1 | //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This defines CStringChecker, which is an assortment of checks on calls |
10 | // to functions in <string.h>. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "InterCheckerAPI.h" |
15 | #include "clang/AST/OperationKinds.h" |
16 | #include "clang/Basic/Builtins.h" |
17 | #include "clang/Basic/CharInfo.h" |
18 | #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" |
19 | #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" |
20 | #include "clang/StaticAnalyzer/Core/Checker.h" |
21 | #include "clang/StaticAnalyzer/Core/CheckerManager.h" |
22 | #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" |
23 | #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
24 | #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" |
25 | #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" |
26 | #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" |
27 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" |
28 | #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" |
29 | #include "llvm/ADT/APSInt.h" |
30 | #include "llvm/ADT/STLExtras.h" |
31 | #include "llvm/ADT/StringExtras.h" |
32 | #include "llvm/Support/Casting.h" |
33 | #include "llvm/Support/raw_ostream.h" |
34 | #include <functional> |
35 | #include <optional> |
36 | |
37 | using namespace clang; |
38 | using namespace ento; |
39 | using namespace std::placeholders; |
40 | |
41 | namespace { |
42 | struct AnyArgExpr { |
43 | const Expr *Expression; |
44 | unsigned ArgumentIndex; |
45 | }; |
46 | struct SourceArgExpr : AnyArgExpr {}; |
47 | struct DestinationArgExpr : AnyArgExpr {}; |
48 | struct SizeArgExpr : AnyArgExpr {}; |
49 | |
50 | using ErrorMessage = SmallString<128>; |
51 | enum class AccessKind { write, read }; |
52 | |
53 | static ErrorMessage createOutOfBoundErrorMsg(StringRef FunctionDescription, |
54 | AccessKind Access) { |
55 | ErrorMessage Message; |
56 | llvm::raw_svector_ostream Os(Message); |
57 | |
58 | // Function classification like: Memory copy function |
59 | Os << toUppercase(c: FunctionDescription.front()) |
60 | << &FunctionDescription.data()[1]; |
61 | |
62 | if (Access == AccessKind::write) { |
63 | Os << " overflows the destination buffer" ; |
64 | } else { // read access |
65 | Os << " accesses out-of-bound array element" ; |
66 | } |
67 | |
68 | return Message; |
69 | } |
70 | |
71 | enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 }; |
72 | |
73 | enum class CharKind { Regular = 0, Wide }; |
74 | constexpr CharKind CK_Regular = CharKind::Regular; |
75 | constexpr CharKind CK_Wide = CharKind::Wide; |
76 | |
77 | static QualType getCharPtrType(ASTContext &Ctx, CharKind CK) { |
78 | return Ctx.getPointerType(T: CK == CharKind::Regular ? Ctx.CharTy |
79 | : Ctx.WideCharTy); |
80 | } |
81 | |
82 | class CStringChecker : public Checker< eval::Call, |
83 | check::PreStmt<DeclStmt>, |
84 | check::LiveSymbols, |
85 | check::DeadSymbols, |
86 | check::RegionChanges |
87 | > { |
88 | mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, |
89 | BT_NotCString, BT_AdditionOverflow, BT_UninitRead; |
90 | |
91 | mutable const char *CurrentFunctionDescription = nullptr; |
92 | |
93 | public: |
94 | /// The filter is used to filter out the diagnostics which are not enabled by |
95 | /// the user. |
96 | struct CStringChecksFilter { |
97 | bool CheckCStringNullArg = false; |
98 | bool CheckCStringOutOfBounds = false; |
99 | bool CheckCStringBufferOverlap = false; |
100 | bool CheckCStringNotNullTerm = false; |
101 | bool CheckCStringUninitializedRead = false; |
102 | |
103 | CheckerNameRef CheckNameCStringNullArg; |
104 | CheckerNameRef CheckNameCStringOutOfBounds; |
105 | CheckerNameRef CheckNameCStringBufferOverlap; |
106 | CheckerNameRef CheckNameCStringNotNullTerm; |
107 | CheckerNameRef CheckNameCStringUninitializedRead; |
108 | }; |
109 | |
110 | CStringChecksFilter Filter; |
111 | |
112 | static void *getTag() { static int tag; return &tag; } |
113 | |
114 | bool evalCall(const CallEvent &Call, CheckerContext &C) const; |
115 | void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; |
116 | void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; |
117 | void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; |
118 | |
119 | ProgramStateRef |
120 | checkRegionChanges(ProgramStateRef state, |
121 | const InvalidatedSymbols *, |
122 | ArrayRef<const MemRegion *> ExplicitRegions, |
123 | ArrayRef<const MemRegion *> Regions, |
124 | const LocationContext *LCtx, |
125 | const CallEvent *Call) const; |
126 | |
127 | using FnCheck = std::function<void(const CStringChecker *, CheckerContext &, |
128 | const CallEvent &)>; |
129 | |
130 | CallDescriptionMap<FnCheck> Callbacks = { |
131 | {{CDM::CLibraryMaybeHardened, {"memcpy" }, 3}, |
132 | std::bind(f: &CStringChecker::evalMemcpy, args: _1, args: _2, args: _3, args: CK_Regular)}, |
133 | {{CDM::CLibraryMaybeHardened, {"wmemcpy" }, 3}, |
134 | std::bind(f: &CStringChecker::evalMemcpy, args: _1, args: _2, args: _3, args: CK_Wide)}, |
135 | {{CDM::CLibraryMaybeHardened, {"mempcpy" }, 3}, |
136 | std::bind(f: &CStringChecker::evalMempcpy, args: _1, args: _2, args: _3, args: CK_Regular)}, |
137 | {{CDM::CLibraryMaybeHardened, {"wmempcpy" }, 3}, |
138 | std::bind(f: &CStringChecker::evalMempcpy, args: _1, args: _2, args: _3, args: CK_Wide)}, |
139 | {{CDM::CLibrary, {"memcmp" }, 3}, |
140 | std::bind(f: &CStringChecker::evalMemcmp, args: _1, args: _2, args: _3, args: CK_Regular)}, |
141 | {{CDM::CLibrary, {"wmemcmp" }, 3}, |
142 | std::bind(f: &CStringChecker::evalMemcmp, args: _1, args: _2, args: _3, args: CK_Wide)}, |
143 | {{CDM::CLibraryMaybeHardened, {"memmove" }, 3}, |
144 | std::bind(f: &CStringChecker::evalMemmove, args: _1, args: _2, args: _3, args: CK_Regular)}, |
145 | {{CDM::CLibraryMaybeHardened, {"wmemmove" }, 3}, |
146 | std::bind(f: &CStringChecker::evalMemmove, args: _1, args: _2, args: _3, args: CK_Wide)}, |
147 | {{CDM::CLibraryMaybeHardened, {"memset" }, 3}, |
148 | &CStringChecker::evalMemset}, |
149 | {{CDM::CLibrary, {"explicit_memset" }, 3}, &CStringChecker::evalMemset}, |
150 | // FIXME: C23 introduces 'memset_explicit', maybe also model that |
151 | {{CDM::CLibraryMaybeHardened, {"strcpy" }, 2}, |
152 | &CStringChecker::evalStrcpy}, |
153 | {{CDM::CLibraryMaybeHardened, {"strncpy" }, 3}, |
154 | &CStringChecker::evalStrncpy}, |
155 | {{CDM::CLibraryMaybeHardened, {"stpcpy" }, 2}, |
156 | &CStringChecker::evalStpcpy}, |
157 | {{CDM::CLibraryMaybeHardened, {"strlcpy" }, 3}, |
158 | &CStringChecker::evalStrlcpy}, |
159 | {{CDM::CLibraryMaybeHardened, {"strcat" }, 2}, |
160 | &CStringChecker::evalStrcat}, |
161 | {{CDM::CLibraryMaybeHardened, {"strncat" }, 3}, |
162 | &CStringChecker::evalStrncat}, |
163 | {{CDM::CLibraryMaybeHardened, {"strlcat" }, 3}, |
164 | &CStringChecker::evalStrlcat}, |
165 | {{CDM::CLibraryMaybeHardened, {"strlen" }, 1}, |
166 | &CStringChecker::evalstrLength}, |
167 | {{CDM::CLibrary, {"wcslen" }, 1}, &CStringChecker::evalstrLength}, |
168 | {{CDM::CLibraryMaybeHardened, {"strnlen" }, 2}, |
169 | &CStringChecker::evalstrnLength}, |
170 | {{CDM::CLibrary, {"wcsnlen" }, 2}, &CStringChecker::evalstrnLength}, |
171 | {{CDM::CLibrary, {"strcmp" }, 2}, &CStringChecker::evalStrcmp}, |
172 | {{CDM::CLibrary, {"strncmp" }, 3}, &CStringChecker::evalStrncmp}, |
173 | {{CDM::CLibrary, {"strcasecmp" }, 2}, &CStringChecker::evalStrcasecmp}, |
174 | {{CDM::CLibrary, {"strncasecmp" }, 3}, &CStringChecker::evalStrncasecmp}, |
175 | {{CDM::CLibrary, {"strsep" }, 2}, &CStringChecker::evalStrsep}, |
176 | {{CDM::CLibrary, {"bcopy" }, 3}, &CStringChecker::evalBcopy}, |
177 | {{CDM::CLibrary, {"bcmp" }, 3}, |
178 | std::bind(f: &CStringChecker::evalMemcmp, args: _1, args: _2, args: _3, args: CK_Regular)}, |
179 | {{CDM::CLibrary, {"bzero" }, 2}, &CStringChecker::evalBzero}, |
180 | {{CDM::CLibraryMaybeHardened, {"explicit_bzero" }, 2}, |
181 | &CStringChecker::evalBzero}, |
182 | |
183 | // When recognizing calls to the following variadic functions, we accept |
184 | // any number of arguments in the call (std::nullopt = accept any |
185 | // number), but check that in the declaration there are 2 and 3 |
186 | // parameters respectively. (Note that the parameter count does not |
187 | // include the "...". Calls where the number of arguments is too small |
188 | // will be discarded by the callback.) |
189 | {{CDM::CLibraryMaybeHardened, {"sprintf" }, std::nullopt, 2}, |
190 | &CStringChecker::evalSprintf}, |
191 | {{CDM::CLibraryMaybeHardened, {"snprintf" }, std::nullopt, 3}, |
192 | &CStringChecker::evalSnprintf}, |
193 | }; |
194 | |
195 | // These require a bit of special handling. |
196 | CallDescription StdCopy{CDM::SimpleFunc, {"std" , "copy" }, 3}, |
197 | StdCopyBackward{CDM::SimpleFunc, {"std" , "copy_backward" }, 3}; |
198 | |
199 | FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const; |
200 | void evalMemcpy(CheckerContext &C, const CallEvent &Call, CharKind CK) const; |
201 | void evalMempcpy(CheckerContext &C, const CallEvent &Call, CharKind CK) const; |
202 | void evalMemmove(CheckerContext &C, const CallEvent &Call, CharKind CK) const; |
203 | void evalBcopy(CheckerContext &C, const CallEvent &Call) const; |
204 | void evalCopyCommon(CheckerContext &C, const CallEvent &Call, |
205 | ProgramStateRef state, SizeArgExpr Size, |
206 | DestinationArgExpr Dest, SourceArgExpr Source, |
207 | bool Restricted, bool IsMempcpy, CharKind CK) const; |
208 | |
209 | void evalMemcmp(CheckerContext &C, const CallEvent &Call, CharKind CK) const; |
210 | |
211 | void evalstrLength(CheckerContext &C, const CallEvent &Call) const; |
212 | void evalstrnLength(CheckerContext &C, const CallEvent &Call) const; |
213 | void evalstrLengthCommon(CheckerContext &C, const CallEvent &Call, |
214 | bool IsStrnlen = false) const; |
215 | |
216 | void evalStrcpy(CheckerContext &C, const CallEvent &Call) const; |
217 | void evalStrncpy(CheckerContext &C, const CallEvent &Call) const; |
218 | void evalStpcpy(CheckerContext &C, const CallEvent &Call) const; |
219 | void evalStrlcpy(CheckerContext &C, const CallEvent &Call) const; |
220 | void evalStrcpyCommon(CheckerContext &C, const CallEvent &Call, |
221 | bool ReturnEnd, bool IsBounded, ConcatFnKind appendK, |
222 | bool returnPtr = true) const; |
223 | |
224 | void evalStrcat(CheckerContext &C, const CallEvent &Call) const; |
225 | void evalStrncat(CheckerContext &C, const CallEvent &Call) const; |
226 | void evalStrlcat(CheckerContext &C, const CallEvent &Call) const; |
227 | |
228 | void evalStrcmp(CheckerContext &C, const CallEvent &Call) const; |
229 | void evalStrncmp(CheckerContext &C, const CallEvent &Call) const; |
230 | void evalStrcasecmp(CheckerContext &C, const CallEvent &Call) const; |
231 | void evalStrncasecmp(CheckerContext &C, const CallEvent &Call) const; |
232 | void evalStrcmpCommon(CheckerContext &C, const CallEvent &Call, |
233 | bool IsBounded = false, bool IgnoreCase = false) const; |
234 | |
235 | void evalStrsep(CheckerContext &C, const CallEvent &Call) const; |
236 | |
237 | void evalStdCopy(CheckerContext &C, const CallEvent &Call) const; |
238 | void evalStdCopyBackward(CheckerContext &C, const CallEvent &Call) const; |
239 | void evalStdCopyCommon(CheckerContext &C, const CallEvent &Call) const; |
240 | void evalMemset(CheckerContext &C, const CallEvent &Call) const; |
241 | void evalBzero(CheckerContext &C, const CallEvent &Call) const; |
242 | |
243 | void evalSprintf(CheckerContext &C, const CallEvent &Call) const; |
244 | void evalSnprintf(CheckerContext &C, const CallEvent &Call) const; |
245 | void evalSprintfCommon(CheckerContext &C, const CallEvent &Call, |
246 | bool IsBounded) const; |
247 | |
248 | // Utility methods |
249 | std::pair<ProgramStateRef , ProgramStateRef > |
250 | static assumeZero(CheckerContext &C, |
251 | ProgramStateRef state, SVal V, QualType Ty); |
252 | |
253 | static ProgramStateRef setCStringLength(ProgramStateRef state, |
254 | const MemRegion *MR, |
255 | SVal strLength); |
256 | static SVal getCStringLengthForRegion(CheckerContext &C, |
257 | ProgramStateRef &state, |
258 | const Expr *Ex, |
259 | const MemRegion *MR, |
260 | bool hypothetical); |
261 | SVal getCStringLength(CheckerContext &C, |
262 | ProgramStateRef &state, |
263 | const Expr *Ex, |
264 | SVal Buf, |
265 | bool hypothetical = false) const; |
266 | |
267 | const StringLiteral *getCStringLiteral(CheckerContext &C, |
268 | ProgramStateRef &state, |
269 | const Expr *expr, |
270 | SVal val) const; |
271 | |
272 | /// Invalidate the destination buffer determined by characters copied. |
273 | static ProgramStateRef |
274 | invalidateDestinationBufferBySize(CheckerContext &C, ProgramStateRef S, |
275 | const Expr *BufE, SVal BufV, SVal SizeV, |
276 | QualType SizeTy); |
277 | |
278 | /// Operation never overflows, do not invalidate the super region. |
279 | static ProgramStateRef invalidateDestinationBufferNeverOverflows( |
280 | CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV); |
281 | |
282 | /// We do not know whether the operation can overflow (e.g. size is unknown), |
283 | /// invalidate the super region and escape related pointers. |
284 | static ProgramStateRef invalidateDestinationBufferAlwaysEscapeSuperRegion( |
285 | CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV); |
286 | |
287 | /// Invalidate the source buffer for escaping pointers. |
288 | static ProgramStateRef invalidateSourceBuffer(CheckerContext &C, |
289 | ProgramStateRef S, |
290 | const Expr *BufE, SVal BufV); |
291 | |
292 | /// @param InvalidationTraitOperations Determine how to invlidate the |
293 | /// MemRegion by setting the invalidation traits. Return true to cause pointer |
294 | /// escape, or false otherwise. |
295 | static ProgramStateRef invalidateBufferAux( |
296 | CheckerContext &C, ProgramStateRef State, const Expr *Ex, SVal V, |
297 | llvm::function_ref<bool(RegionAndSymbolInvalidationTraits &, |
298 | const MemRegion *)> |
299 | InvalidationTraitOperations); |
300 | |
301 | static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, |
302 | const MemRegion *MR); |
303 | |
304 | static bool memsetAux(const Expr *DstBuffer, SVal CharE, |
305 | const Expr *Size, CheckerContext &C, |
306 | ProgramStateRef &State); |
307 | |
308 | // Re-usable checks |
309 | ProgramStateRef checkNonNull(CheckerContext &C, ProgramStateRef State, |
310 | AnyArgExpr Arg, SVal l) const; |
311 | // Check whether the origin region behind \p Element (like the actual array |
312 | // region \p Element is from) is initialized. |
313 | ProgramStateRef checkInit(CheckerContext &C, ProgramStateRef state, |
314 | AnyArgExpr Buffer, SVal Element, SVal Size) const; |
315 | ProgramStateRef CheckLocation(CheckerContext &C, ProgramStateRef state, |
316 | AnyArgExpr Buffer, SVal Element, |
317 | AccessKind Access, |
318 | CharKind CK = CharKind::Regular) const; |
319 | ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef State, |
320 | AnyArgExpr Buffer, SizeArgExpr Size, |
321 | AccessKind Access, |
322 | CharKind CK = CharKind::Regular) const; |
323 | ProgramStateRef CheckOverlap(CheckerContext &C, ProgramStateRef state, |
324 | SizeArgExpr Size, AnyArgExpr First, |
325 | AnyArgExpr Second, |
326 | CharKind CK = CharKind::Regular) const; |
327 | void emitOverlapBug(CheckerContext &C, |
328 | ProgramStateRef state, |
329 | const Stmt *First, |
330 | const Stmt *Second) const; |
331 | |
332 | void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S, |
333 | StringRef WarningMsg) const; |
334 | void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State, |
335 | const Stmt *S, StringRef WarningMsg) const; |
