1 | //===- SyntheticSections.cpp ---------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "SyntheticSections.h" |
10 | #include "ConcatOutputSection.h" |
11 | #include "Config.h" |
12 | #include "ExportTrie.h" |
13 | #include "InputFiles.h" |
14 | #include "MachOStructs.h" |
15 | #include "ObjC.h" |
16 | #include "OutputSegment.h" |
17 | #include "SymbolTable.h" |
18 | #include "Symbols.h" |
19 | |
20 | #include "lld/Common/CommonLinkerContext.h" |
21 | #include "llvm/ADT/STLExtras.h" |
22 | #include "llvm/Config/llvm-config.h" |
23 | #include "llvm/Support/EndianStream.h" |
24 | #include "llvm/Support/FileSystem.h" |
25 | #include "llvm/Support/LEB128.h" |
26 | #include "llvm/Support/Parallel.h" |
27 | #include "llvm/Support/Path.h" |
28 | #include "llvm/Support/xxhash.h" |
29 | |
30 | #if defined(__APPLE__) |
31 | #include <sys/mman.h> |
32 | |
33 | #define COMMON_DIGEST_FOR_OPENSSL |
34 | #include <CommonCrypto/CommonDigest.h> |
35 | #else |
36 | #include "llvm/Support/SHA256.h" |
37 | #endif |
38 | |
39 | using namespace llvm; |
40 | using namespace llvm::MachO; |
41 | using namespace llvm::support; |
42 | using namespace llvm::support::endian; |
43 | using namespace lld; |
44 | using namespace lld::macho; |
45 | |
46 | // Reads `len` bytes at data and writes the 32-byte SHA256 checksum to `output`. |
47 | static void sha256(const uint8_t *data, size_t len, uint8_t *output) { |
48 | #if defined(__APPLE__) |
49 | // FIXME: Make LLVM's SHA256 faster and use it unconditionally. See PR56121 |
50 | // for some notes on this. |
51 | CC_SHA256(data, len, output); |
52 | #else |
53 | ArrayRef<uint8_t> block(data, len); |
54 | std::array<uint8_t, 32> hash = SHA256::hash(Data: block); |
55 | static_assert(hash.size() == CodeSignatureSection::hashSize); |
56 | memcpy(dest: output, src: hash.data(), n: hash.size()); |
57 | #endif |
58 | } |
59 | |
60 | InStruct macho::in; |
61 | std::vector<SyntheticSection *> macho::syntheticSections; |
62 | |
63 | SyntheticSection::SyntheticSection(const char *segname, const char *name) |
64 | : OutputSection(SyntheticKind, name) { |
65 | std::tie(args&: this->segname, args&: this->name) = maybeRenameSection(key: {segname, name}); |
66 | isec = makeSyntheticInputSection(segName: segname, sectName: name); |
67 | isec->parent = this; |
68 | syntheticSections.push_back(x: this); |
69 | } |
70 | |
71 | // dyld3's MachOLoaded::getSlide() assumes that the __TEXT segment starts |
72 | // from the beginning of the file (i.e. the header). |
73 | MachHeaderSection::() |
74 | : SyntheticSection(segment_names::text, section_names::header) { |
75 | // XXX: This is a hack. (See D97007) |
76 | // Setting the index to 1 to pretend that this section is the text |
77 | // section. |
78 | index = 1; |
79 | isec->isFinal = true; |
80 | } |
81 | |
82 | void MachHeaderSection::addLoadCommand(LoadCommand *lc) { |
83 | loadCommands.push_back(x: lc); |
84 | sizeOfCmds += lc->getSize(); |
85 | } |
86 | |
87 | uint64_t MachHeaderSection::() const { |
88 | uint64_t size = target->headerSize + sizeOfCmds + config->headerPad; |
89 | // If we are emitting an encryptable binary, our load commands must have a |
90 | // separate (non-encrypted) page to themselves. |
91 | if (config->emitEncryptionInfo) |
92 | size = alignToPowerOf2(Value: size, Align: target->getPageSize()); |
93 | return size; |
94 | } |
95 | |
96 | static uint32_t cpuSubtype() { |
97 | uint32_t subtype = target->cpuSubtype; |
98 | |
99 | if (config->outputType == MH_EXECUTE && !config->staticLink && |
100 | target->cpuSubtype == CPU_SUBTYPE_X86_64_ALL && |
101 | config->platform() == PLATFORM_MACOS && |
102 | config->platformInfo.target.MinDeployment >= VersionTuple(10, 5)) |
103 | subtype |= CPU_SUBTYPE_LIB64; |
104 | |
105 | return subtype; |
106 | } |
107 | |
108 | static bool hasWeakBinding() { |
109 | return config->emitChainedFixups ? in.chainedFixups->hasWeakBinding() |
110 | : in.weakBinding->hasEntry(); |
111 | } |
112 | |
113 | static bool hasNonWeakDefinition() { |
114 | return config->emitChainedFixups ? in.chainedFixups->hasNonWeakDefinition() |
115 | : in.weakBinding->hasNonWeakDefinition(); |
116 | } |
117 | |
118 | void MachHeaderSection::(uint8_t *buf) const { |
119 | auto *hdr = reinterpret_cast<mach_header *>(buf); |
120 | hdr->magic = target->magic; |
121 | hdr->cputype = target->cpuType; |
122 | hdr->cpusubtype = cpuSubtype(); |
123 | hdr->filetype = config->outputType; |
124 | hdr->ncmds = loadCommands.size(); |
125 | hdr->sizeofcmds = sizeOfCmds; |
126 | hdr->flags = MH_DYLDLINK; |
127 | |
128 | if (config->namespaceKind == NamespaceKind::twolevel) |
129 | hdr->flags |= MH_NOUNDEFS | MH_TWOLEVEL; |
130 | |
131 | if (config->outputType == MH_DYLIB && !config->hasReexports) |
132 | hdr->flags |= MH_NO_REEXPORTED_DYLIBS; |
133 | |
134 | if (config->markDeadStrippableDylib) |
135 | hdr->flags |= MH_DEAD_STRIPPABLE_DYLIB; |
136 | |
137 | if (config->outputType == MH_EXECUTE && config->isPic) |
138 | hdr->flags |= MH_PIE; |
139 | |
140 | if (config->outputType == MH_DYLIB && config->applicationExtension) |
141 | hdr->flags |= MH_APP_EXTENSION_SAFE; |
142 | |
143 | if (in.exports->hasWeakSymbol || hasNonWeakDefinition()) |
144 | hdr->flags |= MH_WEAK_DEFINES; |
145 | |
146 | if (in.exports->hasWeakSymbol || hasWeakBinding()) |
147 | hdr->flags |= MH_BINDS_TO_WEAK; |
148 | |
149 | for (const OutputSegment *seg : outputSegments) { |
150 | for (const OutputSection *osec : seg->getSections()) { |
151 | if (isThreadLocalVariables(flags: osec->flags)) { |
152 | hdr->flags |= MH_HAS_TLV_DESCRIPTORS; |
153 | break; |
154 | } |
155 | } |
156 | } |
157 | |
158 | uint8_t *p = reinterpret_cast<uint8_t *>(hdr) + target->headerSize; |
159 | for (const LoadCommand *lc : loadCommands) { |
160 | lc->writeTo(buf: p); |
161 | p += lc->getSize(); |
162 | } |
163 | } |
164 | |
165 | PageZeroSection::PageZeroSection() |
166 | : SyntheticSection(segment_names::pageZero, section_names::pageZero) {} |
167 | |
168 | RebaseSection::RebaseSection() |
169 | : LinkEditSection(segment_names::linkEdit, section_names::rebase) {} |
170 | |
171 | namespace { |
172 | struct RebaseState { |
173 | uint64_t sequenceLength; |
174 | uint64_t skipLength; |
175 | }; |
176 | } // namespace |
177 | |
178 | static void emitIncrement(uint64_t incr, raw_svector_ostream &os) { |
179 | assert(incr != 0); |
180 | |
181 | if ((incr >> target->p2WordSize) <= REBASE_IMMEDIATE_MASK && |
182 | (incr % target->wordSize) == 0) { |
183 | os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_IMM_SCALED | |
184 | (incr >> target->p2WordSize)); |
185 | } else { |
186 | os << static_cast<uint8_t>(REBASE_OPCODE_ADD_ADDR_ULEB); |
187 | encodeULEB128(Value: incr, OS&: os); |
188 | } |
189 | } |
190 | |
191 | static void flushRebase(const RebaseState &state, raw_svector_ostream &os) { |
192 | assert(state.sequenceLength > 0); |
193 | |
194 | if (state.skipLength == target->wordSize) { |
195 | if (state.sequenceLength <= REBASE_IMMEDIATE_MASK) { |
196 | os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_IMM_TIMES | |
197 | state.sequenceLength); |
198 | } else { |
199 | os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ULEB_TIMES); |
200 | encodeULEB128(Value: state.sequenceLength, OS&: os); |
201 | } |
202 | } else if (state.sequenceLength == 1) { |
203 | os << static_cast<uint8_t>(REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB); |
204 | encodeULEB128(Value: state.skipLength - target->wordSize, OS&: os); |
205 | } else { |
206 | os << static_cast<uint8_t>( |
207 | REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB); |
208 | encodeULEB128(Value: state.sequenceLength, OS&: os); |
209 | encodeULEB128(Value: state.skipLength - target->wordSize, OS&: os); |
210 | } |
211 | } |
212 | |
213 | // Rebases are communicated to dyld using a bytecode, whose opcodes cause the |
214 | // memory location at a specific address to be rebased and/or the address to be |
215 | // incremented. |
216 | // |
217 | // Opcode REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB is the most generic |
218 | // one, encoding a series of evenly spaced addresses. This algorithm works by |
219 | // splitting up the sorted list of addresses into such chunks. If the locations |
220 | // are consecutive or the sequence consists of a single location, flushRebase |
221 | // will use a smaller, more specialized encoding. |
222 | static void encodeRebases(const OutputSegment *seg, |
223 | MutableArrayRef<Location> locations, |
224 | raw_svector_ostream &os) { |
225 | // dyld operates on segments. Translate section offsets into segment offsets. |
226 | for (Location &loc : locations) |
227 | loc.offset = |
228 | loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(off: loc.offset); |
229 | // The algorithm assumes that locations are unique. |
230 | Location *end = |
231 | llvm::unique(R&: locations, P: [](const Location &a, const Location &b) { |
232 | return a.offset == b.offset; |
233 | }); |
234 | size_t count = end - locations.begin(); |
235 | |
236 | os << static_cast<uint8_t>(REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | |
237 | seg->index); |
238 | assert(!locations.empty()); |
239 | uint64_t offset = locations[0].offset; |
240 | encodeULEB128(Value: offset, OS&: os); |
241 | |
242 | RebaseState state{.sequenceLength: 1, .skipLength: target->wordSize}; |
243 | |
244 | for (size_t i = 1; i < count; ++i) { |
245 | offset = locations[i].offset; |
246 | |
247 | uint64_t skip = offset - locations[i - 1].offset; |
248 | assert(skip != 0 && "duplicate locations should have been weeded out" ); |
249 | |
250 | if (skip == state.skipLength) { |
251 | ++state.sequenceLength; |
252 | } else if (state.sequenceLength == 1) { |
253 | ++state.sequenceLength; |
254 | state.skipLength = skip; |
255 | } else if (skip < state.skipLength) { |
256 | // The address is lower than what the rebase pointer would be if the last |
257 | // location would be part of a sequence. We start a new sequence from the |
258 | // previous location. |
259 | --state.sequenceLength; |
260 | flushRebase(state, os); |
261 | |
262 | state.sequenceLength = 2; |
263 | state.skipLength = skip; |
264 | } else { |
265 | // The address is at some positive offset from the rebase pointer. We |
266 | // start a new sequence which begins with the current location. |
267 | flushRebase(state, os); |
268 | emitIncrement(incr: skip - state.skipLength, os); |
269 | state.sequenceLength = 1; |
270 | state.skipLength = target->wordSize; |
271 | } |
272 | } |
273 | flushRebase(state, os); |
274 | } |
275 | |
276 | void RebaseSection::finalizeContents() { |
277 | if (locations.empty()) |
278 | return; |
279 | |
280 | raw_svector_ostream os{contents}; |
281 | os << static_cast<uint8_t>(REBASE_OPCODE_SET_TYPE_IMM | REBASE_TYPE_POINTER); |
282 | |
283 | llvm::sort(C&: locations, Comp: [](const Location &a, const Location &b) { |
284 | return a.isec->getVA(off: a.offset) < b.isec->getVA(off: b.offset); |
285 | }); |
286 | |
287 | for (size_t i = 0, count = locations.size(); i < count;) { |
288 | const OutputSegment *seg = locations[i].isec->parent->parent; |
289 | size_t j = i + 1; |
290 | while (j < count && locations[j].isec->parent->parent == seg) |
291 | ++j; |
292 | encodeRebases(seg, locations: {locations.data() + i, locations.data() + j}, os); |
293 | i = j; |
294 | } |
295 | os << static_cast<uint8_t>(REBASE_OPCODE_DONE); |
296 | } |
297 | |
298 | void RebaseSection::writeTo(uint8_t *buf) const { |
299 | memcpy(dest: buf, src: contents.data(), n: contents.size()); |
300 | } |
301 | |
302 | NonLazyPointerSectionBase::NonLazyPointerSectionBase(const char *segname, |
303 | const char *name) |
304 | : SyntheticSection(segname, name) { |
305 | align = target->wordSize; |
306 | } |
307 | |
308 | void macho::addNonLazyBindingEntries(const Symbol *sym, |
309 | const InputSection *isec, uint64_t offset, |
310 | int64_t addend) { |
311 | if (config->emitChainedFixups) { |
312 | if (needsBinding(sym)) |
313 | in.chainedFixups->addBinding(dysym: sym, isec, offset, addend); |
314 | else if (isa<Defined>(Val: sym)) |
315 | in.chainedFixups->addRebase(isec, offset); |
316 | else |
317 | llvm_unreachable("cannot bind to an undefined symbol" ); |
318 | return; |
319 | } |
320 | |
321 | if (const auto *dysym = dyn_cast<DylibSymbol>(Val: sym)) { |
322 | in.binding->addEntry(dysym, isec, offset, addend); |
323 | if (dysym->isWeakDef()) |
324 | in.weakBinding->addEntry(symbol: sym, isec, offset, addend); |
325 | } else if (const auto *defined = dyn_cast<Defined>(Val: sym)) { |
326 | in.rebase->addEntry(isec, offset); |
327 | if (defined->isExternalWeakDef()) |
328 | in.weakBinding->addEntry(symbol: sym, isec, offset, addend); |
329 | else if (defined->interposable) |
330 | in.binding->addEntry(dysym: sym, isec, offset, addend); |
331 | } else { |
332 | // Undefined symbols are filtered out in scanRelocations(); we should never |
333 | // get here |
334 | llvm_unreachable("cannot bind to an undefined symbol" ); |
335 | } |
336 | } |
337 | |
338 | void NonLazyPointerSectionBase::addEntry(Symbol *sym) { |
339 | if (entries.insert(X: sym)) { |
340 | assert(!sym->isInGot()); |
341 | sym->gotIndex = entries.size() - 1; |
342 | |
343 | addNonLazyBindingEntries(sym, isec, offset: sym->gotIndex * target->wordSize); |
344 | } |
345 | } |
346 | |
347 | void macho::writeChainedRebase(uint8_t *buf, uint64_t targetVA) { |
348 | assert(config->emitChainedFixups); |
349 | assert(target->wordSize == 8 && "Only 64-bit platforms are supported" ); |
