arg_type_mismatch) |
6601 | << Arg->getType() |
6602 | << ParamType.getUnqualifiedType(); |
6603 | NoteTemplateParameterLocation(Decl: *Param); |
6604 | return ExprError(); |
6605 | } |
6606 | |
6607 | // If either the parameter has a dependent type or the argument is |
6608 | // type-dependent, there's nothing we can check now. |
6609 | if (ParamType->isDependentType() || Arg->isTypeDependent()) { |
6610 | // Force the argument to the type of the parameter to maintain invariants. |
6611 | auto *PE = dyn_cast<PackExpansionExpr>(Val: Arg); |
6612 | if (PE) |
6613 | Arg = PE->getPattern(); |
6614 | ExprResult E = ImpCastExprToType( |
6615 | E: Arg, Type: ParamType.getNonLValueExprType(Context), CK: CK_Dependent, |
6616 | VK: ParamType->isLValueReferenceType() ? VK_LValue |
6617 | : ParamType->isRValueReferenceType() ? VK_XValue |
6618 | : VK_PRValue); |
6619 | if (E.isInvalid()) |
6620 | return ExprError(); |
6621 | if (PE) { |
6622 | // Recreate a pack expansion if we unwrapped one. |
6623 | E = new (Context) |
6624 | PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(), |
6625 | PE->getNumExpansions()); |
6626 | } |
6627 | SugaredConverted = TemplateArgument(E.get()); |
6628 | CanonicalConverted = TemplateArgument( |
6629 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted)); |
6630 | return E; |
6631 | } |
6632 | |
6633 | QualType CanonParamType = Context.getCanonicalType(T: ParamType); |
6634 | // Avoid making a copy when initializing a template parameter of class type |
6635 | // from a template parameter object of the same type. This is going beyond |
6636 | // the standard, but is required for soundness: in |
6637 | // template<A a> struct X { X *p; X<a> *q; }; |
6638 | // ... we need p and q to have the same type. |
6639 | // |
6640 | // Similarly, don't inject a call to a copy constructor when initializing |
6641 | // from a template parameter of the same type. |
6642 | Expr *InnerArg = Arg->IgnoreParenImpCasts(); |
6643 | if (ParamType->isRecordType() && isa<DeclRefExpr>(Val: InnerArg) && |
6644 | Context.hasSameUnqualifiedType(T1: ParamType, T2: InnerArg->getType())) { |
6645 | NamedDecl *ND = cast<DeclRefExpr>(Val: InnerArg)->getDecl(); |
6646 | if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(Val: ND)) { |
6647 | |
6648 | SugaredConverted = TemplateArgument(TPO, ParamType); |
6649 | CanonicalConverted = |
6650 | TemplateArgument(TPO->getCanonicalDecl(), CanonParamType); |
6651 | return Arg; |
6652 | } |
6653 | if (isa<NonTypeTemplateParmDecl>(Val: ND)) { |
6654 | SugaredConverted = TemplateArgument(Arg); |
6655 | CanonicalConverted = |
6656 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
6657 | return Arg; |
6658 | } |
6659 | } |
6660 | |
6661 | // The initialization of the parameter from the argument is |
6662 | // a constant-evaluated context. |
6663 | EnterExpressionEvaluationContext ConstantEvaluated( |
6664 | *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
6665 | |
6666 | bool IsConvertedConstantExpression = true; |
6667 | if (isa<InitListExpr>(Val: Arg) || ParamType->isRecordType()) { |
6668 | InitializationKind Kind = InitializationKind::CreateForInit( |
6669 | Loc: Arg->getBeginLoc(), /*DirectInit=*/false, Init: Arg); |
6670 | Expr *Inits[1] = {Arg}; |
6671 | InitializedEntity Entity = |
6672 | InitializedEntity::InitializeTemplateParameter(T: ParamType, Param); |
6673 | InitializationSequence InitSeq(*this, Entity, Kind, Inits); |
6674 | ExprResult Result = InitSeq.Perform(S&: *this, Entity, Kind, Args: Inits); |
6675 | if (Result.isInvalid() || !Result.get()) |
6676 | return ExprError(); |
6677 | Result = ActOnConstantExpression(Res: Result.get()); |
6678 | if (Result.isInvalid() || !Result.get()) |
6679 | return ExprError(); |
6680 | Arg = ActOnFinishFullExpr(Expr: Result.get(), CC: Arg->getBeginLoc(), |
6681 | /*DiscardedValue=*/false, |
6682 | /*IsConstexpr=*/true, /*IsTemplateArgument=*/true) |
6683 | .get(); |
6684 | IsConvertedConstantExpression = false; |
6685 | } |
6686 | |
6687 | if (getLangOpts().CPlusPlus17) { |
6688 | // C++17 [temp.arg.nontype]p1: |
6689 | // A template-argument for a non-type template parameter shall be |
6690 | // a converted constant expression of the type of the template-parameter. |
6691 | APValue Value; |
6692 | ExprResult ArgResult; |
6693 | if (IsConvertedConstantExpression) { |
6694 | ArgResult = BuildConvertedConstantExpression(From: Arg, T: ParamType, |
6695 | CCE: CCEK_TemplateArg, Dest: Param); |
6696 | if (ArgResult.isInvalid()) |
6697 | return ExprError(); |
6698 | } else { |
6699 | ArgResult = Arg; |
6700 | } |
6701 | |
6702 | // For a value-dependent argument, CheckConvertedConstantExpression is |
6703 | // permitted (and expected) to be unable to determine a value. |
6704 | if (ArgResult.get()->isValueDependent()) { |
6705 | SugaredConverted = TemplateArgument(ArgResult.get()); |
6706 | CanonicalConverted = |
6707 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
6708 | return ArgResult; |
6709 | } |
6710 | |
6711 | APValue PreNarrowingValue; |
6712 | ArgResult = EvaluateConvertedConstantExpression( |
6713 | E: ArgResult.get(), T: ParamType, Value, CCE: CCEK_TemplateArg, /*RequireInt=*/ |
6714 | false, PreNarrowingValue); |
6715 | if (ArgResult.isInvalid()) |
6716 | return ExprError(); |
6717 | |
6718 | if (Value.isLValue()) { |
6719 | APValue::LValueBase Base = Value.getLValueBase(); |
6720 | auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>()); |
6721 | // For a non-type template-parameter of pointer or reference type, |
6722 | // the value of the constant expression shall not refer to |
6723 | assert(ParamType->isPointerType() || ParamType->isReferenceType() || |
6724 | ParamType->isNullPtrType()); |
6725 | // -- a temporary object |
6726 | // -- a string literal |
6727 | // -- the result of a typeid expression, or |
6728 | // -- a predefined __func__ variable |
6729 | if (Base && |
6730 | (!VD || |
6731 | isa<LifetimeExtendedTemporaryDecl, UnnamedGlobalConstantDecl>(Val: VD))) { |
6732 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_template_arg_not_decl_ref) |
6733 | << Arg->getSourceRange(); |
6734 | return ExprError(); |
6735 | } |
6736 | |
6737 | if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && VD && |
6738 | VD->getType()->isArrayType() && |
6739 | Value.getLValuePath()[0].getAsArrayIndex() == 0 && |
6740 | !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) { |
6741 | SugaredConverted = TemplateArgument(VD, ParamType); |
6742 | CanonicalConverted = TemplateArgument( |
6743 | cast<ValueDecl>(Val: VD->getCanonicalDecl()), CanonParamType); |
6744 | return ArgResult.get(); |
6745 | } |
6746 | |
6747 | // -- a subobject [until C++20] |
6748 | if (!getLangOpts().CPlusPlus20) { |
6749 | if (!Value.hasLValuePath() || Value.getLValuePath().size() || |
6750 | Value.isLValueOnePastTheEnd()) { |
6751 | Diag(Loc: StartLoc, DiagID: diag::err_non_type_template_arg_subobject) |
6752 | << Value.getAsString(Ctx: Context, Ty: ParamType); |
6753 | return ExprError(); |
6754 | } |
6755 | assert((VD || !ParamType->isReferenceType()) && |
6756 | "null reference should not be a constant expression" ); |
6757 | assert((!VD || !ParamType->isNullPtrType()) && |
6758 | "non-null value of type nullptr_t?" ); |
6759 | } |
6760 | } |
6761 | |
6762 | if (Value.isAddrLabelDiff()) |
6763 | return Diag(Loc: StartLoc, DiagID: diag::err_non_type_template_arg_addr_label_diff); |
6764 | |
6765 | SugaredConverted = TemplateArgument(Context, ParamType, Value); |
6766 | CanonicalConverted = TemplateArgument(Context, CanonParamType, Value); |
6767 | return ArgResult.get(); |
6768 | } |
6769 | |
6770 | // C++ [temp.arg.nontype]p5: |
6771 | // The following conversions are performed on each expression used |
6772 | // as a non-type template-argument. If a non-type |
6773 | // template-argument cannot be converted to the type of the |
6774 | // corresponding template-parameter then the program is |
6775 | // ill-formed. |
6776 | if (ParamType->isIntegralOrEnumerationType()) { |
6777 | // C++11: |
6778 | // -- for a non-type template-parameter of integral or |
6779 | // enumeration type, conversions permitted in a converted |
6780 | // constant expression are applied. |
6781 | // |
6782 | // C++98: |
6783 | // -- for a non-type template-parameter of integral or |
6784 | // enumeration type, integral promotions (4.5) and integral |
6785 | // conversions (4.7) are applied. |
6786 | |
6787 | if (getLangOpts().CPlusPlus11) { |
6788 | // C++ [temp.arg.nontype]p1: |
6789 | // A template-argument for a non-type, non-template template-parameter |
6790 | // shall be one of: |
6791 | // |
6792 | // -- for a non-type template-parameter of integral or enumeration |
6793 | // type, a converted constant expression of the type of the |
6794 | // template-parameter; or |
6795 | llvm::APSInt Value; |
6796 | ExprResult ArgResult = |
6797 | CheckConvertedConstantExpression(From: Arg, T: ParamType, Value, |
6798 | CCE: CCEK_TemplateArg); |
6799 | if (ArgResult.isInvalid()) |
6800 | return ExprError(); |
6801 | |
6802 | // We can't check arbitrary value-dependent arguments. |
6803 | if (ArgResult.get()->isValueDependent()) { |
6804 | SugaredConverted = TemplateArgument(ArgResult.get()); |
6805 | CanonicalConverted = |
6806 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
6807 | return ArgResult; |
6808 | } |
6809 | |
6810 | // Widen the argument value to sizeof(parameter type). This is almost |
6811 | // always a no-op, except when the parameter type is bool. In |
6812 | // that case, this may extend the argument from 1 bit to 8 bits. |
6813 | QualType IntegerType = ParamType; |
6814 | if (const EnumType *Enum = IntegerType->getAs<EnumType>()) |
6815 | IntegerType = Enum->getDecl()->getIntegerType(); |
6816 | Value = Value.extOrTrunc(width: IntegerType->isBitIntType() |
6817 | ? Context.getIntWidth(T: IntegerType) |
6818 | : Context.getTypeSize(T: IntegerType)); |
6819 | |
6820 | SugaredConverted = TemplateArgument(Context, Value, ParamType); |
6821 | CanonicalConverted = |
6822 | TemplateArgument(Context, Value, Context.getCanonicalType(T: ParamType)); |
6823 | return ArgResult; |
6824 | } |
6825 | |
6826 | ExprResult ArgResult = DefaultLvalueConversion(E: Arg); |
6827 | if (ArgResult.isInvalid()) |
6828 | return ExprError(); |
6829 | Arg = ArgResult.get(); |
6830 | |
6831 | QualType ArgType = Arg->getType(); |
6832 | |
6833 | // C++ [temp.arg.nontype]p1: |
6834 | // A template-argument for a non-type, non-template |
6835 | // template-parameter shall be one of: |
6836 | // |
6837 | // -- an integral constant-expression of integral or enumeration |
6838 | // type; or |
6839 | // -- the name of a non-type template-parameter; or |
6840 | llvm::APSInt Value; |
6841 | if (!ArgType->isIntegralOrEnumerationType()) { |
6842 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_template_arg_not_integral_or_enumeral) |
6843 | << ArgType << Arg->getSourceRange(); |
6844 | NoteTemplateParameterLocation(Decl: *Param); |
6845 | return ExprError(); |
6846 | } else if (!Arg->isValueDependent()) { |
6847 | class TmplArgICEDiagnoser : public VerifyICEDiagnoser { |
6848 | QualType T; |
6849 | |
6850 | public: |
6851 | TmplArgICEDiagnoser(QualType T) : T(T) { } |
6852 | |
6853 | SemaDiagnosticBuilder diagnoseNotICE(Sema &S, |
6854 | SourceLocation Loc) override { |
6855 | return S.Diag(Loc, DiagID: diag::err_template_arg_not_ice) << T; |
6856 | } |
6857 | } Diagnoser(ArgType); |
6858 | |
6859 | Arg = VerifyIntegerConstantExpression(E: Arg, Result: &Value, Diagnoser).get(); |
6860 | if (!Arg) |
6861 | return ExprError(); |
6862 | } |
6863 | |
6864 | // From here on out, all we care about is the unqualified form |
6865 | // of the argument type. |
6866 | ArgType = ArgType.getUnqualifiedType(); |
6867 | |
6868 | // Try to convert the argument to the parameter's type. |
6869 | if (Context.hasSameType(T1: ParamType, T2: ArgType)) { |
6870 | // Okay: no conversion necessary |
6871 | } else if (ParamType->isBooleanType()) { |
6872 | // This is an integral-to-boolean conversion. |
6873 | Arg = ImpCastExprToType(E: Arg, Type: ParamType, CK: CK_IntegralToBoolean).get(); |
6874 | } else if (IsIntegralPromotion(From: Arg, FromType: ArgType, ToType: ParamType) || |
6875 | !ParamType->isEnumeralType()) { |
6876 | // This is an integral promotion or conversion. |
6877 | Arg = ImpCastExprToType(E: Arg, Type: ParamType, CK: CK_IntegralCast).get(); |
6878 | } else { |
6879 | // We can't perform this conversion. |
6880 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::err_template_arg_not_convertible) |
6881 | << Arg->getType() << ParamType << Arg->getSourceRange(); |
6882 | NoteTemplateParameterLocation(Decl: *Param); |
6883 | return ExprError(); |
6884 | } |
6885 | |
6886 | // Add the value of this argument to the list of converted |
6887 | // arguments. We use the bitwidth and signedness of the template |
6888 | // parameter. |
6889 | if (Arg->isValueDependent()) { |
6890 | // The argument is value-dependent. Create a new |
6891 | // TemplateArgument with the converted expression. |
6892 | SugaredConverted = TemplateArgument(Arg); |
6893 | CanonicalConverted = |
6894 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
6895 | return Arg; |
6896 | } |
6897 | |
6898 | QualType IntegerType = ParamType; |
6899 | if (const EnumType *Enum = IntegerType->getAs<EnumType>()) { |
6900 | IntegerType = Enum->getDecl()->getIntegerType(); |
6901 | } |
6902 | |
6903 | if (ParamType->isBooleanType()) { |
6904 | // Value must be zero or one. |
6905 | Value = Value != 0; |
6906 | unsigned AllowedBits = Context.getTypeSize(T: IntegerType); |
6907 | if (Value.getBitWidth() != AllowedBits) |
6908 | Value = Value.extOrTrunc(width: AllowedBits); |
6909 | Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); |
6910 | } else { |
6911 | llvm::APSInt OldValue = Value; |
6912 | |
6913 | // Coerce the template argument's value to the value it will have |
6914 | // based on the template parameter's type. |
6915 | unsigned AllowedBits = IntegerType->isBitIntType() |
6916 | ? Context.getIntWidth(T: IntegerType) |
6917 | : Context.getTypeSize(T: IntegerType); |
6918 | if (Value.getBitWidth() != AllowedBits) |
6919 | Value = Value.extOrTrunc(width: AllowedBits); |
6920 | Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); |
6921 | |
6922 | // Complain if an unsigned parameter received a negative value. |
6923 | if (IntegerType->isUnsignedIntegerOrEnumerationType() && |
6924 | (OldValue.isSigned() && OldValue.isNegative())) { |
6925 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::warn_template_arg_negative) |
6926 | << toString(I: OldValue, Radix: 10) << toString(I: Value, Radix: 10) << Param->getType() |
6927 | << Arg->getSourceRange(); |
6928 | NoteTemplateParameterLocation(Decl: *Param); |
6929 | } |
6930 | |
6931 | // Complain if we overflowed the template parameter's type. |
6932 | unsigned RequiredBits; |
6933 | if (IntegerType->isUnsignedIntegerOrEnumerationType()) |
6934 | RequiredBits = OldValue.getActiveBits(); |
6935 | else if (OldValue.isUnsigned()) |
6936 | RequiredBits = OldValue.getActiveBits() + 1; |
6937 | else |
6938 | RequiredBits = OldValue.getSignificantBits(); |
6939 | if (RequiredBits > AllowedBits) { |
6940 | Diag(Loc: Arg->getBeginLoc(), DiagID: diag::warn_template_arg_too_large) |
6941 | << toString(I: OldValue, Radix: 10) << toString(I: Value, Radix: 10) << Param->getType() |
6942 | << Arg->getSourceRange(); |
6943 | NoteTemplateParameterLocation(Decl: *Param); |
6944 | } |
6945 | } |
6946 | |
6947 | QualType T = ParamType->isEnumeralType() ? ParamType : IntegerType; |
6948 | SugaredConverted = TemplateArgument(Context, Value, T); |
6949 | CanonicalConverted = |
6950 | TemplateArgument(Context, Value, Context.getCanonicalType(T)); |
6951 | return Arg; |
6952 | } |
6953 | |
6954 | QualType ArgType = Arg->getType(); |
6955 | DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction |
6956 | |
6957 | // Handle pointer-to-function, reference-to-function, and |
6958 | // pointer-to-member-function all in (roughly) the same way. |
6959 | if (// -- For a non-type template-parameter of type pointer to |
6960 | // function, only the function-to-pointer conversion (4.3) is |
6961 | // applied. If the template-argument represents a set of |
6962 | // overloaded functions (or a pointer to such), the matching |
6963 | // function is selected from the set (13.4). |
6964 | (ParamType->isPointerType() && |
6965 | ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) || |
6966 | // -- For a non-type template-parameter of type reference to |
6967 | // function, no conversions apply. If the template-argument |
6968 | // represents a set of overloaded functions, the matching |
6969 | // function is selected from the set (13.4). |
6970 | (ParamType->isReferenceType() && |
6971 | ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) || |
6972 | // -- For a non-type template-parameter of type pointer to |
6973 | // member function, no conversions apply. If the |
6974 | // template-argument represents a set of overloaded member |
6975 | // functions, the matching member function is selected from |
6976 | // the set (13.4). |
6977 | (ParamType->isMemberPointerType() && |
6978 | ParamType->castAs<MemberPointerType>()->getPointeeType() |
6979 | ->isFunctionType())) { |
6980 | |
6981 | if (Arg->getType() == Context.OverloadTy) { |
6982 | if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(AddressOfExpr: Arg, TargetType: ParamType, |
6983 | Complain: true, |
6984 | Found&: FoundResult)) { |
6985 | if (DiagnoseUseOfDecl(D: Fn, Locs: Arg->getBeginLoc())) |
6986 | return ExprError(); |
6987 | |
6988 | ExprResult Res = FixOverloadedFunctionReference(E: Arg, FoundDecl: FoundResult, Fn); |
6989 | if (Res.isInvalid()) |
6990 | return ExprError(); |
6991 | Arg = Res.get(); |
6992 | ArgType = Arg->getType(); |
6993 | } else |
6994 | return ExprError(); |
6995 | } |
6996 | |
6997 | if (!ParamType->isMemberPointerType()) { |
6998 | if (CheckTemplateArgumentAddressOfObjectOrFunction( |
6999 | S&: *this, Param, ParamType, ArgIn: Arg, SugaredConverted, |
7000 | CanonicalConverted)) |
7001 | return ExprError(); |
7002 | return Arg; |
7003 | } |
7004 | |
7005 | if (CheckTemplateArgumentPointerToMember( |
7006 | S&: *this, Param, ParamType, ResultArg&: Arg, SugaredConverted, CanonicalConverted)) |
7007 | return ExprError(); |
7008 | return Arg; |
7009 | } |
7010 | |
7011 | if (ParamType->isPointerType()) { |
7012 | // -- for a non-type template-parameter of type pointer to |
7013 | // object, qualification conversions (4.4) and the |
7014 | // array-to-pointer conversion (4.2) are applied. |
7015 | // C++0x also allows a value of std::nullptr_t. |
7016 | assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && |
7017 | "Only object pointers allowed here" ); |
7018 | |
7019 | if (CheckTemplateArgumentAddressOfObjectOrFunction( |
7020 | S&: *this, Param, ParamType, ArgIn: Arg, SugaredConverted, CanonicalConverted)) |
7021 | return ExprError(); |
7022 | return Arg; |
7023 | } |
7024 | |
7025 | if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { |
7026 | // -- For a non-type template-parameter of type reference to |
7027 | // object, no conversions apply. The type referred to by the |
7028 | // reference may be more cv-qualified than the (otherwise |
7029 | // identical) type of the template-argument. The |
7030 | // template-parameter is bound directly to the |
7031 | // template-argument, which must be an lvalue. |
7032 | assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && |
7033 | "Only object references allowed here" ); |
7034 | |
7035 | if (Arg->getType() == Context.OverloadTy) { |
7036 | if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(AddressOfExpr: Arg, |
7037 | TargetType: ParamRefType->getPointeeType(), |
7038 | Complain: true, |
7039 | Found&: FoundResult)) { |
7040 | if (DiagnoseUseOfDecl(D: Fn, Locs: Arg->getBeginLoc())) |
7041 | return ExprError(); |
7042 | ExprResult Res = FixOverloadedFunctionReference(E: Arg, FoundDecl: FoundResult, Fn); |
7043 | if (Res.isInvalid()) |
7044 | return ExprError(); |
7045 | Arg = Res.get(); |
7046 | ArgType = Arg->getType(); |
7047 | } else |
7048 | return ExprError(); |
7049 | } |
7050 | |
7051 | if (CheckTemplateArgumentAddressOfObjectOrFunction( |
7052 | S&: *this, Param, ParamType, ArgIn: Arg, SugaredConverted, CanonicalConverted)) |
7053 | return ExprError(); |
7054 | return Arg; |
7055 | } |
7056 | |
7057 | // Deal with parameters of type std::nullptr_t. |
7058 | if (ParamType->isNullPtrType()) { |
7059 | if (Arg->isTypeDependent() || Arg->isValueDependent()) { |
7060 | SugaredConverted = TemplateArgument(Arg); |
7061 | CanonicalConverted = |
7062 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
7063 | return Arg; |
7064 | } |
7065 | |
7066 | switch (isNullPointerValueTemplateArgument(S&: *this, Param, ParamType, Arg)) { |
7067 | case NPV_NotNullPointer: |
7068 | Diag(Loc: Arg->getExprLoc(), DiagID: diag::err_template_arg_not_convertible) |
7069 | << Arg->getType() << ParamType; |
7070 | NoteTemplateParameterLocation(Decl: *Param); |
7071 | return ExprError(); |
7072 | |
7073 | case NPV_Error: |
7074 | return ExprError(); |
7075 | |
7076 | case NPV_NullPointer: |
7077 | Diag(Loc: Arg->getExprLoc(), DiagID: diag::warn_cxx98_compat_template_arg_null); |
7078 | SugaredConverted = TemplateArgument(ParamType, |
7079 | /*isNullPtr=*/true); |
7080 | CanonicalConverted = TemplateArgument(Context.getCanonicalType(T: ParamType), |
7081 | /*isNullPtr=*/true); |
7082 | return Arg; |
7083 | } |
7084 | } |
7085 | |
7086 | // -- For a non-type template-parameter of type pointer to data |
7087 | // member, qualification conversions (4.4) are applied. |
7088 | assert(ParamType->isMemberPointerType() && "Only pointers to members remain" ); |
7089 | |
7090 | if (CheckTemplateArgumentPointerToMember( |
7091 | S&: *this, Param, ParamType, ResultArg&: Arg, SugaredConverted, CanonicalConverted)) |
7092 | return ExprError(); |
7093 | return Arg; |
7094 | } |
7095 | |
7096 | static void DiagnoseTemplateParameterListArityMismatch( |
7097 | Sema &S, TemplateParameterList *New, TemplateParameterList *Old, |
7098 | Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc); |
7099 | |
7100 | bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param, |
7101 | TemplateParameterList *Params, |
7102 | TemplateArgumentLoc &Arg, |
7103 | bool IsDeduced) { |
7104 | TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); |
7105 | TemplateDecl *Template = Name.getAsTemplateDecl(); |
7106 | if (!Template) { |
7107 | // Any dependent template name is fine. |
7108 | assert(Name.isDependent() && "Non-dependent template isn't a declaration?" ); |
7109 | return false; |
7110 | } |
7111 | |
7112 | if (Template->isInvalidDecl()) |
7113 | return true; |
7114 | |
7115 | // C++0x [temp.arg.template]p1: |
7116 | // A template-argument for a template template-parameter shall be |
7117 | // the name of a class template or an alias template, expressed as an |
7118 | // id-expression. When the template-argument names a class template, only |
7119 | // primary class templates are considered when matching the |
7120 | // template template argument with the corresponding parameter; |
7121 | // partial specializations are not considered even if their |
7122 | // parameter lists match that of the template template parameter. |
7123 | // |
7124 | // Note that we also allow template template parameters here, which |
7125 | // will happen when we are dealing with, e.g., class template |
7126 | // partial specializations. |
7127 | if (!isa<ClassTemplateDecl>(Val: Template) && |
7128 | !isa<TemplateTemplateParmDecl>(Val: Template) && |
7129 | !isa<TypeAliasTemplateDecl>(Val: Template) && |
7130 | !isa<BuiltinTemplateDecl>(Val: Template)) { |
7131 | assert(isa<FunctionTemplateDecl>(Template) && |
7132 | "Only function templates are possible here" ); |
7133 | Diag(Loc: Arg.getLocation(), DiagID: diag::err_template_arg_not_valid_template); |
7134 | Diag(Loc: Template->getLocation(), DiagID: diag::note_template_arg_refers_here_func) |
7135 | << Template; |
7136 | } |
7137 | |
7138 | // C++1z [temp.arg.template]p3: (DR 150) |
7139 | // A template-argument matches a template template-parameter P when P |
7140 | // is at least as specialized as the template-argument A. |
7141 | if (getLangOpts().RelaxedTemplateTemplateArgs) { |
7142 | // Quick check for the common case: |
7143 | // If P contains a parameter pack, then A [...] matches P if each of A's |
7144 | // template parameters matches the corresponding template parameter in |
7145 | // the template-parameter-list of P. |
7146 | if (TemplateParameterListsAreEqual( |
7147 | New: Template->getTemplateParameters(), Old: Params, Complain: false, |
7148 | Kind: TPL_TemplateTemplateArgumentMatch, TemplateArgLoc: Arg.getLocation()) && |
7149 | // If the argument has no associated constraints, then the parameter is |
7150 | // definitely at least as specialized as the argument. |
7151 | // Otherwise - we need a more thorough check. |
7152 | !Template->hasAssociatedConstraints()) |
7153 | return false; |
