1//== MIGChecker.cpp - MIG calling convention checker ------------*- C++ -*--==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines MIGChecker, a Mach Interface Generator calling convention
10// checker. Namely, in MIG callback implementation the following rules apply:
11// - When a server routine returns an error code that represents success, it
12// must take ownership of resources passed to it (and eventually release
13// them).
14// - Additionally, when returning success, all out-parameters must be
15// initialized.
16// - When it returns any other error code, it must not take ownership,
17// because the message and its out-of-line parameters will be destroyed
18// by the client that called the function.
19// For now we only check the last rule, as its violations lead to dangerous
20// use-after-free exploits.
21//
22//===----------------------------------------------------------------------===//
23
24#include "clang/AST/Attr.h"
25#include "clang/Analysis/AnyCall.h"
26#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
27#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
28#include "clang/StaticAnalyzer/Core/Checker.h"
29#include "clang/StaticAnalyzer/Core/CheckerManager.h"
30#include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
31#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
32#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
33#include <optional>
34
35using namespace clang;
36using namespace ento;
37
38namespace {
39class MIGChecker : public Checker<check::PostCall, check::PreStmt<ReturnStmt>,
40 check::EndFunction> {
41 BugType BT{this, "Use-after-free (MIG calling convention violation)",
42 categories::MemoryError};
43
44 // The checker knows that an out-of-line object is deallocated if it is
45 // passed as an argument to one of these functions. If this object is
46 // additionally an argument of a MIG routine, the checker keeps track of that
47 // information and issues a warning when an error is returned from the
48 // respective routine.
49 CallDescriptionMap<unsigned> Deallocators = {
50#define CALL(required_args, deallocated_arg, ...) \
51 {{CDM::SimpleFunc, {__VA_ARGS__}, required_args}, deallocated_arg}
52 // E.g., if the checker sees a C function 'vm_deallocate' that has
53 // exactly 3 parameters, it knows that argument #1 (starting from 0, i.e.
54 // the second argument) is going to be consumed in the sense of the MIG
55 // consume-on-success convention.
56 CALL(3, 1, "vm_deallocate"),
57 CALL(3, 1, "mach_vm_deallocate"),
58 CALL(2, 0, "mig_deallocate"),
59 CALL(2, 1, "mach_port_deallocate"),
60 CALL(1, 0, "device_deallocate"),
61 CALL(1, 0, "iokit_remove_connect_reference"),
62 CALL(1, 0, "iokit_remove_reference"),
63 CALL(1, 0, "iokit_release_port"),
64 CALL(1, 0, "ipc_port_release"),
65 CALL(1, 0, "ipc_port_release_sonce"),
66 CALL(1, 0, "ipc_voucher_attr_control_release"),
67 CALL(1, 0, "ipc_voucher_release"),
68 CALL(1, 0, "lock_set_dereference"),
69 CALL(1, 0, "memory_object_control_deallocate"),
70 CALL(1, 0, "pset_deallocate"),
71 CALL(1, 0, "semaphore_dereference"),
72 CALL(1, 0, "space_deallocate"),
73 CALL(1, 0, "space_inspect_deallocate"),
74 CALL(1, 0, "task_deallocate"),
75 CALL(1, 0, "task_inspect_deallocate"),
76 CALL(1, 0, "task_name_deallocate"),
77 CALL(1, 0, "thread_deallocate"),
78 CALL(1, 0, "thread_inspect_deallocate"),
79 CALL(1, 0, "upl_deallocate"),
80 CALL(1, 0, "vm_map_deallocate"),
81#undef CALL
82#define CALL(required_args, deallocated_arg, ...) \
83 {{CDM::CXXMethod, {__VA_ARGS__}, required_args}, deallocated_arg}
84 // E.g., if the checker sees a method 'releaseAsyncReference64()' that is
85 // defined on class 'IOUserClient' that takes exactly 1 argument, it knows
86 // that the argument is going to be consumed in the sense of the MIG
87 // consume-on-success convention.