350 | auto *rebase = reinterpret_cast<dyld_chained_ptr_64_rebase *>(buf); |
351 | rebase->target = targetVA & 0xf'ffff'ffff; |
352 | rebase->high8 = (targetVA >> 56); |
353 | rebase->reserved = 0; |
354 | rebase->next = 0; |
355 | rebase->bind = 0; |
356 | |
357 | // The fixup format places a 64 GiB limit on the output's size. |
358 | // Should we handle this gracefully? |
359 | uint64_t encodedVA = rebase->target | ((uint64_t)rebase->high8 << 56); |
360 | if (encodedVA != targetVA) |
361 | error(msg: "rebase target address 0x" + Twine::utohexstr(Val: targetVA) + |
362 | " does not fit into chained fixup. Re-link with -no_fixup_chains" ); |
363 | } |
364 | |
365 | static void writeChainedBind(uint8_t *buf, const Symbol *sym, int64_t addend) { |
366 | assert(config->emitChainedFixups); |
367 | assert(target->wordSize == 8 && "Only 64-bit platforms are supported" ); |
368 | auto *bind = reinterpret_cast<dyld_chained_ptr_64_bind *>(buf); |
369 | auto [ordinal, inlineAddend] = in.chainedFixups->getBinding(sym, addend); |
370 | bind->ordinal = ordinal; |
371 | bind->addend = inlineAddend; |
372 | bind->reserved = 0; |
373 | bind->next = 0; |
374 | bind->bind = 1; |
375 | } |
376 | |
377 | void macho::writeChainedFixup(uint8_t *buf, const Symbol *sym, int64_t addend) { |
378 | if (needsBinding(sym)) |
379 | writeChainedBind(buf, sym, addend); |
380 | else |
381 | writeChainedRebase(buf, targetVA: sym->getVA() + addend); |
382 | } |
383 | |
384 | void NonLazyPointerSectionBase::writeTo(uint8_t *buf) const { |
385 | if (config->emitChainedFixups) { |
386 | for (const auto &[i, entry] : llvm::enumerate(First: entries)) |
387 | writeChainedFixup(buf: &buf[i * target->wordSize], sym: entry, addend: 0); |
388 | } else { |
389 | for (const auto &[i, entry] : llvm::enumerate(First: entries)) |
390 | if (auto *defined = dyn_cast<Defined>(Val: entry)) |
391 | write64le(P: &buf[i * target->wordSize], V: defined->getVA()); |
392 | } |
393 | } |
394 | |
395 | GotSection::GotSection() |
396 | : NonLazyPointerSectionBase(segment_names::data, section_names::got) { |
397 | flags = S_NON_LAZY_SYMBOL_POINTERS; |
398 | } |
399 | |
400 | TlvPointerSection::TlvPointerSection() |
401 | : NonLazyPointerSectionBase(segment_names::data, |
402 | section_names::threadPtrs) { |
403 | flags = S_THREAD_LOCAL_VARIABLE_POINTERS; |
404 | } |
405 | |
406 | BindingSection::BindingSection() |
407 | : LinkEditSection(segment_names::linkEdit, section_names::binding) {} |
408 | |
409 | namespace { |
410 | struct Binding { |
411 | OutputSegment *segment = nullptr; |
412 | uint64_t offset = 0; |
413 | int64_t addend = 0; |
414 | }; |
415 | struct BindIR { |
416 | // Default value of 0xF0 is not valid opcode and should make the program |
417 | // scream instead of accidentally writing "valid" values. |
418 | uint8_t opcode = 0xF0; |
419 | uint64_t data = 0; |
420 | uint64_t consecutiveCount = 0; |
421 | }; |
422 | } // namespace |
423 | |
424 | // Encode a sequence of opcodes that tell dyld to write the address of symbol + |
425 | // addend at osec->addr + outSecOff. |
426 | // |
427 | // The bind opcode "interpreter" remembers the values of each binding field, so |
428 | // we only need to encode the differences between bindings. Hence the use of |
429 | // lastBinding. |
430 | static void encodeBinding(const OutputSection *osec, uint64_t outSecOff, |
431 | int64_t addend, Binding &lastBinding, |
432 | std::vector<BindIR> &opcodes) { |
433 | OutputSegment *seg = osec->parent; |
434 | uint64_t offset = osec->getSegmentOffset() + outSecOff; |
435 | if (lastBinding.segment != seg) { |
436 | opcodes.push_back( |
437 | x: {.opcode: static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | |
438 | seg->index), |
439 | .data: offset}); |
440 | lastBinding.segment = seg; |
441 | lastBinding.offset = offset; |
442 | } else if (lastBinding.offset != offset) { |
443 | opcodes.push_back(x: {.opcode: BIND_OPCODE_ADD_ADDR_ULEB, .data: offset - lastBinding.offset}); |
444 | lastBinding.offset = offset; |
445 | } |
446 | |
447 | if (lastBinding.addend != addend) { |
448 | opcodes.push_back( |
449 | x: {.opcode: BIND_OPCODE_SET_ADDEND_SLEB, .data: static_cast<uint64_t>(addend)}); |
450 | lastBinding.addend = addend; |
451 | } |
452 | |
453 | opcodes.push_back(x: {.opcode: BIND_OPCODE_DO_BIND, .data: 0}); |
454 | // DO_BIND causes dyld to both perform the binding and increment the offset |
455 | lastBinding.offset += target->wordSize; |
456 | } |
457 | |
458 | static void optimizeOpcodes(std::vector<BindIR> &opcodes) { |
459 | // Pass 1: Combine bind/add pairs |
460 | size_t i; |
461 | int pWrite = 0; |
462 | for (i = 1; i < opcodes.size(); ++i, ++pWrite) { |
463 | if ((opcodes[i].opcode == BIND_OPCODE_ADD_ADDR_ULEB) && |
464 | (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND)) { |
465 | opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB; |
466 | opcodes[pWrite].data = opcodes[i].data; |
467 | ++i; |
468 | } else { |
469 | opcodes[pWrite] = opcodes[i - 1]; |
470 | } |
471 | } |
472 | if (i == opcodes.size()) |
473 | opcodes[pWrite] = opcodes[i - 1]; |
474 | opcodes.resize(new_size: pWrite + 1); |
475 | |
476 | // Pass 2: Compress two or more bind_add opcodes |
477 | pWrite = 0; |
478 | for (i = 1; i < opcodes.size(); ++i, ++pWrite) { |
479 | if ((opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && |
480 | (opcodes[i - 1].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && |
481 | (opcodes[i].data == opcodes[i - 1].data)) { |
482 | opcodes[pWrite].opcode = BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB; |
483 | opcodes[pWrite].consecutiveCount = 2; |
484 | opcodes[pWrite].data = opcodes[i].data; |
485 | ++i; |
486 | while (i < opcodes.size() && |
487 | (opcodes[i].opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && |
488 | (opcodes[i].data == opcodes[i - 1].data)) { |
489 | opcodes[pWrite].consecutiveCount++; |
490 | ++i; |
491 | } |
492 | } else { |
493 | opcodes[pWrite] = opcodes[i - 1]; |
494 | } |
495 | } |
496 | if (i == opcodes.size()) |
497 | opcodes[pWrite] = opcodes[i - 1]; |
498 | opcodes.resize(new_size: pWrite + 1); |
499 | |
500 | // Pass 3: Use immediate encodings |
501 | // Every binding is the size of one pointer. If the next binding is a |
502 | // multiple of wordSize away that is within BIND_IMMEDIATE_MASK, the |
503 | // opcode can be scaled by wordSize into a single byte and dyld will |
504 | // expand it to the correct address. |
505 | for (auto &p : opcodes) { |
506 | // It's unclear why the check needs to be less than BIND_IMMEDIATE_MASK, |
507 | // but ld64 currently does this. This could be a potential bug, but |
508 | // for now, perform the same behavior to prevent mysterious bugs. |
509 | if ((p.opcode == BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB) && |
510 | ((p.data / target->wordSize) < BIND_IMMEDIATE_MASK) && |
511 | ((p.data % target->wordSize) == 0)) { |
512 | p.opcode = BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED; |
513 | p.data /= target->wordSize; |
514 | } |
515 | } |
516 | } |
517 | |
518 | static void flushOpcodes(const BindIR &op, raw_svector_ostream &os) { |
519 | uint8_t opcode = op.opcode & BIND_OPCODE_MASK; |
520 | switch (opcode) { |
521 | case BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB: |
522 | case BIND_OPCODE_ADD_ADDR_ULEB: |
523 | case BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB: |
524 | os << op.opcode; |
525 | encodeULEB128(Value: op.data, OS&: os); |
526 | break; |
527 | case BIND_OPCODE_SET_ADDEND_SLEB: |
528 | os << op.opcode; |
529 | encodeSLEB128(Value: static_cast<int64_t>(op.data), OS&: os); |
530 | break; |
531 | case BIND_OPCODE_DO_BIND: |
532 | os << op.opcode; |
533 | break; |
534 | case BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB: |
535 | os << op.opcode; |
536 | encodeULEB128(Value: op.consecutiveCount, OS&: os); |
537 | encodeULEB128(Value: op.data, OS&: os); |
538 | break; |
539 | case BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED: |
540 | os << static_cast<uint8_t>(op.opcode | op.data); |
541 | break; |
542 | default: |
543 | llvm_unreachable("cannot bind to an unrecognized symbol" ); |
544 | } |
545 | } |
546 | |
547 | static bool needsWeakBind(const Symbol &sym) { |
548 | if (auto *dysym = dyn_cast<DylibSymbol>(Val: &sym)) |
549 | return dysym->isWeakDef(); |
550 | if (auto *defined = dyn_cast<Defined>(Val: &sym)) |
551 | return defined->isExternalWeakDef(); |
552 | return false; |
553 | } |
554 | |
555 | // Non-weak bindings need to have their dylib ordinal encoded as well. |
556 | static int16_t ordinalForDylibSymbol(const DylibSymbol &dysym) { |
557 | if (config->namespaceKind == NamespaceKind::flat || dysym.isDynamicLookup()) |
558 | return static_cast<int16_t>(BIND_SPECIAL_DYLIB_FLAT_LOOKUP); |
559 | assert(dysym.getFile()->isReferenced()); |
560 | return dysym.getFile()->ordinal; |
561 | } |
562 | |
563 | static int16_t ordinalForSymbol(const Symbol &sym) { |
564 | if (config->emitChainedFixups && needsWeakBind(sym)) |
565 | return BIND_SPECIAL_DYLIB_WEAK_LOOKUP; |
566 | if (const auto *dysym = dyn_cast<DylibSymbol>(Val: &sym)) |
567 | return ordinalForDylibSymbol(dysym: *dysym); |
568 | assert(cast<Defined>(&sym)->interposable); |
569 | return BIND_SPECIAL_DYLIB_FLAT_LOOKUP; |
570 | } |
571 | |
572 | static void encodeDylibOrdinal(int16_t ordinal, raw_svector_ostream &os) { |
573 | if (ordinal <= 0) { |
574 | os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_SPECIAL_IMM | |
575 | (ordinal & BIND_IMMEDIATE_MASK)); |
576 | } else if (ordinal <= BIND_IMMEDIATE_MASK) { |
577 | os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_IMM | ordinal); |
578 | } else { |
579 | os << static_cast<uint8_t>(BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB); |
580 | encodeULEB128(Value: ordinal, OS&: os); |
581 | } |
582 | } |
583 | |
584 | static void encodeWeakOverride(const Defined *defined, |
585 | raw_svector_ostream &os) { |
586 | os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM | |
587 | BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION) |
588 | << defined->getName() << '\0'; |
589 | } |
590 | |
591 | // Organize the bindings so we can encoded them with fewer opcodes. |
592 | // |
593 | // First, all bindings for a given symbol should be grouped together. |
594 | // BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM is the largest opcode (since it |
595 | // has an associated symbol string), so we only want to emit it once per symbol. |
596 | // |
597 | // Within each group, we sort the bindings by address. Since bindings are |
598 | // delta-encoded, sorting them allows for a more compact result. Note that |
599 | // sorting by address alone ensures that bindings for the same segment / section |
600 | // are located together, minimizing the number of times we have to emit |
601 | // BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB. |
602 | // |
603 | // Finally, we sort the symbols by the address of their first binding, again |
604 | // to facilitate the delta-encoding process. |
605 | template <class Sym> |
606 | std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> |
607 | sortBindings(const BindingsMap<const Sym *> &bindingsMap) { |
608 | std::vector<std::pair<const Sym *, std::vector<BindingEntry>>> bindingsVec( |
609 | bindingsMap.begin(), bindingsMap.end()); |
610 | for (auto &p : bindingsVec) { |
611 | std::vector<BindingEntry> &bindings = p.second; |
612 | llvm::sort(bindings, [](const BindingEntry &a, const BindingEntry &b) { |
613 | return a.target.getVA() < b.target.getVA(); |
614 | }); |
615 | } |
616 | llvm::sort(bindingsVec, [](const auto &a, const auto &b) { |
617 | return a.second[0].target.getVA() < b.second[0].target.getVA(); |
618 | }); |
619 | return bindingsVec; |
620 | } |
621 | |
622 | // Emit bind opcodes, which are a stream of byte-sized opcodes that dyld |
623 | // interprets to update a record with the following fields: |
624 | // * segment index (of the segment to write the symbol addresses to, typically |
625 | // the __DATA_CONST segment which contains the GOT) |
626 | // * offset within the segment, indicating the next location to write a binding |
627 | // * symbol type |
628 | // * symbol library ordinal (the index of its library's LC_LOAD_DYLIB command) |
629 | // * symbol name |
630 | // * addend |
631 | // When dyld sees BIND_OPCODE_DO_BIND, it uses the current record state to bind |
632 | // a symbol in the GOT, and increments the segment offset to point to the next |
633 | // entry. It does *not* clear the record state after doing the bind, so |
634 | // subsequent opcodes only need to encode the differences between bindings. |
635 | void BindingSection::finalizeContents() { |
636 | raw_svector_ostream os{contents}; |
637 | Binding lastBinding; |
638 | int16_t lastOrdinal = 0; |
639 | |
640 | for (auto &p : sortBindings(bindingsMap)) { |
641 | const Symbol *sym = p.first; |
642 | std::vector<BindingEntry> &bindings = p.second; |
643 | uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; |
644 | if (sym->isWeakRef()) |
645 | flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; |
646 | os << flags << sym->getName() << '\0' |
647 | << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); |
648 | int16_t ordinal = ordinalForSymbol(sym: *sym); |
649 | if (ordinal != lastOrdinal) { |
650 | encodeDylibOrdinal(ordinal, os); |
651 | lastOrdinal = ordinal; |
652 | } |
653 | std::vector<BindIR> opcodes; |
654 | for (const BindingEntry &b : bindings) |
