1 | //===- llvm/ADT/SparseSet.h - Sparse set ------------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file |
10 | /// This file defines the SparseSet class derived from the version described in |
11 | /// Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters |
12 | /// on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec. 1993. |
13 | /// |
14 | /// A sparse set holds a small number of objects identified by integer keys from |
15 | /// a moderately sized universe. The sparse set uses more memory than other |
16 | /// containers in order to provide faster operations. |
17 | /// |
18 | //===----------------------------------------------------------------------===// |
19 | |
20 | #ifndef LLVM_ADT_SPARSESET_H |
21 | #define LLVM_ADT_SPARSESET_H |
22 | |
23 | #include "llvm/ADT/identity.h" |
24 | #include "llvm/ADT/SmallVector.h" |
25 | #include "llvm/Support/AllocatorBase.h" |
26 | #include <cassert> |
27 | #include <cstdint> |
28 | #include <cstdlib> |
29 | #include <limits> |
30 | #include <utility> |
31 | |
32 | namespace llvm { |
33 | |
34 | /// SparseSetValTraits - Objects in a SparseSet are identified by keys that can |
35 | /// be uniquely converted to a small integer less than the set's universe. This |
36 | /// class allows the set to hold values that differ from the set's key type as |
37 | /// long as an index can still be derived from the value. SparseSet never |
38 | /// directly compares ValueT, only their indices, so it can map keys to |
39 | /// arbitrary values. SparseSetValTraits computes the index from the value |
40 | /// object. To compute the index from a key, SparseSet uses a separate |
41 | /// KeyFunctorT template argument. |
42 | /// |
43 | /// A simple type declaration, SparseSet<Type>, handles these cases: |
44 | /// - unsigned key, identity index, identity value |
45 | /// - unsigned key, identity index, fat value providing getSparseSetIndex() |
46 | /// |
47 | /// The type declaration SparseSet<Type, UnaryFunction> handles: |
48 | /// - unsigned key, remapped index, identity value (virtual registers) |
49 | /// - pointer key, pointer-derived index, identity value (node+ID) |
50 | /// - pointer key, pointer-derived index, fat value with getSparseSetIndex() |
51 | /// |
52 | /// Only other, unexpected cases require specializing SparseSetValTraits. |
53 | /// |
54 | /// For best results, ValueT should not require a destructor. |
55 | /// |
56 | template<typename ValueT> |
57 | struct SparseSetValTraits { |
58 | static unsigned getValIndex(const ValueT &Val) { |
59 | return Val.getSparseSetIndex(); |
60 | } |
61 | }; |
62 | |
63 | /// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The |
64 | /// generic implementation handles ValueT classes which either provide |
65 | /// getSparseSetIndex() or specialize SparseSetValTraits<>. |
66 | /// |
67 | template<typename KeyT, typename ValueT, typename KeyFunctorT> |
68 | struct SparseSetValFunctor { |
69 | unsigned operator()(const ValueT &Val) const { |
70 | return SparseSetValTraits<ValueT>::getValIndex(Val); |
71 | } |
72 | }; |
73 | |
74 | /// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of |
75 | /// identity key/value sets. |
76 | template<typename KeyT, typename KeyFunctorT> |
77 | struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> { |
78 | unsigned operator()(const KeyT &Key) const { |
79 | return KeyFunctorT()(Key); |
80 | } |
81 | }; |
82 | |
83 | /// SparseSet - Fast set implementation for objects that can be identified by |
84 | /// small unsigned keys. |
85 | /// |
86 | /// SparseSet allocates memory proportional to the size of the key universe, so |
87 | /// it is not recommended for building composite data structures. It is useful |
88 | /// for algorithms that require a single set with fast operations. |
89 | /// |
90 | /// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast |
91 | /// clear() and iteration as fast as a vector. The find(), insert(), and |
92 | /// erase() operations are all constant time, and typically faster than a hash |
93 | /// table. The iteration order doesn't depend on numerical key values, it only |
94 | /// depends on the order of insert() and erase() operations. When no elements |
95 | /// have been erased, the iteration order is the insertion order. |
96 | /// |
97 | /// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but |
98 | /// offers constant-time clear() and size() operations as well as fast |