336 | void emitNotCStringBug(CheckerContext &C, ProgramStateRef State, |
337 | const Stmt *S, StringRef WarningMsg) const; |
338 | void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const; |
339 | void emitUninitializedReadBug(CheckerContext &C, ProgramStateRef State, |
340 | const Expr *E, StringRef Msg) const; |
341 | ProgramStateRef checkAdditionOverflow(CheckerContext &C, |
342 | ProgramStateRef state, |
343 | NonLoc left, |
344 | NonLoc right) const; |
345 | |
346 | // Return true if the destination buffer of the copy function may be in bound. |
347 | // Expects SVal of Size to be positive and unsigned. |
348 | // Expects SVal of FirstBuf to be a FieldRegion. |
349 | static bool isFirstBufInBound(CheckerContext &C, ProgramStateRef State, |
350 | SVal BufVal, QualType BufTy, SVal LengthVal, |
351 | QualType LengthTy); |
352 | }; |
353 | |
354 | } //end anonymous namespace |
355 | |
356 | REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) |
357 | |
358 | //===----------------------------------------------------------------------===// |
359 | // Individual checks and utility methods. |
360 | //===----------------------------------------------------------------------===// |
361 | |
362 | std::pair<ProgramStateRef, ProgramStateRef> |
363 | CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef State, SVal V, |
364 | QualType Ty) { |
365 | std::optional<DefinedSVal> val = V.getAs<DefinedSVal>(); |
366 | if (!val) |
367 | return std::pair<ProgramStateRef, ProgramStateRef>(State, State); |
368 | |
369 | SValBuilder &svalBuilder = C.getSValBuilder(); |
370 | DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(type: Ty); |
371 | return State->assume(Cond: svalBuilder.evalEQ(state: State, lhs: *val, rhs: zero)); |
372 | } |
373 | |
374 | ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, |
375 | ProgramStateRef State, |
376 | AnyArgExpr Arg, SVal l) const { |
377 | // If a previous check has failed, propagate the failure. |
378 | if (!State) |
379 | return nullptr; |
380 | |
381 | ProgramStateRef stateNull, stateNonNull; |
382 | std::tie(args&: stateNull, args&: stateNonNull) = |
383 | assumeZero(C, State, V: l, Ty: Arg.Expression->getType()); |
384 | |
385 | if (stateNull && !stateNonNull) { |
386 | if (Filter.CheckCStringNullArg) { |
387 | SmallString<80> buf; |
388 | llvm::raw_svector_ostream OS(buf); |
389 | assert(CurrentFunctionDescription); |
390 | OS << "Null pointer passed as " << (Arg.ArgumentIndex + 1) |
391 | << llvm::getOrdinalSuffix(Val: Arg.ArgumentIndex + 1) << " argument to " |
392 | << CurrentFunctionDescription; |
393 | |
394 | emitNullArgBug(C, State: stateNull, S: Arg.Expression, WarningMsg: OS.str()); |
395 | } |
396 | return nullptr; |
397 | } |
398 | |
399 | // From here on, assume that the value is non-null. |
400 | assert(stateNonNull); |
401 | return stateNonNull; |
402 | } |
403 | |
404 | static std::optional<NonLoc> getIndex(ProgramStateRef State, |
405 | const ElementRegion *ER, CharKind CK) { |
406 | SValBuilder &SVB = State->getStateManager().getSValBuilder(); |
407 | ASTContext &Ctx = SVB.getContext(); |
408 | |
409 | if (CK == CharKind::Regular) { |
410 | if (ER->getValueType() != Ctx.CharTy) |
411 | return {}; |
412 | return ER->getIndex(); |
413 | } |
414 | |
415 | if (ER->getValueType() != Ctx.WideCharTy) |
416 | return {}; |
417 | |
418 | QualType SizeTy = Ctx.getSizeType(); |
419 | NonLoc WideSize = |
420 | SVB.makeIntVal(integer: Ctx.getTypeSizeInChars(T: Ctx.WideCharTy).getQuantity(), |
421 | type: SizeTy) |
422 | .castAs<NonLoc>(); |
423 | SVal Offset = |
424 | SVB.evalBinOpNN(state: State, op: BO_Mul, lhs: ER->getIndex(), rhs: WideSize, resultTy: SizeTy); |
425 | if (Offset.isUnknown()) |
426 | return {}; |
427 | return Offset.castAs<NonLoc>(); |
428 | } |
429 | |
430 | // Basically 1 -> 1st, 12 -> 12th, etc. |
431 | static void printIdxWithOrdinalSuffix(llvm::raw_ostream &Os, unsigned Idx) { |
432 | Os << Idx << llvm::getOrdinalSuffix(Val: Idx); |
433 | } |
434 | |
435 | ProgramStateRef CStringChecker::checkInit(CheckerContext &C, |
436 | ProgramStateRef State, |
437 | AnyArgExpr Buffer, SVal Element, |
438 | SVal Size) const { |
439 | |
440 | // If a previous check has failed, propagate the failure. |
441 | if (!State) |
442 | return nullptr; |
443 | |
444 | const MemRegion *R = Element.getAsRegion(); |
445 | const auto *ER = dyn_cast_or_null<ElementRegion>(Val: R); |
446 | if (!ER) |
447 | return State; |
448 | |
449 | const auto *SuperR = ER->getSuperRegion()->getAs<TypedValueRegion>(); |
450 | if (!SuperR) |
451 | return State; |
452 | |
453 | // FIXME: We ought to able to check objects as well. Maybe |
454 | // UninitializedObjectChecker could help? |
455 | if (!SuperR->getValueType()->isArrayType()) |
456 | return State; |
457 | |
458 | SValBuilder &SVB = C.getSValBuilder(); |
459 | ASTContext &Ctx = SVB.getContext(); |
460 | |
461 | const QualType ElemTy = Ctx.getBaseElementType(QT: SuperR->getValueType()); |
462 | const NonLoc Zero = SVB.makeZeroArrayIndex(); |
463 | |
464 | std::optional<Loc> FirstElementVal = |
465 | State->getLValue(ElementType: ElemTy, Idx: Zero, Base: loc::MemRegionVal(SuperR)).getAs<Loc>(); |
466 | if (!FirstElementVal) |
467 | return State; |
468 | |
469 | // Ensure that we wouldn't read uninitialized value. |
470 | if (Filter.CheckCStringUninitializedRead && |
471 | State->getSVal(LV: *FirstElementVal).isUndef()) { |
472 | llvm::SmallString<258> Buf; |
473 | llvm::raw_svector_ostream OS(Buf); |
474 | OS << "The first element of the " ; |
475 | printIdxWithOrdinalSuffix(Os&: OS, Idx: Buffer.ArgumentIndex + 1); |
476 | OS << " argument is undefined" ; |
477 | emitUninitializedReadBug(C, State, E: Buffer.Expression, Msg: OS.str()); |
478 | return nullptr; |
479 | } |
480 | |
481 | // We won't check whether the entire region is fully initialized -- lets just |
482 | // check that the first and the last element is. So, onto checking the last |
483 | // element: |
484 | const QualType IdxTy = SVB.getArrayIndexType(); |
485 | |
486 | NonLoc ElemSize = |
487 | SVB.makeIntVal(integer: Ctx.getTypeSizeInChars(T: ElemTy).getQuantity(), type: IdxTy) |
488 | .castAs<NonLoc>(); |
489 | |
490 | // FIXME: Check that the size arg to the cstring function is divisible by |
491 | // size of the actual element type? |
492 | |
493 | // The type of the argument to the cstring function is either char or wchar, |
494 | // but thats not the type of the original array (or memory region). |
495 | // Suppose the following: |
496 | // int t[5]; |
497 | // memcpy(dst, t, sizeof(t) / sizeof(t[0])); |
498 | // When checking whether t is fully initialized, we see it as char array of |
499 | // size sizeof(int)*5. If we check the last element as a character, we read |
500 | // the last byte of an integer, which will be undefined. But just because |
501 | // that value is undefined, it doesn't mean that the element is uninitialized! |
502 | // For this reason, we need to retrieve the actual last element with the |
503 | // correct type. |
504 | |
505 | // Divide the size argument to the cstring function by the actual element |
506 | // type. This value will be size of the array, or the index to the |
507 | // past-the-end element. |
508 | std::optional<NonLoc> Offset = |
509 | SVB.evalBinOpNN(state: State, op: clang::BO_Div, lhs: Size.castAs<NonLoc>(), rhs: ElemSize, |
510 | resultTy: IdxTy) |
511 | .getAs<NonLoc>(); |
512 | |
513 | // Retrieve the index of the last element. |
514 | const NonLoc One = SVB.makeIntVal(integer: 1, type: IdxTy).castAs<NonLoc>(); |
515 | SVal LastIdx = SVB.evalBinOpNN(state: State, op: BO_Sub, lhs: *Offset, rhs: One, resultTy: IdxTy); |
516 | |
517 | if (!Offset) |
518 | return State; |
519 | |
520 | SVal LastElementVal = |
521 | State->getLValue(ElementType: ElemTy, Idx: LastIdx, Base: loc::MemRegionVal(SuperR)); |
522 | if (!isa<Loc>(Val: LastElementVal)) |
523 | return State; |
524 | |
525 | if (Filter.CheckCStringUninitializedRead && |
526 | State->getSVal(LV: LastElementVal.castAs<Loc>()).isUndef()) { |
527 | const llvm::APSInt *IdxInt = LastIdx.getAsInteger(); |
528 | // If we can't get emit a sensible last element index, just bail out -- |
529 | // prefer to emit nothing in favour of emitting garbage quality reports. |
530 | if (!IdxInt) { |
531 | C.addSink(); |
532 | return nullptr; |
533 | } |
534 | llvm::SmallString<258> Buf; |
535 | llvm::raw_svector_ostream OS(Buf); |
536 | OS << "The last accessed element (at index " ; |
537 | OS << IdxInt->getExtValue(); |
538 | OS << ") in the " ; |
539 | printIdxWithOrdinalSuffix(Os&: OS, Idx: Buffer.ArgumentIndex + 1); |
540 | OS << " argument is undefined" ; |
541 | emitUninitializedReadBug(C, State, E: Buffer.Expression, Msg: OS.str()); |
542 | return nullptr; |
543 | } |
544 | return State; |
545 | } |
546 | |
547 | // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor? |
548 | ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, |
549 | ProgramStateRef state, |
550 | AnyArgExpr Buffer, SVal Element, |
551 | AccessKind Access, |
552 | CharKind CK) const { |
553 | |
554 | // If a previous check has failed, propagate the failure. |
555 | if (!state) |
556 | return nullptr; |
557 | |
558 | // Check for out of bound array element access. |
559 | const MemRegion *R = Element.getAsRegion(); |
560 | if (!R) |
561 | return state; |
562 | |
563 | const auto *ER = dyn_cast<ElementRegion>(Val: R); |
564 | if (!ER) |
565 | return state; |
566 | |
567 | // Get the index of the accessed element. |
568 | std::optional<NonLoc> Idx = getIndex(State: state, ER, CK); |
569 | if (!Idx) |
570 | return state; |
571 | |
572 | // Get the size of the array. |
573 | const auto *superReg = cast<SubRegion>(Val: ER->getSuperRegion()); |
574 | DefinedOrUnknownSVal Size = |
575 | getDynamicExtent(State: state, MR: superReg, SVB&: C.getSValBuilder()); |
576 | |
577 | auto [StInBound, StOutBound] = state->assumeInBoundDual(idx: *Idx, upperBound: Size); |
578 | if (StOutBound && !StInBound) { |
579 | // These checks are either enabled by the CString out-of-bounds checker |
580 | // explicitly or implicitly by the Malloc checker. |
581 | // In the latter case we only do modeling but do not emit warning. |
582 | if (!Filter.CheckCStringOutOfBounds) |
583 | return nullptr; |
584 | |
585 | // Emit a bug report. |
586 | ErrorMessage Message = |
587 | createOutOfBoundErrorMsg(FunctionDescription: CurrentFunctionDescription, Access); |
588 | emitOutOfBoundsBug(C, State: StOutBound, S: Buffer.Expression, WarningMsg: Message); |
589 | return nullptr; |
590 | } |
591 | |
592 | // Array bound check succeeded. From this point forward the array bound |
593 | // should always succeed. |
594 | return StInBound; |
595 | } |
596 | |
597 | ProgramStateRef |
598 | CStringChecker::CheckBufferAccess(CheckerContext &C, ProgramStateRef State, |
599 | AnyArgExpr Buffer, SizeArgExpr Size, |
600 | AccessKind Access, CharKind CK) const { |
601 | // If a previous check has failed, propagate the failure. |
602 | if (!State) |
603 | return nullptr; |
604 | |
605 | SValBuilder &svalBuilder = C.getSValBuilder(); |
606 | ASTContext &Ctx = svalBuilder.getContext(); |
607 | |
608 | QualType SizeTy = Size.Expression->getType(); |
609 | QualType PtrTy = getCharPtrType(Ctx, CK); |
610 | |
611 | // Check that the first buffer is non-null. |
612 | SVal BufVal = C.getSVal(S: Buffer.Expression); |
613 | State = checkNonNull(C, State, Arg: Buffer, l: BufVal); |
614 | if (!State) |
615 | return nullptr; |
616 | |
617 | // If out-of-bounds checking is turned off, skip the rest. |
618 | if (!Filter.CheckCStringOutOfBounds) |
619 | return State; |
620 | |
621 | SVal BufStart = |
622 | svalBuilder.evalCast(V: BufVal, CastTy: PtrTy, OriginalTy: Buffer.Expression->getType()); |
623 | |
624 | // Check if the first byte of the buffer is accessible. |
625 | State = CheckLocation(C, state: State, Buffer, Element: BufStart, Access, CK); |
626 | |
627 | if (!State) |
628 | return nullptr; |
629 | |
630 | // Get the access length and make sure it is known. |
631 | // FIXME: This assumes the caller has already checked that the access length |
632 | // is positive. And that it's unsigned. |
633 | SVal LengthVal = C.getSVal(S: Size.Expression); |
634 | std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); |
635 | if (!Length) |
636 | return State; |
637 | |
638 | // Compute the offset of the last element to be accessed: size-1. |
639 | NonLoc One = svalBuilder.makeIntVal(integer: 1, type: SizeTy).castAs<NonLoc>(); |
640 | SVal Offset = svalBuilder.evalBinOpNN(state: State, op: BO_Sub, lhs: *Length, rhs: One, resultTy: SizeTy); |
641 | if (Offset.isUnknown()) |
642 | return nullptr; |
643 | NonLoc LastOffset = Offset.castAs<NonLoc>(); |
644 | |
645 | // Check that the first buffer is sufficiently long. |
646 | if (std::optional<Loc> BufLoc = BufStart.getAs<Loc>()) { |
647 | |
648 | SVal BufEnd = |
649 | svalBuilder.evalBinOpLN(state: State, op: BO_Add, lhs: *BufLoc, rhs: LastOffset, resultTy: PtrTy); |
650 | State = CheckLocation(C, state: State, Buffer, Element: BufEnd, Access, CK); |
651 | if (Access == AccessKind::read) |
652 | State = checkInit(C, State, Buffer, Element: BufEnd, Size: *Length); |
653 | |
654 | // If the buffer isn't large enough, abort. |
655 | if (!State) |
656 | return nullptr; |
657 | } |
658 | |
659 | // Large enough or not, return this state! |
660 | return State; |
661 | } |
662 | |
663 | ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, |
664 | ProgramStateRef state, |
665 | SizeArgExpr Size, AnyArgExpr First, |
666 | AnyArgExpr Second, |
667 | CharKind CK) const { |
668 | if (!Filter.CheckCStringBufferOverlap) |
669 | return state; |
670 | |
671 | // Do a simple check for overlap: if the two arguments are from the same |
672 | // buffer, see if the end of the first is greater than the start of the second |
673 | // or vice versa. |
674 | |
675 | // If a previous check has failed, propagate the failure. |
676 | if (!state) |
677 | return nullptr; |
678 | |
679 | ProgramStateRef stateTrue, stateFalse; |
680 | |
681 | // Assume different address spaces cannot overlap. |
682 | if (First.Expression->getType()->getPointeeType().getAddressSpace() != |
683 | Second.Expression->getType()->getPointeeType().getAddressSpace()) |
684 | return state; |
685 | |
686 | // Get the buffer values and make sure they're known locations. |
687 | const LocationContext *LCtx = C.getLocationContext(); |
688 | SVal firstVal = state->getSVal(Ex: First.Expression, LCtx); |
689 | SVal secondVal = state->getSVal(Ex: Second.Expression, LCtx); |
690 | |
691 | std::optional<Loc> firstLoc = firstVal.getAs<Loc>(); |
692 | if (!firstLoc) |
693 | return state; |
694 | |
695 | std::optional<Loc> secondLoc = secondVal.getAs<Loc>(); |
696 | if (!secondLoc) |
697 | return state; |
698 | |
699 | // Are the two values the same? |
700 | SValBuilder &svalBuilder = C.getSValBuilder(); |
701 | std::tie(args&: stateTrue, args&: stateFalse) = |
702 | state->assume(Cond: svalBuilder.evalEQ(state, lhs: *firstLoc, rhs: *secondLoc)); |
703 | |
704 | if (stateTrue && !stateFalse) { |
705 | // If the values are known to be equal, that's automatically an overlap. |
706 | emitOverlapBug(C, state: stateTrue, First: First.Expression, Second: Second.Expression); |
707 | return nullptr; |
708 | } |
709 | |
710 | // assume the two expressions are not equal. |
711 | assert(stateFalse); |
712 | state = stateFalse; |
713 | |
714 | // Which value comes first? |
715 | QualType cmpTy = svalBuilder.getConditionType(); |
716 | SVal reverse = |
717 | svalBuilder.evalBinOpLL(state, op: BO_GT, lhs: *firstLoc, rhs: *secondLoc, resultTy: cmpTy); |
718 | std::optional<DefinedOrUnknownSVal> reverseTest = |
