1 | //===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// \file |
9 | /// |
10 | /// This file defines a set of templates that efficiently compute a dominator |
11 | /// tree over a generic graph. This is used typically in LLVM for fast |
12 | /// dominance queries on the CFG, but is fully generic w.r.t. the underlying |
13 | /// graph types. |
14 | /// |
15 | /// Unlike ADT/* graph algorithms, generic dominator tree has more requirements |
16 | /// on the graph's NodeRef. The NodeRef should be a pointer and, |
17 | /// either NodeRef->getParent() must return the parent node that is also a |
18 | /// pointer or DomTreeNodeTraits needs to be specialized. |
19 | /// |
20 | /// FIXME: Maybe GenericDomTree needs a TreeTraits, instead of GraphTraits. |
21 | /// |
22 | //===----------------------------------------------------------------------===// |
23 | |
24 | #ifndef LLVM_SUPPORT_GENERICDOMTREE_H |
25 | #define LLVM_SUPPORT_GENERICDOMTREE_H |
26 | |
27 | #include "llvm/ADT/DenseMap.h" |
28 | #include "llvm/ADT/GraphTraits.h" |
29 | #include "llvm/ADT/STLExtras.h" |
30 | #include "llvm/ADT/SmallPtrSet.h" |
31 | #include "llvm/ADT/SmallVector.h" |
32 | #include "llvm/Support/CFGDiff.h" |
33 | #include "llvm/Support/CFGUpdate.h" |
34 | #include "llvm/Support/raw_ostream.h" |
35 | #include <algorithm> |
36 | #include <cassert> |
37 | #include <cstddef> |
38 | #include <iterator> |
39 | #include <memory> |
40 | #include <type_traits> |
41 | #include <utility> |
42 | |
43 | namespace llvm { |
44 | |
45 | template <typename NodeT, bool IsPostDom> |
46 | class DominatorTreeBase; |
47 | |
48 | namespace DomTreeBuilder { |
49 | template <typename DomTreeT> |
50 | struct SemiNCAInfo; |
51 | } // namespace DomTreeBuilder |
52 | |
53 | /// Base class for the actual dominator tree node. |
54 | template <class NodeT> class DomTreeNodeBase { |
55 | friend class PostDominatorTree; |
56 | friend class DominatorTreeBase<NodeT, false>; |
57 | friend class DominatorTreeBase<NodeT, true>; |
58 | friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, false>>; |
59 | friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, true>>; |
60 | |
61 | NodeT *TheBB; |
62 | DomTreeNodeBase *IDom; |
63 | unsigned Level; |
64 | SmallVector<DomTreeNodeBase *, 4> Children; |
65 | mutable unsigned DFSNumIn = ~0; |
66 | mutable unsigned DFSNumOut = ~0; |
67 | |
68 | public: |
69 | DomTreeNodeBase(NodeT *BB, DomTreeNodeBase *iDom) |
70 | : TheBB(BB), IDom(iDom), Level(IDom ? IDom->Level + 1 : 0) {} |
71 | |
72 | using iterator = typename SmallVector<DomTreeNodeBase *, 4>::iterator; |
73 | using const_iterator = |
74 | typename SmallVector<DomTreeNodeBase *, 4>::const_iterator; |
75 | |
76 | iterator begin() { return Children.begin(); } |
77 | iterator end() { return Children.end(); } |
78 | const_iterator begin() const { return Children.begin(); } |
79 | const_iterator end() const { return Children.end(); } |
80 | |
81 | DomTreeNodeBase *const &back() const { return Children.back(); } |
82 | DomTreeNodeBase *&back() { return Children.back(); } |
83 | |
84 | iterator_range<iterator> children() { return make_range(begin(), end()); } |
85 | iterator_range<const_iterator> children() const { |
86 | return make_range(begin(), end()); |
87 | } |
88 | |
89 | NodeT *getBlock() const { return TheBB; } |
90 | DomTreeNodeBase *getIDom() const { return IDom; } |
91 | unsigned getLevel() const { return Level; } |
92 | |
93 | std::unique_ptr<DomTreeNodeBase> addChild( |
94 | std::unique_ptr<DomTreeNodeBase> C) { |
95 | Children.push_back(C.get()); |
96 | return C; |
97 | } |
98 | |
99 | bool isLeaf() const { return Children.empty(); } |
100 | size_t getNumChildren() const { return Children.size(); } |
101 | |
102 | void clearAllChildren() { Children.clear(); } |
103 | |
104 | bool compare(const DomTreeNodeBase *Other) const { |
105 | if (getNumChildren() != Other->getNumChildren()) |
106 | return true; |
107 | |
108 | if (Level != Other->Level) return true; |
109 | |
110 | SmallPtrSet<const NodeT *, 4> OtherChildren; |
111 | for (const DomTreeNodeBase *I : *Other) { |
112 | const NodeT *Nd = I->getBlock(); |
113 | OtherChildren.insert(Nd); |
114 | } |
115 | |
116 | for (const DomTreeNodeBase *I : *this) { |
117 | const NodeT *N = I->getBlock(); |
118 | if (OtherChildren.count(N) == 0) |
119 | return true; |
120 | } |
121 | return false; |
122 | } |
123 | |
124 | void setIDom(DomTreeNodeBase *NewIDom) { |
125 | assert(IDom && "No immediate dominator?" ); |
126 | if (IDom == NewIDom) return; |
127 | |
128 | auto I = find(IDom->Children, this); |
129 | assert(I != IDom->Children.end() && |
130 | "Not in immediate dominator children set!" ); |
131 | // I am no longer your child... |
132 | IDom->Children.erase(I); |
