1 | //===-- llvm/ADT/Bitfield.h - Get and Set bits in an integer ---*- C++ -*--===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file |
10 | /// This file implements methods to test, set and extract typed bits from packed |
11 | /// unsigned integers. |
12 | /// |
13 | /// Why not C++ bitfields? |
14 | /// ---------------------- |
15 | /// C++ bitfields do not offer control over the bit layout nor consistent |
16 | /// behavior when it comes to out of range values. |
17 | /// For instance, the layout is implementation defined and adjacent bits may be |
18 | /// packed together but are not required to. This is problematic when storage is |
19 | /// sparse and data must be stored in a particular integer type. |
20 | /// |
21 | /// The methods provided in this file ensure precise control over the |
22 | /// layout/storage as well as protection against out of range values. |
23 | /// |
24 | /// Usage example |
25 | /// ------------- |
26 | /// \code{.cpp} |
27 | /// uint8_t Storage = 0; |
28 | /// |
29 | /// // Store and retrieve a single bit as bool. |
30 | /// using Bool = Bitfield::Element<bool, 0, 1>; |
31 | /// Bitfield::set<Bool>(Storage, true); |
32 | /// EXPECT_EQ(Storage, 0b00000001); |
33 | /// // ^ |
34 | /// EXPECT_EQ(Bitfield::get<Bool>(Storage), true); |
35 | /// |
36 | /// // Store and retrieve a 2 bit typed enum. |
37 | /// // Note: enum underlying type must be unsigned. |
38 | /// enum class SuitEnum : uint8_t { CLUBS, DIAMONDS, HEARTS, SPADES }; |
39 | /// // Note: enum maximum value needs to be passed in as last parameter. |
40 | /// using Suit = Bitfield::Element<SuitEnum, 1, 2, SuitEnum::SPADES>; |
41 | /// Bitfield::set<Suit>(Storage, SuitEnum::HEARTS); |
42 | /// EXPECT_EQ(Storage, 0b00000101); |
43 | /// // ^^ |
44 | /// EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::HEARTS); |
45 | /// |
46 | /// // Store and retrieve a 5 bit value as unsigned. |
47 | /// using Value = Bitfield::Element<unsigned, 3, 5>; |
48 | /// Bitfield::set<Value>(Storage, 10); |
49 | /// EXPECT_EQ(Storage, 0b01010101); |
50 | /// // ^^^^^ |
51 | /// EXPECT_EQ(Bitfield::get<Value>(Storage), 10U); |
52 | /// |
53 | /// // Interpret the same 5 bit value as signed. |
54 | /// using SignedValue = Bitfield::Element<int, 3, 5>; |
55 | /// Bitfield::set<SignedValue>(Storage, -2); |
56 | /// EXPECT_EQ(Storage, 0b11110101); |
57 | /// // ^^^^^ |
58 | /// EXPECT_EQ(Bitfield::get<SignedValue>(Storage), -2); |
59 | /// |
60 | /// // Ability to efficiently test if a field is non zero. |
61 | /// EXPECT_TRUE(Bitfield::test<Value>(Storage)); |
62 | /// |
63 | /// // Alter Storage changes value. |
64 | /// Storage = 0; |
65 | /// EXPECT_EQ(Bitfield::get<Bool>(Storage), false); |
66 | /// EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::CLUBS); |
67 | /// EXPECT_EQ(Bitfield::get<Value>(Storage), 0U); |
68 | /// EXPECT_EQ(Bitfield::get<SignedValue>(Storage), 0); |
69 | /// |
70 | /// Storage = 255; |
71 | /// EXPECT_EQ(Bitfield::get<Bool>(Storage), true); |
72 | /// EXPECT_EQ(Bitfield::get<Suit>(Storage), SuitEnum::SPADES); |
73 | /// EXPECT_EQ(Bitfield::get<Value>(Storage), 31U); |
74 | /// EXPECT_EQ(Bitfield::get<SignedValue>(Storage), -1); |
75 | /// \endcode |
76 | /// |
77 | //===----------------------------------------------------------------------===// |
78 | |
79 | #ifndef LLVM_ADT_BITFIELDS_H |
80 | #define LLVM_ADT_BITFIELDS_H |
81 | |
82 | #include <cassert> |
83 | #include <climits> // CHAR_BIT |
84 | #include <cstddef> // size_t |
85 | #include <cstdint> // uintXX_t |
86 | #include <limits> // numeric_limits |
87 | #include <type_traits> |
88 | |
89 | namespace llvm { |
90 | |
91 | namespace bitfields_details { |
92 | |
93 | /// A struct defining useful bit patterns for n-bits integer types. |
94 | template <typename T, unsigned Bits> struct BitPatterns { |
95 | /// Bit patterns are forged using the equivalent `Unsigned` type because of |
96 | /// undefined operations over signed types (e.g. Bitwise shift operators). |
97 | /// Moreover same size casting from unsigned to signed is well defined but not |
98 | /// the other way around. |
99 | using Unsigned = std::make_unsigned_t<T>; |
100 | static_assert(sizeof(Unsigned) == sizeof(T), "Types must have same size" ); |
101 | |
102 | static constexpr unsigned TypeBits = sizeof(Unsigned) * CHAR_BIT; |