719 | reverse.getAs<DefinedOrUnknownSVal>(); |
720 | if (!reverseTest) |
721 | return state; |
722 | |
723 | std::tie(args&: stateTrue, args&: stateFalse) = state->assume(Cond: *reverseTest); |
724 | if (stateTrue) { |
725 | if (stateFalse) { |
726 | // If we don't know which one comes first, we can't perform this test. |
727 | return state; |
728 | } else { |
729 | // Switch the values so that firstVal is before secondVal. |
730 | std::swap(lhs&: firstLoc, rhs&: secondLoc); |
731 | |
732 | // Switch the Exprs as well, so that they still correspond. |
733 | std::swap(a&: First, b&: Second); |
734 | } |
735 | } |
736 | |
737 | // Get the length, and make sure it too is known. |
738 | SVal LengthVal = state->getSVal(Ex: Size.Expression, LCtx); |
739 | std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); |
740 | if (!Length) |
741 | return state; |
742 | |
743 | // Convert the first buffer's start address to char*. |
744 | // Bail out if the cast fails. |
745 | ASTContext &Ctx = svalBuilder.getContext(); |
746 | QualType CharPtrTy = getCharPtrType(Ctx, CK); |
747 | SVal FirstStart = |
748 | svalBuilder.evalCast(V: *firstLoc, CastTy: CharPtrTy, OriginalTy: First.Expression->getType()); |
749 | std::optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); |
750 | if (!FirstStartLoc) |
751 | return state; |
752 | |
753 | // Compute the end of the first buffer. Bail out if THAT fails. |
754 | SVal FirstEnd = svalBuilder.evalBinOpLN(state, op: BO_Add, lhs: *FirstStartLoc, |
755 | rhs: *Length, resultTy: CharPtrTy); |
756 | std::optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); |
757 | if (!FirstEndLoc) |
758 | return state; |
759 | |
760 | // Is the end of the first buffer past the start of the second buffer? |
761 | SVal Overlap = |
762 | svalBuilder.evalBinOpLL(state, op: BO_GT, lhs: *FirstEndLoc, rhs: *secondLoc, resultTy: cmpTy); |
763 | std::optional<DefinedOrUnknownSVal> OverlapTest = |
764 | Overlap.getAs<DefinedOrUnknownSVal>(); |
765 | if (!OverlapTest) |
766 | return state; |
767 | |
768 | std::tie(args&: stateTrue, args&: stateFalse) = state->assume(Cond: *OverlapTest); |
769 | |
770 | if (stateTrue && !stateFalse) { |
771 | // Overlap! |
772 | emitOverlapBug(C, state: stateTrue, First: First.Expression, Second: Second.Expression); |
773 | return nullptr; |
774 | } |
775 | |
776 | // assume the two expressions don't overlap. |
777 | assert(stateFalse); |
778 | return stateFalse; |
779 | } |
780 | |
781 | void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, |
782 | const Stmt *First, const Stmt *Second) const { |
783 | ExplodedNode *N = C.generateErrorNode(State: state); |
784 | if (!N) |
785 | return; |
786 | |
787 | if (!BT_Overlap) |
788 | BT_Overlap.reset(p: new BugType(Filter.CheckNameCStringBufferOverlap, |
789 | categories::UnixAPI, "Improper arguments" )); |
790 | |
791 | // Generate a report for this bug. |
792 | auto report = std::make_unique<PathSensitiveBugReport>( |
793 | args&: *BT_Overlap, args: "Arguments must not be overlapping buffers" , args&: N); |
794 | report->addRange(R: First->getSourceRange()); |
795 | report->addRange(R: Second->getSourceRange()); |
796 | |
797 | C.emitReport(R: std::move(report)); |
798 | } |
799 | |
800 | void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State, |
801 | const Stmt *S, StringRef WarningMsg) const { |
802 | if (ExplodedNode *N = C.generateErrorNode(State)) { |
803 | if (!BT_Null) { |
804 | // FIXME: This call uses the string constant 'categories::UnixAPI' as the |
805 | // description of the bug; it should be replaced by a real description. |
806 | BT_Null.reset( |
807 | p: new BugType(Filter.CheckNameCStringNullArg, categories::UnixAPI)); |
808 | } |
809 | |
810 | auto Report = |
811 | std::make_unique<PathSensitiveBugReport>(args&: *BT_Null, args&: WarningMsg, args&: N); |
812 | Report->addRange(R: S->getSourceRange()); |
813 | if (const auto *Ex = dyn_cast<Expr>(Val: S)) |
814 | bugreporter::trackExpressionValue(N, E: Ex, R&: *Report); |
815 | C.emitReport(R: std::move(Report)); |
816 | } |
817 | } |
818 | |
819 | void CStringChecker::emitUninitializedReadBug(CheckerContext &C, |
820 | ProgramStateRef State, |
821 | const Expr *E, |
822 | StringRef Msg) const { |
823 | if (ExplodedNode *N = C.generateErrorNode(State)) { |
824 | if (!BT_UninitRead) |
825 | BT_UninitRead.reset(p: new BugType(Filter.CheckNameCStringUninitializedRead, |
826 | "Accessing unitialized/garbage values" )); |
827 | |
828 | auto Report = |
829 | std::make_unique<PathSensitiveBugReport>(args&: *BT_UninitRead, args&: Msg, args&: N); |
830 | Report->addNote(Msg: "Other elements might also be undefined" , |
831 | Pos: Report->getLocation()); |
832 | Report->addRange(R: E->getSourceRange()); |
833 | bugreporter::trackExpressionValue(N, E, R&: *Report); |
834 | C.emitReport(R: std::move(Report)); |
835 | } |
836 | } |
837 | |
838 | void CStringChecker::emitOutOfBoundsBug(CheckerContext &C, |
839 | ProgramStateRef State, const Stmt *S, |
840 | StringRef WarningMsg) const { |
841 | if (ExplodedNode *N = C.generateErrorNode(State)) { |
842 | if (!BT_Bounds) |
843 | BT_Bounds.reset(p: new BugType(Filter.CheckCStringOutOfBounds |
844 | ? Filter.CheckNameCStringOutOfBounds |
845 | : Filter.CheckNameCStringNullArg, |
846 | "Out-of-bound array access" )); |
847 | |
848 | // FIXME: It would be nice to eventually make this diagnostic more clear, |
849 | // e.g., by referencing the original declaration or by saying *why* this |
850 | // reference is outside the range. |
851 | auto Report = |
852 | std::make_unique<PathSensitiveBugReport>(args&: *BT_Bounds, args&: WarningMsg, args&: N); |
853 | Report->addRange(R: S->getSourceRange()); |
854 | C.emitReport(R: std::move(Report)); |
855 | } |
856 | } |
857 | |
858 | void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State, |
859 | const Stmt *S, |
860 | StringRef WarningMsg) const { |
861 | if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) { |
862 | if (!BT_NotCString) { |
863 | // FIXME: This call uses the string constant 'categories::UnixAPI' as the |
864 | // description of the bug; it should be replaced by a real description. |
865 | BT_NotCString.reset( |
866 | p: new BugType(Filter.CheckNameCStringNotNullTerm, categories::UnixAPI)); |
867 | } |
868 | |
869 | auto Report = |
870 | std::make_unique<PathSensitiveBugReport>(args&: *BT_NotCString, args&: WarningMsg, args&: N); |
871 | |
872 | Report->addRange(R: S->getSourceRange()); |
873 | C.emitReport(R: std::move(Report)); |
874 | } |
875 | } |
876 | |
877 | void CStringChecker::emitAdditionOverflowBug(CheckerContext &C, |
878 | ProgramStateRef State) const { |
879 | if (ExplodedNode *N = C.generateErrorNode(State)) { |
880 | if (!BT_AdditionOverflow) { |
881 | // FIXME: This call uses the word "API" as the description of the bug; |
882 | // it should be replaced by a better error message (if this unlikely |
883 | // situation continues to exist as a separate bug type). |
884 | BT_AdditionOverflow.reset( |
885 | p: new BugType(Filter.CheckNameCStringOutOfBounds, "API" )); |
886 | } |
887 | |
888 | // This isn't a great error message, but this should never occur in real |
889 | // code anyway -- you'd have to create a buffer longer than a size_t can |
890 | // represent, which is sort of a contradiction. |
891 | const char *WarningMsg = |
892 | "This expression will create a string whose length is too big to " |
893 | "be represented as a size_t" ; |
894 | |
895 | auto Report = std::make_unique<PathSensitiveBugReport>(args&: *BT_AdditionOverflow, |
896 | args&: WarningMsg, args&: N); |
897 | C.emitReport(R: std::move(Report)); |
898 | } |
899 | } |
900 | |
901 | ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, |
902 | ProgramStateRef state, |
903 | NonLoc left, |
904 | NonLoc right) const { |
905 | // If out-of-bounds checking is turned off, skip the rest. |
906 | if (!Filter.CheckCStringOutOfBounds) |
907 | return state; |
908 | |
909 | // If a previous check has failed, propagate the failure. |
910 | if (!state) |
911 | return nullptr; |
912 | |
913 | SValBuilder &svalBuilder = C.getSValBuilder(); |
914 | BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); |
915 | |
916 | QualType sizeTy = svalBuilder.getContext().getSizeType(); |
917 | const llvm::APSInt &maxValInt = BVF.getMaxValue(T: sizeTy); |
918 | NonLoc maxVal = svalBuilder.makeIntVal(integer: maxValInt); |
919 | |
920 | SVal maxMinusRight; |
921 | if (isa<nonloc::ConcreteInt>(Val: right)) { |
922 | maxMinusRight = svalBuilder.evalBinOpNN(state, op: BO_Sub, lhs: maxVal, rhs: right, |
923 | resultTy: sizeTy); |
924 | } else { |
925 | // Try switching the operands. (The order of these two assignments is |
926 | // important!) |
927 | maxMinusRight = svalBuilder.evalBinOpNN(state, op: BO_Sub, lhs: maxVal, rhs: left, |
928 | resultTy: sizeTy); |
929 | left = right; |
930 | } |
931 | |
932 | if (std::optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { |
933 | QualType cmpTy = svalBuilder.getConditionType(); |
934 | // If left > max - right, we have an overflow. |
935 | SVal willOverflow = svalBuilder.evalBinOpNN(state, op: BO_GT, lhs: left, |
936 | rhs: *maxMinusRightNL, resultTy: cmpTy); |
937 | |
938 | ProgramStateRef stateOverflow, stateOkay; |
939 | std::tie(args&: stateOverflow, args&: stateOkay) = |
940 | state->assume(Cond: willOverflow.castAs<DefinedOrUnknownSVal>()); |
941 | |
942 | if (stateOverflow && !stateOkay) { |
943 | // We have an overflow. Emit a bug report. |
944 | emitAdditionOverflowBug(C, State: stateOverflow); |
945 | return nullptr; |
946 | } |
947 | |
948 | // From now on, assume an overflow didn't occur. |
949 | assert(stateOkay); |
950 | state = stateOkay; |
951 | } |
952 | |
953 | return state; |
954 | } |
955 | |
956 | ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, |
957 | const MemRegion *MR, |
958 | SVal strLength) { |
959 | assert(!strLength.isUndef() && "Attempt to set an undefined string length" ); |
960 | |
961 | MR = MR->StripCasts(); |
962 | |
963 | switch (MR->getKind()) { |
964 | case MemRegion::StringRegionKind: |
965 | // FIXME: This can happen if we strcpy() into a string region. This is |
966 | // undefined [C99 6.4.5p6], but we should still warn about it. |
967 | return state; |
968 | |
969 | case MemRegion::SymbolicRegionKind: |
970 | case MemRegion::AllocaRegionKind: |
971 | case MemRegion::NonParamVarRegionKind: |
972 | case MemRegion::ParamVarRegionKind: |
973 | case MemRegion::FieldRegionKind: |
974 | case MemRegion::ObjCIvarRegionKind: |
975 | // These are the types we can currently track string lengths for. |
976 | break; |
977 | |
978 | case MemRegion::ElementRegionKind: |
979 | // FIXME: Handle element regions by upper-bounding the parent region's |
980 | // string length. |
981 | return state; |
982 | |
983 | default: |
984 | // Other regions (mostly non-data) can't have a reliable C string length. |
985 | // For now, just ignore the change. |
986 | // FIXME: These are rare but not impossible. We should output some kind of |
987 | // warning for things like strcpy((char[]){'a', 0}, "b"); |
988 | return state; |
989 | } |
990 | |
991 | if (strLength.isUnknown()) |
992 | return state->remove<CStringLength>(K: MR); |
993 | |
994 | return state->set<CStringLength>(K: MR, E: strLength); |
995 | } |
996 | |
997 | SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, |
998 | ProgramStateRef &state, |
999 | const Expr *Ex, |
1000 | const MemRegion *MR, |
1001 | bool hypothetical) { |
1002 | if (!hypothetical) { |
1003 | // If there's a recorded length, go ahead and return it. |
1004 | const SVal *Recorded = state->get<CStringLength>(key: MR); |
1005 | if (Recorded) |
1006 | return *Recorded; |
1007 | } |
1008 | |
1009 | // Otherwise, get a new symbol and update the state. |
1010 | SValBuilder &svalBuilder = C.getSValBuilder(); |
1011 | QualType sizeTy = svalBuilder.getContext().getSizeType(); |
1012 | SVal strLength = svalBuilder.getMetadataSymbolVal(symbolTag: CStringChecker::getTag(), |
1013 | region: MR, expr: Ex, type: sizeTy, |
1014 | LCtx: C.getLocationContext(), |
1015 | count: C.blockCount()); |
1016 | |
1017 | if (!hypothetical) { |
1018 | if (std::optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { |
1019 | // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 |
1020 | BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); |
1021 | const llvm::APSInt &maxValInt = BVF.getMaxValue(T: sizeTy); |
1022 | llvm::APSInt fourInt = APSIntType(maxValInt).getValue(RawValue: 4); |
1023 | const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(Op: BO_Div, V1: maxValInt, |
1024 | V2: fourInt); |
1025 | NonLoc maxLength = svalBuilder.makeIntVal(integer: *maxLengthInt); |
1026 | SVal evalLength = svalBuilder.evalBinOpNN(state, op: BO_LE, lhs: *strLn, rhs: maxLength, |
1027 | resultTy: svalBuilder.getConditionType()); |
1028 | state = state->assume(Cond: evalLength.castAs<DefinedOrUnknownSVal>(), Assumption: true); |
1029 | } |
1030 | state = state->set<CStringLength>(K: MR, E: strLength); |
1031 | } |
1032 | |
1033 | return strLength; |
1034 | } |
1035 | |
1036 | SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, |
1037 | const Expr *Ex, SVal Buf, |
1038 | bool hypothetical) const { |
1039 | const MemRegion *MR = Buf.getAsRegion(); |
1040 | if (!MR) { |
1041 | // If we can't get a region, see if it's something we /know/ isn't a |
1042 | // C string. In the context of locations, the only time we can issue such |
1043 | // a warning is for labels. |
1044 | if (std::optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { |
1045 | if (Filter.CheckCStringNotNullTerm) { |
1046 | SmallString<120> buf; |
1047 | llvm::raw_svector_ostream os(buf); |
1048 | assert(CurrentFunctionDescription); |
1049 | os << "Argument to " << CurrentFunctionDescription |
1050 | << " is the address of the label '" << Label->getLabel()->getName() |
1051 | << "', which is not a null-terminated string" ; |
1052 | |
1053 | emitNotCStringBug(C, State: state, S: Ex, WarningMsg: os.str()); |
1054 | } |
1055 | return UndefinedVal(); |
1056 | } |
1057 | |
1058 | // If it's not a region and not a label, give up. |
1059 | return UnknownVal(); |
1060 | } |
1061 | |
1062 | // If we have a region, strip casts from it and see if we can figure out |
1063 | // its length. For anything we can't figure out, just return UnknownVal. |
1064 | MR = MR->StripCasts(); |
1065 | |
1066 | switch (MR->getKind()) { |
1067 | case MemRegion::StringRegionKind: { |
1068 | // Modifying the contents of string regions is undefined [C99 6.4.5p6], |
1069 | // so we can assume that the byte length is the correct C string length. |
1070 | SValBuilder &svalBuilder = C.getSValBuilder(); |
1071 | QualType sizeTy = svalBuilder.getContext().getSizeType(); |
1072 | const StringLiteral *strLit = cast<StringRegion>(Val: MR)->getStringLiteral(); |
1073 | return svalBuilder.makeIntVal(integer: strLit->getLength(), type: sizeTy); |
1074 | } |
1075 | case MemRegion::NonParamVarRegionKind: { |
1076 | // If we have a global constant with a string literal initializer, |
1077 | // compute the initializer's length. |
1078 | const VarDecl *Decl = cast<NonParamVarRegion>(Val: MR)->getDecl(); |
1079 | if (Decl->getType().isConstQualified() && Decl->hasGlobalStorage()) { |
1080 | if (const Expr *Init = Decl->getInit()) { |
1081 | if (auto *StrLit = dyn_cast<StringLiteral>(Val: Init)) { |
1082 | SValBuilder &SvalBuilder = C.getSValBuilder(); |
1083 | QualType SizeTy = SvalBuilder.getContext().getSizeType(); |
1084 | return SvalBuilder.makeIntVal(integer: StrLit->getLength(), type: SizeTy); |
1085 | } |
1086 | } |
1087 | } |
1088 | [[fallthrough]]; |
1089 | } |
1090 | case MemRegion::SymbolicRegionKind: |
