1 | //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // DependenceAnalysis is an LLVM pass that analyses dependences between memory |
10 | // accesses. Currently, it is an (incomplete) implementation of the approach |
11 | // described in |
12 | // |
13 | // Practical Dependence Testing |
14 | // Goff, Kennedy, Tseng |
15 | // PLDI 1991 |
16 | // |
17 | // There's a single entry point that analyzes the dependence between a pair |
18 | // of memory references in a function, returning either NULL, for no dependence, |
19 | // or a more-or-less detailed description of the dependence between them. |
20 | // |
21 | // Currently, the implementation cannot propagate constraints between |
22 | // coupled RDIV subscripts and lacks a multi-subscript MIV test. |
23 | // Both of these are conservative weaknesses; |
24 | // that is, not a source of correctness problems. |
25 | // |
26 | // Since Clang linearizes some array subscripts, the dependence |
27 | // analysis is using SCEV->delinearize to recover the representation of multiple |
28 | // subscripts, and thus avoid the more expensive and less precise MIV tests. The |
29 | // delinearization is controlled by the flag -da-delinearize. |
30 | // |
31 | // We should pay some careful attention to the possibility of integer overflow |
32 | // in the implementation of the various tests. This could happen with Add, |
33 | // Subtract, or Multiply, with both APInt's and SCEV's. |
34 | // |
35 | // Some non-linear subscript pairs can be handled by the GCD test |
36 | // (and perhaps other tests). |
37 | // Should explore how often these things occur. |
38 | // |
39 | // Finally, it seems like certain test cases expose weaknesses in the SCEV |
40 | // simplification, especially in the handling of sign and zero extensions. |
41 | // It could be useful to spend time exploring these. |
42 | // |
43 | // Please note that this is work in progress and the interface is subject to |
44 | // change. |
45 | // |
46 | //===----------------------------------------------------------------------===// |
47 | // // |
48 | // In memory of Ken Kennedy, 1945 - 2007 // |
49 | // // |
50 | //===----------------------------------------------------------------------===// |
51 | |
52 | #include "llvm/Analysis/DependenceAnalysis.h" |
53 | #include "llvm/ADT/Statistic.h" |
54 | #include "llvm/Analysis/AliasAnalysis.h" |
55 | #include "llvm/Analysis/Delinearization.h" |
56 | #include "llvm/Analysis/LoopInfo.h" |
57 | #include "llvm/Analysis/ScalarEvolution.h" |
58 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
59 | #include "llvm/Analysis/ValueTracking.h" |
60 | #include "llvm/IR/InstIterator.h" |
61 | #include "llvm/IR/Module.h" |
62 | #include "llvm/InitializePasses.h" |
63 | #include "llvm/Support/CommandLine.h" |
64 | #include "llvm/Support/Debug.h" |
65 | #include "llvm/Support/ErrorHandling.h" |
66 | #include "llvm/Support/raw_ostream.h" |
67 | |
68 | using namespace llvm; |
69 | |
70 | #define DEBUG_TYPE "da" |
71 | |
72 | //===----------------------------------------------------------------------===// |
73 | // statistics |
74 | |
75 | STATISTIC(TotalArrayPairs, "Array pairs tested" ); |
76 | STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs" ); |
77 | STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs" ); |
78 | STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs" ); |
79 | STATISTIC(ZIVapplications, "ZIV applications" ); |
80 | STATISTIC(ZIVindependence, "ZIV independence" ); |
81 | STATISTIC(StrongSIVapplications, "Strong SIV applications" ); |
82 | STATISTIC(StrongSIVsuccesses, "Strong SIV successes" ); |
83 | STATISTIC(StrongSIVindependence, "Strong SIV independence" ); |
84 | STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications" ); |
85 | STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes" ); |
86 | STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence" ); |
87 | STATISTIC(ExactSIVapplications, "Exact SIV applications" ); |
88 | STATISTIC(ExactSIVsuccesses, "Exact SIV successes" ); |
89 | STATISTIC(ExactSIVindependence, "Exact SIV independence" ); |
90 | STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications" ); |
91 | STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes" ); |
92 | STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence" ); |
93 | STATISTIC(ExactRDIVapplications, "Exact RDIV applications" ); |
94 | STATISTIC(ExactRDIVindependence, "Exact RDIV independence" ); |
95 | STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications" ); |
96 | STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence" ); |
97 | STATISTIC(DeltaApplications, "Delta applications" ); |
98 | STATISTIC(DeltaSuccesses, "Delta successes" ); |
99 | STATISTIC(DeltaIndependence, "Delta independence" ); |
100 | STATISTIC(DeltaPropagations, "Delta propagations" ); |
101 | STATISTIC(GCDapplications, "GCD applications" ); |
102 | STATISTIC(GCDsuccesses, "GCD successes" ); |
103 | STATISTIC(GCDindependence, "GCD independence" ); |
104 | STATISTIC(BanerjeeApplications, "Banerjee applications" ); |
105 | STATISTIC(BanerjeeIndependence, "Banerjee independence" ); |
106 | STATISTIC(BanerjeeSuccesses, "Banerjee successes" ); |
107 | |
108 | static cl::opt<bool> |
109 | Delinearize("da-delinearize" , cl::init(Val: true), cl::Hidden, |
110 | cl::desc("Try to delinearize array references." )); |
111 | static cl::opt<bool> DisableDelinearizationChecks( |
112 | "da-disable-delinearization-checks" , cl::Hidden, |
113 | cl::desc( |
114 | "Disable checks that try to statically verify validity of " |
115 | "delinearized subscripts. Enabling this option may result in incorrect " |
116 | "dependence vectors for languages that allow the subscript of one " |
117 | "dimension to underflow or overflow into another dimension." )); |
118 | |
119 | static cl::opt<unsigned> MIVMaxLevelThreshold( |
120 | "da-miv-max-level-threshold" , cl::init(Val: 7), cl::Hidden, |
121 | cl::desc("Maximum depth allowed for the recursive algorithm used to " |
122 | "explore MIV direction vectors." )); |
123 | |
124 | //===----------------------------------------------------------------------===// |
125 | // basics |
126 | |
127 | DependenceAnalysis::Result |
128 | DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) { |
129 | auto &AA = FAM.getResult<AAManager>(IR&: F); |
130 | auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(IR&: F); |
131 | auto &LI = FAM.getResult<LoopAnalysis>(IR&: F); |
132 | return DependenceInfo(&F, &AA, &SE, &LI); |
133 | } |
134 | |
135 | AnalysisKey DependenceAnalysis::Key; |
136 | |
137 | INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da" , |
138 | "Dependence Analysis" , true, true) |
139 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
140 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
141 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
142 | INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da" , "Dependence Analysis" , |
143 | true, true) |
144 | |
145 | char DependenceAnalysisWrapperPass::ID = 0; |
146 | |
147 | DependenceAnalysisWrapperPass::DependenceAnalysisWrapperPass() |
148 | : FunctionPass(ID) { |
149 | initializeDependenceAnalysisWrapperPassPass(Registry&: *PassRegistry::getPassRegistry()); |
150 | } |
151 | |
152 | FunctionPass *llvm::createDependenceAnalysisWrapperPass() { |
153 | return new DependenceAnalysisWrapperPass(); |
154 | } |
155 | |
156 | bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) { |
157 | auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); |
158 | auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
159 | auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
160 | info.reset(p: new DependenceInfo(&F, &AA, &SE, &LI)); |
161 | return false; |
162 | } |
163 | |
164 | DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; } |
165 | |
166 | void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); } |
167 | |
168 | void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
169 | AU.setPreservesAll(); |
170 | AU.addRequiredTransitive<AAResultsWrapperPass>(); |
171 | AU.addRequiredTransitive<ScalarEvolutionWrapperPass>(); |
172 | AU.addRequiredTransitive<LoopInfoWrapperPass>(); |
173 | } |
174 | |
175 | // Used to test the dependence analyzer. |
176 | // Looks through the function, noting instructions that may access memory. |
177 | // Calls depends() on every possible pair and prints out the result. |
178 | // Ignores all other instructions. |
179 | static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA, |
180 | ScalarEvolution &SE, bool NormalizeResults) { |
181 | auto *F = DA->getFunction(); |
182 | for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE; |
183 | ++SrcI) { |
184 | if (SrcI->mayReadOrWriteMemory()) { |
185 | for (inst_iterator DstI = SrcI, DstE = inst_end(F); |
186 | DstI != DstE; ++DstI) { |
187 | if (DstI->mayReadOrWriteMemory()) { |
188 | OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n" ; |
189 | OS << " da analyze - " ; |
190 | if (auto D = DA->depends(Src: &*SrcI, Dst: &*DstI, PossiblyLoopIndependent: true)) { |
191 | // Normalize negative direction vectors if required by clients. |
192 | if (NormalizeResults && D->normalize(SE: &SE)) |
193 | OS << "normalized - " ; |
194 | D->dump(OS); |
195 | for (unsigned Level = 1; Level <= D->getLevels(); Level++) { |
196 | if (D->isSplitable(Level)) { |
197 | OS << " da analyze - split level = " << Level; |
198 | OS << ", iteration = " << *DA->getSplitIteration(Dep: *D, Level); |
199 | OS << "!\n" ; |
200 | } |
201 | } |
202 | } |
203 | else |
204 | OS << "none!\n" ; |
205 | } |
206 | } |
207 | } |
208 | } |
209 | } |
210 | |
211 | void DependenceAnalysisWrapperPass::print(raw_ostream &OS, |
212 | const Module *) const { |
213 | dumpExampleDependence(OS, DA: info.get(), |
214 | SE&: getAnalysis<ScalarEvolutionWrapperPass>().getSE(), NormalizeResults: false); |
215 | } |
216 | |
217 | PreservedAnalyses |
218 | DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) { |
219 | OS << "'Dependence Analysis' for function '" << F.getName() << "':\n" ; |
220 | dumpExampleDependence(OS, DA: &FAM.getResult<DependenceAnalysis>(IR&: F), |
221 | SE&: FAM.getResult<ScalarEvolutionAnalysis>(IR&: F), |
222 | NormalizeResults); |
223 | return PreservedAnalyses::all(); |
224 | } |
225 | |
226 | //===----------------------------------------------------------------------===// |
227 | // Dependence methods |
228 | |
229 | // Returns true if this is an input dependence. |
230 | bool Dependence::isInput() const { |
231 | return Src->mayReadFromMemory() && Dst->mayReadFromMemory(); |
232 | } |
233 | |
234 | |
235 | // Returns true if this is an output dependence. |
236 | bool Dependence::isOutput() const { |
237 | return Src->mayWriteToMemory() && Dst->mayWriteToMemory(); |
238 | } |
239 | |
240 | |
241 | // Returns true if this is an flow (aka true) dependence. |
242 | bool Dependence::isFlow() const { |
243 | return Src->mayWriteToMemory() && Dst->mayReadFromMemory(); |
244 | } |
245 | |
246 | |
247 | // Returns true if this is an anti dependence. |
248 | bool Dependence::isAnti() const { |
249 | return Src->mayReadFromMemory() && Dst->mayWriteToMemory(); |
250 | } |
251 | |
252 | |
253 | // Returns true if a particular level is scalar; that is, |
254 | // if no subscript in the source or destination mention the induction |
255 | // variable associated with the loop at this level. |
256 | // Leave this out of line, so it will serve as a virtual method anchor |
257 | bool Dependence::isScalar(unsigned level) const { |
258 | return false; |
259 | } |
260 | |
261 | |
262 | //===----------------------------------------------------------------------===// |
263 | // FullDependence methods |
264 | |
265 | FullDependence::FullDependence(Instruction *Source, Instruction *Destination, |
266 | bool PossiblyLoopIndependent, |
267 | unsigned CommonLevels) |
268 | : Dependence(Source, Destination), Levels(CommonLevels), |
269 | LoopIndependent(PossiblyLoopIndependent) { |
270 | Consistent = true; |
271 | if (CommonLevels) |
272 | DV = std::make_unique<DVEntry[]>(num: CommonLevels); |
273 | } |
274 | |
275 | // FIXME: in some cases the meaning of a negative direction vector |
276 | // may not be straightforward, e.g., |
277 | // for (int i = 0; i < 32; ++i) { |
278 | // Src: A[i] = ...; |
279 | // Dst: use(A[31 - i]); |
280 | // } |
281 | // The dependency is |
282 | // flow { Src[i] -> Dst[31 - i] : when i >= 16 } and |
283 | // anti { Dst[i] -> Src[31 - i] : when i < 16 }, |
284 | // -- hence a [<>]. |
285 | // As long as a dependence result contains '>' ('<>', '<=>', "*"), it |
286 | // means that a reversed/normalized dependence needs to be considered |
287 | // as well. Nevertheless, current isDirectionNegative() only returns |
288 | // true with a '>' or '>=' dependency for ease of canonicalizing the |
289 | // dependency vector, since the reverse of '<>', '<=>' and "*" is itself. |
290 | bool FullDependence::isDirectionNegative() const { |
291 | for (unsigned Level = 1; Level <= Levels; ++Level) { |
292 | unsigned char Direction = DV[Level - 1].Direction; |
293 | if (Direction == Dependence::DVEntry::EQ) |
294 | continue; |
295 | if (Direction == Dependence::DVEntry::GT || |
296 | Direction == Dependence::DVEntry::GE) |
297 | return true; |
298 | return false; |
299 | } |
300 | return false; |
301 | } |
302 | |
303 | bool FullDependence::normalize(ScalarEvolution *SE) { |
304 | if (!isDirectionNegative()) |
305 | return false; |
306 | |
307 | LLVM_DEBUG(dbgs() << "Before normalizing negative direction vectors:\n" ; |
308 | dump(dbgs());); |
309 | std::swap(a&: Src, b&: Dst); |
310 | for (unsigned Level = 1; Level <= Levels; ++Level) { |
311 | unsigned char Direction = DV[Level - 1].Direction; |
312 | // Reverse the direction vector, this means LT becomes GT |
313 | // and GT becomes LT. |
314 | unsigned char RevDirection = Direction & Dependence::DVEntry::EQ; |
315 | if (Direction & Dependence::DVEntry::LT) |
316 | RevDirection |= Dependence::DVEntry::GT; |
317 | if (Direction & Dependence::DVEntry::GT) |
318 | RevDirection |= Dependence::DVEntry::LT; |
319 | DV[Level - 1].Direction = RevDirection; |
320 | // Reverse the dependence distance as well. |
321 | if (DV[Level - 1].Distance != nullptr) |
322 | DV[Level - 1].Distance = |
323 | SE->getNegativeSCEV(V: DV[Level - 1].Distance); |
324 | } |
325 | |
326 | LLVM_DEBUG(dbgs() << "After normalizing negative direction vectors:\n" ; |
327 | dump(dbgs());); |
328 | return true; |
329 | } |
330 | |
331 | // The rest are simple getters that hide the implementation. |