7154 | |
7155 | if (isTemplateTemplateParameterAtLeastAsSpecializedAs( |
7156 | PParam: Params, AArg: Template, Loc: Arg.getLocation(), IsDeduced)) { |
7157 | // P2113 |
7158 | // C++20[temp.func.order]p2 |
7159 | // [...] If both deductions succeed, the partial ordering selects the |
7160 | // more constrained template (if one exists) as determined below. |
7161 | SmallVector<const Expr *, 3> ParamsAC, TemplateAC; |
7162 | Params->getAssociatedConstraints(AC&: ParamsAC); |
7163 | // C++2a[temp.arg.template]p3 |
7164 | // [...] In this comparison, if P is unconstrained, the constraints on A |
7165 | // are not considered. |
7166 | if (ParamsAC.empty()) |
7167 | return false; |
7168 | |
7169 | Template->getAssociatedConstraints(AC&: TemplateAC); |
7170 | |
7171 | bool IsParamAtLeastAsConstrained; |
7172 | if (IsAtLeastAsConstrained(D1: Param, AC1: ParamsAC, D2: Template, AC2: TemplateAC, |
7173 | Result&: IsParamAtLeastAsConstrained)) |
7174 | return true; |
7175 | if (!IsParamAtLeastAsConstrained) { |
7176 | Diag(Loc: Arg.getLocation(), |
7177 | DiagID: diag::err_template_template_parameter_not_at_least_as_constrained) |
7178 | << Template << Param << Arg.getSourceRange(); |
7179 | Diag(Loc: Param->getLocation(), DiagID: diag::note_entity_declared_at) << Param; |
7180 | Diag(Loc: Template->getLocation(), DiagID: diag::note_entity_declared_at) |
7181 | << Template; |
7182 | MaybeEmitAmbiguousAtomicConstraintsDiagnostic(D1: Param, AC1: ParamsAC, D2: Template, |
7183 | AC2: TemplateAC); |
7184 | return true; |
7185 | } |
7186 | return false; |
7187 | } |
7188 | // FIXME: Produce better diagnostics for deduction failures. |
7189 | } |
7190 | |
7191 | return !TemplateParameterListsAreEqual(New: Template->getTemplateParameters(), |
7192 | Old: Params, |
7193 | Complain: true, |
7194 | Kind: TPL_TemplateTemplateArgumentMatch, |
7195 | TemplateArgLoc: Arg.getLocation()); |
7196 | } |
7197 | |
7198 | static Sema::SemaDiagnosticBuilder noteLocation(Sema &S, const NamedDecl &Decl, |
7199 | unsigned HereDiagID, |
7200 | unsigned ExternalDiagID) { |
7201 | if (Decl.getLocation().isValid()) |
7202 | return S.Diag(Loc: Decl.getLocation(), DiagID: HereDiagID); |
7203 | |
7204 | SmallString<128> Str; |
7205 | llvm::raw_svector_ostream Out(Str); |
7206 | PrintingPolicy PP = S.getPrintingPolicy(); |
7207 | PP.TerseOutput = 1; |
7208 | Decl.print(Out, Policy: PP); |
7209 | return S.Diag(Loc: Decl.getLocation(), DiagID: ExternalDiagID) << Out.str(); |
7210 | } |
7211 | |
7212 | void Sema::NoteTemplateLocation(const NamedDecl &Decl, |
7213 | std::optional<SourceRange> ParamRange) { |
7214 | SemaDiagnosticBuilder DB = |
7215 | noteLocation(S&: *this, Decl, HereDiagID: diag::note_template_decl_here, |
7216 | ExternalDiagID: diag::note_template_decl_external); |
7217 | if (ParamRange && ParamRange->isValid()) { |
7218 | assert(Decl.getLocation().isValid() && |
7219 | "Parameter range has location when Decl does not" ); |
7220 | DB << *ParamRange; |
7221 | } |
7222 | } |
7223 | |
7224 | void Sema::NoteTemplateParameterLocation(const NamedDecl &Decl) { |
7225 | noteLocation(S&: *this, Decl, HereDiagID: diag::note_template_param_here, |
7226 | ExternalDiagID: diag::note_template_param_external); |
7227 | } |
7228 | |
7229 | ExprResult Sema::BuildExpressionFromDeclTemplateArgument( |
7230 | const TemplateArgument &Arg, QualType ParamType, SourceLocation Loc, |
7231 | NamedDecl *TemplateParam) { |
7232 | // C++ [temp.param]p8: |
7233 | // |
7234 | // A non-type template-parameter of type "array of T" or |
7235 | // "function returning T" is adjusted to be of type "pointer to |
7236 | // T" or "pointer to function returning T", respectively. |
7237 | if (ParamType->isArrayType()) |
7238 | ParamType = Context.getArrayDecayedType(T: ParamType); |
7239 | else if (ParamType->isFunctionType()) |
7240 | ParamType = Context.getPointerType(T: ParamType); |
7241 | |
7242 | // For a NULL non-type template argument, return nullptr casted to the |
7243 | // parameter's type. |
7244 | if (Arg.getKind() == TemplateArgument::NullPtr) { |
7245 | return ImpCastExprToType( |
7246 | E: new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), |
7247 | Type: ParamType, |
7248 | CK: ParamType->getAs<MemberPointerType>() |
7249 | ? CK_NullToMemberPointer |
7250 | : CK_NullToPointer); |
7251 | } |
7252 | assert(Arg.getKind() == TemplateArgument::Declaration && |
7253 | "Only declaration template arguments permitted here" ); |
7254 | |
7255 | ValueDecl *VD = Arg.getAsDecl(); |
7256 | |
7257 | CXXScopeSpec SS; |
7258 | if (ParamType->isMemberPointerType()) { |
7259 | // If this is a pointer to member, we need to use a qualified name to |
7260 | // form a suitable pointer-to-member constant. |
7261 | assert(VD->getDeclContext()->isRecord() && |
7262 | (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || |
7263 | isa<IndirectFieldDecl>(VD))); |
7264 | QualType ClassType |
7265 | = Context.getTypeDeclType(Decl: cast<RecordDecl>(Val: VD->getDeclContext())); |
7266 | NestedNameSpecifier *Qualifier |
7267 | = NestedNameSpecifier::Create(Context, Prefix: nullptr, Template: false, |
7268 | T: ClassType.getTypePtr()); |
7269 | SS.MakeTrivial(Context, Qualifier, R: Loc); |
7270 | } |
7271 | |
7272 | ExprResult RefExpr = BuildDeclarationNameExpr( |
7273 | SS, NameInfo: DeclarationNameInfo(VD->getDeclName(), Loc), D: VD); |
7274 | if (RefExpr.isInvalid()) |
7275 | return ExprError(); |
7276 | |
7277 | // For a pointer, the argument declaration is the pointee. Take its address. |
7278 | QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0); |
7279 | if (ParamType->isPointerType() && !ElemT.isNull() && |
7280 | Context.hasSimilarType(T1: ElemT, T2: ParamType->getPointeeType())) { |
7281 | // Decay an array argument if we want a pointer to its first element. |
7282 | RefExpr = DefaultFunctionArrayConversion(E: RefExpr.get()); |
7283 | if (RefExpr.isInvalid()) |
7284 | return ExprError(); |
7285 | } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { |
7286 | // For any other pointer, take the address (or form a pointer-to-member). |
7287 | RefExpr = CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_AddrOf, InputExpr: RefExpr.get()); |
7288 | if (RefExpr.isInvalid()) |
7289 | return ExprError(); |
7290 | } else if (ParamType->isRecordType()) { |
7291 | assert(isa<TemplateParamObjectDecl>(VD) && |
7292 | "arg for class template param not a template parameter object" ); |
7293 | // No conversions apply in this case. |
7294 | return RefExpr; |
7295 | } else { |
7296 | assert(ParamType->isReferenceType() && |
7297 | "unexpected type for decl template argument" ); |
7298 | if (NonTypeTemplateParmDecl *NTTP = |
7299 | dyn_cast_if_present<NonTypeTemplateParmDecl>(Val: TemplateParam)) { |
7300 | QualType TemplateParamType = NTTP->getType(); |
7301 | const AutoType *AT = TemplateParamType->getAs<AutoType>(); |
7302 | if (AT && AT->isDecltypeAuto()) { |
7303 | RefExpr = new (getASTContext()) SubstNonTypeTemplateParmExpr( |
7304 | ParamType->getPointeeType(), RefExpr.get()->getValueKind(), |
7305 | RefExpr.get()->getExprLoc(), RefExpr.get(), VD, NTTP->getIndex(), |
7306 | /*PackIndex=*/std::nullopt, |
7307 | /*RefParam=*/true); |
7308 | } |
7309 | } |
7310 | } |
7311 | |
7312 | // At this point we should have the right value category. |
7313 | assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() && |
7314 | "value kind mismatch for non-type template argument" ); |
7315 | |
7316 | // The type of the template parameter can differ from the type of the |
7317 | // argument in various ways; convert it now if necessary. |
7318 | QualType DestExprType = ParamType.getNonLValueExprType(Context); |
7319 | if (!Context.hasSameType(T1: RefExpr.get()->getType(), T2: DestExprType)) { |
7320 | CastKind CK; |
7321 | QualType Ignored; |
7322 | if (Context.hasSimilarType(T1: RefExpr.get()->getType(), T2: DestExprType) || |
7323 | IsFunctionConversion(FromType: RefExpr.get()->getType(), ToType: DestExprType, ResultTy&: Ignored)) { |
7324 | CK = CK_NoOp; |
7325 | } else if (ParamType->isVoidPointerType() && |
7326 | RefExpr.get()->getType()->isPointerType()) { |
7327 | CK = CK_BitCast; |
7328 | } else { |
7329 | // FIXME: Pointers to members can need conversion derived-to-base or |
7330 | // base-to-derived conversions. We currently don't retain enough |
7331 | // information to convert properly (we need to track a cast path or |
7332 | // subobject number in the template argument). |
7333 | llvm_unreachable( |
7334 | "unexpected conversion required for non-type template argument" ); |
7335 | } |
7336 | RefExpr = ImpCastExprToType(E: RefExpr.get(), Type: DestExprType, CK, |
7337 | VK: RefExpr.get()->getValueKind()); |
7338 | } |
7339 | |
7340 | return RefExpr; |
7341 | } |
7342 | |
7343 | /// Construct a new expression that refers to the given |
7344 | /// integral template argument with the given source-location |
7345 | /// information. |
7346 | /// |
7347 | /// This routine takes care of the mapping from an integral template |
7348 | /// argument (which may have any integral type) to the appropriate |
7349 | /// literal value. |
7350 | static Expr *BuildExpressionFromIntegralTemplateArgumentValue( |
7351 | Sema &S, QualType OrigT, const llvm::APSInt &Int, SourceLocation Loc) { |
7352 | assert(OrigT->isIntegralOrEnumerationType()); |
7353 | |
7354 | // If this is an enum type that we're instantiating, we need to use an integer |
7355 | // type the same size as the enumerator. We don't want to build an |
7356 | // IntegerLiteral with enum type. The integer type of an enum type can be of |
7357 | // any integral type with C++11 enum classes, make sure we create the right |
7358 | // type of literal for it. |
7359 | QualType T = OrigT; |
7360 | if (const EnumType *ET = OrigT->getAs<EnumType>()) |
7361 | T = ET->getDecl()->getIntegerType(); |
7362 | |
7363 | Expr *E; |
7364 | if (T->isAnyCharacterType()) { |
7365 | CharacterLiteralKind Kind; |
7366 | if (T->isWideCharType()) |
7367 | Kind = CharacterLiteralKind::Wide; |
7368 | else if (T->isChar8Type() && S.getLangOpts().Char8) |
7369 | Kind = CharacterLiteralKind::UTF8; |
7370 | else if (T->isChar16Type()) |
7371 | Kind = CharacterLiteralKind::UTF16; |
7372 | else if (T->isChar32Type()) |
7373 | Kind = CharacterLiteralKind::UTF32; |
7374 | else |
7375 | Kind = CharacterLiteralKind::Ascii; |
7376 | |
7377 | E = new (S.Context) CharacterLiteral(Int.getZExtValue(), Kind, T, Loc); |
7378 | } else if (T->isBooleanType()) { |
7379 | E = CXXBoolLiteralExpr::Create(C: S.Context, Val: Int.getBoolValue(), Ty: T, Loc); |
7380 | } else { |
7381 | E = IntegerLiteral::Create(C: S.Context, V: Int, type: T, l: Loc); |
7382 | } |
7383 | |
7384 | if (OrigT->isEnumeralType()) { |
7385 | // FIXME: This is a hack. We need a better way to handle substituted |
7386 | // non-type template parameters. |
7387 | E = CStyleCastExpr::Create(Context: S.Context, T: OrigT, VK: VK_PRValue, K: CK_IntegralCast, Op: E, |
7388 | BasePath: nullptr, FPO: S.CurFPFeatureOverrides(), |
7389 | WrittenTy: S.Context.getTrivialTypeSourceInfo(T: OrigT, Loc), |
7390 | L: Loc, R: Loc); |
7391 | } |
7392 | |
7393 | return E; |
7394 | } |
7395 | |
7396 | static Expr *BuildExpressionFromNonTypeTemplateArgumentValue( |
7397 | Sema &S, QualType T, const APValue &Val, SourceLocation Loc) { |
7398 | auto MakeInitList = [&](ArrayRef<Expr *> Elts) -> Expr * { |
7399 | auto *ILE = new (S.Context) InitListExpr(S.Context, Loc, Elts, Loc); |
7400 | ILE->setType(T); |
7401 | return ILE; |
7402 | }; |
7403 | |
7404 | switch (Val.getKind()) { |
7405 | case APValue::AddrLabelDiff: |
7406 | // This cannot occur in a template argument at all. |
7407 | case APValue::Array: |
7408 | case APValue::Struct: |
7409 | case APValue::Union: |
7410 | // These can only occur within a template parameter object, which is |
7411 | // represented as a TemplateArgument::Declaration. |
7412 | llvm_unreachable("unexpected template argument value" ); |
7413 | |
7414 | case APValue::Int: |
7415 | return BuildExpressionFromIntegralTemplateArgumentValue(S, OrigT: T, Int: Val.getInt(), |
7416 | Loc); |
7417 | |
7418 | case APValue::Float: |
7419 | return FloatingLiteral::Create(C: S.Context, V: Val.getFloat(), /*IsExact=*/isexact: true, |
7420 | Type: T, L: Loc); |
7421 | |
7422 | case APValue::FixedPoint: |
7423 | return FixedPointLiteral::CreateFromRawInt( |
7424 | C: S.Context, V: Val.getFixedPoint().getValue(), type: T, l: Loc, |
7425 | Scale: Val.getFixedPoint().getScale()); |
7426 | |
7427 | case APValue::ComplexInt: { |
7428 | QualType ElemT = T->castAs<ComplexType>()->getElementType(); |
7429 | return MakeInitList({BuildExpressionFromIntegralTemplateArgumentValue( |
7430 | S, OrigT: ElemT, Int: Val.getComplexIntReal(), Loc), |
7431 | BuildExpressionFromIntegralTemplateArgumentValue( |
7432 | S, OrigT: ElemT, Int: Val.getComplexIntImag(), Loc)}); |
7433 | } |
7434 | |
7435 | case APValue::ComplexFloat: { |
7436 | QualType ElemT = T->castAs<ComplexType>()->getElementType(); |
7437 | return MakeInitList( |
7438 | {FloatingLiteral::Create(C: S.Context, V: Val.getComplexFloatReal(), isexact: true, |
7439 | Type: ElemT, L: Loc), |
7440 | FloatingLiteral::Create(C: S.Context, V: Val.getComplexFloatImag(), isexact: true, |
7441 | Type: ElemT, L: Loc)}); |
7442 | } |
7443 | |
7444 | case APValue::Vector: { |
7445 | QualType ElemT = T->castAs<VectorType>()->getElementType(); |
7446 | llvm::SmallVector<Expr *, 8> Elts; |
7447 | for (unsigned I = 0, N = Val.getVectorLength(); I != N; ++I) |
7448 | Elts.push_back(Elt: BuildExpressionFromNonTypeTemplateArgumentValue( |
7449 | S, T: ElemT, Val: Val.getVectorElt(I), Loc)); |
7450 | return MakeInitList(Elts); |
7451 | } |
7452 | |
7453 | case APValue::None: |
7454 | case APValue::Indeterminate: |
7455 | llvm_unreachable("Unexpected APValue kind." ); |
7456 | case APValue::LValue: |
7457 | case APValue::MemberPointer: |
7458 | // There isn't necessarily a valid equivalent source-level syntax for |
7459 | // these; in particular, a naive lowering might violate access control. |
7460 | // So for now we lower to a ConstantExpr holding the value, wrapped around |
7461 | // an OpaqueValueExpr. |
7462 | // FIXME: We should have a better representation for this. |
7463 | ExprValueKind VK = VK_PRValue; |
7464 | if (T->isReferenceType()) { |
7465 | T = T->getPointeeType(); |
7466 | VK = VK_LValue; |
7467 | } |
7468 | auto *OVE = new (S.Context) OpaqueValueExpr(Loc, T, VK); |
7469 | return ConstantExpr::Create(Context: S.Context, E: OVE, Result: Val); |
7470 | } |
7471 | llvm_unreachable("Unhandled APValue::ValueKind enum" ); |
7472 | } |
7473 | |
7474 | ExprResult |
7475 | Sema::BuildExpressionFromNonTypeTemplateArgument(const TemplateArgument &Arg, |
7476 | SourceLocation Loc) { |
7477 | switch (Arg.getKind()) { |
7478 | case TemplateArgument::Null: |
7479 | case TemplateArgument::Type: |
7480 | case TemplateArgument::Template: |
7481 | case TemplateArgument::TemplateExpansion: |
7482 | case TemplateArgument::Pack: |
7483 | llvm_unreachable("not a non-type template argument" ); |
7484 | |
7485 | case TemplateArgument::Expression: |
7486 | return Arg.getAsExpr(); |
7487 | |
7488 | case TemplateArgument::NullPtr: |
7489 | case TemplateArgument::Declaration: |
7490 | return BuildExpressionFromDeclTemplateArgument( |
7491 | Arg, ParamType: Arg.getNonTypeTemplateArgumentType(), Loc); |
7492 | |
7493 | case TemplateArgument::Integral: |
7494 | return BuildExpressionFromIntegralTemplateArgumentValue( |
7495 | S&: *this, OrigT: Arg.getIntegralType(), Int: Arg.getAsIntegral(), Loc); |
7496 | |
7497 | case TemplateArgument::StructuralValue: |
7498 | return BuildExpressionFromNonTypeTemplateArgumentValue( |
7499 | S&: *this, T: Arg.getStructuralValueType(), Val: Arg.getAsStructuralValue(), Loc); |
7500 | } |
7501 | llvm_unreachable("Unhandled TemplateArgument::ArgKind enum" ); |
7502 | } |
7503 | |
7504 | /// Match two template parameters within template parameter lists. |
7505 | static bool MatchTemplateParameterKind( |
7506 | Sema &S, NamedDecl *New, |
7507 | const Sema::TemplateCompareNewDeclInfo &NewInstFrom, NamedDecl *Old, |
7508 | const NamedDecl *OldInstFrom, bool Complain, |
7509 | Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) { |
7510 | // Check the actual kind (type, non-type, template). |
7511 | if (Old->getKind() != New->getKind()) { |
7512 | if (Complain) { |
7513 | unsigned NextDiag = diag::err_template_param_different_kind; |
7514 | if (TemplateArgLoc.isValid()) { |
7515 | S.Diag(Loc: TemplateArgLoc, DiagID: diag::err_template_arg_template_params_mismatch); |
7516 | NextDiag = diag::note_template_param_different_kind; |
7517 | } |
7518 | S.Diag(Loc: New->getLocation(), DiagID: NextDiag) |
7519 | << (Kind != Sema::TPL_TemplateMatch); |
7520 | S.Diag(Loc: Old->getLocation(), DiagID: diag::note_template_prev_declaration) |
7521 | << (Kind != Sema::TPL_TemplateMatch); |
7522 | } |
7523 | |
7524 | return false; |
7525 | } |
7526 | |
7527 | // Check that both are parameter packs or neither are parameter packs. |
7528 | // However, if we are matching a template template argument to a |
7529 | // template template parameter, the template template parameter can have |
7530 | // a parameter pack where the template template argument does not. |
7531 | if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && |
7532 | !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && |
7533 | Old->isTemplateParameterPack())) { |
7534 | if (Complain) { |
7535 | unsigned NextDiag = diag::err_template_parameter_pack_non_pack; |
7536 | if (TemplateArgLoc.isValid()) { |
7537 | S.Diag(Loc: TemplateArgLoc, |
7538 | DiagID: diag::err_template_arg_template_params_mismatch); |
7539 | NextDiag = diag::note_template_parameter_pack_non_pack; |
7540 | } |
7541 | |
7542 | unsigned ParamKind = isa<TemplateTypeParmDecl>(Val: New)? 0 |
7543 | : isa<NonTypeTemplateParmDecl>(Val: New)? 1 |
7544 | : 2; |
7545 | S.Diag(Loc: New->getLocation(), DiagID: NextDiag) |
7546 | << ParamKind << New->isParameterPack(); |
7547 | S.Diag(Loc: Old->getLocation(), DiagID: diag::note_template_parameter_pack_here) |
7548 | << ParamKind << Old->isParameterPack(); |
7549 | } |
7550 | |
7551 | return false; |
7552 | } |
7553 | |
7554 | // For non-type template parameters, check the type of the parameter. |
7555 | if (NonTypeTemplateParmDecl *OldNTTP |
7556 | = dyn_cast<NonTypeTemplateParmDecl>(Val: Old)) { |
7557 | NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(Val: New); |
7558 | |
7559 | // If we are matching a template template argument to a template |
7560 | // template parameter and one of the non-type template parameter types |
7561 | // is dependent, then we must wait until template instantiation time |
7562 | // to actually compare the arguments. |
7563 | if (Kind != Sema::TPL_TemplateTemplateArgumentMatch || |
7564 | (!OldNTTP->getType()->isDependentType() && |
7565 | !NewNTTP->getType()->isDependentType())) { |
7566 | // C++20 [temp.over.link]p6: |
7567 | // Two [non-type] template-parameters are equivalent [if] they have |
7568 | // equivalent types ignoring the use of type-constraints for |
7569 | // placeholder types |
7570 | QualType OldType = S.Context.getUnconstrainedType(T: OldNTTP->getType()); |
7571 | QualType NewType = S.Context.getUnconstrainedType(T: NewNTTP->getType()); |
7572 | if (!S.Context.hasSameType(T1: OldType, T2: NewType)) { |
7573 | if (Complain) { |
7574 | unsigned NextDiag = diag::err_template_nontype_parm_different_type; |
7575 | if (TemplateArgLoc.isValid()) { |
7576 | S.Diag(Loc: TemplateArgLoc, |
7577 | DiagID: diag::err_template_arg_template_params_mismatch); |
7578 | NextDiag = diag::note_template_nontype_parm_different_type; |
7579 | } |
7580 | S.Diag(Loc: NewNTTP->getLocation(), DiagID: NextDiag) |
7581 | << NewNTTP->getType() |
7582 | << (Kind != Sema::TPL_TemplateMatch); |
7583 | S.Diag(Loc: OldNTTP->getLocation(), |
7584 | DiagID: diag::note_template_nontype_parm_prev_declaration) |
7585 | << OldNTTP->getType(); |
7586 | } |
7587 | |
7588 | return false; |
7589 | } |
7590 | } |
7591 | } |
7592 | // For template template parameters, check the template parameter types. |
7593 | // The template parameter lists of template template |
7594 | // parameters must agree. |
7595 | else if (TemplateTemplateParmDecl *OldTTP = |
7596 | dyn_cast<TemplateTemplateParmDecl>(Val: Old)) { |
7597 | TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(Val: New); |
7598 | if (!S.TemplateParameterListsAreEqual( |
7599 | NewInstFrom, New: NewTTP->getTemplateParameters(), OldInstFrom, |
7600 | Old: OldTTP->getTemplateParameters(), Complain, |
7601 | Kind: (Kind == Sema::TPL_TemplateMatch |
7602 | ? Sema::TPL_TemplateTemplateParmMatch |
7603 | : Kind), |
7604 | TemplateArgLoc)) |
7605 | return false; |
7606 | } |
7607 | |
7608 | if (Kind != Sema::TPL_TemplateParamsEquivalent && |
7609 | Kind != Sema::TPL_TemplateTemplateArgumentMatch && |
7610 | !isa<TemplateTemplateParmDecl>(Val: Old)) { |
7611 | const Expr *NewC = nullptr, *OldC = nullptr; |
7612 | |
7613 | if (isa<TemplateTypeParmDecl>(Val: New)) { |
7614 | if (const auto *TC = cast<TemplateTypeParmDecl>(Val: New)->getTypeConstraint()) |
7615 | NewC = TC->getImmediatelyDeclaredConstraint(); |
7616 | if (const auto *TC = cast<TemplateTypeParmDecl>(Val: Old)->getTypeConstraint()) |
7617 | OldC = TC->getImmediatelyDeclaredConstraint(); |
7618 | } else if (isa<NonTypeTemplateParmDecl>(Val: New)) { |
7619 | if (const Expr *E = cast<NonTypeTemplateParmDecl>(Val: New) |
7620 | ->getPlaceholderTypeConstraint()) |
7621 | NewC = E; |
7622 | if (const Expr *E = cast<NonTypeTemplateParmDecl>(Val: Old) |
7623 | ->getPlaceholderTypeConstraint()) |
7624 | OldC = E; |
7625 | } else |
7626 | llvm_unreachable("unexpected template parameter type" ); |
7627 | |
7628 | auto Diagnose = [&] { |
7629 | S.Diag(Loc: NewC ? NewC->getBeginLoc() : New->getBeginLoc(), |
7630 | DiagID: diag::err_template_different_type_constraint); |
7631 | S.Diag(Loc: OldC ? OldC->getBeginLoc() : Old->getBeginLoc(), |
7632 | DiagID: diag::note_template_prev_declaration) << /*declaration*/0; |
7633 | }; |
7634 | |
7635 | if (!NewC != !OldC) { |
7636 | if (Complain) |
7637 | Diagnose(); |
7638 | return false; |
7639 | } |
7640 | |
7641 | if (NewC) { |
7642 | if (!S.AreConstraintExpressionsEqual(Old: OldInstFrom, OldConstr: OldC, New: NewInstFrom, |
7643 | NewConstr: NewC)) { |
7644 | if (Complain) |
7645 | Diagnose(); |
7646 | return false; |
7647 | } |
7648 | } |
7649 | } |
7650 | |
7651 | return true; |
7652 | } |
7653 | |
7654 | /// Diagnose a known arity mismatch when comparing template argument |
7655 | /// lists. |
7656 | static |
7657 | void DiagnoseTemplateParameterListArityMismatch(Sema &S, |
7658 | TemplateParameterList *New, |
7659 | TemplateParameterList *Old, |
7660 | Sema::TemplateParameterListEqualKind Kind, |
7661 | SourceLocation TemplateArgLoc) { |
7662 | unsigned NextDiag = diag::err_template_param_list_different_arity; |
7663 | if (TemplateArgLoc.isValid()) { |
7664 | S.Diag(Loc: TemplateArgLoc, DiagID: diag::err_template_arg_template_params_mismatch); |
7665 | NextDiag = diag::note_template_param_list_different_arity; |
7666 | } |
7667 | S.Diag(Loc: New->getTemplateLoc(), DiagID: NextDiag) |
7668 | << (New->size() > Old->size()) |
7669 | << (Kind != Sema::TPL_TemplateMatch) |
7670 | << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); |
7671 | S.Diag(Loc: Old->getTemplateLoc(), DiagID: diag::note_template_prev_declaration) |
7672 | << (Kind != Sema::TPL_TemplateMatch) |
7673 | << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); |
7674 | } |
7675 | |
7676 | bool Sema::TemplateParameterListsAreEqual( |
7677 | const TemplateCompareNewDeclInfo &NewInstFrom, TemplateParameterList *New, |
7678 | const NamedDecl *OldInstFrom, TemplateParameterList *Old, bool Complain, |
7679 | TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) { |
7680 | if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { |
7681 | if (Complain) |
7682 | DiagnoseTemplateParameterListArityMismatch(S&: *this, New, Old, Kind, |
7683 | TemplateArgLoc); |
7684 | |
7685 | return false; |
7686 | } |
7687 | |
7688 | // C++0x [temp.arg.template]p3: |
7689 | // A template-argument matches a template template-parameter (call it P) |
7690 | // when each of the template parameters in the template-parameter-list of |
7691 | // the template-argument's corresponding class template or alias template |
7692 | // (call it A) matches the corresponding template parameter in the |
7693 | // template-parameter-list of P. [...] |
7694 | TemplateParameterList::iterator NewParm = New->begin(); |
7695 | TemplateParameterList::iterator NewParmEnd = New->end(); |
7696 | for (TemplateParameterList::iterator OldParm = Old->begin(), |
7697 | OldParmEnd = Old->end(); |
7698 | OldParm != OldParmEnd; ++OldParm) { |
7699 | if (Kind != TPL_TemplateTemplateArgumentMatch || |
7700 | !(*OldParm)->isTemplateParameterPack()) { |
7701 | if (NewParm == NewParmEnd) { |
7702 | if (Complain) |
7703 | DiagnoseTemplateParameterListArityMismatch(S&: *this, New, Old, Kind, |
7704 | TemplateArgLoc); |
7705 | |