88 CALL(1, 0, "IOUserClient", "releaseAsyncReference64"),
89 CALL(1, 0, "IOUserClient", "releaseNotificationPort"),
90#undef CALL
91 };
92
93 CallDescription OsRefRetain{CDM::SimpleFunc, {"os_ref_retain"}, 1};
94
95 void checkReturnAux(const ReturnStmt *RS, CheckerContext &C) const;
96
97public:
98 void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
99
100 // HACK: We're making two attempts to find the bug: checkEndFunction
101 // should normally be enough but it fails when the return value is a literal
102 // that never gets put into the Environment and ends of function with multiple
103 // returns get agglutinated across returns, preventing us from obtaining
104 // the return value. The problem is similar to https://reviews.llvm.org/D25326
105 // but now we step into it in the top-level function.
106 void checkPreStmt(const ReturnStmt *RS, CheckerContext &C) const {
107 checkReturnAux(RS, C);
108 }
109 void checkEndFunction(const ReturnStmt *RS, CheckerContext &C) const {
110 checkReturnAux(RS, C);
111 }
112
113};
114} // end anonymous namespace
115
116// A flag that says that the programmer has called a MIG destructor
117// for at least one parameter.
118REGISTER_TRAIT_WITH_PROGRAMSTATE(ReleasedParameter, bool)
119// A set of parameters for which the check is suppressed because
120// reference counting is being performed.
121REGISTER_SET_WITH_PROGRAMSTATE(RefCountedParameters, const ParmVarDecl *)
122
123static const ParmVarDecl *getOriginParam(SVal V, CheckerContext &C,
124 bool IncludeBaseRegions = false) {
125 // TODO: We should most likely always include base regions here.
126 SymbolRef Sym = V.getAsSymbol(IncludeBaseRegions);
127 if (!Sym)
128 return nullptr;
129
130 // If we optimistically assume that the MIG routine never re-uses the storage
131 // that was passed to it as arguments when it invalidates it (but at most when
132 // it assigns to parameter variables directly), this procedure correctly
133 // determines if the value was loaded from the transitive closure of MIG
134 // routine arguments in the heap.
135 while (const MemRegion *MR = Sym->getOriginRegion()) {
136 const auto *VR = dyn_cast<VarRegion>(Val: MR);
137 if (VR && VR->hasStackParametersStorage() &&
138 VR->getStackFrame()->inTopFrame())
139 return cast<ParmVarDecl>(Val: VR->getDecl());
140
141 const SymbolicRegion *SR = MR->getSymbolicBase();
142 if (!SR)
143 return nullptr;
144
145 Sym = SR->getSymbol();
146 }
147
148 return nullptr;
149}
150
151static bool isInMIGCall(CheckerContext &C) {
152 const LocationContext *LC = C.getLocationContext();
153 assert(LC && "Unknown location context");
154
155 const StackFrameContext *SFC;
156 // Find the top frame.
157 while (LC) {
158 SFC = LC->getStackFrame();
159 LC = SFC->getParent();
160 }
161
162 const Decl *D = SFC->getDecl();
163
164 if (std::optional<AnyCall> AC = AnyCall::forDecl(D)) {
165 // Even though there's a Sema warning when the return type of an annotated
166 // function is not a kern_return_t, this warning isn't an error, so we need
167 // an extra check here.
168 // FIXME: AnyCall doesn't support blocks yet, so they remain unchecked
169 // for now.
170 if (!AC->getReturnType(Ctx&: C.getASTContext())
171 .getCanonicalType()->isSignedIntegerType())
172 return false;
173 }
174
175 if (D->hasAttr<MIGServerRoutineAttr>())
176 return true;
177
178 // See if there's an annotated method in the superclass.
179 if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: D))
180 for (const auto *OMD: MD->overridden_methods())
181 if (OMD->hasAttr<MIGServerRoutineAttr>())
182 return true;
183
184 return false;
185}
186
187void MIGChecker::checkPostCall(const CallEvent &Call, CheckerContext &C) const {
188 if (OsRefRetain.matches(Call)) {
189 // If the code is doing reference counting over the parameter,
190 // it opens up an opportunity for safely calling a destructor function.
191 // TODO: We should still check for over-releases.
192 if (const ParmVarDecl *PVD =
193 getOriginParam(V: Call.getArgSVal(Index: 0), C, /*IncludeBaseRegions=*/true)) {
194 // We never need to clean up the program state because these are
195 // top-level parameters anyway, so they're always live.