332 | |
333 | // getDirection - Returns the direction associated with a particular level. |
334 | unsigned FullDependence::getDirection(unsigned Level) const { |
335 | assert(0 < Level && Level <= Levels && "Level out of range" ); |
336 | return DV[Level - 1].Direction; |
337 | } |
338 | |
339 | |
340 | // Returns the distance (or NULL) associated with a particular level. |
341 | const SCEV *FullDependence::getDistance(unsigned Level) const { |
342 | assert(0 < Level && Level <= Levels && "Level out of range" ); |
343 | return DV[Level - 1].Distance; |
344 | } |
345 | |
346 | |
347 | // Returns true if a particular level is scalar; that is, |
348 | // if no subscript in the source or destination mention the induction |
349 | // variable associated with the loop at this level. |
350 | bool FullDependence::isScalar(unsigned Level) const { |
351 | assert(0 < Level && Level <= Levels && "Level out of range" ); |
352 | return DV[Level - 1].Scalar; |
353 | } |
354 | |
355 | |
356 | // Returns true if peeling the first iteration from this loop |
357 | // will break this dependence. |
358 | bool FullDependence::isPeelFirst(unsigned Level) const { |
359 | assert(0 < Level && Level <= Levels && "Level out of range" ); |
360 | return DV[Level - 1].PeelFirst; |
361 | } |
362 | |
363 | |
364 | // Returns true if peeling the last iteration from this loop |
365 | // will break this dependence. |
366 | bool FullDependence::isPeelLast(unsigned Level) const { |
367 | assert(0 < Level && Level <= Levels && "Level out of range" ); |
368 | return DV[Level - 1].PeelLast; |
369 | } |
370 | |
371 | |
372 | // Returns true if splitting this loop will break the dependence. |
373 | bool FullDependence::isSplitable(unsigned Level) const { |
374 | assert(0 < Level && Level <= Levels && "Level out of range" ); |
375 | return DV[Level - 1].Splitable; |
376 | } |
377 | |
378 | |
379 | //===----------------------------------------------------------------------===// |
380 | // DependenceInfo::Constraint methods |
381 | |
382 | // If constraint is a point <X, Y>, returns X. |
383 | // Otherwise assert. |
384 | const SCEV *DependenceInfo::Constraint::getX() const { |
385 | assert(Kind == Point && "Kind should be Point" ); |
386 | return A; |
387 | } |
388 | |
389 | |
390 | // If constraint is a point <X, Y>, returns Y. |
391 | // Otherwise assert. |
392 | const SCEV *DependenceInfo::Constraint::getY() const { |
393 | assert(Kind == Point && "Kind should be Point" ); |
394 | return B; |
395 | } |
396 | |
397 | |
398 | // If constraint is a line AX + BY = C, returns A. |
399 | // Otherwise assert. |
400 | const SCEV *DependenceInfo::Constraint::getA() const { |
401 | assert((Kind == Line || Kind == Distance) && |
402 | "Kind should be Line (or Distance)" ); |
403 | return A; |
404 | } |
405 | |
406 | |
407 | // If constraint is a line AX + BY = C, returns B. |
408 | // Otherwise assert. |
409 | const SCEV *DependenceInfo::Constraint::getB() const { |
410 | assert((Kind == Line || Kind == Distance) && |
411 | "Kind should be Line (or Distance)" ); |
412 | return B; |
413 | } |
414 | |
415 | |
416 | // If constraint is a line AX + BY = C, returns C. |
417 | // Otherwise assert. |
418 | const SCEV *DependenceInfo::Constraint::getC() const { |
419 | assert((Kind == Line || Kind == Distance) && |
420 | "Kind should be Line (or Distance)" ); |
421 | return C; |
422 | } |
423 | |
424 | |
425 | // If constraint is a distance, returns D. |
426 | // Otherwise assert. |
427 | const SCEV *DependenceInfo::Constraint::getD() const { |
428 | assert(Kind == Distance && "Kind should be Distance" ); |
429 | return SE->getNegativeSCEV(V: C); |
430 | } |
431 | |
432 | |
433 | // Returns the loop associated with this constraint. |
434 | const Loop *DependenceInfo::Constraint::getAssociatedLoop() const { |
435 | assert((Kind == Distance || Kind == Line || Kind == Point) && |
436 | "Kind should be Distance, Line, or Point" ); |
437 | return AssociatedLoop; |
438 | } |
439 | |
440 | void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y, |
441 | const Loop *CurLoop) { |
442 | Kind = Point; |
443 | A = X; |
444 | B = Y; |
445 | AssociatedLoop = CurLoop; |
446 | } |
447 | |
448 | void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB, |
449 | const SCEV *CC, const Loop *CurLoop) { |
450 | Kind = Line; |
451 | A = AA; |
452 | B = BB; |
453 | C = CC; |
454 | AssociatedLoop = CurLoop; |
455 | } |
456 | |
457 | void DependenceInfo::Constraint::setDistance(const SCEV *D, |
458 | const Loop *CurLoop) { |
459 | Kind = Distance; |
460 | A = SE->getOne(Ty: D->getType()); |
461 | B = SE->getNegativeSCEV(V: A); |
462 | C = SE->getNegativeSCEV(V: D); |
463 | AssociatedLoop = CurLoop; |
464 | } |
465 | |
466 | void DependenceInfo::Constraint::setEmpty() { Kind = Empty; } |
467 | |
468 | void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) { |
469 | SE = NewSE; |
470 | Kind = Any; |
471 | } |
472 | |
473 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
474 | // For debugging purposes. Dumps the constraint out to OS. |
475 | LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const { |
476 | if (isEmpty()) |
477 | OS << " Empty\n" ; |
478 | else if (isAny()) |
479 | OS << " Any\n" ; |
480 | else if (isPoint()) |
481 | OS << " Point is <" << *getX() << ", " << *getY() << ">\n" ; |
482 | else if (isDistance()) |
483 | OS << " Distance is " << *getD() << |
484 | " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n" ; |
485 | else if (isLine()) |
486 | OS << " Line is " << *getA() << "*X + " << |
487 | *getB() << "*Y = " << *getC() << "\n" ; |
488 | else |
489 | llvm_unreachable("unknown constraint type in Constraint::dump" ); |
490 | } |
491 | #endif |
492 | |
493 | |
494 | // Updates X with the intersection |
495 | // of the Constraints X and Y. Returns true if X has changed. |
496 | // Corresponds to Figure 4 from the paper |
497 | // |
498 | // Practical Dependence Testing |
499 | // Goff, Kennedy, Tseng |
500 | // PLDI 1991 |
501 | bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) { |
502 | ++DeltaApplications; |
503 | LLVM_DEBUG(dbgs() << "\tintersect constraints\n" ); |
504 | LLVM_DEBUG(dbgs() << "\t X =" ; X->dump(dbgs())); |
505 | LLVM_DEBUG(dbgs() << "\t Y =" ; Y->dump(dbgs())); |
506 | assert(!Y->isPoint() && "Y must not be a Point" ); |
507 | if (X->isAny()) { |
508 | if (Y->isAny()) |
509 | return false; |
510 | *X = *Y; |
511 | return true; |
512 | } |
513 | if (X->isEmpty()) |
514 | return false; |
515 | if (Y->isEmpty()) { |
516 | X->setEmpty(); |
517 | return true; |
518 | } |
519 | |
520 | if (X->isDistance() && Y->isDistance()) { |
521 | LLVM_DEBUG(dbgs() << "\t intersect 2 distances\n" ); |
522 | if (isKnownPredicate(Pred: CmpInst::ICMP_EQ, X: X->getD(), Y: Y->getD())) |
523 | return false; |
524 | if (isKnownPredicate(Pred: CmpInst::ICMP_NE, X: X->getD(), Y: Y->getD())) { |
525 | X->setEmpty(); |
526 | ++DeltaSuccesses; |
527 | return true; |
528 | } |
529 | // Hmmm, interesting situation. |
530 | // I guess if either is constant, keep it and ignore the other. |
531 | if (isa<SCEVConstant>(Val: Y->getD())) { |
532 | *X = *Y; |
533 | return true; |
534 | } |
535 | return false; |
536 | } |
537 | |
538 | // At this point, the pseudo-code in Figure 4 of the paper |
539 | // checks if (X->isPoint() && Y->isPoint()). |
540 | // This case can't occur in our implementation, |
541 | // since a Point can only arise as the result of intersecting |
542 | // two Line constraints, and the right-hand value, Y, is never |
543 | // the result of an intersection. |
544 | assert(!(X->isPoint() && Y->isPoint()) && |
545 | "We shouldn't ever see X->isPoint() && Y->isPoint()" ); |
546 | |
547 | if (X->isLine() && Y->isLine()) { |
548 | LLVM_DEBUG(dbgs() << "\t intersect 2 lines\n" ); |
549 | const SCEV *Prod1 = SE->getMulExpr(LHS: X->getA(), RHS: Y->getB()); |
550 | const SCEV *Prod2 = SE->getMulExpr(LHS: X->getB(), RHS: Y->getA()); |
551 | if (isKnownPredicate(Pred: CmpInst::ICMP_EQ, X: Prod1, Y: Prod2)) { |
552 | // slopes are equal, so lines are parallel |
553 | LLVM_DEBUG(dbgs() << "\t\tsame slope\n" ); |
554 | Prod1 = SE->getMulExpr(LHS: X->getC(), RHS: Y->getB()); |
555 | Prod2 = SE->getMulExpr(LHS: X->getB(), RHS: Y->getC()); |
556 | if (isKnownPredicate(Pred: CmpInst::ICMP_EQ, X: Prod1, Y: Prod2)) |
557 | return false; |
558 | if (isKnownPredicate(Pred: CmpInst::ICMP_NE, X: Prod1, Y: Prod2)) { |
559 | X->setEmpty(); |
560 | ++DeltaSuccesses; |
561 | return true; |
562 | } |
563 | return false; |
564 | } |
565 | if (isKnownPredicate(Pred: CmpInst::ICMP_NE, X: Prod1, Y: Prod2)) { |
566 | // slopes differ, so lines intersect |
567 | LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n" ); |
568 | const SCEV *C1B2 = SE->getMulExpr(LHS: X->getC(), RHS: Y->getB()); |
569 | const SCEV *C1A2 = SE->getMulExpr(LHS: X->getC(), RHS: Y->getA()); |
570 | const SCEV *C2B1 = SE->getMulExpr(LHS: Y->getC(), RHS: X->getB()); |
571 | const SCEV *C2A1 = SE->getMulExpr(LHS: Y->getC(), RHS: X->getA()); |
572 | const SCEV *A1B2 = SE->getMulExpr(LHS: X->getA(), RHS: Y->getB()); |
573 | const SCEV *A2B1 = SE->getMulExpr(LHS: Y->getA(), RHS: X->getB()); |
574 | const SCEVConstant *C1A2_C2A1 = |
575 | dyn_cast<SCEVConstant>(Val: SE->getMinusSCEV(LHS: C1A2, RHS: C2A1)); |
576 | const SCEVConstant *C1B2_C2B1 = |
577 | dyn_cast<SCEVConstant>(Val: SE->getMinusSCEV(LHS: C1B2, RHS: C2B1)); |
578 | const SCEVConstant *A1B2_A2B1 = |
579 | dyn_cast<SCEVConstant>(Val: SE->getMinusSCEV(LHS: A1B2, RHS: A2B1)); |
580 | const SCEVConstant *A2B1_A1B2 = |
581 | dyn_cast<SCEVConstant>(Val: SE->getMinusSCEV(LHS: A2B1, RHS: A1B2)); |
582 | if (!C1B2_C2B1 || !C1A2_C2A1 || |
583 | !A1B2_A2B1 || !A2B1_A1B2) |
584 | return false; |
585 | APInt Xtop = C1B2_C2B1->getAPInt(); |
586 | APInt Xbot = A1B2_A2B1->getAPInt(); |
587 | APInt Ytop = C1A2_C2A1->getAPInt(); |
588 | APInt Ybot = A2B1_A1B2->getAPInt(); |
589 | LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n" ); |
590 | LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n" ); |
591 | LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n" ); |
592 | LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n" ); |
593 | APInt Xq = Xtop; // these need to be initialized, even |
594 | APInt Xr = Xtop; // though they're just going to be overwritten |
595 | APInt::sdivrem(LHS: Xtop, RHS: Xbot, Quotient&: Xq, Remainder&: Xr); |
596 | APInt Yq = Ytop; |
597 | APInt Yr = Ytop; |
598 | APInt::sdivrem(LHS: Ytop, RHS: Ybot, Quotient&: Yq, Remainder&: Yr); |
599 | if (Xr != 0 || Yr != 0) { |
600 | X->setEmpty(); |
601 | ++DeltaSuccesses; |
602 | return true; |
603 | } |
604 | LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n" ); |
605 | if (Xq.slt(RHS: 0) || Yq.slt(RHS: 0)) { |
606 | X->setEmpty(); |
607 | ++DeltaSuccesses; |
608 | return true; |
609 | } |
610 | if (const SCEVConstant *CUB = |
611 | collectConstantUpperBound(l: X->getAssociatedLoop(), T: Prod1->getType())) { |
612 | const APInt &UpperBound = CUB->getAPInt(); |
613 | LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n" ); |
614 | if (Xq.sgt(RHS: UpperBound) || Yq.sgt(RHS: UpperBound)) { |
615 | X->setEmpty(); |
616 | ++DeltaSuccesses; |
617 | return true; |
618 | } |
619 | } |
620 | X->setPoint(X: SE->getConstant(Val: Xq), |
621 | Y: SE->getConstant(Val: Yq), |
622 | CurLoop: X->getAssociatedLoop()); |
623 | ++DeltaSuccesses; |
624 | return true; |
625 | } |
626 | return false; |
627 | } |
628 | |
629 | // if (X->isLine() && Y->isPoint()) This case can't occur. |
630 | assert(!(X->isLine() && Y->isPoint()) && "This case should never occur" ); |
631 | |
632 | if (X->isPoint() && Y->isLine()) { |
633 | LLVM_DEBUG(dbgs() << "\t intersect Point and Line\n" ); |
634 | const SCEV *A1X1 = SE->getMulExpr(LHS: Y->getA(), RHS: X->getX()); |
635 | const SCEV *B1Y1 = SE->getMulExpr(LHS: Y->getB(), RHS: X->getY()); |
636 | const SCEV *Sum = SE->getAddExpr(LHS: A1X1, RHS: B1Y1); |
637 | if (isKnownPredicate(Pred: CmpInst::ICMP_EQ, X: Sum, Y: Y->getC())) |
638 | return false; |
639 | if (isKnownPredicate(Pred: CmpInst::ICMP_NE, X: Sum, Y: Y->getC())) { |
640 | X->setEmpty(); |
641 | ++DeltaSuccesses; |
642 | return true; |
643 | } |
644 | return false; |
645 | } |
646 | |
647 | llvm_unreachable("shouldn't reach the end of Constraint intersection" ); |
648 | return false; |
649 | } |
650 | |
651 | |
652 | //===----------------------------------------------------------------------===// |
653 | // DependenceInfo methods |
654 | |
655 | // For debugging purposes. Dumps a dependence to OS. |
656 | void Dependence::dump(raw_ostream &OS) const { |
657 | bool Splitable = false; |
658 | if (isConfused()) |
659 | OS << "confused" ; |
660 | else { |
661 | if (isConsistent()) |
662 | OS << "consistent " ; |
663 | if (isFlow()) |
664 | OS << "flow" ; |
665 | else if (isOutput()) |
666 | OS << "output" ; |
667 | else if (isAnti()) |
668 | OS << "anti" ; |
669 | else if (isInput()) |
670 | OS << "input" ; |
671 | unsigned Levels = getLevels(); |
672 | OS << " [" ; |
673 | for (unsigned II = 1; II <= Levels; ++II) { |
674 | if (isSplitable(Level: II)) |
675 | Splitable = true; |
676 | if (isPeelFirst(Level: II)) |
677 | OS << 'p'; |
678 | const SCEV *Distance = getDistance(Level: II); |
679 | if (Distance) |
680 | OS << *Distance; |
681 | else if (isScalar(level: II)) |
682 | OS << "S" ; |
683 | else { |
684 | unsigned Direction = getDirection(Level: II); |
685 | if (Direction == DVEntry::ALL) |
686 | OS << "*" ; |
687 | else { |
688 | if (Direction & DVEntry::LT) |
689 | OS << "<" ; |
690 | if (Direction & DVEntry::EQ) |
691 | OS << "=" ; |
692 | if (Direction & DVEntry::GT) |
693 | OS << ">" ; |
694 | } |
695 | } |
696 | if (isPeelLast(Level: II)) |
697 | OS << 'p'; |
698 | if (II < Levels) |
699 | OS << " " ; |
700 | } |
701 | if (isLoopIndependent()) |
702 | OS << "|<" ; |
703 | OS << "]" ; |
704 | if (Splitable) |
705 | OS << " splitable" ; |
706 | } |
707 | OS << "!\n" ; |
708 | } |
709 | |
710 | // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their |
711 | // underlaying objects. If LocA and LocB are known to not alias (for any reason: |
712 | // tbaa, non-overlapping regions etc), then it is known there is no dependecy. |
713 | // Otherwise the underlying objects are checked to see if they point to |
714 | // different identifiable objects. |
715 | static AliasResult underlyingObjectsAlias(AAResults *AA, |
716 | const DataLayout &DL, |
717 | const MemoryLocation &LocA, |
718 | const MemoryLocation &LocB) { |
719 | // Check the original locations (minus size) for noalias, which can happen for |