133 | |
134 | // Switch to new dominator |
135 | IDom = NewIDom; |
136 | IDom->Children.push_back(this); |
137 | |
138 | UpdateLevel(); |
139 | } |
140 | |
141 | /// getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes |
142 | /// in the dominator tree. They are only guaranteed valid if |
143 | /// updateDFSNumbers() has been called. |
144 | unsigned getDFSNumIn() const { return DFSNumIn; } |
145 | unsigned getDFSNumOut() const { return DFSNumOut; } |
146 | |
147 | private: |
148 | // Return true if this node is dominated by other. Use this only if DFS info |
149 | // is valid. |
150 | bool DominatedBy(const DomTreeNodeBase *other) const { |
151 | return this->DFSNumIn >= other->DFSNumIn && |
152 | this->DFSNumOut <= other->DFSNumOut; |
153 | } |
154 | |
155 | void UpdateLevel() { |
156 | assert(IDom); |
157 | if (Level == IDom->Level + 1) return; |
158 | |
159 | SmallVector<DomTreeNodeBase *, 64> WorkStack = {this}; |
160 | |
161 | while (!WorkStack.empty()) { |
162 | DomTreeNodeBase *Current = WorkStack.pop_back_val(); |
163 | Current->Level = Current->IDom->Level + 1; |
164 | |
165 | for (DomTreeNodeBase *C : *Current) { |
166 | assert(C->IDom); |
167 | if (C->Level != C->IDom->Level + 1) WorkStack.push_back(C); |
168 | } |
169 | } |
170 | } |
171 | }; |
172 | |
173 | template <class NodeT> |
174 | raw_ostream &operator<<(raw_ostream &O, const DomTreeNodeBase<NodeT> *Node) { |
175 | if (Node->getBlock()) |
176 | Node->getBlock()->printAsOperand(O, false); |
177 | else |
178 | O << " <<exit node>>" ; |
179 | |
180 | O << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "} [" |
181 | << Node->getLevel() << "]\n" ; |
182 | |
183 | return O; |
184 | } |
185 | |
186 | template <class NodeT> |
187 | void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &O, |
188 | unsigned Lev) { |
189 | O.indent(NumSpaces: 2 * Lev) << "[" << Lev << "] " << N; |
190 | for (const auto &I : *N) |
191 | PrintDomTree<NodeT>(I, O, Lev + 1); |
192 | } |
193 | |
194 | namespace DomTreeBuilder { |
195 | // The routines below are provided in a separate header but referenced here. |
196 | template <typename DomTreeT> |
197 | void Calculate(DomTreeT &DT); |
198 | |
199 | template <typename DomTreeT> |
200 | void CalculateWithUpdates(DomTreeT &DT, |
201 | ArrayRef<typename DomTreeT::UpdateType> Updates); |
202 | |
203 | template <typename DomTreeT> |
204 | void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, |
205 | typename DomTreeT::NodePtr To); |
206 | |
207 | template <typename DomTreeT> |
208 | void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, |
209 | typename DomTreeT::NodePtr To); |
210 | |
211 | template <typename DomTreeT> |
212 | void ApplyUpdates(DomTreeT &DT, |
213 | GraphDiff<typename DomTreeT::NodePtr, |
214 | DomTreeT::IsPostDominator> &PreViewCFG, |
215 | GraphDiff<typename DomTreeT::NodePtr, |
216 | DomTreeT::IsPostDominator> *PostViewCFG); |
217 | |
218 | template <typename DomTreeT> |
219 | bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL); |
220 | } // namespace DomTreeBuilder |
221 | |
222 | /// Default DomTreeNode traits for NodeT. The default implementation assume a |
223 | /// Function-like NodeT. Can be specialized to support different node types. |
224 | template <typename NodeT> struct DomTreeNodeTraits { |
225 | using NodeType = NodeT; |
226 | using NodePtr = NodeT *; |
227 | using ParentPtr = decltype(std::declval<NodePtr>()->getParent()); |
228 | static_assert(std::is_pointer_v<ParentPtr>, |
229 | "Currently NodeT's parent must be a pointer type" ); |
230 | using ParentType = std::remove_pointer_t<ParentPtr>; |
231 | |
232 | static NodeT *getEntryNode(ParentPtr Parent) { return &Parent->front(); } |
233 | static ParentPtr getParent(NodePtr BB) { return BB->getParent(); } |
234 | }; |
235 | |
236 | /// Core dominator tree base class. |
237 | /// |
238 | /// This class is a generic template over graph nodes. It is instantiated for |
239 | /// various graphs in the LLVM IR or in the code generator. |
240 | template <typename NodeT, bool IsPostDom> |
241 | class DominatorTreeBase { |
242 | public: |
243 | static_assert(std::is_pointer_v<typename GraphTraits<NodeT *>::NodeRef>, |
244 | "Currently DominatorTreeBase supports only pointer nodes" ); |
245 | using NodeTrait = DomTreeNodeTraits<NodeT>; |
246 | using NodeType = typename NodeTrait::NodeType; |
247 | using NodePtr = typename NodeTrait::NodePtr; |
248 | using ParentPtr = typename NodeTrait::ParentPtr; |
249 | static_assert(std::is_pointer_v<ParentPtr>, |
250 | "Currently NodeT's parent must be a pointer type" ); |
251 | using ParentType = std::remove_pointer_t<ParentPtr>; |
252 | static constexpr bool IsPostDominator = IsPostDom; |
253 | |