99 | /// iteration independent on the size of the universe. |
100 | /// |
101 | /// SparseSet contains a dense vector holding all the objects and a sparse |
102 | /// array holding indexes into the dense vector. Most of the memory is used by |
103 | /// the sparse array which is the size of the key universe. The SparseT |
104 | /// template parameter provides a space/speed tradeoff for sets holding many |
105 | /// elements. |
106 | /// |
107 | /// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse |
108 | /// array uses 4 x Universe bytes. |
109 | /// |
110 | /// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache |
111 | /// lines, but the sparse array is 4x smaller. N is the number of elements in |
112 | /// the set. |
113 | /// |
114 | /// For sets that may grow to thousands of elements, SparseT should be set to |
115 | /// uint16_t or uint32_t. |
116 | /// |
117 | /// @tparam ValueT The type of objects in the set. |
118 | /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT. |
119 | /// @tparam SparseT An unsigned integer type. See above. |
120 | /// |
121 | template<typename ValueT, |
122 | typename KeyFunctorT = identity<unsigned>, |
123 | typename SparseT = uint8_t> |
124 | class SparseSet { |
125 | static_assert(std::is_unsigned_v<SparseT>, |
126 | "SparseT must be an unsigned integer type" ); |
127 | |
128 | using KeyT = typename KeyFunctorT::argument_type; |
129 | using DenseT = SmallVector<ValueT, 8>; |
130 | using size_type = unsigned; |
131 | DenseT Dense; |
132 | SparseT *Sparse = nullptr; |
133 | unsigned Universe = 0; |
134 | KeyFunctorT KeyIndexOf; |
135 | SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf; |
136 | |
137 | public: |
138 | using value_type = ValueT; |
139 | using reference = ValueT &; |
140 | using const_reference = const ValueT &; |
141 | using pointer = ValueT *; |
142 | using const_pointer = const ValueT *; |
143 | |
144 | SparseSet() = default; |
145 | SparseSet(const SparseSet &) = delete; |
146 | SparseSet &operator=(const SparseSet &) = delete; |
147 | ~SparseSet() { free(Sparse); } |
148 | |
149 | /// setUniverse - Set the universe size which determines the largest key the |
150 | /// set can hold. The universe must be sized before any elements can be |
151 | /// added. |
152 | /// |
153 | /// @param U Universe size. All object keys must be less than U. |
154 | /// |
155 | void setUniverse(unsigned U) { |
156 | // It's not hard to resize the universe on a non-empty set, but it doesn't |
157 | // seem like a likely use case, so we can add that code when we need it. |
158 | assert(empty() && "Can only resize universe on an empty map" ); |
159 | // Hysteresis prevents needless reallocations. |
160 | if (U >= Universe/4 && U <= Universe) |
161 | return; |
162 | free(Sparse); |
163 | // The Sparse array doesn't actually need to be initialized, so malloc |
164 | // would be enough here, but that will cause tools like valgrind to |
165 | // complain about branching on uninitialized data. |
166 | Sparse = static_cast<SparseT*>(safe_calloc(Count: U, Sz: sizeof(SparseT))); |
167 | Universe = U; |
168 | } |
169 | |
170 | // Import trivial vector stuff from DenseT. |
171 | using iterator = typename DenseT::iterator; |
172 | using const_iterator = typename DenseT::const_iterator; |
173 | |
174 | const_iterator begin() const { return Dense.begin(); } |
175 | const_iterator end() const { return Dense.end(); } |
176 | iterator begin() { return Dense.begin(); } |
177 | iterator end() { return Dense.end(); } |
178 | |
179 | /// empty - Returns true if the set is empty. |
180 | /// |
181 | /// This is not the same as BitVector::empty(). |
182 | /// |
183 | bool empty() const { return Dense.empty(); } |
184 | |
185 | /// size - Returns the number of elements in the set. |
186 | /// |
187 | /// This is not the same as BitVector::size() which returns the size of the |
188 | /// universe. |
189 | /// |
190 | size_type size() const { return Dense.size(); } |
191 | |
192 | /// clear - Clears the set. This is a very fast constant time operation. |
193 | /// |
194 | void clear() { |
195 | // Sparse does not need to be cleared, see find(). |
196 | Dense.clear(); |
197 | } |
198 | |
199 | /// findIndex - Find an element by its index. |
200 | /// |
201 | /// @param Idx A valid index to find. |
202 | /// @returns An iterator to the element identified by key, or end(). |