720 | // tbaa, incompatible underlying object locations, etc. |
721 | MemoryLocation LocAS = |
722 | MemoryLocation::getBeforeOrAfter(Ptr: LocA.Ptr, AATags: LocA.AATags); |
723 | MemoryLocation LocBS = |
724 | MemoryLocation::getBeforeOrAfter(Ptr: LocB.Ptr, AATags: LocB.AATags); |
725 | if (AA->isNoAlias(LocA: LocAS, LocB: LocBS)) |
726 | return AliasResult::NoAlias; |
727 | |
728 | // Check the underlying objects are the same |
729 | const Value *AObj = getUnderlyingObject(V: LocA.Ptr); |
730 | const Value *BObj = getUnderlyingObject(V: LocB.Ptr); |
731 | |
732 | // If the underlying objects are the same, they must alias |
733 | if (AObj == BObj) |
734 | return AliasResult::MustAlias; |
735 | |
736 | // We may have hit the recursion limit for underlying objects, or have |
737 | // underlying objects where we don't know they will alias. |
738 | if (!isIdentifiedObject(V: AObj) || !isIdentifiedObject(V: BObj)) |
739 | return AliasResult::MayAlias; |
740 | |
741 | // Otherwise we know the objects are different and both identified objects so |
742 | // must not alias. |
743 | return AliasResult::NoAlias; |
744 | } |
745 | |
746 | |
747 | // Returns true if the load or store can be analyzed. Atomic and volatile |
748 | // operations have properties which this analysis does not understand. |
749 | static |
750 | bool isLoadOrStore(const Instruction *I) { |
751 | if (const LoadInst *LI = dyn_cast<LoadInst>(Val: I)) |
752 | return LI->isUnordered(); |
753 | else if (const StoreInst *SI = dyn_cast<StoreInst>(Val: I)) |
754 | return SI->isUnordered(); |
755 | return false; |
756 | } |
757 | |
758 | |
759 | // Examines the loop nesting of the Src and Dst |
760 | // instructions and establishes their shared loops. Sets the variables |
761 | // CommonLevels, SrcLevels, and MaxLevels. |
762 | // The source and destination instructions needn't be contained in the same |
763 | // loop. The routine establishNestingLevels finds the level of most deeply |
764 | // nested loop that contains them both, CommonLevels. An instruction that's |
765 | // not contained in a loop is at level = 0. MaxLevels is equal to the level |
766 | // of the source plus the level of the destination, minus CommonLevels. |
767 | // This lets us allocate vectors MaxLevels in length, with room for every |
768 | // distinct loop referenced in both the source and destination subscripts. |
769 | // The variable SrcLevels is the nesting depth of the source instruction. |
770 | // It's used to help calculate distinct loops referenced by the destination. |
771 | // Here's the map from loops to levels: |
772 | // 0 - unused |
773 | // 1 - outermost common loop |
774 | // ... - other common loops |
775 | // CommonLevels - innermost common loop |
776 | // ... - loops containing Src but not Dst |
777 | // SrcLevels - innermost loop containing Src but not Dst |
778 | // ... - loops containing Dst but not Src |
779 | // MaxLevels - innermost loops containing Dst but not Src |
780 | // Consider the follow code fragment: |
781 | // for (a = ...) { |
782 | // for (b = ...) { |
783 | // for (c = ...) { |
784 | // for (d = ...) { |
785 | // A[] = ...; |
786 | // } |
787 | // } |
788 | // for (e = ...) { |
789 | // for (f = ...) { |
790 | // for (g = ...) { |
791 | // ... = A[]; |
792 | // } |
793 | // } |
794 | // } |
795 | // } |
796 | // } |
797 | // If we're looking at the possibility of a dependence between the store |
798 | // to A (the Src) and the load from A (the Dst), we'll note that they |
799 | // have 2 loops in common, so CommonLevels will equal 2 and the direction |
800 | // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7. |
801 | // A map from loop names to loop numbers would look like |
802 | // a - 1 |
803 | // b - 2 = CommonLevels |
804 | // c - 3 |
805 | // d - 4 = SrcLevels |
806 | // e - 5 |
807 | // f - 6 |
808 | // g - 7 = MaxLevels |
809 | void DependenceInfo::establishNestingLevels(const Instruction *Src, |
810 | const Instruction *Dst) { |
811 | const BasicBlock *SrcBlock = Src->getParent(); |
812 | const BasicBlock *DstBlock = Dst->getParent(); |
813 | unsigned SrcLevel = LI->getLoopDepth(BB: SrcBlock); |
814 | unsigned DstLevel = LI->getLoopDepth(BB: DstBlock); |
815 | const Loop *SrcLoop = LI->getLoopFor(BB: SrcBlock); |
816 | const Loop *DstLoop = LI->getLoopFor(BB: DstBlock); |
817 | SrcLevels = SrcLevel; |
818 | MaxLevels = SrcLevel + DstLevel; |
819 | while (SrcLevel > DstLevel) { |
820 | SrcLoop = SrcLoop->getParentLoop(); |
821 | SrcLevel--; |
822 | } |
823 | while (DstLevel > SrcLevel) { |
824 | DstLoop = DstLoop->getParentLoop(); |
825 | DstLevel--; |
826 | } |
827 | while (SrcLoop != DstLoop) { |
828 | SrcLoop = SrcLoop->getParentLoop(); |
829 | DstLoop = DstLoop->getParentLoop(); |
830 | SrcLevel--; |
831 | } |
832 | CommonLevels = SrcLevel; |
833 | MaxLevels -= CommonLevels; |
834 | } |
835 | |
836 | |
837 | // Given one of the loops containing the source, return |
838 | // its level index in our numbering scheme. |
839 | unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const { |
840 | return SrcLoop->getLoopDepth(); |
841 | } |
842 | |
843 | |
844 | // Given one of the loops containing the destination, |
845 | // return its level index in our numbering scheme. |
846 | unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const { |
847 | unsigned D = DstLoop->getLoopDepth(); |
848 | if (D > CommonLevels) |
849 | // This tries to make sure that we assign unique numbers to src and dst when |
850 | // the memory accesses reside in different loops that have the same depth. |
851 | return D - CommonLevels + SrcLevels; |
852 | else |
853 | return D; |
854 | } |
855 | |
856 | |
857 | // Returns true if Expression is loop invariant in LoopNest. |
858 | bool DependenceInfo::isLoopInvariant(const SCEV *Expression, |
859 | const Loop *LoopNest) const { |
860 | // Unlike ScalarEvolution::isLoopInvariant() we consider an access outside of |
861 | // any loop as invariant, because we only consier expression evaluation at a |
862 | // specific position (where the array access takes place), and not across the |
863 | // entire function. |
864 | if (!LoopNest) |
865 | return true; |
866 | |
867 | // If the expression is invariant in the outermost loop of the loop nest, it |
868 | // is invariant anywhere in the loop nest. |
869 | return SE->isLoopInvariant(S: Expression, L: LoopNest->getOutermostLoop()); |
870 | } |
871 | |
872 | |
873 | |
874 | // Finds the set of loops from the LoopNest that |
875 | // have a level <= CommonLevels and are referred to by the SCEV Expression. |
876 | void DependenceInfo::collectCommonLoops(const SCEV *Expression, |
877 | const Loop *LoopNest, |
878 | SmallBitVector &Loops) const { |
879 | while (LoopNest) { |
880 | unsigned Level = LoopNest->getLoopDepth(); |
881 | if (Level <= CommonLevels && !SE->isLoopInvariant(S: Expression, L: LoopNest)) |
882 | Loops.set(Level); |
883 | LoopNest = LoopNest->getParentLoop(); |
884 | } |
885 | } |
886 | |
887 | void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) { |
888 | |
889 | unsigned widestWidthSeen = 0; |
890 | Type *widestType; |
891 | |
892 | // Go through each pair and find the widest bit to which we need |
893 | // to extend all of them. |
894 | for (Subscript *Pair : Pairs) { |
895 | const SCEV *Src = Pair->Src; |
896 | const SCEV *Dst = Pair->Dst; |
897 | IntegerType *SrcTy = dyn_cast<IntegerType>(Val: Src->getType()); |
898 | IntegerType *DstTy = dyn_cast<IntegerType>(Val: Dst->getType()); |
899 | if (SrcTy == nullptr || DstTy == nullptr) { |
900 | assert(SrcTy == DstTy && "This function only unify integer types and " |
901 | "expect Src and Dst share the same type " |
902 | "otherwise." ); |
903 | continue; |
904 | } |
905 | if (SrcTy->getBitWidth() > widestWidthSeen) { |
906 | widestWidthSeen = SrcTy->getBitWidth(); |
907 | widestType = SrcTy; |
908 | } |
909 | if (DstTy->getBitWidth() > widestWidthSeen) { |
910 | widestWidthSeen = DstTy->getBitWidth(); |
911 | widestType = DstTy; |
912 | } |
913 | } |
914 | |
915 | |
916 | assert(widestWidthSeen > 0); |
917 | |
918 | // Now extend each pair to the widest seen. |
919 | for (Subscript *Pair : Pairs) { |
920 | const SCEV *Src = Pair->Src; |
921 | const SCEV *Dst = Pair->Dst; |
922 | IntegerType *SrcTy = dyn_cast<IntegerType>(Val: Src->getType()); |
923 | IntegerType *DstTy = dyn_cast<IntegerType>(Val: Dst->getType()); |
924 | if (SrcTy == nullptr || DstTy == nullptr) { |
925 | assert(SrcTy == DstTy && "This function only unify integer types and " |
926 | "expect Src and Dst share the same type " |
927 | "otherwise." ); |
928 | continue; |
929 | } |
930 | if (SrcTy->getBitWidth() < widestWidthSeen) |
931 | // Sign-extend Src to widestType |
932 | Pair->Src = SE->getSignExtendExpr(Op: Src, Ty: widestType); |
933 | if (DstTy->getBitWidth() < widestWidthSeen) { |
934 | // Sign-extend Dst to widestType |
935 | Pair->Dst = SE->getSignExtendExpr(Op: Dst, Ty: widestType); |
936 | } |
937 | } |
938 | } |
939 | |
940 | // removeMatchingExtensions - Examines a subscript pair. |
941 | // If the source and destination are identically sign (or zero) |
942 | // extended, it strips off the extension in an effect to simplify |
943 | // the actual analysis. |
944 | void DependenceInfo::removeMatchingExtensions(Subscript *Pair) { |
945 | const SCEV *Src = Pair->Src; |
946 | const SCEV *Dst = Pair->Dst; |
947 | if ((isa<SCEVZeroExtendExpr>(Val: Src) && isa<SCEVZeroExtendExpr>(Val: Dst)) || |
948 | (isa<SCEVSignExtendExpr>(Val: Src) && isa<SCEVSignExtendExpr>(Val: Dst))) { |
949 | const SCEVIntegralCastExpr *SrcCast = cast<SCEVIntegralCastExpr>(Val: Src); |
950 | const SCEVIntegralCastExpr *DstCast = cast<SCEVIntegralCastExpr>(Val: Dst); |
951 | const SCEV *SrcCastOp = SrcCast->getOperand(); |
952 | const SCEV *DstCastOp = DstCast->getOperand(); |
953 | if (SrcCastOp->getType() == DstCastOp->getType()) { |
954 | Pair->Src = SrcCastOp; |
955 | Pair->Dst = DstCastOp; |
956 | } |
957 | } |
958 | } |
959 | |
960 | // Examine the scev and return true iff it's affine. |
961 | // Collect any loops mentioned in the set of "Loops". |
962 | bool DependenceInfo::checkSubscript(const SCEV *Expr, const Loop *LoopNest, |
963 | SmallBitVector &Loops, bool IsSrc) { |
964 | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Val: Expr); |
965 | if (!AddRec) |
966 | return isLoopInvariant(Expression: Expr, LoopNest); |
967 | |
968 | // The AddRec must depend on one of the containing loops. Otherwise, |
969 | // mapSrcLoop and mapDstLoop return indices outside the intended range. This |
970 | // can happen when a subscript in one loop references an IV from a sibling |
971 | // loop that could not be replaced with a concrete exit value by |
972 | // getSCEVAtScope. |
973 | const Loop *L = LoopNest; |
974 | while (L && AddRec->getLoop() != L) |
975 | L = L->getParentLoop(); |
976 | if (!L) |
977 | return false; |
978 | |
979 | const SCEV *Start = AddRec->getStart(); |
980 | const SCEV *Step = AddRec->getStepRecurrence(SE&: *SE); |
981 | const SCEV *UB = SE->getBackedgeTakenCount(L: AddRec->getLoop()); |
982 | if (!isa<SCEVCouldNotCompute>(Val: UB)) { |
983 | if (SE->getTypeSizeInBits(Ty: Start->getType()) < |
984 | SE->getTypeSizeInBits(Ty: UB->getType())) { |
985 | if (!AddRec->getNoWrapFlags()) |
986 | return false; |
987 | } |
988 | } |
989 | if (!isLoopInvariant(Expression: Step, LoopNest)) |
990 | return false; |
991 | if (IsSrc) |
992 | Loops.set(mapSrcLoop(SrcLoop: AddRec->getLoop())); |
993 | else |
994 | Loops.set(mapDstLoop(DstLoop: AddRec->getLoop())); |
995 | return checkSubscript(Expr: Start, LoopNest, Loops, IsSrc); |
996 | } |
997 | |
998 | // Examine the scev and return true iff it's linear. |
999 | // Collect any loops mentioned in the set of "Loops". |
1000 | bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest, |
1001 | SmallBitVector &Loops) { |
1002 | return checkSubscript(Expr: Src, LoopNest, Loops, IsSrc: true); |
1003 | } |
1004 | |
1005 | // Examine the scev and return true iff it's linear. |
1006 | // Collect any loops mentioned in the set of "Loops". |
1007 | bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest, |
1008 | SmallBitVector &Loops) { |
1009 | return checkSubscript(Expr: Dst, LoopNest, Loops, IsSrc: false); |
1010 | } |
1011 | |
1012 | |
1013 | // Examines the subscript pair (the Src and Dst SCEVs) |
1014 | // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear. |
1015 | // Collects the associated loops in a set. |
1016 | DependenceInfo::Subscript::ClassificationKind |
1017 | DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest, |
1018 | const SCEV *Dst, const Loop *DstLoopNest, |
1019 | SmallBitVector &Loops) { |
1020 | SmallBitVector SrcLoops(MaxLevels + 1); |
1021 | SmallBitVector DstLoops(MaxLevels + 1); |
1022 | if (!checkSrcSubscript(Src, LoopNest: SrcLoopNest, Loops&: SrcLoops)) |
1023 | return Subscript::NonLinear; |
1024 | if (!checkDstSubscript(Dst, LoopNest: DstLoopNest, Loops&: DstLoops)) |
1025 | return Subscript::NonLinear; |
1026 | Loops = SrcLoops; |
1027 | Loops |= DstLoops; |
1028 | unsigned N = Loops.count(); |
1029 | if (N == 0) |
1030 | return Subscript::ZIV; |
1031 | if (N == 1) |
1032 | return Subscript::SIV; |
1033 | if (N == 2 && (SrcLoops.count() == 0 || |
1034 | DstLoops.count() == 0 || |
1035 | (SrcLoops.count() == 1 && DstLoops.count() == 1))) |
1036 | return Subscript::RDIV; |
1037 | return Subscript::MIV; |
1038 | } |
1039 | |
1040 | |
1041 | // A wrapper around SCEV::isKnownPredicate. |
1042 | // Looks for cases where we're interested in comparing for equality. |
1043 | // If both X and Y have been identically sign or zero extended, |
1044 | // it strips off the (confusing) extensions before invoking |
1045 | // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package |
1046 | // will be similarly updated. |
1047 | // |
1048 | // If SCEV::isKnownPredicate can't prove the predicate, |
1049 | // we try simple subtraction, which seems to help in some cases |
1050 | // involving symbolics. |
1051 | bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X, |
1052 | const SCEV *Y) const { |
1053 | if (Pred == CmpInst::ICMP_EQ || |
1054 | Pred == CmpInst::ICMP_NE) { |
1055 | if ((isa<SCEVSignExtendExpr>(Val: X) && |
1056 | isa<SCEVSignExtendExpr>(Val: Y)) || |
1057 | (isa<SCEVZeroExtendExpr>(Val: X) && |
1058 | isa<SCEVZeroExtendExpr>(Val: Y))) { |
1059 | const SCEVIntegralCastExpr *CX = cast<SCEVIntegralCastExpr>(Val: X); |
1060 | const SCEVIntegralCastExpr *CY = cast<SCEVIntegralCastExpr>(Val: Y); |
1061 | const SCEV *Xop = CX->getOperand(); |
