1 | //===- ConstraintSytem.cpp - A system of linear constraints. ----*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "llvm/Analysis/ConstraintSystem.h" |
10 | #include "llvm/ADT/SmallVector.h" |
11 | #include "llvm/Support/MathExtras.h" |
12 | #include "llvm/ADT/StringExtras.h" |
13 | #include "llvm/IR/Value.h" |
14 | #include "llvm/Support/Debug.h" |
15 | |
16 | #include <string> |
17 | |
18 | using namespace llvm; |
19 | |
20 | #define DEBUG_TYPE "constraint-system" |
21 | |
22 | bool ConstraintSystem::eliminateUsingFM() { |
23 | // Implementation of Fourier–Motzkin elimination, with some tricks from the |
24 | // paper Pugh, William. "The Omega test: a fast and practical integer |
25 | // programming algorithm for dependence |
26 | // analysis." |
27 | // Supercomputing'91: Proceedings of the 1991 ACM/ |
28 | // IEEE conference on Supercomputing. IEEE, 1991. |
29 | assert(!Constraints.empty() && |
30 | "should only be called for non-empty constraint systems" ); |
31 | |
32 | unsigned LastIdx = NumVariables - 1; |
33 | |
34 | // First, either remove the variable in place if it is 0 or add the row to |
35 | // RemainingRows and remove it from the system. |
36 | SmallVector<SmallVector<Entry, 8>, 4> RemainingRows; |
37 | for (unsigned R1 = 0; R1 < Constraints.size();) { |
38 | SmallVector<Entry, 8> &Row1 = Constraints[R1]; |
39 | if (getLastCoefficient(Row: Row1, Id: LastIdx) == 0) { |
40 | if (Row1.size() > 0 && Row1.back().Id == LastIdx) |
41 | Row1.pop_back(); |
42 | R1++; |
43 | } else { |
44 | std::swap(LHS&: Constraints[R1], RHS&: Constraints.back()); |
45 | RemainingRows.push_back(Elt: std::move(Constraints.back())); |
46 | Constraints.pop_back(); |
47 | } |
48 | } |
49 | |
50 | // Process rows where the variable is != 0. |
51 | unsigned NumRemainingConstraints = RemainingRows.size(); |
52 | for (unsigned R1 = 0; R1 < NumRemainingConstraints; R1++) { |
53 | // FIXME do not use copy |
54 | for (unsigned R2 = R1 + 1; R2 < NumRemainingConstraints; R2++) { |
55 | if (R1 == R2) |
56 | continue; |
57 | |
58 | int64_t UpperLast = getLastCoefficient(Row: RemainingRows[R2], Id: LastIdx); |
59 | int64_t LowerLast = getLastCoefficient(Row: RemainingRows[R1], Id: LastIdx); |
60 | assert( |
61 | UpperLast != 0 && LowerLast != 0 && |
62 | "RemainingRows should only contain rows where the variable is != 0" ); |
63 | |
64 | if ((LowerLast < 0 && UpperLast < 0) || (LowerLast > 0 && UpperLast > 0)) |
65 | continue; |
66 | |
67 | unsigned LowerR = R1; |
68 | unsigned UpperR = R2; |
69 | if (UpperLast < 0) { |
70 | std::swap(a&: LowerR, b&: UpperR); |
71 | std::swap(a&: LowerLast, b&: UpperLast); |
72 | } |
73 | |
74 | SmallVector<Entry, 8> NR; |
75 | unsigned IdxUpper = 0; |
76 | unsigned IdxLower = 0; |
77 | auto &LowerRow = RemainingRows[LowerR]; |
78 | auto &UpperRow = RemainingRows[UpperR]; |
79 | while (true) { |
80 | if (IdxUpper >= UpperRow.size() || IdxLower >= LowerRow.size()) |
81 | break; |
82 | int64_t M1, M2, N; |
83 | int64_t UpperV = 0; |
84 | int64_t LowerV = 0; |
85 | uint16_t CurrentId = std::numeric_limits<uint16_t>::max(); |
86 | if (IdxUpper < UpperRow.size()) { |
87 | CurrentId = std::min(a: UpperRow[IdxUpper].Id, b: CurrentId); |
88 | } |
89 | if (IdxLower < LowerRow.size()) { |
90 | CurrentId = std::min(a: LowerRow[IdxLower].Id, b: CurrentId); |
91 | } |
92 | |
93 | if (IdxUpper < UpperRow.size() && UpperRow[IdxUpper].Id == CurrentId) { |
94 | UpperV = UpperRow[IdxUpper].Coefficient; |
95 | IdxUpper++; |
96 | } |
97 | |
98 | if (MulOverflow(X: UpperV, Y: -1 * LowerLast, Result&: M1)) |
99 | return false; |