103 | static_assert(TypeBits >= Bits, "n-bit must fit in T" ); |
104 | |
105 | /// e.g. with TypeBits == 8 and Bits == 6. |
106 | static constexpr Unsigned AllZeros = Unsigned(0); // 00000000 |
107 | static constexpr Unsigned AllOnes = ~Unsigned(0); // 11111111 |
108 | static constexpr Unsigned Umin = AllZeros; // 00000000 |
109 | static constexpr Unsigned Umax = AllOnes >> (TypeBits - Bits); // 00111111 |
110 | static constexpr Unsigned SignBitMask = Unsigned(1) << (Bits - 1); // 00100000 |
111 | static constexpr Unsigned Smax = Umax >> 1U; // 00011111 |
112 | static constexpr Unsigned Smin = ~Smax; // 11100000 |
113 | static constexpr Unsigned SignExtend = Unsigned(Smin << 1U); // 11000000 |
114 | }; |
115 | |
116 | /// `Compressor` is used to manipulate the bits of a (possibly signed) integer |
117 | /// type so it can be packed and unpacked into a `bits` sized integer, |
118 | /// `Compressor` is specialized on signed-ness so no runtime cost is incurred. |
119 | /// The `pack` method also checks that the passed in `UserValue` is valid. |
120 | template <typename T, unsigned Bits, bool = std::is_unsigned<T>::value> |
121 | struct Compressor { |
122 | static_assert(std::is_unsigned<T>::value, "T must be unsigned" ); |
123 | using BP = BitPatterns<T, Bits>; |
124 | |
125 | static T pack(T UserValue, T UserMaxValue) { |
126 | assert(UserValue <= UserMaxValue && "value is too big" ); |
127 | assert(UserValue <= BP::Umax && "value is too big" ); |
128 | return UserValue; |
129 | } |
130 | |
131 | static T unpack(T StorageValue) { return StorageValue; } |
132 | }; |
133 | |
134 | template <typename T, unsigned Bits> struct Compressor<T, Bits, false> { |
135 | static_assert(std::is_signed<T>::value, "T must be signed" ); |
136 | using BP = BitPatterns<T, Bits>; |
137 | |
138 | static T pack(T UserValue, T UserMaxValue) { |
139 | assert(UserValue <= UserMaxValue && "value is too big" ); |
140 | assert(UserValue <= T(BP::Smax) && "value is too big" ); |
141 | assert(UserValue >= T(BP::Smin) && "value is too small" ); |
142 | if (UserValue < 0) |
143 | UserValue &= ~BP::SignExtend; |
144 | return UserValue; |
145 | } |
146 | |
147 | static T unpack(T StorageValue) { |
148 | if (StorageValue >= T(BP::SignBitMask)) |
149 | StorageValue |= BP::SignExtend; |
150 | return StorageValue; |
151 | } |
152 | }; |
153 | |
154 | /// Impl is where Bifield description and Storage are put together to interact |
155 | /// with values. |
156 | template <typename Bitfield, typename StorageType> struct Impl { |
157 | static_assert(std::is_unsigned<StorageType>::value, |
158 | "Storage must be unsigned" ); |
159 | using IntegerType = typename Bitfield::IntegerType; |
160 | using C = Compressor<IntegerType, Bitfield::Bits>; |
161 | using BP = BitPatterns<StorageType, Bitfield::Bits>; |
162 | |
163 | static constexpr size_t StorageBits = sizeof(StorageType) * CHAR_BIT; |
164 | static_assert(Bitfield::FirstBit <= StorageBits, "Data must fit in mask" ); |
165 | static_assert(Bitfield::LastBit <= StorageBits, "Data must fit in mask" ); |
166 | static constexpr StorageType Mask = BP::Umax << Bitfield::Shift; |
167 | |
168 | /// Checks `UserValue` is within bounds and packs it between `FirstBit` and |
169 | /// `LastBit` of `Packed` leaving the rest unchanged. |
170 | static void update(StorageType &Packed, IntegerType UserValue) { |
171 | const StorageType StorageValue = C::pack(UserValue, Bitfield::UserMaxValue); |
172 | Packed &= ~Mask; |
173 | Packed |= StorageValue << Bitfield::Shift; |
174 | } |
175 | |
176 | /// Interprets bits between `FirstBit` and `LastBit` of `Packed` as |
177 | /// an`IntegerType`. |
178 | static IntegerType (StorageType Packed) { |
179 | const StorageType StorageValue = (Packed & Mask) >> Bitfield::Shift; |
180 | return C::unpack(StorageValue); |
181 | } |
182 | |
183 | /// Interprets bits between `FirstBit` and `LastBit` of `Packed` as |
184 | /// an`IntegerType`. |
185 | static StorageType test(StorageType Packed) { return Packed & Mask; } |
186 | }; |
187 | |
188 | /// `Bitfield` deals with the following type: |
189 | /// - unsigned enums |
190 | /// - signed and unsigned integer |
191 | /// - `bool` |
192 | /// Internally though we only manipulate integer with well defined and |
193 | /// consistent semantics, this excludes typed enums and `bool` that are replaced |