254 | using UpdateType = cfg::Update<NodePtr>; |
255 | using UpdateKind = cfg::UpdateKind; |
256 | static constexpr UpdateKind Insert = UpdateKind::Insert; |
257 | static constexpr UpdateKind Delete = UpdateKind::Delete; |
258 | |
259 | enum class VerificationLevel { Fast, Basic, Full }; |
260 | |
261 | protected: |
262 | // Dominators always have a single root, postdominators can have more. |
263 | SmallVector<NodeT *, IsPostDom ? 4 : 1> Roots; |
264 | |
265 | using DomTreeNodeMapType = |
266 | DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>; |
267 | DomTreeNodeMapType DomTreeNodes; |
268 | DomTreeNodeBase<NodeT> *RootNode = nullptr; |
269 | ParentPtr Parent = nullptr; |
270 | |
271 | mutable bool DFSInfoValid = false; |
272 | mutable unsigned int SlowQueries = 0; |
273 | |
274 | friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase>; |
275 | |
276 | public: |
277 | DominatorTreeBase() = default; |
278 | |
279 | DominatorTreeBase(DominatorTreeBase &&Arg) |
280 | : Roots(std::move(Arg.Roots)), |
281 | DomTreeNodes(std::move(Arg.DomTreeNodes)), |
282 | RootNode(Arg.RootNode), |
283 | Parent(Arg.Parent), |
284 | DFSInfoValid(Arg.DFSInfoValid), |
285 | SlowQueries(Arg.SlowQueries) { |
286 | Arg.wipe(); |
287 | } |
288 | |
289 | DominatorTreeBase &operator=(DominatorTreeBase &&RHS) { |
290 | Roots = std::move(RHS.Roots); |
291 | DomTreeNodes = std::move(RHS.DomTreeNodes); |
292 | RootNode = RHS.RootNode; |
293 | Parent = RHS.Parent; |
294 | DFSInfoValid = RHS.DFSInfoValid; |
295 | SlowQueries = RHS.SlowQueries; |
296 | RHS.wipe(); |
297 | return *this; |
298 | } |
299 | |
300 | DominatorTreeBase(const DominatorTreeBase &) = delete; |
301 | DominatorTreeBase &operator=(const DominatorTreeBase &) = delete; |
302 | |
303 | /// Iteration over roots. |
304 | /// |
305 | /// This may include multiple blocks if we are computing post dominators. |
306 | /// For forward dominators, this will always be a single block (the entry |
307 | /// block). |
308 | using root_iterator = typename SmallVectorImpl<NodeT *>::iterator; |
309 | using const_root_iterator = typename SmallVectorImpl<NodeT *>::const_iterator; |
310 | |
311 | root_iterator root_begin() { return Roots.begin(); } |
312 | const_root_iterator root_begin() const { return Roots.begin(); } |
313 | root_iterator root_end() { return Roots.end(); } |
314 | const_root_iterator root_end() const { return Roots.end(); } |
315 | |
316 | size_t root_size() const { return Roots.size(); } |
317 | |
318 | iterator_range<root_iterator> roots() { |
319 | return make_range(root_begin(), root_end()); |
320 | } |
321 | iterator_range<const_root_iterator> roots() const { |
322 | return make_range(root_begin(), root_end()); |
323 | } |
324 | |
325 | /// isPostDominator - Returns true if analysis based of postdoms |
326 | /// |
327 | bool isPostDominator() const { return IsPostDominator; } |
328 | |
329 | /// compare - Return false if the other dominator tree base matches this |
330 | /// dominator tree base. Otherwise return true. |
331 | bool compare(const DominatorTreeBase &Other) const { |
332 | if (Parent != Other.Parent) return true; |
333 | |
334 | if (Roots.size() != Other.Roots.size()) |
335 | return true; |
336 | |
337 | if (!std::is_permutation(Roots.begin(), Roots.end(), Other.Roots.begin())) |
338 | return true; |
339 | |
340 | const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes; |
341 | if (DomTreeNodes.size() != OtherDomTreeNodes.size()) |
342 | return true; |
343 | |
344 | for (const auto &DomTreeNode : DomTreeNodes) { |
345 | NodeT *BB = DomTreeNode.first; |
346 | typename DomTreeNodeMapType::const_iterator OI = |
347 | OtherDomTreeNodes.find(BB); |
348 | if (OI == OtherDomTreeNodes.end()) |
349 | return true; |
350 | |
351 | DomTreeNodeBase<NodeT> &MyNd = *DomTreeNode.second; |
352 | DomTreeNodeBase<NodeT> &OtherNd = *OI->second; |
353 | |
354 | if (MyNd.compare(&OtherNd)) |
355 | return true; |
356 | } |
357 | |
358 | return false; |
359 | } |
360 | |
361 | /// getNode - return the (Post)DominatorTree node for the specified basic |
362 | /// block. This is the same as using operator[] on this class. The result |
363 | /// may (but is not required to) be null for a forward (backwards) |
364 | /// statically unreachable block. |
365 | DomTreeNodeBase<NodeT> *getNode(const NodeT *BB) const { |
366 | auto I = DomTreeNodes.find(BB); |
367 | if (I != DomTreeNodes.end()) |
368 | return I->second.get(); |
369 | return nullptr; |
370 | } |
371 | |
372 | /// See getNode. |
373 | DomTreeNodeBase<NodeT> *operator[](const NodeT *BB) const { |
374 | return getNode(BB); |
375 | } |
376 | |
377 | /// getRootNode - This returns the entry node for the CFG of the function. If |
378 | /// this tree represents the post-dominance relations for a function, however, |