655 | encodeBinding(osec: b.target.isec->parent, |
656 | outSecOff: b.target.isec->getOffset(off: b.target.offset), addend: b.addend, |
657 | lastBinding, opcodes); |
658 | if (config->optimize > 1) |
659 | optimizeOpcodes(opcodes); |
660 | for (const auto &op : opcodes) |
661 | flushOpcodes(op, os); |
662 | } |
663 | if (!bindingsMap.empty()) |
664 | os << static_cast<uint8_t>(BIND_OPCODE_DONE); |
665 | } |
666 | |
667 | void BindingSection::writeTo(uint8_t *buf) const { |
668 | memcpy(dest: buf, src: contents.data(), n: contents.size()); |
669 | } |
670 | |
671 | WeakBindingSection::WeakBindingSection() |
672 | : LinkEditSection(segment_names::linkEdit, section_names::weakBinding) {} |
673 | |
674 | void WeakBindingSection::finalizeContents() { |
675 | raw_svector_ostream os{contents}; |
676 | Binding lastBinding; |
677 | |
678 | for (const Defined *defined : definitions) |
679 | encodeWeakOverride(defined, os); |
680 | |
681 | for (auto &p : sortBindings(bindingsMap)) { |
682 | const Symbol *sym = p.first; |
683 | std::vector<BindingEntry> &bindings = p.second; |
684 | os << static_cast<uint8_t>(BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM) |
685 | << sym->getName() << '\0' |
686 | << static_cast<uint8_t>(BIND_OPCODE_SET_TYPE_IMM | BIND_TYPE_POINTER); |
687 | std::vector<BindIR> opcodes; |
688 | for (const BindingEntry &b : bindings) |
689 | encodeBinding(osec: b.target.isec->parent, |
690 | outSecOff: b.target.isec->getOffset(off: b.target.offset), addend: b.addend, |
691 | lastBinding, opcodes); |
692 | if (config->optimize > 1) |
693 | optimizeOpcodes(opcodes); |
694 | for (const auto &op : opcodes) |
695 | flushOpcodes(op, os); |
696 | } |
697 | if (!bindingsMap.empty() || !definitions.empty()) |
698 | os << static_cast<uint8_t>(BIND_OPCODE_DONE); |
699 | } |
700 | |
701 | void WeakBindingSection::writeTo(uint8_t *buf) const { |
702 | memcpy(dest: buf, src: contents.data(), n: contents.size()); |
703 | } |
704 | |
705 | StubsSection::StubsSection() |
706 | : SyntheticSection(segment_names::text, section_names::stubs) { |
707 | flags = S_SYMBOL_STUBS | S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; |
708 | // The stubs section comprises machine instructions, which are aligned to |
709 | // 4 bytes on the archs we care about. |
710 | align = 4; |
711 | reserved2 = target->stubSize; |
712 | } |
713 | |
714 | uint64_t StubsSection::getSize() const { |
715 | return entries.size() * target->stubSize; |
716 | } |
717 | |
718 | void StubsSection::writeTo(uint8_t *buf) const { |
719 | size_t off = 0; |
720 | for (const Symbol *sym : entries) { |
721 | uint64_t pointerVA = |
722 | config->emitChainedFixups ? sym->getGotVA() : sym->getLazyPtrVA(); |
723 | target->writeStub(buf: buf + off, *sym, pointerVA); |
724 | off += target->stubSize; |
725 | } |
726 | } |
727 | |
728 | void StubsSection::finalize() { isFinal = true; } |
729 | |
730 | static void addBindingsForStub(Symbol *sym) { |
731 | assert(!config->emitChainedFixups); |
732 | if (auto *dysym = dyn_cast<DylibSymbol>(Val: sym)) { |
733 | if (sym->isWeakDef()) { |
734 | in.binding->addEntry(dysym, isec: in.lazyPointers->isec, |
735 | offset: sym->stubsIndex * target->wordSize); |
736 | in.weakBinding->addEntry(symbol: sym, isec: in.lazyPointers->isec, |
737 | offset: sym->stubsIndex * target->wordSize); |
738 | } else { |
739 | in.lazyBinding->addEntry(dysym); |
740 | } |
741 | } else if (auto *defined = dyn_cast<Defined>(Val: sym)) { |
742 | if (defined->isExternalWeakDef()) { |
743 | in.rebase->addEntry(isec: in.lazyPointers->isec, |
744 | offset: sym->stubsIndex * target->wordSize); |
745 | in.weakBinding->addEntry(symbol: sym, isec: in.lazyPointers->isec, |
746 | offset: sym->stubsIndex * target->wordSize); |
747 | } else if (defined->interposable) { |
748 | in.lazyBinding->addEntry(dysym: sym); |
749 | } else { |
750 | llvm_unreachable("invalid stub target" ); |
751 | } |
752 | } else { |
753 | llvm_unreachable("invalid stub target symbol type" ); |
754 | } |
755 | } |
756 | |
757 | void StubsSection::addEntry(Symbol *sym) { |
758 | bool inserted = entries.insert(X: sym); |
759 | if (inserted) { |
760 | sym->stubsIndex = entries.size() - 1; |
761 | |
762 | if (config->emitChainedFixups) |
763 | in.got->addEntry(sym); |
764 | else |
765 | addBindingsForStub(sym); |
766 | } |
767 | } |
768 | |
769 | StubHelperSection::StubHelperSection() |
770 | : SyntheticSection(segment_names::text, section_names::stubHelper) { |
771 | flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; |
772 | align = 4; // This section comprises machine instructions |
773 | } |
774 | |
775 | uint64_t StubHelperSection::getSize() const { |
776 | return target->stubHelperHeaderSize + |
777 | in.lazyBinding->getEntries().size() * target->stubHelperEntrySize; |
778 | } |
779 | |
780 | bool StubHelperSection::isNeeded() const { return in.lazyBinding->isNeeded(); } |
781 | |
782 | void StubHelperSection::writeTo(uint8_t *buf) const { |
783 | target->writeStubHelperHeader(buf); |
784 | size_t off = target->stubHelperHeaderSize; |
785 | for (const Symbol *sym : in.lazyBinding->getEntries()) { |
786 | target->writeStubHelperEntry(buf: buf + off, *sym, entryAddr: addr + off); |
787 | off += target->stubHelperEntrySize; |
788 | } |
789 | } |
790 | |
791 | void StubHelperSection::setUp() { |
792 | Symbol *binder = symtab->addUndefined(name: "dyld_stub_binder" , /*file=*/nullptr, |
793 | /*isWeakRef=*/false); |
794 | if (auto *undefined = dyn_cast<Undefined>(Val: binder)) |
795 | treatUndefinedSymbol(*undefined, |
796 | source: "lazy binding (normally in libSystem.dylib)" ); |
797 | |
798 | // treatUndefinedSymbol() can replace binder with a DylibSymbol; re-check. |
799 | stubBinder = dyn_cast_or_null<DylibSymbol>(Val: binder); |
800 | if (stubBinder == nullptr) |
801 | return; |
802 | |
803 | in.got->addEntry(sym: stubBinder); |
804 | |
805 | in.imageLoaderCache->parent = |
806 | ConcatOutputSection::getOrCreateForInput(in.imageLoaderCache); |
807 | addInputSection(inputSection: in.imageLoaderCache); |
808 | // Since this isn't in the symbol table or in any input file, the noDeadStrip |
809 | // argument doesn't matter. |
810 | dyldPrivate = |
811 | make<Defined>(args: "__dyld_private" , args: nullptr, args&: in.imageLoaderCache, args: 0, args: 0, |
812 | /*isWeakDef=*/args: false, |
813 | /*isExternal=*/args: false, /*isPrivateExtern=*/args: false, |
814 | /*includeInSymtab=*/args: true, |
815 | /*isReferencedDynamically=*/args: false, |
816 | /*noDeadStrip=*/args: false); |
817 | dyldPrivate->used = true; |
818 | } |
819 | |
820 | llvm::DenseMap<llvm::CachedHashStringRef, ConcatInputSection *> |
821 | ObjCSelRefsHelper::methnameToSelref; |
822 | void ObjCSelRefsHelper::initialize() { |
823 | // Do not fold selrefs without ICF. |
824 | if (config->icfLevel == ICFLevel::none) |
825 | return; |
826 | |
827 | // Search methnames already referenced in __objc_selrefs |
828 | // Map the name to the corresponding selref entry |
829 | // which we will reuse when creating objc stubs. |
830 | for (ConcatInputSection *isec : inputSections) { |
831 | if (isec->shouldOmitFromOutput()) |
832 | continue; |
833 | if (isec->getName() != section_names::objcSelrefs) |
834 | continue; |
835 | // We expect a single relocation per selref entry to __objc_methname that |
836 | // might be aggregated. |
837 | assert(isec->relocs.size() == 1); |
838 | auto Reloc = isec->relocs[0]; |
839 | if (const auto *sym = Reloc.referent.dyn_cast<Symbol *>()) { |
840 | if (const auto *d = dyn_cast<Defined>(Val: sym)) { |
841 | auto *cisec = cast<CStringInputSection>(Val: d->isec()); |
842 | auto methname = cisec->getStringRefAtOffset(off: d->value); |
843 | methnameToSelref[CachedHashStringRef(methname)] = isec; |
844 | } |
845 | } |
846 | } |
847 | } |
848 | |
849 | void ObjCSelRefsHelper::cleanup() { methnameToSelref.clear(); } |
850 | |
851 | ConcatInputSection *ObjCSelRefsHelper::makeSelRef(StringRef methname) { |
852 | auto methnameOffset = |
853 | in.objcMethnameSection->getStringOffset(str: methname).outSecOff; |
854 | |
855 | size_t wordSize = target->wordSize; |
856 | uint8_t *selrefData = bAlloc().Allocate<uint8_t>(Num: wordSize); |
857 | write64le(P: selrefData, V: methnameOffset); |
858 | ConcatInputSection *objcSelref = |
859 | makeSyntheticInputSection(segName: segment_names::data, sectName: section_names::objcSelrefs, |
860 | flags: S_LITERAL_POINTERS | S_ATTR_NO_DEAD_STRIP, |
861 | data: ArrayRef<uint8_t>{selrefData, wordSize}, |
862 | /*align=*/wordSize); |
863 | assert(objcSelref->live); |
864 | objcSelref->relocs.push_back(x: {/*type=*/target->unsignedRelocType, |
865 | /*pcrel=*/false, /*length=*/3, |
866 | /*offset=*/0, |
867 | /*addend=*/static_cast<int64_t>(methnameOffset), |
868 | /*referent=*/in.objcMethnameSection->isec}); |
869 | objcSelref->parent = ConcatOutputSection::getOrCreateForInput(objcSelref); |
870 | addInputSection(inputSection: objcSelref); |
871 | objcSelref->isFinal = true; |
872 | methnameToSelref[CachedHashStringRef(methname)] = objcSelref; |
873 | return objcSelref; |
874 | } |
875 | |
876 | ConcatInputSection *ObjCSelRefsHelper::getSelRef(StringRef methname) { |
877 | auto it = methnameToSelref.find(Val: CachedHashStringRef(methname)); |
878 | if (it == methnameToSelref.end()) |
879 | return nullptr; |
880 | return it->second; |
881 | } |
882 | |
883 | ObjCStubsSection::ObjCStubsSection() |
884 | : SyntheticSection(segment_names::text, section_names::objcStubs) { |
885 | flags = S_ATTR_SOME_INSTRUCTIONS | S_ATTR_PURE_INSTRUCTIONS; |
886 | align = config->objcStubsMode == ObjCStubsMode::fast |
887 | ? target->objcStubsFastAlignment |
888 | : target->objcStubsSmallAlignment; |
889 | } |
890 | |
891 | bool ObjCStubsSection::isObjCStubSymbol(Symbol *sym) { |
892 | return sym->getName().starts_with(Prefix: symbolPrefix); |
893 | } |
894 | |
895 | StringRef ObjCStubsSection::getMethname(Symbol *sym) { |
896 | assert(isObjCStubSymbol(sym) && "not an objc stub" ); |
897 | auto name = sym->getName(); |
898 | StringRef methname = name.drop_front(N: symbolPrefix.size()); |
899 | return methname; |
900 | } |
901 | |
902 | void ObjCStubsSection::addEntry(Symbol *sym) { |
903 | StringRef methname = getMethname(sym); |
904 | // We create a selref entry for each unique methname. |
905 | if (!ObjCSelRefsHelper::getSelRef(methname)) |
906 | ObjCSelRefsHelper::makeSelRef(methname); |
907 | |
908 | auto stubSize = config->objcStubsMode == ObjCStubsMode::fast |
909 | ? target->objcStubsFastSize |
910 | : target->objcStubsSmallSize; |
911 | Defined *newSym = replaceSymbol<Defined>( |
912 | s: sym, arg: sym->getName(), arg: nullptr, arg&: isec, |
913 | /*value=*/arg: symbols.size() * stubSize, |
914 | /*size=*/arg&: stubSize, |
915 | /*isWeakDef=*/arg: false, /*isExternal=*/arg: true, /*isPrivateExtern=*/arg: true, |
916 | /*includeInSymtab=*/arg: true, /*isReferencedDynamically=*/arg: false, |
917 | /*noDeadStrip=*/arg: false); |
918 | symbols.push_back(x: newSym); |
919 | } |
920 | |
921 | void ObjCStubsSection::setUp() { |
922 | objcMsgSend = symtab->addUndefined(name: "_objc_msgSend" , /*file=*/nullptr, |
923 | /*isWeakRef=*/false); |
924 | if (auto *undefined = dyn_cast<Undefined>(Val: objcMsgSend)) |
925 | treatUndefinedSymbol(*undefined, |
926 | source: "lazy binding (normally in libobjc.dylib)" ); |
927 | objcMsgSend->used = true; |
928 | if (config->objcStubsMode == ObjCStubsMode::fast) { |
929 | in.got->addEntry(sym: objcMsgSend); |
930 | assert(objcMsgSend->isInGot()); |
931 | } else { |
932 | assert(config->objcStubsMode == ObjCStubsMode::small); |
933 | // In line with ld64's behavior, when objc_msgSend is a direct symbol, |
934 | // we directly reference it. |
935 | // In other cases, typically when binding in libobjc.dylib, |
936 | // we generate a stub to invoke objc_msgSend. |
937 | if (!isa<Defined>(Val: objcMsgSend)) |
938 | in.stubs->addEntry(sym: objcMsgSend); |
939 | } |
940 | } |
941 | |
942 | uint64_t ObjCStubsSection::getSize() const { |
943 | auto stubSize = config->objcStubsMode == ObjCStubsMode::fast |
944 | ? target->objcStubsFastSize |
945 | : target->objcStubsSmallSize; |
946 | return stubSize * symbols.size(); |
947 | } |
948 | |
949 | void ObjCStubsSection::writeTo(uint8_t *buf) const { |
950 | uint64_t stubOffset = 0; |
951 | for (size_t i = 0, n = symbols.size(); i < n; ++i) { |
952 | Defined *sym = symbols[i]; |
953 | |
954 | auto methname = getMethname(sym); |
955 | InputSection *selRef = ObjCSelRefsHelper::getSelRef(methname); |
956 | assert(selRef != nullptr && "no selref for methname" ); |
957 | auto selrefAddr = selRef->getVA(off: 0); |
958 | target->writeObjCMsgSendStub(buf: buf + stubOffset, sym, stubsAddr: in.objcStubs->addr, |
959 | stubOffset, selrefVA: selrefAddr, objcMsgSend); |
960 | } |
961 | } |
962 | |
963 | LazyPointerSection::LazyPointerSection() |
964 | : SyntheticSection(segment_names::data, section_names::lazySymbolPtr) { |
965 | align = target->wordSize; |
966 | flags = S_LAZY_SYMBOL_POINTERS; |
967 | } |
968 | |
969 | uint64_t LazyPointerSection::getSize() const { |
970 | return in.stubs->getEntries().size() * target->wordSize; |
971 | } |
972 | |
973 | bool LazyPointerSection::isNeeded() const { |
974 | return !in.stubs->getEntries().empty(); |
975 | } |
976 | |
977 | void LazyPointerSection::writeTo(uint8_t *buf) const { |
978 | size_t off = 0; |
979 | for (const Symbol *sym : in.stubs->getEntries()) { |
980 | if (const auto *dysym = dyn_cast<DylibSymbol>(Val: sym)) { |
981 | if (dysym->hasStubsHelper()) { |