7706 | return false; |
7707 | } |
7708 | |
7709 | if (!MatchTemplateParameterKind(S&: *this, New: *NewParm, NewInstFrom, Old: *OldParm, |
7710 | OldInstFrom, Complain, Kind, |
7711 | TemplateArgLoc)) |
7712 | return false; |
7713 | |
7714 | ++NewParm; |
7715 | continue; |
7716 | } |
7717 | |
7718 | // C++0x [temp.arg.template]p3: |
7719 | // [...] When P's template- parameter-list contains a template parameter |
7720 | // pack (14.5.3), the template parameter pack will match zero or more |
7721 | // template parameters or template parameter packs in the |
7722 | // template-parameter-list of A with the same type and form as the |
7723 | // template parameter pack in P (ignoring whether those template |
7724 | // parameters are template parameter packs). |
7725 | for (; NewParm != NewParmEnd; ++NewParm) { |
7726 | if (!MatchTemplateParameterKind(S&: *this, New: *NewParm, NewInstFrom, Old: *OldParm, |
7727 | OldInstFrom, Complain, Kind, |
7728 | TemplateArgLoc)) |
7729 | return false; |
7730 | } |
7731 | } |
7732 | |
7733 | // Make sure we exhausted all of the arguments. |
7734 | if (NewParm != NewParmEnd) { |
7735 | if (Complain) |
7736 | DiagnoseTemplateParameterListArityMismatch(S&: *this, New, Old, Kind, |
7737 | TemplateArgLoc); |
7738 | |
7739 | return false; |
7740 | } |
7741 | |
7742 | if (Kind != TPL_TemplateTemplateArgumentMatch && |
7743 | Kind != TPL_TemplateParamsEquivalent) { |
7744 | const Expr *NewRC = New->getRequiresClause(); |
7745 | const Expr *OldRC = Old->getRequiresClause(); |
7746 | |
7747 | auto Diagnose = [&] { |
7748 | Diag(Loc: NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(), |
7749 | DiagID: diag::err_template_different_requires_clause); |
7750 | Diag(Loc: OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(), |
7751 | DiagID: diag::note_template_prev_declaration) << /*declaration*/0; |
7752 | }; |
7753 | |
7754 | if (!NewRC != !OldRC) { |
7755 | if (Complain) |
7756 | Diagnose(); |
7757 | return false; |
7758 | } |
7759 | |
7760 | if (NewRC) { |
7761 | if (!AreConstraintExpressionsEqual(Old: OldInstFrom, OldConstr: OldRC, New: NewInstFrom, |
7762 | NewConstr: NewRC)) { |
7763 | if (Complain) |
7764 | Diagnose(); |
7765 | return false; |
7766 | } |
7767 | } |
7768 | } |
7769 | |
7770 | return true; |
7771 | } |
7772 | |
7773 | bool |
7774 | Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { |
7775 | if (!S) |
7776 | return false; |
7777 | |
7778 | // Find the nearest enclosing declaration scope. |
7779 | S = S->getDeclParent(); |
7780 | |
7781 | // C++ [temp.pre]p6: [P2096] |
7782 | // A template, explicit specialization, or partial specialization shall not |
7783 | // have C linkage. |
7784 | DeclContext *Ctx = S->getEntity(); |
7785 | if (Ctx && Ctx->isExternCContext()) { |
7786 | Diag(Loc: TemplateParams->getTemplateLoc(), DiagID: diag::err_template_linkage) |
7787 | << TemplateParams->getSourceRange(); |
7788 | if (const LinkageSpecDecl *LSD = Ctx->getExternCContext()) |
7789 | Diag(Loc: LSD->getExternLoc(), DiagID: diag::note_extern_c_begins_here); |
7790 | return true; |
7791 | } |
7792 | Ctx = Ctx ? Ctx->getRedeclContext() : nullptr; |
7793 | |
7794 | // C++ [temp]p2: |
7795 | // A template-declaration can appear only as a namespace scope or |
7796 | // class scope declaration. |
7797 | // C++ [temp.expl.spec]p3: |
7798 | // An explicit specialization may be declared in any scope in which the |
7799 | // corresponding primary template may be defined. |
7800 | // C++ [temp.class.spec]p6: [P2096] |
7801 | // A partial specialization may be declared in any scope in which the |
7802 | // corresponding primary template may be defined. |
7803 | if (Ctx) { |
7804 | if (Ctx->isFileContext()) |
7805 | return false; |
7806 | if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: Ctx)) { |
7807 | // C++ [temp.mem]p2: |
7808 | // A local class shall not have member templates. |
7809 | if (RD->isLocalClass()) |
7810 | return Diag(Loc: TemplateParams->getTemplateLoc(), |
7811 | DiagID: diag::err_template_inside_local_class) |
7812 | << TemplateParams->getSourceRange(); |
7813 | else |
7814 | return false; |
7815 | } |
7816 | } |
7817 | |
7818 | return Diag(Loc: TemplateParams->getTemplateLoc(), |
7819 | DiagID: diag::err_template_outside_namespace_or_class_scope) |
7820 | << TemplateParams->getSourceRange(); |
7821 | } |
7822 | |
7823 | /// Determine what kind of template specialization the given declaration |
7824 | /// is. |
7825 | static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { |
7826 | if (!D) |
7827 | return TSK_Undeclared; |
7828 | |
7829 | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: D)) |
7830 | return Record->getTemplateSpecializationKind(); |
7831 | if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Val: D)) |
7832 | return Function->getTemplateSpecializationKind(); |
7833 | if (VarDecl *Var = dyn_cast<VarDecl>(Val: D)) |
7834 | return Var->getTemplateSpecializationKind(); |
7835 | |
7836 | return TSK_Undeclared; |
7837 | } |
7838 | |
7839 | /// Check whether a specialization is well-formed in the current |
7840 | /// context. |
7841 | /// |
7842 | /// This routine determines whether a template specialization can be declared |
7843 | /// in the current context (C++ [temp.expl.spec]p2). |
7844 | /// |
7845 | /// \param S the semantic analysis object for which this check is being |
7846 | /// performed. |
7847 | /// |
7848 | /// \param Specialized the entity being specialized or instantiated, which |
7849 | /// may be a kind of template (class template, function template, etc.) or |
7850 | /// a member of a class template (member function, static data member, |
7851 | /// member class). |
7852 | /// |
7853 | /// \param PrevDecl the previous declaration of this entity, if any. |
7854 | /// |
7855 | /// \param Loc the location of the explicit specialization or instantiation of |
7856 | /// this entity. |
7857 | /// |
7858 | /// \param IsPartialSpecialization whether this is a partial specialization of |
7859 | /// a class template. |
7860 | /// |
7861 | /// \returns true if there was an error that we cannot recover from, false |
7862 | /// otherwise. |
7863 | static bool CheckTemplateSpecializationScope(Sema &S, |
7864 | NamedDecl *Specialized, |
7865 | NamedDecl *PrevDecl, |
7866 | SourceLocation Loc, |
7867 | bool IsPartialSpecialization) { |
7868 | // Keep these "kind" numbers in sync with the %select statements in the |
7869 | // various diagnostics emitted by this routine. |
7870 | int EntityKind = 0; |
7871 | if (isa<ClassTemplateDecl>(Val: Specialized)) |
7872 | EntityKind = IsPartialSpecialization? 1 : 0; |
7873 | else if (isa<VarTemplateDecl>(Val: Specialized)) |
7874 | EntityKind = IsPartialSpecialization ? 3 : 2; |
7875 | else if (isa<FunctionTemplateDecl>(Val: Specialized)) |
7876 | EntityKind = 4; |
7877 | else if (isa<CXXMethodDecl>(Val: Specialized)) |
7878 | EntityKind = 5; |
7879 | else if (isa<VarDecl>(Val: Specialized)) |
7880 | EntityKind = 6; |
7881 | else if (isa<RecordDecl>(Val: Specialized)) |
7882 | EntityKind = 7; |
7883 | else if (isa<EnumDecl>(Val: Specialized) && S.getLangOpts().CPlusPlus11) |
7884 | EntityKind = 8; |
7885 | else { |
7886 | S.Diag(Loc, DiagID: diag::err_template_spec_unknown_kind) |
7887 | << S.getLangOpts().CPlusPlus11; |
7888 | S.Diag(Loc: Specialized->getLocation(), DiagID: diag::note_specialized_entity); |
7889 | return true; |
7890 | } |
7891 | |
7892 | // C++ [temp.expl.spec]p2: |
7893 | // An explicit specialization may be declared in any scope in which |
7894 | // the corresponding primary template may be defined. |
7895 | if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { |
7896 | S.Diag(Loc, DiagID: diag::err_template_spec_decl_function_scope) |
7897 | << Specialized; |
7898 | return true; |
7899 | } |
7900 | |
7901 | // C++ [temp.class.spec]p6: |
7902 | // A class template partial specialization may be declared in any |
7903 | // scope in which the primary template may be defined. |
7904 | DeclContext *SpecializedContext = |
7905 | Specialized->getDeclContext()->getRedeclContext(); |
7906 | DeclContext *DC = S.CurContext->getRedeclContext(); |
7907 | |
7908 | // Make sure that this redeclaration (or definition) occurs in the same |
7909 | // scope or an enclosing namespace. |
7910 | if (!(DC->isFileContext() ? DC->Encloses(DC: SpecializedContext) |
7911 | : DC->Equals(DC: SpecializedContext))) { |
7912 | if (isa<TranslationUnitDecl>(Val: SpecializedContext)) |
7913 | S.Diag(Loc, DiagID: diag::err_template_spec_redecl_global_scope) |
7914 | << EntityKind << Specialized; |
7915 | else { |
7916 | auto *ND = cast<NamedDecl>(Val: SpecializedContext); |
7917 | int Diag = diag::err_template_spec_redecl_out_of_scope; |
7918 | if (S.getLangOpts().MicrosoftExt && !DC->isRecord()) |
7919 | Diag = diag::ext_ms_template_spec_redecl_out_of_scope; |
7920 | S.Diag(Loc, DiagID: Diag) << EntityKind << Specialized |
7921 | << ND << isa<CXXRecordDecl>(Val: ND); |
7922 | } |
7923 | |
7924 | S.Diag(Loc: Specialized->getLocation(), DiagID: diag::note_specialized_entity); |
7925 | |
7926 | // Don't allow specializing in the wrong class during error recovery. |
7927 | // Otherwise, things can go horribly wrong. |
7928 | if (DC->isRecord()) |
7929 | return true; |
7930 | } |
7931 | |
7932 | return false; |
7933 | } |
7934 | |
7935 | static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) { |
7936 | if (!E->isTypeDependent()) |
7937 | return SourceLocation(); |
7938 | DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); |
7939 | Checker.TraverseStmt(S: E); |
7940 | if (Checker.MatchLoc.isInvalid()) |
7941 | return E->getSourceRange(); |
7942 | return Checker.MatchLoc; |
7943 | } |
7944 | |
7945 | static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) { |
7946 | if (!TL.getType()->isDependentType()) |
7947 | return SourceLocation(); |
7948 | DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); |
7949 | Checker.TraverseTypeLoc(TL); |
7950 | if (Checker.MatchLoc.isInvalid()) |
7951 | return TL.getSourceRange(); |
7952 | return Checker.MatchLoc; |
7953 | } |
7954 | |
7955 | /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs |
7956 | /// that checks non-type template partial specialization arguments. |
7957 | static bool CheckNonTypeTemplatePartialSpecializationArgs( |
7958 | Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param, |
7959 | const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) { |
7960 | for (unsigned I = 0; I != NumArgs; ++I) { |
7961 | if (Args[I].getKind() == TemplateArgument::Pack) { |
7962 | if (CheckNonTypeTemplatePartialSpecializationArgs( |
7963 | S, TemplateNameLoc, Param, Args: Args[I].pack_begin(), |
7964 | NumArgs: Args[I].pack_size(), IsDefaultArgument)) |
7965 | return true; |
7966 | |
7967 | continue; |
7968 | } |
7969 | |
7970 | if (Args[I].getKind() != TemplateArgument::Expression) |
7971 | continue; |
7972 | |
7973 | Expr *ArgExpr = Args[I].getAsExpr(); |
7974 | |
7975 | // We can have a pack expansion of any of the bullets below. |
7976 | if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(Val: ArgExpr)) |
7977 | ArgExpr = Expansion->getPattern(); |
7978 | |
7979 | // Strip off any implicit casts we added as part of type checking. |
7980 | while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: ArgExpr)) |
7981 | ArgExpr = ICE->getSubExpr(); |
7982 | |
7983 | // C++ [temp.class.spec]p8: |
7984 | // A non-type argument is non-specialized if it is the name of a |
7985 | // non-type parameter. All other non-type arguments are |
7986 | // specialized. |
7987 | // |
7988 | // Below, we check the two conditions that only apply to |
7989 | // specialized non-type arguments, so skip any non-specialized |
7990 | // arguments. |
7991 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: ArgExpr)) |
7992 | if (isa<NonTypeTemplateParmDecl>(Val: DRE->getDecl())) |
7993 | continue; |
7994 | |
7995 | // C++ [temp.class.spec]p9: |
7996 | // Within the argument list of a class template partial |
7997 | // specialization, the following restrictions apply: |
7998 | // -- A partially specialized non-type argument expression |
7999 | // shall not involve a template parameter of the partial |
8000 | // specialization except when the argument expression is a |
8001 | // simple identifier. |
8002 | // -- The type of a template parameter corresponding to a |
8003 | // specialized non-type argument shall not be dependent on a |
8004 | // parameter of the specialization. |
8005 | // DR1315 removes the first bullet, leaving an incoherent set of rules. |
8006 | // We implement a compromise between the original rules and DR1315: |
8007 | // -- A specialized non-type template argument shall not be |
8008 | // type-dependent and the corresponding template parameter |
8009 | // shall have a non-dependent type. |
8010 | SourceRange ParamUseRange = |
8011 | findTemplateParameterInType(Depth: Param->getDepth(), E: ArgExpr); |
8012 | if (ParamUseRange.isValid()) { |
8013 | if (IsDefaultArgument) { |
8014 | S.Diag(Loc: TemplateNameLoc, |
8015 | DiagID: diag::err_dependent_non_type_arg_in_partial_spec); |
8016 | S.Diag(Loc: ParamUseRange.getBegin(), |
8017 | DiagID: diag::note_dependent_non_type_default_arg_in_partial_spec) |
8018 | << ParamUseRange; |
8019 | } else { |
8020 | S.Diag(Loc: ParamUseRange.getBegin(), |
8021 | DiagID: diag::err_dependent_non_type_arg_in_partial_spec) |
8022 | << ParamUseRange; |
8023 | } |
8024 | return true; |
8025 | } |
8026 | |
8027 | ParamUseRange = findTemplateParameter( |
8028 | Depth: Param->getDepth(), TL: Param->getTypeSourceInfo()->getTypeLoc()); |
8029 | if (ParamUseRange.isValid()) { |
8030 | S.Diag(Loc: IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(), |
8031 | DiagID: diag::err_dependent_typed_non_type_arg_in_partial_spec) |
8032 | << Param->getType(); |
8033 | S.NoteTemplateParameterLocation(Decl: *Param); |
8034 | return true; |
8035 | } |
8036 | } |
8037 | |
8038 | return false; |
8039 | } |
8040 | |
8041 | bool Sema::CheckTemplatePartialSpecializationArgs( |
8042 | SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate, |
8043 | unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) { |
8044 | // We have to be conservative when checking a template in a dependent |
8045 | // context. |
8046 | if (PrimaryTemplate->getDeclContext()->isDependentContext()) |
8047 | return false; |
8048 | |
8049 | TemplateParameterList *TemplateParams = |
8050 | PrimaryTemplate->getTemplateParameters(); |
8051 | for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { |
8052 | NonTypeTemplateParmDecl *Param |
8053 | = dyn_cast<NonTypeTemplateParmDecl>(Val: TemplateParams->getParam(Idx: I)); |
8054 | if (!Param) |
8055 | continue; |
8056 | |
8057 | if (CheckNonTypeTemplatePartialSpecializationArgs(S&: *this, TemplateNameLoc, |
8058 | Param, Args: &TemplateArgs[I], |
8059 | NumArgs: 1, IsDefaultArgument: I >= NumExplicit)) |
8060 | return true; |
8061 | } |
8062 | |
8063 | return false; |
8064 | } |
8065 | |
8066 | DeclResult Sema::ActOnClassTemplateSpecialization( |
8067 | Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, |
8068 | SourceLocation ModulePrivateLoc, CXXScopeSpec &SS, |
8069 | TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr, |
8070 | MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) { |
8071 | assert(TUK != TagUseKind::Reference && "References are not specializations" ); |
8072 | |
8073 | SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc; |
8074 | SourceLocation LAngleLoc = TemplateId.LAngleLoc; |
8075 | SourceLocation RAngleLoc = TemplateId.RAngleLoc; |
8076 | |
8077 | // Find the class template we're specializing |
8078 | TemplateName Name = TemplateId.Template.get(); |
8079 | ClassTemplateDecl *ClassTemplate |
8080 | = dyn_cast_or_null<ClassTemplateDecl>(Val: Name.getAsTemplateDecl()); |
8081 | |
8082 | if (!ClassTemplate) { |
8083 | Diag(Loc: TemplateNameLoc, DiagID: diag::err_not_class_template_specialization) |
8084 | << (Name.getAsTemplateDecl() && |
8085 | isa<TemplateTemplateParmDecl>(Val: Name.getAsTemplateDecl())); |
8086 | return true; |
8087 | } |
8088 | |
8089 | bool isMemberSpecialization = false; |
8090 | bool isPartialSpecialization = false; |
8091 | |
8092 | if (SS.isSet()) { |
8093 | if (TUK != TagUseKind::Reference && TUK != TagUseKind::Friend && |
8094 | diagnoseQualifiedDeclaration(SS, DC: ClassTemplate->getDeclContext(), |
8095 | Name: ClassTemplate->getDeclName(), |
8096 | Loc: TemplateNameLoc, TemplateId: &TemplateId, |
8097 | /*IsMemberSpecialization=*/false)) |
8098 | return true; |
8099 | } |
8100 | |
8101 | // Check the validity of the template headers that introduce this |
8102 | // template. |
8103 | // FIXME: We probably shouldn't complain about these headers for |
8104 | // friend declarations. |
8105 | bool Invalid = false; |
8106 | TemplateParameterList *TemplateParams = |
8107 | MatchTemplateParametersToScopeSpecifier( |
8108 | DeclStartLoc: KWLoc, DeclLoc: TemplateNameLoc, SS, TemplateId: &TemplateId, ParamLists: TemplateParameterLists, |
8109 | IsFriend: TUK == TagUseKind::Friend, IsMemberSpecialization&: isMemberSpecialization, Invalid); |
8110 | if (Invalid) |
8111 | return true; |
8112 | |
8113 | // Check that we can declare a template specialization here. |
8114 | if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams)) |
8115 | return true; |
8116 | |
8117 | if (TemplateParams && TemplateParams->size() > 0) { |
8118 | isPartialSpecialization = true; |
8119 | |
8120 | if (TUK == TagUseKind::Friend) { |
8121 | Diag(Loc: KWLoc, DiagID: diag::err_partial_specialization_friend) |
8122 | << SourceRange(LAngleLoc, RAngleLoc); |
8123 | return true; |
8124 | } |
8125 | |
8126 | // C++ [temp.class.spec]p10: |
8127 | // The template parameter list of a specialization shall not |
8128 | // contain default template argument values. |
8129 | for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { |
8130 | Decl *Param = TemplateParams->getParam(Idx: I); |
8131 | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: Param)) { |
8132 | if (TTP->hasDefaultArgument()) { |
8133 | Diag(Loc: TTP->getDefaultArgumentLoc(), |
8134 | DiagID: diag::err_default_arg_in_partial_spec); |
8135 | TTP->removeDefaultArgument(); |
8136 | } |
8137 | } else if (NonTypeTemplateParmDecl *NTTP |
8138 | = dyn_cast<NonTypeTemplateParmDecl>(Val: Param)) { |
8139 | if (NTTP->hasDefaultArgument()) { |
8140 | Diag(Loc: NTTP->getDefaultArgumentLoc(), |
8141 | DiagID: diag::err_default_arg_in_partial_spec) |
8142 | << NTTP->getDefaultArgument().getSourceRange(); |
8143 | NTTP->removeDefaultArgument(); |
8144 | } |
8145 | } else { |
8146 | TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Val: Param); |
8147 | if (TTP->hasDefaultArgument()) { |
8148 | Diag(Loc: TTP->getDefaultArgument().getLocation(), |
8149 | DiagID: diag::err_default_arg_in_partial_spec) |
8150 | << TTP->getDefaultArgument().getSourceRange(); |
8151 | TTP->removeDefaultArgument(); |
8152 | } |
8153 | } |
8154 | } |
8155 | } else if (TemplateParams) { |
8156 | if (TUK == TagUseKind::Friend) |
8157 | Diag(Loc: KWLoc, DiagID: diag::err_template_spec_friend) |
8158 | << FixItHint::CreateRemoval( |
8159 | RemoveRange: SourceRange(TemplateParams->getTemplateLoc(), |
8160 | TemplateParams->getRAngleLoc())) |
8161 | << SourceRange(LAngleLoc, RAngleLoc); |
8162 | } else { |
8163 | assert(TUK == TagUseKind::Friend && |
8164 | "should have a 'template<>' for this decl" ); |
8165 | } |
8166 | |
8167 | // Check that the specialization uses the same tag kind as the |
8168 | // original template. |
8169 | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec); |
8170 | assert(Kind != TagTypeKind::Enum && |
8171 | "Invalid enum tag in class template spec!" ); |
8172 | if (!isAcceptableTagRedeclaration(Previous: ClassTemplate->getTemplatedDecl(), NewTag: Kind, |
8173 | isDefinition: TUK == TagUseKind::Definition, NewTagLoc: KWLoc, |
8174 | Name: ClassTemplate->getIdentifier())) { |
8175 | Diag(Loc: KWLoc, DiagID: diag::err_use_with_wrong_tag) |
8176 | << ClassTemplate |
8177 | << FixItHint::CreateReplacement(RemoveRange: KWLoc, |
8178 | Code: ClassTemplate->getTemplatedDecl()->getKindName()); |
8179 | Diag(Loc: ClassTemplate->getTemplatedDecl()->getLocation(), |
8180 | DiagID: diag::note_previous_use); |
8181 | Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); |
8182 | } |
8183 | |
8184 | // Translate the parser's template argument list in our AST format. |
8185 | TemplateArgumentListInfo TemplateArgs = |
8186 | makeTemplateArgumentListInfo(S&: *this, TemplateId); |
8187 | |
8188 | // Check for unexpanded parameter packs in any of the template arguments. |
8189 | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
8190 | if (DiagnoseUnexpandedParameterPack(Arg: TemplateArgs[I], |
8191 | UPPC: isPartialSpecialization |
8192 | ? UPPC_PartialSpecialization |
8193 | : UPPC_ExplicitSpecialization)) |
8194 | return true; |
8195 | |
8196 | // Check that the template argument list is well-formed for this |
8197 | // template. |
8198 | SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; |
8199 | if (CheckTemplateArgumentList(Template: ClassTemplate, TemplateLoc: TemplateNameLoc, TemplateArgs, |
8200 | PartialTemplateArgs: false, SugaredConverted, CanonicalConverted, |
8201 | /*UpdateArgsWithConversions=*/true)) |
8202 | return true; |
8203 | |
8204 | // Find the class template (partial) specialization declaration that |
8205 | // corresponds to these arguments. |
8206 | if (isPartialSpecialization) { |
8207 | if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, PrimaryTemplate: ClassTemplate, |
8208 | NumExplicit: TemplateArgs.size(), |
8209 | TemplateArgs: CanonicalConverted)) |
8210 | return true; |
8211 | |
8212 | // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we |
8213 | // also do it during instantiation. |
8214 | if (!Name.isDependent() && |
8215 | !TemplateSpecializationType::anyDependentTemplateArguments( |
8216 | TemplateArgs, Converted: CanonicalConverted)) { |
8217 | Diag(Loc: TemplateNameLoc, DiagID: diag::err_partial_spec_fully_specialized) |
8218 | << ClassTemplate->getDeclName(); |
8219 | isPartialSpecialization = false; |
8220 | Invalid = true; |
8221 | } |
8222 | } |
8223 | |
8224 | void *InsertPos = nullptr; |
8225 | ClassTemplateSpecializationDecl *PrevDecl = nullptr; |
8226 | |
8227 | if (isPartialSpecialization) |
8228 | PrevDecl = ClassTemplate->findPartialSpecialization( |
8229 | Args: CanonicalConverted, TPL: TemplateParams, InsertPos); |
8230 | else |
8231 | PrevDecl = ClassTemplate->findSpecialization(Args: CanonicalConverted, InsertPos); |
8232 | |
8233 | ClassTemplateSpecializationDecl *Specialization = nullptr; |
8234 | |
8235 | // Check whether we can declare a class template specialization in |
8236 | // the current scope. |
8237 | if (TUK != TagUseKind::Friend && |
8238 | CheckTemplateSpecializationScope(S&: *this, Specialized: ClassTemplate, PrevDecl, |
8239 | Loc: TemplateNameLoc, |
8240 | IsPartialSpecialization: isPartialSpecialization)) |
8241 | return true; |
8242 | |
8243 | // The canonical type |
8244 | QualType CanonType; |
8245 | if (isPartialSpecialization) { |
8246 | // Build the canonical type that describes the converted template |
8247 | // arguments of the class template partial specialization. |
8248 | TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); |
8249 | CanonType = Context.getTemplateSpecializationType(T: CanonTemplate, |
8250 | Args: CanonicalConverted); |
8251 | |
8252 | if (Context.hasSameType(T1: CanonType, |
8253 | T2: ClassTemplate->getInjectedClassNameSpecialization()) && |
8254 | (!Context.getLangOpts().CPlusPlus20 || |
8255 | !TemplateParams->hasAssociatedConstraints())) { |
8256 | // C++ [temp.class.spec]p9b3: |
8257 | // |
8258 | // -- The argument list of the specialization shall not be identical |
8259 | // to the implicit argument list of the primary template. |
8260 | // |
8261 | // This rule has since been removed, because it's redundant given DR1495, |
8262 | // but we keep it because it produces better diagnostics and recovery. |
8263 | Diag(Loc: TemplateNameLoc, DiagID: diag::err_partial_spec_args_match_primary_template) |
8264 | << /*class template*/ 0 << (TUK == TagUseKind::Definition) |
8265 | << FixItHint::CreateRemoval(RemoveRange: SourceRange(LAngleLoc, RAngleLoc)); |
8266 | return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, |
8267 | Name: ClassTemplate->getIdentifier(), |
8268 | NameLoc: TemplateNameLoc, |
8269 | Attr, |
8270 | TemplateParams, |
8271 | AS: AS_none, /*ModulePrivateLoc=*/SourceLocation(), |
8272 | /*FriendLoc*/SourceLocation(), |
8273 | NumOuterTemplateParamLists: TemplateParameterLists.size() - 1, |
8274 | OuterTemplateParamLists: TemplateParameterLists.data()); |
8275 | } |
8276 | |
8277 | // Create a new class template partial specialization declaration node. |
8278 | ClassTemplatePartialSpecializationDecl *PrevPartial |
8279 | = cast_or_null<ClassTemplatePartialSpecializationDecl>(Val: PrevDecl); |
8280 | ClassTemplatePartialSpecializationDecl *Partial = |
8281 | ClassTemplatePartialSpecializationDecl::Create( |
8282 | Context, TK: Kind, DC: ClassTemplate->getDeclContext(), StartLoc: KWLoc, |