379 | /// this root may be a node with the block == NULL. This is the case when |
380 | /// there are multiple exit nodes from a particular function. Consumers of |
381 | /// post-dominance information must be capable of dealing with this |
382 | /// possibility. |
383 | /// |
384 | DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; } |
385 | const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; } |
386 | |
387 | /// Get all nodes dominated by R, including R itself. |
388 | void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const { |
389 | Result.clear(); |
390 | const DomTreeNodeBase<NodeT> *RN = getNode(BB: R); |
391 | if (!RN) |
392 | return; // If R is unreachable, it will not be present in the DOM tree. |
393 | SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL; |
394 | WL.push_back(RN); |
395 | |
396 | while (!WL.empty()) { |
397 | const DomTreeNodeBase<NodeT> *N = WL.pop_back_val(); |
398 | Result.push_back(N->getBlock()); |
399 | WL.append(N->begin(), N->end()); |
400 | } |
401 | } |
402 | |
403 | /// properlyDominates - Returns true iff A dominates B and A != B. |
404 | /// Note that this is not a constant time operation! |
405 | /// |
406 | bool properlyDominates(const DomTreeNodeBase<NodeT> *A, |
407 | const DomTreeNodeBase<NodeT> *B) const { |
408 | if (!A || !B) |
409 | return false; |
410 | if (A == B) |
411 | return false; |
412 | return dominates(A, B); |
413 | } |
414 | |
415 | bool properlyDominates(const NodeT *A, const NodeT *B) const; |
416 | |
417 | /// isReachableFromEntry - Return true if A is dominated by the entry |
418 | /// block of the function containing it. |
419 | bool isReachableFromEntry(const NodeT *A) const { |
420 | assert(!this->isPostDominator() && |
421 | "This is not implemented for post dominators" ); |
422 | return isReachableFromEntry(getNode(BB: const_cast<NodeT *>(A))); |
423 | } |
424 | |
425 | bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; } |
426 | |
427 | /// dominates - Returns true iff A dominates B. Note that this is not a |
428 | /// constant time operation! |
429 | /// |
430 | bool dominates(const DomTreeNodeBase<NodeT> *A, |
431 | const DomTreeNodeBase<NodeT> *B) const { |
432 | // A node trivially dominates itself. |
433 | if (B == A) |
434 | return true; |
435 | |
436 | // An unreachable node is dominated by anything. |
437 | if (!isReachableFromEntry(B)) |
438 | return true; |
439 | |
440 | // And dominates nothing. |
441 | if (!isReachableFromEntry(A)) |
442 | return false; |
443 | |
444 | if (B->getIDom() == A) return true; |
445 | |
446 | if (A->getIDom() == B) return false; |
447 | |
448 | // A can only dominate B if it is higher in the tree. |
449 | if (A->getLevel() >= B->getLevel()) return false; |
450 | |
451 | // Compare the result of the tree walk and the dfs numbers, if expensive |
452 | // checks are enabled. |
453 | #ifdef EXPENSIVE_CHECKS |
454 | assert((!DFSInfoValid || |
455 | (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) && |
456 | "Tree walk disagrees with dfs numbers!" ); |
457 | #endif |
458 | |
459 | if (DFSInfoValid) |
460 | return B->DominatedBy(A); |
461 | |
462 | // If we end up with too many slow queries, just update the |
463 | // DFS numbers on the theory that we are going to keep querying. |
464 | SlowQueries++; |
465 | if (SlowQueries > 32) { |
466 | updateDFSNumbers(); |
467 | return B->DominatedBy(A); |
468 | } |
469 | |
470 | return dominatedBySlowTreeWalk(A, B); |
471 | } |
472 | |
473 | bool dominates(const NodeT *A, const NodeT *B) const; |
474 | |
475 | NodeT *getRoot() const { |
476 | assert(this->Roots.size() == 1 && "Should always have entry node!" ); |
477 | return this->Roots[0]; |
478 | } |
479 | |
480 | /// Find nearest common dominator basic block for basic block A and B. A and B |
481 | /// must have tree nodes. |
482 | NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) const { |
483 | assert(A && B && "Pointers are not valid" ); |
484 | assert(NodeTrait::getParent(A) == NodeTrait::getParent(B) && |
485 | "Two blocks are not in same function" ); |
486 | |
487 | // If either A or B is a entry block then it is nearest common dominator |
488 | // (for forward-dominators). |
489 | if (!isPostDominator()) { |
490 | NodeT &Entry = |
491 | *DomTreeNodeTraits<NodeT>::getEntryNode(NodeTrait::getParent(A)); |
492 | if (A == &Entry || B == &Entry) |
493 | return &Entry; |
494 | } |
495 | |
496 | DomTreeNodeBase<NodeT> *NodeA = getNode(BB: A); |
497 | DomTreeNodeBase<NodeT> *NodeB = getNode(BB: B); |
498 | assert(NodeA && "A must be in the tree" ); |
499 | assert(NodeB && "B must be in the tree" ); |
500 | |
501 | // Use level information to go up the tree until the levels match. Then |