203 | /// |
204 | iterator findIndex(unsigned Idx) { |
205 | assert(Idx < Universe && "Key out of range" ); |
206 | assert(Sparse != nullptr && "Invalid sparse type" ); |
207 | const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u; |
208 | for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) { |
209 | const unsigned FoundIdx = ValIndexOf(Dense[i]); |
210 | assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?" ); |
211 | if (Idx == FoundIdx) |
212 | return begin() + i; |
213 | // Stride is 0 when SparseT >= unsigned. We don't need to loop. |
214 | if (!Stride) |
215 | break; |
216 | } |
217 | return end(); |
218 | } |
219 | |
220 | /// find - Find an element by its key. |
221 | /// |
222 | /// @param Key A valid key to find. |
223 | /// @returns An iterator to the element identified by key, or end(). |
224 | /// |
225 | iterator find(const KeyT &Key) { |
226 | return findIndex(Idx: KeyIndexOf(Key)); |
227 | } |
228 | |
229 | const_iterator find(const KeyT &Key) const { |
230 | return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key)); |
231 | } |
232 | |
233 | /// Check if the set contains the given \c Key. |
234 | /// |
235 | /// @param Key A valid key to find. |
236 | bool contains(const KeyT &Key) const { return find(Key) != end(); } |
237 | |
238 | /// count - Returns 1 if this set contains an element identified by Key, |
239 | /// 0 otherwise. |
240 | /// |
241 | size_type count(const KeyT &Key) const { return contains(Key) ? 1 : 0; } |
242 | |
243 | /// insert - Attempts to insert a new element. |
244 | /// |
245 | /// If Val is successfully inserted, return (I, true), where I is an iterator |
246 | /// pointing to the newly inserted element. |
247 | /// |
248 | /// If the set already contains an element with the same key as Val, return |
249 | /// (I, false), where I is an iterator pointing to the existing element. |
250 | /// |
251 | /// Insertion invalidates all iterators. |
252 | /// |
253 | std::pair<iterator, bool> insert(const ValueT &Val) { |
254 | unsigned Idx = ValIndexOf(Val); |
255 | iterator I = findIndex(Idx); |
256 | if (I != end()) |
257 | return std::make_pair(I, false); |
258 | Sparse[Idx] = size(); |
259 | Dense.push_back(Val); |
260 | return std::make_pair(end() - 1, true); |
261 | } |
262 | |
263 | /// array subscript - If an element already exists with this key, return it. |
264 | /// Otherwise, automatically construct a new value from Key, insert it, |
265 | /// and return the newly inserted element. |
266 | ValueT &operator[](const KeyT &Key) { |
267 | return *insert(Val: ValueT(Key)).first; |
268 | } |
269 | |
270 | ValueT pop_back_val() { |
271 | // Sparse does not need to be cleared, see find(). |
272 | return Dense.pop_back_val(); |
273 | } |
274 | |
275 | /// erase - Erases an existing element identified by a valid iterator. |
276 | /// |
277 | /// This invalidates all iterators, but erase() returns an iterator pointing |
278 | /// to the next element. This makes it possible to erase selected elements |
279 | /// while iterating over the set: |
280 | /// |
281 | /// for (SparseSet::iterator I = Set.begin(); I != Set.end();) |
282 | /// if (test(*I)) |
283 | /// I = Set.erase(I); |
284 | /// else |
285 | /// ++I; |
286 | /// |
287 | /// Note that end() changes when elements are erased, unlike std::list. |
288 | /// |
289 | iterator erase(iterator I) { |
290 | assert(unsigned(I - begin()) < size() && "Invalid iterator" ); |
291 | if (I != end() - 1) { |
292 | *I = Dense.back(); |
293 | unsigned BackIdx = ValIndexOf(Dense.back()); |
294 | assert(BackIdx < Universe && "Invalid key in set. Did object mutate?" ); |
295 | Sparse[BackIdx] = I - begin(); |
296 | } |
297 | // This depends on SmallVector::pop_back() not invalidating iterators. |
298 | // std::vector::pop_back() doesn't give that guarantee. |
299 | Dense.pop_back(); |
300 | return I; |
301 | } |
302 | |
303 | /// erase - Erases an element identified by Key, if it exists. |
304 | /// |
305 | /// @param Key The key identifying the element to erase. |
306 | /// @returns True when an element was erased, false if no element was found. |
307 | /// |
308 | bool erase(const KeyT &Key) { |
309 | iterator I = find(Key); |
310 | if (I == end()) |
311 | return false; |
312 | erase(I); |
313 | return true; |
314 | } |
315 | }; |
316 | |
317 | } // end namespace llvm |
318 | |
319 | #endif // LLVM_ADT_SPARSESET_H |
320 | |