8283 | IdLoc: TemplateNameLoc, Params: TemplateParams, SpecializedTemplate: ClassTemplate, Args: CanonicalConverted, |
8284 | CanonInjectedType: CanonType, PrevDecl: PrevPartial); |
8285 | Partial->setTemplateArgsAsWritten(TemplateArgs); |
8286 | SetNestedNameSpecifier(S&: *this, T: Partial, SS); |
8287 | if (TemplateParameterLists.size() > 1 && SS.isSet()) { |
8288 | Partial->setTemplateParameterListsInfo( |
8289 | Context, TPLists: TemplateParameterLists.drop_back(N: 1)); |
8290 | } |
8291 | |
8292 | if (!PrevPartial) |
8293 | ClassTemplate->AddPartialSpecialization(D: Partial, InsertPos); |
8294 | Specialization = Partial; |
8295 | |
8296 | // If we are providing an explicit specialization of a member class |
8297 | // template specialization, make a note of that. |
8298 | if (PrevPartial && PrevPartial->getInstantiatedFromMember()) |
8299 | PrevPartial->setMemberSpecialization(); |
8300 | |
8301 | CheckTemplatePartialSpecialization(Partial); |
8302 | } else { |
8303 | // Create a new class template specialization declaration node for |
8304 | // this explicit specialization or friend declaration. |
8305 | Specialization = ClassTemplateSpecializationDecl::Create( |
8306 | Context, TK: Kind, DC: ClassTemplate->getDeclContext(), StartLoc: KWLoc, IdLoc: TemplateNameLoc, |
8307 | SpecializedTemplate: ClassTemplate, Args: CanonicalConverted, PrevDecl); |
8308 | Specialization->setTemplateArgsAsWritten(TemplateArgs); |
8309 | SetNestedNameSpecifier(S&: *this, T: Specialization, SS); |
8310 | if (TemplateParameterLists.size() > 0) { |
8311 | Specialization->setTemplateParameterListsInfo(Context, |
8312 | TPLists: TemplateParameterLists); |
8313 | } |
8314 | |
8315 | if (!PrevDecl) |
8316 | ClassTemplate->AddSpecialization(D: Specialization, InsertPos); |
8317 | |
8318 | if (CurContext->isDependentContext()) { |
8319 | TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); |
8320 | CanonType = Context.getTemplateSpecializationType(T: CanonTemplate, |
8321 | Args: CanonicalConverted); |
8322 | } else { |
8323 | CanonType = Context.getTypeDeclType(Decl: Specialization); |
8324 | } |
8325 | } |
8326 | |
8327 | // C++ [temp.expl.spec]p6: |
8328 | // If a template, a member template or the member of a class template is |
8329 | // explicitly specialized then that specialization shall be declared |
8330 | // before the first use of that specialization that would cause an implicit |
8331 | // instantiation to take place, in every translation unit in which such a |
8332 | // use occurs; no diagnostic is required. |
8333 | if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { |
8334 | bool Okay = false; |
8335 | for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { |
8336 | // Is there any previous explicit specialization declaration? |
8337 | if (getTemplateSpecializationKind(D: Prev) == TSK_ExplicitSpecialization) { |
8338 | Okay = true; |
8339 | break; |
8340 | } |
8341 | } |
8342 | |
8343 | if (!Okay) { |
8344 | SourceRange Range(TemplateNameLoc, RAngleLoc); |
8345 | Diag(Loc: TemplateNameLoc, DiagID: diag::err_specialization_after_instantiation) |
8346 | << Context.getTypeDeclType(Decl: Specialization) << Range; |
8347 | |
8348 | Diag(Loc: PrevDecl->getPointOfInstantiation(), |
8349 | DiagID: diag::note_instantiation_required_here) |
8350 | << (PrevDecl->getTemplateSpecializationKind() |
8351 | != TSK_ImplicitInstantiation); |
8352 | return true; |
8353 | } |
8354 | } |
8355 | |
8356 | // If this is not a friend, note that this is an explicit specialization. |
8357 | if (TUK != TagUseKind::Friend) |
8358 | Specialization->setSpecializationKind(TSK_ExplicitSpecialization); |
8359 | |
8360 | // Check that this isn't a redefinition of this specialization. |
8361 | if (TUK == TagUseKind::Definition) { |
8362 | RecordDecl *Def = Specialization->getDefinition(); |
8363 | NamedDecl *Hidden = nullptr; |
8364 | if (Def && SkipBody && !hasVisibleDefinition(D: Def, Suggested: &Hidden)) { |
8365 | SkipBody->ShouldSkip = true; |
8366 | SkipBody->Previous = Def; |
8367 | makeMergedDefinitionVisible(ND: Hidden); |
8368 | } else if (Def) { |
8369 | SourceRange Range(TemplateNameLoc, RAngleLoc); |
8370 | Diag(Loc: TemplateNameLoc, DiagID: diag::err_redefinition) << Specialization << Range; |
8371 | Diag(Loc: Def->getLocation(), DiagID: diag::note_previous_definition); |
8372 | Specialization->setInvalidDecl(); |
8373 | return true; |
8374 | } |
8375 | } |
8376 | |
8377 | ProcessDeclAttributeList(S, D: Specialization, AttrList: Attr); |
8378 | ProcessAPINotes(D: Specialization); |
8379 | |
8380 | // Add alignment attributes if necessary; these attributes are checked when |
8381 | // the ASTContext lays out the structure. |
8382 | if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) { |
8383 | AddAlignmentAttributesForRecord(RD: Specialization); |
8384 | AddMsStructLayoutForRecord(RD: Specialization); |
8385 | } |
8386 | |
8387 | if (ModulePrivateLoc.isValid()) |
8388 | Diag(Loc: Specialization->getLocation(), DiagID: diag::err_module_private_specialization) |
8389 | << (isPartialSpecialization? 1 : 0) |
8390 | << FixItHint::CreateRemoval(RemoveRange: ModulePrivateLoc); |
8391 | |
8392 | // C++ [temp.expl.spec]p9: |
8393 | // A template explicit specialization is in the scope of the |
8394 | // namespace in which the template was defined. |
8395 | // |
8396 | // We actually implement this paragraph where we set the semantic |
8397 | // context (in the creation of the ClassTemplateSpecializationDecl), |
8398 | // but we also maintain the lexical context where the actual |
8399 | // definition occurs. |
8400 | Specialization->setLexicalDeclContext(CurContext); |
8401 | |
8402 | // We may be starting the definition of this specialization. |
8403 | if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) |
8404 | Specialization->startDefinition(); |
8405 | |
8406 | if (TUK == TagUseKind::Friend) { |
8407 | // Build the fully-sugared type for this class template |
8408 | // specialization as the user wrote in the specialization |
8409 | // itself. This means that we'll pretty-print the type retrieved |
8410 | // from the specialization's declaration the way that the user |
8411 | // actually wrote the specialization, rather than formatting the |
8412 | // name based on the "canonical" representation used to store the |
8413 | // template arguments in the specialization. |
8414 | TypeSourceInfo *WrittenTy = Context.getTemplateSpecializationTypeInfo( |
8415 | T: Name, TLoc: TemplateNameLoc, Args: TemplateArgs, Canon: CanonType); |
8416 | FriendDecl *Friend = FriendDecl::Create(C&: Context, DC: CurContext, |
8417 | L: TemplateNameLoc, |
8418 | Friend_: WrittenTy, |
8419 | /*FIXME:*/FriendL: KWLoc); |
8420 | Friend->setAccess(AS_public); |
8421 | CurContext->addDecl(D: Friend); |
8422 | } else { |
8423 | // Add the specialization into its lexical context, so that it can |
8424 | // be seen when iterating through the list of declarations in that |
8425 | // context. However, specializations are not found by name lookup. |
8426 | CurContext->addDecl(D: Specialization); |
8427 | } |
8428 | |
8429 | if (SkipBody && SkipBody->ShouldSkip) |
8430 | return SkipBody->Previous; |
8431 | |
8432 | Specialization->setInvalidDecl(Invalid); |
8433 | return Specialization; |
8434 | } |
8435 | |
8436 | Decl *Sema::ActOnTemplateDeclarator(Scope *S, |
8437 | MultiTemplateParamsArg TemplateParameterLists, |
8438 | Declarator &D) { |
8439 | Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); |
8440 | ActOnDocumentableDecl(D: NewDecl); |
8441 | return NewDecl; |
8442 | } |
8443 | |
8444 | Decl *Sema::ActOnConceptDefinition( |
8445 | Scope *S, MultiTemplateParamsArg TemplateParameterLists, |
8446 | const IdentifierInfo *Name, SourceLocation NameLoc, Expr *ConstraintExpr, |
8447 | const ParsedAttributesView &Attrs) { |
8448 | DeclContext *DC = CurContext; |
8449 | |
8450 | if (!DC->getRedeclContext()->isFileContext()) { |
8451 | Diag(Loc: NameLoc, |
8452 | DiagID: diag::err_concept_decls_may_only_appear_in_global_namespace_scope); |
8453 | return nullptr; |
8454 | } |
8455 | |
8456 | if (TemplateParameterLists.size() > 1) { |
8457 | Diag(Loc: NameLoc, DiagID: diag::err_concept_extra_headers); |
8458 | return nullptr; |
8459 | } |
8460 | |
8461 | TemplateParameterList *Params = TemplateParameterLists.front(); |
8462 | |
8463 | if (Params->size() == 0) { |
8464 | Diag(Loc: NameLoc, DiagID: diag::err_concept_no_parameters); |
8465 | return nullptr; |
8466 | } |
8467 | |
8468 | // Ensure that the parameter pack, if present, is the last parameter in the |
8469 | // template. |
8470 | for (TemplateParameterList::const_iterator ParamIt = Params->begin(), |
8471 | ParamEnd = Params->end(); |
8472 | ParamIt != ParamEnd; ++ParamIt) { |
8473 | Decl const *Param = *ParamIt; |
8474 | if (Param->isParameterPack()) { |
8475 | if (++ParamIt == ParamEnd) |
8476 | break; |
8477 | Diag(Loc: Param->getLocation(), |
8478 | DiagID: diag::err_template_param_pack_must_be_last_template_parameter); |
8479 | return nullptr; |
8480 | } |
8481 | } |
8482 | |
8483 | if (DiagnoseUnexpandedParameterPack(E: ConstraintExpr)) |
8484 | return nullptr; |
8485 | |
8486 | ConceptDecl *NewDecl = |
8487 | ConceptDecl::Create(C&: Context, DC, L: NameLoc, Name, Params, ConstraintExpr); |
8488 | |
8489 | if (NewDecl->hasAssociatedConstraints()) { |
8490 | // C++2a [temp.concept]p4: |
8491 | // A concept shall not have associated constraints. |
8492 | Diag(Loc: NameLoc, DiagID: diag::err_concept_no_associated_constraints); |
8493 | NewDecl->setInvalidDecl(); |
8494 | } |
8495 | |
8496 | // Check for conflicting previous declaration. |
8497 | DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc); |
8498 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
8499 | forRedeclarationInCurContext()); |
8500 | LookupName(R&: Previous, S); |
8501 | FilterLookupForScope(R&: Previous, Ctx: DC, S, /*ConsiderLinkage=*/false, |
8502 | /*AllowInlineNamespace*/false); |
8503 | bool AddToScope = true; |
8504 | CheckConceptRedefinition(NewDecl, Previous, AddToScope); |
8505 | |
8506 | ActOnDocumentableDecl(D: NewDecl); |
8507 | if (AddToScope) |
8508 | PushOnScopeChains(D: NewDecl, S); |
8509 | |
8510 | ProcessDeclAttributeList(S, D: NewDecl, AttrList: Attrs); |
8511 | |
8512 | return NewDecl; |
8513 | } |
8514 | |
8515 | void Sema::CheckConceptRedefinition(ConceptDecl *NewDecl, |
8516 | LookupResult &Previous, bool &AddToScope) { |
8517 | AddToScope = true; |
8518 | |
8519 | if (Previous.empty()) |
8520 | return; |
8521 | |
8522 | auto *OldConcept = dyn_cast<ConceptDecl>(Val: Previous.getRepresentativeDecl()->getUnderlyingDecl()); |
8523 | if (!OldConcept) { |
8524 | auto *Old = Previous.getRepresentativeDecl(); |
8525 | Diag(Loc: NewDecl->getLocation(), DiagID: diag::err_redefinition_different_kind) |
8526 | << NewDecl->getDeclName(); |
8527 | notePreviousDefinition(Old, New: NewDecl->getLocation()); |
8528 | AddToScope = false; |
8529 | return; |
8530 | } |
8531 | // Check if we can merge with a concept declaration. |
8532 | bool IsSame = Context.isSameEntity(X: NewDecl, Y: OldConcept); |
8533 | if (!IsSame) { |
8534 | Diag(Loc: NewDecl->getLocation(), DiagID: diag::err_redefinition_different_concept) |
8535 | << NewDecl->getDeclName(); |
8536 | notePreviousDefinition(Old: OldConcept, New: NewDecl->getLocation()); |
8537 | AddToScope = false; |
8538 | return; |
8539 | } |
8540 | if (hasReachableDefinition(D: OldConcept) && |
8541 | IsRedefinitionInModule(New: NewDecl, Old: OldConcept)) { |
8542 | Diag(Loc: NewDecl->getLocation(), DiagID: diag::err_redefinition) |
8543 | << NewDecl->getDeclName(); |
8544 | notePreviousDefinition(Old: OldConcept, New: NewDecl->getLocation()); |
8545 | AddToScope = false; |
8546 | return; |
8547 | } |
8548 | if (!Previous.isSingleResult()) { |
8549 | // FIXME: we should produce an error in case of ambig and failed lookups. |
8550 | // Other decls (e.g. namespaces) also have this shortcoming. |
8551 | return; |
8552 | } |
8553 | // We unwrap canonical decl late to check for module visibility. |
8554 | Context.setPrimaryMergedDecl(D: NewDecl, Primary: OldConcept->getCanonicalDecl()); |
8555 | } |
8556 | |
8557 | /// \brief Strips various properties off an implicit instantiation |
8558 | /// that has just been explicitly specialized. |
8559 | static void StripImplicitInstantiation(NamedDecl *D, bool MinGW) { |
8560 | if (MinGW || (isa<FunctionDecl>(Val: D) && |
8561 | cast<FunctionDecl>(Val: D)->isFunctionTemplateSpecialization())) |
8562 | D->dropAttrs<DLLImportAttr, DLLExportAttr>(); |
8563 | |
8564 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) |
8565 | FD->setInlineSpecified(false); |
8566 | } |
8567 | |
8568 | /// Compute the diagnostic location for an explicit instantiation |
8569 | // declaration or definition. |
8570 | static SourceLocation DiagLocForExplicitInstantiation( |
8571 | NamedDecl* D, SourceLocation PointOfInstantiation) { |
8572 | // Explicit instantiations following a specialization have no effect and |
8573 | // hence no PointOfInstantiation. In that case, walk decl backwards |
8574 | // until a valid name loc is found. |
8575 | SourceLocation PrevDiagLoc = PointOfInstantiation; |
8576 | for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); |
8577 | Prev = Prev->getPreviousDecl()) { |
8578 | PrevDiagLoc = Prev->getLocation(); |
8579 | } |
8580 | assert(PrevDiagLoc.isValid() && |
8581 | "Explicit instantiation without point of instantiation?" ); |
8582 | return PrevDiagLoc; |
8583 | } |
8584 | |
8585 | bool |
8586 | Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, |
8587 | TemplateSpecializationKind NewTSK, |
8588 | NamedDecl *PrevDecl, |
8589 | TemplateSpecializationKind PrevTSK, |
8590 | SourceLocation PrevPointOfInstantiation, |
8591 | bool &HasNoEffect) { |
8592 | HasNoEffect = false; |
8593 | |
8594 | switch (NewTSK) { |
8595 | case TSK_Undeclared: |
8596 | case TSK_ImplicitInstantiation: |
8597 | assert( |
8598 | (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && |
8599 | "previous declaration must be implicit!" ); |
8600 | return false; |
8601 | |
8602 | case TSK_ExplicitSpecialization: |
8603 | switch (PrevTSK) { |
8604 | case TSK_Undeclared: |
8605 | case TSK_ExplicitSpecialization: |
8606 | // Okay, we're just specializing something that is either already |
8607 | // explicitly specialized or has merely been mentioned without any |
8608 | // instantiation. |
8609 | return false; |
8610 | |
8611 | case TSK_ImplicitInstantiation: |
8612 | if (PrevPointOfInstantiation.isInvalid()) { |
8613 | // The declaration itself has not actually been instantiated, so it is |
8614 | // still okay to specialize it. |
8615 | StripImplicitInstantiation( |
8616 | D: PrevDecl, |
8617 | MinGW: Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()); |
8618 | return false; |
8619 | } |
8620 | // Fall through |
8621 | [[fallthrough]]; |
8622 | |
8623 | case TSK_ExplicitInstantiationDeclaration: |
8624 | case TSK_ExplicitInstantiationDefinition: |
8625 | assert((PrevTSK == TSK_ImplicitInstantiation || |
8626 | PrevPointOfInstantiation.isValid()) && |
8627 | "Explicit instantiation without point of instantiation?" ); |
8628 | |
8629 | // C++ [temp.expl.spec]p6: |
8630 | // If a template, a member template or the member of a class template |
8631 | // is explicitly specialized then that specialization shall be declared |
8632 | // before the first use of that specialization that would cause an |
8633 | // implicit instantiation to take place, in every translation unit in |
8634 | // which such a use occurs; no diagnostic is required. |
8635 | for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { |
8636 | // Is there any previous explicit specialization declaration? |
8637 | if (getTemplateSpecializationKind(D: Prev) == TSK_ExplicitSpecialization) |
8638 | return false; |
8639 | } |
8640 | |
8641 | Diag(Loc: NewLoc, DiagID: diag::err_specialization_after_instantiation) |
8642 | << PrevDecl; |
8643 | Diag(Loc: PrevPointOfInstantiation, DiagID: diag::note_instantiation_required_here) |
8644 | << (PrevTSK != TSK_ImplicitInstantiation); |
8645 | |
8646 | return true; |
8647 | } |
8648 | llvm_unreachable("The switch over PrevTSK must be exhaustive." ); |
8649 | |
8650 | case TSK_ExplicitInstantiationDeclaration: |
8651 | switch (PrevTSK) { |
8652 | case TSK_ExplicitInstantiationDeclaration: |
8653 | // This explicit instantiation declaration is redundant (that's okay). |
8654 | HasNoEffect = true; |
8655 | return false; |
8656 | |
8657 | case TSK_Undeclared: |
8658 | case TSK_ImplicitInstantiation: |
8659 | // We're explicitly instantiating something that may have already been |
8660 | // implicitly instantiated; that's fine. |
8661 | return false; |
8662 | |
8663 | case TSK_ExplicitSpecialization: |
8664 | // C++0x [temp.explicit]p4: |
8665 | // For a given set of template parameters, if an explicit instantiation |
8666 | // of a template appears after a declaration of an explicit |
8667 | // specialization for that template, the explicit instantiation has no |
8668 | // effect. |
8669 | HasNoEffect = true; |
8670 | return false; |
8671 | |
8672 | case TSK_ExplicitInstantiationDefinition: |
8673 | // C++0x [temp.explicit]p10: |
8674 | // If an entity is the subject of both an explicit instantiation |
8675 | // declaration and an explicit instantiation definition in the same |
8676 | // translation unit, the definition shall follow the declaration. |
8677 | Diag(Loc: NewLoc, |
8678 | DiagID: diag::err_explicit_instantiation_declaration_after_definition); |
8679 | |
8680 | // Explicit instantiations following a specialization have no effect and |
8681 | // hence no PrevPointOfInstantiation. In that case, walk decl backwards |
8682 | // until a valid name loc is found. |
8683 | Diag(Loc: DiagLocForExplicitInstantiation(D: PrevDecl, PointOfInstantiation: PrevPointOfInstantiation), |
8684 | DiagID: diag::note_explicit_instantiation_definition_here); |
8685 | HasNoEffect = true; |
8686 | return false; |
8687 | } |
8688 | llvm_unreachable("Unexpected TemplateSpecializationKind!" ); |
8689 | |
8690 | case TSK_ExplicitInstantiationDefinition: |
8691 | switch (PrevTSK) { |
8692 | case TSK_Undeclared: |
8693 | case TSK_ImplicitInstantiation: |
8694 | // We're explicitly instantiating something that may have already been |
8695 | // implicitly instantiated; that's fine. |
8696 | return false; |
8697 | |
8698 | case TSK_ExplicitSpecialization: |
8699 | // C++ DR 259, C++0x [temp.explicit]p4: |
8700 | // For a given set of template parameters, if an explicit |
8701 | // instantiation of a template appears after a declaration of |
8702 | // an explicit specialization for that template, the explicit |
8703 | // instantiation has no effect. |
8704 | Diag(Loc: NewLoc, DiagID: diag::warn_explicit_instantiation_after_specialization) |
8705 | << PrevDecl; |
8706 | Diag(Loc: PrevDecl->getLocation(), |
8707 | DiagID: diag::note_previous_template_specialization); |
8708 | HasNoEffect = true; |
8709 | return false; |
8710 | |
8711 | case TSK_ExplicitInstantiationDeclaration: |
8712 | // We're explicitly instantiating a definition for something for which we |
8713 | // were previously asked to suppress instantiations. That's fine. |
8714 | |
8715 | // C++0x [temp.explicit]p4: |
8716 | // For a given set of template parameters, if an explicit instantiation |
8717 | // of a template appears after a declaration of an explicit |
8718 | // specialization for that template, the explicit instantiation has no |
8719 | // effect. |
8720 | for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { |
8721 | // Is there any previous explicit specialization declaration? |
8722 | if (getTemplateSpecializationKind(D: Prev) == TSK_ExplicitSpecialization) { |
8723 | HasNoEffect = true; |
8724 | break; |
8725 | } |
8726 | } |
8727 | |
8728 | return false; |
8729 | |
8730 | case TSK_ExplicitInstantiationDefinition: |
8731 | // C++0x [temp.spec]p5: |
8732 | // For a given template and a given set of template-arguments, |
8733 | // - an explicit instantiation definition shall appear at most once |
8734 | // in a program, |
8735 | |
8736 | // MSVCCompat: MSVC silently ignores duplicate explicit instantiations. |
8737 | Diag(Loc: NewLoc, DiagID: (getLangOpts().MSVCCompat) |
8738 | ? diag::ext_explicit_instantiation_duplicate |
8739 | : diag::err_explicit_instantiation_duplicate) |
8740 | << PrevDecl; |
8741 | Diag(Loc: DiagLocForExplicitInstantiation(D: PrevDecl, PointOfInstantiation: PrevPointOfInstantiation), |
8742 | DiagID: diag::note_previous_explicit_instantiation); |
8743 | HasNoEffect = true; |
8744 | return false; |
8745 | } |
8746 | } |
8747 | |
8748 | llvm_unreachable("Missing specialization/instantiation case?" ); |
8749 | } |
8750 | |
8751 | bool Sema::CheckDependentFunctionTemplateSpecialization( |
8752 | FunctionDecl *FD, const TemplateArgumentListInfo *ExplicitTemplateArgs, |
8753 | LookupResult &Previous) { |
8754 | // Remove anything from Previous that isn't a function template in |
8755 | // the correct context. |
8756 | DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); |
8757 | LookupResult::Filter F = Previous.makeFilter(); |
8758 | enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing }; |
8759 | SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates; |
8760 | while (F.hasNext()) { |
8761 | NamedDecl *D = F.next()->getUnderlyingDecl(); |
8762 | if (!isa<FunctionTemplateDecl>(Val: D)) { |
8763 | F.erase(); |
8764 | DiscardedCandidates.push_back(Elt: std::make_pair(x: NotAFunctionTemplate, y&: D)); |
8765 | continue; |
8766 | } |
8767 | |
8768 | if (!FDLookupContext->InEnclosingNamespaceSetOf( |
8769 | NS: D->getDeclContext()->getRedeclContext())) { |
8770 | F.erase(); |
8771 | DiscardedCandidates.push_back(Elt: std::make_pair(x: NotAMemberOfEnclosing, y&: D)); |
8772 | continue; |
8773 | } |
8774 | } |
8775 | F.done(); |
8776 | |
8777 | bool IsFriend = FD->getFriendObjectKind() != Decl::FOK_None; |
8778 | if (Previous.empty()) { |
8779 | Diag(Loc: FD->getLocation(), DiagID: diag::err_dependent_function_template_spec_no_match) |
8780 | << IsFriend; |
8781 | for (auto &P : DiscardedCandidates) |
8782 | Diag(Loc: P.second->getLocation(), |
8783 | DiagID: diag::note_dependent_function_template_spec_discard_reason) |
8784 | << P.first << IsFriend; |
8785 | return true; |
8786 | } |
8787 | |
8788 | FD->setDependentTemplateSpecialization(Context, Templates: Previous.asUnresolvedSet(), |
8789 | TemplateArgs: ExplicitTemplateArgs); |
8790 | return false; |
8791 | } |
8792 | |
8793 | bool Sema::CheckFunctionTemplateSpecialization( |
8794 | FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, |
8795 | LookupResult &Previous, bool QualifiedFriend) { |
8796 | // The set of function template specializations that could match this |
8797 | // explicit function template specialization. |
8798 | UnresolvedSet<8> Candidates; |
8799 | TemplateSpecCandidateSet FailedCandidates(FD->getLocation(), |
8800 | /*ForTakingAddress=*/false); |
8801 | |
8802 | llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8> |
8803 | ConvertedTemplateArgs; |
8804 | |
8805 | DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); |
8806 | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); |
8807 | I != E; ++I) { |
8808 | NamedDecl *Ovl = (*I)->getUnderlyingDecl(); |
8809 | if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Val: Ovl)) { |
8810 | // Only consider templates found within the same semantic lookup scope as |
8811 | // FD. |
8812 | if (!FDLookupContext->InEnclosingNamespaceSetOf( |
8813 | NS: Ovl->getDeclContext()->getRedeclContext())) |
8814 | continue; |
8815 | |
8816 | QualType FT = FD->getType(); |
8817 | // C++11 [dcl.constexpr]p8: |
8818 | // A constexpr specifier for a non-static member function that is not |
8819 | // a constructor declares that member function to be const. |
8820 | // |
8821 | // When matching a constexpr member function template specialization |
8822 | // against the primary template, we don't yet know whether the |
8823 | // specialization has an implicit 'const' (because we don't know whether |
8824 | // it will be a static member function until we know which template it |
8825 | // specializes). This rule was removed in C++14. |
8826 | if (auto *NewMD = dyn_cast<CXXMethodDecl>(Val: FD); |
8827 | !getLangOpts().CPlusPlus14 && NewMD && NewMD->isConstexpr() && |
8828 | !isa<CXXConstructorDecl, CXXDestructorDecl>(Val: NewMD)) { |
8829 | auto *OldMD = dyn_cast<CXXMethodDecl>(Val: FunTmpl->getTemplatedDecl()); |
8830 | if (OldMD && OldMD->isConst()) { |
8831 | const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); |
8832 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
8833 | EPI.TypeQuals.addConst(); |
8834 | FT = Context.getFunctionType(ResultTy: FPT->getReturnType(), |
8835 | Args: FPT->getParamTypes(), EPI); |
8836 | } |
8837 | } |
8838 | |
8839 | TemplateArgumentListInfo Args; |
8840 | if (ExplicitTemplateArgs) |
8841 | Args = *ExplicitTemplateArgs; |
8842 | |
8843 | // C++ [temp.expl.spec]p11: |
8844 | // A trailing template-argument can be left unspecified in the |