1062 | const SCEV *Yop = CY->getOperand(); |
1063 | if (Xop->getType() == Yop->getType()) { |
1064 | X = Xop; |
1065 | Y = Yop; |
1066 | } |
1067 | } |
1068 | } |
1069 | if (SE->isKnownPredicate(Pred, LHS: X, RHS: Y)) |
1070 | return true; |
1071 | // If SE->isKnownPredicate can't prove the condition, |
1072 | // we try the brute-force approach of subtracting |
1073 | // and testing the difference. |
1074 | // By testing with SE->isKnownPredicate first, we avoid |
1075 | // the possibility of overflow when the arguments are constants. |
1076 | const SCEV *Delta = SE->getMinusSCEV(LHS: X, RHS: Y); |
1077 | switch (Pred) { |
1078 | case CmpInst::ICMP_EQ: |
1079 | return Delta->isZero(); |
1080 | case CmpInst::ICMP_NE: |
1081 | return SE->isKnownNonZero(S: Delta); |
1082 | case CmpInst::ICMP_SGE: |
1083 | return SE->isKnownNonNegative(S: Delta); |
1084 | case CmpInst::ICMP_SLE: |
1085 | return SE->isKnownNonPositive(S: Delta); |
1086 | case CmpInst::ICMP_SGT: |
1087 | return SE->isKnownPositive(S: Delta); |
1088 | case CmpInst::ICMP_SLT: |
1089 | return SE->isKnownNegative(S: Delta); |
1090 | default: |
1091 | llvm_unreachable("unexpected predicate in isKnownPredicate" ); |
1092 | } |
1093 | } |
1094 | |
1095 | /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1)) |
1096 | /// with some extra checking if S is an AddRec and we can prove less-than using |
1097 | /// the loop bounds. |
1098 | bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const { |
1099 | // First unify to the same type |
1100 | auto *SType = dyn_cast<IntegerType>(Val: S->getType()); |
1101 | auto *SizeType = dyn_cast<IntegerType>(Val: Size->getType()); |
1102 | if (!SType || !SizeType) |
1103 | return false; |
1104 | Type *MaxType = |
1105 | (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType; |
1106 | S = SE->getTruncateOrZeroExtend(V: S, Ty: MaxType); |
1107 | Size = SE->getTruncateOrZeroExtend(V: Size, Ty: MaxType); |
1108 | |
1109 | // Special check for addrecs using BE taken count |
1110 | const SCEV *Bound = SE->getMinusSCEV(LHS: S, RHS: Size); |
1111 | if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Val: Bound)) { |
1112 | if (AddRec->isAffine()) { |
1113 | const SCEV *BECount = SE->getBackedgeTakenCount(L: AddRec->getLoop()); |
1114 | if (!isa<SCEVCouldNotCompute>(Val: BECount)) { |
1115 | const SCEV *Limit = AddRec->evaluateAtIteration(It: BECount, SE&: *SE); |
1116 | if (SE->isKnownNegative(S: Limit)) |
1117 | return true; |
1118 | } |
1119 | } |
1120 | } |
1121 | |
1122 | // Check using normal isKnownNegative |
1123 | const SCEV *LimitedBound = |
1124 | SE->getMinusSCEV(LHS: S, RHS: SE->getSMaxExpr(LHS: Size, RHS: SE->getOne(Ty: Size->getType()))); |
1125 | return SE->isKnownNegative(S: LimitedBound); |
1126 | } |
1127 | |
1128 | bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const { |
1129 | bool Inbounds = false; |
1130 | if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Val: Ptr)) |
1131 | Inbounds = SrcGEP->isInBounds(); |
1132 | if (Inbounds) { |
1133 | if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Val: S)) { |
1134 | if (AddRec->isAffine()) { |
1135 | // We know S is for Ptr, the operand on a load/store, so doesn't wrap. |
1136 | // If both parts are NonNegative, the end result will be NonNegative |
1137 | if (SE->isKnownNonNegative(S: AddRec->getStart()) && |
1138 | SE->isKnownNonNegative(S: AddRec->getOperand(i: 1))) |
1139 | return true; |
1140 | } |
1141 | } |
1142 | } |
1143 | |
1144 | return SE->isKnownNonNegative(S); |
1145 | } |
1146 | |
1147 | // All subscripts are all the same type. |
1148 | // Loop bound may be smaller (e.g., a char). |
1149 | // Should zero extend loop bound, since it's always >= 0. |
1150 | // This routine collects upper bound and extends or truncates if needed. |
1151 | // Truncating is safe when subscripts are known not to wrap. Cases without |
1152 | // nowrap flags should have been rejected earlier. |
1153 | // Return null if no bound available. |
1154 | const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const { |
1155 | if (SE->hasLoopInvariantBackedgeTakenCount(L)) { |
1156 | const SCEV *UB = SE->getBackedgeTakenCount(L); |
1157 | return SE->getTruncateOrZeroExtend(V: UB, Ty: T); |
1158 | } |
1159 | return nullptr; |
1160 | } |
1161 | |
1162 | |
1163 | // Calls collectUpperBound(), then attempts to cast it to SCEVConstant. |
1164 | // If the cast fails, returns NULL. |
1165 | const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L, |
1166 | Type *T) const { |
1167 | if (const SCEV *UB = collectUpperBound(L, T)) |
1168 | return dyn_cast<SCEVConstant>(Val: UB); |
1169 | return nullptr; |
1170 | } |
1171 | |
1172 | |
1173 | // testZIV - |
1174 | // When we have a pair of subscripts of the form [c1] and [c2], |
1175 | // where c1 and c2 are both loop invariant, we attack it using |
1176 | // the ZIV test. Basically, we test by comparing the two values, |
1177 | // but there are actually three possible results: |
1178 | // 1) the values are equal, so there's a dependence |
1179 | // 2) the values are different, so there's no dependence |
1180 | // 3) the values might be equal, so we have to assume a dependence. |
1181 | // |
1182 | // Return true if dependence disproved. |
1183 | bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst, |
1184 | FullDependence &Result) const { |
1185 | LLVM_DEBUG(dbgs() << " src = " << *Src << "\n" ); |
1186 | LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n" ); |
1187 | ++ZIVapplications; |
1188 | if (isKnownPredicate(Pred: CmpInst::ICMP_EQ, X: Src, Y: Dst)) { |
1189 | LLVM_DEBUG(dbgs() << " provably dependent\n" ); |
1190 | return false; // provably dependent |
1191 | } |
1192 | if (isKnownPredicate(Pred: CmpInst::ICMP_NE, X: Src, Y: Dst)) { |
1193 | LLVM_DEBUG(dbgs() << " provably independent\n" ); |
1194 | ++ZIVindependence; |
1195 | return true; // provably independent |
1196 | } |
1197 | LLVM_DEBUG(dbgs() << " possibly dependent\n" ); |
1198 | Result.Consistent = false; |
1199 | return false; // possibly dependent |
1200 | } |
1201 | |
1202 | |
1203 | // strongSIVtest - |
1204 | // From the paper, Practical Dependence Testing, Section 4.2.1 |
1205 | // |
1206 | // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i], |
1207 | // where i is an induction variable, c1 and c2 are loop invariant, |
1208 | // and a is a constant, we can solve it exactly using the Strong SIV test. |
1209 | // |
1210 | // Can prove independence. Failing that, can compute distance (and direction). |
1211 | // In the presence of symbolic terms, we can sometimes make progress. |
1212 | // |
1213 | // If there's a dependence, |
1214 | // |
1215 | // c1 + a*i = c2 + a*i' |
1216 | // |
1217 | // The dependence distance is |
1218 | // |
1219 | // d = i' - i = (c1 - c2)/a |
1220 | // |
1221 | // A dependence only exists if d is an integer and abs(d) <= U, where U is the |
1222 | // loop's upper bound. If a dependence exists, the dependence direction is |
1223 | // defined as |
1224 | // |
1225 | // { < if d > 0 |
1226 | // direction = { = if d = 0 |
1227 | // { > if d < 0 |
1228 | // |
1229 | // Return true if dependence disproved. |
1230 | bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst, |
1231 | const SCEV *DstConst, const Loop *CurLoop, |
1232 | unsigned Level, FullDependence &Result, |
1233 | Constraint &NewConstraint) const { |
1234 | LLVM_DEBUG(dbgs() << "\tStrong SIV test\n" ); |
1235 | LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff); |
1236 | LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n" ); |
1237 | LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst); |
1238 | LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n" ); |
1239 | LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst); |
1240 | LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n" ); |
1241 | ++StrongSIVapplications; |
1242 | assert(0 < Level && Level <= CommonLevels && "level out of range" ); |
1243 | Level--; |
1244 | |
1245 | const SCEV *Delta = SE->getMinusSCEV(LHS: SrcConst, RHS: DstConst); |
1246 | LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta); |
1247 | LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n" ); |
1248 | |
1249 | // check that |Delta| < iteration count |
1250 | if (const SCEV *UpperBound = collectUpperBound(L: CurLoop, T: Delta->getType())) { |
1251 | LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound); |
1252 | LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n" ); |
1253 | const SCEV *AbsDelta = |
1254 | SE->isKnownNonNegative(S: Delta) ? Delta : SE->getNegativeSCEV(V: Delta); |
1255 | const SCEV *AbsCoeff = |
1256 | SE->isKnownNonNegative(S: Coeff) ? Coeff : SE->getNegativeSCEV(V: Coeff); |
1257 | const SCEV *Product = SE->getMulExpr(LHS: UpperBound, RHS: AbsCoeff); |
1258 | if (isKnownPredicate(Pred: CmpInst::ICMP_SGT, X: AbsDelta, Y: Product)) { |
1259 | // Distance greater than trip count - no dependence |
1260 | ++StrongSIVindependence; |
1261 | ++StrongSIVsuccesses; |
1262 | return true; |
1263 | } |
1264 | } |
1265 | |
1266 | // Can we compute distance? |
1267 | if (isa<SCEVConstant>(Val: Delta) && isa<SCEVConstant>(Val: Coeff)) { |
1268 | APInt ConstDelta = cast<SCEVConstant>(Val: Delta)->getAPInt(); |
1269 | APInt ConstCoeff = cast<SCEVConstant>(Val: Coeff)->getAPInt(); |
1270 | APInt Distance = ConstDelta; // these need to be initialized |
1271 | APInt Remainder = ConstDelta; |
1272 | APInt::sdivrem(LHS: ConstDelta, RHS: ConstCoeff, Quotient&: Distance, Remainder); |
1273 | LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n" ); |
1274 | LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n" ); |
1275 | // Make sure Coeff divides Delta exactly |
1276 | if (Remainder != 0) { |
1277 | // Coeff doesn't divide Distance, no dependence |
1278 | ++StrongSIVindependence; |
1279 | ++StrongSIVsuccesses; |
1280 | return true; |
1281 | } |
1282 | Result.DV[Level].Distance = SE->getConstant(Val: Distance); |
1283 | NewConstraint.setDistance(D: SE->getConstant(Val: Distance), CurLoop); |
1284 | if (Distance.sgt(RHS: 0)) |
1285 | Result.DV[Level].Direction &= Dependence::DVEntry::LT; |
1286 | else if (Distance.slt(RHS: 0)) |
1287 | Result.DV[Level].Direction &= Dependence::DVEntry::GT; |
1288 | else |
1289 | Result.DV[Level].Direction &= Dependence::DVEntry::EQ; |
1290 | ++StrongSIVsuccesses; |
1291 | } |
1292 | else if (Delta->isZero()) { |
1293 | // since 0/X == 0 |
1294 | Result.DV[Level].Distance = Delta; |
1295 | NewConstraint.setDistance(D: Delta, CurLoop); |
1296 | Result.DV[Level].Direction &= Dependence::DVEntry::EQ; |
1297 | ++StrongSIVsuccesses; |
1298 | } |
1299 | else { |
1300 | if (Coeff->isOne()) { |
1301 | LLVM_DEBUG(dbgs() << "\t Distance = " << *Delta << "\n" ); |
1302 | Result.DV[Level].Distance = Delta; // since X/1 == X |
1303 | NewConstraint.setDistance(D: Delta, CurLoop); |
1304 | } |
1305 | else { |
1306 | Result.Consistent = false; |
1307 | NewConstraint.setLine(AA: Coeff, |
1308 | BB: SE->getNegativeSCEV(V: Coeff), |
1309 | CC: SE->getNegativeSCEV(V: Delta), CurLoop); |
1310 | } |
1311 | |
1312 | // maybe we can get a useful direction |
1313 | bool DeltaMaybeZero = !SE->isKnownNonZero(S: Delta); |
1314 | bool DeltaMaybePositive = !SE->isKnownNonPositive(S: Delta); |
1315 | bool DeltaMaybeNegative = !SE->isKnownNonNegative(S: Delta); |
1316 | bool CoeffMaybePositive = !SE->isKnownNonPositive(S: Coeff); |
1317 | bool CoeffMaybeNegative = !SE->isKnownNonNegative(S: Coeff); |
1318 | // The double negatives above are confusing. |
1319 | // It helps to read !SE->isKnownNonZero(Delta) |
1320 | // as "Delta might be Zero" |
1321 | unsigned NewDirection = Dependence::DVEntry::NONE; |
1322 | if ((DeltaMaybePositive && CoeffMaybePositive) || |
1323 | (DeltaMaybeNegative && CoeffMaybeNegative)) |
1324 | NewDirection = Dependence::DVEntry::LT; |
1325 | if (DeltaMaybeZero) |
1326 | NewDirection |= Dependence::DVEntry::EQ; |
1327 | if ((DeltaMaybeNegative && CoeffMaybePositive) || |
1328 | (DeltaMaybePositive && CoeffMaybeNegative)) |
1329 | NewDirection |= Dependence::DVEntry::GT; |
1330 | if (NewDirection < Result.DV[Level].Direction) |
1331 | ++StrongSIVsuccesses; |
1332 | Result.DV[Level].Direction &= NewDirection; |
1333 | } |
1334 | return false; |
1335 | } |
1336 | |
1337 | |
1338 | // weakCrossingSIVtest - |
1339 | // From the paper, Practical Dependence Testing, Section 4.2.2 |
1340 | // |
1341 | // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i], |
1342 | // where i is an induction variable, c1 and c2 are loop invariant, |
1343 | // and a is a constant, we can solve it exactly using the |
1344 | // Weak-Crossing SIV test. |
1345 | // |
1346 | // Given c1 + a*i = c2 - a*i', we can look for the intersection of |
1347 | // the two lines, where i = i', yielding |
1348 | // |
1349 | // c1 + a*i = c2 - a*i |
1350 | // 2a*i = c2 - c1 |
1351 | // i = (c2 - c1)/2a |
1352 | // |
1353 | // If i < 0, there is no dependence. |
1354 | // If i > upperbound, there is no dependence. |
1355 | // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0. |
1356 | // If i = upperbound, there's a dependence with distance = 0. |
1357 | // If i is integral, there's a dependence (all directions). |
1358 | // If the non-integer part = 1/2, there's a dependence (<> directions). |
1359 | // Otherwise, there's no dependence. |
1360 | // |
1361 | // Can prove independence. Failing that, |
1362 | // can sometimes refine the directions. |
1363 | // Can determine iteration for splitting. |
1364 | // |
1365 | // Return true if dependence disproved. |
1366 | bool DependenceInfo::weakCrossingSIVtest( |
1367 | const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst, |
1368 | const Loop *CurLoop, unsigned Level, FullDependence &Result, |
1369 | Constraint &NewConstraint, const SCEV *&SplitIter) const { |
1370 | LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n" ); |
1371 | LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n" ); |
1372 | LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n" ); |
1373 | LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n" ); |
1374 | ++WeakCrossingSIVapplications; |
1375 | assert(0 < Level && Level <= CommonLevels && "Level out of range" ); |
1376 | Level--; |
1377 | Result.Consistent = false; |
1378 | const SCEV *Delta = SE->getMinusSCEV(LHS: DstConst, RHS: SrcConst); |
1379 | LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n" ); |
1380 | NewConstraint.setLine(AA: Coeff, BB: Coeff, CC: Delta, CurLoop); |
1381 | if (Delta->isZero()) { |
1382 | Result.DV[Level].Direction &= ~Dependence::DVEntry::LT; |