502 | // continue going up til we arrive at the same node. |
503 | while (NodeA != NodeB) { |
504 | if (NodeA->getLevel() < NodeB->getLevel()) std::swap(NodeA, NodeB); |
505 | |
506 | NodeA = NodeA->IDom; |
507 | } |
508 | |
509 | return NodeA->getBlock(); |
510 | } |
511 | |
512 | const NodeT *findNearestCommonDominator(const NodeT *A, |
513 | const NodeT *B) const { |
514 | // Cast away the const qualifiers here. This is ok since |
515 | // const is re-introduced on the return type. |
516 | return findNearestCommonDominator(const_cast<NodeT *>(A), |
517 | const_cast<NodeT *>(B)); |
518 | } |
519 | |
520 | bool isVirtualRoot(const DomTreeNodeBase<NodeT> *A) const { |
521 | return isPostDominator() && !A->getBlock(); |
522 | } |
523 | |
524 | //===--------------------------------------------------------------------===// |
525 | // API to update (Post)DominatorTree information based on modifications to |
526 | // the CFG... |
527 | |
528 | /// Inform the dominator tree about a sequence of CFG edge insertions and |
529 | /// deletions and perform a batch update on the tree. |
530 | /// |
531 | /// This function should be used when there were multiple CFG updates after |
532 | /// the last dominator tree update. It takes care of performing the updates |
533 | /// in sync with the CFG and optimizes away the redundant operations that |
534 | /// cancel each other. |
535 | /// The functions expects the sequence of updates to be balanced. Eg.: |
536 | /// - {{Insert, A, B}, {Delete, A, B}, {Insert, A, B}} is fine, because |
537 | /// logically it results in a single insertions. |
538 | /// - {{Insert, A, B}, {Insert, A, B}} is invalid, because it doesn't make |
539 | /// sense to insert the same edge twice. |
540 | /// |
541 | /// What's more, the functions assumes that it's safe to ask every node in the |
542 | /// CFG about its children and inverse children. This implies that deletions |
543 | /// of CFG edges must not delete the CFG nodes before calling this function. |
544 | /// |
545 | /// The applyUpdates function can reorder the updates and remove redundant |
546 | /// ones internally (as long as it is done in a deterministic fashion). The |
547 | /// batch updater is also able to detect sequences of zero and exactly one |
548 | /// update -- it's optimized to do less work in these cases. |
549 | /// |
550 | /// Note that for postdominators it automatically takes care of applying |
551 | /// updates on reverse edges internally (so there's no need to swap the |
552 | /// From and To pointers when constructing DominatorTree::UpdateType). |
553 | /// The type of updates is the same for DomTreeBase<T> and PostDomTreeBase<T> |
554 | /// with the same template parameter T. |
555 | /// |
556 | /// \param Updates An ordered sequence of updates to perform. The current CFG |
557 | /// and the reverse of these updates provides the pre-view of the CFG. |
558 | /// |
559 | void applyUpdates(ArrayRef<UpdateType> Updates) { |
560 | GraphDiff<NodePtr, IsPostDominator> PreViewCFG( |
561 | Updates, /*ReverseApplyUpdates=*/true); |
562 | DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, nullptr); |
563 | } |
564 | |
565 | /// \param Updates An ordered sequence of updates to perform. The current CFG |
566 | /// and the reverse of these updates provides the pre-view of the CFG. |
567 | /// \param PostViewUpdates An ordered sequence of update to perform in order |
568 | /// to obtain a post-view of the CFG. The DT will be updated assuming the |
569 | /// obtained PostViewCFG is the desired end state. |
570 | void applyUpdates(ArrayRef<UpdateType> Updates, |
571 | ArrayRef<UpdateType> PostViewUpdates) { |
572 | if (Updates.empty()) { |
573 | GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates); |
574 | DomTreeBuilder::ApplyUpdates(*this, PostViewCFG, &PostViewCFG); |
575 | } else { |
576 | // PreViewCFG needs to merge Updates and PostViewCFG. The updates in |
577 | // Updates need to be reversed, and match the direction in PostViewCFG. |
578 | // The PostViewCFG is created with updates reversed (equivalent to changes |
579 | // made to the CFG), so the PreViewCFG needs all the updates reverse |
580 | // applied. |
581 | SmallVector<UpdateType> AllUpdates(Updates.begin(), Updates.end()); |
582 | append_range(AllUpdates, PostViewUpdates); |
583 | GraphDiff<NodePtr, IsPostDom> PreViewCFG(AllUpdates, |
584 | /*ReverseApplyUpdates=*/true); |
585 | GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates); |
586 | DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, &PostViewCFG); |
587 | } |
588 | } |
589 | |
590 | /// Inform the dominator tree about a CFG edge insertion and update the tree. |
591 | /// |
592 | /// This function has to be called just before or just after making the update |