1091 | case MemRegion::AllocaRegionKind: |
1092 | case MemRegion::ParamVarRegionKind: |
1093 | case MemRegion::FieldRegionKind: |
1094 | case MemRegion::ObjCIvarRegionKind: |
1095 | return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); |
1096 | case MemRegion::CompoundLiteralRegionKind: |
1097 | // FIXME: Can we track this? Is it necessary? |
1098 | return UnknownVal(); |
1099 | case MemRegion::ElementRegionKind: |
1100 | // FIXME: How can we handle this? It's not good enough to subtract the |
1101 | // offset from the base string length; consider "123\x00567" and &a[5]. |
1102 | return UnknownVal(); |
1103 | default: |
1104 | // Other regions (mostly non-data) can't have a reliable C string length. |
1105 | // In this case, an error is emitted and UndefinedVal is returned. |
1106 | // The caller should always be prepared to handle this case. |
1107 | if (Filter.CheckCStringNotNullTerm) { |
1108 | SmallString<120> buf; |
1109 | llvm::raw_svector_ostream os(buf); |
1110 | |
1111 | assert(CurrentFunctionDescription); |
1112 | os << "Argument to " << CurrentFunctionDescription << " is " ; |
1113 | |
1114 | if (SummarizeRegion(os, Ctx&: C.getASTContext(), MR)) |
1115 | os << ", which is not a null-terminated string" ; |
1116 | else |
1117 | os << "not a null-terminated string" ; |
1118 | |
1119 | emitNotCStringBug(C, State: state, S: Ex, WarningMsg: os.str()); |
1120 | } |
1121 | return UndefinedVal(); |
1122 | } |
1123 | } |
1124 | |
1125 | const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, |
1126 | ProgramStateRef &state, const Expr *expr, SVal val) const { |
1127 | |
1128 | // Get the memory region pointed to by the val. |
1129 | const MemRegion *bufRegion = val.getAsRegion(); |
1130 | if (!bufRegion) |
1131 | return nullptr; |
1132 | |
1133 | // Strip casts off the memory region. |
1134 | bufRegion = bufRegion->StripCasts(); |
1135 | |
1136 | // Cast the memory region to a string region. |
1137 | const StringRegion *strRegion= dyn_cast<StringRegion>(Val: bufRegion); |
1138 | if (!strRegion) |
1139 | return nullptr; |
1140 | |
1141 | // Return the actual string in the string region. |
1142 | return strRegion->getStringLiteral(); |
1143 | } |
1144 | |
1145 | bool CStringChecker::isFirstBufInBound(CheckerContext &C, ProgramStateRef State, |
1146 | SVal BufVal, QualType BufTy, |
1147 | SVal LengthVal, QualType LengthTy) { |
1148 | // If we do not know that the buffer is long enough we return 'true'. |
1149 | // Otherwise the parent region of this field region would also get |
1150 | // invalidated, which would lead to warnings based on an unknown state. |
1151 | |
1152 | if (LengthVal.isUnknown()) |
1153 | return false; |
1154 | |
1155 | // Originally copied from CheckBufferAccess and CheckLocation. |
1156 | SValBuilder &SB = C.getSValBuilder(); |
1157 | ASTContext &Ctx = C.getASTContext(); |
1158 | |
1159 | QualType PtrTy = Ctx.getPointerType(T: Ctx.CharTy); |
1160 | |
1161 | std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); |
1162 | if (!Length) |
1163 | return true; // cf top comment. |
1164 | |
1165 | // Compute the offset of the last element to be accessed: size-1. |
1166 | NonLoc One = SB.makeIntVal(integer: 1, type: LengthTy).castAs<NonLoc>(); |
1167 | SVal Offset = SB.evalBinOpNN(state: State, op: BO_Sub, lhs: *Length, rhs: One, resultTy: LengthTy); |
1168 | if (Offset.isUnknown()) |
1169 | return true; // cf top comment |
1170 | NonLoc LastOffset = Offset.castAs<NonLoc>(); |
1171 | |
1172 | // Check that the first buffer is sufficiently long. |
1173 | SVal BufStart = SB.evalCast(V: BufVal, CastTy: PtrTy, OriginalTy: BufTy); |
1174 | std::optional<Loc> BufLoc = BufStart.getAs<Loc>(); |
1175 | if (!BufLoc) |
1176 | return true; // cf top comment. |
1177 | |
1178 | SVal BufEnd = SB.evalBinOpLN(state: State, op: BO_Add, lhs: *BufLoc, rhs: LastOffset, resultTy: PtrTy); |
1179 | |
1180 | // Check for out of bound array element access. |
1181 | const MemRegion *R = BufEnd.getAsRegion(); |
1182 | if (!R) |
1183 | return true; // cf top comment. |
1184 | |
1185 | const ElementRegion *ER = dyn_cast<ElementRegion>(Val: R); |
1186 | if (!ER) |
1187 | return true; // cf top comment. |
1188 | |
1189 | // FIXME: Does this crash when a non-standard definition |
1190 | // of a library function is encountered? |
1191 | assert(ER->getValueType() == C.getASTContext().CharTy && |
1192 | "isFirstBufInBound should only be called with char* ElementRegions" ); |
1193 | |
1194 | // Get the size of the array. |
1195 | const SubRegion *superReg = cast<SubRegion>(Val: ER->getSuperRegion()); |
1196 | DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, MR: superReg, SVB&: SB); |
1197 | |
1198 | // Get the index of the accessed element. |
1199 | DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); |
1200 | |
1201 | ProgramStateRef StInBound = State->assumeInBound(idx: Idx, upperBound: SizeDV, assumption: true); |
1202 | |
1203 | return static_cast<bool>(StInBound); |
1204 | } |
1205 | |
1206 | ProgramStateRef CStringChecker::invalidateDestinationBufferBySize( |
1207 | CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV, |
1208 | SVal SizeV, QualType SizeTy) { |
1209 | auto InvalidationTraitOperations = |
1210 | [&C, S, BufTy = BufE->getType(), BufV, SizeV, |
1211 | SizeTy](RegionAndSymbolInvalidationTraits &ITraits, const MemRegion *R) { |
1212 | // If destination buffer is a field region and access is in bound, do |
1213 | // not invalidate its super region. |
1214 | if (MemRegion::FieldRegionKind == R->getKind() && |
1215 | isFirstBufInBound(C, State: S, BufVal: BufV, BufTy, LengthVal: SizeV, LengthTy: SizeTy)) { |
1216 | ITraits.setTrait( |
1217 | MR: R, |
1218 | IK: RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); |
1219 | } |
1220 | return false; |
1221 | }; |
1222 | |
1223 | return invalidateBufferAux(C, State: S, Ex: BufE, V: BufV, InvalidationTraitOperations); |
1224 | } |
1225 | |
1226 | ProgramStateRef |
1227 | CStringChecker::invalidateDestinationBufferAlwaysEscapeSuperRegion( |
1228 | CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV) { |
1229 | auto InvalidationTraitOperations = [](RegionAndSymbolInvalidationTraits &, |
1230 | const MemRegion *R) { |
1231 | return isa<FieldRegion>(Val: R); |
1232 | }; |
1233 | |
1234 | return invalidateBufferAux(C, State: S, Ex: BufE, V: BufV, InvalidationTraitOperations); |
1235 | } |
1236 | |
1237 | ProgramStateRef CStringChecker::invalidateDestinationBufferNeverOverflows( |
1238 | CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV) { |
1239 | auto InvalidationTraitOperations = |
1240 | [](RegionAndSymbolInvalidationTraits &ITraits, const MemRegion *R) { |
1241 | if (MemRegion::FieldRegionKind == R->getKind()) |
1242 | ITraits.setTrait( |
1243 | MR: R, |
1244 | IK: RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); |
1245 | return false; |
1246 | }; |
1247 | |
1248 | return invalidateBufferAux(C, State: S, Ex: BufE, V: BufV, InvalidationTraitOperations); |
1249 | } |
1250 | |
1251 | ProgramStateRef CStringChecker::invalidateSourceBuffer(CheckerContext &C, |
1252 | ProgramStateRef S, |
1253 | const Expr *BufE, |
1254 | SVal BufV) { |
1255 | auto InvalidationTraitOperations = |
1256 | [](RegionAndSymbolInvalidationTraits &ITraits, const MemRegion *R) { |
1257 | ITraits.setTrait( |
1258 | MR: R->getBaseRegion(), |
1259 | IK: RegionAndSymbolInvalidationTraits::TK_PreserveContents); |
1260 | ITraits.setTrait(MR: R, |
1261 | IK: RegionAndSymbolInvalidationTraits::TK_SuppressEscape); |
1262 | return true; |
1263 | }; |
1264 | |
1265 | return invalidateBufferAux(C, State: S, Ex: BufE, V: BufV, InvalidationTraitOperations); |
1266 | } |
1267 | |
1268 | ProgramStateRef CStringChecker::invalidateBufferAux( |
1269 | CheckerContext &C, ProgramStateRef State, const Expr *E, SVal V, |
1270 | llvm::function_ref<bool(RegionAndSymbolInvalidationTraits &, |
1271 | const MemRegion *)> |
1272 | InvalidationTraitOperations) { |
1273 | std::optional<Loc> L = V.getAs<Loc>(); |
1274 | if (!L) |
1275 | return State; |
1276 | |
1277 | // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes |
1278 | // some assumptions about the value that CFRefCount can't. Even so, it should |
1279 | // probably be refactored. |
1280 | if (std::optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { |
1281 | const MemRegion *R = MR->getRegion()->StripCasts(); |
1282 | |
1283 | // Are we dealing with an ElementRegion? If so, we should be invalidating |
1284 | // the super-region. |
1285 | if (const ElementRegion *ER = dyn_cast<ElementRegion>(Val: R)) { |
1286 | R = ER->getSuperRegion(); |
1287 | // FIXME: What about layers of ElementRegions? |
1288 | } |
1289 | |
1290 | // Invalidate this region. |
1291 | const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); |
1292 | RegionAndSymbolInvalidationTraits ITraits; |
1293 | bool CausesPointerEscape = InvalidationTraitOperations(ITraits, R); |
1294 | |
1295 | return State->invalidateRegions(Regions: R, E, BlockCount: C.blockCount(), LCtx, |
1296 | CausesPointerEscape, IS: nullptr, Call: nullptr, |
1297 | ITraits: &ITraits); |
1298 | } |
1299 | |
1300 | // If we have a non-region value by chance, just remove the binding. |
1301 | // FIXME: is this necessary or correct? This handles the non-Region |
1302 | // cases. Is it ever valid to store to these? |
1303 | return State->killBinding(LV: *L); |
1304 | } |
1305 | |
1306 | bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, |
1307 | const MemRegion *MR) { |
1308 | switch (MR->getKind()) { |
1309 | case MemRegion::FunctionCodeRegionKind: { |
1310 | if (const auto *FD = cast<FunctionCodeRegion>(Val: MR)->getDecl()) |
1311 | os << "the address of the function '" << *FD << '\''; |
1312 | else |
1313 | os << "the address of a function" ; |
1314 | return true; |
1315 | } |
1316 | case MemRegion::BlockCodeRegionKind: |
1317 | os << "block text" ; |
1318 | return true; |
1319 | case MemRegion::BlockDataRegionKind: |
1320 | os << "a block" ; |
1321 | return true; |
1322 | case MemRegion::CXXThisRegionKind: |
1323 | case MemRegion::CXXTempObjectRegionKind: |
1324 | os << "a C++ temp object of type " |
1325 | << cast<TypedValueRegion>(Val: MR)->getValueType(); |
1326 | return true; |
1327 | case MemRegion::NonParamVarRegionKind: |
1328 | os << "a variable of type" << cast<TypedValueRegion>(Val: MR)->getValueType(); |
1329 | return true; |
1330 | case MemRegion::ParamVarRegionKind: |
1331 | os << "a parameter of type" << cast<TypedValueRegion>(Val: MR)->getValueType(); |
1332 | return true; |
1333 | case MemRegion::FieldRegionKind: |
1334 | os << "a field of type " << cast<TypedValueRegion>(Val: MR)->getValueType(); |
1335 | return true; |
1336 | case MemRegion::ObjCIvarRegionKind: |
1337 | os << "an instance variable of type " |
1338 | << cast<TypedValueRegion>(Val: MR)->getValueType(); |
1339 | return true; |
1340 | default: |
1341 | return false; |
1342 | } |
1343 | } |
1344 | |
1345 | bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal, |
1346 | const Expr *Size, CheckerContext &C, |
1347 | ProgramStateRef &State) { |
1348 | SVal MemVal = C.getSVal(S: DstBuffer); |
1349 | SVal SizeVal = C.getSVal(S: Size); |
1350 | const MemRegion *MR = MemVal.getAsRegion(); |
1351 | if (!MR) |
1352 | return false; |
1353 | |
1354 | // We're about to model memset by producing a "default binding" in the Store. |
1355 | // Our current implementation - RegionStore - doesn't support default bindings |
1356 | // that don't cover the whole base region. So we should first get the offset |
1357 | // and the base region to figure out whether the offset of buffer is 0. |
1358 | RegionOffset Offset = MR->getAsOffset(); |
1359 | const MemRegion *BR = Offset.getRegion(); |
1360 | |
1361 | std::optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>(); |
1362 | if (!SizeNL) |
1363 | return false; |
1364 | |
1365 | SValBuilder &svalBuilder = C.getSValBuilder(); |
1366 | ASTContext &Ctx = C.getASTContext(); |
1367 | |
1368 | // void *memset(void *dest, int ch, size_t count); |
1369 | // For now we can only handle the case of offset is 0 and concrete char value. |
1370 | if (Offset.isValid() && !Offset.hasSymbolicOffset() && |
1371 | Offset.getOffset() == 0) { |
1372 | // Get the base region's size. |
1373 | DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, MR: BR, SVB&: svalBuilder); |
1374 | |
1375 | ProgramStateRef StateWholeReg, StateNotWholeReg; |
1376 | std::tie(args&: StateWholeReg, args&: StateNotWholeReg) = |
1377 | State->assume(Cond: svalBuilder.evalEQ(state: State, lhs: SizeDV, rhs: *SizeNL)); |
1378 | |
1379 | // With the semantic of 'memset()', we should convert the CharVal to |
1380 | // unsigned char. |
1381 | CharVal = svalBuilder.evalCast(V: CharVal, CastTy: Ctx.UnsignedCharTy, OriginalTy: Ctx.IntTy); |
1382 | |
1383 | ProgramStateRef StateNullChar, StateNonNullChar; |
1384 | std::tie(args&: StateNullChar, args&: StateNonNullChar) = |
1385 | assumeZero(C, State, V: CharVal, Ty: Ctx.UnsignedCharTy); |
1386 | |
1387 | if (StateWholeReg && !StateNotWholeReg && StateNullChar && |
1388 | !StateNonNullChar) { |
1389 | // If the 'memset()' acts on the whole region of destination buffer and |
1390 | // the value of the second argument of 'memset()' is zero, bind the second |
1391 | // argument's value to the destination buffer with 'default binding'. |
1392 | // FIXME: Since there is no perfect way to bind the non-zero character, we |
1393 | // can only deal with zero value here. In the future, we need to deal with |
1394 | // the binding of non-zero value in the case of whole region. |
1395 | State = State->bindDefaultZero(loc: svalBuilder.makeLoc(region: BR), |
1396 | LCtx: C.getLocationContext()); |
1397 | } else { |
1398 | // If the destination buffer's extent is not equal to the value of |
1399 | // third argument, just invalidate buffer. |
1400 | State = invalidateDestinationBufferBySize(C, S: State, BufE: DstBuffer, BufV: MemVal, |
1401 | SizeV: SizeVal, SizeTy: Size->getType()); |
1402 | } |
1403 | |
1404 | if (StateNullChar && !StateNonNullChar) { |
1405 | // If the value of the second argument of 'memset()' is zero, set the |
1406 | // string length of destination buffer to 0 directly. |
1407 | State = setCStringLength(state: State, MR, |
1408 | strLength: svalBuilder.makeZeroVal(type: Ctx.getSizeType())); |
1409 | } else if (!StateNullChar && StateNonNullChar) { |
1410 | SVal NewStrLen = svalBuilder.getMetadataSymbolVal( |
1411 | symbolTag: CStringChecker::getTag(), region: MR, expr: DstBuffer, type: Ctx.getSizeType(), |
1412 | LCtx: C.getLocationContext(), count: C.blockCount()); |
1413 | |
1414 | // If the value of second argument is not zero, then the string length |
1415 | // is at least the size argument. |
1416 | SVal NewStrLenGESize = svalBuilder.evalBinOp( |
1417 | state: State, op: BO_GE, lhs: NewStrLen, rhs: SizeVal, type: svalBuilder.getConditionType()); |
1418 | |
1419 | State = setCStringLength( |
1420 | state: State->assume(Cond: NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), Assumption: true), |
1421 | MR, strLength: NewStrLen); |
1422 | } |
1423 | } else { |
1424 | // If the offset is not zero and char value is not concrete, we can do |
1425 | // nothing but invalidate the buffer. |
1426 | State = invalidateDestinationBufferBySize(C, S: State, BufE: DstBuffer, BufV: MemVal, |
1427 | SizeV: SizeVal, SizeTy: Size->getType()); |
1428 | } |
1429 | return true; |
1430 | } |
1431 | |
1432 | //===----------------------------------------------------------------------===// |
1433 | // evaluation of individual function calls. |
1434 | //===----------------------------------------------------------------------===// |
1435 | |