1383 | Result.DV[Level].Direction &= ~Dependence::DVEntry::GT; |
1384 | ++WeakCrossingSIVsuccesses; |
1385 | if (!Result.DV[Level].Direction) { |
1386 | ++WeakCrossingSIVindependence; |
1387 | return true; |
1388 | } |
1389 | Result.DV[Level].Distance = Delta; // = 0 |
1390 | return false; |
1391 | } |
1392 | const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Val: Coeff); |
1393 | if (!ConstCoeff) |
1394 | return false; |
1395 | |
1396 | Result.DV[Level].Splitable = true; |
1397 | if (SE->isKnownNegative(S: ConstCoeff)) { |
1398 | ConstCoeff = dyn_cast<SCEVConstant>(Val: SE->getNegativeSCEV(V: ConstCoeff)); |
1399 | assert(ConstCoeff && |
1400 | "dynamic cast of negative of ConstCoeff should yield constant" ); |
1401 | Delta = SE->getNegativeSCEV(V: Delta); |
1402 | } |
1403 | assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive" ); |
1404 | |
1405 | // compute SplitIter for use by DependenceInfo::getSplitIteration() |
1406 | SplitIter = SE->getUDivExpr( |
1407 | LHS: SE->getSMaxExpr(LHS: SE->getZero(Ty: Delta->getType()), RHS: Delta), |
1408 | RHS: SE->getMulExpr(LHS: SE->getConstant(Ty: Delta->getType(), V: 2), RHS: ConstCoeff)); |
1409 | LLVM_DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n" ); |
1410 | |
1411 | const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Val: Delta); |
1412 | if (!ConstDelta) |
1413 | return false; |
1414 | |
1415 | // We're certain that ConstCoeff > 0; therefore, |
1416 | // if Delta < 0, then no dependence. |
1417 | LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n" ); |
1418 | LLVM_DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n" ); |
1419 | if (SE->isKnownNegative(S: Delta)) { |
1420 | // No dependence, Delta < 0 |
1421 | ++WeakCrossingSIVindependence; |
1422 | ++WeakCrossingSIVsuccesses; |
1423 | return true; |
1424 | } |
1425 | |
1426 | // We're certain that Delta > 0 and ConstCoeff > 0. |
1427 | // Check Delta/(2*ConstCoeff) against upper loop bound |
1428 | if (const SCEV *UpperBound = collectUpperBound(L: CurLoop, T: Delta->getType())) { |
1429 | LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n" ); |
1430 | const SCEV *ConstantTwo = SE->getConstant(Ty: UpperBound->getType(), V: 2); |
1431 | const SCEV *ML = SE->getMulExpr(LHS: SE->getMulExpr(LHS: ConstCoeff, RHS: UpperBound), |
1432 | RHS: ConstantTwo); |
1433 | LLVM_DEBUG(dbgs() << "\t ML = " << *ML << "\n" ); |
1434 | if (isKnownPredicate(Pred: CmpInst::ICMP_SGT, X: Delta, Y: ML)) { |
1435 | // Delta too big, no dependence |
1436 | ++WeakCrossingSIVindependence; |
1437 | ++WeakCrossingSIVsuccesses; |
1438 | return true; |
1439 | } |
1440 | if (isKnownPredicate(Pred: CmpInst::ICMP_EQ, X: Delta, Y: ML)) { |
1441 | // i = i' = UB |
1442 | Result.DV[Level].Direction &= ~Dependence::DVEntry::LT; |
1443 | Result.DV[Level].Direction &= ~Dependence::DVEntry::GT; |
1444 | ++WeakCrossingSIVsuccesses; |
1445 | if (!Result.DV[Level].Direction) { |
1446 | ++WeakCrossingSIVindependence; |
1447 | return true; |
1448 | } |
1449 | Result.DV[Level].Splitable = false; |
1450 | Result.DV[Level].Distance = SE->getZero(Ty: Delta->getType()); |
1451 | return false; |
1452 | } |
1453 | } |
1454 | |
1455 | // check that Coeff divides Delta |
1456 | APInt APDelta = ConstDelta->getAPInt(); |
1457 | APInt APCoeff = ConstCoeff->getAPInt(); |
1458 | APInt Distance = APDelta; // these need to be initialzed |
1459 | APInt Remainder = APDelta; |
1460 | APInt::sdivrem(LHS: APDelta, RHS: APCoeff, Quotient&: Distance, Remainder); |
1461 | LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n" ); |
1462 | if (Remainder != 0) { |
1463 | // Coeff doesn't divide Delta, no dependence |
1464 | ++WeakCrossingSIVindependence; |
1465 | ++WeakCrossingSIVsuccesses; |
1466 | return true; |
1467 | } |
1468 | LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n" ); |
1469 | |
1470 | // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible |
1471 | APInt Two = APInt(Distance.getBitWidth(), 2, true); |
1472 | Remainder = Distance.srem(RHS: Two); |
1473 | LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n" ); |
1474 | if (Remainder != 0) { |
1475 | // Equal direction isn't possible |
1476 | Result.DV[Level].Direction &= ~Dependence::DVEntry::EQ; |
1477 | ++WeakCrossingSIVsuccesses; |
1478 | } |
1479 | return false; |
1480 | } |
1481 | |
1482 | |
1483 | // Kirch's algorithm, from |
1484 | // |
1485 | // Optimizing Supercompilers for Supercomputers |
1486 | // Michael Wolfe |
1487 | // MIT Press, 1989 |
1488 | // |
1489 | // Program 2.1, page 29. |
1490 | // Computes the GCD of AM and BM. |
1491 | // Also finds a solution to the equation ax - by = gcd(a, b). |
1492 | // Returns true if dependence disproved; i.e., gcd does not divide Delta. |
1493 | static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM, |
1494 | const APInt &Delta, APInt &G, APInt &X, APInt &Y) { |
1495 | APInt A0(Bits, 1, true), A1(Bits, 0, true); |
1496 | APInt B0(Bits, 0, true), B1(Bits, 1, true); |
1497 | APInt G0 = AM.abs(); |
1498 | APInt G1 = BM.abs(); |
1499 | APInt Q = G0; // these need to be initialized |
1500 | APInt R = G0; |
1501 | APInt::sdivrem(LHS: G0, RHS: G1, Quotient&: Q, Remainder&: R); |
1502 | while (R != 0) { |
1503 | APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2; |
1504 | APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2; |
1505 | G0 = G1; G1 = R; |
1506 | APInt::sdivrem(LHS: G0, RHS: G1, Quotient&: Q, Remainder&: R); |
1507 | } |
1508 | G = G1; |
1509 | LLVM_DEBUG(dbgs() << "\t GCD = " << G << "\n" ); |
1510 | X = AM.slt(RHS: 0) ? -A1 : A1; |
1511 | Y = BM.slt(RHS: 0) ? B1 : -B1; |
1512 | |
1513 | // make sure gcd divides Delta |
1514 | R = Delta.srem(RHS: G); |
1515 | if (R != 0) |
1516 | return true; // gcd doesn't divide Delta, no dependence |
1517 | Q = Delta.sdiv(RHS: G); |
1518 | return false; |
1519 | } |
1520 | |
1521 | static APInt floorOfQuotient(const APInt &A, const APInt &B) { |
1522 | APInt Q = A; // these need to be initialized |
1523 | APInt R = A; |
1524 | APInt::sdivrem(LHS: A, RHS: B, Quotient&: Q, Remainder&: R); |
1525 | if (R == 0) |
1526 | return Q; |
1527 | if ((A.sgt(RHS: 0) && B.sgt(RHS: 0)) || |
1528 | (A.slt(RHS: 0) && B.slt(RHS: 0))) |
1529 | return Q; |
1530 | else |
1531 | return Q - 1; |
1532 | } |
1533 | |
1534 | static APInt ceilingOfQuotient(const APInt &A, const APInt &B) { |
1535 | APInt Q = A; // these need to be initialized |
1536 | APInt R = A; |
1537 | APInt::sdivrem(LHS: A, RHS: B, Quotient&: Q, Remainder&: R); |
1538 | if (R == 0) |
1539 | return Q; |
1540 | if ((A.sgt(RHS: 0) && B.sgt(RHS: 0)) || |
1541 | (A.slt(RHS: 0) && B.slt(RHS: 0))) |
1542 | return Q + 1; |
1543 | else |
1544 | return Q; |
1545 | } |
1546 | |
1547 | // exactSIVtest - |
1548 | // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i], |
1549 | // where i is an induction variable, c1 and c2 are loop invariant, and a1 |
1550 | // and a2 are constant, we can solve it exactly using an algorithm developed |
1551 | // by Banerjee and Wolfe. See Algorithm 6.2.1 (case 2.5) in: |
1552 | // |
1553 | // Dependence Analysis for Supercomputing |
1554 | // Utpal Banerjee |
1555 | // Kluwer Academic Publishers, 1988 |
1556 | // |
1557 | // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc), |
1558 | // so use them if possible. They're also a bit better with symbolics and, |
1559 | // in the case of the strong SIV test, can compute Distances. |
1560 | // |
1561 | // Return true if dependence disproved. |
1562 | // |
1563 | // This is a modified version of the original Banerjee algorithm. The original |
1564 | // only tested whether Dst depends on Src. This algorithm extends that and |
1565 | // returns all the dependencies that exist between Dst and Src. |
1566 | bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff, |
1567 | const SCEV *SrcConst, const SCEV *DstConst, |
1568 | const Loop *CurLoop, unsigned Level, |
1569 | FullDependence &Result, |
1570 | Constraint &NewConstraint) const { |
1571 | LLVM_DEBUG(dbgs() << "\tExact SIV test\n" ); |
1572 | LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n" ); |
1573 | LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n" ); |
1574 | LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n" ); |
1575 | LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n" ); |
1576 | ++ExactSIVapplications; |
1577 | assert(0 < Level && Level <= CommonLevels && "Level out of range" ); |
1578 | Level--; |
1579 | Result.Consistent = false; |
1580 | const SCEV *Delta = SE->getMinusSCEV(LHS: DstConst, RHS: SrcConst); |
1581 | LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n" ); |
1582 | NewConstraint.setLine(AA: SrcCoeff, BB: SE->getNegativeSCEV(V: DstCoeff), CC: Delta, |
1583 | CurLoop); |
1584 | const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Val: Delta); |
1585 | const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(Val: SrcCoeff); |
1586 | const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(Val: DstCoeff); |
1587 | if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff) |
1588 | return false; |
1589 | |
1590 | // find gcd |
1591 | APInt G, X, Y; |
1592 | APInt AM = ConstSrcCoeff->getAPInt(); |
1593 | APInt BM = ConstDstCoeff->getAPInt(); |
1594 | APInt CM = ConstDelta->getAPInt(); |
1595 | unsigned Bits = AM.getBitWidth(); |
1596 | if (findGCD(Bits, AM, BM, Delta: CM, G, X, Y)) { |
1597 | // gcd doesn't divide Delta, no dependence |
1598 | ++ExactSIVindependence; |
1599 | ++ExactSIVsuccesses; |
1600 | return true; |
1601 | } |
1602 | |
1603 | LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n" ); |
1604 | |
1605 | // since SCEV construction normalizes, LM = 0 |
1606 | APInt UM(Bits, 1, true); |
1607 | bool UMValid = false; |
1608 | // UM is perhaps unavailable, let's check |
1609 | if (const SCEVConstant *CUB = |
1610 | collectConstantUpperBound(L: CurLoop, T: Delta->getType())) { |
1611 | UM = CUB->getAPInt(); |
1612 | LLVM_DEBUG(dbgs() << "\t UM = " << UM << "\n" ); |
1613 | UMValid = true; |
1614 | } |
1615 | |
1616 | APInt TU(APInt::getSignedMaxValue(numBits: Bits)); |
1617 | APInt TL(APInt::getSignedMinValue(numBits: Bits)); |
1618 | APInt TC = CM.sdiv(RHS: G); |
1619 | APInt TX = X * TC; |
1620 | APInt TY = Y * TC; |
1621 | LLVM_DEBUG(dbgs() << "\t TC = " << TC << "\n" ); |
1622 | LLVM_DEBUG(dbgs() << "\t TX = " << TX << "\n" ); |
1623 | LLVM_DEBUG(dbgs() << "\t TY = " << TY << "\n" ); |
1624 | |
1625 | SmallVector<APInt, 2> TLVec, TUVec; |
1626 | APInt TB = BM.sdiv(RHS: G); |
1627 | if (TB.sgt(RHS: 0)) { |
1628 | TLVec.push_back(Elt: ceilingOfQuotient(A: -TX, B: TB)); |
1629 | LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n" ); |
1630 | // New bound check - modification to Banerjee's e3 check |
1631 | if (UMValid) { |
1632 | TUVec.push_back(Elt: floorOfQuotient(A: UM - TX, B: TB)); |
1633 | LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n" ); |
1634 | } |
1635 | } else { |
1636 | TUVec.push_back(Elt: floorOfQuotient(A: -TX, B: TB)); |
1637 | LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n" ); |
1638 | // New bound check - modification to Banerjee's e3 check |
1639 | if (UMValid) { |
1640 | TLVec.push_back(Elt: ceilingOfQuotient(A: UM - TX, B: TB)); |
1641 | LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n" ); |
1642 | } |
1643 | } |
1644 | |
1645 | APInt TA = AM.sdiv(RHS: G); |
1646 | if (TA.sgt(RHS: 0)) { |
1647 | if (UMValid) { |
1648 | TUVec.push_back(Elt: floorOfQuotient(A: UM - TY, B: TA)); |
1649 | LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n" ); |
1650 | } |
1651 | // New bound check - modification to Banerjee's e3 check |
1652 | TLVec.push_back(Elt: ceilingOfQuotient(A: -TY, B: TA)); |
1653 | LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n" ); |
1654 | } else { |
1655 | if (UMValid) { |
1656 | TLVec.push_back(Elt: ceilingOfQuotient(A: UM - TY, B: TA)); |
1657 | LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n" ); |
1658 | } |
1659 | // New bound check - modification to Banerjee's e3 check |
1660 | TUVec.push_back(Elt: floorOfQuotient(A: -TY, B: TA)); |
1661 | LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n" ); |
1662 | } |
1663 | |
1664 | LLVM_DEBUG(dbgs() << "\t TA = " << TA << "\n" ); |
1665 | LLVM_DEBUG(dbgs() << "\t TB = " << TB << "\n" ); |
1666 | |
1667 | if (TLVec.empty() || TUVec.empty()) |
1668 | return false; |
1669 | TL = APIntOps::smax(A: TLVec.front(), B: TLVec.back()); |
1670 | TU = APIntOps::smin(A: TUVec.front(), B: TUVec.back()); |
1671 | LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n" ); |
1672 | LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n" ); |
1673 | |
1674 | if (TL.sgt(RHS: TU)) { |
1675 | ++ExactSIVindependence; |
1676 | ++ExactSIVsuccesses; |
1677 | return true; |
1678 | } |
1679 | |
1680 | // explore directions |
1681 | unsigned NewDirection = Dependence::DVEntry::NONE; |
1682 | APInt LowerDistance, UpperDistance; |
1683 | if (TA.sgt(RHS: TB)) { |
1684 | LowerDistance = (TY - TX) + (TA - TB) * TL; |
1685 | UpperDistance = (TY - TX) + (TA - TB) * TU; |
1686 | } else { |
1687 | LowerDistance = (TY - TX) + (TA - TB) * TU; |
1688 | UpperDistance = (TY - TX) + (TA - TB) * TL; |
1689 | } |
1690 | |
1691 | LLVM_DEBUG(dbgs() << "\t LowerDistance = " << LowerDistance << "\n" ); |
1692 | LLVM_DEBUG(dbgs() << "\t UpperDistance = " << UpperDistance << "\n" ); |
1693 | |
1694 | APInt Zero(Bits, 0, true); |
1695 | if (LowerDistance.sle(RHS: Zero) && UpperDistance.sge(RHS: Zero)) { |
1696 | NewDirection |= Dependence::DVEntry::EQ; |
1697 | ++ExactSIVsuccesses; |
1698 | } |
1699 | if (LowerDistance.slt(RHS: 0)) { |
1700 | NewDirection |= Dependence::DVEntry::GT; |
1701 | ++ExactSIVsuccesses; |
1702 | } |
1703 | if (UpperDistance.sgt(RHS: 0)) { |
1704 | NewDirection |= Dependence::DVEntry::LT; |
1705 | ++ExactSIVsuccesses; |
1706 | } |
1707 | |
1708 | // finished |
1709 | Result.DV[Level].Direction &= NewDirection; |
1710 | if (Result.DV[Level].Direction == Dependence::DVEntry::NONE) |
1711 | ++ExactSIVindependence; |
1712 | LLVM_DEBUG(dbgs() << "\t Result = " ); |
1713 | LLVM_DEBUG(Result.dump(dbgs())); |
1714 | return Result.DV[Level].Direction == Dependence::DVEntry::NONE; |
1715 | } |
1716 | |
1717 | |
1718 | // Return true if the divisor evenly divides the dividend. |
1719 | static |
1720 | bool isRemainderZero(const SCEVConstant *Dividend, |
1721 | const SCEVConstant *Divisor) { |
1722 | const APInt &ConstDividend = Dividend->getAPInt(); |
1723 | const APInt &ConstDivisor = Divisor->getAPInt(); |
1724 | return ConstDividend.srem(RHS: ConstDivisor) == 0; |
1725 | } |
1726 | |
1727 | |
1728 | // weakZeroSrcSIVtest - |
