1 | //===-- NullabilityChecker.cpp - Nullability checker ----------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This checker tries to find nullability violations. There are several kinds of |
10 | // possible violations: |
11 | // * Null pointer is passed to a pointer which has a _Nonnull type. |
12 | // * Null pointer is returned from a function which has a _Nonnull return type. |
13 | // * Nullable pointer is passed to a pointer which has a _Nonnull type. |
14 | // * Nullable pointer is returned from a function which has a _Nonnull return |
15 | // type. |
16 | // * Nullable pointer is dereferenced. |
17 | // |
18 | // This checker propagates the nullability information of the pointers and looks |
19 | // for the patterns that are described above. Explicit casts are trusted and are |
20 | // considered a way to suppress false positives for this checker. The other way |
21 | // to suppress warnings would be to add asserts or guarding if statements to the |
22 | // code. In addition to the nullability propagation this checker also uses some |
23 | // heuristics to suppress potential false positives. |
24 | // |
25 | //===----------------------------------------------------------------------===// |
26 | |
27 | #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" |
28 | |
29 | #include "clang/Analysis/AnyCall.h" |
30 | #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" |
31 | #include "clang/StaticAnalyzer/Core/Checker.h" |
32 | #include "clang/StaticAnalyzer/Core/CheckerManager.h" |
33 | #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
34 | #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" |
35 | #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" |
36 | |
37 | #include "llvm/ADT/STLExtras.h" |
38 | #include "llvm/ADT/StringExtras.h" |
39 | #include "llvm/Support/Path.h" |
40 | |
41 | using namespace clang; |
42 | using namespace ento; |
43 | |
44 | namespace { |
45 | |
46 | /// Returns the most nullable nullability. This is used for message expressions |
47 | /// like [receiver method], where the nullability of this expression is either |
48 | /// the nullability of the receiver or the nullability of the return type of the |
49 | /// method, depending on which is more nullable. Contradicted is considered to |
50 | /// be the most nullable, to avoid false positive results. |
51 | Nullability getMostNullable(Nullability Lhs, Nullability Rhs) { |
52 | return static_cast<Nullability>( |
53 | std::min(a: static_cast<char>(Lhs), b: static_cast<char>(Rhs))); |
54 | } |
55 | |
56 | const char *getNullabilityString(Nullability Nullab) { |
57 | switch (Nullab) { |
58 | case Nullability::Contradicted: |
59 | return "contradicted" ; |
60 | case Nullability::Nullable: |
61 | return "nullable" ; |
62 | case Nullability::Unspecified: |
63 | return "unspecified" ; |
64 | case Nullability::Nonnull: |
65 | return "nonnull" ; |
66 | } |
67 | llvm_unreachable("Unexpected enumeration." ); |
68 | return "" ; |
69 | } |
70 | |
71 | // These enums are used as an index to ErrorMessages array. |
72 | enum class ErrorKind : int { |
73 | NilAssignedToNonnull, |
74 | NilPassedToNonnull, |
75 | NilReturnedToNonnull, |
76 | NullableAssignedToNonnull, |
77 | NullableReturnedToNonnull, |
78 | NullableDereferenced, |
79 | NullablePassedToNonnull |
80 | }; |
81 | |
82 | class NullabilityChecker |
83 | : public Checker<check::Bind, check::PreCall, check::PreStmt<ReturnStmt>, |
84 | check::PostCall, check::PostStmt<ExplicitCastExpr>, |
85 | check::PostObjCMessage, check::DeadSymbols, eval::Assume, |
86 | check::Location, check::Event<ImplicitNullDerefEvent>, |
87 | check::BeginFunction> { |
88 | |
89 | public: |
90 | // If true, the checker will not diagnose nullabilility issues for calls |
91 | // to system headers. This option is motivated by the observation that large |
92 | // projects may have many nullability warnings. These projects may |
93 | // find warnings about nullability annotations that they have explicitly |
94 | // added themselves higher priority to fix than warnings on calls to system |
95 | // libraries. |
96 | bool = false; |
97 | |
98 | void checkBind(SVal L, SVal V, const Stmt *S, CheckerContext &C) const; |
99 | void checkPostStmt(const ExplicitCastExpr *CE, CheckerContext &C) const; |
100 | void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const; |
101 | void checkPostObjCMessage(const ObjCMethodCall &M, CheckerContext &C) const; |
102 | void checkPostCall(const CallEvent &Call, CheckerContext &C) const; |
103 | void checkPreCall(const CallEvent &Call, CheckerContext &C) const; |
104 | void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; |
105 | void checkEvent(ImplicitNullDerefEvent Event) const; |
106 | void checkLocation(SVal Location, bool IsLoad, const Stmt *S, |
107 | CheckerContext &C) const; |
108 | void checkBeginFunction(CheckerContext &Ctx) const; |
109 | ProgramStateRef evalAssume(ProgramStateRef State, SVal Cond, |
110 | bool Assumption) const; |
111 | |
112 | void printState(raw_ostream &Out, ProgramStateRef State, const char *NL, |
113 | const char *Sep) const override; |
114 | |
115 | enum CheckKind { |
116 | CK_NullPassedToNonnull, |
117 | CK_NullReturnedFromNonnull, |
118 | CK_NullableDereferenced, |
119 | CK_NullablePassedToNonnull, |
120 | CK_NullableReturnedFromNonnull, |
121 | CK_NumCheckKinds |
122 | }; |
123 | |
124 | bool ChecksEnabled[CK_NumCheckKinds] = {false}; |
125 | CheckerNameRef CheckNames[CK_NumCheckKinds]; |
126 | mutable std::unique_ptr<BugType> BTs[CK_NumCheckKinds]; |
127 | |
128 | const std::unique_ptr<BugType> &getBugType(CheckKind Kind) const { |
129 | if (!BTs[Kind]) |
130 | BTs[Kind].reset(p: new BugType(CheckNames[Kind], "Nullability" , |
131 | categories::MemoryError)); |
132 | return BTs[Kind]; |
133 | } |
134 | |
135 | // When set to false no nullability information will be tracked in |
136 | // NullabilityMap. It is possible to catch errors like passing a null pointer |
137 | // to a callee that expects nonnull argument without the information that is |
138 | // stored in the NullabilityMap. This is an optimization. |
139 | bool NeedTracking = false; |
140 | |
141 | private: |
142 | class NullabilityBugVisitor : public BugReporterVisitor { |
143 | public: |
144 | NullabilityBugVisitor(const MemRegion *M) : Region(M) {} |
145 | |
146 | void Profile(llvm::FoldingSetNodeID &ID) const override { |
147 | static int X = 0; |
148 | ID.AddPointer(Ptr: &X); |
149 | ID.AddPointer(Ptr: Region); |
150 | } |
151 | |
152 | PathDiagnosticPieceRef VisitNode(const ExplodedNode *N, |
153 | BugReporterContext &BRC, |
154 | PathSensitiveBugReport &BR) override; |
155 | |
156 | private: |
157 | // The tracked region. |
158 | const MemRegion *Region; |
159 | }; |
160 | |
161 | /// When any of the nonnull arguments of the analyzed function is null, do not |
162 | /// report anything and turn off the check. |
163 | /// |
164 | /// When \p SuppressPath is set to true, no more bugs will be reported on this |
165 | /// path by this checker. |
166 | void reportBugIfInvariantHolds(StringRef Msg, ErrorKind Error, CheckKind CK, |
167 | ExplodedNode *N, const MemRegion *Region, |
168 | CheckerContext &C, |
169 | const Stmt *ValueExpr = nullptr, |
170 | bool SuppressPath = false) const; |
171 | |
172 | void reportBug(StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N, |
173 | const MemRegion *Region, BugReporter &BR, |
174 | const Stmt *ValueExpr = nullptr) const { |
175 | const std::unique_ptr<BugType> &BT = getBugType(Kind: CK); |