1436 | void CStringChecker::evalCopyCommon(CheckerContext &C, const CallEvent &Call, |
1437 | ProgramStateRef state, SizeArgExpr Size, |
1438 | DestinationArgExpr Dest, |
1439 | SourceArgExpr Source, bool Restricted, |
1440 | bool IsMempcpy, CharKind CK) const { |
1441 | CurrentFunctionDescription = "memory copy function" ; |
1442 | |
1443 | // See if the size argument is zero. |
1444 | const LocationContext *LCtx = C.getLocationContext(); |
1445 | SVal sizeVal = state->getSVal(Ex: Size.Expression, LCtx); |
1446 | QualType sizeTy = Size.Expression->getType(); |
1447 | |
1448 | ProgramStateRef stateZeroSize, stateNonZeroSize; |
1449 | std::tie(args&: stateZeroSize, args&: stateNonZeroSize) = |
1450 | assumeZero(C, State: state, V: sizeVal, Ty: sizeTy); |
1451 | |
1452 | // Get the value of the Dest. |
1453 | SVal destVal = state->getSVal(Ex: Dest.Expression, LCtx); |
1454 | |
1455 | // If the size is zero, there won't be any actual memory access, so |
1456 | // just bind the return value to the destination buffer and return. |
1457 | if (stateZeroSize && !stateNonZeroSize) { |
1458 | stateZeroSize = |
1459 | stateZeroSize->BindExpr(S: Call.getOriginExpr(), LCtx, V: destVal); |
1460 | C.addTransition(State: stateZeroSize); |
1461 | return; |
1462 | } |
1463 | |
1464 | // If the size can be nonzero, we have to check the other arguments. |
1465 | if (stateNonZeroSize) { |
1466 | // TODO: If Size is tainted and we cannot prove that it is smaller or equal |
1467 | // to the size of the destination buffer, then emit a warning |
1468 | // that an attacker may provoke a buffer overflow error. |
1469 | state = stateNonZeroSize; |
1470 | |
1471 | // Ensure the destination is not null. If it is NULL there will be a |
1472 | // NULL pointer dereference. |
1473 | state = checkNonNull(C, State: state, Arg: Dest, l: destVal); |
1474 | if (!state) |
1475 | return; |
1476 | |
1477 | // Get the value of the Src. |
1478 | SVal srcVal = state->getSVal(Ex: Source.Expression, LCtx); |
1479 | |
1480 | // Ensure the source is not null. If it is NULL there will be a |
1481 | // NULL pointer dereference. |
1482 | state = checkNonNull(C, State: state, Arg: Source, l: srcVal); |
1483 | if (!state) |
1484 | return; |
1485 | |
1486 | // Ensure the accesses are valid and that the buffers do not overlap. |
1487 | state = CheckBufferAccess(C, State: state, Buffer: Dest, Size, Access: AccessKind::write, CK); |
1488 | state = CheckBufferAccess(C, State: state, Buffer: Source, Size, Access: AccessKind::read, CK); |
1489 | |
1490 | if (Restricted) |
1491 | state = CheckOverlap(C, state, Size, First: Dest, Second: Source, CK); |
1492 | |
1493 | if (!state) |
1494 | return; |
1495 | |
1496 | // If this is mempcpy, get the byte after the last byte copied and |
1497 | // bind the expr. |
1498 | if (IsMempcpy) { |
1499 | // Get the byte after the last byte copied. |
1500 | SValBuilder &SvalBuilder = C.getSValBuilder(); |
1501 | ASTContext &Ctx = SvalBuilder.getContext(); |
1502 | QualType CharPtrTy = getCharPtrType(Ctx, CK); |
1503 | SVal DestRegCharVal = |
1504 | SvalBuilder.evalCast(V: destVal, CastTy: CharPtrTy, OriginalTy: Dest.Expression->getType()); |
1505 | SVal lastElement = C.getSValBuilder().evalBinOp( |
1506 | state, op: BO_Add, lhs: DestRegCharVal, rhs: sizeVal, type: Dest.Expression->getType()); |
1507 | // If we don't know how much we copied, we can at least |
1508 | // conjure a return value for later. |
1509 | if (lastElement.isUnknown()) |
1510 | lastElement = C.getSValBuilder().conjureSymbolVal( |
1511 | symbolTag: nullptr, expr: Call.getOriginExpr(), LCtx, count: C.blockCount()); |
1512 | |
1513 | // The byte after the last byte copied is the return value. |
1514 | state = state->BindExpr(S: Call.getOriginExpr(), LCtx, V: lastElement); |
1515 | } else { |
1516 | // All other copies return the destination buffer. |
1517 | // (Well, bcopy() has a void return type, but this won't hurt.) |
1518 | state = state->BindExpr(S: Call.getOriginExpr(), LCtx, V: destVal); |
1519 | } |
1520 | |
1521 | // Invalidate the destination (regular invalidation without pointer-escaping |
1522 | // the address of the top-level region). |
1523 | // FIXME: Even if we can't perfectly model the copy, we should see if we |
1524 | // can use LazyCompoundVals to copy the source values into the destination. |
1525 | // This would probably remove any existing bindings past the end of the |
1526 | // copied region, but that's still an improvement over blank invalidation. |
1527 | state = invalidateDestinationBufferBySize( |
1528 | C, S: state, BufE: Dest.Expression, BufV: C.getSVal(S: Dest.Expression), SizeV: sizeVal, |
1529 | SizeTy: Size.Expression->getType()); |
1530 | |
1531 | // Invalidate the source (const-invalidation without const-pointer-escaping |
1532 | // the address of the top-level region). |
1533 | state = invalidateSourceBuffer(C, S: state, BufE: Source.Expression, |
1534 | BufV: C.getSVal(S: Source.Expression)); |
1535 | |
1536 | C.addTransition(State: state); |
1537 | } |
1538 | } |
1539 | |
1540 | void CStringChecker::evalMemcpy(CheckerContext &C, const CallEvent &Call, |
1541 | CharKind CK) const { |
1542 | // void *memcpy(void *restrict dst, const void *restrict src, size_t n); |
1543 | // The return value is the address of the destination buffer. |
1544 | DestinationArgExpr Dest = {{.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}}; |
1545 | SourceArgExpr Src = {{.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}}; |
1546 | SizeArgExpr Size = {{.Expression: Call.getArgExpr(Index: 2), .ArgumentIndex: 2}}; |
1547 | |
1548 | ProgramStateRef State = C.getState(); |
1549 | |
1550 | constexpr bool IsRestricted = true; |
1551 | constexpr bool IsMempcpy = false; |
1552 | evalCopyCommon(C, Call, state: State, Size, Dest, Source: Src, Restricted: IsRestricted, IsMempcpy, CK); |
1553 | } |
1554 | |
1555 | void CStringChecker::evalMempcpy(CheckerContext &C, const CallEvent &Call, |
1556 | CharKind CK) const { |
1557 | // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); |
1558 | // The return value is a pointer to the byte following the last written byte. |
1559 | DestinationArgExpr Dest = {{.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}}; |
1560 | SourceArgExpr Src = {{.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}}; |
1561 | SizeArgExpr Size = {{.Expression: Call.getArgExpr(Index: 2), .ArgumentIndex: 2}}; |
1562 | |
1563 | constexpr bool IsRestricted = true; |
1564 | constexpr bool IsMempcpy = true; |
1565 | evalCopyCommon(C, Call, state: C.getState(), Size, Dest, Source: Src, Restricted: IsRestricted, |
1566 | IsMempcpy, CK); |
1567 | } |
1568 | |
1569 | void CStringChecker::evalMemmove(CheckerContext &C, const CallEvent &Call, |
1570 | CharKind CK) const { |
1571 | // void *memmove(void *dst, const void *src, size_t n); |
1572 | // The return value is the address of the destination buffer. |
1573 | DestinationArgExpr Dest = {{.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}}; |
1574 | SourceArgExpr Src = {{.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}}; |
1575 | SizeArgExpr Size = {{.Expression: Call.getArgExpr(Index: 2), .ArgumentIndex: 2}}; |
1576 | |
1577 | constexpr bool IsRestricted = false; |
1578 | constexpr bool IsMempcpy = false; |
1579 | evalCopyCommon(C, Call, state: C.getState(), Size, Dest, Source: Src, Restricted: IsRestricted, |
1580 | IsMempcpy, CK); |
1581 | } |
1582 | |
1583 | void CStringChecker::evalBcopy(CheckerContext &C, const CallEvent &Call) const { |
1584 | // void bcopy(const void *src, void *dst, size_t n); |
1585 | SourceArgExpr Src{{.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}}; |
1586 | DestinationArgExpr Dest = {{.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}}; |
1587 | SizeArgExpr Size = {{.Expression: Call.getArgExpr(Index: 2), .ArgumentIndex: 2}}; |
1588 | |
1589 | constexpr bool IsRestricted = false; |
1590 | constexpr bool IsMempcpy = false; |
1591 | evalCopyCommon(C, Call, state: C.getState(), Size, Dest, Source: Src, Restricted: IsRestricted, |
1592 | IsMempcpy, CK: CharKind::Regular); |
1593 | } |
1594 | |
1595 | void CStringChecker::evalMemcmp(CheckerContext &C, const CallEvent &Call, |
1596 | CharKind CK) const { |
1597 | // int memcmp(const void *s1, const void *s2, size_t n); |
1598 | CurrentFunctionDescription = "memory comparison function" ; |
1599 | |
1600 | AnyArgExpr Left = {.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}; |
1601 | AnyArgExpr Right = {.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}; |
1602 | SizeArgExpr Size = {{.Expression: Call.getArgExpr(Index: 2), .ArgumentIndex: 2}}; |
1603 | |
1604 | ProgramStateRef State = C.getState(); |
1605 | SValBuilder &Builder = C.getSValBuilder(); |
1606 | const LocationContext *LCtx = C.getLocationContext(); |
1607 | |
1608 | // See if the size argument is zero. |
1609 | SVal sizeVal = State->getSVal(Ex: Size.Expression, LCtx); |
1610 | QualType sizeTy = Size.Expression->getType(); |
1611 | |
1612 | ProgramStateRef stateZeroSize, stateNonZeroSize; |
1613 | std::tie(args&: stateZeroSize, args&: stateNonZeroSize) = |
1614 | assumeZero(C, State, V: sizeVal, Ty: sizeTy); |
1615 | |
1616 | // If the size can be zero, the result will be 0 in that case, and we don't |
1617 | // have to check either of the buffers. |
1618 | if (stateZeroSize) { |
1619 | State = stateZeroSize; |
1620 | State = State->BindExpr(S: Call.getOriginExpr(), LCtx, |
1621 | V: Builder.makeZeroVal(type: Call.getResultType())); |
1622 | C.addTransition(State); |
1623 | } |
1624 | |
1625 | // If the size can be nonzero, we have to check the other arguments. |
1626 | if (stateNonZeroSize) { |
1627 | State = stateNonZeroSize; |
1628 | // If we know the two buffers are the same, we know the result is 0. |
1629 | // First, get the two buffers' addresses. Another checker will have already |
1630 | // made sure they're not undefined. |
1631 | DefinedOrUnknownSVal LV = |
1632 | State->getSVal(Ex: Left.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); |
1633 | DefinedOrUnknownSVal RV = |
1634 | State->getSVal(Ex: Right.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); |
1635 | |
1636 | // See if they are the same. |
1637 | ProgramStateRef SameBuffer, NotSameBuffer; |
1638 | std::tie(args&: SameBuffer, args&: NotSameBuffer) = |
1639 | State->assume(Cond: Builder.evalEQ(state: State, lhs: LV, rhs: RV)); |
1640 | |
1641 | // If the two arguments are the same buffer, we know the result is 0, |
1642 | // and we only need to check one size. |
1643 | if (SameBuffer && !NotSameBuffer) { |
1644 | State = SameBuffer; |
1645 | State = CheckBufferAccess(C, State, Buffer: Left, Size, Access: AccessKind::read); |
1646 | if (State) { |
1647 | State = SameBuffer->BindExpr(S: Call.getOriginExpr(), LCtx, |
1648 | V: Builder.makeZeroVal(type: Call.getResultType())); |
1649 | C.addTransition(State); |
1650 | } |
1651 | return; |
1652 | } |
1653 | |
1654 | // If the two arguments might be different buffers, we have to check |
1655 | // the size of both of them. |
1656 | assert(NotSameBuffer); |
1657 | State = CheckBufferAccess(C, State, Buffer: Right, Size, Access: AccessKind::read, CK); |
1658 | State = CheckBufferAccess(C, State, Buffer: Left, Size, Access: AccessKind::read, CK); |
1659 | if (State) { |
1660 | // The return value is the comparison result, which we don't know. |
1661 | SVal CmpV = Builder.conjureSymbolVal(symbolTag: nullptr, expr: Call.getOriginExpr(), LCtx, |
1662 | count: C.blockCount()); |
1663 | State = State->BindExpr(S: Call.getOriginExpr(), LCtx, V: CmpV); |
1664 | C.addTransition(State); |
1665 | } |
1666 | } |
1667 | } |
1668 | |
1669 | void CStringChecker::evalstrLength(CheckerContext &C, |
1670 | const CallEvent &Call) const { |
1671 | // size_t strlen(const char *s); |
1672 | evalstrLengthCommon(C, Call, /* IsStrnlen = */ false); |
1673 | } |
1674 | |
1675 | void CStringChecker::evalstrnLength(CheckerContext &C, |
1676 | const CallEvent &Call) const { |
1677 | // size_t strnlen(const char *s, size_t maxlen); |
1678 | evalstrLengthCommon(C, Call, /* IsStrnlen = */ true); |
1679 | } |
1680 | |
1681 | void CStringChecker::evalstrLengthCommon(CheckerContext &C, |
1682 | const CallEvent &Call, |
1683 | bool IsStrnlen) const { |
1684 | CurrentFunctionDescription = "string length function" ; |
1685 | ProgramStateRef state = C.getState(); |
1686 | const LocationContext *LCtx = C.getLocationContext(); |
1687 | |
1688 | if (IsStrnlen) { |
1689 | const Expr *maxlenExpr = Call.getArgExpr(Index: 1); |
1690 | SVal maxlenVal = state->getSVal(Ex: maxlenExpr, LCtx); |
1691 | |
1692 | ProgramStateRef stateZeroSize, stateNonZeroSize; |
1693 | std::tie(args&: stateZeroSize, args&: stateNonZeroSize) = |
1694 | assumeZero(C, State: state, V: maxlenVal, Ty: maxlenExpr->getType()); |
1695 | |
1696 | // If the size can be zero, the result will be 0 in that case, and we don't |
1697 | // have to check the string itself. |
1698 | if (stateZeroSize) { |
1699 | SVal zero = C.getSValBuilder().makeZeroVal(type: Call.getResultType()); |
1700 | stateZeroSize = stateZeroSize->BindExpr(S: Call.getOriginExpr(), LCtx, V: zero); |
1701 | C.addTransition(State: stateZeroSize); |
1702 | } |
1703 | |
1704 | // If the size is GUARANTEED to be zero, we're done! |
1705 | if (!stateNonZeroSize) |
1706 | return; |
1707 | |
1708 | // Otherwise, record the assumption that the size is nonzero. |
1709 | state = stateNonZeroSize; |
1710 | } |
1711 | |
1712 | // Check that the string argument is non-null. |
1713 | AnyArgExpr Arg = {.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}; |
1714 | SVal ArgVal = state->getSVal(Ex: Arg.Expression, LCtx); |
1715 | state = checkNonNull(C, State: state, Arg, l: ArgVal); |
1716 | |
1717 | if (!state) |
1718 | return; |
1719 | |
1720 | SVal strLength = getCStringLength(C, state, Ex: Arg.Expression, Buf: ArgVal); |
1721 | |
1722 | // If the argument isn't a valid C string, there's no valid state to |
1723 | // transition to. |
1724 | if (strLength.isUndef()) |
1725 | return; |
1726 | |
1727 | DefinedOrUnknownSVal result = UnknownVal(); |
1728 | |
1729 | // If the check is for strnlen() then bind the return value to no more than |
1730 | // the maxlen value. |
1731 | if (IsStrnlen) { |
1732 | QualType cmpTy = C.getSValBuilder().getConditionType(); |
1733 | |
1734 | // It's a little unfortunate to be getting this again, |
1735 | // but it's not that expensive... |
1736 | const Expr *maxlenExpr = Call.getArgExpr(Index: 1); |
1737 | SVal maxlenVal = state->getSVal(Ex: maxlenExpr, LCtx); |
1738 | |
1739 | std::optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); |
1740 | std::optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); |
1741 | |
1742 | if (strLengthNL && maxlenValNL) { |
1743 | ProgramStateRef stateStringTooLong, stateStringNotTooLong; |
1744 | |
1745 | // Check if the strLength is greater than the maxlen. |
1746 | std::tie(args&: stateStringTooLong, args&: stateStringNotTooLong) = state->assume( |
1747 | Cond: C.getSValBuilder() |
1748 | .evalBinOpNN(state, op: BO_GT, lhs: *strLengthNL, rhs: *maxlenValNL, resultTy: cmpTy) |
1749 | .castAs<DefinedOrUnknownSVal>()); |
1750 | |
1751 | if (stateStringTooLong && !stateStringNotTooLong) { |
1752 | // If the string is longer than maxlen, return maxlen. |
1753 | result = *maxlenValNL; |
1754 | } else if (stateStringNotTooLong && !stateStringTooLong) { |
1755 | // If the string is shorter than maxlen, return its length. |
1756 | result = *strLengthNL; |
1757 | } |
1758 | } |
1759 | |
1760 | if (result.isUnknown()) { |
1761 | // If we don't have enough information for a comparison, there's |
1762 | // no guarantee the full string length will actually be returned. |