1729 | // From the paper, Practical Dependence Testing, Section 4.2.2 |
1730 | // |
1731 | // When we have a pair of subscripts of the form [c1] and [c2 + a*i], |
1732 | // where i is an induction variable, c1 and c2 are loop invariant, |
1733 | // and a is a constant, we can solve it exactly using the |
1734 | // Weak-Zero SIV test. |
1735 | // |
1736 | // Given |
1737 | // |
1738 | // c1 = c2 + a*i |
1739 | // |
1740 | // we get |
1741 | // |
1742 | // (c1 - c2)/a = i |
1743 | // |
1744 | // If i is not an integer, there's no dependence. |
1745 | // If i < 0 or > UB, there's no dependence. |
1746 | // If i = 0, the direction is >= and peeling the |
1747 | // 1st iteration will break the dependence. |
1748 | // If i = UB, the direction is <= and peeling the |
1749 | // last iteration will break the dependence. |
1750 | // Otherwise, the direction is *. |
1751 | // |
1752 | // Can prove independence. Failing that, we can sometimes refine |
1753 | // the directions. Can sometimes show that first or last |
1754 | // iteration carries all the dependences (so worth peeling). |
1755 | // |
1756 | // (see also weakZeroDstSIVtest) |
1757 | // |
1758 | // Return true if dependence disproved. |
1759 | bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff, |
1760 | const SCEV *SrcConst, |
1761 | const SCEV *DstConst, |
1762 | const Loop *CurLoop, unsigned Level, |
1763 | FullDependence &Result, |
1764 | Constraint &NewConstraint) const { |
1765 | // For the WeakSIV test, it's possible the loop isn't common to |
1766 | // the Src and Dst loops. If it isn't, then there's no need to |
1767 | // record a direction. |
1768 | LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n" ); |
1769 | LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n" ); |
1770 | LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n" ); |
1771 | LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n" ); |
1772 | ++WeakZeroSIVapplications; |
1773 | assert(0 < Level && Level <= MaxLevels && "Level out of range" ); |
1774 | Level--; |
1775 | Result.Consistent = false; |
1776 | const SCEV *Delta = SE->getMinusSCEV(LHS: SrcConst, RHS: DstConst); |
1777 | NewConstraint.setLine(AA: SE->getZero(Ty: Delta->getType()), BB: DstCoeff, CC: Delta, |
1778 | CurLoop); |
1779 | LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n" ); |
1780 | if (isKnownPredicate(Pred: CmpInst::ICMP_EQ, X: SrcConst, Y: DstConst)) { |
1781 | if (Level < CommonLevels) { |
1782 | Result.DV[Level].Direction &= Dependence::DVEntry::GE; |
1783 | Result.DV[Level].PeelFirst = true; |
1784 | ++WeakZeroSIVsuccesses; |
1785 | } |
1786 | return false; // dependences caused by first iteration |
1787 | } |
1788 | const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Val: DstCoeff); |
1789 | if (!ConstCoeff) |
1790 | return false; |
1791 | const SCEV *AbsCoeff = |
1792 | SE->isKnownNegative(S: ConstCoeff) ? |
1793 | SE->getNegativeSCEV(V: ConstCoeff) : ConstCoeff; |
1794 | const SCEV *NewDelta = |
1795 | SE->isKnownNegative(S: ConstCoeff) ? SE->getNegativeSCEV(V: Delta) : Delta; |
1796 | |
1797 | // check that Delta/SrcCoeff < iteration count |
1798 | // really check NewDelta < count*AbsCoeff |
1799 | if (const SCEV *UpperBound = collectUpperBound(L: CurLoop, T: Delta->getType())) { |
1800 | LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n" ); |
1801 | const SCEV *Product = SE->getMulExpr(LHS: AbsCoeff, RHS: UpperBound); |
1802 | if (isKnownPredicate(Pred: CmpInst::ICMP_SGT, X: NewDelta, Y: Product)) { |
1803 | ++WeakZeroSIVindependence; |
1804 | ++WeakZeroSIVsuccesses; |
1805 | return true; |
1806 | } |
1807 | if (isKnownPredicate(Pred: CmpInst::ICMP_EQ, X: NewDelta, Y: Product)) { |
1808 | // dependences caused by last iteration |
1809 | if (Level < CommonLevels) { |
1810 | Result.DV[Level].Direction &= Dependence::DVEntry::LE; |
1811 | Result.DV[Level].PeelLast = true; |
1812 | ++WeakZeroSIVsuccesses; |
1813 | } |
1814 | return false; |
1815 | } |
1816 | } |
1817 | |
1818 | // check that Delta/SrcCoeff >= 0 |
1819 | // really check that NewDelta >= 0 |
1820 | if (SE->isKnownNegative(S: NewDelta)) { |
1821 | // No dependence, newDelta < 0 |
1822 | ++WeakZeroSIVindependence; |
1823 | ++WeakZeroSIVsuccesses; |
1824 | return true; |
1825 | } |
1826 | |
1827 | // if SrcCoeff doesn't divide Delta, then no dependence |
1828 | if (isa<SCEVConstant>(Val: Delta) && |
1829 | !isRemainderZero(Dividend: cast<SCEVConstant>(Val: Delta), Divisor: ConstCoeff)) { |
1830 | ++WeakZeroSIVindependence; |
1831 | ++WeakZeroSIVsuccesses; |
1832 | return true; |
1833 | } |
1834 | return false; |
1835 | } |
1836 | |
1837 | |
1838 | // weakZeroDstSIVtest - |
1839 | // From the paper, Practical Dependence Testing, Section 4.2.2 |
1840 | // |
1841 | // When we have a pair of subscripts of the form [c1 + a*i] and [c2], |
1842 | // where i is an induction variable, c1 and c2 are loop invariant, |
1843 | // and a is a constant, we can solve it exactly using the |
1844 | // Weak-Zero SIV test. |
1845 | // |
1846 | // Given |
1847 | // |
1848 | // c1 + a*i = c2 |
1849 | // |
1850 | // we get |
1851 | // |
1852 | // i = (c2 - c1)/a |
1853 | // |
1854 | // If i is not an integer, there's no dependence. |
1855 | // If i < 0 or > UB, there's no dependence. |
1856 | // If i = 0, the direction is <= and peeling the |
1857 | // 1st iteration will break the dependence. |
1858 | // If i = UB, the direction is >= and peeling the |
1859 | // last iteration will break the dependence. |
1860 | // Otherwise, the direction is *. |
1861 | // |
1862 | // Can prove independence. Failing that, we can sometimes refine |
1863 | // the directions. Can sometimes show that first or last |
1864 | // iteration carries all the dependences (so worth peeling). |
1865 | // |
1866 | // (see also weakZeroSrcSIVtest) |
1867 | // |
1868 | // Return true if dependence disproved. |
1869 | bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff, |
1870 | const SCEV *SrcConst, |
1871 | const SCEV *DstConst, |
1872 | const Loop *CurLoop, unsigned Level, |
1873 | FullDependence &Result, |
1874 | Constraint &NewConstraint) const { |
1875 | // For the WeakSIV test, it's possible the loop isn't common to the |
1876 | // Src and Dst loops. If it isn't, then there's no need to record a direction. |
1877 | LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n" ); |
1878 | LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n" ); |
1879 | LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n" ); |
1880 | LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n" ); |
1881 | ++WeakZeroSIVapplications; |
1882 | assert(0 < Level && Level <= SrcLevels && "Level out of range" ); |
1883 | Level--; |
1884 | Result.Consistent = false; |
1885 | const SCEV *Delta = SE->getMinusSCEV(LHS: DstConst, RHS: SrcConst); |
1886 | NewConstraint.setLine(AA: SrcCoeff, BB: SE->getZero(Ty: Delta->getType()), CC: Delta, |
1887 | CurLoop); |
1888 | LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n" ); |
1889 | if (isKnownPredicate(Pred: CmpInst::ICMP_EQ, X: DstConst, Y: SrcConst)) { |
1890 | if (Level < CommonLevels) { |
1891 | Result.DV[Level].Direction &= Dependence::DVEntry::LE; |
1892 | Result.DV[Level].PeelFirst = true; |
1893 | ++WeakZeroSIVsuccesses; |
1894 | } |
1895 | return false; // dependences caused by first iteration |
1896 | } |
1897 | const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Val: SrcCoeff); |
1898 | if (!ConstCoeff) |
1899 | return false; |
1900 | const SCEV *AbsCoeff = |
1901 | SE->isKnownNegative(S: ConstCoeff) ? |
1902 | SE->getNegativeSCEV(V: ConstCoeff) : ConstCoeff; |
1903 | const SCEV *NewDelta = |
1904 | SE->isKnownNegative(S: ConstCoeff) ? SE->getNegativeSCEV(V: Delta) : Delta; |
1905 | |
1906 | // check that Delta/SrcCoeff < iteration count |
1907 | // really check NewDelta < count*AbsCoeff |
1908 | if (const SCEV *UpperBound = collectUpperBound(L: CurLoop, T: Delta->getType())) { |
1909 | LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n" ); |
1910 | const SCEV *Product = SE->getMulExpr(LHS: AbsCoeff, RHS: UpperBound); |
1911 | if (isKnownPredicate(Pred: CmpInst::ICMP_SGT, X: NewDelta, Y: Product)) { |
1912 | ++WeakZeroSIVindependence; |
1913 | ++WeakZeroSIVsuccesses; |
1914 | return true; |
1915 | } |
1916 | if (isKnownPredicate(Pred: CmpInst::ICMP_EQ, X: NewDelta, Y: Product)) { |
1917 | // dependences caused by last iteration |
1918 | if (Level < CommonLevels) { |
1919 | Result.DV[Level].Direction &= Dependence::DVEntry::GE; |
1920 | Result.DV[Level].PeelLast = true; |
1921 | ++WeakZeroSIVsuccesses; |
1922 | } |
1923 | return false; |
1924 | } |
1925 | } |
1926 | |
1927 | // check that Delta/SrcCoeff >= 0 |
1928 | // really check that NewDelta >= 0 |
1929 | if (SE->isKnownNegative(S: NewDelta)) { |
1930 | // No dependence, newDelta < 0 |
1931 | ++WeakZeroSIVindependence; |
1932 | ++WeakZeroSIVsuccesses; |
1933 | return true; |
1934 | } |
1935 | |
1936 | // if SrcCoeff doesn't divide Delta, then no dependence |
1937 | if (isa<SCEVConstant>(Val: Delta) && |
1938 | !isRemainderZero(Dividend: cast<SCEVConstant>(Val: Delta), Divisor: ConstCoeff)) { |
1939 | ++WeakZeroSIVindependence; |
1940 | ++WeakZeroSIVsuccesses; |
1941 | return true; |
1942 | } |
1943 | return false; |
1944 | } |
1945 | |
1946 | |
1947 | // exactRDIVtest - Tests the RDIV subscript pair for dependence. |
1948 | // Things of the form [c1 + a*i] and [c2 + b*j], |
1949 | // where i and j are induction variable, c1 and c2 are loop invariant, |
1950 | // and a and b are constants. |
1951 | // Returns true if any possible dependence is disproved. |
1952 | // Marks the result as inconsistent. |
1953 | // Works in some cases that symbolicRDIVtest doesn't, and vice versa. |
1954 | bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff, |
1955 | const SCEV *SrcConst, const SCEV *DstConst, |
1956 | const Loop *SrcLoop, const Loop *DstLoop, |
1957 | FullDependence &Result) const { |
1958 | LLVM_DEBUG(dbgs() << "\tExact RDIV test\n" ); |
1959 | LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n" ); |
1960 | LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n" ); |
1961 | LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n" ); |
1962 | LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n" ); |
1963 | ++ExactRDIVapplications; |
1964 | Result.Consistent = false; |
1965 | const SCEV *Delta = SE->getMinusSCEV(LHS: DstConst, RHS: SrcConst); |
1966 | LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n" ); |
1967 | const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Val: Delta); |
1968 | const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(Val: SrcCoeff); |
1969 | const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(Val: DstCoeff); |
1970 | if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff) |
1971 | return false; |
1972 | |
1973 | // find gcd |
1974 | APInt G, X, Y; |
1975 | APInt AM = ConstSrcCoeff->getAPInt(); |
1976 | APInt BM = ConstDstCoeff->getAPInt(); |
1977 | APInt CM = ConstDelta->getAPInt(); |
1978 | unsigned Bits = AM.getBitWidth(); |
1979 | if (findGCD(Bits, AM, BM, Delta: CM, G, X, Y)) { |
1980 | // gcd doesn't divide Delta, no dependence |
1981 | ++ExactRDIVindependence; |
1982 | return true; |
1983 | } |
1984 | |
1985 | LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n" ); |
1986 | |
1987 | // since SCEV construction seems to normalize, LM = 0 |
1988 | APInt SrcUM(Bits, 1, true); |
1989 | bool SrcUMvalid = false; |
1990 | // SrcUM is perhaps unavailable, let's check |
1991 | if (const SCEVConstant *UpperBound = |
1992 | collectConstantUpperBound(L: SrcLoop, T: Delta->getType())) { |
1993 | SrcUM = UpperBound->getAPInt(); |
1994 | LLVM_DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n" ); |
1995 | SrcUMvalid = true; |
1996 | } |
1997 | |
1998 | APInt DstUM(Bits, 1, true); |
1999 | bool DstUMvalid = false; |
2000 | // UM is perhaps unavailable, let's check |
2001 | if (const SCEVConstant *UpperBound = |
2002 | collectConstantUpperBound(L: DstLoop, T: Delta->getType())) { |
2003 | DstUM = UpperBound->getAPInt(); |
2004 | LLVM_DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n" ); |
2005 | DstUMvalid = true; |
2006 | } |
2007 | |
2008 | APInt TU(APInt::getSignedMaxValue(numBits: Bits)); |
2009 | APInt TL(APInt::getSignedMinValue(numBits: Bits)); |
2010 | APInt TC = CM.sdiv(RHS: G); |
2011 | APInt TX = X * TC; |
2012 | APInt TY = Y * TC; |
2013 | LLVM_DEBUG(dbgs() << "\t TC = " << TC << "\n" ); |
2014 | LLVM_DEBUG(dbgs() << "\t TX = " << TX << "\n" ); |
2015 | LLVM_DEBUG(dbgs() << "\t TY = " << TY << "\n" ); |
2016 | |
2017 | SmallVector<APInt, 2> TLVec, TUVec; |
2018 | APInt TB = BM.sdiv(RHS: G); |
2019 | if (TB.sgt(RHS: 0)) { |
2020 | TLVec.push_back(Elt: ceilingOfQuotient(A: -TX, B: TB)); |
2021 | LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n" ); |
2022 | if (SrcUMvalid) { |
2023 | TUVec.push_back(Elt: floorOfQuotient(A: SrcUM - TX, B: TB)); |
2024 | LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n" ); |
2025 | } |
2026 | } else { |
2027 | TUVec.push_back(Elt: floorOfQuotient(A: -TX, B: TB)); |
2028 | LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n" ); |
2029 | if (SrcUMvalid) { |
2030 | TLVec.push_back(Elt: ceilingOfQuotient(A: SrcUM - TX, B: TB)); |
2031 | LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n" ); |
2032 | } |
2033 | } |
2034 | |
2035 | APInt TA = AM.sdiv(RHS: G); |
2036 | if (TA.sgt(RHS: 0)) { |
2037 | TLVec.push_back(Elt: ceilingOfQuotient(A: -TY, B: TA)); |
2038 | LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n" ); |
2039 | if (DstUMvalid) { |
2040 | TUVec.push_back(Elt: floorOfQuotient(A: DstUM - TY, B: TA)); |
2041 | LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n" ); |
2042 | } |
2043 | } else { |
2044 | TUVec.push_back(Elt: floorOfQuotient(A: -TY, B: TA)); |
2045 | LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n" ); |
2046 | if (DstUMvalid) { |
2047 | TLVec.push_back(Elt: ceilingOfQuotient(A: DstUM - TY, B: TA)); |
2048 | LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n" ); |
2049 | } |
2050 | } |
2051 | |
2052 | if (TLVec.empty() || TUVec.empty()) |
2053 | return false; |
2054 | |
2055 | LLVM_DEBUG(dbgs() << "\t TA = " << TA << "\n" ); |
2056 | LLVM_DEBUG(dbgs() << "\t TB = " << TB << "\n" ); |
2057 | |
2058 | TL = APIntOps::smax(A: TLVec.front(), B: TLVec.back()); |
2059 | TU = APIntOps::smin(A: TUVec.front(), B: TUVec.back()); |
2060 | LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n" ); |
2061 | LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n" ); |
2062 | |
