1 | //===- llvm/ADT/EquivalenceClasses.h - Generic Equiv. Classes ---*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file |
10 | /// Generic implementation of equivalence classes through the use Tarjan's |
11 | /// efficient union-find algorithm. |
12 | /// |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #ifndef LLVM_ADT_EQUIVALENCECLASSES_H |
16 | #define LLVM_ADT_EQUIVALENCECLASSES_H |
17 | |
18 | #include <cassert> |
19 | #include <cstddef> |
20 | #include <cstdint> |
21 | #include <iterator> |
22 | #include <set> |
23 | |
24 | namespace llvm { |
25 | |
26 | /// EquivalenceClasses - This represents a collection of equivalence classes and |
27 | /// supports three efficient operations: insert an element into a class of its |
28 | /// own, union two classes, and find the class for a given element. In |
29 | /// addition to these modification methods, it is possible to iterate over all |
30 | /// of the equivalence classes and all of the elements in a class. |
31 | /// |
32 | /// This implementation is an efficient implementation that only stores one copy |
33 | /// of the element being indexed per entry in the set, and allows any arbitrary |
34 | /// type to be indexed (as long as it can be ordered with operator< or a |
35 | /// comparator is provided). |
36 | /// |
37 | /// Here is a simple example using integers: |
38 | /// |
39 | /// \code |
40 | /// EquivalenceClasses<int> EC; |
41 | /// EC.unionSets(1, 2); // insert 1, 2 into the same set |
42 | /// EC.insert(4); EC.insert(5); // insert 4, 5 into own sets |
43 | /// EC.unionSets(5, 1); // merge the set for 1 with 5's set. |
44 | /// |
45 | /// for (EquivalenceClasses<int>::iterator I = EC.begin(), E = EC.end(); |
46 | /// I != E; ++I) { // Iterate over all of the equivalence sets. |
47 | /// if (!I->isLeader()) continue; // Ignore non-leader sets. |
48 | /// for (EquivalenceClasses<int>::member_iterator MI = EC.member_begin(I); |
49 | /// MI != EC.member_end(); ++MI) // Loop over members in this set. |
50 | /// cerr << *MI << " "; // Print member. |
51 | /// cerr << "\n"; // Finish set. |
52 | /// } |
53 | /// \endcode |
54 | /// |
55 | /// This example prints: |
56 | /// 4 |
57 | /// 5 1 2 |
58 | /// |
59 | template <class ElemTy, class Compare = std::less<ElemTy>> |
60 | class EquivalenceClasses { |
61 | /// ECValue - The EquivalenceClasses data structure is just a set of these. |
62 | /// Each of these represents a relation for a value. First it stores the |
63 | /// value itself, which provides the ordering that the set queries. Next, it |
64 | /// provides a "next pointer", which is used to enumerate all of the elements |
65 | /// in the unioned set. Finally, it defines either a "end of list pointer" or |
66 | /// "leader pointer" depending on whether the value itself is a leader. A |
67 | /// "leader pointer" points to the node that is the leader for this element, |
68 | /// if the node is not a leader. A "end of list pointer" points to the last |
69 | /// node in the list of members of this list. Whether or not a node is a |
70 | /// leader is determined by a bit stolen from one of the pointers. |
71 | class ECValue { |
72 | friend class EquivalenceClasses; |
73 | |
74 | mutable const ECValue *Leader, *Next; |
75 | ElemTy Data; |
76 | |
77 | // ECValue ctor - Start out with EndOfList pointing to this node, Next is |
78 | // Null, isLeader = true. |
79 | ECValue(const ElemTy &Elt) |
80 | : Leader(this), Next((ECValue*)(intptr_t)1), Data(Elt) {} |
81 | |
82 | const ECValue *getLeader() const { |
83 | if (isLeader()) return this; |
84 | if (Leader->isLeader()) return Leader; |
85 | // Path compression. |
86 | return Leader = Leader->getLeader(); |
87 | } |
88 | |
89 | const ECValue *getEndOfList() const { |
90 | assert(isLeader() && "Cannot get the end of a list for a non-leader!" ); |
91 | return Leader; |
92 | } |
93 | |
94 | void setNext(const ECValue *NewNext) const { |
95 | assert(getNext() == nullptr && "Already has a next pointer!" ); |
96 | Next = (const ECValue*)((intptr_t)NewNext | (intptr_t)isLeader()); |
97 | } |
98 | |
99 | public: |