1763 | // All we know is the return value is the min of the string length |
1764 | // and the limit. This is better than nothing. |
1765 | result = C.getSValBuilder().conjureSymbolVal( |
1766 | symbolTag: nullptr, expr: Call.getOriginExpr(), LCtx, count: C.blockCount()); |
1767 | NonLoc resultNL = result.castAs<NonLoc>(); |
1768 | |
1769 | if (strLengthNL) { |
1770 | state = state->assume(Cond: C.getSValBuilder().evalBinOpNN( |
1771 | state, op: BO_LE, lhs: resultNL, rhs: *strLengthNL, resultTy: cmpTy) |
1772 | .castAs<DefinedOrUnknownSVal>(), Assumption: true); |
1773 | } |
1774 | |
1775 | if (maxlenValNL) { |
1776 | state = state->assume(Cond: C.getSValBuilder().evalBinOpNN( |
1777 | state, op: BO_LE, lhs: resultNL, rhs: *maxlenValNL, resultTy: cmpTy) |
1778 | .castAs<DefinedOrUnknownSVal>(), Assumption: true); |
1779 | } |
1780 | } |
1781 | |
1782 | } else { |
1783 | // This is a plain strlen(), not strnlen(). |
1784 | result = strLength.castAs<DefinedOrUnknownSVal>(); |
1785 | |
1786 | // If we don't know the length of the string, conjure a return |
1787 | // value, so it can be used in constraints, at least. |
1788 | if (result.isUnknown()) { |
1789 | result = C.getSValBuilder().conjureSymbolVal( |
1790 | symbolTag: nullptr, expr: Call.getOriginExpr(), LCtx, count: C.blockCount()); |
1791 | } |
1792 | } |
1793 | |
1794 | // Bind the return value. |
1795 | assert(!result.isUnknown() && "Should have conjured a value by now" ); |
1796 | state = state->BindExpr(S: Call.getOriginExpr(), LCtx, V: result); |
1797 | C.addTransition(State: state); |
1798 | } |
1799 | |
1800 | void CStringChecker::evalStrcpy(CheckerContext &C, |
1801 | const CallEvent &Call) const { |
1802 | // char *strcpy(char *restrict dst, const char *restrict src); |
1803 | evalStrcpyCommon(C, Call, |
1804 | /* ReturnEnd = */ false, |
1805 | /* IsBounded = */ false, |
1806 | /* appendK = */ ConcatFnKind::none); |
1807 | } |
1808 | |
1809 | void CStringChecker::evalStrncpy(CheckerContext &C, |
1810 | const CallEvent &Call) const { |
1811 | // char *strncpy(char *restrict dst, const char *restrict src, size_t n); |
1812 | evalStrcpyCommon(C, Call, |
1813 | /* ReturnEnd = */ false, |
1814 | /* IsBounded = */ true, |
1815 | /* appendK = */ ConcatFnKind::none); |
1816 | } |
1817 | |
1818 | void CStringChecker::evalStpcpy(CheckerContext &C, |
1819 | const CallEvent &Call) const { |
1820 | // char *stpcpy(char *restrict dst, const char *restrict src); |
1821 | evalStrcpyCommon(C, Call, |
1822 | /* ReturnEnd = */ true, |
1823 | /* IsBounded = */ false, |
1824 | /* appendK = */ ConcatFnKind::none); |
1825 | } |
1826 | |
1827 | void CStringChecker::evalStrlcpy(CheckerContext &C, |
1828 | const CallEvent &Call) const { |
1829 | // size_t strlcpy(char *dest, const char *src, size_t size); |
1830 | evalStrcpyCommon(C, Call, |
1831 | /* ReturnEnd = */ true, |
1832 | /* IsBounded = */ true, |
1833 | /* appendK = */ ConcatFnKind::none, |
1834 | /* returnPtr = */ false); |
1835 | } |
1836 | |
1837 | void CStringChecker::evalStrcat(CheckerContext &C, |
1838 | const CallEvent &Call) const { |
1839 | // char *strcat(char *restrict s1, const char *restrict s2); |
1840 | evalStrcpyCommon(C, Call, |
1841 | /* ReturnEnd = */ false, |
1842 | /* IsBounded = */ false, |
1843 | /* appendK = */ ConcatFnKind::strcat); |
1844 | } |
1845 | |
1846 | void CStringChecker::evalStrncat(CheckerContext &C, |
1847 | const CallEvent &Call) const { |
1848 | // char *strncat(char *restrict s1, const char *restrict s2, size_t n); |
1849 | evalStrcpyCommon(C, Call, |
1850 | /* ReturnEnd = */ false, |
1851 | /* IsBounded = */ true, |
1852 | /* appendK = */ ConcatFnKind::strcat); |
1853 | } |
1854 | |
1855 | void CStringChecker::evalStrlcat(CheckerContext &C, |
1856 | const CallEvent &Call) const { |
1857 | // size_t strlcat(char *dst, const char *src, size_t size); |
1858 | // It will append at most size - strlen(dst) - 1 bytes, |
1859 | // NULL-terminating the result. |
1860 | evalStrcpyCommon(C, Call, |
1861 | /* ReturnEnd = */ false, |
1862 | /* IsBounded = */ true, |
1863 | /* appendK = */ ConcatFnKind::strlcat, |
1864 | /* returnPtr = */ false); |
1865 | } |
1866 | |
1867 | void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallEvent &Call, |
1868 | bool ReturnEnd, bool IsBounded, |
1869 | ConcatFnKind appendK, |
1870 | bool returnPtr) const { |
1871 | if (appendK == ConcatFnKind::none) |
1872 | CurrentFunctionDescription = "string copy function" ; |
1873 | else |
1874 | CurrentFunctionDescription = "string concatenation function" ; |
1875 | |
1876 | ProgramStateRef state = C.getState(); |
1877 | const LocationContext *LCtx = C.getLocationContext(); |
1878 | |
1879 | // Check that the destination is non-null. |
1880 | DestinationArgExpr Dst = {{.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}}; |
1881 | SVal DstVal = state->getSVal(Ex: Dst.Expression, LCtx); |
1882 | state = checkNonNull(C, State: state, Arg: Dst, l: DstVal); |
1883 | if (!state) |
1884 | return; |
1885 | |
1886 | // Check that the source is non-null. |
1887 | SourceArgExpr srcExpr = {{.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}}; |
1888 | SVal srcVal = state->getSVal(Ex: srcExpr.Expression, LCtx); |
1889 | state = checkNonNull(C, State: state, Arg: srcExpr, l: srcVal); |
1890 | if (!state) |
1891 | return; |
1892 | |
1893 | // Get the string length of the source. |
1894 | SVal strLength = getCStringLength(C, state, Ex: srcExpr.Expression, Buf: srcVal); |
1895 | std::optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); |
1896 | |
1897 | // Get the string length of the destination buffer. |
1898 | SVal dstStrLength = getCStringLength(C, state, Ex: Dst.Expression, Buf: DstVal); |
1899 | std::optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); |
1900 | |
1901 | // If the source isn't a valid C string, give up. |
1902 | if (strLength.isUndef()) |
1903 | return; |
1904 | |
1905 | SValBuilder &svalBuilder = C.getSValBuilder(); |
1906 | QualType cmpTy = svalBuilder.getConditionType(); |
1907 | QualType sizeTy = svalBuilder.getContext().getSizeType(); |
1908 | |
1909 | // These two values allow checking two kinds of errors: |
1910 | // - actual overflows caused by a source that doesn't fit in the destination |
1911 | // - potential overflows caused by a bound that could exceed the destination |
1912 | SVal amountCopied = UnknownVal(); |
1913 | SVal maxLastElementIndex = UnknownVal(); |
1914 | const char *boundWarning = nullptr; |
1915 | |
1916 | // FIXME: Why do we choose the srcExpr if the access has no size? |
1917 | // Note that the 3rd argument of the call would be the size parameter. |
1918 | SizeArgExpr SrcExprAsSizeDummy = { |
1919 | {.Expression: srcExpr.Expression, .ArgumentIndex: srcExpr.ArgumentIndex}}; |
1920 | state = CheckOverlap( |
1921 | C, state, |
1922 | Size: (IsBounded ? SizeArgExpr{{.Expression: Call.getArgExpr(Index: 2), .ArgumentIndex: 2}} : SrcExprAsSizeDummy), |
1923 | First: Dst, Second: srcExpr); |
1924 | |
1925 | if (!state) |
1926 | return; |
1927 | |
1928 | // If the function is strncpy, strncat, etc... it is bounded. |
1929 | if (IsBounded) { |
1930 | // Get the max number of characters to copy. |
1931 | SizeArgExpr lenExpr = {{.Expression: Call.getArgExpr(Index: 2), .ArgumentIndex: 2}}; |
1932 | SVal lenVal = state->getSVal(Ex: lenExpr.Expression, LCtx); |
1933 | |
1934 | // Protect against misdeclared strncpy(). |
1935 | lenVal = |
1936 | svalBuilder.evalCast(V: lenVal, CastTy: sizeTy, OriginalTy: lenExpr.Expression->getType()); |
1937 | |
1938 | std::optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); |
1939 | |
1940 | // If we know both values, we might be able to figure out how much |
1941 | // we're copying. |
1942 | if (strLengthNL && lenValNL) { |
1943 | switch (appendK) { |
1944 | case ConcatFnKind::none: |
1945 | case ConcatFnKind::strcat: { |
1946 | ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; |
1947 | // Check if the max number to copy is less than the length of the src. |
1948 | // If the bound is equal to the source length, strncpy won't null- |
1949 | // terminate the result! |
1950 | std::tie(args&: stateSourceTooLong, args&: stateSourceNotTooLong) = state->assume( |
1951 | Cond: svalBuilder |
1952 | .evalBinOpNN(state, op: BO_GE, lhs: *strLengthNL, rhs: *lenValNL, resultTy: cmpTy) |
1953 | .castAs<DefinedOrUnknownSVal>()); |
1954 | |
1955 | if (stateSourceTooLong && !stateSourceNotTooLong) { |
1956 | // Max number to copy is less than the length of the src, so the |
1957 | // actual strLength copied is the max number arg. |
1958 | state = stateSourceTooLong; |
1959 | amountCopied = lenVal; |
1960 | |
1961 | } else if (!stateSourceTooLong && stateSourceNotTooLong) { |
1962 | // The source buffer entirely fits in the bound. |
1963 | state = stateSourceNotTooLong; |
1964 | amountCopied = strLength; |
1965 | } |
1966 | break; |
1967 | } |
1968 | case ConcatFnKind::strlcat: |
1969 | if (!dstStrLengthNL) |
1970 | return; |
1971 | |
1972 | // amountCopied = min (size - dstLen - 1 , srcLen) |
1973 | SVal freeSpace = svalBuilder.evalBinOpNN(state, op: BO_Sub, lhs: *lenValNL, |
1974 | rhs: *dstStrLengthNL, resultTy: sizeTy); |
1975 | if (!isa<NonLoc>(Val: freeSpace)) |
1976 | return; |
1977 | freeSpace = |
1978 | svalBuilder.evalBinOp(state, op: BO_Sub, lhs: freeSpace, |
1979 | rhs: svalBuilder.makeIntVal(integer: 1, type: sizeTy), type: sizeTy); |
1980 | std::optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>(); |
1981 | |
1982 | // While unlikely, it is possible that the subtraction is |
1983 | // too complex to compute, let's check whether it succeeded. |
1984 | if (!freeSpaceNL) |
1985 | return; |
1986 | SVal hasEnoughSpace = svalBuilder.evalBinOpNN( |
1987 | state, op: BO_LE, lhs: *strLengthNL, rhs: *freeSpaceNL, resultTy: cmpTy); |
1988 | |
1989 | ProgramStateRef TrueState, FalseState; |
1990 | std::tie(args&: TrueState, args&: FalseState) = |
1991 | state->assume(Cond: hasEnoughSpace.castAs<DefinedOrUnknownSVal>()); |
1992 | |
1993 | // srcStrLength <= size - dstStrLength -1 |
1994 | if (TrueState && !FalseState) { |
1995 | amountCopied = strLength; |
1996 | } |
1997 | |
1998 | // srcStrLength > size - dstStrLength -1 |
1999 | if (!TrueState && FalseState) { |
2000 | amountCopied = freeSpace; |
2001 | } |
2002 | |
2003 | if (TrueState && FalseState) |
2004 | amountCopied = UnknownVal(); |
2005 | break; |
2006 | } |
2007 | } |
2008 | // We still want to know if the bound is known to be too large. |
2009 | if (lenValNL) { |
2010 | switch (appendK) { |
2011 | case ConcatFnKind::strcat: |
2012 | // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) |
2013 | |
2014 | // Get the string length of the destination. If the destination is |
2015 | // memory that can't have a string length, we shouldn't be copying |
2016 | // into it anyway. |
2017 | if (dstStrLength.isUndef()) |
2018 | return; |
2019 | |
2020 | if (dstStrLengthNL) { |
2021 | maxLastElementIndex = svalBuilder.evalBinOpNN( |
2022 | state, op: BO_Add, lhs: *lenValNL, rhs: *dstStrLengthNL, resultTy: sizeTy); |
2023 | |
2024 | boundWarning = "Size argument is greater than the free space in the " |
2025 | "destination buffer" ; |
2026 | } |
2027 | break; |
2028 | case ConcatFnKind::none: |
2029 | case ConcatFnKind::strlcat: |
2030 | // For strncpy and strlcat, this is just checking |
2031 | // that lenVal <= sizeof(dst). |
2032 | // (Yes, strncpy and strncat differ in how they treat termination. |
2033 | // strncat ALWAYS terminates, but strncpy doesn't.) |
2034 | |
2035 | // We need a special case for when the copy size is zero, in which |
2036 | // case strncpy will do no work at all. Our bounds check uses n-1 |
2037 | // as the last element accessed, so n == 0 is problematic. |
2038 | ProgramStateRef StateZeroSize, StateNonZeroSize; |
2039 | std::tie(args&: StateZeroSize, args&: StateNonZeroSize) = |
2040 | assumeZero(C, State: state, V: *lenValNL, Ty: sizeTy); |
2041 | |
2042 | // If the size is known to be zero, we're done. |
2043 | if (StateZeroSize && !StateNonZeroSize) { |
2044 | if (returnPtr) { |
2045 | StateZeroSize = |
2046 | StateZeroSize->BindExpr(S: Call.getOriginExpr(), LCtx, V: DstVal); |
2047 | } else { |
2048 | if (appendK == ConcatFnKind::none) { |
2049 | // strlcpy returns strlen(src) |
2050 | StateZeroSize = StateZeroSize->BindExpr(S: Call.getOriginExpr(), |
2051 | LCtx, V: strLength); |
2052 | } else { |
2053 | // strlcat returns strlen(src) + strlen(dst) |
2054 | SVal retSize = svalBuilder.evalBinOp( |
2055 | state, op: BO_Add, lhs: strLength, rhs: dstStrLength, type: sizeTy); |
2056 | StateZeroSize = |
2057 | StateZeroSize->BindExpr(S: Call.getOriginExpr(), LCtx, V: retSize); |
2058 | } |
2059 | } |
2060 | C.addTransition(State: StateZeroSize); |
2061 | return; |
2062 | } |
2063 | |
2064 | // Otherwise, go ahead and figure out the last element we'll touch. |
2065 | // We don't record the non-zero assumption here because we can't |
2066 | // be sure. We won't warn on a possible zero. |
2067 | NonLoc one = svalBuilder.makeIntVal(integer: 1, type: sizeTy).castAs<NonLoc>(); |
2068 | maxLastElementIndex = |
2069 | svalBuilder.evalBinOpNN(state, op: BO_Sub, lhs: *lenValNL, rhs: one, resultTy: sizeTy); |
2070 | boundWarning = "Size argument is greater than the length of the " |
2071 | "destination buffer" ; |
2072 | break; |
2073 | } |
2074 | } |
2075 | } else { |
2076 | // The function isn't bounded. The amount copied should match the length |
2077 | // of the source buffer. |
2078 | amountCopied = strLength; |
2079 | } |
2080 | |
2081 | assert(state); |
2082 | |
2083 | // This represents the number of characters copied into the destination |
2084 | // buffer. (It may not actually be the strlen if the destination buffer |
2085 | // is not terminated.) |
2086 | SVal finalStrLength = UnknownVal(); |
2087 | SVal strlRetVal = UnknownVal(); |
2088 | |
2089 | if (appendK == ConcatFnKind::none && !returnPtr) { |
2090 | // strlcpy returns the sizeof(src) |
2091 | strlRetVal = strLength; |
2092 | } |
2093 | |
2094 | // If this is an appending function (strcat, strncat...) then set the |
2095 | // string length to strlen(src) + strlen(dst) since the buffer will |
2096 | // ultimately contain both. |
2097 | if (appendK != ConcatFnKind::none) { |
2098 | // Get the string length of the destination. If the destination is memory |
2099 | // that can't have a string length, we shouldn't be copying into it anyway. |
2100 | if (dstStrLength.isUndef()) |
2101 | return; |
2102 | |
2103 | if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) { |
2104 | strlRetVal = svalBuilder.evalBinOpNN(state, op: BO_Add, lhs: *strLengthNL, |
2105 | rhs: *dstStrLengthNL, resultTy: sizeTy); |
2106 | } |
2107 | |
2108 | std::optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>(); |
2109 | |
2110 | // If we know both string lengths, we might know the final string length. |
2111 | if (amountCopiedNL && dstStrLengthNL) { |
2112 | // Make sure the two lengths together don't overflow a size_t. |
2113 | state = checkAdditionOverflow(C, state, left: *amountCopiedNL, right: *dstStrLengthNL); |
2114 | if (!state) |
2115 | return; |
2116 | |
2117 | finalStrLength = svalBuilder.evalBinOpNN(state, op: BO_Add, lhs: *amountCopiedNL, |
2118 | rhs: *dstStrLengthNL, resultTy: sizeTy); |
2119 | } |
2120 | |
2121 | // If we couldn't get a single value for the final string length, |
2122 | // we can at least bound it by the individual lengths. |
2123 | if (finalStrLength.isUnknown()) { |
2124 | // Try to get a "hypothetical" string length symbol, which we can later |
2125 | // set as a real value if that turns out to be the case. |
2126 | finalStrLength = |