2063 | if (TL.sgt(RHS: TU)) |
2064 | ++ExactRDIVindependence; |
2065 | return TL.sgt(RHS: TU); |
2066 | } |
2067 | |
2068 | |
2069 | // symbolicRDIVtest - |
2070 | // In Section 4.5 of the Practical Dependence Testing paper,the authors |
2071 | // introduce a special case of Banerjee's Inequalities (also called the |
2072 | // Extreme-Value Test) that can handle some of the SIV and RDIV cases, |
2073 | // particularly cases with symbolics. Since it's only able to disprove |
2074 | // dependence (not compute distances or directions), we'll use it as a |
2075 | // fall back for the other tests. |
2076 | // |
2077 | // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j] |
2078 | // where i and j are induction variables and c1 and c2 are loop invariants, |
2079 | // we can use the symbolic tests to disprove some dependences, serving as a |
2080 | // backup for the RDIV test. Note that i and j can be the same variable, |
2081 | // letting this test serve as a backup for the various SIV tests. |
2082 | // |
2083 | // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some |
2084 | // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized) |
2085 | // loop bounds for the i and j loops, respectively. So, ... |
2086 | // |
2087 | // c1 + a1*i = c2 + a2*j |
2088 | // a1*i - a2*j = c2 - c1 |
2089 | // |
2090 | // To test for a dependence, we compute c2 - c1 and make sure it's in the |
2091 | // range of the maximum and minimum possible values of a1*i - a2*j. |
2092 | // Considering the signs of a1 and a2, we have 4 possible cases: |
2093 | // |
2094 | // 1) If a1 >= 0 and a2 >= 0, then |
2095 | // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0 |
2096 | // -a2*N2 <= c2 - c1 <= a1*N1 |
2097 | // |
2098 | // 2) If a1 >= 0 and a2 <= 0, then |
2099 | // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2 |
2100 | // 0 <= c2 - c1 <= a1*N1 - a2*N2 |
2101 | // |
2102 | // 3) If a1 <= 0 and a2 >= 0, then |
2103 | // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0 |
2104 | // a1*N1 - a2*N2 <= c2 - c1 <= 0 |
2105 | // |
2106 | // 4) If a1 <= 0 and a2 <= 0, then |
2107 | // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2 |
2108 | // a1*N1 <= c2 - c1 <= -a2*N2 |
2109 | // |
2110 | // return true if dependence disproved |
2111 | bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2, |
2112 | const SCEV *C1, const SCEV *C2, |
2113 | const Loop *Loop1, |
2114 | const Loop *Loop2) const { |
2115 | ++SymbolicRDIVapplications; |
2116 | LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n" ); |
2117 | LLVM_DEBUG(dbgs() << "\t A1 = " << *A1); |
2118 | LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n" ); |
2119 | LLVM_DEBUG(dbgs() << "\t A2 = " << *A2 << "\n" ); |
2120 | LLVM_DEBUG(dbgs() << "\t C1 = " << *C1 << "\n" ); |
2121 | LLVM_DEBUG(dbgs() << "\t C2 = " << *C2 << "\n" ); |
2122 | const SCEV *N1 = collectUpperBound(L: Loop1, T: A1->getType()); |
2123 | const SCEV *N2 = collectUpperBound(L: Loop2, T: A1->getType()); |
2124 | LLVM_DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n" ); |
2125 | LLVM_DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n" ); |
2126 | const SCEV *C2_C1 = SE->getMinusSCEV(LHS: C2, RHS: C1); |
2127 | const SCEV *C1_C2 = SE->getMinusSCEV(LHS: C1, RHS: C2); |
2128 | LLVM_DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n" ); |
2129 | LLVM_DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n" ); |
2130 | if (SE->isKnownNonNegative(S: A1)) { |
2131 | if (SE->isKnownNonNegative(S: A2)) { |
2132 | // A1 >= 0 && A2 >= 0 |
2133 | if (N1) { |
2134 | // make sure that c2 - c1 <= a1*N1 |
2135 | const SCEV *A1N1 = SE->getMulExpr(LHS: A1, RHS: N1); |
2136 | LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n" ); |
2137 | if (isKnownPredicate(Pred: CmpInst::ICMP_SGT, X: C2_C1, Y: A1N1)) { |
2138 | ++SymbolicRDIVindependence; |
2139 | return true; |
2140 | } |
2141 | } |
2142 | if (N2) { |
2143 | // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2 |
2144 | const SCEV *A2N2 = SE->getMulExpr(LHS: A2, RHS: N2); |
2145 | LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n" ); |
2146 | if (isKnownPredicate(Pred: CmpInst::ICMP_SLT, X: A2N2, Y: C1_C2)) { |
2147 | ++SymbolicRDIVindependence; |
2148 | return true; |
2149 | } |
2150 | } |
2151 | } |
2152 | else if (SE->isKnownNonPositive(S: A2)) { |
2153 | // a1 >= 0 && a2 <= 0 |
2154 | if (N1 && N2) { |
2155 | // make sure that c2 - c1 <= a1*N1 - a2*N2 |
2156 | const SCEV *A1N1 = SE->getMulExpr(LHS: A1, RHS: N1); |
2157 | const SCEV *A2N2 = SE->getMulExpr(LHS: A2, RHS: N2); |
2158 | const SCEV *A1N1_A2N2 = SE->getMinusSCEV(LHS: A1N1, RHS: A2N2); |
2159 | LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n" ); |
2160 | if (isKnownPredicate(Pred: CmpInst::ICMP_SGT, X: C2_C1, Y: A1N1_A2N2)) { |
2161 | ++SymbolicRDIVindependence; |
2162 | return true; |
2163 | } |
2164 | } |
2165 | // make sure that 0 <= c2 - c1 |
2166 | if (SE->isKnownNegative(S: C2_C1)) { |
2167 | ++SymbolicRDIVindependence; |
2168 | return true; |
2169 | } |
2170 | } |
2171 | } |
2172 | else if (SE->isKnownNonPositive(S: A1)) { |
2173 | if (SE->isKnownNonNegative(S: A2)) { |
2174 | // a1 <= 0 && a2 >= 0 |
2175 | if (N1 && N2) { |
2176 | // make sure that a1*N1 - a2*N2 <= c2 - c1 |
2177 | const SCEV *A1N1 = SE->getMulExpr(LHS: A1, RHS: N1); |
2178 | const SCEV *A2N2 = SE->getMulExpr(LHS: A2, RHS: N2); |
2179 | const SCEV *A1N1_A2N2 = SE->getMinusSCEV(LHS: A1N1, RHS: A2N2); |
2180 | LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n" ); |
2181 | if (isKnownPredicate(Pred: CmpInst::ICMP_SGT, X: A1N1_A2N2, Y: C2_C1)) { |
2182 | ++SymbolicRDIVindependence; |
2183 | return true; |
2184 | } |
2185 | } |
2186 | // make sure that c2 - c1 <= 0 |
2187 | if (SE->isKnownPositive(S: C2_C1)) { |
2188 | ++SymbolicRDIVindependence; |
2189 | return true; |
2190 | } |
2191 | } |
2192 | else if (SE->isKnownNonPositive(S: A2)) { |
2193 | // a1 <= 0 && a2 <= 0 |
2194 | if (N1) { |
2195 | // make sure that a1*N1 <= c2 - c1 |
2196 | const SCEV *A1N1 = SE->getMulExpr(LHS: A1, RHS: N1); |
2197 | LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n" ); |
2198 | if (isKnownPredicate(Pred: CmpInst::ICMP_SGT, X: A1N1, Y: C2_C1)) { |
2199 | ++SymbolicRDIVindependence; |
2200 | return true; |
2201 | } |
2202 | } |
2203 | if (N2) { |
2204 | // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2 |
2205 | const SCEV *A2N2 = SE->getMulExpr(LHS: A2, RHS: N2); |
2206 | LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n" ); |
2207 | if (isKnownPredicate(Pred: CmpInst::ICMP_SLT, X: C1_C2, Y: A2N2)) { |
2208 | ++SymbolicRDIVindependence; |
2209 | return true; |
2210 | } |
2211 | } |
2212 | } |
2213 | } |
2214 | return false; |
2215 | } |
2216 | |
2217 | |
2218 | // testSIV - |
2219 | // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i] |
2220 | // where i is an induction variable, c1 and c2 are loop invariant, and a1 and |
2221 | // a2 are constant, we attack it with an SIV test. While they can all be |
2222 | // solved with the Exact SIV test, it's worthwhile to use simpler tests when |
2223 | // they apply; they're cheaper and sometimes more precise. |
2224 | // |
2225 | // Return true if dependence disproved. |
2226 | bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level, |
2227 | FullDependence &Result, Constraint &NewConstraint, |
2228 | const SCEV *&SplitIter) const { |
2229 | LLVM_DEBUG(dbgs() << " src = " << *Src << "\n" ); |
2230 | LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n" ); |
2231 | const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Val: Src); |
2232 | const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Val: Dst); |
2233 | if (SrcAddRec && DstAddRec) { |
2234 | const SCEV *SrcConst = SrcAddRec->getStart(); |
2235 | const SCEV *DstConst = DstAddRec->getStart(); |
2236 | const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(SE&: *SE); |
2237 | const SCEV *DstCoeff = DstAddRec->getStepRecurrence(SE&: *SE); |
2238 | const Loop *CurLoop = SrcAddRec->getLoop(); |
2239 | assert(CurLoop == DstAddRec->getLoop() && |
2240 | "both loops in SIV should be same" ); |
2241 | Level = mapSrcLoop(SrcLoop: CurLoop); |
2242 | bool disproven; |
2243 | if (SrcCoeff == DstCoeff) |
2244 | disproven = strongSIVtest(Coeff: SrcCoeff, SrcConst, DstConst, CurLoop, |
2245 | Level, Result, NewConstraint); |
2246 | else if (SrcCoeff == SE->getNegativeSCEV(V: DstCoeff)) |
2247 | disproven = weakCrossingSIVtest(Coeff: SrcCoeff, SrcConst, DstConst, CurLoop, |
2248 | Level, Result, NewConstraint, SplitIter); |
2249 | else |
2250 | disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, |
2251 | Level, Result, NewConstraint); |
2252 | return disproven || |
2253 | gcdMIVtest(Src, Dst, Result) || |
2254 | symbolicRDIVtest(A1: SrcCoeff, A2: DstCoeff, C1: SrcConst, C2: DstConst, Loop1: CurLoop, Loop2: CurLoop); |
2255 | } |
2256 | if (SrcAddRec) { |
2257 | const SCEV *SrcConst = SrcAddRec->getStart(); |
2258 | const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(SE&: *SE); |
2259 | const SCEV *DstConst = Dst; |
2260 | const Loop *CurLoop = SrcAddRec->getLoop(); |
2261 | Level = mapSrcLoop(SrcLoop: CurLoop); |
2262 | return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop, |
2263 | Level, Result, NewConstraint) || |
2264 | gcdMIVtest(Src, Dst, Result); |
2265 | } |
2266 | if (DstAddRec) { |
2267 | const SCEV *DstConst = DstAddRec->getStart(); |
2268 | const SCEV *DstCoeff = DstAddRec->getStepRecurrence(SE&: *SE); |
2269 | const SCEV *SrcConst = Src; |
2270 | const Loop *CurLoop = DstAddRec->getLoop(); |
2271 | Level = mapDstLoop(DstLoop: CurLoop); |
2272 | return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst, |
2273 | CurLoop, Level, Result, NewConstraint) || |
2274 | gcdMIVtest(Src, Dst, Result); |
2275 | } |
2276 | llvm_unreachable("SIV test expected at least one AddRec" ); |
2277 | return false; |
2278 | } |
2279 | |
2280 | |
2281 | // testRDIV - |
2282 | // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j] |
2283 | // where i and j are induction variables, c1 and c2 are loop invariant, |
2284 | // and a1 and a2 are constant, we can solve it exactly with an easy adaptation |
2285 | // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test. |
2286 | // It doesn't make sense to talk about distance or direction in this case, |
2287 | // so there's no point in making special versions of the Strong SIV test or |
2288 | // the Weak-crossing SIV test. |
2289 | // |
2290 | // With minor algebra, this test can also be used for things like |
2291 | // [c1 + a1*i + a2*j][c2]. |
2292 | // |
2293 | // Return true if dependence disproved. |
2294 | bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst, |
2295 | FullDependence &Result) const { |
2296 | // we have 3 possible situations here: |
2297 | // 1) [a*i + b] and [c*j + d] |
2298 | // 2) [a*i + c*j + b] and [d] |
2299 | // 3) [b] and [a*i + c*j + d] |
2300 | // We need to find what we've got and get organized |
2301 | |
2302 | const SCEV *SrcConst, *DstConst; |
2303 | const SCEV *SrcCoeff, *DstCoeff; |
2304 | const Loop *SrcLoop, *DstLoop; |
2305 | |
2306 | LLVM_DEBUG(dbgs() << " src = " << *Src << "\n" ); |
2307 | LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n" ); |
2308 | const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Val: Src); |
2309 | const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Val: Dst); |
2310 | if (SrcAddRec && DstAddRec) { |
2311 | SrcConst = SrcAddRec->getStart(); |
2312 | SrcCoeff = SrcAddRec->getStepRecurrence(SE&: *SE); |
2313 | SrcLoop = SrcAddRec->getLoop(); |
2314 | DstConst = DstAddRec->getStart(); |
2315 | DstCoeff = DstAddRec->getStepRecurrence(SE&: *SE); |
2316 | DstLoop = DstAddRec->getLoop(); |
2317 | } |
2318 | else if (SrcAddRec) { |
2319 | if (const SCEVAddRecExpr *tmpAddRec = |
2320 | dyn_cast<SCEVAddRecExpr>(Val: SrcAddRec->getStart())) { |
2321 | SrcConst = tmpAddRec->getStart(); |
2322 | SrcCoeff = tmpAddRec->getStepRecurrence(SE&: *SE); |
2323 | SrcLoop = tmpAddRec->getLoop(); |
2324 | DstConst = Dst; |
2325 | DstCoeff = SE->getNegativeSCEV(V: SrcAddRec->getStepRecurrence(SE&: *SE)); |
2326 | DstLoop = SrcAddRec->getLoop(); |
2327 | } |
2328 | else |
2329 | llvm_unreachable("RDIV reached by surprising SCEVs" ); |
2330 | } |
2331 | else if (DstAddRec) { |
2332 | if (const SCEVAddRecExpr *tmpAddRec = |
2333 | dyn_cast<SCEVAddRecExpr>(Val: DstAddRec->getStart())) { |
2334 | DstConst = tmpAddRec->getStart(); |
2335 | DstCoeff = tmpAddRec->getStepRecurrence(SE&: *SE); |
2336 | DstLoop = tmpAddRec->getLoop(); |
2337 | SrcConst = Src; |
2338 | SrcCoeff = SE->getNegativeSCEV(V: DstAddRec->getStepRecurrence(SE&: *SE)); |
2339 | SrcLoop = DstAddRec->getLoop(); |
2340 | } |
2341 | else |
2342 | llvm_unreachable("RDIV reached by surprising SCEVs" ); |
2343 | } |
2344 | else |
2345 | llvm_unreachable("RDIV expected at least one AddRec" ); |
2346 | return exactRDIVtest(SrcCoeff, DstCoeff, |
2347 | SrcConst, DstConst, |
2348 | SrcLoop, DstLoop, |
2349 | Result) || |
2350 | gcdMIVtest(Src, Dst, Result) || |
2351 | symbolicRDIVtest(A1: SrcCoeff, A2: DstCoeff, |
2352 | C1: SrcConst, C2: DstConst, |
2353 | Loop1: SrcLoop, Loop2: DstLoop); |
2354 | } |
2355 | |
2356 | |
2357 | // Tests the single-subscript MIV pair (Src and Dst) for dependence. |
2358 | // Return true if dependence disproved. |
2359 | // Can sometimes refine direction vectors. |
2360 | bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst, |
2361 | const SmallBitVector &Loops, |
2362 | FullDependence &Result) const { |
2363 | LLVM_DEBUG(dbgs() << " src = " << *Src << "\n" ); |
2364 | LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n" ); |
2365 | Result.Consistent = false; |
2366 | return gcdMIVtest(Src, Dst, Result) || |
2367 | banerjeeMIVtest(Src, Dst, Loops, Result); |
2368 | } |
2369 | |
2370 | |
2371 | // Given a product, e.g., 10*X*Y, returns the first constant operand, |
2372 | // in this case 10. If there is no constant part, returns NULL. |
2373 | static |
2374 | const SCEVConstant *getConstantPart(const SCEV *Expr) { |
2375 | if (const auto *Constant = dyn_cast<SCEVConstant>(Val: Expr)) |
2376 | return Constant; |
2377 | else if (const auto *Product = dyn_cast<SCEVMulExpr>(Val: Expr)) |
2378 | if (const auto *Constant = dyn_cast<SCEVConstant>(Val: Product->getOperand(i: 0))) |
2379 | return Constant; |
2380 | return nullptr; |
2381 | } |
2382 | |
2383 | |
2384 | //===----------------------------------------------------------------------===// |
2385 | // gcdMIVtest - |
2386 | // Tests an MIV subscript pair for dependence. |
2387 | // Returns true if any possible dependence is disproved. |