100 | ECValue(const ECValue &RHS) : Leader(this), Next((ECValue*)(intptr_t)1), |
101 | Data(RHS.Data) { |
102 | // Only support copying of singleton nodes. |
103 | assert(RHS.isLeader() && RHS.getNext() == nullptr && "Not a singleton!" ); |
104 | } |
105 | |
106 | bool isLeader() const { return (intptr_t)Next & 1; } |
107 | const ElemTy &getData() const { return Data; } |
108 | |
109 | const ECValue *getNext() const { |
110 | return (ECValue*)((intptr_t)Next & ~(intptr_t)1); |
111 | } |
112 | }; |
113 | |
114 | /// A wrapper of the comparator, to be passed to the set. |
115 | struct ECValueComparator { |
116 | using is_transparent = void; |
117 | |
118 | ECValueComparator() : compare(Compare()) {} |
119 | |
120 | bool operator()(const ECValue &lhs, const ECValue &rhs) const { |
121 | return compare(lhs.Data, rhs.Data); |
122 | } |
123 | |
124 | template <typename T> |
125 | bool operator()(const T &lhs, const ECValue &rhs) const { |
126 | return compare(lhs, rhs.Data); |
127 | } |
128 | |
129 | template <typename T> |
130 | bool operator()(const ECValue &lhs, const T &rhs) const { |
131 | return compare(lhs.Data, rhs); |
132 | } |
133 | |
134 | const Compare compare; |
135 | }; |
136 | |
137 | /// TheMapping - This implicitly provides a mapping from ElemTy values to the |
138 | /// ECValues, it just keeps the key as part of the value. |
139 | std::set<ECValue, ECValueComparator> TheMapping; |
140 | |
141 | public: |
142 | EquivalenceClasses() = default; |
143 | EquivalenceClasses(const EquivalenceClasses &RHS) { |
144 | operator=(RHS); |
145 | } |
146 | |
147 | const EquivalenceClasses &operator=(const EquivalenceClasses &RHS) { |
148 | TheMapping.clear(); |
149 | for (iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) |
150 | if (I->isLeader()) { |
151 | member_iterator MI = RHS.member_begin(I); |
152 | member_iterator LeaderIt = member_begin(I: insert(Data: *MI)); |
153 | for (++MI; MI != member_end(); ++MI) |
154 | unionSets(LeaderIt, member_begin(I: insert(Data: *MI))); |
155 | } |
156 | return *this; |
157 | } |
158 | |
159 | //===--------------------------------------------------------------------===// |
160 | // Inspection methods |
161 | // |
162 | |
163 | /// iterator* - Provides a way to iterate over all values in the set. |
164 | using iterator = |
165 | typename std::set<ECValue, ECValueComparator>::const_iterator; |
166 | |
167 | iterator begin() const { return TheMapping.begin(); } |
168 | iterator end() const { return TheMapping.end(); } |
169 | |
170 | bool empty() const { return TheMapping.empty(); } |
171 | |
172 | /// member_* Iterate over the members of an equivalence class. |
173 | class member_iterator; |
174 | member_iterator member_begin(iterator I) const { |
175 | // Only leaders provide anything to iterate over. |
176 | return member_iterator(I->isLeader() ? &*I : nullptr); |
177 | } |
178 | member_iterator member_end() const { |
179 | return member_iterator(nullptr); |
180 | } |
181 | |
182 | /// findValue - Return an iterator to the specified value. If it does not |
183 | /// exist, end() is returned. |
184 | iterator findValue(const ElemTy &V) const { |
185 | return TheMapping.find(V); |
186 | } |
187 | |
188 | /// getLeaderValue - Return the leader for the specified value that is in the |
189 | /// set. It is an error to call this method for a value that is not yet in |
190 | /// the set. For that, call getOrInsertLeaderValue(V). |
191 | const ElemTy &getLeaderValue(const ElemTy &V) const { |
192 | member_iterator MI = findLeader(V); |
193 | assert(MI != member_end() && "Value is not in the set!" ); |
194 | return *MI; |
195 | } |
196 | |
197 | /// getOrInsertLeaderValue - Return the leader for the specified value that is |
198 | /// in the set. If the member is not in the set, it is inserted, then |
199 | /// returned. |
200 | const ElemTy &getOrInsertLeaderValue(const ElemTy &V) { |
201 | member_iterator MI = findLeader(insert(Data: V)); |
202 | assert(MI != member_end() && "Value is not in the set!" ); |
203 | return *MI; |
204 | } |
205 | |
206 | /// getNumClasses - Return the number of equivalence classes in this set. |
207 | /// Note that this is a linear time operation. |