100 | if (IdxLower < LowerRow.size() && LowerRow[IdxLower].Id == CurrentId) { |
101 | LowerV = LowerRow[IdxLower].Coefficient; |
102 | IdxLower++; |
103 | } |
104 | |
105 | if (MulOverflow(X: LowerV, Y: UpperLast, Result&: M2)) |
106 | return false; |
107 | if (AddOverflow(X: M1, Y: M2, Result&: N)) |
108 | return false; |
109 | if (N == 0) |
110 | continue; |
111 | NR.emplace_back(Args&: N, Args&: CurrentId); |
112 | } |
113 | if (NR.empty()) |
114 | continue; |
115 | Constraints.push_back(Elt: std::move(NR)); |
116 | // Give up if the new system gets too big. |
117 | if (Constraints.size() > 500) |
118 | return false; |
119 | } |
120 | } |
121 | NumVariables -= 1; |
122 | |
123 | return true; |
124 | } |
125 | |
126 | bool ConstraintSystem::mayHaveSolutionImpl() { |
127 | while (!Constraints.empty() && NumVariables > 1) { |
128 | if (!eliminateUsingFM()) |
129 | return true; |
130 | } |
131 | |
132 | if (Constraints.empty() || NumVariables > 1) |
133 | return true; |
134 | |
135 | return all_of(Range&: Constraints, P: [](auto &R) { |
136 | if (R.empty()) |
137 | return true; |
138 | if (R[0].Id == 0) |
139 | return R[0].Coefficient >= 0; |
140 | return true; |
141 | }); |
142 | } |
143 | |
144 | SmallVector<std::string> ConstraintSystem::getVarNamesList() const { |
145 | SmallVector<std::string> Names(Value2Index.size(), "" ); |
146 | #ifndef NDEBUG |
147 | for (auto &[V, Index] : Value2Index) { |
148 | std::string OperandName; |
149 | if (V->getName().empty()) |
150 | OperandName = V->getNameOrAsOperand(); |
151 | else |
152 | OperandName = std::string("%" ) + V->getName().str(); |
153 | Names[Index - 1] = OperandName; |
154 | } |
155 | #endif |
156 | return Names; |
157 | } |
158 | |
159 | void ConstraintSystem::dump() const { |
160 | #ifndef NDEBUG |
161 | if (Constraints.empty()) |
162 | return; |
163 | SmallVector<std::string> Names = getVarNamesList(); |
164 | for (const auto &Row : Constraints) { |
165 | SmallVector<std::string, 16> Parts; |
166 | for (const Entry &E : Row) { |
167 | if (E.Id >= NumVariables) |
168 | break; |
169 | if (E.Id == 0) |
170 | continue; |
171 | std::string Coefficient; |
172 | if (E.Coefficient != 1) |
173 | Coefficient = std::to_string(E.Coefficient) + " * " ; |
174 | Parts.push_back(Coefficient + Names[E.Id - 1]); |
175 | } |
176 | // assert(!Parts.empty() && "need to have at least some parts"); |
177 | int64_t ConstPart = 0; |
178 | if (Row[0].Id == 0) |
179 | ConstPart = Row[0].Coefficient; |
180 | LLVM_DEBUG(dbgs() << join(Parts, std::string(" + " )) |
181 | << " <= " << std::to_string(ConstPart) << "\n" ); |
182 | } |
183 | #endif |
184 | } |
185 | |
186 | bool ConstraintSystem::mayHaveSolution() { |
187 | LLVM_DEBUG(dbgs() << "---\n" ); |
188 | LLVM_DEBUG(dump()); |
189 | bool HasSolution = mayHaveSolutionImpl(); |
190 | LLVM_DEBUG(dbgs() << (HasSolution ? "sat" : "unsat" ) << "\n" ); |
191 | return HasSolution; |
192 | } |
193 | |
194 | bool ConstraintSystem::isConditionImplied(SmallVector<int64_t, 8> R) const { |
195 | // If all variable coefficients are 0, we have 'C >= 0'. If the constant is >= |
196 | // 0, R is always true, regardless of the system. |
197 | if (all_of(Range: ArrayRef(R).drop_front(N: 1), P: [](int64_t C) { return C == 0; })) |
198 | return R[0] >= 0; |
199 | |
200 | // If there is no solution with the negation of R added to the system, the |
201 | // condition must hold based on the existing constraints. |
202 | R = ConstraintSystem::negate(R); |
203 | if (R.empty()) |
204 | return false; |
205 | |
206 | auto NewSystem = *this; |
207 | NewSystem.addVariableRow(R); |
208 | return !NewSystem.mayHaveSolution(); |
209 | } |
210 | |