8845 | // template-id naming an explicit function template specialization |
8846 | // provided it can be deduced from the function argument type. |
8847 | // Perform template argument deduction to determine whether we may be |
8848 | // specializing this template. |
8849 | // FIXME: It is somewhat wasteful to build |
8850 | TemplateDeductionInfo Info(FailedCandidates.getLocation()); |
8851 | FunctionDecl *Specialization = nullptr; |
8852 | if (TemplateDeductionResult TDK = DeduceTemplateArguments( |
8853 | FunctionTemplate: cast<FunctionTemplateDecl>(Val: FunTmpl->getFirstDecl()), |
8854 | ExplicitTemplateArgs: ExplicitTemplateArgs ? &Args : nullptr, ArgFunctionType: FT, Specialization, Info); |
8855 | TDK != TemplateDeductionResult::Success) { |
8856 | // Template argument deduction failed; record why it failed, so |
8857 | // that we can provide nifty diagnostics. |
8858 | FailedCandidates.addCandidate().set( |
8859 | Found: I.getPair(), Spec: FunTmpl->getTemplatedDecl(), |
8860 | Info: MakeDeductionFailureInfo(Context, TDK, Info)); |
8861 | (void)TDK; |
8862 | continue; |
8863 | } |
8864 | |
8865 | // Target attributes are part of the cuda function signature, so |
8866 | // the deduced template's cuda target must match that of the |
8867 | // specialization. Given that C++ template deduction does not |
8868 | // take target attributes into account, we reject candidates |
8869 | // here that have a different target. |
8870 | if (LangOpts.CUDA && |
8871 | CUDA().IdentifyTarget(D: Specialization, |
8872 | /* IgnoreImplicitHDAttr = */ true) != |
8873 | CUDA().IdentifyTarget(D: FD, /* IgnoreImplicitHDAttr = */ true)) { |
8874 | FailedCandidates.addCandidate().set( |
8875 | Found: I.getPair(), Spec: FunTmpl->getTemplatedDecl(), |
8876 | Info: MakeDeductionFailureInfo( |
8877 | Context, TDK: TemplateDeductionResult::CUDATargetMismatch, Info)); |
8878 | continue; |
8879 | } |
8880 | |
8881 | // Record this candidate. |
8882 | if (ExplicitTemplateArgs) |
8883 | ConvertedTemplateArgs[Specialization] = std::move(Args); |
8884 | Candidates.addDecl(D: Specialization, AS: I.getAccess()); |
8885 | } |
8886 | } |
8887 | |
8888 | // For a qualified friend declaration (with no explicit marker to indicate |
8889 | // that a template specialization was intended), note all (template and |
8890 | // non-template) candidates. |
8891 | if (QualifiedFriend && Candidates.empty()) { |
8892 | Diag(Loc: FD->getLocation(), DiagID: diag::err_qualified_friend_no_match) |
8893 | << FD->getDeclName() << FDLookupContext; |
8894 | // FIXME: We should form a single candidate list and diagnose all |
8895 | // candidates at once, to get proper sorting and limiting. |
8896 | for (auto *OldND : Previous) { |
8897 | if (auto *OldFD = dyn_cast<FunctionDecl>(Val: OldND->getUnderlyingDecl())) |
8898 | NoteOverloadCandidate(Found: OldND, Fn: OldFD, RewriteKind: CRK_None, DestType: FD->getType(), TakingAddress: false); |
8899 | } |
8900 | FailedCandidates.NoteCandidates(S&: *this, Loc: FD->getLocation()); |
8901 | return true; |
8902 | } |
8903 | |
8904 | // Find the most specialized function template. |
8905 | UnresolvedSetIterator Result = getMostSpecialized( |
8906 | SBegin: Candidates.begin(), SEnd: Candidates.end(), FailedCandidates, Loc: FD->getLocation(), |
8907 | NoneDiag: PDiag(DiagID: diag::err_function_template_spec_no_match) << FD->getDeclName(), |
8908 | AmbigDiag: PDiag(DiagID: diag::err_function_template_spec_ambiguous) |
8909 | << FD->getDeclName() << (ExplicitTemplateArgs != nullptr), |
8910 | CandidateDiag: PDiag(DiagID: diag::note_function_template_spec_matched)); |
8911 | |
8912 | if (Result == Candidates.end()) |
8913 | return true; |
8914 | |
8915 | // Ignore access information; it doesn't figure into redeclaration checking. |
8916 | FunctionDecl *Specialization = cast<FunctionDecl>(Val: *Result); |
8917 | |
8918 | // C++23 [except.spec]p13: |
8919 | // An exception specification is considered to be needed when: |
8920 | // - [...] |
8921 | // - the exception specification is compared to that of another declaration |
8922 | // (e.g., an explicit specialization or an overriding virtual function); |
8923 | // - [...] |
8924 | // |
8925 | // The exception specification of a defaulted function is evaluated as |
8926 | // described above only when needed; similarly, the noexcept-specifier of a |
8927 | // specialization of a function template or member function of a class |
8928 | // template is instantiated only when needed. |
8929 | // |
8930 | // The standard doesn't specify what the "comparison with another declaration" |
8931 | // entails, nor the exact circumstances in which it occurs. Moreover, it does |
8932 | // not state which properties of an explicit specialization must match the |
8933 | // primary template. |
8934 | // |
8935 | // We assume that an explicit specialization must correspond with (per |
8936 | // [basic.scope.scope]p4) and declare the same entity as (per [basic.link]p8) |
8937 | // the declaration produced by substitution into the function template. |
8938 | // |
8939 | // Since the determination whether two function declarations correspond does |
8940 | // not consider exception specification, we only need to instantiate it once |
8941 | // we determine the primary template when comparing types per |
8942 | // [basic.link]p11.1. |
8943 | auto *SpecializationFPT = |
8944 | Specialization->getType()->castAs<FunctionProtoType>(); |
8945 | // If the function has a dependent exception specification, resolve it after |
8946 | // we have selected the primary template so we can check whether it matches. |
8947 | if (getLangOpts().CPlusPlus17 && |
8948 | isUnresolvedExceptionSpec(ESpecType: SpecializationFPT->getExceptionSpecType()) && |
8949 | !ResolveExceptionSpec(Loc: FD->getLocation(), FPT: SpecializationFPT)) |
8950 | return true; |
8951 | |
8952 | FunctionTemplateSpecializationInfo *SpecInfo |
8953 | = Specialization->getTemplateSpecializationInfo(); |
8954 | assert(SpecInfo && "Function template specialization info missing?" ); |
8955 | |
8956 | // Note: do not overwrite location info if previous template |
8957 | // specialization kind was explicit. |
8958 | TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); |
8959 | if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { |
8960 | Specialization->setLocation(FD->getLocation()); |
8961 | Specialization->setLexicalDeclContext(FD->getLexicalDeclContext()); |
8962 | // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr |
8963 | // function can differ from the template declaration with respect to |
8964 | // the constexpr specifier. |
8965 | // FIXME: We need an update record for this AST mutation. |
8966 | // FIXME: What if there are multiple such prior declarations (for instance, |
8967 | // from different modules)? |
8968 | Specialization->setConstexprKind(FD->getConstexprKind()); |
8969 | } |
8970 | |
8971 | // FIXME: Check if the prior specialization has a point of instantiation. |
8972 | // If so, we have run afoul of . |
8973 | |
8974 | // If this is a friend declaration, then we're not really declaring |
8975 | // an explicit specialization. |
8976 | bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); |
8977 | |
8978 | // Check the scope of this explicit specialization. |
8979 | if (!isFriend && |
8980 | CheckTemplateSpecializationScope(S&: *this, |
8981 | Specialized: Specialization->getPrimaryTemplate(), |
8982 | PrevDecl: Specialization, Loc: FD->getLocation(), |
8983 | IsPartialSpecialization: false)) |
8984 | return true; |
8985 | |
8986 | // C++ [temp.expl.spec]p6: |
8987 | // If a template, a member template or the member of a class template is |
8988 | // explicitly specialized then that specialization shall be declared |
8989 | // before the first use of that specialization that would cause an implicit |
8990 | // instantiation to take place, in every translation unit in which such a |
8991 | // use occurs; no diagnostic is required. |
8992 | bool HasNoEffect = false; |
8993 | if (!isFriend && |
8994 | CheckSpecializationInstantiationRedecl(NewLoc: FD->getLocation(), |
8995 | NewTSK: TSK_ExplicitSpecialization, |
8996 | PrevDecl: Specialization, |
8997 | PrevTSK: SpecInfo->getTemplateSpecializationKind(), |
8998 | PrevPointOfInstantiation: SpecInfo->getPointOfInstantiation(), |
8999 | HasNoEffect)) |
9000 | return true; |
9001 | |
9002 | // Mark the prior declaration as an explicit specialization, so that later |
9003 | // clients know that this is an explicit specialization. |
9004 | if (!isFriend) { |
9005 | // Since explicit specializations do not inherit '=delete' from their |
9006 | // primary function template - check if the 'specialization' that was |
9007 | // implicitly generated (during template argument deduction for partial |
9008 | // ordering) from the most specialized of all the function templates that |
9009 | // 'FD' could have been specializing, has a 'deleted' definition. If so, |
9010 | // first check that it was implicitly generated during template argument |
9011 | // deduction by making sure it wasn't referenced, and then reset the deleted |
9012 | // flag to not-deleted, so that we can inherit that information from 'FD'. |
9013 | if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() && |
9014 | !Specialization->getCanonicalDecl()->isReferenced()) { |
9015 | // FIXME: This assert will not hold in the presence of modules. |
9016 | assert( |
9017 | Specialization->getCanonicalDecl() == Specialization && |
9018 | "This must be the only existing declaration of this specialization" ); |
9019 | // FIXME: We need an update record for this AST mutation. |
9020 | Specialization->setDeletedAsWritten(D: false); |
9021 | } |
9022 | // FIXME: We need an update record for this AST mutation. |
9023 | SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); |
9024 | MarkUnusedFileScopedDecl(D: Specialization); |
9025 | } |
9026 | |
9027 | // Turn the given function declaration into a function template |
9028 | // specialization, with the template arguments from the previous |
9029 | // specialization. |
9030 | // Take copies of (semantic and syntactic) template argument lists. |
9031 | TemplateArgumentList *TemplArgs = TemplateArgumentList::CreateCopy( |
9032 | Context, Args: Specialization->getTemplateSpecializationArgs()->asArray()); |
9033 | FD->setFunctionTemplateSpecialization( |
9034 | Template: Specialization->getPrimaryTemplate(), TemplateArgs: TemplArgs, /*InsertPos=*/nullptr, |
9035 | TSK: SpecInfo->getTemplateSpecializationKind(), |
9036 | TemplateArgsAsWritten: ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr); |
9037 | |
9038 | // A function template specialization inherits the target attributes |
9039 | // of its template. (We require the attributes explicitly in the |
9040 | // code to match, but a template may have implicit attributes by |
9041 | // virtue e.g. of being constexpr, and it passes these implicit |
9042 | // attributes on to its specializations.) |
9043 | if (LangOpts.CUDA) |
9044 | CUDA().inheritTargetAttrs(FD, TD: *Specialization->getPrimaryTemplate()); |
9045 | |
9046 | // The "previous declaration" for this function template specialization is |
9047 | // the prior function template specialization. |
9048 | Previous.clear(); |
9049 | Previous.addDecl(D: Specialization); |
9050 | return false; |
9051 | } |
9052 | |
9053 | bool |
9054 | Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { |
9055 | assert(!isa<TemplateDecl>(Member) && "Only for non-template members" ); |
9056 | |
9057 | // Try to find the member we are instantiating. |
9058 | NamedDecl *FoundInstantiation = nullptr; |
9059 | NamedDecl *Instantiation = nullptr; |
9060 | NamedDecl *InstantiatedFrom = nullptr; |
9061 | MemberSpecializationInfo *MSInfo = nullptr; |
9062 | |
9063 | if (Previous.empty()) { |
9064 | // Nowhere to look anyway. |
9065 | } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Val: Member)) { |
9066 | SmallVector<FunctionDecl *> Candidates; |
9067 | bool Ambiguous = false; |
9068 | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); |
9069 | I != E; ++I) { |
9070 | CXXMethodDecl *Method = |
9071 | dyn_cast<CXXMethodDecl>(Val: (*I)->getUnderlyingDecl()); |
9072 | if (!Method) |
9073 | continue; |
9074 | QualType Adjusted = Function->getType(); |
9075 | if (!hasExplicitCallingConv(T: Adjusted)) |
9076 | Adjusted = adjustCCAndNoReturn(ArgFunctionType: Adjusted, FunctionType: Method->getType()); |
9077 | // This doesn't handle deduced return types, but both function |
9078 | // declarations should be undeduced at this point. |
9079 | if (!Context.hasSameType(T1: Adjusted, T2: Method->getType())) |
9080 | continue; |
9081 | if (ConstraintSatisfaction Satisfaction; |
9082 | Method->getTrailingRequiresClause() && |
9083 | (CheckFunctionConstraints(FD: Method, Satisfaction, |
9084 | /*UsageLoc=*/Member->getLocation(), |
9085 | /*ForOverloadResolution=*/true) || |
9086 | !Satisfaction.IsSatisfied)) |
9087 | continue; |
9088 | Candidates.push_back(Elt: Method); |
9089 | FunctionDecl *MoreConstrained = |
9090 | Instantiation ? getMoreConstrainedFunction( |
9091 | FD1: Method, FD2: cast<FunctionDecl>(Val: Instantiation)) |
9092 | : Method; |
9093 | if (!MoreConstrained) { |
9094 | Ambiguous = true; |
9095 | continue; |
9096 | } |
9097 | if (MoreConstrained == Method) { |
9098 | Ambiguous = false; |
9099 | FoundInstantiation = *I; |
9100 | Instantiation = Method; |
9101 | InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); |
9102 | MSInfo = Method->getMemberSpecializationInfo(); |
9103 | } |
9104 | } |
9105 | if (Ambiguous) { |
9106 | Diag(Loc: Member->getLocation(), DiagID: diag::err_function_member_spec_ambiguous) |
9107 | << Member << (InstantiatedFrom ? InstantiatedFrom : Instantiation); |
9108 | for (FunctionDecl *Candidate : Candidates) |
9109 | Diag(Loc: Candidate->getLocation(), DiagID: diag::note_function_member_spec_matched) |
9110 | << Candidate; |
9111 | return true; |
9112 | } |
9113 | } else if (isa<VarDecl>(Val: Member)) { |
9114 | VarDecl *PrevVar; |
9115 | if (Previous.isSingleResult() && |
9116 | (PrevVar = dyn_cast<VarDecl>(Val: Previous.getFoundDecl()))) |
9117 | if (PrevVar->isStaticDataMember()) { |
9118 | FoundInstantiation = Previous.getRepresentativeDecl(); |
9119 | Instantiation = PrevVar; |
9120 | InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); |
9121 | MSInfo = PrevVar->getMemberSpecializationInfo(); |
9122 | } |
9123 | } else if (isa<RecordDecl>(Val: Member)) { |
9124 | CXXRecordDecl *PrevRecord; |
9125 | if (Previous.isSingleResult() && |
9126 | (PrevRecord = dyn_cast<CXXRecordDecl>(Val: Previous.getFoundDecl()))) { |
9127 | FoundInstantiation = Previous.getRepresentativeDecl(); |
9128 | Instantiation = PrevRecord; |
9129 | InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); |
9130 | MSInfo = PrevRecord->getMemberSpecializationInfo(); |
9131 | } |
9132 | } else if (isa<EnumDecl>(Val: Member)) { |
9133 | EnumDecl *PrevEnum; |
9134 | if (Previous.isSingleResult() && |
9135 | (PrevEnum = dyn_cast<EnumDecl>(Val: Previous.getFoundDecl()))) { |
9136 | FoundInstantiation = Previous.getRepresentativeDecl(); |
9137 | Instantiation = PrevEnum; |
9138 | InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); |
9139 | MSInfo = PrevEnum->getMemberSpecializationInfo(); |
9140 | } |
9141 | } |
9142 | |
9143 | if (!Instantiation) { |
9144 | // There is no previous declaration that matches. Since member |
9145 | // specializations are always out-of-line, the caller will complain about |
9146 | // this mismatch later. |
9147 | return false; |
9148 | } |
9149 | |
9150 | // A member specialization in a friend declaration isn't really declaring |
9151 | // an explicit specialization, just identifying a specific (possibly implicit) |
9152 | // specialization. Don't change the template specialization kind. |
9153 | // |
9154 | // FIXME: Is this really valid? Other compilers reject. |
9155 | if (Member->getFriendObjectKind() != Decl::FOK_None) { |
9156 | // Preserve instantiation information. |
9157 | if (InstantiatedFrom && isa<CXXMethodDecl>(Val: Member)) { |
9158 | cast<CXXMethodDecl>(Val: Member)->setInstantiationOfMemberFunction( |
9159 | FD: cast<CXXMethodDecl>(Val: InstantiatedFrom), |
9160 | TSK: cast<CXXMethodDecl>(Val: Instantiation)->getTemplateSpecializationKind()); |
9161 | } else if (InstantiatedFrom && isa<CXXRecordDecl>(Val: Member)) { |
9162 | cast<CXXRecordDecl>(Val: Member)->setInstantiationOfMemberClass( |
9163 | RD: cast<CXXRecordDecl>(Val: InstantiatedFrom), |
9164 | TSK: cast<CXXRecordDecl>(Val: Instantiation)->getTemplateSpecializationKind()); |
9165 | } |
9166 | |
9167 | Previous.clear(); |
9168 | Previous.addDecl(D: FoundInstantiation); |
9169 | return false; |
9170 | } |
9171 | |
9172 | // Make sure that this is a specialization of a member. |
9173 | if (!InstantiatedFrom) { |
9174 | Diag(Loc: Member->getLocation(), DiagID: diag::err_spec_member_not_instantiated) |
9175 | << Member; |
9176 | Diag(Loc: Instantiation->getLocation(), DiagID: diag::note_specialized_decl); |
9177 | return true; |
9178 | } |
9179 | |
9180 | // C++ [temp.expl.spec]p6: |
9181 | // If a template, a member template or the member of a class template is |
9182 | // explicitly specialized then that specialization shall be declared |
9183 | // before the first use of that specialization that would cause an implicit |
9184 | // instantiation to take place, in every translation unit in which such a |
9185 | // use occurs; no diagnostic is required. |
9186 | assert(MSInfo && "Member specialization info missing?" ); |
9187 | |
9188 | bool HasNoEffect = false; |
9189 | if (CheckSpecializationInstantiationRedecl(NewLoc: Member->getLocation(), |
9190 | NewTSK: TSK_ExplicitSpecialization, |
9191 | PrevDecl: Instantiation, |
9192 | PrevTSK: MSInfo->getTemplateSpecializationKind(), |
9193 | PrevPointOfInstantiation: MSInfo->getPointOfInstantiation(), |
9194 | HasNoEffect)) |
9195 | return true; |
9196 | |
9197 | // Check the scope of this explicit specialization. |
9198 | if (CheckTemplateSpecializationScope(S&: *this, |
9199 | Specialized: InstantiatedFrom, |
9200 | PrevDecl: Instantiation, Loc: Member->getLocation(), |
9201 | IsPartialSpecialization: false)) |
9202 | return true; |
9203 | |
9204 | // Note that this member specialization is an "instantiation of" the |
9205 | // corresponding member of the original template. |
9206 | if (auto *MemberFunction = dyn_cast<FunctionDecl>(Val: Member)) { |
9207 | FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Val: Instantiation); |
9208 | if (InstantiationFunction->getTemplateSpecializationKind() == |
9209 | TSK_ImplicitInstantiation) { |
9210 | // Explicit specializations of member functions of class templates do not |
9211 | // inherit '=delete' from the member function they are specializing. |
9212 | if (InstantiationFunction->isDeleted()) { |
9213 | // FIXME: This assert will not hold in the presence of modules. |
9214 | assert(InstantiationFunction->getCanonicalDecl() == |
9215 | InstantiationFunction); |
9216 | // FIXME: We need an update record for this AST mutation. |
9217 | InstantiationFunction->setDeletedAsWritten(D: false); |
9218 | } |
9219 | } |
9220 | |
9221 | MemberFunction->setInstantiationOfMemberFunction( |
9222 | FD: cast<CXXMethodDecl>(Val: InstantiatedFrom), TSK: TSK_ExplicitSpecialization); |
9223 | } else if (auto *MemberVar = dyn_cast<VarDecl>(Val: Member)) { |
9224 | MemberVar->setInstantiationOfStaticDataMember( |
9225 | VD: cast<VarDecl>(Val: InstantiatedFrom), TSK: TSK_ExplicitSpecialization); |
9226 | } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Val: Member)) { |
9227 | MemberClass->setInstantiationOfMemberClass( |
9228 | RD: cast<CXXRecordDecl>(Val: InstantiatedFrom), TSK: TSK_ExplicitSpecialization); |
9229 | } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Val: Member)) { |
9230 | MemberEnum->setInstantiationOfMemberEnum( |
9231 | ED: cast<EnumDecl>(Val: InstantiatedFrom), TSK: TSK_ExplicitSpecialization); |
9232 | } else { |
9233 | llvm_unreachable("unknown member specialization kind" ); |
9234 | } |
9235 | |
9236 | // Save the caller the trouble of having to figure out which declaration |
9237 | // this specialization matches. |
9238 | Previous.clear(); |
9239 | Previous.addDecl(D: FoundInstantiation); |
9240 | return false; |
9241 | } |
9242 | |
9243 | /// Complete the explicit specialization of a member of a class template by |
9244 | /// updating the instantiated member to be marked as an explicit specialization. |
9245 | /// |
9246 | /// \param OrigD The member declaration instantiated from the template. |
9247 | /// \param Loc The location of the explicit specialization of the member. |
9248 | template<typename DeclT> |
9249 | static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD, |
9250 | SourceLocation Loc) { |
9251 | if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) |
9252 | return; |
9253 | |
9254 | // FIXME: Inform AST mutation listeners of this AST mutation. |
9255 | // FIXME: If there are multiple in-class declarations of the member (from |
9256 | // multiple modules, or a declaration and later definition of a member type), |
9257 | // should we update all of them? |
9258 | OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization); |
9259 | OrigD->setLocation(Loc); |
9260 | } |
9261 | |
9262 | void Sema::CompleteMemberSpecialization(NamedDecl *Member, |
9263 | LookupResult &Previous) { |
9264 | NamedDecl *Instantiation = cast<NamedDecl>(Val: Member->getCanonicalDecl()); |
9265 | if (Instantiation == Member) |
9266 | return; |
9267 | |
9268 | if (auto *Function = dyn_cast<CXXMethodDecl>(Val: Instantiation)) |
9269 | completeMemberSpecializationImpl(S&: *this, OrigD: Function, Loc: Member->getLocation()); |
9270 | else if (auto *Var = dyn_cast<VarDecl>(Val: Instantiation)) |
9271 | completeMemberSpecializationImpl(S&: *this, OrigD: Var, Loc: Member->getLocation()); |
9272 | else if (auto *Record = dyn_cast<CXXRecordDecl>(Val: Instantiation)) |
9273 | completeMemberSpecializationImpl(S&: *this, OrigD: Record, Loc: Member->getLocation()); |
9274 | else if (auto *Enum = dyn_cast<EnumDecl>(Val: Instantiation)) |
9275 | completeMemberSpecializationImpl(S&: *this, OrigD: Enum, Loc: Member->getLocation()); |
9276 | else |
9277 | llvm_unreachable("unknown member specialization kind" ); |
9278 | } |
9279 | |
9280 | /// Check the scope of an explicit instantiation. |
9281 | /// |
9282 | /// \returns true if a serious error occurs, false otherwise. |
9283 | static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, |
9284 | SourceLocation InstLoc, |
9285 | bool WasQualifiedName) { |
9286 | DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); |
9287 | DeclContext *CurContext = S.CurContext->getRedeclContext(); |
9288 | |
9289 | if (CurContext->isRecord()) { |
9290 | S.Diag(Loc: InstLoc, DiagID: diag::err_explicit_instantiation_in_class) |
9291 | << D; |
9292 | return true; |
9293 | } |
9294 | |
9295 | // C++11 [temp.explicit]p3: |
9296 | // An explicit instantiation shall appear in an enclosing namespace of its |
9297 | // template. If the name declared in the explicit instantiation is an |
9298 | // unqualified name, the explicit instantiation shall appear in the |
9299 | // namespace where its template is declared or, if that namespace is inline |
9300 | // (7.3.1), any namespace from its enclosing namespace set. |
9301 | // |
9302 | // This is DR275, which we do not retroactively apply to C++98/03. |
9303 | if (WasQualifiedName) { |
9304 | if (CurContext->Encloses(DC: OrigContext)) |
9305 | return false; |
9306 | } else { |
9307 | if (CurContext->InEnclosingNamespaceSetOf(NS: OrigContext)) |
9308 | return false; |
9309 | } |
9310 | |
9311 | if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Val: OrigContext)) { |
9312 | if (WasQualifiedName) |
9313 | S.Diag(Loc: InstLoc, |
9314 | DiagID: S.getLangOpts().CPlusPlus11? |
9315 | diag::err_explicit_instantiation_out_of_scope : |
9316 | diag::warn_explicit_instantiation_out_of_scope_0x) |
9317 | << D << NS; |
9318 | else |
9319 | S.Diag(Loc: InstLoc, |
9320 | DiagID: S.getLangOpts().CPlusPlus11? |
9321 | diag::err_explicit_instantiation_unqualified_wrong_namespace : |
9322 | diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) |
9323 | << D << NS; |
9324 | } else |
9325 | S.Diag(Loc: InstLoc, |
9326 | DiagID: S.getLangOpts().CPlusPlus11? |
9327 | diag::err_explicit_instantiation_must_be_global : |
9328 | diag::warn_explicit_instantiation_must_be_global_0x) |
9329 | << D; |
9330 | S.Diag(Loc: D->getLocation(), DiagID: diag::note_explicit_instantiation_here); |
9331 | return false; |
9332 | } |
9333 | |
9334 | /// Common checks for whether an explicit instantiation of \p D is valid. |
9335 | static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D, |
9336 | SourceLocation InstLoc, |
9337 | bool WasQualifiedName, |
9338 | TemplateSpecializationKind TSK) { |
9339 | // C++ [temp.explicit]p13: |
9340 | // An explicit instantiation declaration shall not name a specialization of |
9341 | // a template with internal linkage. |
9342 | if (TSK == TSK_ExplicitInstantiationDeclaration && |