2127 | getCStringLength(C, state, Ex: Call.getOriginExpr(), Buf: DstVal, hypothetical: true); |
2128 | assert(!finalStrLength.isUndef()); |
2129 | |
2130 | if (std::optional<NonLoc> finalStrLengthNL = |
2131 | finalStrLength.getAs<NonLoc>()) { |
2132 | if (amountCopiedNL && appendK == ConcatFnKind::none) { |
2133 | // we overwrite dst string with the src |
2134 | // finalStrLength >= srcStrLength |
2135 | SVal sourceInResult = svalBuilder.evalBinOpNN( |
2136 | state, op: BO_GE, lhs: *finalStrLengthNL, rhs: *amountCopiedNL, resultTy: cmpTy); |
2137 | state = state->assume(Cond: sourceInResult.castAs<DefinedOrUnknownSVal>(), |
2138 | Assumption: true); |
2139 | if (!state) |
2140 | return; |
2141 | } |
2142 | |
2143 | if (dstStrLengthNL && appendK != ConcatFnKind::none) { |
2144 | // we extend the dst string with the src |
2145 | // finalStrLength >= dstStrLength |
2146 | SVal destInResult = svalBuilder.evalBinOpNN(state, op: BO_GE, |
2147 | lhs: *finalStrLengthNL, |
2148 | rhs: *dstStrLengthNL, |
2149 | resultTy: cmpTy); |
2150 | state = |
2151 | state->assume(Cond: destInResult.castAs<DefinedOrUnknownSVal>(), Assumption: true); |
2152 | if (!state) |
2153 | return; |
2154 | } |
2155 | } |
2156 | } |
2157 | |
2158 | } else { |
2159 | // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and |
2160 | // the final string length will match the input string length. |
2161 | finalStrLength = amountCopied; |
2162 | } |
2163 | |
2164 | SVal Result; |
2165 | |
2166 | if (returnPtr) { |
2167 | // The final result of the function will either be a pointer past the last |
2168 | // copied element, or a pointer to the start of the destination buffer. |
2169 | Result = (ReturnEnd ? UnknownVal() : DstVal); |
2170 | } else { |
2171 | if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none) |
2172 | //strlcpy, strlcat |
2173 | Result = strlRetVal; |
2174 | else |
2175 | Result = finalStrLength; |
2176 | } |
2177 | |
2178 | assert(state); |
2179 | |
2180 | // If the destination is a MemRegion, try to check for a buffer overflow and |
2181 | // record the new string length. |
2182 | if (std::optional<loc::MemRegionVal> dstRegVal = |
2183 | DstVal.getAs<loc::MemRegionVal>()) { |
2184 | QualType ptrTy = Dst.Expression->getType(); |
2185 | |
2186 | // If we have an exact value on a bounded copy, use that to check for |
2187 | // overflows, rather than our estimate about how much is actually copied. |
2188 | if (std::optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { |
2189 | SVal maxLastElement = |
2190 | svalBuilder.evalBinOpLN(state, op: BO_Add, lhs: *dstRegVal, rhs: *maxLastNL, resultTy: ptrTy); |
2191 | |
2192 | // Check if the first byte of the destination is writable. |
2193 | state = CheckLocation(C, state, Buffer: Dst, Element: DstVal, Access: AccessKind::write); |
2194 | if (!state) |
2195 | return; |
2196 | // Check if the last byte of the destination is writable. |
2197 | state = CheckLocation(C, state, Buffer: Dst, Element: maxLastElement, Access: AccessKind::write); |
2198 | if (!state) |
2199 | return; |
2200 | } |
2201 | |
2202 | // Then, if the final length is known... |
2203 | if (std::optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { |
2204 | SVal lastElement = svalBuilder.evalBinOpLN(state, op: BO_Add, lhs: *dstRegVal, |
2205 | rhs: *knownStrLength, resultTy: ptrTy); |
2206 | |
2207 | // ...and we haven't checked the bound, we'll check the actual copy. |
2208 | if (!boundWarning) { |
2209 | // Check if the first byte of the destination is writable. |
2210 | state = CheckLocation(C, state, Buffer: Dst, Element: DstVal, Access: AccessKind::write); |
2211 | if (!state) |
2212 | return; |
2213 | // Check if the last byte of the destination is writable. |
2214 | state = CheckLocation(C, state, Buffer: Dst, Element: lastElement, Access: AccessKind::write); |
2215 | if (!state) |
2216 | return; |
2217 | } |
2218 | |
2219 | // If this is a stpcpy-style copy, the last element is the return value. |
2220 | if (returnPtr && ReturnEnd) |
2221 | Result = lastElement; |
2222 | } |
2223 | |
2224 | // Invalidate the destination (regular invalidation without pointer-escaping |
2225 | // the address of the top-level region). This must happen before we set the |
2226 | // C string length because invalidation will clear the length. |
2227 | // FIXME: Even if we can't perfectly model the copy, we should see if we |
2228 | // can use LazyCompoundVals to copy the source values into the destination. |
2229 | // This would probably remove any existing bindings past the end of the |
2230 | // string, but that's still an improvement over blank invalidation. |
2231 | state = invalidateDestinationBufferBySize(C, S: state, BufE: Dst.Expression, |
2232 | BufV: *dstRegVal, SizeV: amountCopied, |
2233 | SizeTy: C.getASTContext().getSizeType()); |
2234 | |
2235 | // Invalidate the source (const-invalidation without const-pointer-escaping |
2236 | // the address of the top-level region). |
2237 | state = invalidateSourceBuffer(C, S: state, BufE: srcExpr.Expression, BufV: srcVal); |
2238 | |
2239 | // Set the C string length of the destination, if we know it. |
2240 | if (IsBounded && (appendK == ConcatFnKind::none)) { |
2241 | // strncpy is annoying in that it doesn't guarantee to null-terminate |
2242 | // the result string. If the original string didn't fit entirely inside |
2243 | // the bound (including the null-terminator), we don't know how long the |
2244 | // result is. |
2245 | if (amountCopied != strLength) |
2246 | finalStrLength = UnknownVal(); |
2247 | } |
2248 | state = setCStringLength(state, MR: dstRegVal->getRegion(), strLength: finalStrLength); |
2249 | } |
2250 | |
2251 | assert(state); |
2252 | |
2253 | if (returnPtr) { |
2254 | // If this is a stpcpy-style copy, but we were unable to check for a buffer |
2255 | // overflow, we still need a result. Conjure a return value. |
2256 | if (ReturnEnd && Result.isUnknown()) { |
2257 | Result = svalBuilder.conjureSymbolVal(symbolTag: nullptr, expr: Call.getOriginExpr(), LCtx, |
2258 | count: C.blockCount()); |
2259 | } |
2260 | } |
2261 | // Set the return value. |
2262 | state = state->BindExpr(S: Call.getOriginExpr(), LCtx, V: Result); |
2263 | C.addTransition(State: state); |
2264 | } |
2265 | |
2266 | void CStringChecker::evalStrcmp(CheckerContext &C, |
2267 | const CallEvent &Call) const { |
2268 | //int strcmp(const char *s1, const char *s2); |
2269 | evalStrcmpCommon(C, Call, /* IsBounded = */ false, /* IgnoreCase = */ false); |
2270 | } |
2271 | |
2272 | void CStringChecker::evalStrncmp(CheckerContext &C, |
2273 | const CallEvent &Call) const { |
2274 | //int strncmp(const char *s1, const char *s2, size_t n); |
2275 | evalStrcmpCommon(C, Call, /* IsBounded = */ true, /* IgnoreCase = */ false); |
2276 | } |
2277 | |
2278 | void CStringChecker::evalStrcasecmp(CheckerContext &C, |
2279 | const CallEvent &Call) const { |
2280 | //int strcasecmp(const char *s1, const char *s2); |
2281 | evalStrcmpCommon(C, Call, /* IsBounded = */ false, /* IgnoreCase = */ true); |
2282 | } |
2283 | |
2284 | void CStringChecker::evalStrncasecmp(CheckerContext &C, |
2285 | const CallEvent &Call) const { |
2286 | //int strncasecmp(const char *s1, const char *s2, size_t n); |
2287 | evalStrcmpCommon(C, Call, /* IsBounded = */ true, /* IgnoreCase = */ true); |
2288 | } |
2289 | |
2290 | void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallEvent &Call, |
2291 | bool IsBounded, bool IgnoreCase) const { |
2292 | CurrentFunctionDescription = "string comparison function" ; |
2293 | ProgramStateRef state = C.getState(); |
2294 | const LocationContext *LCtx = C.getLocationContext(); |
2295 | |
2296 | // Check that the first string is non-null |
2297 | AnyArgExpr Left = {.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}; |
2298 | SVal LeftVal = state->getSVal(Ex: Left.Expression, LCtx); |
2299 | state = checkNonNull(C, State: state, Arg: Left, l: LeftVal); |
2300 | if (!state) |
2301 | return; |
2302 | |
2303 | // Check that the second string is non-null. |
2304 | AnyArgExpr Right = {.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}; |
2305 | SVal RightVal = state->getSVal(Ex: Right.Expression, LCtx); |
2306 | state = checkNonNull(C, State: state, Arg: Right, l: RightVal); |
2307 | if (!state) |
2308 | return; |
2309 | |
2310 | // Get the string length of the first string or give up. |
2311 | SVal LeftLength = getCStringLength(C, state, Ex: Left.Expression, Buf: LeftVal); |
2312 | if (LeftLength.isUndef()) |
2313 | return; |
2314 | |
2315 | // Get the string length of the second string or give up. |
2316 | SVal RightLength = getCStringLength(C, state, Ex: Right.Expression, Buf: RightVal); |
2317 | if (RightLength.isUndef()) |
2318 | return; |
2319 | |
2320 | // If we know the two buffers are the same, we know the result is 0. |
2321 | // First, get the two buffers' addresses. Another checker will have already |
2322 | // made sure they're not undefined. |
2323 | DefinedOrUnknownSVal LV = LeftVal.castAs<DefinedOrUnknownSVal>(); |
2324 | DefinedOrUnknownSVal RV = RightVal.castAs<DefinedOrUnknownSVal>(); |
2325 | |
2326 | // See if they are the same. |
2327 | SValBuilder &svalBuilder = C.getSValBuilder(); |
2328 | DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, lhs: LV, rhs: RV); |
2329 | ProgramStateRef StSameBuf, StNotSameBuf; |
2330 | std::tie(args&: StSameBuf, args&: StNotSameBuf) = state->assume(Cond: SameBuf); |
2331 | |
2332 | // If the two arguments might be the same buffer, we know the result is 0, |
2333 | // and we only need to check one size. |
2334 | if (StSameBuf) { |
2335 | StSameBuf = |
2336 | StSameBuf->BindExpr(S: Call.getOriginExpr(), LCtx, |
2337 | V: svalBuilder.makeZeroVal(type: Call.getResultType())); |
2338 | C.addTransition(State: StSameBuf); |
2339 | |
2340 | // If the two arguments are GUARANTEED to be the same, we're done! |
2341 | if (!StNotSameBuf) |
2342 | return; |
2343 | } |
2344 | |
2345 | assert(StNotSameBuf); |
2346 | state = StNotSameBuf; |
2347 | |
2348 | // At this point we can go about comparing the two buffers. |
2349 | // For now, we only do this if they're both known string literals. |
2350 | |
2351 | // Attempt to extract string literals from both expressions. |
2352 | const StringLiteral *LeftStrLiteral = |
2353 | getCStringLiteral(C, state, expr: Left.Expression, val: LeftVal); |
2354 | const StringLiteral *RightStrLiteral = |
2355 | getCStringLiteral(C, state, expr: Right.Expression, val: RightVal); |
2356 | bool canComputeResult = false; |
2357 | SVal resultVal = svalBuilder.conjureSymbolVal(symbolTag: nullptr, expr: Call.getOriginExpr(), |
2358 | LCtx, count: C.blockCount()); |
2359 | |
2360 | if (LeftStrLiteral && RightStrLiteral) { |
2361 | StringRef LeftStrRef = LeftStrLiteral->getString(); |
2362 | StringRef RightStrRef = RightStrLiteral->getString(); |
2363 | |
2364 | if (IsBounded) { |
2365 | // Get the max number of characters to compare. |
2366 | const Expr *lenExpr = Call.getArgExpr(Index: 2); |
2367 | SVal lenVal = state->getSVal(Ex: lenExpr, LCtx); |
2368 | |
2369 | // If the length is known, we can get the right substrings. |
2370 | if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, val: lenVal)) { |
2371 | // Create substrings of each to compare the prefix. |
2372 | LeftStrRef = LeftStrRef.substr(Start: 0, N: (size_t)len->getZExtValue()); |
2373 | RightStrRef = RightStrRef.substr(Start: 0, N: (size_t)len->getZExtValue()); |
2374 | canComputeResult = true; |
2375 | } |
2376 | } else { |
2377 | // This is a normal, unbounded strcmp. |
2378 | canComputeResult = true; |
2379 | } |
2380 | |
2381 | if (canComputeResult) { |
2382 | // Real strcmp stops at null characters. |
2383 | size_t s1Term = LeftStrRef.find(C: '\0'); |
2384 | if (s1Term != StringRef::npos) |
2385 | LeftStrRef = LeftStrRef.substr(Start: 0, N: s1Term); |
2386 | |
2387 | size_t s2Term = RightStrRef.find(C: '\0'); |
2388 | if (s2Term != StringRef::npos) |
2389 | RightStrRef = RightStrRef.substr(Start: 0, N: s2Term); |
2390 | |
2391 | // Use StringRef's comparison methods to compute the actual result. |
2392 | int compareRes = IgnoreCase ? LeftStrRef.compare_insensitive(RHS: RightStrRef) |
2393 | : LeftStrRef.compare(RHS: RightStrRef); |
2394 | |
2395 | // The strcmp function returns an integer greater than, equal to, or less |
2396 | // than zero, [c11, p7.24.4.2]. |
2397 | if (compareRes == 0) { |
2398 | resultVal = svalBuilder.makeIntVal(integer: compareRes, type: Call.getResultType()); |
2399 | } |
2400 | else { |
2401 | DefinedSVal zeroVal = svalBuilder.makeIntVal(integer: 0, type: Call.getResultType()); |
2402 | // Constrain strcmp's result range based on the result of StringRef's |
2403 | // comparison methods. |
2404 | BinaryOperatorKind op = (compareRes > 0) ? BO_GT : BO_LT; |
2405 | SVal compareWithZero = |
2406 | svalBuilder.evalBinOp(state, op, lhs: resultVal, rhs: zeroVal, |
2407 | type: svalBuilder.getConditionType()); |
2408 | DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); |
2409 | state = state->assume(Cond: compareWithZeroVal, Assumption: true); |
2410 | } |
2411 | } |
2412 | } |
2413 | |
2414 | state = state->BindExpr(S: Call.getOriginExpr(), LCtx, V: resultVal); |
2415 | |
2416 | // Record this as a possible path. |
2417 | C.addTransition(State: state); |
2418 | } |
2419 | |
2420 | void CStringChecker::evalStrsep(CheckerContext &C, |
2421 | const CallEvent &Call) const { |
2422 | // char *strsep(char **stringp, const char *delim); |
2423 | // Verify whether the search string parameter matches the return type. |
2424 | SourceArgExpr SearchStrPtr = {{.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}}; |
2425 | |
2426 | QualType CharPtrTy = SearchStrPtr.Expression->getType()->getPointeeType(); |
2427 | if (CharPtrTy.isNull() || Call.getResultType().getUnqualifiedType() != |
2428 | CharPtrTy.getUnqualifiedType()) |
2429 | return; |
2430 | |
2431 | CurrentFunctionDescription = "strsep()" ; |
2432 | ProgramStateRef State = C.getState(); |
2433 | const LocationContext *LCtx = C.getLocationContext(); |
2434 | |
2435 | // Check that the search string pointer is non-null (though it may point to |
2436 | // a null string). |
2437 | SVal SearchStrVal = State->getSVal(Ex: SearchStrPtr.Expression, LCtx); |
2438 | State = checkNonNull(C, State, Arg: SearchStrPtr, l: SearchStrVal); |
2439 | if (!State) |
2440 | return; |
2441 | |
2442 | // Check that the delimiter string is non-null. |
2443 | AnyArgExpr DelimStr = {.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}; |
2444 | SVal DelimStrVal = State->getSVal(Ex: DelimStr.Expression, LCtx); |
2445 | State = checkNonNull(C, State, Arg: DelimStr, l: DelimStrVal); |
2446 | if (!State) |
2447 | return; |
2448 | |
2449 | SValBuilder &SVB = C.getSValBuilder(); |
2450 | SVal Result; |
2451 | if (std::optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { |
2452 | // Get the current value of the search string pointer, as a char*. |
2453 | Result = State->getSVal(LV: *SearchStrLoc, T: CharPtrTy); |
2454 | |
2455 | // Invalidate the search string, representing the change of one delimiter |
2456 | // character to NUL. |
2457 | // As the replacement never overflows, do not invalidate its super region. |
2458 | State = invalidateDestinationBufferNeverOverflows( |
2459 | C, S: State, BufE: SearchStrPtr.Expression, BufV: Result); |
2460 | |
2461 | // Overwrite the search string pointer. The new value is either an address |
2462 | // further along in the same string, or NULL if there are no more tokens. |
2463 | State = |
2464 | State->bindLoc(location: *SearchStrLoc, |
2465 | V: SVB.conjureSymbolVal(symbolTag: getTag(), expr: Call.getOriginExpr(), |