593 | /// on the actual CFG. There cannot be any other updates that the dominator |
594 | /// tree doesn't know about. |
595 | /// |
596 | /// Note that for postdominators it automatically takes care of inserting |
597 | /// a reverse edge internally (so there's no need to swap the parameters). |
598 | /// |
599 | void insertEdge(NodeT *From, NodeT *To) { |
600 | assert(From); |
601 | assert(To); |
602 | assert(NodeTrait::getParent(From) == Parent); |
603 | assert(NodeTrait::getParent(To) == Parent); |
604 | DomTreeBuilder::InsertEdge(*this, From, To); |
605 | } |
606 | |
607 | /// Inform the dominator tree about a CFG edge deletion and update the tree. |
608 | /// |
609 | /// This function has to be called just after making the update on the actual |
610 | /// CFG. An internal functions checks if the edge doesn't exist in the CFG in |
611 | /// DEBUG mode. There cannot be any other updates that the |
612 | /// dominator tree doesn't know about. |
613 | /// |
614 | /// Note that for postdominators it automatically takes care of deleting |
615 | /// a reverse edge internally (so there's no need to swap the parameters). |
616 | /// |
617 | void deleteEdge(NodeT *From, NodeT *To) { |
618 | assert(From); |
619 | assert(To); |
620 | assert(NodeTrait::getParent(From) == Parent); |
621 | assert(NodeTrait::getParent(To) == Parent); |
622 | DomTreeBuilder::DeleteEdge(*this, From, To); |
623 | } |
624 | |
625 | /// Add a new node to the dominator tree information. |
626 | /// |
627 | /// This creates a new node as a child of DomBB dominator node, linking it |
628 | /// into the children list of the immediate dominator. |
629 | /// |
630 | /// \param BB New node in CFG. |
631 | /// \param DomBB CFG node that is dominator for BB. |
632 | /// \returns New dominator tree node that represents new CFG node. |
633 | /// |
634 | DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) { |
635 | assert(getNode(BB) == nullptr && "Block already in dominator tree!" ); |
636 | DomTreeNodeBase<NodeT> *IDomNode = getNode(BB: DomBB); |
637 | assert(IDomNode && "Not immediate dominator specified for block!" ); |
638 | DFSInfoValid = false; |
639 | return createChild(BB, IDom: IDomNode); |
640 | } |
641 | |
642 | /// Add a new node to the forward dominator tree and make it a new root. |
643 | /// |
644 | /// \param BB New node in CFG. |
645 | /// \returns New dominator tree node that represents new CFG node. |
646 | /// |
647 | DomTreeNodeBase<NodeT> *setNewRoot(NodeT *BB) { |
648 | assert(getNode(BB) == nullptr && "Block already in dominator tree!" ); |
649 | assert(!this->isPostDominator() && |
650 | "Cannot change root of post-dominator tree" ); |
651 | DFSInfoValid = false; |
652 | DomTreeNodeBase<NodeT> *NewNode = createNode(BB); |
653 | if (Roots.empty()) { |
654 | addRoot(BB); |
655 | } else { |
656 | assert(Roots.size() == 1); |
657 | NodeT *OldRoot = Roots.front(); |
658 | auto &OldNode = DomTreeNodes[OldRoot]; |
659 | OldNode = NewNode->addChild(std::move(DomTreeNodes[OldRoot])); |
660 | OldNode->IDom = NewNode; |
661 | OldNode->UpdateLevel(); |
662 | Roots[0] = BB; |
663 | } |
664 | return RootNode = NewNode; |
665 | } |
666 | |
667 | /// changeImmediateDominator - This method is used to update the dominator |
668 | /// tree information when a node's immediate dominator changes. |
669 | /// |
670 | void changeImmediateDominator(DomTreeNodeBase<NodeT> *N, |
671 | DomTreeNodeBase<NodeT> *NewIDom) { |
672 | assert(N && NewIDom && "Cannot change null node pointers!" ); |
673 | DFSInfoValid = false; |
674 | N->setIDom(NewIDom); |
675 | } |
676 | |
677 | void changeImmediateDominator(NodeT *BB, NodeT *NewBB) { |
678 | changeImmediateDominator(getNode(BB), getNode(BB: NewBB)); |
679 | } |
680 | |
681 | /// eraseNode - Removes a node from the dominator tree. Block must not |
682 | /// dominate any other blocks. Removes node from its immediate dominator's |
683 | /// children list. Deletes dominator node associated with basic block BB. |
684 | void eraseNode(NodeT *BB) { |
685 | DomTreeNodeBase<NodeT> *Node = getNode(BB); |
686 | assert(Node && "Removing node that isn't in dominator tree." ); |
687 | assert(Node->isLeaf() && "Node is not a leaf node." ); |
688 | |
689 | DFSInfoValid = false; |
690 | |
691 | // Remove node from immediate dominator's children list. |
692 | DomTreeNodeBase<NodeT> *IDom = Node->getIDom(); |
693 | if (IDom) { |
694 | const auto I = find(IDom->Children, Node); |
695 | assert(I != IDom->Children.end() && |
696 | "Not in immediate dominator children set!" ); |
697 | // I am no longer your child... |
698 | IDom->Children.erase(I); |
699 | } |
700 | |
701 | DomTreeNodes.erase(BB); |
702 | |
703 | if (!IsPostDom) return; |
704 | |