176 | auto R = std::make_unique<PathSensitiveBugReport>(args&: *BT, args&: Msg, args&: N); |
177 | if (Region) { |
178 | R->markInteresting(R: Region); |
179 | R->addVisitor<NullabilityBugVisitor>(ConstructorArgs&: Region); |
180 | } |
181 | if (ValueExpr) { |
182 | R->addRange(R: ValueExpr->getSourceRange()); |
183 | if (Error == ErrorKind::NilAssignedToNonnull || |
184 | Error == ErrorKind::NilPassedToNonnull || |
185 | Error == ErrorKind::NilReturnedToNonnull) |
186 | if (const auto *Ex = dyn_cast<Expr>(Val: ValueExpr)) |
187 | bugreporter::trackExpressionValue(N, E: Ex, R&: *R); |
188 | } |
189 | BR.emitReport(R: std::move(R)); |
190 | } |
191 | |
192 | /// If an SVal wraps a region that should be tracked, it will return a pointer |
193 | /// to the wrapped region. Otherwise it will return a nullptr. |
194 | const SymbolicRegion *getTrackRegion(SVal Val, |
195 | bool CheckSuperRegion = false) const; |
196 | |
197 | /// Returns true if the call is diagnosable in the current analyzer |
198 | /// configuration. |
199 | bool isDiagnosableCall(const CallEvent &Call) const { |
200 | if (NoDiagnoseCallsToSystemHeaders && Call.isInSystemHeader()) |
201 | return false; |
202 | |
203 | return true; |
204 | } |
205 | }; |
206 | |
207 | class NullabilityState { |
208 | public: |
209 | NullabilityState(Nullability Nullab, const Stmt *Source = nullptr) |
210 | : Nullab(Nullab), Source(Source) {} |
211 | |
212 | const Stmt *getNullabilitySource() const { return Source; } |
213 | |
214 | Nullability getValue() const { return Nullab; } |
215 | |
216 | void Profile(llvm::FoldingSetNodeID &ID) const { |
217 | ID.AddInteger(I: static_cast<char>(Nullab)); |
218 | ID.AddPointer(Ptr: Source); |
219 | } |
220 | |
221 | void print(raw_ostream &Out) const { |
222 | Out << getNullabilityString(Nullab) << "\n" ; |
223 | } |
224 | |
225 | private: |
226 | Nullability Nullab; |
227 | // Source is the expression which determined the nullability. For example in a |
228 | // message like [nullable nonnull_returning] has nullable nullability, because |
229 | // the receiver is nullable. Here the receiver will be the source of the |
230 | // nullability. This is useful information when the diagnostics are generated. |
231 | const Stmt *Source; |
232 | }; |
233 | |
234 | bool operator==(NullabilityState Lhs, NullabilityState Rhs) { |
235 | return Lhs.getValue() == Rhs.getValue() && |
236 | Lhs.getNullabilitySource() == Rhs.getNullabilitySource(); |
237 | } |
238 | |
239 | // For the purpose of tracking historical property accesses, the key for lookup |
240 | // is an object pointer (could be an instance or a class) paired with the unique |
241 | // identifier for the property being invoked on that object. |
242 | using ObjectPropPair = std::pair<const MemRegion *, const IdentifierInfo *>; |
243 | |
244 | // Metadata associated with the return value from a recorded property access. |
245 | struct ConstrainedPropertyVal { |
246 | // This will reference the conjured return SVal for some call |
247 | // of the form [object property] |
248 | DefinedOrUnknownSVal Value; |
249 | |
250 | // If the SVal has been determined to be nonnull, that is recorded here |
251 | bool isConstrainedNonnull; |
252 | |
253 | ConstrainedPropertyVal(DefinedOrUnknownSVal SV) |
254 | : Value(SV), isConstrainedNonnull(false) {} |
255 | |
256 | void Profile(llvm::FoldingSetNodeID &ID) const { |
257 | Value.Profile(ID); |
258 | ID.AddInteger(I: isConstrainedNonnull ? 1 : 0); |
259 | } |
260 | }; |
261 | |
262 | bool operator==(const ConstrainedPropertyVal &Lhs, |
263 | const ConstrainedPropertyVal &Rhs) { |
264 | return Lhs.Value == Rhs.Value && |
265 | Lhs.isConstrainedNonnull == Rhs.isConstrainedNonnull; |
266 | } |
267 | |
268 | } // end anonymous namespace |
269 | |
270 | REGISTER_MAP_WITH_PROGRAMSTATE(NullabilityMap, const MemRegion *, |
271 | NullabilityState) |
272 | REGISTER_MAP_WITH_PROGRAMSTATE(PropertyAccessesMap, ObjectPropPair, |
273 | ConstrainedPropertyVal) |
274 | |
275 | // We say "the nullability type invariant is violated" when a location with a |
276 | // non-null type contains NULL or a function with a non-null return type returns |
277 | // NULL. Violations of the nullability type invariant can be detected either |
278 | // directly (for example, when NULL is passed as an argument to a nonnull |
279 | // parameter) or indirectly (for example, when, inside a function, the |
280 | // programmer defensively checks whether a nonnull parameter contains NULL and |
281 | // finds that it does). |
282 | // |
283 | // As a matter of policy, the nullability checker typically warns on direct |
284 | // violations of the nullability invariant (although it uses various |
285 | // heuristics to suppress warnings in some cases) but will not warn if the |
286 | // invariant has already been violated along the path (either directly or |
287 | // indirectly). As a practical matter, this prevents the analyzer from |
288 | // (1) warning on defensive code paths where a nullability precondition is |
289 | // determined to have been violated, (2) warning additional times after an |
290 | // initial direct violation has been discovered, and (3) warning after a direct |
291 | // violation that has been implicitly or explicitly suppressed (for |
292 | // example, with a cast of NULL to _Nonnull). In essence, once an invariant |
293 | // violation is detected on a path, this checker will be essentially turned off |
294 | // for the rest of the analysis |
295 | // |
296 | // The analyzer takes this approach (rather than generating a sink node) to |
297 | // ensure coverage of defensive paths, which may be important for backwards |
298 | // compatibility in codebases that were developed without nullability in mind. |
299 | REGISTER_TRAIT_WITH_PROGRAMSTATE(InvariantViolated, bool) |
300 | |
301 | enum class NullConstraint { IsNull, IsNotNull, Unknown }; |
302 | |
303 | static NullConstraint getNullConstraint(DefinedOrUnknownSVal Val, |
304 | ProgramStateRef State) { |
305 | ConditionTruthVal Nullness = State->isNull(V: Val); |
306 | if (Nullness.isConstrainedFalse()) |
307 | return NullConstraint::IsNotNull; |
308 | if (Nullness.isConstrainedTrue()) |
309 | return NullConstraint::IsNull; |
310 | return NullConstraint::Unknown; |
311 | } |
312 | |
313 | static bool isValidPointerType(QualType T) { |
314 | return T->isAnyPointerType() || T->isBlockPointerType(); |
315 | } |
316 | |
317 | const SymbolicRegion * |
318 | NullabilityChecker::getTrackRegion(SVal Val, bool CheckSuperRegion) const { |
319 | if (!NeedTracking) |
320 | return nullptr; |
321 | |
322 | auto RegionSVal = Val.getAs<loc::MemRegionVal>(); |
323 | if (!RegionSVal) |
324 | return nullptr; |
325 | |
326 | const MemRegion *Region = RegionSVal->getRegion(); |
327 | |
328 | if (CheckSuperRegion) { |
329 | if (const SubRegion *FieldReg = Region->getAs<FieldRegion>()) { |
330 | if (const auto *ER = dyn_cast<ElementRegion>(Val: FieldReg->getSuperRegion())) |
331 | FieldReg = ER; |
332 | return dyn_cast<SymbolicRegion>(Val: FieldReg->getSuperRegion()); |
333 | } |
334 | if (auto ElementReg = Region->getAs<ElementRegion>()) |
335 | return dyn_cast<SymbolicRegion>(Val: ElementReg->getSuperRegion()); |
336 | } |
337 | |
338 | return dyn_cast<SymbolicRegion>(Val: Region); |
339 | } |
340 | |
341 | PathDiagnosticPieceRef NullabilityChecker::NullabilityBugVisitor::VisitNode( |
342 | const ExplodedNode *N, BugReporterContext &BRC, |
343 | PathSensitiveBugReport &BR) { |
344 | ProgramStateRef State = N->getState(); |
345 | ProgramStateRef StatePrev = N->getFirstPred()->getState(); |