982 | uint64_t stubHelperOffset = |
983 | target->stubHelperHeaderSize + |
984 | dysym->stubsHelperIndex * target->stubHelperEntrySize; |
985 | write64le(P: buf + off, V: in.stubHelper->addr + stubHelperOffset); |
986 | } |
987 | } else { |
988 | write64le(P: buf + off, V: sym->getVA()); |
989 | } |
990 | off += target->wordSize; |
991 | } |
992 | } |
993 | |
994 | LazyBindingSection::LazyBindingSection() |
995 | : LinkEditSection(segment_names::linkEdit, section_names::lazyBinding) {} |
996 | |
997 | void LazyBindingSection::finalizeContents() { |
998 | // TODO: Just precompute output size here instead of writing to a temporary |
999 | // buffer |
1000 | for (Symbol *sym : entries) |
1001 | sym->lazyBindOffset = encode(*sym); |
1002 | } |
1003 | |
1004 | void LazyBindingSection::writeTo(uint8_t *buf) const { |
1005 | memcpy(dest: buf, src: contents.data(), n: contents.size()); |
1006 | } |
1007 | |
1008 | void LazyBindingSection::addEntry(Symbol *sym) { |
1009 | assert(!config->emitChainedFixups && "Chained fixups always bind eagerly" ); |
1010 | if (entries.insert(X: sym)) { |
1011 | sym->stubsHelperIndex = entries.size() - 1; |
1012 | in.rebase->addEntry(isec: in.lazyPointers->isec, |
1013 | offset: sym->stubsIndex * target->wordSize); |
1014 | } |
1015 | } |
1016 | |
1017 | // Unlike the non-lazy binding section, the bind opcodes in this section aren't |
1018 | // interpreted all at once. Rather, dyld will start interpreting opcodes at a |
1019 | // given offset, typically only binding a single symbol before it finds a |
1020 | // BIND_OPCODE_DONE terminator. As such, unlike in the non-lazy-binding case, |
1021 | // we cannot encode just the differences between symbols; we have to emit the |
1022 | // complete bind information for each symbol. |
1023 | uint32_t LazyBindingSection::encode(const Symbol &sym) { |
1024 | uint32_t opstreamOffset = contents.size(); |
1025 | OutputSegment *dataSeg = in.lazyPointers->parent; |
1026 | os << static_cast<uint8_t>(BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB | |
1027 | dataSeg->index); |
1028 | uint64_t offset = |
1029 | in.lazyPointers->addr - dataSeg->addr + sym.stubsIndex * target->wordSize; |
1030 | encodeULEB128(Value: offset, OS&: os); |
1031 | encodeDylibOrdinal(ordinal: ordinalForSymbol(sym), os); |
1032 | |
1033 | uint8_t flags = BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM; |
1034 | if (sym.isWeakRef()) |
1035 | flags |= BIND_SYMBOL_FLAGS_WEAK_IMPORT; |
1036 | |
1037 | os << flags << sym.getName() << '\0' |
1038 | << static_cast<uint8_t>(BIND_OPCODE_DO_BIND) |
1039 | << static_cast<uint8_t>(BIND_OPCODE_DONE); |
1040 | return opstreamOffset; |
1041 | } |
1042 | |
1043 | ExportSection::ExportSection() |
1044 | : LinkEditSection(segment_names::linkEdit, section_names::export_) {} |
1045 | |
1046 | void ExportSection::finalizeContents() { |
1047 | trieBuilder.setImageBase(in.header->addr); |
1048 | for (const Symbol *sym : symtab->getSymbols()) { |
1049 | if (const auto *defined = dyn_cast<Defined>(Val: sym)) { |
1050 | if (defined->privateExtern || !defined->isLive()) |
1051 | continue; |
1052 | trieBuilder.addSymbol(sym: *defined); |
1053 | hasWeakSymbol = hasWeakSymbol || sym->isWeakDef(); |
1054 | } else if (auto *dysym = dyn_cast<DylibSymbol>(Val: sym)) { |
1055 | if (dysym->shouldReexport) |
1056 | trieBuilder.addSymbol(sym: *dysym); |
1057 | } |
1058 | } |
1059 | size = trieBuilder.build(); |
1060 | } |
1061 | |
1062 | void ExportSection::writeTo(uint8_t *buf) const { trieBuilder.writeTo(buf); } |
1063 | |
1064 | DataInCodeSection::DataInCodeSection() |
1065 | : LinkEditSection(segment_names::linkEdit, section_names::dataInCode) {} |
1066 | |
1067 | template <class LP> |
1068 | static std::vector<MachO::data_in_code_entry> collectDataInCodeEntries() { |
1069 | std::vector<MachO::data_in_code_entry> dataInCodeEntries; |
1070 | for (const InputFile *inputFile : inputFiles) { |
1071 | if (!isa<ObjFile>(Val: inputFile)) |
1072 | continue; |
1073 | const ObjFile *objFile = cast<ObjFile>(Val: inputFile); |
1074 | ArrayRef<MachO::data_in_code_entry> entries = objFile->getDataInCode(); |
1075 | if (entries.empty()) |
1076 | continue; |
1077 | |
1078 | std::vector<MachO::data_in_code_entry> sortedEntries; |
1079 | sortedEntries.assign(first: entries.begin(), last: entries.end()); |
1080 | llvm::sort(sortedEntries, [](const data_in_code_entry &lhs, |
1081 | const data_in_code_entry &rhs) { |
1082 | return lhs.offset < rhs.offset; |
1083 | }); |
1084 | |
1085 | // For each code subsection find 'data in code' entries residing in it. |
1086 | // Compute the new offset values as |
1087 | // <offset within subsection> + <subsection address> - <__TEXT address>. |
1088 | for (const Section *section : objFile->sections) { |
1089 | for (const Subsection &subsec : section->subsections) { |
1090 | const InputSection *isec = subsec.isec; |
1091 | if (!isCodeSection(isec)) |
1092 | continue; |
1093 | if (cast<ConcatInputSection>(Val: isec)->shouldOmitFromOutput()) |
1094 | continue; |
1095 | const uint64_t beginAddr = section->addr + subsec.offset; |
1096 | auto it = llvm::lower_bound( |
1097 | sortedEntries, beginAddr, |
1098 | [](const MachO::data_in_code_entry &entry, uint64_t addr) { |
1099 | return entry.offset < addr; |
1100 | }); |
1101 | const uint64_t endAddr = beginAddr + isec->getSize(); |
1102 | for (const auto end = sortedEntries.end(); |
1103 | it != end && it->offset + it->length <= endAddr; ++it) |
1104 | dataInCodeEntries.push_back( |
1105 | {static_cast<uint32_t>(isec->getVA(off: it->offset - beginAddr) - |
1106 | in.header->addr), |
1107 | it->length, it->kind}); |
1108 | } |
1109 | } |
1110 | } |
1111 | |
1112 | // ld64 emits the table in sorted order too. |
1113 | llvm::sort(dataInCodeEntries, |
1114 | [](const data_in_code_entry &lhs, const data_in_code_entry &rhs) { |
1115 | return lhs.offset < rhs.offset; |
1116 | }); |
1117 | return dataInCodeEntries; |
1118 | } |
1119 | |
1120 | void DataInCodeSection::finalizeContents() { |
1121 | entries = target->wordSize == 8 ? collectDataInCodeEntries<LP64>() |
1122 | : collectDataInCodeEntries<ILP32>(); |
1123 | } |
1124 | |
1125 | void DataInCodeSection::writeTo(uint8_t *buf) const { |
1126 | if (!entries.empty()) |
1127 | memcpy(dest: buf, src: entries.data(), n: getRawSize()); |
1128 | } |
1129 | |
1130 | FunctionStartsSection::FunctionStartsSection() |
1131 | : LinkEditSection(segment_names::linkEdit, section_names::functionStarts) {} |
1132 | |
1133 | void FunctionStartsSection::finalizeContents() { |
1134 | raw_svector_ostream os{contents}; |
1135 | std::vector<uint64_t> addrs; |
1136 | for (const InputFile *file : inputFiles) { |
1137 | if (auto *objFile = dyn_cast<ObjFile>(Val: file)) { |
1138 | for (const Symbol *sym : objFile->symbols) { |
1139 | if (const auto *defined = dyn_cast_or_null<Defined>(Val: sym)) { |
1140 | if (!defined->isec() || !isCodeSection(defined->isec()) || |
1141 | !defined->isLive()) |
1142 | continue; |
1143 | addrs.push_back(x: defined->getVA()); |
1144 | } |
1145 | } |
1146 | } |
1147 | } |
1148 | llvm::sort(C&: addrs); |
1149 | uint64_t addr = in.header->addr; |
1150 | for (uint64_t nextAddr : addrs) { |
1151 | uint64_t delta = nextAddr - addr; |
1152 | if (delta == 0) |
1153 | continue; |
1154 | encodeULEB128(Value: delta, OS&: os); |
1155 | addr = nextAddr; |
1156 | } |
1157 | os << '\0'; |
1158 | } |
1159 | |
1160 | void FunctionStartsSection::writeTo(uint8_t *buf) const { |
1161 | memcpy(dest: buf, src: contents.data(), n: contents.size()); |
1162 | } |
1163 | |
1164 | SymtabSection::SymtabSection(StringTableSection &stringTableSection) |
1165 | : LinkEditSection(segment_names::linkEdit, section_names::symbolTable), |
1166 | stringTableSection(stringTableSection) {} |
1167 | |
1168 | void SymtabSection::emitBeginSourceStab(StringRef sourceFile) { |
1169 | StabsEntry stab(N_SO); |
1170 | stab.strx = stringTableSection.addString(saver().save(S: sourceFile)); |
1171 | stabs.emplace_back(args: std::move(stab)); |
1172 | } |
1173 | |
1174 | void SymtabSection::emitEndSourceStab() { |
1175 | StabsEntry stab(N_SO); |
1176 | stab.sect = 1; |
1177 | stabs.emplace_back(args: std::move(stab)); |
1178 | } |
1179 | |
1180 | void SymtabSection::emitObjectFileStab(ObjFile *file) { |
1181 | StabsEntry stab(N_OSO); |
1182 | stab.sect = target->cpuSubtype; |
1183 | SmallString<261> path(!file->archiveName.empty() ? file->archiveName |
1184 | : file->getName()); |
1185 | std::error_code ec = sys::fs::make_absolute(path); |
1186 | if (ec) |
1187 | fatal(msg: "failed to get absolute path for " + path); |
1188 | |
1189 | if (!file->archiveName.empty()) |
1190 | path.append(Refs: {"(" , file->getName(), ")" }); |
1191 | |
1192 | StringRef adjustedPath = saver().save(S: path.str()); |
1193 | adjustedPath.consume_front(Prefix: config->osoPrefix); |
1194 | |
1195 | stab.strx = stringTableSection.addString(adjustedPath); |
1196 | stab.desc = 1; |
1197 | stab.value = file->modTime; |
1198 | stabs.emplace_back(args: std::move(stab)); |
1199 | } |
1200 | |
1201 | void SymtabSection::emitEndFunStab(Defined *defined) { |
1202 | StabsEntry stab(N_FUN); |
1203 | stab.value = defined->size; |
1204 | stabs.emplace_back(args: std::move(stab)); |
1205 | } |
1206 | |
1207 | void SymtabSection::emitStabs() { |
1208 | if (config->omitDebugInfo) |
1209 | return; |
1210 | |
1211 | for (const std::string &s : config->astPaths) { |
1212 | StabsEntry astStab(N_AST); |
1213 | astStab.strx = stringTableSection.addString(s); |
1214 | stabs.emplace_back(args: std::move(astStab)); |
1215 | } |
1216 | |
1217 | // Cache the file ID for each symbol in an std::pair for faster sorting. |
1218 | using SortingPair = std::pair<Defined *, int>; |
1219 | std::vector<SortingPair> symbolsNeedingStabs; |
1220 | for (const SymtabEntry &entry : |
1221 | concat<SymtabEntry>(Ranges&: localSymbols, Ranges&: externalSymbols)) { |
1222 | Symbol *sym = entry.sym; |
1223 | assert(sym->isLive() && |
1224 | "dead symbols should not be in localSymbols, externalSymbols" ); |
1225 | if (auto *defined = dyn_cast<Defined>(Val: sym)) { |
1226 | // Excluded symbols should have been filtered out in finalizeContents(). |
1227 | assert(defined->includeInSymtab); |
1228 | |
1229 | if (defined->isAbsolute()) |
1230 | continue; |
1231 | |
1232 | // Constant-folded symbols go in the executable's symbol table, but don't |
1233 | // get a stabs entry unless --keep-icf-stabs flag is specified |
1234 | if (!config->keepICFStabs && defined->wasIdenticalCodeFolded) |
1235 | continue; |
1236 | |
1237 | ObjFile *file = defined->getObjectFile(); |
1238 | if (!file || !file->compileUnit) |
1239 | continue; |
1240 | |
1241 | // We use 'originalIsec' to get the file id of the symbol since 'isec()' |
1242 | // might point to the merged ICF symbol's file |
1243 | symbolsNeedingStabs.emplace_back(args&: defined, |
1244 | args: defined->originalIsec->getFile()->id); |
1245 | } |
1246 | } |
1247 | |
1248 | llvm::stable_sort(Range&: symbolsNeedingStabs, |
1249 | C: [&](const SortingPair &a, const SortingPair &b) { |
1250 | return a.second < b.second; |
1251 | }); |
1252 | |
1253 | // Emit STABS symbols so that dsymutil and/or the debugger can map address |
1254 | // regions in the final binary to the source and object files from which they |
1255 | // originated. |
1256 | InputFile *lastFile = nullptr; |
1257 | for (SortingPair &pair : symbolsNeedingStabs) { |
1258 | Defined *defined = pair.first; |
1259 | // We use 'originalIsec' of the symbol since we care about the actual origin |
1260 | // of the symbol, not the canonical location returned by `isec()`. |
1261 | InputSection *isec = defined->originalIsec; |
1262 | ObjFile *file = cast<ObjFile>(Val: isec->getFile()); |
1263 | |
1264 | if (lastFile == nullptr || lastFile != file) { |
1265 | if (lastFile != nullptr) |
1266 | emitEndSourceStab(); |
1267 | lastFile = file; |
1268 | |
1269 | emitBeginSourceStab(sourceFile: file->sourceFile()); |
1270 | emitObjectFileStab(file); |
1271 | } |
1272 | |
1273 | StabsEntry symStab; |
1274 | symStab.sect = isec->parent->index; |
1275 | symStab.strx = stringTableSection.addString(defined->getName()); |
1276 | symStab.value = defined->getVA(); |
1277 | |
1278 | if (isCodeSection(isec)) { |
1279 | symStab.type = N_FUN; |
1280 | stabs.emplace_back(args: std::move(symStab)); |
1281 | emitEndFunStab(defined); |
1282 | } else { |
1283 | symStab.type = defined->isExternal() ? N_GSYM : N_STSYM; |
1284 | stabs.emplace_back(args: std::move(symStab)); |
1285 | } |
1286 | } |
1287 | |
1288 | if (!stabs.empty()) |
1289 | emitEndSourceStab(); |
1290 | } |
1291 | |
1292 | void SymtabSection::finalizeContents() { |
1293 | auto addSymbol = [&](std::vector<SymtabEntry> &symbols, Symbol *sym) { |
1294 | uint32_t strx = stringTableSection.addString(sym->getName()); |
1295 | symbols.push_back(x: {.sym: sym, .strx: strx}); |
1296 | }; |
1297 | |
1298 | std::function<void(Symbol *)> localSymbolsHandler; |
1299 | switch (config->localSymbolsPresence) { |
1300 | case SymtabPresence::All: |
1301 | localSymbolsHandler = [&](Symbol *sym) { addSymbol(localSymbols, sym); }; |
1302 | break; |
1303 | case SymtabPresence::None: |
1304 | localSymbolsHandler = [&](Symbol *) { /* Do nothing*/ }; |
1305 | break; |
1306 | case SymtabPresence::SelectivelyIncluded: |
1307 | localSymbolsHandler = [&](Symbol *sym) { |
1308 | if (config->localSymbolPatterns.match(symbolName: sym->getName())) |
1309 | addSymbol(localSymbols, sym); |
1310 | }; |