705 | // Remember to update PostDominatorTree roots. |
706 | auto RIt = llvm::find(Roots, BB); |
707 | if (RIt != Roots.end()) { |
708 | std::swap(*RIt, Roots.back()); |
709 | Roots.pop_back(); |
710 | } |
711 | } |
712 | |
713 | /// splitBlock - BB is split and now it has one successor. Update dominator |
714 | /// tree to reflect this change. |
715 | void splitBlock(NodeT *NewBB) { |
716 | if (IsPostDominator) |
717 | Split<Inverse<NodeT *>>(NewBB); |
718 | else |
719 | Split<NodeT *>(NewBB); |
720 | } |
721 | |
722 | /// print - Convert to human readable form |
723 | /// |
724 | void print(raw_ostream &O) const { |
725 | O << "=============================--------------------------------\n" ; |
726 | if (IsPostDominator) |
727 | O << "Inorder PostDominator Tree: " ; |
728 | else |
729 | O << "Inorder Dominator Tree: " ; |
730 | if (!DFSInfoValid) |
731 | O << "DFSNumbers invalid: " << SlowQueries << " slow queries." ; |
732 | O << "\n" ; |
733 | |
734 | // The postdom tree can have a null root if there are no returns. |
735 | if (getRootNode()) PrintDomTree<NodeT>(getRootNode(), O, 1); |
736 | O << "Roots: " ; |
737 | for (const NodePtr Block : Roots) { |
738 | Block->printAsOperand(O, false); |
739 | O << " " ; |
740 | } |
741 | O << "\n" ; |
742 | } |
743 | |
744 | public: |
745 | /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking |
746 | /// dominator tree in dfs order. |
747 | void updateDFSNumbers() const { |
748 | if (DFSInfoValid) { |
749 | SlowQueries = 0; |
750 | return; |
751 | } |
752 | |
753 | SmallVector<std::pair<const DomTreeNodeBase<NodeT> *, |
754 | typename DomTreeNodeBase<NodeT>::const_iterator>, |
755 | 32> WorkStack; |
756 | |
757 | const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode(); |
758 | assert((!Parent || ThisRoot) && "Empty constructed DomTree" ); |
759 | if (!ThisRoot) |
760 | return; |
761 | |
762 | // Both dominators and postdominators have a single root node. In the case |
763 | // case of PostDominatorTree, this node is a virtual root. |
764 | WorkStack.push_back({ThisRoot, ThisRoot->begin()}); |
765 | |
766 | unsigned DFSNum = 0; |
767 | ThisRoot->DFSNumIn = DFSNum++; |
768 | |
769 | while (!WorkStack.empty()) { |
770 | const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first; |
771 | const auto ChildIt = WorkStack.back().second; |
772 | |
773 | // If we visited all of the children of this node, "recurse" back up the |
774 | // stack setting the DFOutNum. |
775 | if (ChildIt == Node->end()) { |
776 | Node->DFSNumOut = DFSNum++; |
777 | WorkStack.pop_back(); |
778 | } else { |
779 | // Otherwise, recursively visit this child. |
780 | const DomTreeNodeBase<NodeT> *Child = *ChildIt; |
781 | ++WorkStack.back().second; |
782 | |
783 | WorkStack.push_back({Child, Child->begin()}); |
784 | Child->DFSNumIn = DFSNum++; |
785 | } |
786 | } |
787 | |
788 | SlowQueries = 0; |
789 | DFSInfoValid = true; |
790 | } |
791 | |
792 | /// recalculate - compute a dominator tree for the given function |
793 | void recalculate(ParentType &Func) { |
794 | Parent = &Func; |
795 | DomTreeBuilder::Calculate(*this); |
796 | } |
797 | |
798 | void recalculate(ParentType &Func, ArrayRef<UpdateType> Updates) { |
799 | Parent = &Func; |
800 | DomTreeBuilder::CalculateWithUpdates(*this, Updates); |
801 | } |
802 | |
803 | /// verify - checks if the tree is correct. There are 3 level of verification: |
804 | /// - Full -- verifies if the tree is correct by making sure all the |
805 | /// properties (including the parent and the sibling property) |
806 | /// hold. |
807 | /// Takes O(N^3) time. |
808 | /// |
809 | /// - Basic -- checks if the tree is correct, but compares it to a freshly |
810 | /// constructed tree instead of checking the sibling property. |
811 | /// Takes O(N^2) time. |
812 | /// |
813 | /// - Fast -- checks basic tree structure and compares it with a freshly |
814 | /// constructed tree. |
815 | /// Takes O(N^2) time worst case, but is faster in practise (same |
816 | /// as tree construction). |
817 | bool verify(VerificationLevel VL = VerificationLevel::Full) const { |
818 | return DomTreeBuilder::Verify(*this, VL); |
819 | } |
820 | |
821 | void reset() { |
822 | DomTreeNodes.clear(); |
823 | Roots.clear(); |
824 | RootNode = nullptr; |
825 | Parent = nullptr; |
826 | DFSInfoValid = false; |
827 | SlowQueries = 0; |
828 | } |
829 | |
830 | protected: |
831 | void addRoot(NodeT *BB) { this->Roots.push_back(BB); } |
832 | |
833 | DomTreeNodeBase<NodeT> *createChild(NodeT *BB, DomTreeNodeBase<NodeT> *IDom) { |
834 | return (DomTreeNodes[BB] = IDom->addChild( |
835 | std::make_unique<DomTreeNodeBase<NodeT>>(BB, IDom))) |
836 | .get(); |
837 | } |
838 | |
839 | DomTreeNodeBase<NodeT> *createNode(NodeT *BB) { |