346 | |
347 | const NullabilityState *TrackedNullab = State->get<NullabilityMap>(key: Region); |
348 | const NullabilityState *TrackedNullabPrev = |
349 | StatePrev->get<NullabilityMap>(key: Region); |
350 | if (!TrackedNullab) |
351 | return nullptr; |
352 | |
353 | if (TrackedNullabPrev && |
354 | TrackedNullabPrev->getValue() == TrackedNullab->getValue()) |
355 | return nullptr; |
356 | |
357 | // Retrieve the associated statement. |
358 | const Stmt *S = TrackedNullab->getNullabilitySource(); |
359 | if (!S || S->getBeginLoc().isInvalid()) { |
360 | S = N->getStmtForDiagnostics(); |
361 | } |
362 | |
363 | if (!S) |
364 | return nullptr; |
365 | |
366 | std::string InfoText = |
367 | (llvm::Twine("Nullability '" ) + |
368 | getNullabilityString(Nullab: TrackedNullab->getValue()) + "' is inferred" ) |
369 | .str(); |
370 | |
371 | // Generate the extra diagnostic. |
372 | PathDiagnosticLocation Pos(S, BRC.getSourceManager(), |
373 | N->getLocationContext()); |
374 | return std::make_shared<PathDiagnosticEventPiece>(args&: Pos, args&: InfoText, args: true); |
375 | } |
376 | |
377 | /// Returns true when the value stored at the given location has been |
378 | /// constrained to null after being passed through an object of nonnnull type. |
379 | static bool checkValueAtLValForInvariantViolation(ProgramStateRef State, |
380 | SVal LV, QualType T) { |
381 | if (getNullabilityAnnotation(Type: T) != Nullability::Nonnull) |
382 | return false; |
383 | |
384 | auto RegionVal = LV.getAs<loc::MemRegionVal>(); |
385 | if (!RegionVal) |
386 | return false; |
387 | |
388 | // If the value was constrained to null *after* it was passed through that |
389 | // location, it could not have been a concrete pointer *when* it was passed. |
390 | // In that case we would have handled the situation when the value was |
391 | // bound to that location, by emitting (or not emitting) a report. |
392 | // Therefore we are only interested in symbolic regions that can be either |
393 | // null or non-null depending on the value of their respective symbol. |
394 | auto StoredVal = State->getSVal(LV: *RegionVal).getAs<loc::MemRegionVal>(); |
395 | if (!StoredVal || !isa<SymbolicRegion>(Val: StoredVal->getRegion())) |
396 | return false; |
397 | |
398 | if (getNullConstraint(Val: *StoredVal, State) == NullConstraint::IsNull) |
399 | return true; |
400 | |
401 | return false; |
402 | } |
403 | |
404 | static bool |
405 | checkParamsForPreconditionViolation(ArrayRef<ParmVarDecl *> Params, |
406 | ProgramStateRef State, |
407 | const LocationContext *LocCtxt) { |
408 | for (const auto *ParamDecl : Params) { |
409 | if (ParamDecl->isParameterPack()) |
410 | break; |
411 | |
412 | SVal LV = State->getLValue(VD: ParamDecl, LC: LocCtxt); |
413 | if (checkValueAtLValForInvariantViolation(State, LV, |
414 | T: ParamDecl->getType())) { |
415 | return true; |
416 | } |
417 | } |
418 | return false; |
419 | } |
420 | |
421 | static bool |
422 | checkSelfIvarsForInvariantViolation(ProgramStateRef State, |
423 | const LocationContext *LocCtxt) { |
424 | auto *MD = dyn_cast<ObjCMethodDecl>(Val: LocCtxt->getDecl()); |
425 | if (!MD || !MD->isInstanceMethod()) |
426 | return false; |
427 | |
428 | const ImplicitParamDecl *SelfDecl = LocCtxt->getSelfDecl(); |
429 | if (!SelfDecl) |
430 | return false; |
431 | |
432 | SVal SelfVal = State->getSVal(R: State->getRegion(D: SelfDecl, LC: LocCtxt)); |
433 | |
434 | const ObjCObjectPointerType *SelfType = |
435 | dyn_cast<ObjCObjectPointerType>(Val: SelfDecl->getType()); |
436 | if (!SelfType) |
437 | return false; |
438 | |
439 | const ObjCInterfaceDecl *ID = SelfType->getInterfaceDecl(); |
440 | if (!ID) |
441 | return false; |
442 | |
443 | for (const auto *IvarDecl : ID->ivars()) { |
444 | SVal LV = State->getLValue(D: IvarDecl, Base: SelfVal); |
445 | if (checkValueAtLValForInvariantViolation(State, LV, T: IvarDecl->getType())) { |
446 | return true; |
447 | } |
448 | } |
449 | return false; |
450 | } |
451 | |
452 | static bool checkInvariantViolation(ProgramStateRef State, ExplodedNode *N, |
453 | CheckerContext &C) { |
454 | if (State->get<InvariantViolated>()) |
455 | return true; |
456 | |
457 | const LocationContext *LocCtxt = C.getLocationContext(); |
458 | const Decl *D = LocCtxt->getDecl(); |
459 | if (!D) |
460 | return false; |
461 | |
462 | ArrayRef<ParmVarDecl*> Params; |
463 | if (const auto *BD = dyn_cast<BlockDecl>(Val: D)) |
464 | Params = BD->parameters(); |
465 | else if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
466 | Params = FD->parameters(); |
467 | else if (const auto *MD = dyn_cast<ObjCMethodDecl>(Val: D)) |
468 | Params = MD->parameters(); |
469 | else |
470 | return false; |
471 | |
472 | if (checkParamsForPreconditionViolation(Params, State, LocCtxt) || |
473 | checkSelfIvarsForInvariantViolation(State, LocCtxt)) { |
474 | if (!N->isSink()) |
475 | C.addTransition(State: State->set<InvariantViolated>(true), Pred: N); |
476 | return true; |
477 | } |
478 | return false; |
479 | } |
480 | |
481 | void NullabilityChecker::reportBugIfInvariantHolds( |
482 | StringRef Msg, ErrorKind Error, CheckKind CK, ExplodedNode *N, |
483 | const MemRegion *Region, CheckerContext &C, const Stmt *ValueExpr, |
484 | bool SuppressPath) const { |
485 | ProgramStateRef OriginalState = N->getState(); |
486 | |
487 | if (checkInvariantViolation(State: OriginalState, N, C)) |
488 | return; |
489 | if (SuppressPath) { |
490 | OriginalState = OriginalState->set<InvariantViolated>(true); |
491 | N = C.addTransition(State: OriginalState, Pred: N); |
492 | } |
493 | |
494 | reportBug(Msg, Error, CK, N, Region, BR&: C.getBugReporter(), ValueExpr); |
495 | } |
496 | |
497 | /// Cleaning up the program state. |
498 | void NullabilityChecker::checkDeadSymbols(SymbolReaper &SR, |
499 | CheckerContext &C) const { |
500 | ProgramStateRef State = C.getState(); |
501 | NullabilityMapTy Nullabilities = State->get<NullabilityMap>(); |
502 | for (const MemRegion *Reg : llvm::make_first_range(c&: Nullabilities)) { |
503 | const auto *Region = Reg->getAs<SymbolicRegion>(); |
504 | assert(Region && "Non-symbolic region is tracked." ); |
505 | if (SR.isDead(sym: Region->getSymbol())) { |
506 | State = State->remove<NullabilityMap>(K: Reg); |
507 | } |
508 | } |
509 | |
510 | // When an object goes out of scope, we can free the history associated |
511 | // with any property accesses on that object |
512 | PropertyAccessesMapTy PropertyAccesses = State->get<PropertyAccessesMap>(); |
513 | for (ObjectPropPair PropKey : llvm::make_first_range(c&: PropertyAccesses)) { |
514 | const MemRegion *ReceiverRegion = PropKey.first; |
515 | if (!SR.isLiveRegion(region: ReceiverRegion)) { |
516 | State = State->remove<PropertyAccessesMap>(K: PropKey); |
517 | } |
518 | } |
519 | |
520 | // When one of the nonnull arguments are constrained to be null, nullability |
521 | // preconditions are violated. It is not enough to check this only when we |
522 | // actually report an error, because at that time interesting symbols might be |
523 | // reaped. |
524 | if (checkInvariantViolation(State, N: C.getPredecessor(), C)) |
525 | return; |
526 | C.addTransition(State); |
527 | } |
528 | |
529 | /// This callback triggers when a pointer is dereferenced and the analyzer does |
530 | /// not know anything about the value of that pointer. When that pointer is |
531 | /// nullable, this code emits a warning. |
532 | void NullabilityChecker::checkEvent(ImplicitNullDerefEvent Event) const { |