194 | /// with their unsigned counterparts. The correct type is restored in the public |
195 | /// API. |
196 | template <typename T, bool = std::is_enum<T>::value> |
197 | struct ResolveUnderlyingType { |
198 | using type = std::underlying_type_t<T>; |
199 | }; |
200 | template <typename T> struct ResolveUnderlyingType<T, false> { |
201 | using type = T; |
202 | }; |
203 | template <> struct ResolveUnderlyingType<bool, false> { |
204 | /// In case sizeof(bool) != 1, replace `void` by an additionnal |
205 | /// std::conditional. |
206 | using type = std::conditional_t<sizeof(bool) == 1, uint8_t, void>; |
207 | }; |
208 | |
209 | } // namespace bitfields_details |
210 | |
211 | /// Holds functions to get, set or test bitfields. |
212 | struct Bitfield { |
213 | /// Describes an element of a Bitfield. This type is then used with the |
214 | /// Bitfield static member functions. |
215 | /// \tparam T The type of the field once in unpacked form. |
216 | /// \tparam Offset The position of the first bit. |
217 | /// \tparam Size The size of the field. |
218 | /// \tparam MaxValue For enums the maximum enum allowed. |
219 | template <typename T, unsigned Offset, unsigned Size, |
220 | T MaxValue = std::is_enum<T>::value |
221 | ? T(0) // coupled with static_assert below |
222 | : std::numeric_limits<T>::max()> |
223 | struct Element { |
224 | using Type = T; |
225 | using IntegerType = |
226 | typename bitfields_details::ResolveUnderlyingType<T>::type; |
227 | static constexpr unsigned Shift = Offset; |
228 | static constexpr unsigned Bits = Size; |
229 | static constexpr unsigned FirstBit = Offset; |
230 | static constexpr unsigned LastBit = Shift + Bits - 1; |
231 | static constexpr unsigned NextBit = Shift + Bits; |
232 | |
233 | private: |
234 | template <typename, typename> friend struct bitfields_details::Impl; |
235 | |
236 | static_assert(Bits > 0, "Bits must be non zero" ); |
237 | static constexpr size_t TypeBits = sizeof(IntegerType) * CHAR_BIT; |
238 | static_assert(Bits <= TypeBits, "Bits may not be greater than T size" ); |
239 | static_assert(!std::is_enum<T>::value || MaxValue != T(0), |
240 | "Enum Bitfields must provide a MaxValue" ); |
241 | static_assert(!std::is_enum<T>::value || |
242 | std::is_unsigned<IntegerType>::value, |
243 | "Enum must be unsigned" ); |
244 | static_assert(std::is_integral<IntegerType>::value && |
245 | std::numeric_limits<IntegerType>::is_integer, |
246 | "IntegerType must be an integer type" ); |
247 | |
248 | static constexpr IntegerType UserMaxValue = |
249 | static_cast<IntegerType>(MaxValue); |
250 | }; |
251 | |
252 | /// Unpacks the field from the `Packed` value. |
253 | template <typename Bitfield, typename StorageType> |
254 | static typename Bitfield::Type get(StorageType Packed) { |
255 | using I = bitfields_details::Impl<Bitfield, StorageType>; |
256 | return static_cast<typename Bitfield::Type>(I::extract(Packed)); |
257 | } |
258 | |
259 | /// Return a non-zero value if the field is non-zero. |
260 | /// It is more efficient than `getField`. |
261 | template <typename Bitfield, typename StorageType> |
262 | static StorageType test(StorageType Packed) { |
263 | using I = bitfields_details::Impl<Bitfield, StorageType>; |
264 | return I::test(Packed); |
265 | } |
266 | |
267 | /// Sets the typed value in the provided `Packed` value. |
268 | /// The method will asserts if the provided value is too big to fit in. |
269 | template <typename Bitfield, typename StorageType> |
270 | static void set(StorageType &Packed, typename Bitfield::Type Value) { |
271 | using I = bitfields_details::Impl<Bitfield, StorageType>; |
272 | I::update(Packed, static_cast<typename Bitfield::IntegerType>(Value)); |
273 | } |
274 | |
275 | /// Returns whether the two bitfields share common bits. |
276 | template <typename A, typename B> static constexpr bool isOverlapping() { |
277 | return A::LastBit >= B::FirstBit && B::LastBit >= A::FirstBit; |
278 | } |
279 | |
280 | template <typename A> static constexpr bool areContiguous() { return true; } |
281 | template <typename A, typename B, typename... Others> |
282 | static constexpr bool areContiguous() { |
283 | return A::NextBit == B::FirstBit && areContiguous<B, Others...>(); |
284 | } |
285 | }; |
286 | |
287 | } // namespace llvm |
288 | |
289 | #endif // LLVM_ADT_BITFIELDS_H |
290 | |