1311 | break; |
1312 | case SymtabPresence::SelectivelyExcluded: |
1313 | localSymbolsHandler = [&](Symbol *sym) { |
1314 | if (!config->localSymbolPatterns.match(symbolName: sym->getName())) |
1315 | addSymbol(localSymbols, sym); |
1316 | }; |
1317 | break; |
1318 | } |
1319 | |
1320 | // Local symbols aren't in the SymbolTable, so we walk the list of object |
1321 | // files to gather them. |
1322 | // But if `-x` is set, then we don't need to. localSymbolsHandler() will do |
1323 | // the right thing regardless, but this check is a perf optimization because |
1324 | // iterating through all the input files and their symbols is expensive. |
1325 | if (config->localSymbolsPresence != SymtabPresence::None) { |
1326 | for (const InputFile *file : inputFiles) { |
1327 | if (auto *objFile = dyn_cast<ObjFile>(Val: file)) { |
1328 | for (Symbol *sym : objFile->symbols) { |
1329 | if (auto *defined = dyn_cast_or_null<Defined>(Val: sym)) { |
1330 | if (defined->isExternal() || !defined->isLive() || |
1331 | !defined->includeInSymtab) |
1332 | continue; |
1333 | localSymbolsHandler(sym); |
1334 | } |
1335 | } |
1336 | } |
1337 | } |
1338 | } |
1339 | |
1340 | // __dyld_private is a local symbol too. It's linker-created and doesn't |
1341 | // exist in any object file. |
1342 | if (in.stubHelper && in.stubHelper->dyldPrivate) |
1343 | localSymbolsHandler(in.stubHelper->dyldPrivate); |
1344 | |
1345 | for (Symbol *sym : symtab->getSymbols()) { |
1346 | if (!sym->isLive()) |
1347 | continue; |
1348 | if (auto *defined = dyn_cast<Defined>(Val: sym)) { |
1349 | if (!defined->includeInSymtab) |
1350 | continue; |
1351 | assert(defined->isExternal()); |
1352 | if (defined->privateExtern) |
1353 | localSymbolsHandler(defined); |
1354 | else |
1355 | addSymbol(externalSymbols, defined); |
1356 | } else if (auto *dysym = dyn_cast<DylibSymbol>(Val: sym)) { |
1357 | if (dysym->isReferenced()) |
1358 | addSymbol(undefinedSymbols, sym); |
1359 | } |
1360 | } |
1361 | |
1362 | emitStabs(); |
1363 | uint32_t symtabIndex = stabs.size(); |
1364 | for (const SymtabEntry &entry : |
1365 | concat<SymtabEntry>(Ranges&: localSymbols, Ranges&: externalSymbols, Ranges&: undefinedSymbols)) { |
1366 | entry.sym->symtabIndex = symtabIndex++; |
1367 | } |
1368 | } |
1369 | |
1370 | uint32_t SymtabSection::getNumSymbols() const { |
1371 | return stabs.size() + localSymbols.size() + externalSymbols.size() + |
1372 | undefinedSymbols.size(); |
1373 | } |
1374 | |
1375 | // This serves to hide (type-erase) the template parameter from SymtabSection. |
1376 | template <class LP> class SymtabSectionImpl final : public SymtabSection { |
1377 | public: |
1378 | SymtabSectionImpl(StringTableSection &stringTableSection) |
1379 | : SymtabSection(stringTableSection) {} |
1380 | uint64_t getRawSize() const override; |
1381 | void writeTo(uint8_t *buf) const override; |
1382 | }; |
1383 | |
1384 | template <class LP> uint64_t SymtabSectionImpl<LP>::getRawSize() const { |
1385 | return getNumSymbols() * sizeof(typename LP::nlist); |
1386 | } |
1387 | |
1388 | template <class LP> void SymtabSectionImpl<LP>::writeTo(uint8_t *buf) const { |
1389 | auto *nList = reinterpret_cast<typename LP::nlist *>(buf); |
1390 | // Emit the stabs entries before the "real" symbols. We cannot emit them |
1391 | // after as that would render Symbol::symtabIndex inaccurate. |
1392 | for (const StabsEntry &entry : stabs) { |
1393 | nList->n_strx = entry.strx; |
1394 | nList->n_type = entry.type; |
1395 | nList->n_sect = entry.sect; |
1396 | nList->n_desc = entry.desc; |
1397 | nList->n_value = entry.value; |
1398 | ++nList; |
1399 | } |
1400 | |
1401 | for (const SymtabEntry &entry : concat<const SymtabEntry>( |
1402 | localSymbols, externalSymbols, undefinedSymbols)) { |
1403 | nList->n_strx = entry.strx; |
1404 | // TODO populate n_desc with more flags |
1405 | if (auto *defined = dyn_cast<Defined>(Val: entry.sym)) { |
1406 | uint8_t scope = 0; |
1407 | if (defined->privateExtern) { |
1408 | // Private external -- dylib scoped symbol. |
1409 | // Promote to non-external at link time. |
1410 | scope = N_PEXT; |
1411 | } else if (defined->isExternal()) { |
1412 | // Normal global symbol. |
1413 | scope = N_EXT; |
1414 | } else { |
1415 | // TU-local symbol from localSymbols. |
1416 | scope = 0; |
1417 | } |
1418 | |
1419 | if (defined->isAbsolute()) { |
1420 | nList->n_type = scope | N_ABS; |
1421 | nList->n_sect = NO_SECT; |
1422 | nList->n_value = defined->value; |
1423 | } else { |
1424 | nList->n_type = scope | N_SECT; |
1425 | nList->n_sect = defined->isec()->parent->index; |
1426 | // For the N_SECT symbol type, n_value is the address of the symbol |
1427 | nList->n_value = defined->getVA(); |
1428 | } |
1429 | nList->n_desc |= defined->isExternalWeakDef() ? N_WEAK_DEF : 0; |
1430 | nList->n_desc |= |
1431 | defined->referencedDynamically ? REFERENCED_DYNAMICALLY : 0; |
1432 | } else if (auto *dysym = dyn_cast<DylibSymbol>(Val: entry.sym)) { |
1433 | uint16_t n_desc = nList->n_desc; |
1434 | int16_t ordinal = ordinalForDylibSymbol(dysym: *dysym); |
1435 | if (ordinal == BIND_SPECIAL_DYLIB_FLAT_LOOKUP) |
1436 | SET_LIBRARY_ORDINAL(n_desc, ordinal: DYNAMIC_LOOKUP_ORDINAL); |
1437 | else if (ordinal == BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE) |
1438 | SET_LIBRARY_ORDINAL(n_desc, ordinal: EXECUTABLE_ORDINAL); |
1439 | else { |
1440 | assert(ordinal > 0); |
1441 | SET_LIBRARY_ORDINAL(n_desc, ordinal: static_cast<uint8_t>(ordinal)); |
1442 | } |
1443 | |
1444 | nList->n_type = N_EXT; |
1445 | n_desc |= dysym->isWeakDef() ? N_WEAK_DEF : 0; |
1446 | n_desc |= dysym->isWeakRef() ? N_WEAK_REF : 0; |
1447 | nList->n_desc = n_desc; |
1448 | } |
1449 | ++nList; |
1450 | } |
1451 | } |
1452 | |
1453 | template <class LP> |
1454 | SymtabSection * |
1455 | macho::makeSymtabSection(StringTableSection &stringTableSection) { |
1456 | return make<SymtabSectionImpl<LP>>(stringTableSection); |
1457 | } |
1458 | |
1459 | IndirectSymtabSection::IndirectSymtabSection() |
1460 | : LinkEditSection(segment_names::linkEdit, |
1461 | section_names::indirectSymbolTable) {} |
1462 | |
1463 | uint32_t IndirectSymtabSection::getNumSymbols() const { |
1464 | uint32_t size = in.got->getEntries().size() + |
1465 | in.tlvPointers->getEntries().size() + |
1466 | in.stubs->getEntries().size(); |
1467 | if (!config->emitChainedFixups) |
1468 | size += in.stubs->getEntries().size(); |
1469 | return size; |
1470 | } |
1471 | |
1472 | bool IndirectSymtabSection::isNeeded() const { |
1473 | return in.got->isNeeded() || in.tlvPointers->isNeeded() || |
1474 | in.stubs->isNeeded(); |
1475 | } |
1476 | |
1477 | void IndirectSymtabSection::finalizeContents() { |
1478 | uint32_t off = 0; |
1479 | in.got->reserved1 = off; |
1480 | off += in.got->getEntries().size(); |
1481 | in.tlvPointers->reserved1 = off; |
1482 | off += in.tlvPointers->getEntries().size(); |
1483 | in.stubs->reserved1 = off; |
1484 | if (in.lazyPointers) { |
1485 | off += in.stubs->getEntries().size(); |
1486 | in.lazyPointers->reserved1 = off; |
1487 | } |
1488 | } |
1489 | |
1490 | static uint32_t indirectValue(const Symbol *sym) { |
1491 | if (sym->symtabIndex == UINT32_MAX || !needsBinding(sym)) |
1492 | return INDIRECT_SYMBOL_LOCAL; |
1493 | return sym->symtabIndex; |
1494 | } |
1495 | |
1496 | void IndirectSymtabSection::writeTo(uint8_t *buf) const { |
1497 | uint32_t off = 0; |
1498 | for (const Symbol *sym : in.got->getEntries()) { |
1499 | write32le(P: buf + off * sizeof(uint32_t), V: indirectValue(sym)); |
1500 | ++off; |
1501 | } |
1502 | for (const Symbol *sym : in.tlvPointers->getEntries()) { |
1503 | write32le(P: buf + off * sizeof(uint32_t), V: indirectValue(sym)); |
1504 | ++off; |
1505 | } |
1506 | for (const Symbol *sym : in.stubs->getEntries()) { |
1507 | write32le(P: buf + off * sizeof(uint32_t), V: indirectValue(sym)); |
1508 | ++off; |
1509 | } |
1510 | |
1511 | if (in.lazyPointers) { |
1512 | // There is a 1:1 correspondence between stubs and LazyPointerSection |
1513 | // entries. But giving __stubs and __la_symbol_ptr the same reserved1 |
1514 | // (the offset into the indirect symbol table) so that they both refer |
1515 | // to the same range of offsets confuses `strip`, so write the stubs |
1516 | // symbol table offsets a second time. |
1517 | for (const Symbol *sym : in.stubs->getEntries()) { |
1518 | write32le(P: buf + off * sizeof(uint32_t), V: indirectValue(sym)); |
1519 | ++off; |
1520 | } |
1521 | } |
1522 | } |
1523 | |
1524 | StringTableSection::StringTableSection() |
1525 | : LinkEditSection(segment_names::linkEdit, section_names::stringTable) {} |
1526 | |
1527 | uint32_t StringTableSection::addString(StringRef str) { |
1528 | uint32_t strx = size; |
1529 | strings.push_back(x: str); // TODO: consider deduplicating strings |
1530 | size += str.size() + 1; // account for null terminator |
1531 | return strx; |
1532 | } |
1533 | |
1534 | void StringTableSection::writeTo(uint8_t *buf) const { |
1535 | uint32_t off = 0; |
1536 | for (StringRef str : strings) { |
1537 | memcpy(dest: buf + off, src: str.data(), n: str.size()); |
1538 | off += str.size() + 1; // account for null terminator |
1539 | } |
1540 | } |
1541 | |
1542 | static_assert((CodeSignatureSection::blobHeadersSize % 8) == 0); |
1543 | static_assert((CodeSignatureSection::fixedHeadersSize % 8) == 0); |
1544 | |
1545 | CodeSignatureSection::CodeSignatureSection() |
1546 | : LinkEditSection(segment_names::linkEdit, section_names::codeSignature) { |
1547 | align = 16; // required by libstuff |
1548 | |
1549 | // XXX: This mimics LD64, where it uses the install-name as codesign |
1550 | // identifier, if available. |
1551 | if (!config->installName.empty()) |
1552 | fileName = config->installName; |
1553 | else |
1554 | // FIXME: Consider using finalOutput instead of outputFile. |
1555 | fileName = config->outputFile; |
1556 | |
1557 | size_t slashIndex = fileName.rfind(Str: "/" ); |
1558 | if (slashIndex != std::string::npos) |
1559 | fileName = fileName.drop_front(N: slashIndex + 1); |
1560 | |
1561 | // NOTE: Any changes to these calculations should be repeated |
1562 | // in llvm-objcopy's MachOLayoutBuilder::layoutTail. |
1563 | allHeadersSize = alignTo<16>(Value: fixedHeadersSize + fileName.size() + 1); |
1564 | fileNamePad = allHeadersSize - fixedHeadersSize - fileName.size(); |
1565 | } |
1566 | |
1567 | uint32_t CodeSignatureSection::getBlockCount() const { |
1568 | return (fileOff + blockSize - 1) / blockSize; |
1569 | } |
1570 | |
1571 | uint64_t CodeSignatureSection::getRawSize() const { |
1572 | return allHeadersSize + getBlockCount() * hashSize; |
1573 | } |
1574 | |
1575 | void CodeSignatureSection::writeHashes(uint8_t *buf) const { |
1576 | // NOTE: Changes to this functionality should be repeated in llvm-objcopy's |
1577 | // MachOWriter::writeSignatureData. |
1578 | uint8_t *hashes = buf + fileOff + allHeadersSize; |
1579 | parallelFor(Begin: 0, End: getBlockCount(), Fn: [&](size_t i) { |
1580 | sha256(data: buf + i * blockSize, |
1581 | len: std::min(a: static_cast<size_t>(fileOff - i * blockSize), b: blockSize), |
1582 | output: hashes + i * hashSize); |
1583 | }); |
1584 | #if defined(__APPLE__) |
1585 | // This is macOS-specific work-around and makes no sense for any |
1586 | // other host OS. See https://openradar.appspot.com/FB8914231 |
1587 | // |
1588 | // The macOS kernel maintains a signature-verification cache to |
1589 | // quickly validate applications at time of execve(2). The trouble |
1590 | // is that for the kernel creates the cache entry at the time of the |
1591 | // mmap(2) call, before we have a chance to write either the code to |
1592 | // sign or the signature header+hashes. The fix is to invalidate |
1593 | // all cached data associated with the output file, thus discarding |
1594 | // the bogus prematurely-cached signature. |
1595 | msync(buf, fileOff + getSize(), MS_INVALIDATE); |
1596 | #endif |
1597 | } |
1598 | |
1599 | void CodeSignatureSection::writeTo(uint8_t *buf) const { |
1600 | // NOTE: Changes to this functionality should be repeated in llvm-objcopy's |
1601 | // MachOWriter::writeSignatureData. |
1602 | uint32_t signatureSize = static_cast<uint32_t>(getSize()); |
1603 | auto *superBlob = reinterpret_cast<CS_SuperBlob *>(buf); |
1604 | write32be(P: &superBlob->magic, V: CSMAGIC_EMBEDDED_SIGNATURE); |
1605 | write32be(P: &superBlob->length, V: signatureSize); |
1606 | write32be(P: &superBlob->count, V: 1); |
1607 | auto *blobIndex = reinterpret_cast<CS_BlobIndex *>(&superBlob[1]); |
1608 | write32be(P: &blobIndex->type, V: CSSLOT_CODEDIRECTORY); |
1609 | write32be(P: &blobIndex->offset, V: blobHeadersSize); |
1610 | auto *codeDirectory = |
1611 | reinterpret_cast<CS_CodeDirectory *>(buf + blobHeadersSize); |
1612 | write32be(P: &codeDirectory->magic, V: CSMAGIC_CODEDIRECTORY); |
1613 | write32be(P: &codeDirectory->length, V: signatureSize - blobHeadersSize); |
1614 | write32be(P: &codeDirectory->version, V: CS_SUPPORTSEXECSEG); |
1615 | write32be(P: &codeDirectory->flags, V: CS_ADHOC | CS_LINKER_SIGNED); |
1616 | write32be(P: &codeDirectory->hashOffset, |
1617 | V: sizeof(CS_CodeDirectory) + fileName.size() + fileNamePad); |
1618 | write32be(P: &codeDirectory->identOffset, V: sizeof(CS_CodeDirectory)); |
1619 | codeDirectory->nSpecialSlots = 0; |
1620 | write32be(P: &codeDirectory->nCodeSlots, V: getBlockCount()); |
1621 | write32be(P: &codeDirectory->codeLimit, V: fileOff); |
1622 | codeDirectory->hashSize = static_cast<uint8_t>(hashSize); |