533 | if (Event.SinkNode->getState()->get<InvariantViolated>()) |
534 | return; |
535 | |
536 | const MemRegion *Region = |
537 | getTrackRegion(Val: Event.Location, /*CheckSuperRegion=*/true); |
538 | if (!Region) |
539 | return; |
540 | |
541 | ProgramStateRef State = Event.SinkNode->getState(); |
542 | const NullabilityState *TrackedNullability = |
543 | State->get<NullabilityMap>(key: Region); |
544 | |
545 | if (!TrackedNullability) |
546 | return; |
547 | |
548 | if (ChecksEnabled[CK_NullableDereferenced] && |
549 | TrackedNullability->getValue() == Nullability::Nullable) { |
550 | BugReporter &BR = *Event.BR; |
551 | // Do not suppress errors on defensive code paths, because dereferencing |
552 | // a nullable pointer is always an error. |
553 | if (Event.IsDirectDereference) |
554 | reportBug(Msg: "Nullable pointer is dereferenced" , |
555 | Error: ErrorKind::NullableDereferenced, CK: CK_NullableDereferenced, |
556 | N: Event.SinkNode, Region, BR); |
557 | else { |
558 | reportBug(Msg: "Nullable pointer is passed to a callee that requires a " |
559 | "non-null" , |
560 | Error: ErrorKind::NullablePassedToNonnull, CK: CK_NullableDereferenced, |
561 | N: Event.SinkNode, Region, BR); |
562 | } |
563 | } |
564 | } |
565 | |
566 | void NullabilityChecker::checkBeginFunction(CheckerContext &C) const { |
567 | if (!C.inTopFrame()) |
568 | return; |
569 | |
570 | const LocationContext *LCtx = C.getLocationContext(); |
571 | auto AbstractCall = AnyCall::forDecl(D: LCtx->getDecl()); |
572 | if (!AbstractCall || AbstractCall->parameters().empty()) |
573 | return; |
574 | |
575 | ProgramStateRef State = C.getState(); |
576 | for (const ParmVarDecl *Param : AbstractCall->parameters()) { |
577 | if (!isValidPointerType(T: Param->getType())) |
578 | continue; |
579 | |
580 | Nullability RequiredNullability = |
581 | getNullabilityAnnotation(Type: Param->getType()); |
582 | if (RequiredNullability != Nullability::Nullable) |
583 | continue; |
584 | |
585 | const VarRegion *ParamRegion = State->getRegion(D: Param, LC: LCtx); |
586 | const MemRegion *ParamPointeeRegion = |
587 | State->getSVal(R: ParamRegion).getAsRegion(); |
588 | if (!ParamPointeeRegion) |
589 | continue; |
590 | |
591 | State = State->set<NullabilityMap>(K: ParamPointeeRegion, |
592 | E: NullabilityState(RequiredNullability)); |
593 | } |
594 | C.addTransition(State); |
595 | } |
596 | |
597 | // Whenever we see a load from a typed memory region that's been annotated as |
598 | // 'nonnull', we want to trust the user on that and assume that it is is indeed |
599 | // non-null. |
600 | // |
601 | // We do so even if the value is known to have been assigned to null. |
602 | // The user should be warned on assigning the null value to a non-null pointer |
603 | // as opposed to warning on the later dereference of this pointer. |
604 | // |
605 | // \code |
606 | // int * _Nonnull var = 0; // we want to warn the user here... |
607 | // // . . . |
608 | // *var = 42; // ...and not here |
609 | // \endcode |
610 | void NullabilityChecker::checkLocation(SVal Location, bool IsLoad, |
611 | const Stmt *S, |
612 | CheckerContext &Context) const { |
613 | // We should care only about loads. |
614 | // The main idea is to add a constraint whenever we're loading a value from |
615 | // an annotated pointer type. |
616 | if (!IsLoad) |
617 | return; |
618 | |
619 | // Annotations that we want to consider make sense only for types. |
620 | const auto *Region = |
621 | dyn_cast_or_null<TypedValueRegion>(Val: Location.getAsRegion()); |
622 | if (!Region) |
623 | return; |
624 | |
625 | ProgramStateRef State = Context.getState(); |
626 | |
627 | auto StoredVal = State->getSVal(R: Region).getAs<loc::MemRegionVal>(); |
628 | if (!StoredVal) |
629 | return; |
630 | |
631 | Nullability NullabilityOfTheLoadedValue = |
632 | getNullabilityAnnotation(Type: Region->getValueType()); |
633 | |
634 | if (NullabilityOfTheLoadedValue == Nullability::Nonnull) { |
635 | // It doesn't matter what we think about this particular pointer, it should |
636 | // be considered non-null as annotated by the developer. |
637 | if (ProgramStateRef NewState = State->assume(Cond: *StoredVal, Assumption: true)) { |
638 | Context.addTransition(State: NewState); |
639 | } |
640 | } |
641 | } |
642 | |
643 | /// Find the outermost subexpression of E that is not an implicit cast. |
644 | /// This looks through the implicit casts to _Nonnull that ARC adds to |
645 | /// return expressions of ObjC types when the return type of the function or |
646 | /// method is non-null but the express is not. |
647 | static const Expr *lookThroughImplicitCasts(const Expr *E) { |
648 | return E->IgnoreImpCasts(); |
649 | } |
650 | |
651 | /// This method check when nullable pointer or null value is returned from a |
652 | /// function that has nonnull return type. |
653 | void NullabilityChecker::checkPreStmt(const ReturnStmt *S, |
654 | CheckerContext &C) const { |
655 | auto RetExpr = S->getRetValue(); |
656 | if (!RetExpr) |
657 | return; |
658 | |
659 | if (!isValidPointerType(T: RetExpr->getType())) |
660 | return; |
661 | |
662 | ProgramStateRef State = C.getState(); |
663 | if (State->get<InvariantViolated>()) |
664 | return; |
665 | |
666 | auto RetSVal = C.getSVal(S).getAs<DefinedOrUnknownSVal>(); |
667 | if (!RetSVal) |
668 | return; |
669 | |
670 | bool InSuppressedMethodFamily = false; |
671 | |
672 | QualType RequiredRetType; |
673 | AnalysisDeclContext *DeclCtxt = |
674 | C.getLocationContext()->getAnalysisDeclContext(); |
675 | const Decl *D = DeclCtxt->getDecl(); |
676 | if (auto *MD = dyn_cast<ObjCMethodDecl>(Val: D)) { |
677 | // HACK: This is a big hammer to avoid warning when there are defensive |
678 | // nil checks in -init and -copy methods. We should add more sophisticated |
679 | // logic here to suppress on common defensive idioms but still |
680 | // warn when there is a likely problem. |
681 | ObjCMethodFamily Family = MD->getMethodFamily(); |
682 | if (OMF_init == Family || OMF_copy == Family || OMF_mutableCopy == Family) |
683 | InSuppressedMethodFamily = true; |
684 | |
685 | RequiredRetType = MD->getReturnType(); |
686 | } else if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
687 | RequiredRetType = FD->getReturnType(); |
688 | } else { |
689 | return; |
690 | } |
691 | |
692 | NullConstraint Nullness = getNullConstraint(Val: *RetSVal, State); |
693 | |
694 | Nullability RequiredNullability = getNullabilityAnnotation(Type: RequiredRetType); |
695 | |
696 | // If the returned value is null but the type of the expression |
697 | // generating it is nonnull then we will suppress the diagnostic. |
698 | // This enables explicit suppression when returning a nil literal in a |
699 | // function with a _Nonnull return type: |
700 | // return (NSString * _Nonnull)0; |
701 | Nullability RetExprTypeLevelNullability = |
702 | getNullabilityAnnotation(Type: lookThroughImplicitCasts(E: RetExpr)->getType()); |
703 | |
704 | bool NullReturnedFromNonNull = (RequiredNullability == Nullability::Nonnull && |
705 | Nullness == NullConstraint::IsNull); |
706 | if (ChecksEnabled[CK_NullReturnedFromNonnull] && NullReturnedFromNonNull && |
707 | RetExprTypeLevelNullability != Nullability::Nonnull && |
708 | !InSuppressedMethodFamily && C.getLocationContext()->inTopFrame()) { |
709 | static CheckerProgramPointTag Tag(this, "NullReturnedFromNonnull" ); |
710 | ExplodedNode *N = C.generateErrorNode(State, Tag: &Tag); |
711 | if (!N) |
712 | return; |
713 | |
714 | SmallString<256> SBuf; |
715 | llvm::raw_svector_ostream OS(SBuf); |