840 | return (DomTreeNodes[BB] = |
841 | std::make_unique<DomTreeNodeBase<NodeT>>(BB, nullptr)) |
842 | .get(); |
843 | } |
844 | |
845 | // NewBB is split and now it has one successor. Update dominator tree to |
846 | // reflect this change. |
847 | template <class N> |
848 | void Split(typename GraphTraits<N>::NodeRef NewBB) { |
849 | using GraphT = GraphTraits<N>; |
850 | using NodeRef = typename GraphT::NodeRef; |
851 | assert(llvm::hasSingleElement(children<N>(NewBB)) && |
852 | "NewBB should have a single successor!" ); |
853 | NodeRef NewBBSucc = *GraphT::child_begin(NewBB); |
854 | |
855 | SmallVector<NodeRef, 4> PredBlocks(inverse_children<N>(NewBB)); |
856 | |
857 | assert(!PredBlocks.empty() && "No predblocks?" ); |
858 | |
859 | bool NewBBDominatesNewBBSucc = true; |
860 | for (auto *Pred : inverse_children<N>(NewBBSucc)) { |
861 | if (Pred != NewBB && !dominates(NewBBSucc, Pred) && |
862 | isReachableFromEntry(Pred)) { |
863 | NewBBDominatesNewBBSucc = false; |
864 | break; |
865 | } |
866 | } |
867 | |
868 | // Find NewBB's immediate dominator and create new dominator tree node for |
869 | // NewBB. |
870 | NodeT *NewBBIDom = nullptr; |
871 | unsigned i = 0; |
872 | for (i = 0; i < PredBlocks.size(); ++i) |
873 | if (isReachableFromEntry(PredBlocks[i])) { |
874 | NewBBIDom = PredBlocks[i]; |
875 | break; |
876 | } |
877 | |
878 | // It's possible that none of the predecessors of NewBB are reachable; |
879 | // in that case, NewBB itself is unreachable, so nothing needs to be |
880 | // changed. |
881 | if (!NewBBIDom) return; |
882 | |
883 | for (i = i + 1; i < PredBlocks.size(); ++i) { |
884 | if (isReachableFromEntry(PredBlocks[i])) |
885 | NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]); |
886 | } |
887 | |
888 | // Create the new dominator tree node... and set the idom of NewBB. |
889 | DomTreeNodeBase<NodeT> *NewBBNode = addNewBlock(BB: NewBB, DomBB: NewBBIDom); |
890 | |
891 | // If NewBB strictly dominates other blocks, then it is now the immediate |
892 | // dominator of NewBBSucc. Update the dominator tree as appropriate. |
893 | if (NewBBDominatesNewBBSucc) { |
894 | DomTreeNodeBase<NodeT> *NewBBSuccNode = getNode(BB: NewBBSucc); |
895 | changeImmediateDominator(NewBBSuccNode, NewBBNode); |
896 | } |
897 | } |
898 | |
899 | private: |
900 | bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A, |
901 | const DomTreeNodeBase<NodeT> *B) const { |
902 | assert(A != B); |
903 | assert(isReachableFromEntry(B)); |
904 | assert(isReachableFromEntry(A)); |
905 | |
906 | const unsigned ALevel = A->getLevel(); |
907 | const DomTreeNodeBase<NodeT> *IDom; |
908 | |
909 | // Don't walk nodes above A's subtree. When we reach A's level, we must |
910 | // either find A or be in some other subtree not dominated by A. |
911 | while ((IDom = B->getIDom()) != nullptr && IDom->getLevel() >= ALevel) |
912 | B = IDom; // Walk up the tree |
913 | |
914 | return B == A; |
915 | } |
916 | |
917 | /// Wipe this tree's state without releasing any resources. |
918 | /// |
919 | /// This is essentially a post-move helper only. It leaves the object in an |
920 | /// assignable and destroyable state, but otherwise invalid. |
921 | void wipe() { |
922 | DomTreeNodes.clear(); |
923 | RootNode = nullptr; |
924 | Parent = nullptr; |
925 | } |
926 | }; |
927 | |
928 | template <typename T> |
929 | using DomTreeBase = DominatorTreeBase<T, false>; |
930 | |
931 | template <typename T> |
932 | using PostDomTreeBase = DominatorTreeBase<T, true>; |
933 | |
934 | // These two functions are declared out of line as a workaround for building |
935 | // with old (< r147295) versions of clang because of pr11642. |
936 | template <typename NodeT, bool IsPostDom> |
937 | bool DominatorTreeBase<NodeT, IsPostDom>::dominates(const NodeT *A, |
938 | const NodeT *B) const { |
939 | if (A == B) |
940 | return true; |
941 | |
942 | // Cast away the const qualifiers here. This is ok since |
943 | // this function doesn't actually return the values returned |
944 | // from getNode. |
945 | return dominates(getNode(BB: const_cast<NodeT *>(A)), |
946 | getNode(BB: const_cast<NodeT *>(B))); |
947 | } |
948 | template <typename NodeT, bool IsPostDom> |
949 | bool DominatorTreeBase<NodeT, IsPostDom>::properlyDominates( |
950 | const NodeT *A, const NodeT *B) const { |
951 | if (A == B) |
952 | return false; |
953 | |
954 | // Cast away the const qualifiers here. This is ok since |
955 | // this function doesn't actually return the values returned |
956 | // from getNode. |
957 | return dominates(getNode(BB: const_cast<NodeT *>(A)), |
958 | getNode(BB: const_cast<NodeT *>(B))); |
959 | } |
960 | |
961 | } // end namespace llvm |
962 | |
963 | #endif // LLVM_SUPPORT_GENERICDOMTREE_H |
964 | |