9343 | D->getFormalLinkage() == Linkage::Internal) { |
9344 | S.Diag(Loc: InstLoc, DiagID: diag::err_explicit_instantiation_internal_linkage) << D; |
9345 | return true; |
9346 | } |
9347 | |
9348 | // C++11 [temp.explicit]p3: [DR 275] |
9349 | // An explicit instantiation shall appear in an enclosing namespace of its |
9350 | // template. |
9351 | if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName)) |
9352 | return true; |
9353 | |
9354 | return false; |
9355 | } |
9356 | |
9357 | /// Determine whether the given scope specifier has a template-id in it. |
9358 | static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { |
9359 | if (!SS.isSet()) |
9360 | return false; |
9361 | |
9362 | // C++11 [temp.explicit]p3: |
9363 | // If the explicit instantiation is for a member function, a member class |
9364 | // or a static data member of a class template specialization, the name of |
9365 | // the class template specialization in the qualified-id for the member |
9366 | // name shall be a simple-template-id. |
9367 | // |
9368 | // C++98 has the same restriction, just worded differently. |
9369 | for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS; |
9370 | NNS = NNS->getPrefix()) |
9371 | if (const Type *T = NNS->getAsType()) |
9372 | if (isa<TemplateSpecializationType>(Val: T)) |
9373 | return true; |
9374 | |
9375 | return false; |
9376 | } |
9377 | |
9378 | /// Make a dllexport or dllimport attr on a class template specialization take |
9379 | /// effect. |
9380 | static void dllExportImportClassTemplateSpecialization( |
9381 | Sema &S, ClassTemplateSpecializationDecl *Def) { |
9382 | auto *A = cast_or_null<InheritableAttr>(Val: getDLLAttr(D: Def)); |
9383 | assert(A && "dllExportImportClassTemplateSpecialization called " |
9384 | "on Def without dllexport or dllimport" ); |
9385 | |
9386 | // We reject explicit instantiations in class scope, so there should |
9387 | // never be any delayed exported classes to worry about. |
9388 | assert(S.DelayedDllExportClasses.empty() && |
9389 | "delayed exports present at explicit instantiation" ); |
9390 | S.checkClassLevelDLLAttribute(Class: Def); |
9391 | |
9392 | // Propagate attribute to base class templates. |
9393 | for (auto &B : Def->bases()) { |
9394 | if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>( |
9395 | Val: B.getType()->getAsCXXRecordDecl())) |
9396 | S.propagateDLLAttrToBaseClassTemplate(Class: Def, ClassAttr: A, BaseTemplateSpec: BT, BaseLoc: B.getBeginLoc()); |
9397 | } |
9398 | |
9399 | S.referenceDLLExportedClassMethods(); |
9400 | } |
9401 | |
9402 | DeclResult Sema::ActOnExplicitInstantiation( |
9403 | Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, |
9404 | unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, |
9405 | TemplateTy TemplateD, SourceLocation TemplateNameLoc, |
9406 | SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn, |
9407 | SourceLocation RAngleLoc, const ParsedAttributesView &Attr) { |
9408 | // Find the class template we're specializing |
9409 | TemplateName Name = TemplateD.get(); |
9410 | TemplateDecl *TD = Name.getAsTemplateDecl(); |
9411 | // Check that the specialization uses the same tag kind as the |
9412 | // original template. |
9413 | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec); |
9414 | assert(Kind != TagTypeKind::Enum && |
9415 | "Invalid enum tag in class template explicit instantiation!" ); |
9416 | |
9417 | ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(Val: TD); |
9418 | |
9419 | if (!ClassTemplate) { |
9420 | NonTagKind NTK = getNonTagTypeDeclKind(D: TD, TTK: Kind); |
9421 | Diag(Loc: TemplateNameLoc, DiagID: diag::err_tag_reference_non_tag) |
9422 | << TD << NTK << llvm::to_underlying(E: Kind); |
9423 | Diag(Loc: TD->getLocation(), DiagID: diag::note_previous_use); |
9424 | return true; |
9425 | } |
9426 | |
9427 | if (!isAcceptableTagRedeclaration(Previous: ClassTemplate->getTemplatedDecl(), |
9428 | NewTag: Kind, /*isDefinition*/false, NewTagLoc: KWLoc, |
9429 | Name: ClassTemplate->getIdentifier())) { |
9430 | Diag(Loc: KWLoc, DiagID: diag::err_use_with_wrong_tag) |
9431 | << ClassTemplate |
9432 | << FixItHint::CreateReplacement(RemoveRange: KWLoc, |
9433 | Code: ClassTemplate->getTemplatedDecl()->getKindName()); |
9434 | Diag(Loc: ClassTemplate->getTemplatedDecl()->getLocation(), |
9435 | DiagID: diag::note_previous_use); |
9436 | Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); |
9437 | } |
9438 | |
9439 | // C++0x [temp.explicit]p2: |
9440 | // There are two forms of explicit instantiation: an explicit instantiation |
9441 | // definition and an explicit instantiation declaration. An explicit |
9442 | // instantiation declaration begins with the extern keyword. [...] |
9443 | TemplateSpecializationKind TSK = ExternLoc.isInvalid() |
9444 | ? TSK_ExplicitInstantiationDefinition |
9445 | : TSK_ExplicitInstantiationDeclaration; |
9446 | |
9447 | if (TSK == TSK_ExplicitInstantiationDeclaration && |
9448 | !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { |
9449 | // Check for dllexport class template instantiation declarations, |
9450 | // except for MinGW mode. |
9451 | for (const ParsedAttr &AL : Attr) { |
9452 | if (AL.getKind() == ParsedAttr::AT_DLLExport) { |
9453 | Diag(Loc: ExternLoc, |
9454 | DiagID: diag::warn_attribute_dllexport_explicit_instantiation_decl); |
9455 | Diag(Loc: AL.getLoc(), DiagID: diag::note_attribute); |
9456 | break; |
9457 | } |
9458 | } |
9459 | |
9460 | if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) { |
9461 | Diag(Loc: ExternLoc, |
9462 | DiagID: diag::warn_attribute_dllexport_explicit_instantiation_decl); |
9463 | Diag(Loc: A->getLocation(), DiagID: diag::note_attribute); |
9464 | } |
9465 | } |
9466 | |
9467 | // In MSVC mode, dllimported explicit instantiation definitions are treated as |
9468 | // instantiation declarations for most purposes. |
9469 | bool DLLImportExplicitInstantiationDef = false; |
9470 | if (TSK == TSK_ExplicitInstantiationDefinition && |
9471 | Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
9472 | // Check for dllimport class template instantiation definitions. |
9473 | bool DLLImport = |
9474 | ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>(); |
9475 | for (const ParsedAttr &AL : Attr) { |
9476 | if (AL.getKind() == ParsedAttr::AT_DLLImport) |
9477 | DLLImport = true; |
9478 | if (AL.getKind() == ParsedAttr::AT_DLLExport) { |
9479 | // dllexport trumps dllimport here. |
9480 | DLLImport = false; |
9481 | break; |
9482 | } |
9483 | } |
9484 | if (DLLImport) { |
9485 | TSK = TSK_ExplicitInstantiationDeclaration; |
9486 | DLLImportExplicitInstantiationDef = true; |
9487 | } |
9488 | } |
9489 | |
9490 | // Translate the parser's template argument list in our AST format. |
9491 | TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); |
9492 | translateTemplateArguments(TemplateArgsIn, TemplateArgs); |
9493 | |
9494 | // Check that the template argument list is well-formed for this |
9495 | // template. |
9496 | SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; |
9497 | if (CheckTemplateArgumentList(Template: ClassTemplate, TemplateLoc: TemplateNameLoc, TemplateArgs, |
9498 | PartialTemplateArgs: false, SugaredConverted, CanonicalConverted, |
9499 | /*UpdateArgsWithConversions=*/true)) |
9500 | return true; |
9501 | |
9502 | // Find the class template specialization declaration that |
9503 | // corresponds to these arguments. |
9504 | void *InsertPos = nullptr; |
9505 | ClassTemplateSpecializationDecl *PrevDecl = |
9506 | ClassTemplate->findSpecialization(Args: CanonicalConverted, InsertPos); |
9507 | |
9508 | TemplateSpecializationKind PrevDecl_TSK |
9509 | = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; |
9510 | |
9511 | if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr && |
9512 | Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { |
9513 | // Check for dllexport class template instantiation definitions in MinGW |
9514 | // mode, if a previous declaration of the instantiation was seen. |
9515 | for (const ParsedAttr &AL : Attr) { |
9516 | if (AL.getKind() == ParsedAttr::AT_DLLExport) { |
9517 | Diag(Loc: AL.getLoc(), |
9518 | DiagID: diag::warn_attribute_dllexport_explicit_instantiation_def); |
9519 | break; |
9520 | } |
9521 | } |
9522 | } |
9523 | |
9524 | if (CheckExplicitInstantiation(S&: *this, D: ClassTemplate, InstLoc: TemplateNameLoc, |
9525 | WasQualifiedName: SS.isSet(), TSK)) |
9526 | return true; |
9527 | |
9528 | ClassTemplateSpecializationDecl *Specialization = nullptr; |
9529 | |
9530 | bool HasNoEffect = false; |
9531 | if (PrevDecl) { |
9532 | if (CheckSpecializationInstantiationRedecl(NewLoc: TemplateNameLoc, NewTSK: TSK, |
9533 | PrevDecl, PrevTSK: PrevDecl_TSK, |
9534 | PrevPointOfInstantiation: PrevDecl->getPointOfInstantiation(), |
9535 | HasNoEffect)) |
9536 | return PrevDecl; |
9537 | |
9538 | // Even though HasNoEffect == true means that this explicit instantiation |
9539 | // has no effect on semantics, we go on to put its syntax in the AST. |
9540 | |
9541 | if (PrevDecl_TSK == TSK_ImplicitInstantiation || |
9542 | PrevDecl_TSK == TSK_Undeclared) { |
9543 | // Since the only prior class template specialization with these |
9544 | // arguments was referenced but not declared, reuse that |
9545 | // declaration node as our own, updating the source location |
9546 | // for the template name to reflect our new declaration. |
9547 | // (Other source locations will be updated later.) |
9548 | Specialization = PrevDecl; |
9549 | Specialization->setLocation(TemplateNameLoc); |
9550 | PrevDecl = nullptr; |
9551 | } |
9552 | |
9553 | if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && |
9554 | DLLImportExplicitInstantiationDef) { |
9555 | // The new specialization might add a dllimport attribute. |
9556 | HasNoEffect = false; |
9557 | } |
9558 | } |
9559 | |
9560 | if (!Specialization) { |
9561 | // Create a new class template specialization declaration node for |
9562 | // this explicit specialization. |
9563 | Specialization = ClassTemplateSpecializationDecl::Create( |
9564 | Context, TK: Kind, DC: ClassTemplate->getDeclContext(), StartLoc: KWLoc, IdLoc: TemplateNameLoc, |
9565 | SpecializedTemplate: ClassTemplate, Args: CanonicalConverted, PrevDecl); |
9566 | SetNestedNameSpecifier(S&: *this, T: Specialization, SS); |
9567 | |
9568 | // A MSInheritanceAttr attached to the previous declaration must be |
9569 | // propagated to the new node prior to instantiation. |
9570 | if (PrevDecl) { |
9571 | if (const auto *A = PrevDecl->getAttr<MSInheritanceAttr>()) { |
9572 | auto *Clone = A->clone(C&: getASTContext()); |
9573 | Clone->setInherited(true); |
9574 | Specialization->addAttr(A: Clone); |
9575 | Consumer.AssignInheritanceModel(RD: Specialization); |
9576 | } |
9577 | } |
9578 | |
9579 | if (!HasNoEffect && !PrevDecl) { |
9580 | // Insert the new specialization. |
9581 | ClassTemplate->AddSpecialization(D: Specialization, InsertPos); |
9582 | } |
9583 | } |
9584 | |
9585 | Specialization->setTemplateArgsAsWritten(TemplateArgs); |
9586 | |
9587 | // Set source locations for keywords. |
9588 | Specialization->setExternKeywordLoc(ExternLoc); |
9589 | Specialization->setTemplateKeywordLoc(TemplateLoc); |
9590 | Specialization->setBraceRange(SourceRange()); |
9591 | |
9592 | bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>(); |
9593 | ProcessDeclAttributeList(S, D: Specialization, AttrList: Attr); |
9594 | ProcessAPINotes(D: Specialization); |
9595 | |
9596 | // Add the explicit instantiation into its lexical context. However, |
9597 | // since explicit instantiations are never found by name lookup, we |
9598 | // just put it into the declaration context directly. |
9599 | Specialization->setLexicalDeclContext(CurContext); |
9600 | CurContext->addDecl(D: Specialization); |
9601 | |
9602 | // Syntax is now OK, so return if it has no other effect on semantics. |
9603 | if (HasNoEffect) { |
9604 | // Set the template specialization kind. |
9605 | Specialization->setTemplateSpecializationKind(TSK); |
9606 | return Specialization; |
9607 | } |
9608 | |
9609 | // C++ [temp.explicit]p3: |
9610 | // A definition of a class template or class member template |
9611 | // shall be in scope at the point of the explicit instantiation of |
9612 | // the class template or class member template. |
9613 | // |
9614 | // This check comes when we actually try to perform the |
9615 | // instantiation. |
9616 | ClassTemplateSpecializationDecl *Def |
9617 | = cast_or_null<ClassTemplateSpecializationDecl>( |
9618 | Val: Specialization->getDefinition()); |
9619 | if (!Def) |
9620 | InstantiateClassTemplateSpecialization(PointOfInstantiation: TemplateNameLoc, ClassTemplateSpec: Specialization, TSK); |
9621 | else if (TSK == TSK_ExplicitInstantiationDefinition) { |
9622 | MarkVTableUsed(Loc: TemplateNameLoc, Class: Specialization, DefinitionRequired: true); |
9623 | Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); |
9624 | } |
9625 | |
9626 | // Instantiate the members of this class template specialization. |
9627 | Def = cast_or_null<ClassTemplateSpecializationDecl>( |
9628 | Val: Specialization->getDefinition()); |
9629 | if (Def) { |
9630 | TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); |
9631 | // Fix a TSK_ExplicitInstantiationDeclaration followed by a |
9632 | // TSK_ExplicitInstantiationDefinition |
9633 | if (Old_TSK == TSK_ExplicitInstantiationDeclaration && |
9634 | (TSK == TSK_ExplicitInstantiationDefinition || |
9635 | DLLImportExplicitInstantiationDef)) { |
9636 | // FIXME: Need to notify the ASTMutationListener that we did this. |
9637 | Def->setTemplateSpecializationKind(TSK); |
9638 | |
9639 | if (!getDLLAttr(D: Def) && getDLLAttr(D: Specialization) && |
9640 | Context.getTargetInfo().shouldDLLImportComdatSymbols()) { |
9641 | // An explicit instantiation definition can add a dll attribute to a |
9642 | // template with a previous instantiation declaration. MinGW doesn't |
9643 | // allow this. |
9644 | auto *A = cast<InheritableAttr>( |
9645 | Val: getDLLAttr(D: Specialization)->clone(C&: getASTContext())); |
9646 | A->setInherited(true); |
9647 | Def->addAttr(A); |
9648 | dllExportImportClassTemplateSpecialization(S&: *this, Def); |
9649 | } |
9650 | } |
9651 | |
9652 | // Fix a TSK_ImplicitInstantiation followed by a |
9653 | // TSK_ExplicitInstantiationDefinition |
9654 | bool NewlyDLLExported = |
9655 | !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>(); |
9656 | if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported && |
9657 | Context.getTargetInfo().shouldDLLImportComdatSymbols()) { |
9658 | // An explicit instantiation definition can add a dll attribute to a |
9659 | // template with a previous implicit instantiation. MinGW doesn't allow |
9660 | // this. We limit clang to only adding dllexport, to avoid potentially |
9661 | // strange codegen behavior. For example, if we extend this conditional |
9662 | // to dllimport, and we have a source file calling a method on an |
9663 | // implicitly instantiated template class instance and then declaring a |
9664 | // dllimport explicit instantiation definition for the same template |
9665 | // class, the codegen for the method call will not respect the dllimport, |
9666 | // while it will with cl. The Def will already have the DLL attribute, |
9667 | // since the Def and Specialization will be the same in the case of |
9668 | // Old_TSK == TSK_ImplicitInstantiation, and we already added the |
9669 | // attribute to the Specialization; we just need to make it take effect. |
9670 | assert(Def == Specialization && |
9671 | "Def and Specialization should match for implicit instantiation" ); |
9672 | dllExportImportClassTemplateSpecialization(S&: *this, Def); |
9673 | } |
9674 | |
9675 | // In MinGW mode, export the template instantiation if the declaration |
9676 | // was marked dllexport. |
9677 | if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && |
9678 | Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() && |
9679 | PrevDecl->hasAttr<DLLExportAttr>()) { |
9680 | dllExportImportClassTemplateSpecialization(S&: *this, Def); |
9681 | } |
9682 | |
9683 | // Set the template specialization kind. Make sure it is set before |
9684 | // instantiating the members which will trigger ASTConsumer callbacks. |
9685 | Specialization->setTemplateSpecializationKind(TSK); |
9686 | InstantiateClassTemplateSpecializationMembers(PointOfInstantiation: TemplateNameLoc, ClassTemplateSpec: Def, TSK); |
9687 | } else { |
9688 | |
9689 | // Set the template specialization kind. |
9690 | Specialization->setTemplateSpecializationKind(TSK); |
9691 | } |
9692 | |
9693 | return Specialization; |
9694 | } |
9695 | |
9696 | DeclResult |
9697 | Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, |
9698 | SourceLocation TemplateLoc, unsigned TagSpec, |
9699 | SourceLocation KWLoc, CXXScopeSpec &SS, |
9700 | IdentifierInfo *Name, SourceLocation NameLoc, |
9701 | const ParsedAttributesView &Attr) { |
9702 | |
9703 | bool Owned = false; |
9704 | bool IsDependent = false; |
9705 | Decl *TagD = |
9706 | ActOnTag(S, TagSpec, TUK: TagUseKind::Reference, KWLoc, SS, Name, NameLoc, |
9707 | Attr, AS: AS_none, /*ModulePrivateLoc=*/SourceLocation(), |
9708 | TemplateParameterLists: MultiTemplateParamsArg(), OwnedDecl&: Owned, IsDependent, ScopedEnumKWLoc: SourceLocation(), |
9709 | ScopedEnumUsesClassTag: false, UnderlyingType: TypeResult(), /*IsTypeSpecifier*/ false, |
9710 | /*IsTemplateParamOrArg*/ false, /*OOK=*/OOK_Outside) |
9711 | .get(); |
9712 | assert(!IsDependent && "explicit instantiation of dependent name not yet handled" ); |
9713 | |
9714 | if (!TagD) |
9715 | return true; |
9716 | |
9717 | TagDecl *Tag = cast<TagDecl>(Val: TagD); |
9718 | assert(!Tag->isEnum() && "shouldn't see enumerations here" ); |
9719 | |
9720 | if (Tag->isInvalidDecl()) |
9721 | return true; |
9722 | |
9723 | CXXRecordDecl *Record = cast<CXXRecordDecl>(Val: Tag); |
9724 | CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); |
9725 | if (!Pattern) { |
9726 | Diag(Loc: TemplateLoc, DiagID: diag::err_explicit_instantiation_nontemplate_type) |
9727 | << Context.getTypeDeclType(Decl: Record); |
9728 | Diag(Loc: Record->getLocation(), DiagID: diag::note_nontemplate_decl_here); |
9729 | return true; |
9730 | } |
9731 | |
9732 | // C++0x [temp.explicit]p2: |
9733 | // If the explicit instantiation is for a class or member class, the |
9734 | // elaborated-type-specifier in the declaration shall include a |
9735 | // simple-template-id. |
9736 | // |
9737 | // C++98 has the same restriction, just worded differently. |
9738 | if (!ScopeSpecifierHasTemplateId(SS)) |
9739 | Diag(Loc: TemplateLoc, DiagID: diag::ext_explicit_instantiation_without_qualified_id) |
9740 | << Record << SS.getRange(); |
9741 | |
9742 | // C++0x [temp.explicit]p2: |
9743 | // There are two forms of explicit instantiation: an explicit instantiation |
9744 | // definition and an explicit instantiation declaration. An explicit |
9745 | // instantiation declaration begins with the extern keyword. [...] |
9746 | TemplateSpecializationKind TSK |
9747 | = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition |
9748 | : TSK_ExplicitInstantiationDeclaration; |
9749 | |
9750 | CheckExplicitInstantiation(S&: *this, D: Record, InstLoc: NameLoc, WasQualifiedName: true, TSK); |
9751 | |
9752 | // Verify that it is okay to explicitly instantiate here. |
9753 | CXXRecordDecl *PrevDecl |
9754 | = cast_or_null<CXXRecordDecl>(Val: Record->getPreviousDecl()); |
9755 | if (!PrevDecl && Record->getDefinition()) |
9756 | PrevDecl = Record; |
9757 | if (PrevDecl) { |
9758 | MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); |
9759 | bool HasNoEffect = false; |
9760 | assert(MSInfo && "No member specialization information?" ); |
9761 | if (CheckSpecializationInstantiationRedecl(NewLoc: TemplateLoc, NewTSK: TSK, |
9762 | PrevDecl, |
9763 | PrevTSK: MSInfo->getTemplateSpecializationKind(), |
9764 | PrevPointOfInstantiation: MSInfo->getPointOfInstantiation(), |
9765 | HasNoEffect)) |
9766 | return true; |
9767 | if (HasNoEffect) |
9768 | return TagD; |
9769 | } |
9770 | |
9771 | CXXRecordDecl *RecordDef |
9772 | = cast_or_null<CXXRecordDecl>(Val: Record->getDefinition()); |
9773 | if (!RecordDef) { |
9774 | // C++ [temp.explicit]p3: |
9775 | // A definition of a member class of a class template shall be in scope |
9776 | // at the point of an explicit instantiation of the member class. |
9777 | CXXRecordDecl *Def |
9778 | = cast_or_null<CXXRecordDecl>(Val: Pattern->getDefinition()); |
9779 | if (!Def) { |
9780 | Diag(Loc: TemplateLoc, DiagID: diag::err_explicit_instantiation_undefined_member) |
9781 | << 0 << Record->getDeclName() << Record->getDeclContext(); |
9782 | Diag(Loc: Pattern->getLocation(), DiagID: diag::note_forward_declaration) |
9783 | << Pattern; |
9784 | return true; |
9785 | } else { |
9786 | if (InstantiateClass(PointOfInstantiation: NameLoc, Instantiation: Record, Pattern: Def, |
9787 | TemplateArgs: getTemplateInstantiationArgs(D: Record), |
9788 | TSK)) |
9789 | return true; |
9790 | |
9791 | RecordDef = cast_or_null<CXXRecordDecl>(Val: Record->getDefinition()); |
9792 | if (!RecordDef) |
9793 | return true; |
9794 | } |
9795 | } |
9796 | |
9797 | // Instantiate all of the members of the class. |
9798 | InstantiateClassMembers(PointOfInstantiation: NameLoc, Instantiation: RecordDef, |
9799 | TemplateArgs: getTemplateInstantiationArgs(D: Record), TSK); |
9800 | |
9801 | if (TSK == TSK_ExplicitInstantiationDefinition) |
9802 | MarkVTableUsed(Loc: NameLoc, Class: RecordDef, DefinitionRequired: true); |
9803 | |
9804 | // FIXME: We don't have any representation for explicit instantiations of |
9805 | // member classes. Such a representation is not needed for compilation, but it |
9806 | // should be available for clients that want to see all of the declarations in |
9807 | // the source code. |
9808 | return TagD; |
9809 | } |
9810 | |
9811 | DeclResult Sema::ActOnExplicitInstantiation(Scope *S, |
9812 | SourceLocation ExternLoc, |
9813 | SourceLocation TemplateLoc, |
9814 | Declarator &D) { |
9815 | // Explicit instantiations always require a name. |
9816 | // TODO: check if/when DNInfo should replace Name. |
9817 | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); |
9818 | DeclarationName Name = NameInfo.getName(); |
9819 | if (!Name) { |
9820 | if (!D.isInvalidType()) |
9821 | Diag(Loc: D.getDeclSpec().getBeginLoc(), |
9822 | DiagID: diag::err_explicit_instantiation_requires_name) |
9823 | << D.getDeclSpec().getSourceRange() << D.getSourceRange(); |
9824 | |
9825 | return true; |
9826 | } |
9827 | |
9828 | // Get the innermost enclosing declaration scope. |
9829 | S = S->getDeclParent(); |
9830 | |
9831 | // Determine the type of the declaration. |
9832 | TypeSourceInfo *T = GetTypeForDeclarator(D); |
9833 | QualType R = T->getType(); |
9834 | if (R.isNull()) |
9835 | return true; |
9836 | |
9837 | // C++ [dcl.stc]p1: |
9838 | // A storage-class-specifier shall not be specified in [...] an explicit |
9839 | // instantiation (14.7.2) directive. |
9840 | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { |
9841 | Diag(Loc: D.getIdentifierLoc(), DiagID: diag::err_explicit_instantiation_of_typedef) |
9842 | << Name; |
9843 | return true; |
9844 | } else if (D.getDeclSpec().getStorageClassSpec() |
9845 | != DeclSpec::SCS_unspecified) { |
9846 | // Complain about then remove the storage class specifier. |
9847 | Diag(Loc: D.getIdentifierLoc(), DiagID: diag::err_explicit_instantiation_storage_class) |
9848 | << FixItHint::CreateRemoval(RemoveRange: D.getDeclSpec().getStorageClassSpecLoc()); |
9849 | |
9850 | D.getMutableDeclSpec().ClearStorageClassSpecs(); |
9851 | } |
9852 | |
9853 | // C++0x [temp.explicit]p1: |
9854 | // [...] An explicit instantiation of a function template shall not use the |
9855 | // inline or constexpr specifiers. |
9856 | // Presumably, this also applies to member functions of class templates as |
9857 | // well. |
9858 | if (D.getDeclSpec().isInlineSpecified()) |
9859 | Diag(Loc: D.getDeclSpec().getInlineSpecLoc(), |
9860 | DiagID: getLangOpts().CPlusPlus11 ? |
9861 | diag::err_explicit_instantiation_inline : |
9862 | diag::warn_explicit_instantiation_inline_0x) |
9863 | << FixItHint::CreateRemoval(RemoveRange: D.getDeclSpec().getInlineSpecLoc()); |
9864 | if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType()) |
9865 | // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is |
9866 | // not already specified. |
9867 | Diag(Loc: D.getDeclSpec().getConstexprSpecLoc(), |
9868 | DiagID: diag::err_explicit_instantiation_constexpr); |
9869 | |
9870 | // A deduction guide is not on the list of entities that can be explicitly |
9871 | // instantiated. |
9872 | if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { |
9873 | Diag(Loc: D.getDeclSpec().getBeginLoc(), DiagID: diag::err_deduction_guide_specialized) |
9874 | << /*explicit instantiation*/ 0; |
9875 | return true; |
9876 | } |
9877 | |
9878 | // C++0x [temp.explicit]p2: |
9879 | // There are two forms of explicit instantiation: an explicit instantiation |