1623 | codeDirectory->hashType = kSecCodeSignatureHashSHA256; |
1624 | codeDirectory->platform = 0; |
1625 | codeDirectory->pageSize = blockSizeShift; |
1626 | codeDirectory->spare2 = 0; |
1627 | codeDirectory->scatterOffset = 0; |
1628 | codeDirectory->teamOffset = 0; |
1629 | codeDirectory->spare3 = 0; |
1630 | codeDirectory->codeLimit64 = 0; |
1631 | OutputSegment *textSeg = getOrCreateOutputSegment(name: segment_names::text); |
1632 | write64be(P: &codeDirectory->execSegBase, V: textSeg->fileOff); |
1633 | write64be(P: &codeDirectory->execSegLimit, V: textSeg->fileSize); |
1634 | write64be(P: &codeDirectory->execSegFlags, |
1635 | V: config->outputType == MH_EXECUTE ? CS_EXECSEG_MAIN_BINARY : 0); |
1636 | auto *id = reinterpret_cast<char *>(&codeDirectory[1]); |
1637 | memcpy(dest: id, src: fileName.begin(), n: fileName.size()); |
1638 | memset(s: id + fileName.size(), c: 0, n: fileNamePad); |
1639 | } |
1640 | |
1641 | CStringSection::CStringSection(const char *name) |
1642 | : SyntheticSection(segment_names::text, name) { |
1643 | flags = S_CSTRING_LITERALS; |
1644 | } |
1645 | |
1646 | void CStringSection::addInput(CStringInputSection *isec) { |
1647 | isec->parent = this; |
1648 | inputs.push_back(x: isec); |
1649 | if (isec->align > align) |
1650 | align = isec->align; |
1651 | } |
1652 | |
1653 | void CStringSection::writeTo(uint8_t *buf) const { |
1654 | for (const CStringInputSection *isec : inputs) { |
1655 | for (const auto &[i, piece] : llvm::enumerate(First: isec->pieces)) { |
1656 | if (!piece.live) |
1657 | continue; |
1658 | StringRef string = isec->getStringRef(i); |
1659 | memcpy(dest: buf + piece.outSecOff, src: string.data(), n: string.size()); |
1660 | } |
1661 | } |
1662 | } |
1663 | |
1664 | void CStringSection::finalizeContents() { |
1665 | uint64_t offset = 0; |
1666 | for (CStringInputSection *isec : inputs) { |
1667 | for (const auto &[i, piece] : llvm::enumerate(First&: isec->pieces)) { |
1668 | if (!piece.live) |
1669 | continue; |
1670 | // See comment above DeduplicatedCStringSection for how alignment is |
1671 | // handled. |
1672 | uint32_t pieceAlign = 1 |
1673 | << llvm::countr_zero(Val: isec->align | piece.inSecOff); |
1674 | offset = alignToPowerOf2(Value: offset, Align: pieceAlign); |
1675 | piece.outSecOff = offset; |
1676 | isec->isFinal = true; |
1677 | StringRef string = isec->getStringRef(i); |
1678 | offset += string.size() + 1; // account for null terminator |
1679 | } |
1680 | } |
1681 | size = offset; |
1682 | } |
1683 | |
1684 | // Mergeable cstring literals are found under the __TEXT,__cstring section. In |
1685 | // contrast to ELF, which puts strings that need different alignments into |
1686 | // different sections, clang's Mach-O backend puts them all in one section. |
1687 | // Strings that need to be aligned have the .p2align directive emitted before |
1688 | // them, which simply translates into zero padding in the object file. In other |
1689 | // words, we have to infer the desired alignment of these cstrings from their |
1690 | // addresses. |
1691 | // |
1692 | // We differ slightly from ld64 in how we've chosen to align these cstrings. |
1693 | // Both LLD and ld64 preserve the number of trailing zeros in each cstring's |
1694 | // address in the input object files. When deduplicating identical cstrings, |
1695 | // both linkers pick the cstring whose address has more trailing zeros, and |
1696 | // preserve the alignment of that address in the final binary. However, ld64 |
1697 | // goes a step further and also preserves the offset of the cstring from the |
1698 | // last section-aligned address. I.e. if a cstring is at offset 18 in the |
1699 | // input, with a section alignment of 16, then both LLD and ld64 will ensure the |
1700 | // final address is 2-byte aligned (since 18 == 16 + 2). But ld64 will also |
1701 | // ensure that the final address is of the form 16 * k + 2 for some k. |
1702 | // |
1703 | // Note that ld64's heuristic means that a dedup'ed cstring's final address is |
1704 | // dependent on the order of the input object files. E.g. if in addition to the |
1705 | // cstring at offset 18 above, we have a duplicate one in another file with a |
1706 | // `.cstring` section alignment of 2 and an offset of zero, then ld64 will pick |
1707 | // the cstring from the object file earlier on the command line (since both have |
1708 | // the same number of trailing zeros in their address). So the final cstring may |
1709 | // either be at some address `16 * k + 2` or at some address `2 * k`. |
1710 | // |
1711 | // I've opted not to follow this behavior primarily for implementation |
1712 | // simplicity, and secondarily to save a few more bytes. It's not clear to me |
1713 | // that preserving the section alignment + offset is ever necessary, and there |
1714 | // are many cases that are clearly redundant. In particular, if an x86_64 object |
1715 | // file contains some strings that are accessed via SIMD instructions, then the |
1716 | // .cstring section in the object file will be 16-byte-aligned (since SIMD |
1717 | // requires its operand addresses to be 16-byte aligned). However, there will |
1718 | // typically also be other cstrings in the same file that aren't used via SIMD |
1719 | // and don't need this alignment. They will be emitted at some arbitrary address |
1720 | // `A`, but ld64 will treat them as being 16-byte aligned with an offset of `16 |
1721 | // % A`. |
1722 | void DeduplicatedCStringSection::finalizeContents() { |
1723 | // Find the largest alignment required for each string. |
1724 | for (const CStringInputSection *isec : inputs) { |
1725 | for (const auto &[i, piece] : llvm::enumerate(First: isec->pieces)) { |
1726 | if (!piece.live) |
1727 | continue; |
1728 | auto s = isec->getCachedHashStringRef(i); |
1729 | assert(isec->align != 0); |
1730 | uint8_t trailingZeros = llvm::countr_zero(Val: isec->align | piece.inSecOff); |
1731 | auto it = stringOffsetMap.insert( |
1732 | KV: std::make_pair(x&: s, y: StringOffset(trailingZeros))); |
1733 | if (!it.second && it.first->second.trailingZeros < trailingZeros) |
1734 | it.first->second.trailingZeros = trailingZeros; |
1735 | } |
1736 | } |
1737 | |
1738 | // Assign an offset for each string and save it to the corresponding |
1739 | // StringPieces for easy access. |
1740 | for (CStringInputSection *isec : inputs) { |
1741 | for (const auto &[i, piece] : llvm::enumerate(First&: isec->pieces)) { |
1742 | if (!piece.live) |
1743 | continue; |
1744 | auto s = isec->getCachedHashStringRef(i); |
1745 | auto it = stringOffsetMap.find(Val: s); |
1746 | assert(it != stringOffsetMap.end()); |
1747 | StringOffset &offsetInfo = it->second; |
1748 | if (offsetInfo.outSecOff == UINT64_MAX) { |
1749 | offsetInfo.outSecOff = |
1750 | alignToPowerOf2(Value: size, Align: 1ULL << offsetInfo.trailingZeros); |
1751 | size = |
1752 | offsetInfo.outSecOff + s.size() + 1; // account for null terminator |
1753 | } |
1754 | piece.outSecOff = offsetInfo.outSecOff; |
1755 | } |
1756 | isec->isFinal = true; |
1757 | } |
1758 | } |
1759 | |
1760 | void DeduplicatedCStringSection::writeTo(uint8_t *buf) const { |
1761 | for (const auto &p : stringOffsetMap) { |
1762 | StringRef data = p.first.val(); |
1763 | uint64_t off = p.second.outSecOff; |
1764 | if (!data.empty()) |
1765 | memcpy(dest: buf + off, src: data.data(), n: data.size()); |
1766 | } |
1767 | } |
1768 | |
1769 | DeduplicatedCStringSection::StringOffset |
1770 | DeduplicatedCStringSection::getStringOffset(StringRef str) const { |
1771 | // StringPiece uses 31 bits to store the hashes, so we replicate that |
1772 | uint32_t hash = xxh3_64bits(data: str) & 0x7fffffff; |
1773 | auto offset = stringOffsetMap.find(Val: CachedHashStringRef(str, hash)); |
1774 | assert(offset != stringOffsetMap.end() && |
1775 | "Looked-up strings should always exist in section" ); |
1776 | return offset->second; |
1777 | } |
1778 | |
1779 | // This section is actually emitted as __TEXT,__const by ld64, but clang may |
1780 | // emit input sections of that name, and LLD doesn't currently support mixing |
1781 | // synthetic and concat-type OutputSections. To work around this, I've given |
1782 | // our merged-literals section a different name. |
1783 | WordLiteralSection::WordLiteralSection() |
1784 | : SyntheticSection(segment_names::text, section_names::literals) { |
1785 | align = 16; |
1786 | } |
1787 | |
1788 | void WordLiteralSection::addInput(WordLiteralInputSection *isec) { |
1789 | isec->parent = this; |
1790 | inputs.push_back(x: isec); |
1791 | } |
1792 | |
1793 | void WordLiteralSection::finalizeContents() { |
1794 | for (WordLiteralInputSection *isec : inputs) { |
1795 | // We do all processing of the InputSection here, so it will be effectively |
1796 | // finalized. |
1797 | isec->isFinal = true; |
1798 | const uint8_t *buf = isec->data.data(); |
1799 | switch (sectionType(flags: isec->getFlags())) { |
1800 | case S_4BYTE_LITERALS: { |
1801 | for (size_t off = 0, e = isec->data.size(); off < e; off += 4) { |
1802 | if (!isec->isLive(off)) |
1803 | continue; |
1804 | uint32_t value = *reinterpret_cast<const uint32_t *>(buf + off); |
1805 | literal4Map.emplace(args&: value, args: literal4Map.size()); |
1806 | } |
1807 | break; |
1808 | } |
1809 | case S_8BYTE_LITERALS: { |
1810 | for (size_t off = 0, e = isec->data.size(); off < e; off += 8) { |
1811 | if (!isec->isLive(off)) |
1812 | continue; |
1813 | uint64_t value = *reinterpret_cast<const uint64_t *>(buf + off); |
1814 | literal8Map.emplace(args&: value, args: literal8Map.size()); |
1815 | } |
1816 | break; |
1817 | } |
1818 | case S_16BYTE_LITERALS: { |
1819 | for (size_t off = 0, e = isec->data.size(); off < e; off += 16) { |
1820 | if (!isec->isLive(off)) |
1821 | continue; |
1822 | UInt128 value = *reinterpret_cast<const UInt128 *>(buf + off); |
1823 | literal16Map.emplace(args&: value, args: literal16Map.size()); |
1824 | } |
1825 | break; |
1826 | } |
1827 | default: |
1828 | llvm_unreachable("invalid literal section type" ); |
1829 | } |
1830 | } |
1831 | } |
1832 | |
1833 | void WordLiteralSection::writeTo(uint8_t *buf) const { |
1834 | // Note that we don't attempt to do any endianness conversion in addInput(), |
1835 | // so we don't do it here either -- just write out the original value, |
1836 | // byte-for-byte. |
1837 | for (const auto &p : literal16Map) |
1838 | memcpy(dest: buf + p.second * 16, src: &p.first, n: 16); |
1839 | buf += literal16Map.size() * 16; |
1840 | |
1841 | for (const auto &p : literal8Map) |
1842 | memcpy(dest: buf + p.second * 8, src: &p.first, n: 8); |
1843 | buf += literal8Map.size() * 8; |
1844 | |
1845 | for (const auto &p : literal4Map) |
1846 | memcpy(dest: buf + p.second * 4, src: &p.first, n: 4); |
1847 | } |
1848 | |
1849 | ObjCImageInfoSection::ObjCImageInfoSection() |
1850 | : SyntheticSection(segment_names::data, section_names::objCImageInfo) {} |
1851 | |
1852 | ObjCImageInfoSection::ImageInfo |
1853 | ObjCImageInfoSection::parseImageInfo(const InputFile *file) { |
1854 | ImageInfo info; |
1855 | ArrayRef<uint8_t> data = file->objCImageInfo; |
1856 | // The image info struct has the following layout: |
1857 | // struct { |
1858 | // uint32_t version; |
1859 | // uint32_t flags; |
1860 | // }; |
1861 | if (data.size() < 8) { |
1862 | warn(msg: toString(file) + ": invalid __objc_imageinfo size" ); |
1863 | return info; |
1864 | } |
1865 | |
1866 | auto *buf = reinterpret_cast<const uint32_t *>(data.data()); |
1867 | if (read32le(P: buf) != 0) { |
1868 | warn(msg: toString(file) + ": invalid __objc_imageinfo version" ); |
1869 | return info; |
1870 | } |
1871 | |
1872 | uint32_t flags = read32le(P: buf + 1); |
1873 | info.swiftVersion = (flags >> 8) & 0xff; |
1874 | info.hasCategoryClassProperties = flags & 0x40; |
1875 | return info; |
1876 | } |
1877 | |
1878 | static std::string swiftVersionString(uint8_t version) { |
1879 | switch (version) { |
1880 | case 1: |
1881 | return "1.0" ; |
1882 | case 2: |
1883 | return "1.1" ; |
1884 | case 3: |
1885 | return "2.0" ; |
1886 | case 4: |
1887 | return "3.0" ; |
1888 | case 5: |
1889 | return "4.0" ; |
1890 | default: |
1891 | return ("0x" + Twine::utohexstr(Val: version)).str(); |
1892 | } |
1893 | } |
1894 | |
1895 | // Validate each object file's __objc_imageinfo and use them to generate the |
1896 | // image info for the output binary. Only two pieces of info are relevant: |
1897 | // 1. The Swift version (should be identical across inputs) |
1898 | // 2. `bool hasCategoryClassProperties` (true only if true for all inputs) |
1899 | void ObjCImageInfoSection::finalizeContents() { |
1900 | assert(files.size() != 0); // should have already been checked via isNeeded() |
1901 | |
1902 | info.hasCategoryClassProperties = true; |
1903 | const InputFile *firstFile; |
1904 | for (const InputFile *file : files) { |
1905 | ImageInfo inputInfo = parseImageInfo(file); |
1906 | info.hasCategoryClassProperties &= inputInfo.hasCategoryClassProperties; |
1907 | |
1908 | // swiftVersion 0 means no Swift is present, so no version checking required |
1909 | if (inputInfo.swiftVersion == 0) |
1910 | continue; |
1911 | |
1912 | if (info.swiftVersion != 0 && info.swiftVersion != inputInfo.swiftVersion) { |
1913 | error(msg: "Swift version mismatch: " + toString(file: firstFile) + " has version " + |
1914 | swiftVersionString(version: info.swiftVersion) + " but " + toString(file) + |
1915 | " has version " + swiftVersionString(version: inputInfo.swiftVersion)); |
1916 | } else { |