716 | OS << (RetExpr->getType()->isObjCObjectPointerType() ? "nil" : "Null" ); |
717 | OS << " returned from a " << C.getDeclDescription(D) << |
718 | " that is expected to return a non-null value" ; |
719 | reportBugIfInvariantHolds(Msg: OS.str(), Error: ErrorKind::NilReturnedToNonnull, |
720 | CK: CK_NullReturnedFromNonnull, N, Region: nullptr, C, |
721 | ValueExpr: RetExpr); |
722 | return; |
723 | } |
724 | |
725 | // If null was returned from a non-null function, mark the nullability |
726 | // invariant as violated even if the diagnostic was suppressed. |
727 | if (NullReturnedFromNonNull) { |
728 | State = State->set<InvariantViolated>(true); |
729 | C.addTransition(State); |
730 | return; |
731 | } |
732 | |
733 | const MemRegion *Region = getTrackRegion(Val: *RetSVal); |
734 | if (!Region) |
735 | return; |
736 | |
737 | const NullabilityState *TrackedNullability = |
738 | State->get<NullabilityMap>(key: Region); |
739 | if (TrackedNullability) { |
740 | Nullability TrackedNullabValue = TrackedNullability->getValue(); |
741 | if (ChecksEnabled[CK_NullableReturnedFromNonnull] && |
742 | Nullness != NullConstraint::IsNotNull && |
743 | TrackedNullabValue == Nullability::Nullable && |
744 | RequiredNullability == Nullability::Nonnull) { |
745 | static CheckerProgramPointTag Tag(this, "NullableReturnedFromNonnull" ); |
746 | ExplodedNode *N = C.addTransition(State, Pred: C.getPredecessor(), Tag: &Tag); |
747 | |
748 | SmallString<256> SBuf; |
749 | llvm::raw_svector_ostream OS(SBuf); |
750 | OS << "Nullable pointer is returned from a " << C.getDeclDescription(D) << |
751 | " that is expected to return a non-null value" ; |
752 | |
753 | reportBugIfInvariantHolds(Msg: OS.str(), Error: ErrorKind::NullableReturnedToNonnull, |
754 | CK: CK_NullableReturnedFromNonnull, N, Region, C); |
755 | } |
756 | return; |
757 | } |
758 | if (RequiredNullability == Nullability::Nullable) { |
759 | State = State->set<NullabilityMap>(K: Region, |
760 | E: NullabilityState(RequiredNullability, |
761 | S)); |
762 | C.addTransition(State); |
763 | } |
764 | } |
765 | |
766 | /// This callback warns when a nullable pointer or a null value is passed to a |
767 | /// function that expects its argument to be nonnull. |
768 | void NullabilityChecker::checkPreCall(const CallEvent &Call, |
769 | CheckerContext &C) const { |
770 | if (!Call.getDecl()) |
771 | return; |
772 | |
773 | ProgramStateRef State = C.getState(); |
774 | if (State->get<InvariantViolated>()) |
775 | return; |
776 | |
777 | ProgramStateRef OrigState = State; |
778 | |
779 | unsigned Idx = 0; |
780 | for (const ParmVarDecl *Param : Call.parameters()) { |
781 | if (Param->isParameterPack()) |
782 | break; |
783 | |
784 | if (Idx >= Call.getNumArgs()) |
785 | break; |
786 | |
787 | const Expr *ArgExpr = Call.getArgExpr(Index: Idx); |
788 | auto ArgSVal = Call.getArgSVal(Index: Idx++).getAs<DefinedOrUnknownSVal>(); |
789 | if (!ArgSVal) |
790 | continue; |
791 | |
792 | if (!isValidPointerType(T: Param->getType()) && |
793 | !Param->getType()->isReferenceType()) |
794 | continue; |
795 | |
796 | NullConstraint Nullness = getNullConstraint(Val: *ArgSVal, State); |
797 | |
798 | Nullability RequiredNullability = |
799 | getNullabilityAnnotation(Type: Param->getType()); |
800 | Nullability ArgExprTypeLevelNullability = |
801 | getNullabilityAnnotation(Type: lookThroughImplicitCasts(E: ArgExpr)->getType()); |
802 | |
803 | unsigned ParamIdx = Param->getFunctionScopeIndex() + 1; |
804 | |
805 | if (ChecksEnabled[CK_NullPassedToNonnull] && |
806 | Nullness == NullConstraint::IsNull && |
807 | ArgExprTypeLevelNullability != Nullability::Nonnull && |
808 | RequiredNullability == Nullability::Nonnull && |
809 | isDiagnosableCall(Call)) { |
810 | ExplodedNode *N = C.generateErrorNode(State); |
811 | if (!N) |
812 | return; |
813 | |
814 | SmallString<256> SBuf; |
815 | llvm::raw_svector_ostream OS(SBuf); |
816 | OS << (Param->getType()->isObjCObjectPointerType() ? "nil" : "Null" ); |
817 | OS << " passed to a callee that requires a non-null " << ParamIdx |
818 | << llvm::getOrdinalSuffix(Val: ParamIdx) << " parameter" ; |
819 | reportBugIfInvariantHolds(Msg: OS.str(), Error: ErrorKind::NilPassedToNonnull, |
820 | CK: CK_NullPassedToNonnull, N, Region: nullptr, C, ValueExpr: ArgExpr, |
821 | /*SuppressPath=*/false); |
822 | return; |
823 | } |
824 | |
825 | const MemRegion *Region = getTrackRegion(Val: *ArgSVal); |
826 | if (!Region) |
827 | continue; |
828 | |
829 | const NullabilityState *TrackedNullability = |
830 | State->get<NullabilityMap>(key: Region); |
831 | |
832 | if (TrackedNullability) { |
833 | if (Nullness == NullConstraint::IsNotNull || |
834 | TrackedNullability->getValue() != Nullability::Nullable) |
835 | continue; |
836 | |
837 | if (ChecksEnabled[CK_NullablePassedToNonnull] && |
838 | RequiredNullability == Nullability::Nonnull && |
839 | isDiagnosableCall(Call)) { |
840 | ExplodedNode *N = C.addTransition(State); |
841 | SmallString<256> SBuf; |
842 | llvm::raw_svector_ostream OS(SBuf); |
843 | OS << "Nullable pointer is passed to a callee that requires a non-null " |
844 | << ParamIdx << llvm::getOrdinalSuffix(Val: ParamIdx) << " parameter" ; |
845 | reportBugIfInvariantHolds(Msg: OS.str(), Error: ErrorKind::NullablePassedToNonnull, |
846 | CK: CK_NullablePassedToNonnull, N, Region, C, |
847 | ValueExpr: ArgExpr, /*SuppressPath=*/true); |
848 | return; |
849 | } |
850 | if (ChecksEnabled[CK_NullableDereferenced] && |
851 | Param->getType()->isReferenceType()) { |
852 | ExplodedNode *N = C.addTransition(State); |
853 | reportBugIfInvariantHolds(Msg: "Nullable pointer is dereferenced" , |
854 | Error: ErrorKind::NullableDereferenced, |
855 | CK: CK_NullableDereferenced, N, Region, C, |
856 | ValueExpr: ArgExpr, /*SuppressPath=*/true); |
857 | return; |
858 | } |
859 | continue; |
860 | } |
861 | } |
862 | if (State != OrigState) |
863 | C.addTransition(State); |
864 | } |
865 | |
866 | /// Suppress the nullability warnings for some functions. |
867 | void NullabilityChecker::checkPostCall(const CallEvent &Call, |
868 | CheckerContext &C) const { |
869 | auto Decl = Call.getDecl(); |
870 | if (!Decl) |
871 | return; |
872 | // ObjC Messages handles in a different callback. |
873 | if (Call.getKind() == CE_ObjCMessage) |
874 | return; |
875 | const FunctionType *FuncType = Decl->getFunctionType(); |
876 | if (!FuncType) |
877 | return; |
878 | QualType ReturnType = FuncType->getReturnType(); |
879 | if (!isValidPointerType(T: ReturnType)) |
880 | return; |
881 | ProgramStateRef State = C.getState(); |
882 | if (State->get<InvariantViolated>()) |
883 | return; |
884 | |
885 | const MemRegion *Region = getTrackRegion(Val: Call.getReturnValue()); |
886 | if (!Region) |
887 | return; |
888 | |
889 | // CG headers are misannotated. Do not warn for symbols that are the results |
890 | // of CG calls. |
891 | const SourceManager &SM = C.getSourceManager(); |
892 | StringRef FilePath = SM.getFilename(SpellingLoc: SM.getSpellingLoc(Loc: Decl->getBeginLoc())); |
893 | if (llvm::sys::path::filename(path: FilePath).starts_with(Prefix: "CG" )) { |
894 | State = State->set<NullabilityMap>(K: Region, E: Nullability::Contradicted); |
895 | C.addTransition(State); |
896 | return; |
897 | } |
898 | |
899 | const NullabilityState *TrackedNullability = |
900 | State->get<NullabilityMap>(key: Region); |
901 | |
902 | // ObjCMessageExpr gets the actual type through |
903 | // Sema::getMessageSendResultType, instead of using the return type of |
904 | // MethodDecl directly. The final type is generated by considering the |