9880 | // definition and an explicit instantiation declaration. An explicit |
9881 | // instantiation declaration begins with the extern keyword. [...] |
9882 | TemplateSpecializationKind TSK |
9883 | = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition |
9884 | : TSK_ExplicitInstantiationDeclaration; |
9885 | |
9886 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName); |
9887 | LookupParsedName(R&: Previous, S, SS: &D.getCXXScopeSpec(), |
9888 | /*ObjectType=*/QualType()); |
9889 | |
9890 | if (!R->isFunctionType()) { |
9891 | // C++ [temp.explicit]p1: |
9892 | // A [...] static data member of a class template can be explicitly |
9893 | // instantiated from the member definition associated with its class |
9894 | // template. |
9895 | // C++1y [temp.explicit]p1: |
9896 | // A [...] variable [...] template specialization can be explicitly |
9897 | // instantiated from its template. |
9898 | if (Previous.isAmbiguous()) |
9899 | return true; |
9900 | |
9901 | VarDecl *Prev = Previous.getAsSingle<VarDecl>(); |
9902 | VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>(); |
9903 | |
9904 | if (!PrevTemplate) { |
9905 | if (!Prev || !Prev->isStaticDataMember()) { |
9906 | // We expect to see a static data member here. |
9907 | Diag(Loc: D.getIdentifierLoc(), DiagID: diag::err_explicit_instantiation_not_known) |
9908 | << Name; |
9909 | for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); |
9910 | P != PEnd; ++P) |
9911 | Diag(Loc: (*P)->getLocation(), DiagID: diag::note_explicit_instantiation_here); |
9912 | return true; |
9913 | } |
9914 | |
9915 | if (!Prev->getInstantiatedFromStaticDataMember()) { |
9916 | // FIXME: Check for explicit specialization? |
9917 | Diag(Loc: D.getIdentifierLoc(), |
9918 | DiagID: diag::err_explicit_instantiation_data_member_not_instantiated) |
9919 | << Prev; |
9920 | Diag(Loc: Prev->getLocation(), DiagID: diag::note_explicit_instantiation_here); |
9921 | // FIXME: Can we provide a note showing where this was declared? |
9922 | return true; |
9923 | } |
9924 | } else { |
9925 | // Explicitly instantiate a variable template. |
9926 | |
9927 | // C++1y [dcl.spec.auto]p6: |
9928 | // ... A program that uses auto or decltype(auto) in a context not |
9929 | // explicitly allowed in this section is ill-formed. |
9930 | // |
9931 | // This includes auto-typed variable template instantiations. |
9932 | if (R->isUndeducedType()) { |
9933 | Diag(Loc: T->getTypeLoc().getBeginLoc(), |
9934 | DiagID: diag::err_auto_not_allowed_var_inst); |
9935 | return true; |
9936 | } |
9937 | |
9938 | if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { |
9939 | // C++1y [temp.explicit]p3: |
9940 | // If the explicit instantiation is for a variable, the unqualified-id |
9941 | // in the declaration shall be a template-id. |
9942 | Diag(Loc: D.getIdentifierLoc(), |
9943 | DiagID: diag::err_explicit_instantiation_without_template_id) |
9944 | << PrevTemplate; |
9945 | Diag(Loc: PrevTemplate->getLocation(), |
9946 | DiagID: diag::note_explicit_instantiation_here); |
9947 | return true; |
9948 | } |
9949 | |
9950 | // Translate the parser's template argument list into our AST format. |
9951 | TemplateArgumentListInfo TemplateArgs = |
9952 | makeTemplateArgumentListInfo(S&: *this, TemplateId&: *D.getName().TemplateId); |
9953 | |
9954 | DeclResult Res = CheckVarTemplateId(Template: PrevTemplate, TemplateLoc, |
9955 | TemplateNameLoc: D.getIdentifierLoc(), TemplateArgs); |
9956 | if (Res.isInvalid()) |
9957 | return true; |
9958 | |
9959 | if (!Res.isUsable()) { |
9960 | // We somehow specified dependent template arguments in an explicit |
9961 | // instantiation. This should probably only happen during error |
9962 | // recovery. |
9963 | Diag(Loc: D.getIdentifierLoc(), DiagID: diag::err_explicit_instantiation_dependent); |
9964 | return true; |
9965 | } |
9966 | |
9967 | // Ignore access control bits, we don't need them for redeclaration |
9968 | // checking. |
9969 | Prev = cast<VarDecl>(Val: Res.get()); |
9970 | } |
9971 | |
9972 | // C++0x [temp.explicit]p2: |
9973 | // If the explicit instantiation is for a member function, a member class |
9974 | // or a static data member of a class template specialization, the name of |
9975 | // the class template specialization in the qualified-id for the member |
9976 | // name shall be a simple-template-id. |
9977 | // |
9978 | // C++98 has the same restriction, just worded differently. |
9979 | // |
9980 | // This does not apply to variable template specializations, where the |
9981 | // template-id is in the unqualified-id instead. |
9982 | if (!ScopeSpecifierHasTemplateId(SS: D.getCXXScopeSpec()) && !PrevTemplate) |
9983 | Diag(Loc: D.getIdentifierLoc(), |
9984 | DiagID: diag::ext_explicit_instantiation_without_qualified_id) |
9985 | << Prev << D.getCXXScopeSpec().getRange(); |
9986 | |
9987 | CheckExplicitInstantiation(S&: *this, D: Prev, InstLoc: D.getIdentifierLoc(), WasQualifiedName: true, TSK); |
9988 | |
9989 | // Verify that it is okay to explicitly instantiate here. |
9990 | TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind(); |
9991 | SourceLocation POI = Prev->getPointOfInstantiation(); |
9992 | bool HasNoEffect = false; |
9993 | if (CheckSpecializationInstantiationRedecl(NewLoc: D.getIdentifierLoc(), NewTSK: TSK, PrevDecl: Prev, |
9994 | PrevTSK, PrevPointOfInstantiation: POI, HasNoEffect)) |
9995 | return true; |
9996 | |
9997 | if (!HasNoEffect) { |
9998 | // Instantiate static data member or variable template. |
9999 | Prev->setTemplateSpecializationKind(TSK, PointOfInstantiation: D.getIdentifierLoc()); |
10000 | if (auto *VTSD = dyn_cast<VarTemplatePartialSpecializationDecl>(Val: Prev)) { |
10001 | VTSD->setExternKeywordLoc(ExternLoc); |
10002 | VTSD->setTemplateKeywordLoc(TemplateLoc); |
10003 | } |
10004 | |
10005 | // Merge attributes. |
10006 | ProcessDeclAttributeList(S, D: Prev, AttrList: D.getDeclSpec().getAttributes()); |
10007 | if (PrevTemplate) |
10008 | ProcessAPINotes(D: Prev); |
10009 | |
10010 | if (TSK == TSK_ExplicitInstantiationDefinition) |
10011 | InstantiateVariableDefinition(PointOfInstantiation: D.getIdentifierLoc(), Var: Prev); |
10012 | } |
10013 | |
10014 | // Check the new variable specialization against the parsed input. |
10015 | if (PrevTemplate && !Context.hasSameType(T1: Prev->getType(), T2: R)) { |
10016 | Diag(Loc: T->getTypeLoc().getBeginLoc(), |
10017 | DiagID: diag::err_invalid_var_template_spec_type) |
10018 | << 0 << PrevTemplate << R << Prev->getType(); |
10019 | Diag(Loc: PrevTemplate->getLocation(), DiagID: diag::note_template_declared_here) |
10020 | << 2 << PrevTemplate->getDeclName(); |
10021 | return true; |
10022 | } |
10023 | |
10024 | // FIXME: Create an ExplicitInstantiation node? |
10025 | return (Decl*) nullptr; |
10026 | } |
10027 | |
10028 | // If the declarator is a template-id, translate the parser's template |
10029 | // argument list into our AST format. |
10030 | bool HasExplicitTemplateArgs = false; |
10031 | TemplateArgumentListInfo TemplateArgs; |
10032 | if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { |
10033 | TemplateArgs = makeTemplateArgumentListInfo(S&: *this, TemplateId&: *D.getName().TemplateId); |
10034 | HasExplicitTemplateArgs = true; |
10035 | } |
10036 | |
10037 | // C++ [temp.explicit]p1: |
10038 | // A [...] function [...] can be explicitly instantiated from its template. |
10039 | // A member function [...] of a class template can be explicitly |
10040 | // instantiated from the member definition associated with its class |
10041 | // template. |
10042 | UnresolvedSet<8> TemplateMatches; |
10043 | FunctionDecl *NonTemplateMatch = nullptr; |
10044 | TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc()); |
10045 | for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); |
10046 | P != PEnd; ++P) { |
10047 | NamedDecl *Prev = *P; |
10048 | if (!HasExplicitTemplateArgs) { |
10049 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: Prev)) { |
10050 | QualType Adjusted = adjustCCAndNoReturn(ArgFunctionType: R, FunctionType: Method->getType(), |
10051 | /*AdjustExceptionSpec*/true); |
10052 | if (Context.hasSameUnqualifiedType(T1: Method->getType(), T2: Adjusted)) { |
10053 | if (Method->getPrimaryTemplate()) { |
10054 | TemplateMatches.addDecl(D: Method, AS: P.getAccess()); |
10055 | } else { |
10056 | // FIXME: Can this assert ever happen? Needs a test. |
10057 | assert(!NonTemplateMatch && "Multiple NonTemplateMatches" ); |
10058 | NonTemplateMatch = Method; |
10059 | } |
10060 | } |
10061 | } |
10062 | } |
10063 | |
10064 | FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Val: Prev); |
10065 | if (!FunTmpl) |
10066 | continue; |
10067 | |
10068 | TemplateDeductionInfo Info(FailedCandidates.getLocation()); |
10069 | FunctionDecl *Specialization = nullptr; |
10070 | if (TemplateDeductionResult TDK = DeduceTemplateArguments( |
10071 | FunctionTemplate: FunTmpl, ExplicitTemplateArgs: (HasExplicitTemplateArgs ? &TemplateArgs : nullptr), ArgFunctionType: R, |
10072 | Specialization, Info); |
10073 | TDK != TemplateDeductionResult::Success) { |
10074 | // Keep track of almost-matches. |
10075 | FailedCandidates.addCandidate() |
10076 | .set(Found: P.getPair(), Spec: FunTmpl->getTemplatedDecl(), |
10077 | Info: MakeDeductionFailureInfo(Context, TDK, Info)); |
10078 | (void)TDK; |
10079 | continue; |
10080 | } |
10081 | |
10082 | // Target attributes are part of the cuda function signature, so |
10083 | // the cuda target of the instantiated function must match that of its |
10084 | // template. Given that C++ template deduction does not take |
10085 | // target attributes into account, we reject candidates here that |
10086 | // have a different target. |
10087 | if (LangOpts.CUDA && |
10088 | CUDA().IdentifyTarget(D: Specialization, |
10089 | /* IgnoreImplicitHDAttr = */ true) != |
10090 | CUDA().IdentifyTarget(Attrs: D.getDeclSpec().getAttributes())) { |
10091 | FailedCandidates.addCandidate().set( |
10092 | Found: P.getPair(), Spec: FunTmpl->getTemplatedDecl(), |
10093 | Info: MakeDeductionFailureInfo( |
10094 | Context, TDK: TemplateDeductionResult::CUDATargetMismatch, Info)); |
10095 | continue; |
10096 | } |
10097 | |
10098 | TemplateMatches.addDecl(D: Specialization, AS: P.getAccess()); |
10099 | } |
10100 | |
10101 | FunctionDecl *Specialization = NonTemplateMatch; |
10102 | if (!Specialization) { |
10103 | // Find the most specialized function template specialization. |
10104 | UnresolvedSetIterator Result = getMostSpecialized( |
10105 | SBegin: TemplateMatches.begin(), SEnd: TemplateMatches.end(), FailedCandidates, |
10106 | Loc: D.getIdentifierLoc(), |
10107 | NoneDiag: PDiag(DiagID: diag::err_explicit_instantiation_not_known) << Name, |
10108 | AmbigDiag: PDiag(DiagID: diag::err_explicit_instantiation_ambiguous) << Name, |
10109 | CandidateDiag: PDiag(DiagID: diag::note_explicit_instantiation_candidate)); |
10110 | |
10111 | if (Result == TemplateMatches.end()) |
10112 | return true; |
10113 | |
10114 | // Ignore access control bits, we don't need them for redeclaration checking. |
10115 | Specialization = cast<FunctionDecl>(Val: *Result); |
10116 | } |
10117 | |
10118 | // C++11 [except.spec]p4 |
10119 | // In an explicit instantiation an exception-specification may be specified, |
10120 | // but is not required. |
10121 | // If an exception-specification is specified in an explicit instantiation |
10122 | // directive, it shall be compatible with the exception-specifications of |
10123 | // other declarations of that function. |
10124 | if (auto *FPT = R->getAs<FunctionProtoType>()) |
10125 | if (FPT->hasExceptionSpec()) { |
10126 | unsigned DiagID = |
10127 | diag::err_mismatched_exception_spec_explicit_instantiation; |
10128 | if (getLangOpts().MicrosoftExt) |
10129 | DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation; |
10130 | bool Result = CheckEquivalentExceptionSpec( |
10131 | DiagID: PDiag(DiagID) << Specialization->getType(), |
10132 | NoteID: PDiag(DiagID: diag::note_explicit_instantiation_here), |
10133 | Old: Specialization->getType()->getAs<FunctionProtoType>(), |
10134 | OldLoc: Specialization->getLocation(), New: FPT, NewLoc: D.getBeginLoc()); |
10135 | // In Microsoft mode, mismatching exception specifications just cause a |
10136 | // warning. |
10137 | if (!getLangOpts().MicrosoftExt && Result) |
10138 | return true; |
10139 | } |
10140 | |
10141 | if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { |
10142 | Diag(Loc: D.getIdentifierLoc(), |
10143 | DiagID: diag::err_explicit_instantiation_member_function_not_instantiated) |
10144 | << Specialization |
10145 | << (Specialization->getTemplateSpecializationKind() == |
10146 | TSK_ExplicitSpecialization); |
10147 | Diag(Loc: Specialization->getLocation(), DiagID: diag::note_explicit_instantiation_here); |
10148 | return true; |
10149 | } |
10150 | |
10151 | FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); |
10152 | if (!PrevDecl && Specialization->isThisDeclarationADefinition()) |
10153 | PrevDecl = Specialization; |
10154 | |
10155 | if (PrevDecl) { |
10156 | bool HasNoEffect = false; |
10157 | if (CheckSpecializationInstantiationRedecl(NewLoc: D.getIdentifierLoc(), NewTSK: TSK, |
10158 | PrevDecl, |
10159 | PrevTSK: PrevDecl->getTemplateSpecializationKind(), |
10160 | PrevPointOfInstantiation: PrevDecl->getPointOfInstantiation(), |
10161 | HasNoEffect)) |
10162 | return true; |
10163 | |
10164 | // FIXME: We may still want to build some representation of this |
10165 | // explicit specialization. |
10166 | if (HasNoEffect) |
10167 | return (Decl*) nullptr; |
10168 | } |
10169 | |
10170 | // HACK: libc++ has a bug where it attempts to explicitly instantiate the |
10171 | // functions |
10172 | // valarray<size_t>::valarray(size_t) and |
10173 | // valarray<size_t>::~valarray() |
10174 | // that it declared to have internal linkage with the internal_linkage |
10175 | // attribute. Ignore the explicit instantiation declaration in this case. |
10176 | if (Specialization->hasAttr<InternalLinkageAttr>() && |
10177 | TSK == TSK_ExplicitInstantiationDeclaration) { |
10178 | if (auto *RD = dyn_cast<CXXRecordDecl>(Val: Specialization->getDeclContext())) |
10179 | if (RD->getIdentifier() && RD->getIdentifier()->isStr(Str: "valarray" ) && |
10180 | RD->isInStdNamespace()) |
10181 | return (Decl*) nullptr; |
10182 | } |
10183 | |
10184 | ProcessDeclAttributeList(S, D: Specialization, AttrList: D.getDeclSpec().getAttributes()); |
10185 | ProcessAPINotes(D: Specialization); |
10186 | |
10187 | // In MSVC mode, dllimported explicit instantiation definitions are treated as |
10188 | // instantiation declarations. |
10189 | if (TSK == TSK_ExplicitInstantiationDefinition && |
10190 | Specialization->hasAttr<DLLImportAttr>() && |
10191 | Context.getTargetInfo().getCXXABI().isMicrosoft()) |
10192 | TSK = TSK_ExplicitInstantiationDeclaration; |
10193 | |
10194 | Specialization->setTemplateSpecializationKind(TSK, PointOfInstantiation: D.getIdentifierLoc()); |
10195 | |
10196 | if (Specialization->isDefined()) { |
10197 | // Let the ASTConsumer know that this function has been explicitly |
10198 | // instantiated now, and its linkage might have changed. |
10199 | Consumer.HandleTopLevelDecl(D: DeclGroupRef(Specialization)); |
10200 | } else if (TSK == TSK_ExplicitInstantiationDefinition) |
10201 | InstantiateFunctionDefinition(PointOfInstantiation: D.getIdentifierLoc(), Function: Specialization); |
10202 | |
10203 | // C++0x [temp.explicit]p2: |
10204 | // If the explicit instantiation is for a member function, a member class |
10205 | // or a static data member of a class template specialization, the name of |
10206 | // the class template specialization in the qualified-id for the member |
10207 | // name shall be a simple-template-id. |
10208 | // |
10209 | // C++98 has the same restriction, just worded differently. |
10210 | FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); |
10211 | if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl && |
10212 | D.getCXXScopeSpec().isSet() && |
10213 | !ScopeSpecifierHasTemplateId(SS: D.getCXXScopeSpec())) |
10214 | Diag(Loc: D.getIdentifierLoc(), |
10215 | DiagID: diag::ext_explicit_instantiation_without_qualified_id) |
10216 | << Specialization << D.getCXXScopeSpec().getRange(); |
10217 | |
10218 | CheckExplicitInstantiation( |
10219 | S&: *this, |
10220 | D: FunTmpl ? (NamedDecl *)FunTmpl |
10221 | : Specialization->getInstantiatedFromMemberFunction(), |
10222 | InstLoc: D.getIdentifierLoc(), WasQualifiedName: D.getCXXScopeSpec().isSet(), TSK); |
10223 | |
10224 | // FIXME: Create some kind of ExplicitInstantiationDecl here. |
10225 | return (Decl*) nullptr; |
10226 | } |
10227 | |
10228 | TypeResult Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, |
10229 | const CXXScopeSpec &SS, |
10230 | const IdentifierInfo *Name, |
10231 | SourceLocation TagLoc, |
10232 | SourceLocation NameLoc) { |
10233 | // This has to hold, because SS is expected to be defined. |
10234 | assert(Name && "Expected a name in a dependent tag" ); |
10235 | |
10236 | NestedNameSpecifier *NNS = SS.getScopeRep(); |
10237 | if (!NNS) |
10238 | return true; |
10239 | |
10240 | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec); |
10241 | |
10242 | if (TUK == TagUseKind::Declaration || TUK == TagUseKind::Definition) { |
10243 | Diag(Loc: NameLoc, DiagID: diag::err_dependent_tag_decl) |
10244 | << (TUK == TagUseKind::Definition) << llvm::to_underlying(E: Kind) |
10245 | << SS.getRange(); |
10246 | return true; |
10247 | } |
10248 | |
10249 | // Create the resulting type. |
10250 | ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Tag: Kind); |
10251 | QualType Result = Context.getDependentNameType(Keyword: Kwd, NNS, Name); |
10252 | |
10253 | // Create type-source location information for this type. |
10254 | TypeLocBuilder TLB; |
10255 | DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(T: Result); |
10256 | TL.setElaboratedKeywordLoc(TagLoc); |
10257 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
10258 | TL.setNameLoc(NameLoc); |
10259 | return CreateParsedType(T: Result, TInfo: TLB.getTypeSourceInfo(Context, T: Result)); |
10260 | } |
10261 | |
10262 | TypeResult Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, |
10263 | const CXXScopeSpec &SS, |
10264 | const IdentifierInfo &II, |
10265 | SourceLocation IdLoc, |
10266 | ImplicitTypenameContext IsImplicitTypename) { |
10267 | if (SS.isInvalid()) |
10268 | return true; |
10269 | |
10270 | if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) |
10271 | Diag(Loc: TypenameLoc, |
10272 | DiagID: getLangOpts().CPlusPlus11 ? |
10273 | diag::warn_cxx98_compat_typename_outside_of_template : |
10274 | diag::ext_typename_outside_of_template) |
10275 | << FixItHint::CreateRemoval(RemoveRange: TypenameLoc); |
10276 | |
10277 | NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); |
10278 | TypeSourceInfo *TSI = nullptr; |
10279 | QualType T = |
10280 | CheckTypenameType(Keyword: (TypenameLoc.isValid() || |
10281 | IsImplicitTypename == ImplicitTypenameContext::Yes) |
10282 | ? ElaboratedTypeKeyword::Typename |
10283 | : ElaboratedTypeKeyword::None, |
10284 | KeywordLoc: TypenameLoc, QualifierLoc, II, IILoc: IdLoc, TSI: &TSI, |
10285 | /*DeducedTSTContext=*/true); |
10286 | if (T.isNull()) |
10287 | return true; |
10288 | return CreateParsedType(T, TInfo: TSI); |
10289 | } |
10290 | |
10291 | TypeResult |
10292 | Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, |
10293 | const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, |
10294 | TemplateTy TemplateIn, const IdentifierInfo *TemplateII, |
10295 | SourceLocation TemplateIILoc, SourceLocation LAngleLoc, |
10296 | ASTTemplateArgsPtr TemplateArgsIn, |
10297 | SourceLocation RAngleLoc) { |
10298 | if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) |
10299 | Diag(Loc: TypenameLoc, |
10300 | DiagID: getLangOpts().CPlusPlus11 ? |
10301 | diag::warn_cxx98_compat_typename_outside_of_template : |
10302 | diag::ext_typename_outside_of_template) |
10303 | << FixItHint::CreateRemoval(RemoveRange: TypenameLoc); |
10304 | |
10305 | // Strangely, non-type results are not ignored by this lookup, so the |
10306 | // program is ill-formed if it finds an injected-class-name. |
10307 | if (TypenameLoc.isValid()) { |
10308 | auto *LookupRD = |
10309 | dyn_cast_or_null<CXXRecordDecl>(Val: computeDeclContext(SS, EnteringContext: false)); |
10310 | if (LookupRD && LookupRD->getIdentifier() == TemplateII) { |
10311 | Diag(Loc: TemplateIILoc, |
10312 | DiagID: diag::ext_out_of_line_qualified_id_type_names_constructor) |
10313 | << TemplateII << 0 /*injected-class-name used as template name*/ |
10314 | << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/); |
10315 | } |
10316 | } |
10317 | |
10318 | // Translate the parser's template argument list in our AST format. |
10319 | TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); |
10320 | translateTemplateArguments(TemplateArgsIn, TemplateArgs); |
10321 | |
10322 | TemplateName Template = TemplateIn.get(); |
10323 | if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { |
10324 | // Construct a dependent template specialization type. |
10325 | assert(DTN && "dependent template has non-dependent name?" ); |
10326 | assert(DTN->getQualifier() == SS.getScopeRep()); |
10327 | |
10328 | if (!DTN->isIdentifier()) { |
10329 | Diag(Loc: TemplateIILoc, DiagID: diag::err_template_id_not_a_type) << Template; |
10330 | NoteAllFoundTemplates(Name: Template); |
10331 | return true; |
10332 | } |
10333 | |
10334 | QualType T = Context.getDependentTemplateSpecializationType( |
10335 | Keyword: ElaboratedTypeKeyword::Typename, NNS: DTN->getQualifier(), |
10336 | Name: DTN->getIdentifier(), Args: TemplateArgs.arguments()); |
10337 | |
10338 | // Create source-location information for this type. |
10339 | TypeLocBuilder Builder; |
10340 | DependentTemplateSpecializationTypeLoc SpecTL |
10341 | = Builder.push<DependentTemplateSpecializationTypeLoc>(T); |
10342 | SpecTL.setElaboratedKeywordLoc(TypenameLoc); |
10343 | SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
10344 | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
10345 | SpecTL.setTemplateNameLoc(TemplateIILoc); |
10346 | SpecTL.setLAngleLoc(LAngleLoc); |
10347 | SpecTL.setRAngleLoc(RAngleLoc); |
10348 | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
10349 | SpecTL.setArgLocInfo(i: I, AI: TemplateArgs[I].getLocInfo()); |
10350 | return CreateParsedType(T, TInfo: Builder.getTypeSourceInfo(Context, T)); |
10351 | } |
10352 | |
10353 | QualType T = CheckTemplateIdType(Name: Template, TemplateLoc: TemplateIILoc, TemplateArgs); |
10354 | if (T.isNull()) |
10355 | return true; |
10356 | |
10357 | // Provide source-location information for the template specialization type. |
10358 | TypeLocBuilder Builder; |
10359 | TemplateSpecializationTypeLoc SpecTL |
10360 | = Builder.push<TemplateSpecializationTypeLoc>(T); |
10361 | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
10362 | SpecTL.setTemplateNameLoc(TemplateIILoc); |
10363 | SpecTL.setLAngleLoc(LAngleLoc); |
10364 | SpecTL.setRAngleLoc(RAngleLoc); |
10365 | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
10366 | SpecTL.setArgLocInfo(i: I, AI: TemplateArgs[I].getLocInfo()); |
10367 | |
10368 | T = Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::Typename, |
10369 | NNS: SS.getScopeRep(), NamedType: T); |
10370 | ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); |
10371 | TL.setElaboratedKeywordLoc(TypenameLoc); |
10372 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
10373 | |
10374 | TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); |
10375 | return CreateParsedType(T, TInfo: TSI); |
10376 | } |
10377 | |
10378 | /// Determine whether this failed name lookup should be treated as being |
10379 | /// disabled by a usage of std::enable_if. |
10380 | static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, |
10381 | SourceRange &CondRange, Expr *&Cond) { |
10382 | // We must be looking for a ::type... |
10383 | if (!II.isStr(Str: "type" )) |
10384 | return false; |
10385 | |
10386 | // ... within an explicitly-written template specialization... |
10387 | if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) |
10388 | return false; |
10389 | TypeLoc EnableIfTy = NNS.getTypeLoc(); |
10390 | TemplateSpecializationTypeLoc EnableIfTSTLoc = |
10391 | EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); |
10392 | if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) |
10393 | return false; |
10394 | const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr(); |
10395 | |
10396 | // ... which names a complete class template declaration... |
10397 | const TemplateDecl *EnableIfDecl = |
10398 | EnableIfTST->getTemplateName().getAsTemplateDecl(); |
10399 | if (!EnableIfDecl || EnableIfTST->isIncompleteType()) |
10400 | return false; |
10401 | |
10402 | // ... called "enable_if". |
10403 | const IdentifierInfo *EnableIfII = |
10404 | EnableIfDecl->getDeclName().getAsIdentifierInfo(); |
10405 | if (!EnableIfII || !EnableIfII->isStr(Str: "enable_if" )) |
10406 | return false; |
10407 | |