208 | unsigned getNumClasses() const { |
209 | unsigned NC = 0; |
210 | for (iterator I = begin(), E = end(); I != E; ++I) |
211 | if (I->isLeader()) ++NC; |
212 | return NC; |
213 | } |
214 | |
215 | //===--------------------------------------------------------------------===// |
216 | // Mutation methods |
217 | |
218 | /// insert - Insert a new value into the union/find set, ignoring the request |
219 | /// if the value already exists. |
220 | iterator insert(const ElemTy &Data) { |
221 | return TheMapping.insert(ECValue(Data)).first; |
222 | } |
223 | |
224 | /// findLeader - Given a value in the set, return a member iterator for the |
225 | /// equivalence class it is in. This does the path-compression part that |
226 | /// makes union-find "union findy". This returns an end iterator if the value |
227 | /// is not in the equivalence class. |
228 | member_iterator findLeader(iterator I) const { |
229 | if (I == TheMapping.end()) return member_end(); |
230 | return member_iterator(I->getLeader()); |
231 | } |
232 | member_iterator findLeader(const ElemTy &V) const { |
233 | return findLeader(TheMapping.find(V)); |
234 | } |
235 | |
236 | /// union - Merge the two equivalence sets for the specified values, inserting |
237 | /// them if they do not already exist in the equivalence set. |
238 | member_iterator unionSets(const ElemTy &V1, const ElemTy &V2) { |
239 | iterator V1I = insert(Data: V1), V2I = insert(Data: V2); |
240 | return unionSets(findLeader(V1I), findLeader(V2I)); |
241 | } |
242 | member_iterator unionSets(member_iterator L1, member_iterator L2) { |
243 | assert(L1 != member_end() && L2 != member_end() && "Illegal inputs!" ); |
244 | if (L1 == L2) return L1; // Unifying the same two sets, noop. |
245 | |
246 | // Otherwise, this is a real union operation. Set the end of the L1 list to |
247 | // point to the L2 leader node. |
248 | const ECValue &L1LV = *L1.Node, &L2LV = *L2.Node; |
249 | L1LV.getEndOfList()->setNext(&L2LV); |
250 | |
251 | // Update L1LV's end of list pointer. |
252 | L1LV.Leader = L2LV.getEndOfList(); |
253 | |
254 | // Clear L2's leader flag: |
255 | L2LV.Next = L2LV.getNext(); |
256 | |
257 | // L2's leader is now L1. |
258 | L2LV.Leader = &L1LV; |
259 | return L1; |
260 | } |
261 | |
262 | // isEquivalent - Return true if V1 is equivalent to V2. This can happen if |
263 | // V1 is equal to V2 or if they belong to one equivalence class. |
264 | bool isEquivalent(const ElemTy &V1, const ElemTy &V2) const { |
265 | // Fast path: any element is equivalent to itself. |
266 | if (V1 == V2) |
267 | return true; |
268 | auto It = findLeader(V1); |
269 | return It != member_end() && It == findLeader(V2); |
270 | } |
271 | |
272 | class member_iterator { |
273 | friend class EquivalenceClasses; |
274 | |
275 | const ECValue *Node; |
276 | |
277 | public: |
278 | using iterator_category = std::forward_iterator_tag; |
279 | using value_type = const ElemTy; |
280 | using size_type = std::size_t; |
281 | using difference_type = std::ptrdiff_t; |
282 | using pointer = value_type *; |
283 | using reference = value_type &; |
284 | |
285 | explicit member_iterator() = default; |
286 | explicit member_iterator(const ECValue *N) : Node(N) {} |
287 | |
288 | reference operator*() const { |
289 | assert(Node != nullptr && "Dereferencing end()!" ); |
290 | return Node->getData(); |
291 | } |
292 | pointer operator->() const { return &operator*(); } |
293 | |
294 | member_iterator &operator++() { |
295 | assert(Node != nullptr && "++'d off the end of the list!" ); |
296 | Node = Node->getNext(); |
297 | return *this; |
298 | } |
299 | |
300 | member_iterator operator++(int) { // postincrement operators. |
301 | member_iterator tmp = *this; |
302 | ++*this; |
303 | return tmp; |
304 | } |
305 | |
306 | bool operator==(const member_iterator &RHS) const { |
307 | return Node == RHS.Node; |
308 | } |
309 | bool operator!=(const member_iterator &RHS) const { |
310 | return Node != RHS.Node; |
311 | } |
312 | }; |
313 | }; |
314 | |
315 | } // end namespace llvm |
316 | |
317 | #endif // LLVM_ADT_EQUIVALENCECLASSES_H |
318 | |