2466 | LCtx, type: CharPtrTy, count: C.blockCount()), |
2467 | LCtx); |
2468 | } else { |
2469 | assert(SearchStrVal.isUnknown()); |
2470 | // Conjure a symbolic value. It's the best we can do. |
2471 | Result = SVB.conjureSymbolVal(symbolTag: nullptr, expr: Call.getOriginExpr(), LCtx, |
2472 | count: C.blockCount()); |
2473 | } |
2474 | |
2475 | // Set the return value, and finish. |
2476 | State = State->BindExpr(S: Call.getOriginExpr(), LCtx, V: Result); |
2477 | C.addTransition(State); |
2478 | } |
2479 | |
2480 | // These should probably be moved into a C++ standard library checker. |
2481 | void CStringChecker::evalStdCopy(CheckerContext &C, |
2482 | const CallEvent &Call) const { |
2483 | evalStdCopyCommon(C, Call); |
2484 | } |
2485 | |
2486 | void CStringChecker::evalStdCopyBackward(CheckerContext &C, |
2487 | const CallEvent &Call) const { |
2488 | evalStdCopyCommon(C, Call); |
2489 | } |
2490 | |
2491 | void CStringChecker::evalStdCopyCommon(CheckerContext &C, |
2492 | const CallEvent &Call) const { |
2493 | if (!Call.getArgExpr(Index: 2)->getType()->isPointerType()) |
2494 | return; |
2495 | |
2496 | ProgramStateRef State = C.getState(); |
2497 | |
2498 | const LocationContext *LCtx = C.getLocationContext(); |
2499 | |
2500 | // template <class _InputIterator, class _OutputIterator> |
2501 | // _OutputIterator |
2502 | // copy(_InputIterator __first, _InputIterator __last, |
2503 | // _OutputIterator __result) |
2504 | |
2505 | // Invalidate the destination buffer |
2506 | const Expr *Dst = Call.getArgExpr(Index: 2); |
2507 | SVal DstVal = State->getSVal(Ex: Dst, LCtx); |
2508 | // FIXME: As we do not know how many items are copied, we also invalidate the |
2509 | // super region containing the target location. |
2510 | State = |
2511 | invalidateDestinationBufferAlwaysEscapeSuperRegion(C, S: State, BufE: Dst, BufV: DstVal); |
2512 | |
2513 | SValBuilder &SVB = C.getSValBuilder(); |
2514 | |
2515 | SVal ResultVal = |
2516 | SVB.conjureSymbolVal(symbolTag: nullptr, expr: Call.getOriginExpr(), LCtx, count: C.blockCount()); |
2517 | State = State->BindExpr(S: Call.getOriginExpr(), LCtx, V: ResultVal); |
2518 | |
2519 | C.addTransition(State); |
2520 | } |
2521 | |
2522 | void CStringChecker::evalMemset(CheckerContext &C, |
2523 | const CallEvent &Call) const { |
2524 | // void *memset(void *s, int c, size_t n); |
2525 | CurrentFunctionDescription = "memory set function" ; |
2526 | |
2527 | DestinationArgExpr Buffer = {{.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}}; |
2528 | AnyArgExpr CharE = {.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}; |
2529 | SizeArgExpr Size = {{.Expression: Call.getArgExpr(Index: 2), .ArgumentIndex: 2}}; |
2530 | |
2531 | ProgramStateRef State = C.getState(); |
2532 | |
2533 | // See if the size argument is zero. |
2534 | const LocationContext *LCtx = C.getLocationContext(); |
2535 | SVal SizeVal = C.getSVal(S: Size.Expression); |
2536 | QualType SizeTy = Size.Expression->getType(); |
2537 | |
2538 | ProgramStateRef ZeroSize, NonZeroSize; |
2539 | std::tie(args&: ZeroSize, args&: NonZeroSize) = assumeZero(C, State, V: SizeVal, Ty: SizeTy); |
2540 | |
2541 | // Get the value of the memory area. |
2542 | SVal BufferPtrVal = C.getSVal(S: Buffer.Expression); |
2543 | |
2544 | // If the size is zero, there won't be any actual memory access, so |
2545 | // just bind the return value to the buffer and return. |
2546 | if (ZeroSize && !NonZeroSize) { |
2547 | ZeroSize = ZeroSize->BindExpr(S: Call.getOriginExpr(), LCtx, V: BufferPtrVal); |
2548 | C.addTransition(State: ZeroSize); |
2549 | return; |
2550 | } |
2551 | |
2552 | // Ensure the memory area is not null. |
2553 | // If it is NULL there will be a NULL pointer dereference. |
2554 | State = checkNonNull(C, State: NonZeroSize, Arg: Buffer, l: BufferPtrVal); |
2555 | if (!State) |
2556 | return; |
2557 | |
2558 | State = CheckBufferAccess(C, State, Buffer, Size, Access: AccessKind::write); |
2559 | if (!State) |
2560 | return; |
2561 | |
2562 | // According to the values of the arguments, bind the value of the second |
2563 | // argument to the destination buffer and set string length, or just |
2564 | // invalidate the destination buffer. |
2565 | if (!memsetAux(DstBuffer: Buffer.Expression, CharVal: C.getSVal(S: CharE.Expression), |
2566 | Size: Size.Expression, C, State)) |
2567 | return; |
2568 | |
2569 | State = State->BindExpr(S: Call.getOriginExpr(), LCtx, V: BufferPtrVal); |
2570 | C.addTransition(State); |
2571 | } |
2572 | |
2573 | void CStringChecker::evalBzero(CheckerContext &C, const CallEvent &Call) const { |
2574 | CurrentFunctionDescription = "memory clearance function" ; |
2575 | |
2576 | DestinationArgExpr Buffer = {{.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}}; |
2577 | SizeArgExpr Size = {{.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}}; |
2578 | SVal Zero = C.getSValBuilder().makeZeroVal(type: C.getASTContext().IntTy); |
2579 | |
2580 | ProgramStateRef State = C.getState(); |
2581 | |
2582 | // See if the size argument is zero. |
2583 | SVal SizeVal = C.getSVal(S: Size.Expression); |
2584 | QualType SizeTy = Size.Expression->getType(); |
2585 | |
2586 | ProgramStateRef StateZeroSize, StateNonZeroSize; |
2587 | std::tie(args&: StateZeroSize, args&: StateNonZeroSize) = |
2588 | assumeZero(C, State, V: SizeVal, Ty: SizeTy); |
2589 | |
2590 | // If the size is zero, there won't be any actual memory access, |
2591 | // In this case we just return. |
2592 | if (StateZeroSize && !StateNonZeroSize) { |
2593 | C.addTransition(State: StateZeroSize); |
2594 | return; |
2595 | } |
2596 | |
2597 | // Get the value of the memory area. |
2598 | SVal MemVal = C.getSVal(S: Buffer.Expression); |
2599 | |
2600 | // Ensure the memory area is not null. |
2601 | // If it is NULL there will be a NULL pointer dereference. |
2602 | State = checkNonNull(C, State: StateNonZeroSize, Arg: Buffer, l: MemVal); |
2603 | if (!State) |
2604 | return; |
2605 | |
2606 | State = CheckBufferAccess(C, State, Buffer, Size, Access: AccessKind::write); |
2607 | if (!State) |
2608 | return; |
2609 | |
2610 | if (!memsetAux(DstBuffer: Buffer.Expression, CharVal: Zero, Size: Size.Expression, C, State)) |
2611 | return; |
2612 | |
2613 | C.addTransition(State); |
2614 | } |
2615 | |
2616 | void CStringChecker::evalSprintf(CheckerContext &C, |
2617 | const CallEvent &Call) const { |
2618 | CurrentFunctionDescription = "'sprintf'" ; |
2619 | evalSprintfCommon(C, Call, /* IsBounded = */ false); |
2620 | } |
2621 | |
2622 | void CStringChecker::evalSnprintf(CheckerContext &C, |
2623 | const CallEvent &Call) const { |
2624 | CurrentFunctionDescription = "'snprintf'" ; |
2625 | evalSprintfCommon(C, Call, /* IsBounded = */ true); |
2626 | } |
2627 | |
2628 | void CStringChecker::evalSprintfCommon(CheckerContext &C, const CallEvent &Call, |
2629 | bool IsBounded) const { |
2630 | ProgramStateRef State = C.getState(); |
2631 | const auto *CE = cast<CallExpr>(Val: Call.getOriginExpr()); |
2632 | DestinationArgExpr Dest = {{.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}}; |
2633 | |
2634 | const auto NumParams = Call.parameters().size(); |
2635 | if (CE->getNumArgs() < NumParams) { |
2636 | // This is an invalid call, let's just ignore it. |
2637 | return; |
2638 | } |
2639 | |
2640 | const auto AllArguments = |
2641 | llvm::make_range(x: CE->getArgs(), y: CE->getArgs() + CE->getNumArgs()); |
2642 | const auto VariadicArguments = drop_begin(RangeOrContainer: enumerate(First: AllArguments), N: NumParams); |
2643 | |
2644 | for (const auto &[ArgIdx, ArgExpr] : VariadicArguments) { |
2645 | // We consider only string buffers |
2646 | if (const QualType type = ArgExpr->getType(); |
2647 | !type->isAnyPointerType() || |
2648 | !type->getPointeeType()->isAnyCharacterType()) |
2649 | continue; |
2650 | SourceArgExpr Source = {{.Expression: ArgExpr, .ArgumentIndex: unsigned(ArgIdx)}}; |
2651 | |
2652 | // Ensure the buffers do not overlap. |
2653 | SizeArgExpr SrcExprAsSizeDummy = { |
2654 | {.Expression: Source.Expression, .ArgumentIndex: Source.ArgumentIndex}}; |
2655 | State = CheckOverlap( |
2656 | C, state: State, |
2657 | Size: (IsBounded ? SizeArgExpr{{.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}} : SrcExprAsSizeDummy), |
2658 | First: Dest, Second: Source); |
2659 | if (!State) |
2660 | return; |
2661 | } |
2662 | |
2663 | C.addTransition(State); |
2664 | } |
2665 | |
2666 | //===----------------------------------------------------------------------===// |
2667 | // The driver method, and other Checker callbacks. |
2668 | //===----------------------------------------------------------------------===// |
2669 | |
2670 | CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call, |
2671 | CheckerContext &C) const { |
2672 | const auto *CE = dyn_cast_or_null<CallExpr>(Val: Call.getOriginExpr()); |
2673 | if (!CE) |
2674 | return nullptr; |
2675 | |
2676 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: Call.getDecl()); |
2677 | if (!FD) |
2678 | return nullptr; |
2679 | |
2680 | if (StdCopy.matches(Call)) |
2681 | return &CStringChecker::evalStdCopy; |
2682 | if (StdCopyBackward.matches(Call)) |
2683 | return &CStringChecker::evalStdCopyBackward; |
2684 | |
2685 | // Pro-actively check that argument types are safe to do arithmetic upon. |
2686 | // We do not want to crash if someone accidentally passes a structure |
2687 | // into, say, a C++ overload of any of these functions. We could not check |
2688 | // that for std::copy because they may have arguments of other types. |
2689 | for (auto I : CE->arguments()) { |
2690 | QualType T = I->getType(); |
2691 | if (!T->isIntegralOrEnumerationType() && !T->isPointerType()) |
2692 | return nullptr; |
2693 | } |
2694 | |
2695 | const FnCheck *Callback = Callbacks.lookup(Call); |
2696 | if (Callback) |
2697 | return *Callback; |
2698 | |
2699 | return nullptr; |
2700 | } |
2701 | |
2702 | bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const { |
2703 | FnCheck Callback = identifyCall(Call, C); |
2704 | |
2705 | // If the callee isn't a string function, let another checker handle it. |
2706 | if (!Callback) |
2707 | return false; |
2708 | |
2709 | // Check and evaluate the call. |
2710 | assert(isa<CallExpr>(Call.getOriginExpr())); |
2711 | Callback(this, C, Call); |
2712 | |
2713 | // If the evaluate call resulted in no change, chain to the next eval call |
2714 | // handler. |
2715 | // Note, the custom CString evaluation calls assume that basic safety |
2716 | // properties are held. However, if the user chooses to turn off some of these |
2717 | // checks, we ignore the issues and leave the call evaluation to a generic |
2718 | // handler. |
2719 | return C.isDifferent(); |
2720 | } |
2721 | |
2722 | void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { |
2723 | // Record string length for char a[] = "abc"; |
2724 | ProgramStateRef state = C.getState(); |
2725 | |
2726 | for (const auto *I : DS->decls()) { |
2727 | const VarDecl *D = dyn_cast<VarDecl>(Val: I); |
2728 | if (!D) |
2729 | continue; |
2730 | |
2731 | // FIXME: Handle array fields of structs. |
2732 | if (!D->getType()->isArrayType()) |
2733 | continue; |
2734 | |
2735 | const Expr *Init = D->getInit(); |
2736 | if (!Init) |
2737 | continue; |
2738 | if (!isa<StringLiteral>(Val: Init)) |
2739 | continue; |
2740 | |
2741 | Loc VarLoc = state->getLValue(VD: D, LC: C.getLocationContext()); |
2742 | const MemRegion *MR = VarLoc.getAsRegion(); |
2743 | if (!MR) |
2744 | continue; |
2745 | |
2746 | SVal StrVal = C.getSVal(S: Init); |
2747 | assert(StrVal.isValid() && "Initializer string is unknown or undefined" ); |
2748 | DefinedOrUnknownSVal strLength = |
2749 | getCStringLength(C, state, Ex: Init, Buf: StrVal).castAs<DefinedOrUnknownSVal>(); |
2750 | |
2751 | state = state->set<CStringLength>(K: MR, E: strLength); |
2752 | } |
2753 | |
2754 | C.addTransition(State: state); |
2755 | } |
2756 | |
2757 | ProgramStateRef |
2758 | CStringChecker::checkRegionChanges(ProgramStateRef state, |
2759 | const InvalidatedSymbols *, |
2760 | ArrayRef<const MemRegion *> ExplicitRegions, |
2761 | ArrayRef<const MemRegion *> Regions, |
2762 | const LocationContext *LCtx, |
2763 | const CallEvent *Call) const { |
2764 | CStringLengthTy Entries = state->get<CStringLength>(); |
2765 | if (Entries.isEmpty()) |
2766 | return state; |
2767 | |
2768 | llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; |
2769 | llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; |
2770 | |
2771 | // First build sets for the changed regions and their super-regions. |
2772 | for (const MemRegion *MR : Regions) { |
2773 | Invalidated.insert(Ptr: MR); |
2774 | |
2775 | SuperRegions.insert(Ptr: MR); |
2776 | while (const SubRegion *SR = dyn_cast<SubRegion>(Val: MR)) { |
2777 | MR = SR->getSuperRegion(); |
2778 | SuperRegions.insert(Ptr: MR); |
2779 | } |
2780 | } |
2781 | |
2782 | CStringLengthTy::Factory &F = state->get_context<CStringLength>(); |
2783 | |
2784 | // Then loop over the entries in the current state. |
2785 | for (const MemRegion *MR : llvm::make_first_range(c&: Entries)) { |
2786 | // Is this entry for a super-region of a changed region? |
2787 | if (SuperRegions.count(Ptr: MR)) { |
2788 | Entries = F.remove(Old: Entries, K: MR); |
2789 | continue; |
2790 | } |
2791 | |
2792 | // Is this entry for a sub-region of a changed region? |
2793 | const MemRegion *Super = MR; |
2794 | while (const SubRegion *SR = dyn_cast<SubRegion>(Val: Super)) { |
2795 | Super = SR->getSuperRegion(); |
2796 | if (Invalidated.count(Ptr: Super)) { |
2797 | Entries = F.remove(Old: Entries, K: MR); |
2798 | break; |
2799 | } |
2800 | } |
2801 | } |
2802 | |
2803 | return state->set<CStringLength>(Entries); |
2804 | } |
2805 | |
2806 | void CStringChecker::checkLiveSymbols(ProgramStateRef state, |
2807 | SymbolReaper &SR) const { |
2808 | // Mark all symbols in our string length map as valid. |
2809 | CStringLengthTy Entries = state->get<CStringLength>(); |
2810 | |
2811 | for (SVal Len : llvm::make_second_range(c&: Entries)) { |
2812 | for (SymbolRef Sym : Len.symbols()) |
2813 | SR.markInUse(sym: Sym); |
2814 | } |
2815 | } |
2816 | |
2817 | void CStringChecker::checkDeadSymbols(SymbolReaper &SR, |
2818 | CheckerContext &C) const { |
2819 | ProgramStateRef state = C.getState(); |
2820 | CStringLengthTy Entries = state->get<CStringLength>(); |
2821 | if (Entries.isEmpty()) |
2822 | return; |
2823 | |
2824 | CStringLengthTy::Factory &F = state->get_context<CStringLength>(); |
2825 | for (auto [Reg, Len] : Entries) { |
2826 | if (SymbolRef Sym = Len.getAsSymbol()) { |
2827 | if (SR.isDead(sym: Sym)) |
2828 | Entries = F.remove(Old: Entries, K: Reg); |
2829 | } |
2830 | } |
2831 | |
2832 | state = state->set<CStringLength>(Entries); |
2833 | C.addTransition(State: state); |
2834 | } |
2835 | |
2836 | void ento::registerCStringModeling(CheckerManager &Mgr) { |
2837 | Mgr.registerChecker<CStringChecker>(); |
2838 | } |
2839 | |
2840 | bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) { |
2841 | return true; |
2842 | } |
2843 | |
2844 | #define REGISTER_CHECKER(name) \ |
2845 | void ento::register##name(CheckerManager &mgr) { \ |
2846 | CStringChecker *checker = mgr.getChecker<CStringChecker>(); \ |
2847 | checker->Filter.Check##name = true; \ |
2848 | checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \ |
2849 | } \ |
2850 | \ |
2851 | bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } |
2852 | |
2853 | REGISTER_CHECKER(CStringNullArg) |
2854 | REGISTER_CHECKER(CStringOutOfBounds) |
2855 | REGISTER_CHECKER(CStringBufferOverlap) |
2856 | REGISTER_CHECKER(CStringNotNullTerm) |
2857 | REGISTER_CHECKER(CStringUninitializedRead) |
2858 | |