196 C.addTransition(State: C.getState()->add<RefCountedParameters>(K: PVD));
197 }
198 return;
199 }
200
201 if (!isInMIGCall(C))
202 return;
203
204 const unsigned *ArgIdxPtr = Deallocators.lookup(Call);
205 if (!ArgIdxPtr)
206 return;
207
208 ProgramStateRef State = C.getState();
209 unsigned ArgIdx = *ArgIdxPtr;
210 SVal Arg = Call.getArgSVal(Index: ArgIdx);
211 const ParmVarDecl *PVD = getOriginParam(V: Arg, C);
212 if (!PVD || State->contains<RefCountedParameters>(key: PVD))
213 return;
214
215 const NoteTag *T =
216 C.getNoteTag(Cb: [this, PVD](PathSensitiveBugReport &BR) -> std::string {
217 if (&BR.getBugType() != &BT)
218 return "";
219 SmallString<64> Str;
220 llvm::raw_svector_ostream OS(Str);
221 OS << "Value passed through parameter '" << PVD->getName()
222 << "\' is deallocated";
223 return std::string(OS.str());
224 });
225 C.addTransition(State: State->set<ReleasedParameter>(true), Tag: T);
226}
227
228// Returns true if V can potentially represent a "successful" kern_return_t.
229static bool mayBeSuccess(SVal V, CheckerContext &C) {
230 ProgramStateRef State = C.getState();
231
232 // Can V represent KERN_SUCCESS?
233 if (!State->isNull(V).isConstrainedFalse())
234 return true;
235
236 SValBuilder &SVB = C.getSValBuilder();
237 ASTContext &ACtx = C.getASTContext();
238
239 // Can V represent MIG_NO_REPLY?
240 static const int MigNoReply = -305;
241 V = SVB.evalEQ(state: C.getState(), lhs: V, rhs: SVB.makeIntVal(integer: MigNoReply, type: ACtx.IntTy));
242 if (!State->isNull(V).isConstrainedTrue())
243 return true;
244
245 // If none of the above, it's definitely an error.
246 return false;
247}
248
249void MIGChecker::checkReturnAux(const ReturnStmt *RS, CheckerContext &C) const {
250 // It is very unlikely that a MIG callback will be called from anywhere
251 // within the project under analysis and the caller isn't itself a routine
252 // that follows the MIG calling convention. Therefore we're safe to believe
253 // that it's always the top frame that is of interest. There's a slight chance
254 // that the user would want to enforce the MIG calling convention upon
255 // a random routine in the middle of nowhere, but given that the convention is
256 // fairly weird and hard to follow in the first place, there's relatively
257 // little motivation to spread it this way.
258 if (!C.inTopFrame())
259 return;
260
261 if (!isInMIGCall(C))
262 return;
263
264 // We know that the function is non-void, but what if the return statement
265 // is not there in the code? It's not a compile error, we should not crash.
266 if (!RS)
267 return;
268
269 ProgramStateRef State = C.getState();
270 if (!State->get<ReleasedParameter>())
271 return;
272
273 SVal V = C.getSVal(S: RS);
274 if (mayBeSuccess(V, C))
275 return;
276
277 ExplodedNode *N = C.generateErrorNode();
278 if (!N)
279 return;
280
281 auto R = std::make_unique<PathSensitiveBugReport>(
282 args: BT,
283 args: "MIG callback fails with error after deallocating argument value. "
284 "This is a use-after-free vulnerability because the caller will try to "
285 "deallocate it again",
286 args&: N);
287
288 R->addRange(R: RS->getSourceRange());
289 bugreporter::trackExpressionValue(
290 N, E: RS->getRetValue(), R&: *R,
291 Opts: {.Kind: bugreporter::TrackingKind::Thorough, /*EnableNullFPSuppression=*/false});
292 C.emitReport(R: std::move(R));
293}
294
295void ento::registerMIGChecker(CheckerManager &Mgr) {
296 Mgr.registerChecker<MIGChecker>();
297}
298
299bool ento::shouldRegisterMIGChecker(const CheckerManager &mgr) {
300 return true;
301}
302