905 | // nullability of receiver and MethodDecl together. Thus, The type of |
906 | // ObjCMessageExpr is prefer. |
907 | if (const Expr *E = Call.getOriginExpr()) |
908 | ReturnType = E->getType(); |
909 | |
910 | if (!TrackedNullability && |
911 | getNullabilityAnnotation(Type: ReturnType) == Nullability::Nullable) { |
912 | State = State->set<NullabilityMap>(K: Region, E: Nullability::Nullable); |
913 | C.addTransition(State); |
914 | } |
915 | } |
916 | |
917 | static Nullability getReceiverNullability(const ObjCMethodCall &M, |
918 | ProgramStateRef State) { |
919 | if (M.isReceiverSelfOrSuper()) { |
920 | // For super and super class receivers we assume that the receiver is |
921 | // nonnull. |
922 | return Nullability::Nonnull; |
923 | } |
924 | // Otherwise look up nullability in the state. |
925 | SVal Receiver = M.getReceiverSVal(); |
926 | if (auto DefOrUnknown = Receiver.getAs<DefinedOrUnknownSVal>()) { |
927 | // If the receiver is constrained to be nonnull, assume that it is nonnull |
928 | // regardless of its type. |
929 | NullConstraint Nullness = getNullConstraint(Val: *DefOrUnknown, State); |
930 | if (Nullness == NullConstraint::IsNotNull) |
931 | return Nullability::Nonnull; |
932 | } |
933 | auto ValueRegionSVal = Receiver.getAs<loc::MemRegionVal>(); |
934 | if (ValueRegionSVal) { |
935 | const MemRegion *SelfRegion = ValueRegionSVal->getRegion(); |
936 | assert(SelfRegion); |
937 | |
938 | const NullabilityState *TrackedSelfNullability = |
939 | State->get<NullabilityMap>(key: SelfRegion); |
940 | if (TrackedSelfNullability) |
941 | return TrackedSelfNullability->getValue(); |
942 | } |
943 | return Nullability::Unspecified; |
944 | } |
945 | |
946 | // The return value of a property access is typically a temporary value which |
947 | // will not be tracked in a persistent manner by the analyzer. We use |
948 | // evalAssume() in order to immediately record constraints on those temporaries |
949 | // at the time they are imposed (e.g. by a nil-check conditional). |
950 | ProgramStateRef NullabilityChecker::evalAssume(ProgramStateRef State, SVal Cond, |
951 | bool Assumption) const { |
952 | PropertyAccessesMapTy PropertyAccesses = State->get<PropertyAccessesMap>(); |
953 | for (auto [PropKey, PropVal] : PropertyAccesses) { |
954 | if (!PropVal.isConstrainedNonnull) { |
955 | ConditionTruthVal IsNonNull = State->isNonNull(V: PropVal.Value); |
956 | if (IsNonNull.isConstrainedTrue()) { |
957 | ConstrainedPropertyVal Replacement = PropVal; |
958 | Replacement.isConstrainedNonnull = true; |
959 | State = State->set<PropertyAccessesMap>(K: PropKey, E: Replacement); |
960 | } else if (IsNonNull.isConstrainedFalse()) { |
961 | // Space optimization: no point in tracking constrained-null cases |
962 | State = State->remove<PropertyAccessesMap>(K: PropKey); |
963 | } |
964 | } |
965 | } |
966 | |
967 | return State; |
968 | } |
969 | |
970 | /// Calculate the nullability of the result of a message expr based on the |
971 | /// nullability of the receiver, the nullability of the return value, and the |
972 | /// constraints. |
973 | void NullabilityChecker::checkPostObjCMessage(const ObjCMethodCall &M, |
974 | CheckerContext &C) const { |
975 | auto Decl = M.getDecl(); |
976 | if (!Decl) |
977 | return; |
978 | QualType RetType = Decl->getReturnType(); |
979 | if (!isValidPointerType(T: RetType)) |
980 | return; |
981 | |
982 | ProgramStateRef State = C.getState(); |
983 | if (State->get<InvariantViolated>()) |
984 | return; |
985 | |
986 | const MemRegion *ReturnRegion = getTrackRegion(Val: M.getReturnValue()); |
987 | if (!ReturnRegion) |
988 | return; |
989 | |
990 | auto Interface = Decl->getClassInterface(); |
991 | auto Name = Interface ? Interface->getName() : "" ; |
992 | // In order to reduce the noise in the diagnostics generated by this checker, |
993 | // some framework and programming style based heuristics are used. These |
994 | // heuristics are for Cocoa APIs which have NS prefix. |
995 | if (Name.starts_with(Prefix: "NS" )) { |
996 | // Developers rely on dynamic invariants such as an item should be available |
997 | // in a collection, or a collection is not empty often. Those invariants can |
998 | // not be inferred by any static analysis tool. To not to bother the users |
999 | // with too many false positives, every item retrieval function should be |
1000 | // ignored for collections. The instance methods of dictionaries in Cocoa |
1001 | // are either item retrieval related or not interesting nullability wise. |
1002 | // Using this fact, to keep the code easier to read just ignore the return |
1003 | // value of every instance method of dictionaries. |
1004 | if (M.isInstanceMessage() && Name.contains(Other: "Dictionary" )) { |
1005 | State = |
1006 | State->set<NullabilityMap>(K: ReturnRegion, E: Nullability::Contradicted); |
1007 | C.addTransition(State); |
1008 | return; |
1009 | } |
1010 | // For similar reasons ignore some methods of Cocoa arrays. |
1011 | StringRef FirstSelectorSlot = M.getSelector().getNameForSlot(argIndex: 0); |
1012 | if (Name.contains(Other: "Array" ) && |
1013 | (FirstSelectorSlot == "firstObject" || |
1014 | FirstSelectorSlot == "lastObject" )) { |
1015 | State = |
1016 | State->set<NullabilityMap>(K: ReturnRegion, E: Nullability::Contradicted); |
1017 | C.addTransition(State); |
1018 | return; |
1019 | } |
1020 | |
1021 | // Encoding related methods of string should not fail when lossless |
1022 | // encodings are used. Using lossless encodings is so frequent that ignoring |
1023 | // this class of methods reduced the emitted diagnostics by about 30% on |
1024 | // some projects (and all of that was false positives). |
1025 | if (Name.contains(Other: "String" )) { |
1026 | for (auto *Param : M.parameters()) { |
1027 | if (Param->getName() == "encoding" ) { |
1028 | State = State->set<NullabilityMap>(K: ReturnRegion, |
1029 | E: Nullability::Contradicted); |
1030 | C.addTransition(State); |
1031 | return; |
1032 | } |
1033 | } |
1034 | } |
1035 | } |
1036 | |
1037 | const ObjCMessageExpr *Message = M.getOriginExpr(); |
1038 | Nullability SelfNullability = getReceiverNullability(M, State); |
1039 | |
1040 | const NullabilityState *NullabilityOfReturn = |
1041 | State->get<NullabilityMap>(key: ReturnRegion); |
1042 | |
1043 | if (NullabilityOfReturn) { |
1044 | // When we have a nullability tracked for the return value, the nullability |
1045 | // of the expression will be the most nullable of the receiver and the |
1046 | // return value. |
1047 | Nullability RetValTracked = NullabilityOfReturn->getValue(); |
1048 | Nullability ComputedNullab = |
1049 | getMostNullable(Lhs: RetValTracked, Rhs: SelfNullability); |
1050 | if (ComputedNullab != RetValTracked && |
1051 | ComputedNullab != Nullability::Unspecified) { |
1052 | const Stmt *NullabilitySource = |
1053 | ComputedNullab == RetValTracked |
1054 | ? NullabilityOfReturn->getNullabilitySource() |
1055 | : Message->getInstanceReceiver(); |
1056 | State = State->set<NullabilityMap>( |
1057 | K: ReturnRegion, E: NullabilityState(ComputedNullab, NullabilitySource)); |
1058 | C.addTransition(State); |
1059 | } |
1060 | return; |
1061 | } |
1062 | |
1063 | // No tracked information. Use static type information for return value. |
1064 | Nullability RetNullability = getNullabilityAnnotation(Type: Message->getType()); |
1065 | |
1066 | // Properties might be computed, which means the property value could |
1067 | // theoretically change between calls even in commonly-observed cases like |