10408 | // Assume the first template argument is the condition. |
10409 | CondRange = EnableIfTSTLoc.getArgLoc(i: 0).getSourceRange(); |
10410 | |
10411 | // Dig out the condition. |
10412 | Cond = nullptr; |
10413 | if (EnableIfTSTLoc.getArgLoc(i: 0).getArgument().getKind() |
10414 | != TemplateArgument::Expression) |
10415 | return true; |
10416 | |
10417 | Cond = EnableIfTSTLoc.getArgLoc(i: 0).getSourceExpression(); |
10418 | |
10419 | // Ignore Boolean literals; they add no value. |
10420 | if (isa<CXXBoolLiteralExpr>(Val: Cond->IgnoreParenCasts())) |
10421 | Cond = nullptr; |
10422 | |
10423 | return true; |
10424 | } |
10425 | |
10426 | QualType |
10427 | Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, |
10428 | SourceLocation KeywordLoc, |
10429 | NestedNameSpecifierLoc QualifierLoc, |
10430 | const IdentifierInfo &II, |
10431 | SourceLocation IILoc, |
10432 | TypeSourceInfo **TSI, |
10433 | bool DeducedTSTContext) { |
10434 | QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc, |
10435 | DeducedTSTContext); |
10436 | if (T.isNull()) |
10437 | return QualType(); |
10438 | |
10439 | *TSI = Context.CreateTypeSourceInfo(T); |
10440 | if (isa<DependentNameType>(Val: T)) { |
10441 | DependentNameTypeLoc TL = |
10442 | (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>(); |
10443 | TL.setElaboratedKeywordLoc(KeywordLoc); |
10444 | TL.setQualifierLoc(QualifierLoc); |
10445 | TL.setNameLoc(IILoc); |
10446 | } else { |
10447 | ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>(); |
10448 | TL.setElaboratedKeywordLoc(KeywordLoc); |
10449 | TL.setQualifierLoc(QualifierLoc); |
10450 | TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc); |
10451 | } |
10452 | return T; |
10453 | } |
10454 | |
10455 | /// Build the type that describes a C++ typename specifier, |
10456 | /// e.g., "typename T::type". |
10457 | QualType |
10458 | Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, |
10459 | SourceLocation KeywordLoc, |
10460 | NestedNameSpecifierLoc QualifierLoc, |
10461 | const IdentifierInfo &II, |
10462 | SourceLocation IILoc, bool DeducedTSTContext) { |
10463 | CXXScopeSpec SS; |
10464 | SS.Adopt(Other: QualifierLoc); |
10465 | |
10466 | DeclContext *Ctx = nullptr; |
10467 | if (QualifierLoc) { |
10468 | Ctx = computeDeclContext(SS); |
10469 | if (!Ctx) { |
10470 | // If the nested-name-specifier is dependent and couldn't be |
10471 | // resolved to a type, build a typename type. |
10472 | assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); |
10473 | return Context.getDependentNameType(Keyword, |
10474 | NNS: QualifierLoc.getNestedNameSpecifier(), |
10475 | Name: &II); |
10476 | } |
10477 | |
10478 | // If the nested-name-specifier refers to the current instantiation, |
10479 | // the "typename" keyword itself is superfluous. In C++03, the |
10480 | // program is actually ill-formed. However, DR 382 (in C++0x CD1) |
10481 | // allows such extraneous "typename" keywords, and we retroactively |
10482 | // apply this DR to C++03 code with only a warning. In any case we continue. |
10483 | |
10484 | if (RequireCompleteDeclContext(SS, DC: Ctx)) |
10485 | return QualType(); |
10486 | } |
10487 | |
10488 | DeclarationName Name(&II); |
10489 | LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); |
10490 | if (Ctx) |
10491 | LookupQualifiedName(R&: Result, LookupCtx: Ctx, SS); |
10492 | else |
10493 | LookupName(R&: Result, S: CurScope); |
10494 | unsigned DiagID = 0; |
10495 | Decl *Referenced = nullptr; |
10496 | switch (Result.getResultKind()) { |
10497 | case LookupResult::NotFound: { |
10498 | // If we're looking up 'type' within a template named 'enable_if', produce |
10499 | // a more specific diagnostic. |
10500 | SourceRange CondRange; |
10501 | Expr *Cond = nullptr; |
10502 | if (Ctx && isEnableIf(NNS: QualifierLoc, II, CondRange, Cond)) { |
10503 | // If we have a condition, narrow it down to the specific failed |
10504 | // condition. |
10505 | if (Cond) { |
10506 | Expr *FailedCond; |
10507 | std::string FailedDescription; |
10508 | std::tie(args&: FailedCond, args&: FailedDescription) = |
10509 | findFailedBooleanCondition(Cond); |
10510 | |
10511 | Diag(Loc: FailedCond->getExprLoc(), |
10512 | DiagID: diag::err_typename_nested_not_found_requirement) |
10513 | << FailedDescription |
10514 | << FailedCond->getSourceRange(); |
10515 | return QualType(); |
10516 | } |
10517 | |
10518 | Diag(Loc: CondRange.getBegin(), |
10519 | DiagID: diag::err_typename_nested_not_found_enable_if) |
10520 | << Ctx << CondRange; |
10521 | return QualType(); |
10522 | } |
10523 | |
10524 | DiagID = Ctx ? diag::err_typename_nested_not_found |
10525 | : diag::err_unknown_typename; |
10526 | break; |
10527 | } |
10528 | |
10529 | case LookupResult::FoundUnresolvedValue: { |
10530 | // We found a using declaration that is a value. Most likely, the using |
10531 | // declaration itself is meant to have the 'typename' keyword. |
10532 | SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), |
10533 | IILoc); |
10534 | Diag(Loc: IILoc, DiagID: diag::err_typename_refers_to_using_value_decl) |
10535 | << Name << Ctx << FullRange; |
10536 | if (UnresolvedUsingValueDecl *Using |
10537 | = dyn_cast<UnresolvedUsingValueDecl>(Val: Result.getRepresentativeDecl())){ |
10538 | SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); |
10539 | Diag(Loc, DiagID: diag::note_using_value_decl_missing_typename) |
10540 | << FixItHint::CreateInsertion(InsertionLoc: Loc, Code: "typename " ); |
10541 | } |
10542 | } |
10543 | // Fall through to create a dependent typename type, from which we can recover |
10544 | // better. |
10545 | [[fallthrough]]; |
10546 | |
10547 | case LookupResult::NotFoundInCurrentInstantiation: |
10548 | // Okay, it's a member of an unknown instantiation. |
10549 | return Context.getDependentNameType(Keyword, |
10550 | NNS: QualifierLoc.getNestedNameSpecifier(), |
10551 | Name: &II); |
10552 | |
10553 | case LookupResult::Found: |
10554 | if (TypeDecl *Type = dyn_cast<TypeDecl>(Val: Result.getFoundDecl())) { |
10555 | // C++ [class.qual]p2: |
10556 | // In a lookup in which function names are not ignored and the |
10557 | // nested-name-specifier nominates a class C, if the name specified |
10558 | // after the nested-name-specifier, when looked up in C, is the |
10559 | // injected-class-name of C [...] then the name is instead considered |
10560 | // to name the constructor of class C. |
10561 | // |
10562 | // Unlike in an elaborated-type-specifier, function names are not ignored |
10563 | // in typename-specifier lookup. However, they are ignored in all the |
10564 | // contexts where we form a typename type with no keyword (that is, in |
10565 | // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers). |
10566 | // |
10567 | // FIXME: That's not strictly true: mem-initializer-id lookup does not |
10568 | // ignore functions, but that appears to be an oversight. |
10569 | auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Val: Ctx); |
10570 | auto *FoundRD = dyn_cast<CXXRecordDecl>(Val: Type); |
10571 | if (Keyword == ElaboratedTypeKeyword::Typename && LookupRD && FoundRD && |
10572 | FoundRD->isInjectedClassName() && |
10573 | declaresSameEntity(D1: LookupRD, D2: cast<Decl>(Val: FoundRD->getParent()))) |
10574 | Diag(Loc: IILoc, DiagID: diag::ext_out_of_line_qualified_id_type_names_constructor) |
10575 | << &II << 1 << 0 /*'typename' keyword used*/; |
10576 | |
10577 | // We found a type. Build an ElaboratedType, since the |
10578 | // typename-specifier was just sugar. |
10579 | MarkAnyDeclReferenced(Loc: Type->getLocation(), D: Type, /*OdrUse=*/MightBeOdrUse: false); |
10580 | return Context.getElaboratedType(Keyword, |
10581 | NNS: QualifierLoc.getNestedNameSpecifier(), |
10582 | NamedType: Context.getTypeDeclType(Decl: Type)); |
10583 | } |
10584 | |
10585 | // C++ [dcl.type.simple]p2: |
10586 | // A type-specifier of the form |
10587 | // typename[opt] nested-name-specifier[opt] template-name |
10588 | // is a placeholder for a deduced class type [...]. |
10589 | if (getLangOpts().CPlusPlus17) { |
10590 | if (auto *TD = getAsTypeTemplateDecl(D: Result.getFoundDecl())) { |
10591 | if (!DeducedTSTContext) { |
10592 | QualType T(QualifierLoc |
10593 | ? QualifierLoc.getNestedNameSpecifier()->getAsType() |
10594 | : nullptr, 0); |
10595 | if (!T.isNull()) |
10596 | Diag(Loc: IILoc, DiagID: diag::err_dependent_deduced_tst) |
10597 | << (int)getTemplateNameKindForDiagnostics(Name: TemplateName(TD)) << T; |
10598 | else |
10599 | Diag(Loc: IILoc, DiagID: diag::err_deduced_tst) |
10600 | << (int)getTemplateNameKindForDiagnostics(Name: TemplateName(TD)); |
10601 | NoteTemplateLocation(Decl: *TD); |
10602 | return QualType(); |
10603 | } |
10604 | return Context.getElaboratedType( |
10605 | Keyword, NNS: QualifierLoc.getNestedNameSpecifier(), |
10606 | NamedType: Context.getDeducedTemplateSpecializationType(Template: TemplateName(TD), |
10607 | DeducedType: QualType(), IsDependent: false)); |
10608 | } |
10609 | } |
10610 | |
10611 | DiagID = Ctx ? diag::err_typename_nested_not_type |
10612 | : diag::err_typename_not_type; |
10613 | Referenced = Result.getFoundDecl(); |
10614 | break; |
10615 | |
10616 | case LookupResult::FoundOverloaded: |
10617 | DiagID = Ctx ? diag::err_typename_nested_not_type |
10618 | : diag::err_typename_not_type; |
10619 | Referenced = *Result.begin(); |
10620 | break; |
10621 | |
10622 | case LookupResult::Ambiguous: |
10623 | return QualType(); |
10624 | } |
10625 | |
10626 | // If we get here, it's because name lookup did not find a |
10627 | // type. Emit an appropriate diagnostic and return an error. |
10628 | SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), |
10629 | IILoc); |
10630 | if (Ctx) |
10631 | Diag(Loc: IILoc, DiagID) << FullRange << Name << Ctx; |
10632 | else |
10633 | Diag(Loc: IILoc, DiagID) << FullRange << Name; |
10634 | if (Referenced) |
10635 | Diag(Loc: Referenced->getLocation(), |
10636 | DiagID: Ctx ? diag::note_typename_member_refers_here |
10637 | : diag::note_typename_refers_here) |
10638 | << Name; |
10639 | return QualType(); |
10640 | } |
10641 | |
10642 | namespace { |
10643 | // See Sema::RebuildTypeInCurrentInstantiation |
10644 | class CurrentInstantiationRebuilder |
10645 | : public TreeTransform<CurrentInstantiationRebuilder> { |
10646 | SourceLocation Loc; |
10647 | DeclarationName Entity; |
10648 | |
10649 | public: |
10650 | typedef TreeTransform<CurrentInstantiationRebuilder> inherited; |
10651 | |
10652 | CurrentInstantiationRebuilder(Sema &SemaRef, |
10653 | SourceLocation Loc, |
10654 | DeclarationName Entity) |
10655 | : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), |
10656 | Loc(Loc), Entity(Entity) { } |
10657 | |
10658 | /// Determine whether the given type \p T has already been |
10659 | /// transformed. |
10660 | /// |
10661 | /// For the purposes of type reconstruction, a type has already been |
10662 | /// transformed if it is NULL or if it is not dependent. |
10663 | bool AlreadyTransformed(QualType T) { |
10664 | return T.isNull() || !T->isInstantiationDependentType(); |
10665 | } |
10666 | |
10667 | /// Returns the location of the entity whose type is being |
10668 | /// rebuilt. |
10669 | SourceLocation getBaseLocation() { return Loc; } |
10670 | |
10671 | /// Returns the name of the entity whose type is being rebuilt. |
10672 | DeclarationName getBaseEntity() { return Entity; } |
10673 | |
10674 | /// Sets the "base" location and entity when that |
10675 | /// information is known based on another transformation. |
10676 | void setBase(SourceLocation Loc, DeclarationName Entity) { |
10677 | this->Loc = Loc; |
10678 | this->Entity = Entity; |
10679 | } |
10680 | |
10681 | ExprResult TransformLambdaExpr(LambdaExpr *E) { |
10682 | // Lambdas never need to be transformed. |
10683 | return E; |
10684 | } |
10685 | }; |
10686 | } // end anonymous namespace |
10687 | |
10688 | TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, |
10689 | SourceLocation Loc, |
10690 | DeclarationName Name) { |
10691 | if (!T || !T->getType()->isInstantiationDependentType()) |
10692 | return T; |
10693 | |
10694 | CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); |
10695 | return Rebuilder.TransformType(DI: T); |
10696 | } |
10697 | |
10698 | ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { |
10699 | CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), |
10700 | DeclarationName()); |
10701 | return Rebuilder.TransformExpr(E); |
10702 | } |
10703 | |
10704 | bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { |
10705 | if (SS.isInvalid()) |
10706 | return true; |
10707 | |
10708 | NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); |
10709 | CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), |
10710 | DeclarationName()); |
10711 | NestedNameSpecifierLoc Rebuilt |
10712 | = Rebuilder.TransformNestedNameSpecifierLoc(NNS: QualifierLoc); |
10713 | if (!Rebuilt) |
10714 | return true; |
10715 | |
10716 | SS.Adopt(Other: Rebuilt); |
10717 | return false; |
10718 | } |
10719 | |
10720 | bool Sema::RebuildTemplateParamsInCurrentInstantiation( |
10721 | TemplateParameterList *Params) { |
10722 | for (unsigned I = 0, N = Params->size(); I != N; ++I) { |
10723 | Decl *Param = Params->getParam(Idx: I); |
10724 | |
10725 | // There is nothing to rebuild in a type parameter. |
10726 | if (isa<TemplateTypeParmDecl>(Val: Param)) |
10727 | continue; |
10728 | |
10729 | // Rebuild the template parameter list of a template template parameter. |
10730 | if (TemplateTemplateParmDecl *TTP |
10731 | = dyn_cast<TemplateTemplateParmDecl>(Val: Param)) { |
10732 | if (RebuildTemplateParamsInCurrentInstantiation( |
10733 | Params: TTP->getTemplateParameters())) |
10734 | return true; |
10735 | |
10736 | continue; |
10737 | } |
10738 | |
10739 | // Rebuild the type of a non-type template parameter. |
10740 | NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Val: Param); |
10741 | TypeSourceInfo *NewTSI |
10742 | = RebuildTypeInCurrentInstantiation(T: NTTP->getTypeSourceInfo(), |
10743 | Loc: NTTP->getLocation(), |
10744 | Name: NTTP->getDeclName()); |
10745 | if (!NewTSI) |
10746 | return true; |
10747 | |
10748 | if (NewTSI->getType()->isUndeducedType()) { |
10749 | // C++17 [temp.dep.expr]p3: |
10750 | // An id-expression is type-dependent if it contains |
10751 | // - an identifier associated by name lookup with a non-type |
10752 | // template-parameter declared with a type that contains a |
10753 | // placeholder type (7.1.7.4), |
10754 | NewTSI = SubstAutoTypeSourceInfoDependent(TypeWithAuto: NewTSI); |
10755 | } |
10756 | |
10757 | if (NewTSI != NTTP->getTypeSourceInfo()) { |
10758 | NTTP->setTypeSourceInfo(NewTSI); |
10759 | NTTP->setType(NewTSI->getType()); |
10760 | } |
10761 | } |
10762 | |
10763 | return false; |
10764 | } |
10765 | |
10766 | std::string |
10767 | Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, |
10768 | const TemplateArgumentList &Args) { |
10769 | return getTemplateArgumentBindingsText(Params, Args: Args.data(), NumArgs: Args.size()); |
10770 | } |
10771 | |
10772 | std::string |
10773 | Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, |
10774 | const TemplateArgument *Args, |
10775 | unsigned NumArgs) { |
10776 | SmallString<128> Str; |
10777 | llvm::raw_svector_ostream Out(Str); |
10778 | |
10779 | if (!Params || Params->size() == 0 || NumArgs == 0) |
10780 | return std::string(); |
10781 | |
10782 | for (unsigned I = 0, N = Params->size(); I != N; ++I) { |
10783 | if (I >= NumArgs) |
10784 | break; |
10785 | |
10786 | if (I == 0) |
10787 | Out << "[with " ; |
10788 | else |
10789 | Out << ", " ; |
10790 | |
10791 | if (const IdentifierInfo *Id = Params->getParam(Idx: I)->getIdentifier()) { |
10792 | Out << Id->getName(); |
10793 | } else { |
10794 | Out << '$' << I; |
10795 | } |
10796 | |
10797 | Out << " = " ; |
10798 | Args[I].print(Policy: getPrintingPolicy(), Out, |
10799 | IncludeType: TemplateParameterList::shouldIncludeTypeForArgument( |
10800 | Policy: getPrintingPolicy(), TPL: Params, Idx: I)); |
10801 | } |
10802 | |
10803 | Out << ']'; |
10804 | return std::string(Out.str()); |
10805 | } |
10806 | |
10807 | void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, |
10808 | CachedTokens &Toks) { |
10809 | if (!FD) |
10810 | return; |
10811 | |
10812 | auto LPT = std::make_unique<LateParsedTemplate>(); |
10813 | |
10814 | // Take tokens to avoid allocations |
10815 | LPT->Toks.swap(RHS&: Toks); |
10816 | LPT->D = FnD; |
10817 | LPT->FPO = getCurFPFeatures(); |
10818 | LateParsedTemplateMap.insert(KV: std::make_pair(x&: FD, y: std::move(LPT))); |
10819 | |
10820 | FD->setLateTemplateParsed(true); |
10821 | } |
10822 | |
10823 | void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) { |
10824 | if (!FD) |
10825 | return; |
10826 | FD->setLateTemplateParsed(false); |
10827 | } |
10828 | |
10829 | bool Sema::IsInsideALocalClassWithinATemplateFunction() { |
10830 | DeclContext *DC = CurContext; |
10831 | |
10832 | while (DC) { |
10833 | if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: CurContext)) { |
10834 | const FunctionDecl *FD = RD->isLocalClass(); |
10835 | return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); |
10836 | } else if (DC->isTranslationUnit() || DC->isNamespace()) |
10837 | return false; |
10838 | |
10839 | DC = DC->getParent(); |
10840 | } |
10841 | return false; |
10842 | } |
10843 | |
10844 | namespace { |
10845 | /// Walk the path from which a declaration was instantiated, and check |
10846 | /// that every explicit specialization along that path is visible. This enforces |
10847 | /// C++ [temp.expl.spec]/6: |
10848 | /// |
10849 | /// If a template, a member template or a member of a class template is |
10850 | /// explicitly specialized then that specialization shall be declared before |
10851 | /// the first use of that specialization that would cause an implicit |
10852 | /// instantiation to take place, in every translation unit in which such a |
10853 | /// use occurs; no diagnostic is required. |
10854 | /// |
10855 | /// and also C++ [temp.class.spec]/1: |
10856 | /// |
10857 | /// A partial specialization shall be declared before the first use of a |
10858 | /// class template specialization that would make use of the partial |
10859 | /// specialization as the result of an implicit or explicit instantiation |
10860 | /// in every translation unit in which such a use occurs; no diagnostic is |
10861 | /// required. |
10862 | class ExplicitSpecializationVisibilityChecker { |
10863 | Sema &S; |
10864 | SourceLocation Loc; |
10865 | llvm::SmallVector<Module *, 8> Modules; |
10866 | Sema::AcceptableKind Kind; |
10867 | |
10868 | public: |
10869 | ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc, |
10870 | Sema::AcceptableKind Kind) |
10871 | : S(S), Loc(Loc), Kind(Kind) {} |
10872 | |
10873 | void check(NamedDecl *ND) { |
10874 | if (auto *FD = dyn_cast<FunctionDecl>(Val: ND)) |
10875 | return checkImpl(Spec: FD); |
10876 | if (auto *RD = dyn_cast<CXXRecordDecl>(Val: ND)) |
10877 | return checkImpl(Spec: RD); |
10878 | if (auto *VD = dyn_cast<VarDecl>(Val: ND)) |
10879 | return checkImpl(Spec: VD); |
10880 | if (auto *ED = dyn_cast<EnumDecl>(Val: ND)) |
10881 | return checkImpl(Spec: ED); |
10882 | } |
10883 | |
10884 | private: |
10885 | void diagnose(NamedDecl *D, bool IsPartialSpec) { |
10886 | auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization |
10887 | : Sema::MissingImportKind::ExplicitSpecialization; |
10888 | const bool Recover = true; |
10889 | |
10890 | // If we got a custom set of modules (because only a subset of the |
10891 | // declarations are interesting), use them, otherwise let |
10892 | // diagnoseMissingImport intelligently pick some. |
10893 | if (Modules.empty()) |
10894 | S.diagnoseMissingImport(Loc, Decl: D, MIK: Kind, Recover); |
10895 | else |
10896 | S.diagnoseMissingImport(Loc, Decl: D, DeclLoc: D->getLocation(), Modules, MIK: Kind, Recover); |
10897 | } |
10898 | |
10899 | bool CheckMemberSpecialization(const NamedDecl *D) { |
10900 | return Kind == Sema::AcceptableKind::Visible |
10901 | ? S.hasVisibleMemberSpecialization(D) |
10902 | : S.hasReachableMemberSpecialization(D); |
10903 | } |
10904 | |
10905 | bool CheckExplicitSpecialization(const NamedDecl *D) { |
10906 | return Kind == Sema::AcceptableKind::Visible |
10907 | ? S.hasVisibleExplicitSpecialization(D) |
10908 | : S.hasReachableExplicitSpecialization(D); |
10909 | } |
10910 | |
10911 | bool CheckDeclaration(const NamedDecl *D) { |
10912 | return Kind == Sema::AcceptableKind::Visible ? S.hasVisibleDeclaration(D) |
10913 | : S.hasReachableDeclaration(D); |
10914 | } |
10915 | |
10916 | // Check a specific declaration. There are three problematic cases: |
10917 | // |
10918 | // 1) The declaration is an explicit specialization of a template |
10919 | // specialization. |
10920 | // 2) The declaration is an explicit specialization of a member of an |
10921 | // templated class. |
10922 | // 3) The declaration is an instantiation of a template, and that template |
10923 | // is an explicit specialization of a member of a templated class. |
10924 | // |
10925 | // We don't need to go any deeper than that, as the instantiation of the |
10926 | // surrounding class / etc is not triggered by whatever triggered this |
10927 | // instantiation, and thus should be checked elsewhere. |
10928 | template<typename SpecDecl> |
10929 | void checkImpl(SpecDecl *Spec) { |
10930 | bool IsHiddenExplicitSpecialization = false; |
10931 | if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) { |
10932 | IsHiddenExplicitSpecialization = Spec->getMemberSpecializationInfo() |
10933 | ? !CheckMemberSpecialization(D: Spec) |
10934 | : !CheckExplicitSpecialization(D: Spec); |
10935 | } else { |
10936 | checkInstantiated(Spec); |
10937 | } |
10938 | |
10939 | if (IsHiddenExplicitSpecialization) |
10940 | diagnose(D: Spec->getMostRecentDecl(), IsPartialSpec: false); |
10941 | } |
10942 | |
10943 | void checkInstantiated(FunctionDecl *FD) { |
10944 | if (auto *TD = FD->getPrimaryTemplate()) |
10945 | checkTemplate(TD); |
10946 | } |
10947 | |
10948 | void checkInstantiated(CXXRecordDecl *RD) { |
10949 | auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Val: RD); |
10950 | if (!SD) |
10951 | return; |
10952 | |
10953 | auto From = SD->getSpecializedTemplateOrPartial(); |
10954 | if (auto *TD = From.dyn_cast<ClassTemplateDecl *>()) |
10955 | checkTemplate(TD); |
10956 | else if (auto *TD = |
10957 | From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { |
10958 | if (!CheckDeclaration(D: TD)) |
10959 | diagnose(D: TD, IsPartialSpec: true); |
10960 | checkTemplate(TD); |
10961 | } |
10962 | } |
10963 | |
10964 | void checkInstantiated(VarDecl *RD) { |
10965 | auto *SD = dyn_cast<VarTemplateSpecializationDecl>(Val: RD); |
10966 | if (!SD) |
10967 | return; |
10968 | |
10969 | auto From = SD->getSpecializedTemplateOrPartial(); |
10970 | if (auto *TD = From.dyn_cast<VarTemplateDecl *>()) |
10971 | checkTemplate(TD); |
10972 | else if (auto *TD = |
10973 | From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { |
10974 | if (!CheckDeclaration(D: TD)) |
10975 | diagnose(D: TD, IsPartialSpec: true); |
10976 | checkTemplate(TD); |
10977 | } |
10978 | } |
10979 | |
10980 | void checkInstantiated(EnumDecl *FD) {} |
10981 | |
10982 | template<typename TemplDecl> |
10983 | void checkTemplate(TemplDecl *TD) { |
10984 | if (TD->isMemberSpecialization()) { |
10985 | if (!CheckMemberSpecialization(D: TD)) |
10986 | diagnose(D: TD->getMostRecentDecl(), IsPartialSpec: false); |
10987 | } |
10988 | } |
10989 | }; |
10990 | } // end anonymous namespace |
10991 | |
10992 | void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) { |
10993 | if (!getLangOpts().Modules) |
10994 | return; |
10995 | |
10996 | ExplicitSpecializationVisibilityChecker(*this, Loc, |
10997 | Sema::AcceptableKind::Visible) |
10998 | .check(ND: Spec); |
10999 | } |
11000 | |
11001 | void Sema::checkSpecializationReachability(SourceLocation Loc, |
11002 | NamedDecl *Spec) { |
11003 | if (!getLangOpts().CPlusPlusModules) |
11004 | return checkSpecializationVisibility(Loc, Spec); |
11005 | |
11006 | ExplicitSpecializationVisibilityChecker(*this, Loc, |
11007 | Sema::AcceptableKind::Reachable) |
11008 | .check(ND: Spec); |
11009 | } |
11010 | |
11011 | SourceLocation Sema::getTopMostPointOfInstantiation(const NamedDecl *N) const { |
11012 | if (!getLangOpts().CPlusPlus || CodeSynthesisContexts.empty()) |
11013 | return N->getLocation(); |
11014 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: N)) { |
11015 | if (!FD->isFunctionTemplateSpecialization()) |
11016 | return FD->getLocation(); |
11017 | } else if (!isa<ClassTemplateSpecializationDecl, |
11018 | VarTemplateSpecializationDecl>(Val: N)) { |
11019 | return N->getLocation(); |
11020 | } |
11021 | for (const CodeSynthesisContext &CSC : CodeSynthesisContexts) { |
11022 | if (!CSC.isInstantiationRecord() || CSC.PointOfInstantiation.isInvalid()) |
11023 | continue; |
11024 | return CSC.PointOfInstantiation; |
11025 | } |
11026 | return N->getLocation(); |
11027 | } |
11028 | |