1917 | info.swiftVersion = inputInfo.swiftVersion; |
1918 | firstFile = file; |
1919 | } |
1920 | } |
1921 | } |
1922 | |
1923 | void ObjCImageInfoSection::writeTo(uint8_t *buf) const { |
1924 | uint32_t flags = info.hasCategoryClassProperties ? 0x40 : 0x0; |
1925 | flags |= info.swiftVersion << 8; |
1926 | write32le(P: buf + 4, V: flags); |
1927 | } |
1928 | |
1929 | InitOffsetsSection::InitOffsetsSection() |
1930 | : SyntheticSection(segment_names::text, section_names::initOffsets) { |
1931 | flags = S_INIT_FUNC_OFFSETS; |
1932 | align = 4; // This section contains 32-bit integers. |
1933 | } |
1934 | |
1935 | uint64_t InitOffsetsSection::getSize() const { |
1936 | size_t count = 0; |
1937 | for (const ConcatInputSection *isec : sections) |
1938 | count += isec->relocs.size(); |
1939 | return count * sizeof(uint32_t); |
1940 | } |
1941 | |
1942 | void InitOffsetsSection::writeTo(uint8_t *buf) const { |
1943 | // FIXME: Add function specified by -init when that argument is implemented. |
1944 | for (ConcatInputSection *isec : sections) { |
1945 | for (const Reloc &rel : isec->relocs) { |
1946 | const Symbol *referent = rel.referent.dyn_cast<Symbol *>(); |
1947 | assert(referent && "section relocation should have been rejected" ); |
1948 | uint64_t offset = referent->getVA() - in.header->addr; |
1949 | // FIXME: Can we handle this gracefully? |
1950 | if (offset > UINT32_MAX) |
1951 | fatal(msg: isec->getLocation(off: rel.offset) + ": offset to initializer " + |
1952 | referent->getName() + " (" + utohexstr(X: offset) + |
1953 | ") does not fit in 32 bits" ); |
1954 | |
1955 | // Entries need to be added in the order they appear in the section, but |
1956 | // relocations aren't guaranteed to be sorted. |
1957 | size_t index = rel.offset >> target->p2WordSize; |
1958 | write32le(P: &buf[index * sizeof(uint32_t)], V: offset); |
1959 | } |
1960 | buf += isec->relocs.size() * sizeof(uint32_t); |
1961 | } |
1962 | } |
1963 | |
1964 | // The inputs are __mod_init_func sections, which contain pointers to |
1965 | // initializer functions, therefore all relocations should be of the UNSIGNED |
1966 | // type. InitOffsetsSection stores offsets, so if the initializer's address is |
1967 | // not known at link time, stub-indirection has to be used. |
1968 | void InitOffsetsSection::setUp() { |
1969 | for (const ConcatInputSection *isec : sections) { |
1970 | for (const Reloc &rel : isec->relocs) { |
1971 | RelocAttrs attrs = target->getRelocAttrs(type: rel.type); |
1972 | if (!attrs.hasAttr(b: RelocAttrBits::UNSIGNED)) |
1973 | error(msg: isec->getLocation(off: rel.offset) + |
1974 | ": unsupported relocation type: " + attrs.name); |
1975 | if (rel.addend != 0) |
1976 | error(msg: isec->getLocation(off: rel.offset) + |
1977 | ": relocation addend is not representable in __init_offsets" ); |
1978 | if (rel.referent.is<InputSection *>()) |
1979 | error(msg: isec->getLocation(off: rel.offset) + |
1980 | ": unexpected section relocation" ); |
1981 | |
1982 | Symbol *sym = rel.referent.dyn_cast<Symbol *>(); |
1983 | if (auto *undefined = dyn_cast<Undefined>(Val: sym)) |
1984 | treatUndefinedSymbol(*undefined, isec, offset: rel.offset); |
1985 | if (needsBinding(sym)) |
1986 | in.stubs->addEntry(sym); |
1987 | } |
1988 | } |
1989 | } |
1990 | |
1991 | ObjCMethListSection::ObjCMethListSection() |
1992 | : SyntheticSection(segment_names::text, section_names::objcMethList) { |
1993 | flags = S_ATTR_NO_DEAD_STRIP; |
1994 | align = relativeOffsetSize; |
1995 | } |
1996 | |
1997 | // Go through all input method lists and ensure that we have selrefs for all |
1998 | // their method names. The selrefs will be needed later by ::writeTo. We need to |
1999 | // create them early on here to ensure they are processed correctly by the lld |
2000 | // pipeline. |
2001 | void ObjCMethListSection::setUp() { |
2002 | for (const ConcatInputSection *isec : inputs) { |
2003 | uint32_t structSizeAndFlags = 0, structCount = 0; |
2004 | readMethodListHeader(buf: isec->data.data(), structSizeAndFlags, structCount); |
2005 | uint32_t originalStructSize = structSizeAndFlags & structSizeMask; |
2006 | // Method name is immediately after header |
2007 | uint32_t methodNameOff = methodListHeaderSize; |
2008 | |
2009 | // Loop through all methods, and ensure a selref for each of them exists. |
2010 | while (methodNameOff < isec->data.size()) { |
2011 | const Reloc *reloc = isec->getRelocAt(off: methodNameOff); |
2012 | assert(reloc && "Relocation expected at method list name slot" ); |
2013 | auto *def = dyn_cast_or_null<Defined>(Val: reloc->referent.get<Symbol *>()); |
2014 | assert(def && "Expected valid Defined at method list name slot" ); |
2015 | auto *cisec = cast<CStringInputSection>(Val: def->isec()); |
2016 | assert(cisec && "Expected method name to be in a CStringInputSection" ); |
2017 | auto methname = cisec->getStringRefAtOffset(off: def->value); |
2018 | if (!ObjCSelRefsHelper::getSelRef(methname)) |
2019 | ObjCSelRefsHelper::makeSelRef(methname); |
2020 | |
2021 | // Jump to method name offset in next struct |
2022 | methodNameOff += originalStructSize; |
2023 | } |
2024 | } |
2025 | } |
2026 | |
2027 | // Calculate section size and final offsets for where InputSection's need to be |
2028 | // written. |
2029 | void ObjCMethListSection::finalize() { |
2030 | // sectionSize will be the total size of the __objc_methlist section |
2031 | sectionSize = 0; |
2032 | for (ConcatInputSection *isec : inputs) { |
2033 | // We can also use sectionSize as write offset for isec |
2034 | assert(sectionSize == alignToPowerOf2(sectionSize, relativeOffsetSize) && |
2035 | "expected __objc_methlist to be aligned by default with the " |
2036 | "required section alignment" ); |
2037 | isec->outSecOff = sectionSize; |
2038 | |
2039 | isec->isFinal = true; |
2040 | uint32_t relativeListSize = |
2041 | computeRelativeMethodListSize(absoluteMethodListSize: isec->data.size()); |
2042 | sectionSize += relativeListSize; |
2043 | |
2044 | // If encoding the method list in relative offset format shrinks the size, |
2045 | // then we also need to adjust symbol sizes to match the new size. Note that |
2046 | // on 32bit platforms the size of the method list will remain the same when |
2047 | // encoded in relative offset format. |
2048 | if (relativeListSize != isec->data.size()) { |
2049 | for (Symbol *sym : isec->symbols) { |
2050 | assert(isa<Defined>(sym) && |
2051 | "Unexpected undefined symbol in ObjC method list" ); |
2052 | auto *def = cast<Defined>(Val: sym); |
2053 | // There can be 0-size symbols, check if this is the case and ignore |
2054 | // them. |
2055 | if (def->size) { |
2056 | assert( |
2057 | def->size == isec->data.size() && |
2058 | "Invalid ObjC method list symbol size: expected symbol size to " |
2059 | "match isec size" ); |
2060 | def->size = relativeListSize; |
2061 | } |
2062 | } |
2063 | } |
2064 | } |
2065 | } |
2066 | |
2067 | void ObjCMethListSection::writeTo(uint8_t *bufStart) const { |
2068 | uint8_t *buf = bufStart; |
2069 | for (const ConcatInputSection *isec : inputs) { |
2070 | assert(buf - bufStart == long(isec->outSecOff) && |
2071 | "Writing at unexpected offset" ); |
2072 | uint32_t writtenSize = writeRelativeMethodList(isec, buf); |
2073 | buf += writtenSize; |
2074 | } |
2075 | assert(buf - bufStart == sectionSize && |
2076 | "Written size does not match expected section size" ); |
2077 | } |
2078 | |
2079 | // Check if an InputSection is a method list. To do this we scan the |
2080 | // InputSection for any symbols who's names match the patterns we expect clang |
2081 | // to generate for method lists. |
2082 | bool ObjCMethListSection::isMethodList(const ConcatInputSection *isec) { |
2083 | const char *symPrefixes[] = {objc::symbol_names::classMethods, |
2084 | objc::symbol_names::instanceMethods, |
2085 | objc::symbol_names::categoryInstanceMethods, |
2086 | objc::symbol_names::categoryClassMethods}; |
2087 | if (!isec) |
2088 | return false; |
2089 | for (const Symbol *sym : isec->symbols) { |
2090 | auto *def = dyn_cast_or_null<Defined>(Val: sym); |
2091 | if (!def) |
2092 | continue; |
2093 | for (const char *prefix : symPrefixes) { |
2094 | if (def->getName().starts_with(Prefix: prefix)) { |
2095 | assert(def->size == isec->data.size() && |
2096 | "Invalid ObjC method list symbol size: expected symbol size to " |
2097 | "match isec size" ); |
2098 | assert(def->value == 0 && |
2099 | "Offset of ObjC method list symbol must be 0" ); |
2100 | return true; |
2101 | } |
2102 | } |
2103 | } |
2104 | |
2105 | return false; |
2106 | } |
2107 | |
2108 | // Encode a single relative offset value. The input is the data/symbol at |
2109 | // (&isec->data[inSecOff]). The output is written to (&buf[outSecOff]). |
2110 | // 'createSelRef' indicates that we should not directly use the specified |
2111 | // symbol, but instead get the selRef for the symbol and use that instead. |
2112 | void ObjCMethListSection::writeRelativeOffsetForIsec( |
2113 | const ConcatInputSection *isec, uint8_t *buf, uint32_t &inSecOff, |
2114 | uint32_t &outSecOff, bool useSelRef) const { |
2115 | const Reloc *reloc = isec->getRelocAt(off: inSecOff); |
2116 | assert(reloc && "Relocation expected at __objc_methlist Offset" ); |
2117 | auto *def = dyn_cast_or_null<Defined>(Val: reloc->referent.get<Symbol *>()); |
2118 | assert(def && "Expected all syms in __objc_methlist to be defined" ); |
2119 | uint32_t symVA = def->getVA(); |
2120 | |
2121 | if (useSelRef) { |
2122 | auto *cisec = cast<CStringInputSection>(Val: def->isec()); |
2123 | auto methname = cisec->getStringRefAtOffset(off: def->value); |
2124 | ConcatInputSection *selRef = ObjCSelRefsHelper::getSelRef(methname); |
2125 | assert(selRef && "Expected all selector names to already be already be " |
2126 | "present in __objc_selrefs" ); |
2127 | symVA = selRef->getVA(); |
2128 | assert(selRef->data.size() == sizeof(target->wordSize) && |
2129 | "Expected one selref per ConcatInputSection" ); |
2130 | } |
2131 | |
2132 | uint32_t currentVA = isec->getVA() + outSecOff; |
2133 | uint32_t delta = symVA - currentVA; |
2134 | write32le(P: buf + outSecOff, V: delta); |
2135 | |
2136 | // Move one pointer forward in the absolute method list |
2137 | inSecOff += target->wordSize; |
2138 | // Move one relative offset forward in the relative method list (32 bits) |
2139 | outSecOff += relativeOffsetSize; |
2140 | } |
2141 | |
2142 | // Write a relative method list to buf, return the size of the written |
2143 | // information |
2144 | uint32_t |
2145 | ObjCMethListSection::writeRelativeMethodList(const ConcatInputSection *isec, |
2146 | uint8_t *buf) const { |
2147 | // Copy over the header, and add the "this is a relative method list" magic |
2148 | // value flag |
2149 | uint32_t structSizeAndFlags = 0, structCount = 0; |
2150 | readMethodListHeader(buf: isec->data.data(), structSizeAndFlags, structCount); |
2151 | // Set the struct size for the relative method list |
2152 | uint32_t relativeStructSizeAndFlags = |
2153 | (relativeOffsetSize * pointersPerStruct) & structSizeMask; |
2154 | // Carry over the old flags from the input struct |
2155 | relativeStructSizeAndFlags |= structSizeAndFlags & structFlagsMask; |
2156 | // Set the relative method list flag |
2157 | relativeStructSizeAndFlags |= relMethodHeaderFlag; |
2158 | |
2159 | writeMethodListHeader(buf, structSizeAndFlags: relativeStructSizeAndFlags, structCount); |
2160 | |
2161 | assert(methodListHeaderSize + |
2162 | (structCount * pointersPerStruct * target->wordSize) == |
2163 | isec->data.size() && |
2164 | "Invalid computed ObjC method list size" ); |
2165 | |
2166 | uint32_t inSecOff = methodListHeaderSize; |
2167 | uint32_t outSecOff = methodListHeaderSize; |
2168 | |
2169 | // Go through the method list and encode input absolute pointers as relative |
2170 | // offsets. writeRelativeOffsetForIsec will be incrementing inSecOff and |
2171 | // outSecOff |
2172 | for (uint32_t i = 0; i < structCount; i++) { |
2173 | // Write the name of the method |
2174 | writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, useSelRef: true); |
2175 | // Write the type of the method |
2176 | writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, useSelRef: false); |
2177 | // Write reference to the selector of the method |
2178 | writeRelativeOffsetForIsec(isec, buf, inSecOff, outSecOff, useSelRef: false); |
2179 | } |
2180 | |
2181 | // Expecting to have read all the data in the isec |
2182 | assert(inSecOff == isec->data.size() && |
2183 | "Invalid actual ObjC method list size" ); |
2184 | assert( |
2185 | outSecOff == computeRelativeMethodListSize(inSecOff) && |
2186 | "Mismatch between input & output size when writing relative method list" ); |
2187 | return outSecOff; |
2188 | } |
2189 | |
2190 | // Given the size of an ObjC method list InputSection, return the size of the |
2191 | // method list when encoded in relative offsets format. We can do this without |
2192 | // decoding the actual data, as it can be directly inferred from the size of the |
2193 | // isec. |
2194 | uint32_t ObjCMethListSection::computeRelativeMethodListSize( |
2195 | uint32_t absoluteMethodListSize) const { |
2196 | uint32_t = absoluteMethodListSize - methodListHeaderSize; |
2197 | uint32_t pointerCount = oldPointersSize / target->wordSize; |
2198 | assert(((pointerCount % pointersPerStruct) == 0) && |
2199 | "__objc_methlist expects method lists to have multiple-of-3 pointers" ); |
2200 | |
2201 | uint32_t = pointerCount * relativeOffsetSize; |