1068 | // this: |
1069 | // |
1070 | // if (foo.prop) { // ok, it's nonnull here... |
1071 | // [bar doStuffWithNonnullVal:foo.prop]; // ...but what about |
1072 | // here? |
1073 | // } |
1074 | // |
1075 | // If the property is nullable-annotated, a naive analysis would lead to many |
1076 | // false positives despite the presence of probably-correct nil-checks. To |
1077 | // reduce the false positive rate, we maintain a history of the most recently |
1078 | // observed property value. For each property access, if the prior value has |
1079 | // been constrained to be not nil then we will conservatively assume that the |
1080 | // next access can be inferred as nonnull. |
1081 | if (RetNullability != Nullability::Nonnull && |
1082 | M.getMessageKind() == OCM_PropertyAccess && !C.wasInlined) { |
1083 | bool LookupResolved = false; |
1084 | if (const MemRegion *ReceiverRegion = getTrackRegion(Val: M.getReceiverSVal())) { |
1085 | if (const IdentifierInfo *Ident = |
1086 | M.getSelector().getIdentifierInfoForSlot(argIndex: 0)) { |
1087 | LookupResolved = true; |
1088 | ObjectPropPair Key = std::make_pair(x&: ReceiverRegion, y&: Ident); |
1089 | const ConstrainedPropertyVal *PrevPropVal = |
1090 | State->get<PropertyAccessesMap>(key: Key); |
1091 | if (PrevPropVal && PrevPropVal->isConstrainedNonnull) { |
1092 | RetNullability = Nullability::Nonnull; |
1093 | } else { |
1094 | // If a previous property access was constrained as nonnull, we hold |
1095 | // on to that constraint (effectively inferring that all subsequent |
1096 | // accesses on that code path can be inferred as nonnull). If the |
1097 | // previous property access was *not* constrained as nonnull, then |
1098 | // let's throw it away in favor of keeping the SVal associated with |
1099 | // this more recent access. |
1100 | if (auto ReturnSVal = |
1101 | M.getReturnValue().getAs<DefinedOrUnknownSVal>()) { |
1102 | State = State->set<PropertyAccessesMap>( |
1103 | K: Key, E: ConstrainedPropertyVal(*ReturnSVal)); |
1104 | } |
1105 | } |
1106 | } |
1107 | } |
1108 | |
1109 | if (!LookupResolved) { |
1110 | // Fallback: err on the side of suppressing the false positive. |
1111 | RetNullability = Nullability::Nonnull; |
1112 | } |
1113 | } |
1114 | |
1115 | Nullability ComputedNullab = getMostNullable(Lhs: RetNullability, Rhs: SelfNullability); |
1116 | if (ComputedNullab == Nullability::Nullable) { |
1117 | const Stmt *NullabilitySource = ComputedNullab == RetNullability |
1118 | ? Message |
1119 | : Message->getInstanceReceiver(); |
1120 | State = State->set<NullabilityMap>( |
1121 | K: ReturnRegion, E: NullabilityState(ComputedNullab, NullabilitySource)); |
1122 | C.addTransition(State); |
1123 | } |
1124 | } |
1125 | |
1126 | /// Explicit casts are trusted. If there is a disagreement in the nullability |
1127 | /// annotations in the destination and the source or '0' is casted to nonnull |
1128 | /// track the value as having contraditory nullability. This will allow users to |
1129 | /// suppress warnings. |
1130 | void NullabilityChecker::checkPostStmt(const ExplicitCastExpr *CE, |
1131 | CheckerContext &C) const { |
1132 | QualType OriginType = CE->getSubExpr()->getType(); |
1133 | QualType DestType = CE->getType(); |
1134 | if (!isValidPointerType(T: OriginType)) |
1135 | return; |
1136 | if (!isValidPointerType(T: DestType)) |
1137 | return; |
1138 | |
1139 | ProgramStateRef State = C.getState(); |
1140 | if (State->get<InvariantViolated>()) |
1141 | return; |
1142 | |
1143 | Nullability DestNullability = getNullabilityAnnotation(Type: DestType); |
1144 | |
1145 | // No explicit nullability in the destination type, so this cast does not |
1146 | // change the nullability. |
1147 | if (DestNullability == Nullability::Unspecified) |
1148 | return; |
1149 | |
1150 | auto RegionSVal = C.getSVal(S: CE).getAs<DefinedOrUnknownSVal>(); |
1151 | const MemRegion *Region = getTrackRegion(Val: *RegionSVal); |
1152 | if (!Region) |
1153 | return; |
1154 | |
1155 | // When 0 is converted to nonnull mark it as contradicted. |
1156 | if (DestNullability == Nullability::Nonnull) { |
1157 | NullConstraint Nullness = getNullConstraint(Val: *RegionSVal, State); |
1158 | if (Nullness == NullConstraint::IsNull) { |
1159 | State = State->set<NullabilityMap>(K: Region, E: Nullability::Contradicted); |
1160 | C.addTransition(State); |
1161 | return; |
1162 | } |
1163 | } |
1164 | |
1165 | const NullabilityState *TrackedNullability = |
1166 | State->get<NullabilityMap>(key: Region); |
1167 | |
1168 | if (!TrackedNullability) { |
1169 | if (DestNullability != Nullability::Nullable) |
1170 | return; |
1171 | State = State->set<NullabilityMap>(K: Region, |
1172 | E: NullabilityState(DestNullability, CE)); |
1173 | C.addTransition(State); |
1174 | return; |
1175 | } |
1176 | |
1177 | if (TrackedNullability->getValue() != DestNullability && |
1178 | TrackedNullability->getValue() != Nullability::Contradicted) { |
1179 | State = State->set<NullabilityMap>(K: Region, E: Nullability::Contradicted); |
1180 | C.addTransition(State); |
1181 | } |
1182 | } |
1183 | |
1184 | /// For a given statement performing a bind, attempt to syntactically |
1185 | /// match the expression resulting in the bound value. |
1186 | static const Expr * matchValueExprForBind(const Stmt *S) { |
1187 | // For `x = e` the value expression is the right-hand side. |
1188 | if (auto *BinOp = dyn_cast<BinaryOperator>(Val: S)) { |
1189 | if (BinOp->getOpcode() == BO_Assign) |
1190 | return BinOp->getRHS(); |
1191 | } |
1192 | |
1193 | // For `int x = e` the value expression is the initializer. |
1194 | if (auto *DS = dyn_cast<DeclStmt>(Val: S)) { |
1195 | if (DS->isSingleDecl()) { |
1196 | auto *VD = dyn_cast<VarDecl>(Val: DS->getSingleDecl()); |
1197 | if (!VD) |
1198 | return nullptr; |
1199 | |
1200 | if (const Expr *Init = VD->getInit()) |
1201 | return Init; |
1202 | } |
1203 | } |
1204 | |
1205 | return nullptr; |
1206 | } |
1207 | |
1208 | /// Returns true if \param S is a DeclStmt for a local variable that |
1209 | /// ObjC automated reference counting initialized with zero. |
1210 | static bool isARCNilInitializedLocal(CheckerContext &C, const Stmt *S) { |
1211 | // We suppress diagnostics for ARC zero-initialized _Nonnull locals. This |
1212 | // prevents false positives when a _Nonnull local variable cannot be |
1213 | // initialized with an initialization expression: |
1214 | // NSString * _Nonnull s; // no-warning |
1215 | // @autoreleasepool { |
1216 | // s = ... |
1217 | // } |
1218 | // |
1219 | // FIXME: We should treat implicitly zero-initialized _Nonnull locals as |
1220 | // uninitialized in Sema's UninitializedValues analysis to warn when a use of |
1221 | // the zero-initialized definition will unexpectedly yield nil. |
1222 | |
1223 | // Locals are only zero-initialized when automated reference counting |
1224 | // is turned on. |
1225 | if (!C.getASTContext().getLangOpts().ObjCAutoRefCount) |
1226 | return false; |
1227 | |
1228 | auto *DS = dyn_cast<DeclStmt>(Val: S); |
1229 | if (!DS || !DS->isSingleDecl()) |
1230 | return false; |
1231 | |
1232 | auto *VD = dyn_cast<VarDecl>(Val: DS->getSingleDecl()); |
1233 | if (!VD) |
1234 | return false; |
1235 | |
1236 | // Sema only zero-initializes locals with ObjCLifetimes. |
1237 | if(!VD->getType().getQualifiers().hasObjCLifetime()) |
1238 | return false; |
1239 | |
1240 | const Expr *Init = VD->getInit(); |
1241 | assert(Init && "ObjC local under ARC without initializer" ); |
1242 | |