2202 | uint32_t newTotalSize = methodListHeaderSize + newPointersSize; |
2203 | |
2204 | assert((newTotalSize <= absoluteMethodListSize) && |
2205 | "Expected relative method list size to be smaller or equal than " |
2206 | "original size" ); |
2207 | return newTotalSize; |
2208 | } |
2209 | |
2210 | // Read a method list header from buf |
2211 | void ObjCMethListSection::(const uint8_t *buf, |
2212 | uint32_t &structSizeAndFlags, |
2213 | uint32_t &structCount) const { |
2214 | structSizeAndFlags = read32le(P: buf); |
2215 | structCount = read32le(P: buf + sizeof(uint32_t)); |
2216 | } |
2217 | |
2218 | // Write a method list header to buf |
2219 | void ObjCMethListSection::(uint8_t *buf, |
2220 | uint32_t structSizeAndFlags, |
2221 | uint32_t structCount) const { |
2222 | write32le(P: buf, V: structSizeAndFlags); |
2223 | write32le(P: buf + sizeof(structSizeAndFlags), V: structCount); |
2224 | } |
2225 | |
2226 | void macho::createSyntheticSymbols() { |
2227 | auto = [](const char *name) { |
2228 | symtab->addSynthetic(name, in.header->isec, /*value=*/0, |
2229 | /*isPrivateExtern=*/true, /*includeInSymtab=*/false, |
2230 | /*referencedDynamically=*/false); |
2231 | }; |
2232 | |
2233 | switch (config->outputType) { |
2234 | // FIXME: Assign the right address value for these symbols |
2235 | // (rather than 0). But we need to do that after assignAddresses(). |
2236 | case MH_EXECUTE: |
2237 | // If linking PIE, __mh_execute_header is a defined symbol in |
2238 | // __TEXT, __text) |
2239 | // Otherwise, it's an absolute symbol. |
2240 | if (config->isPic) |
2241 | symtab->addSynthetic(name: "__mh_execute_header" , in.header->isec, /*value=*/0, |
2242 | /*isPrivateExtern=*/false, /*includeInSymtab=*/true, |
2243 | /*referencedDynamically=*/true); |
2244 | else |
2245 | symtab->addSynthetic(name: "__mh_execute_header" , /*isec=*/nullptr, /*value=*/0, |
2246 | /*isPrivateExtern=*/false, /*includeInSymtab=*/true, |
2247 | /*referencedDynamically=*/true); |
2248 | break; |
2249 | |
2250 | // The following symbols are N_SECT symbols, even though the header is not |
2251 | // part of any section and that they are private to the bundle/dylib/object |
2252 | // they are part of. |
2253 | case MH_BUNDLE: |
2254 | addHeaderSymbol("__mh_bundle_header" ); |
2255 | break; |
2256 | case MH_DYLIB: |
2257 | addHeaderSymbol("__mh_dylib_header" ); |
2258 | break; |
2259 | case MH_DYLINKER: |
2260 | addHeaderSymbol("__mh_dylinker_header" ); |
2261 | break; |
2262 | case MH_OBJECT: |
2263 | addHeaderSymbol("__mh_object_header" ); |
2264 | break; |
2265 | default: |
2266 | llvm_unreachable("unexpected outputType" ); |
2267 | break; |
2268 | } |
2269 | |
2270 | // The Itanium C++ ABI requires dylibs to pass a pointer to __cxa_atexit |
2271 | // which does e.g. cleanup of static global variables. The ABI document |
2272 | // says that the pointer can point to any address in one of the dylib's |
2273 | // segments, but in practice ld64 seems to set it to point to the header, |
2274 | // so that's what's implemented here. |
2275 | addHeaderSymbol("___dso_handle" ); |
2276 | } |
2277 | |
2278 | ChainedFixupsSection::ChainedFixupsSection() |
2279 | : LinkEditSection(segment_names::linkEdit, section_names::chainFixups) {} |
2280 | |
2281 | bool ChainedFixupsSection::isNeeded() const { |
2282 | assert(config->emitChainedFixups); |
2283 | // dyld always expects LC_DYLD_CHAINED_FIXUPS to point to a valid |
2284 | // dyld_chained_fixups_header, so we create this section even if there aren't |
2285 | // any fixups. |
2286 | return true; |
2287 | } |
2288 | |
2289 | void ChainedFixupsSection::addBinding(const Symbol *sym, |
2290 | const InputSection *isec, uint64_t offset, |
2291 | int64_t addend) { |
2292 | locations.emplace_back(args&: isec, args&: offset); |
2293 | int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0; |
2294 | auto [it, inserted] = bindings.insert( |
2295 | KV: {{sym, outlineAddend}, static_cast<uint32_t>(bindings.size())}); |
2296 | |
2297 | if (inserted) { |
2298 | symtabSize += sym->getName().size() + 1; |
2299 | hasWeakBind = hasWeakBind || needsWeakBind(sym: *sym); |
2300 | if (!isInt<23>(x: outlineAddend)) |
2301 | needsLargeAddend = true; |
2302 | else if (outlineAddend != 0) |
2303 | needsAddend = true; |
2304 | } |
2305 | } |
2306 | |
2307 | std::pair<uint32_t, uint8_t> |
2308 | ChainedFixupsSection::getBinding(const Symbol *sym, int64_t addend) const { |
2309 | int64_t outlineAddend = (addend < 0 || addend > 0xFF) ? addend : 0; |
2310 | auto it = bindings.find(Key: {sym, outlineAddend}); |
2311 | assert(it != bindings.end() && "binding not found in the imports table" ); |
2312 | if (outlineAddend == 0) |
2313 | return {it->second, addend}; |
2314 | return {it->second, 0}; |
2315 | } |
2316 | |
2317 | static size_t writeImport(uint8_t *buf, int format, int16_t libOrdinal, |
2318 | bool weakRef, uint32_t nameOffset, int64_t addend) { |
2319 | switch (format) { |
2320 | case DYLD_CHAINED_IMPORT: { |
2321 | auto *import = reinterpret_cast<dyld_chained_import *>(buf); |
2322 | import->lib_ordinal = libOrdinal; |
2323 | import->weak_import = weakRef; |
2324 | import->name_offset = nameOffset; |
2325 | return sizeof(dyld_chained_import); |
2326 | } |
2327 | case DYLD_CHAINED_IMPORT_ADDEND: { |
2328 | auto *import = reinterpret_cast<dyld_chained_import_addend *>(buf); |
2329 | import->lib_ordinal = libOrdinal; |
2330 | import->weak_import = weakRef; |
2331 | import->name_offset = nameOffset; |
2332 | import->addend = addend; |
2333 | return sizeof(dyld_chained_import_addend); |
2334 | } |
2335 | case DYLD_CHAINED_IMPORT_ADDEND64: { |
2336 | auto *import = reinterpret_cast<dyld_chained_import_addend64 *>(buf); |
2337 | import->lib_ordinal = libOrdinal; |
2338 | import->weak_import = weakRef; |
2339 | import->name_offset = nameOffset; |
2340 | import->addend = addend; |
2341 | return sizeof(dyld_chained_import_addend64); |
2342 | } |
2343 | default: |
2344 | llvm_unreachable("Unknown import format" ); |
2345 | } |
2346 | } |
2347 | |
2348 | size_t ChainedFixupsSection::SegmentInfo::getSize() const { |
2349 | assert(pageStarts.size() > 0 && "SegmentInfo for segment with no fixups?" ); |
2350 | return alignTo<8>(Value: sizeof(dyld_chained_starts_in_segment) + |
2351 | pageStarts.back().first * sizeof(uint16_t)); |
2352 | } |
2353 | |
2354 | size_t ChainedFixupsSection::SegmentInfo::writeTo(uint8_t *buf) const { |
2355 | auto *segInfo = reinterpret_cast<dyld_chained_starts_in_segment *>(buf); |
2356 | segInfo->size = getSize(); |
2357 | segInfo->page_size = target->getPageSize(); |
2358 | // FIXME: Use DYLD_CHAINED_PTR_64_OFFSET on newer OS versions. |
2359 | segInfo->pointer_format = DYLD_CHAINED_PTR_64; |
2360 | segInfo->segment_offset = oseg->addr - in.header->addr; |
2361 | segInfo->max_valid_pointer = 0; // not used on 64-bit |
2362 | segInfo->page_count = pageStarts.back().first + 1; |
2363 | |
2364 | uint16_t *starts = segInfo->page_start; |
2365 | for (size_t i = 0; i < segInfo->page_count; ++i) |
2366 | starts[i] = DYLD_CHAINED_PTR_START_NONE; |
2367 | |
2368 | for (auto [pageIdx, startAddr] : pageStarts) |
2369 | starts[pageIdx] = startAddr; |
2370 | return segInfo->size; |
2371 | } |
2372 | |
2373 | static size_t importEntrySize(int format) { |
2374 | switch (format) { |
2375 | case DYLD_CHAINED_IMPORT: |
2376 | return sizeof(dyld_chained_import); |
2377 | case DYLD_CHAINED_IMPORT_ADDEND: |
2378 | return sizeof(dyld_chained_import_addend); |
2379 | case DYLD_CHAINED_IMPORT_ADDEND64: |
2380 | return sizeof(dyld_chained_import_addend64); |
2381 | default: |
2382 | llvm_unreachable("Unknown import format" ); |
2383 | } |
2384 | } |
2385 | |
2386 | // This is step 3 of the algorithm described in the class comment of |
2387 | // ChainedFixupsSection. |
2388 | // |
2389 | // LC_DYLD_CHAINED_FIXUPS data consists of (in this order): |
2390 | // * A dyld_chained_fixups_header |
2391 | // * A dyld_chained_starts_in_image |
2392 | // * One dyld_chained_starts_in_segment per segment |
2393 | // * List of all imports (dyld_chained_import, dyld_chained_import_addend, or |
2394 | // dyld_chained_import_addend64) |
2395 | // * Names of imported symbols |
2396 | void ChainedFixupsSection::writeTo(uint8_t *buf) const { |
2397 | auto * = reinterpret_cast<dyld_chained_fixups_header *>(buf); |
2398 | header->fixups_version = 0; |
2399 | header->imports_count = bindings.size(); |
2400 | header->imports_format = importFormat; |
2401 | header->symbols_format = 0; |
2402 | |
2403 | buf += alignTo<8>(Value: sizeof(*header)); |
2404 | |
2405 | auto curOffset = [&buf, &header]() -> uint32_t { |
2406 | return buf - reinterpret_cast<uint8_t *>(header); |
2407 | }; |
2408 | |
2409 | header->starts_offset = curOffset(); |
2410 | |
2411 | auto *imageInfo = reinterpret_cast<dyld_chained_starts_in_image *>(buf); |
2412 | imageInfo->seg_count = outputSegments.size(); |
2413 | uint32_t *segStarts = imageInfo->seg_info_offset; |
2414 | |
2415 | // dyld_chained_starts_in_image ends in a flexible array member containing an |
2416 | // uint32_t for each segment. Leave room for it, and fill it via segStarts. |
2417 | buf += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) + |
2418 | outputSegments.size() * sizeof(uint32_t)); |
2419 | |
2420 | // Initialize all offsets to 0, which indicates that the segment does not have |
2421 | // fixups. Those that do have them will be filled in below. |
2422 | for (size_t i = 0; i < outputSegments.size(); ++i) |
2423 | segStarts[i] = 0; |
2424 | |
2425 | for (const SegmentInfo &seg : fixupSegments) { |
2426 | segStarts[seg.oseg->index] = curOffset() - header->starts_offset; |
2427 | buf += seg.writeTo(buf); |
2428 | } |
2429 | |
2430 | // Write imports table. |
2431 | header->imports_offset = curOffset(); |
2432 | uint64_t nameOffset = 0; |
2433 | for (auto [import, idx] : bindings) { |
2434 | const Symbol &sym = *import.first; |
2435 | buf += writeImport(buf, format: importFormat, libOrdinal: ordinalForSymbol(sym), |
2436 | weakRef: sym.isWeakRef(), nameOffset, addend: import.second); |
2437 | nameOffset += sym.getName().size() + 1; |
2438 | } |
2439 | |
2440 | // Write imported symbol names. |
2441 | header->symbols_offset = curOffset(); |
2442 | for (auto [import, idx] : bindings) { |
2443 | StringRef name = import.first->getName(); |
2444 | memcpy(dest: buf, src: name.data(), n: name.size()); |
2445 | buf += name.size() + 1; // account for null terminator |
2446 | } |
2447 | |
2448 | assert(curOffset() == getRawSize()); |
2449 | } |
2450 | |
2451 | // This is step 2 of the algorithm described in the class comment of |
2452 | // ChainedFixupsSection. |
2453 | void ChainedFixupsSection::finalizeContents() { |
2454 | assert(target->wordSize == 8 && "Only 64-bit platforms are supported" ); |
2455 | assert(config->emitChainedFixups); |
2456 | |
2457 | if (!isUInt<32>(x: symtabSize)) |
2458 | error(msg: "cannot encode chained fixups: imported symbols table size " + |
2459 | Twine(symtabSize) + " exceeds 4 GiB" ); |
2460 | |
2461 | bool needsLargeOrdinal = any_of(Range&: bindings, P: [](const auto &p) { |
2462 | // 0xF1 - 0xFF are reserved for special ordinals in the 8-bit encoding. |
2463 | return ordinalForSymbol(*p.first.first) > 0xF0; |
2464 | }); |
2465 | |
2466 | if (needsLargeAddend || !isUInt<23>(x: symtabSize) || needsLargeOrdinal) |
2467 | importFormat = DYLD_CHAINED_IMPORT_ADDEND64; |
2468 | else if (needsAddend) |
2469 | importFormat = DYLD_CHAINED_IMPORT_ADDEND; |
2470 | else |
2471 | importFormat = DYLD_CHAINED_IMPORT; |
2472 | |
2473 | for (Location &loc : locations) |
2474 | loc.offset = |
2475 | loc.isec->parent->getSegmentOffset() + loc.isec->getOffset(off: loc.offset); |
2476 | |
2477 | llvm::sort(C&: locations, Comp: [](const Location &a, const Location &b) { |
2478 | const OutputSegment *segA = a.isec->parent->parent; |
2479 | const OutputSegment *segB = b.isec->parent->parent; |
2480 | if (segA == segB) |
2481 | return a.offset < b.offset; |
2482 | return segA->addr < segB->addr; |
2483 | }); |
2484 | |
2485 | auto sameSegment = [](const Location &a, const Location &b) { |
2486 | return a.isec->parent->parent == b.isec->parent->parent; |
2487 | }; |
2488 | |
2489 | const uint64_t pageSize = target->getPageSize(); |
2490 | for (size_t i = 0, count = locations.size(); i < count;) { |
2491 | const Location &firstLoc = locations[i]; |
2492 | fixupSegments.emplace_back(Args&: firstLoc.isec->parent->parent); |
2493 | while (i < count && sameSegment(locations[i], firstLoc)) { |
2494 | uint32_t pageIdx = locations[i].offset / pageSize; |
2495 | fixupSegments.back().pageStarts.emplace_back( |
2496 | Args&: pageIdx, Args: locations[i].offset % pageSize); |
2497 | ++i; |
2498 | while (i < count && sameSegment(locations[i], firstLoc) && |
2499 | locations[i].offset / pageSize == pageIdx) |
2500 | ++i; |
2501 | } |
2502 | } |
2503 | |
2504 | // Compute expected encoded size. |
2505 | size = alignTo<8>(Value: sizeof(dyld_chained_fixups_header)); |
2506 | size += alignTo<8>(offsetof(dyld_chained_starts_in_image, seg_info_offset) + |
2507 | outputSegments.size() * sizeof(uint32_t)); |
2508 | for (const SegmentInfo &seg : fixupSegments) |
2509 | size += seg.getSize(); |
2510 | size += importEntrySize(format: importFormat) * bindings.size(); |
2511 | size += symtabSize; |
2512 | } |
2513 | |
2514 | template SymtabSection *macho::makeSymtabSection<LP64>(StringTableSection &); |
2515 | template SymtabSection *macho::makeSymtabSection<ILP32>(StringTableSection &); |
2516 | |