1243 | // Return false if the local is explicitly initialized (e.g., with '= nil'). |
1244 | if (!isa<ImplicitValueInitExpr>(Val: Init)) |
1245 | return false; |
1246 | |
1247 | return true; |
1248 | } |
1249 | |
1250 | /// Propagate the nullability information through binds and warn when nullable |
1251 | /// pointer or null symbol is assigned to a pointer with a nonnull type. |
1252 | void NullabilityChecker::checkBind(SVal L, SVal V, const Stmt *S, |
1253 | CheckerContext &C) const { |
1254 | const TypedValueRegion *TVR = |
1255 | dyn_cast_or_null<TypedValueRegion>(Val: L.getAsRegion()); |
1256 | if (!TVR) |
1257 | return; |
1258 | |
1259 | QualType LocType = TVR->getValueType(); |
1260 | if (!isValidPointerType(T: LocType)) |
1261 | return; |
1262 | |
1263 | ProgramStateRef State = C.getState(); |
1264 | if (State->get<InvariantViolated>()) |
1265 | return; |
1266 | |
1267 | auto ValDefOrUnknown = V.getAs<DefinedOrUnknownSVal>(); |
1268 | if (!ValDefOrUnknown) |
1269 | return; |
1270 | |
1271 | NullConstraint RhsNullness = getNullConstraint(Val: *ValDefOrUnknown, State); |
1272 | |
1273 | Nullability ValNullability = Nullability::Unspecified; |
1274 | if (SymbolRef Sym = ValDefOrUnknown->getAsSymbol()) |
1275 | ValNullability = getNullabilityAnnotation(Type: Sym->getType()); |
1276 | |
1277 | Nullability LocNullability = getNullabilityAnnotation(Type: LocType); |
1278 | |
1279 | // If the type of the RHS expression is nonnull, don't warn. This |
1280 | // enables explicit suppression with a cast to nonnull. |
1281 | Nullability ValueExprTypeLevelNullability = Nullability::Unspecified; |
1282 | const Expr *ValueExpr = matchValueExprForBind(S); |
1283 | if (ValueExpr) { |
1284 | ValueExprTypeLevelNullability = |
1285 | getNullabilityAnnotation(Type: lookThroughImplicitCasts(E: ValueExpr)->getType()); |
1286 | } |
1287 | |
1288 | bool NullAssignedToNonNull = (LocNullability == Nullability::Nonnull && |
1289 | RhsNullness == NullConstraint::IsNull); |
1290 | if (ChecksEnabled[CK_NullPassedToNonnull] && NullAssignedToNonNull && |
1291 | ValNullability != Nullability::Nonnull && |
1292 | ValueExprTypeLevelNullability != Nullability::Nonnull && |
1293 | !isARCNilInitializedLocal(C, S)) { |
1294 | static CheckerProgramPointTag Tag(this, "NullPassedToNonnull" ); |
1295 | ExplodedNode *N = C.generateErrorNode(State, Tag: &Tag); |
1296 | if (!N) |
1297 | return; |
1298 | |
1299 | |
1300 | const Stmt *ValueStmt = S; |
1301 | if (ValueExpr) |
1302 | ValueStmt = ValueExpr; |
1303 | |
1304 | SmallString<256> SBuf; |
1305 | llvm::raw_svector_ostream OS(SBuf); |
1306 | OS << (LocType->isObjCObjectPointerType() ? "nil" : "Null" ); |
1307 | OS << " assigned to a pointer which is expected to have non-null value" ; |
1308 | reportBugIfInvariantHolds(Msg: OS.str(), Error: ErrorKind::NilAssignedToNonnull, |
1309 | CK: CK_NullPassedToNonnull, N, Region: nullptr, C, ValueExpr: ValueStmt); |
1310 | return; |
1311 | } |
1312 | |
1313 | // If null was returned from a non-null function, mark the nullability |
1314 | // invariant as violated even if the diagnostic was suppressed. |
1315 | if (NullAssignedToNonNull) { |
1316 | State = State->set<InvariantViolated>(true); |
1317 | C.addTransition(State); |
1318 | return; |
1319 | } |
1320 | |
1321 | // Intentionally missing case: '0' is bound to a reference. It is handled by |
1322 | // the DereferenceChecker. |
1323 | |
1324 | const MemRegion *ValueRegion = getTrackRegion(Val: *ValDefOrUnknown); |
1325 | if (!ValueRegion) |
1326 | return; |
1327 | |
1328 | const NullabilityState *TrackedNullability = |
1329 | State->get<NullabilityMap>(key: ValueRegion); |
1330 | |
1331 | if (TrackedNullability) { |
1332 | if (RhsNullness == NullConstraint::IsNotNull || |
1333 | TrackedNullability->getValue() != Nullability::Nullable) |
1334 | return; |
1335 | if (ChecksEnabled[CK_NullablePassedToNonnull] && |
1336 | LocNullability == Nullability::Nonnull) { |
1337 | static CheckerProgramPointTag Tag(this, "NullablePassedToNonnull" ); |
1338 | ExplodedNode *N = C.addTransition(State, Pred: C.getPredecessor(), Tag: &Tag); |
1339 | reportBugIfInvariantHolds(Msg: "Nullable pointer is assigned to a pointer " |
1340 | "which is expected to have non-null value" , |
1341 | Error: ErrorKind::NullableAssignedToNonnull, |
1342 | CK: CK_NullablePassedToNonnull, N, Region: ValueRegion, C); |
1343 | } |
1344 | return; |
1345 | } |
1346 | |
1347 | const auto *BinOp = dyn_cast<BinaryOperator>(Val: S); |
1348 | |
1349 | if (ValNullability == Nullability::Nullable) { |
1350 | // Trust the static information of the value more than the static |
1351 | // information on the location. |
1352 | const Stmt *NullabilitySource = BinOp ? BinOp->getRHS() : S; |
1353 | State = State->set<NullabilityMap>( |
1354 | K: ValueRegion, E: NullabilityState(ValNullability, NullabilitySource)); |
1355 | C.addTransition(State); |
1356 | return; |
1357 | } |
1358 | |
1359 | if (LocNullability == Nullability::Nullable) { |
1360 | const Stmt *NullabilitySource = BinOp ? BinOp->getLHS() : S; |
1361 | State = State->set<NullabilityMap>( |
1362 | K: ValueRegion, E: NullabilityState(LocNullability, NullabilitySource)); |
1363 | C.addTransition(State); |
1364 | } |
1365 | } |
1366 | |
1367 | void NullabilityChecker::printState(raw_ostream &Out, ProgramStateRef State, |
1368 | const char *NL, const char *Sep) const { |
1369 | |
1370 | NullabilityMapTy B = State->get<NullabilityMap>(); |
1371 | |
1372 | if (State->get<InvariantViolated>()) |
1373 | Out << Sep << NL |
1374 | << "Nullability invariant was violated, warnings suppressed." << NL; |
1375 | |
1376 | if (B.isEmpty()) |
1377 | return; |
1378 | |
1379 | if (!State->get<InvariantViolated>()) |
1380 | Out << Sep << NL; |
1381 | |
1382 | for (auto [Region, State] : B) { |
1383 | Out << Region << " : " ; |
1384 | State.print(Out); |
1385 | Out << NL; |
1386 | } |
1387 | } |
1388 | |
1389 | void ento::registerNullabilityBase(CheckerManager &mgr) { |
1390 | mgr.registerChecker<NullabilityChecker>(); |
1391 | } |
1392 | |
1393 | bool ento::shouldRegisterNullabilityBase(const CheckerManager &mgr) { |
1394 | return true; |
1395 | } |
1396 | |
1397 | #define REGISTER_CHECKER(name, trackingRequired) \ |
1398 | void ento::register##name##Checker(CheckerManager &mgr) { \ |
1399 | NullabilityChecker *checker = mgr.getChecker<NullabilityChecker>(); \ |
1400 | checker->ChecksEnabled[NullabilityChecker::CK_##name] = true; \ |
1401 | checker->CheckNames[NullabilityChecker::CK_##name] = \ |
1402 | mgr.getCurrentCheckerName(); \ |
1403 | checker->NeedTracking = checker->NeedTracking || trackingRequired; \ |
1404 | checker->NoDiagnoseCallsToSystemHeaders = \ |
1405 | checker->NoDiagnoseCallsToSystemHeaders || \ |
1406 | mgr.getAnalyzerOptions().getCheckerBooleanOption( \ |
1407 | checker, "NoDiagnoseCallsToSystemHeaders", true); \ |
1408 | } \ |
1409 | \ |
1410 | bool ento::shouldRegister##name##Checker(const CheckerManager &mgr) { \ |
1411 | return true; \ |
1412 | } |
1413 | |
1414 | // The checks are likely to be turned on by default and it is possible to do |
1415 | // them without tracking any nullability related information. As an optimization |
1416 | // no nullability information will be tracked when only these two checks are |
1417 | // enables. |
1418 | REGISTER_CHECKER(NullPassedToNonnull, false) |
1419 | REGISTER_CHECKER(NullReturnedFromNonnull, false) |
1420 | |
1421 | REGISTER_CHECKER(NullableDereferenced, true) |
1422 | REGISTER_CHECKER(NullablePassedToNonnull, true) |
1423 | REGISTER_CHECKER(NullableReturnedFromNonnull, true) |
1424 | |