2388 | // Marks the result as inconsistent. |
2389 | // Can sometimes disprove the equal direction for 1 or more loops, |
2390 | // as discussed in Michael Wolfe's book, |
2391 | // High Performance Compilers for Parallel Computing, page 235. |
2392 | // |
2393 | // We spend some effort (code!) to handle cases like |
2394 | // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables, |
2395 | // but M and N are just loop-invariant variables. |
2396 | // This should help us handle linearized subscripts; |
2397 | // also makes this test a useful backup to the various SIV tests. |
2398 | // |
2399 | // It occurs to me that the presence of loop-invariant variables |
2400 | // changes the nature of the test from "greatest common divisor" |
2401 | // to "a common divisor". |
2402 | bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst, |
2403 | FullDependence &Result) const { |
2404 | LLVM_DEBUG(dbgs() << "starting gcd\n" ); |
2405 | ++GCDapplications; |
2406 | unsigned BitWidth = SE->getTypeSizeInBits(Ty: Src->getType()); |
2407 | APInt RunningGCD = APInt::getZero(numBits: BitWidth); |
2408 | |
2409 | // Examine Src coefficients. |
2410 | // Compute running GCD and record source constant. |
2411 | // Because we're looking for the constant at the end of the chain, |
2412 | // we can't quit the loop just because the GCD == 1. |
2413 | const SCEV *Coefficients = Src; |
2414 | while (const SCEVAddRecExpr *AddRec = |
2415 | dyn_cast<SCEVAddRecExpr>(Val: Coefficients)) { |
2416 | const SCEV *Coeff = AddRec->getStepRecurrence(SE&: *SE); |
2417 | // If the coefficient is the product of a constant and other stuff, |
2418 | // we can use the constant in the GCD computation. |
2419 | const auto *Constant = getConstantPart(Expr: Coeff); |
2420 | if (!Constant) |
2421 | return false; |
2422 | APInt ConstCoeff = Constant->getAPInt(); |
2423 | RunningGCD = APIntOps::GreatestCommonDivisor(A: RunningGCD, B: ConstCoeff.abs()); |
2424 | Coefficients = AddRec->getStart(); |
2425 | } |
2426 | const SCEV *SrcConst = Coefficients; |
2427 | |
2428 | // Examine Dst coefficients. |
2429 | // Compute running GCD and record destination constant. |
2430 | // Because we're looking for the constant at the end of the chain, |
2431 | // we can't quit the loop just because the GCD == 1. |
2432 | Coefficients = Dst; |
2433 | while (const SCEVAddRecExpr *AddRec = |
2434 | dyn_cast<SCEVAddRecExpr>(Val: Coefficients)) { |
2435 | const SCEV *Coeff = AddRec->getStepRecurrence(SE&: *SE); |
2436 | // If the coefficient is the product of a constant and other stuff, |
2437 | // we can use the constant in the GCD computation. |
2438 | const auto *Constant = getConstantPart(Expr: Coeff); |
2439 | if (!Constant) |
2440 | return false; |
2441 | APInt ConstCoeff = Constant->getAPInt(); |
2442 | RunningGCD = APIntOps::GreatestCommonDivisor(A: RunningGCD, B: ConstCoeff.abs()); |
2443 | Coefficients = AddRec->getStart(); |
2444 | } |
2445 | const SCEV *DstConst = Coefficients; |
2446 | |
2447 | APInt = APInt::getZero(numBits: BitWidth); |
2448 | const SCEV *Delta = SE->getMinusSCEV(LHS: DstConst, RHS: SrcConst); |
2449 | LLVM_DEBUG(dbgs() << " Delta = " << *Delta << "\n" ); |
2450 | const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Val: Delta); |
2451 | if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Val: Delta)) { |
2452 | // If Delta is a sum of products, we may be able to make further progress. |
2453 | for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) { |
2454 | const SCEV *Operand = Sum->getOperand(i: Op); |
2455 | if (isa<SCEVConstant>(Val: Operand)) { |
2456 | assert(!Constant && "Surprised to find multiple constants" ); |
2457 | Constant = cast<SCEVConstant>(Val: Operand); |
2458 | } |
2459 | else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Val: Operand)) { |
2460 | // Search for constant operand to participate in GCD; |
2461 | // If none found; return false. |
2462 | const SCEVConstant *ConstOp = getConstantPart(Expr: Product); |
2463 | if (!ConstOp) |
2464 | return false; |
2465 | APInt ConstOpValue = ConstOp->getAPInt(); |
2466 | ExtraGCD = APIntOps::GreatestCommonDivisor(A: ExtraGCD, |
2467 | B: ConstOpValue.abs()); |
2468 | } |
2469 | else |
2470 | return false; |
2471 | } |
2472 | } |
2473 | if (!Constant) |
2474 | return false; |
2475 | APInt ConstDelta = cast<SCEVConstant>(Val: Constant)->getAPInt(); |
2476 | LLVM_DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n" ); |
2477 | if (ConstDelta == 0) |
2478 | return false; |
2479 | RunningGCD = APIntOps::GreatestCommonDivisor(A: RunningGCD, B: ExtraGCD); |
2480 | LLVM_DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n" ); |
2481 | APInt Remainder = ConstDelta.srem(RHS: RunningGCD); |
2482 | if (Remainder != 0) { |
2483 | ++GCDindependence; |
2484 | return true; |
2485 | } |
2486 | |
2487 | // Try to disprove equal directions. |
2488 | // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1], |
2489 | // the code above can't disprove the dependence because the GCD = 1. |
2490 | // So we consider what happen if i = i' and what happens if j = j'. |
2491 | // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1], |
2492 | // which is infeasible, so we can disallow the = direction for the i level. |
2493 | // Setting j = j' doesn't help matters, so we end up with a direction vector |
2494 | // of [<>, *] |
2495 | // |
2496 | // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5], |
2497 | // we need to remember that the constant part is 5 and the RunningGCD should |
2498 | // be initialized to ExtraGCD = 30. |
2499 | LLVM_DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n'); |
2500 | |
2501 | bool Improved = false; |
2502 | Coefficients = Src; |
2503 | while (const SCEVAddRecExpr *AddRec = |
2504 | dyn_cast<SCEVAddRecExpr>(Val: Coefficients)) { |
2505 | Coefficients = AddRec->getStart(); |
2506 | const Loop *CurLoop = AddRec->getLoop(); |
2507 | RunningGCD = ExtraGCD; |
2508 | const SCEV *SrcCoeff = AddRec->getStepRecurrence(SE&: *SE); |
2509 | const SCEV *DstCoeff = SE->getMinusSCEV(LHS: SrcCoeff, RHS: SrcCoeff); |
2510 | const SCEV *Inner = Src; |
2511 | while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Val: Inner)) { |
2512 | AddRec = cast<SCEVAddRecExpr>(Val: Inner); |
2513 | const SCEV *Coeff = AddRec->getStepRecurrence(SE&: *SE); |
2514 | if (CurLoop == AddRec->getLoop()) |
2515 | ; // SrcCoeff == Coeff |
2516 | else { |
2517 | // If the coefficient is the product of a constant and other stuff, |
2518 | // we can use the constant in the GCD computation. |
2519 | Constant = getConstantPart(Expr: Coeff); |
2520 | if (!Constant) |
2521 | return false; |
2522 | APInt ConstCoeff = Constant->getAPInt(); |
2523 | RunningGCD = APIntOps::GreatestCommonDivisor(A: RunningGCD, B: ConstCoeff.abs()); |
2524 | } |
2525 | Inner = AddRec->getStart(); |
2526 | } |
2527 | Inner = Dst; |
2528 | while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Val: Inner)) { |
2529 | AddRec = cast<SCEVAddRecExpr>(Val: Inner); |
2530 | const SCEV *Coeff = AddRec->getStepRecurrence(SE&: *SE); |
2531 | if (CurLoop == AddRec->getLoop()) |
2532 | DstCoeff = Coeff; |
2533 | else { |
2534 | // If the coefficient is the product of a constant and other stuff, |
2535 | // we can use the constant in the GCD computation. |
2536 | Constant = getConstantPart(Expr: Coeff); |
2537 | if (!Constant) |
2538 | return false; |
2539 | APInt ConstCoeff = Constant->getAPInt(); |
2540 | RunningGCD = APIntOps::GreatestCommonDivisor(A: RunningGCD, B: ConstCoeff.abs()); |
2541 | } |
2542 | Inner = AddRec->getStart(); |
2543 | } |
2544 | Delta = SE->getMinusSCEV(LHS: SrcCoeff, RHS: DstCoeff); |
2545 | // If the coefficient is the product of a constant and other stuff, |
2546 | // we can use the constant in the GCD computation. |
2547 | Constant = getConstantPart(Expr: Delta); |
2548 | if (!Constant) |
2549 | // The difference of the two coefficients might not be a product |
2550 | // or constant, in which case we give up on this direction. |
2551 | continue; |
2552 | APInt ConstCoeff = Constant->getAPInt(); |
2553 | RunningGCD = APIntOps::GreatestCommonDivisor(A: RunningGCD, B: ConstCoeff.abs()); |
2554 | LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n" ); |
2555 | if (RunningGCD != 0) { |
2556 | Remainder = ConstDelta.srem(RHS: RunningGCD); |
2557 | LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n" ); |
2558 | if (Remainder != 0) { |
2559 | unsigned Level = mapSrcLoop(SrcLoop: CurLoop); |
2560 | Result.DV[Level - 1].Direction &= ~Dependence::DVEntry::EQ; |
2561 | Improved = true; |
2562 | } |
2563 | } |
2564 | } |
2565 | if (Improved) |
2566 | ++GCDsuccesses; |
2567 | LLVM_DEBUG(dbgs() << "all done\n" ); |
2568 | return false; |
2569 | } |
2570 | |
2571 | |
2572 | //===----------------------------------------------------------------------===// |
2573 | // banerjeeMIVtest - |
2574 | // Use Banerjee's Inequalities to test an MIV subscript pair. |
2575 | // (Wolfe, in the race-car book, calls this the Extreme Value Test.) |
2576 | // Generally follows the discussion in Section 2.5.2 of |
2577 | // |
2578 | // Optimizing Supercompilers for Supercomputers |
2579 | // Michael Wolfe |
2580 | // |
2581 | // The inequalities given on page 25 are simplified in that loops are |
2582 | // normalized so that the lower bound is always 0 and the stride is always 1. |
2583 | // For example, Wolfe gives |
2584 | // |
2585 | // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k |
2586 | // |
2587 | // where A_k is the coefficient of the kth index in the source subscript, |
2588 | // B_k is the coefficient of the kth index in the destination subscript, |
2589 | // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth |
2590 | // index, and N_k is the stride of the kth index. Since all loops are normalized |
2591 | // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the |
2592 | // equation to |
2593 | // |
2594 | // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1 |
2595 | // = (A^-_k - B_k)^- (U_k - 1) - B_k |
2596 | // |
2597 | // Similar simplifications are possible for the other equations. |
2598 | // |
2599 | // When we can't determine the number of iterations for a loop, |
2600 | // we use NULL as an indicator for the worst case, infinity. |
2601 | // When computing the upper bound, NULL denotes +inf; |
2602 | // for the lower bound, NULL denotes -inf. |
2603 | // |
2604 | // Return true if dependence disproved. |
2605 | bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst, |
2606 | const SmallBitVector &Loops, |
2607 | FullDependence &Result) const { |
2608 | LLVM_DEBUG(dbgs() << "starting Banerjee\n" ); |
2609 | ++BanerjeeApplications; |
2610 | LLVM_DEBUG(dbgs() << " Src = " << *Src << '\n'); |
2611 | const SCEV *A0; |
2612 | CoefficientInfo *A = collectCoeffInfo(Subscript: Src, SrcFlag: true, Constant&: A0); |
2613 | LLVM_DEBUG(dbgs() << " Dst = " << *Dst << '\n'); |
2614 | const SCEV *B0; |
2615 | CoefficientInfo *B = collectCoeffInfo(Subscript: Dst, SrcFlag: false, Constant&: B0); |
2616 | BoundInfo *Bound = new BoundInfo[MaxLevels + 1]; |
2617 | const SCEV *Delta = SE->getMinusSCEV(LHS: B0, RHS: A0); |
2618 | LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n'); |
2619 | |
2620 | // Compute bounds for all the * directions. |
2621 | LLVM_DEBUG(dbgs() << "\tBounds[*]\n" ); |
2622 | for (unsigned K = 1; K <= MaxLevels; ++K) { |
2623 | Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations; |
2624 | Bound[K].Direction = Dependence::DVEntry::ALL; |
2625 | Bound[K].DirSet = Dependence::DVEntry::NONE; |
2626 | findBoundsALL(A, B, Bound, K); |
2627 | #ifndef NDEBUG |
2628 | LLVM_DEBUG(dbgs() << "\t " << K << '\t'); |
2629 | if (Bound[K].Lower[Dependence::DVEntry::ALL]) |
2630 | LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t'); |
2631 | else |
2632 | LLVM_DEBUG(dbgs() << "-inf\t" ); |
2633 | if (Bound[K].Upper[Dependence::DVEntry::ALL]) |
2634 | LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n'); |
2635 | else |
2636 | LLVM_DEBUG(dbgs() << "+inf\n" ); |
2637 | #endif |
2638 | } |
2639 | |
2640 | // Test the *, *, *, ... case. |
2641 | bool Disproved = false; |
2642 | if (testBounds(DirKind: Dependence::DVEntry::ALL, Level: 0, Bound, Delta)) { |
2643 | // Explore the direction vector hierarchy. |
2644 | unsigned DepthExpanded = 0; |
2645 | unsigned NewDeps = exploreDirections(Level: 1, A, B, Bound, |
2646 | Loops, DepthExpanded, Delta); |
2647 | if (NewDeps > 0) { |
2648 | bool Improved = false; |
2649 | for (unsigned K = 1; K <= CommonLevels; ++K) { |
2650 | if (Loops[K]) { |
2651 | unsigned Old = Result.DV[K - 1].Direction; |
2652 | Result.DV[K - 1].Direction = Old & Bound[K].DirSet; |
2653 | Improved |= Old != Result.DV[K - 1].Direction; |
2654 | if (!Result.DV[K - 1].Direction) { |
2655 | Improved = false; |
2656 | Disproved = true; |
2657 | break; |
2658 | } |
2659 | } |
2660 | } |
2661 | if (Improved) |
2662 | ++BanerjeeSuccesses; |
2663 | } |
2664 | else { |
2665 | ++BanerjeeIndependence; |
2666 | Disproved = true; |
2667 | } |
2668 | } |
2669 | else { |
2670 | ++BanerjeeIndependence; |
2671 | Disproved = true; |
2672 | } |
2673 | delete [] Bound; |
2674 | delete [] A; |
2675 | delete [] B; |
2676 | return Disproved; |
2677 | } |
2678 | |
2679 | |
2680 | // Hierarchically expands the direction vector |
2681 | // search space, combining the directions of discovered dependences |
2682 | // in the DirSet field of Bound. Returns the number of distinct |
2683 | // dependences discovered. If the dependence is disproved, |
2684 | // it will return 0. |
2685 | unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A, |
2686 | CoefficientInfo *B, BoundInfo *Bound, |
2687 | const SmallBitVector &Loops, |
2688 | unsigned &DepthExpanded, |
2689 | const SCEV *Delta) const { |
2690 | // This algorithm has worst case complexity of O(3^n), where 'n' is the number |
2691 | // of common loop levels. To avoid excessive compile-time, pessimize all the |
2692 | // results and immediately return when the number of common levels is beyond |
2693 | // the given threshold. |
2694 | if (CommonLevels > MIVMaxLevelThreshold) { |
2695 | LLVM_DEBUG(dbgs() << "Number of common levels exceeded the threshold. MIV " |
2696 | "direction exploration is terminated.\n" ); |
2697 | for (unsigned K = 1; K <= CommonLevels; ++K) |
2698 | if (Loops[K]) |
2699 | Bound[K].DirSet = Dependence::DVEntry::ALL; |
2700 | return 1; |
2701 | } |
2702 | |
2703 | if (Level > CommonLevels) { |
2704 | // record result |
2705 | LLVM_DEBUG(dbgs() << "\t[" ); |
2706 | for (unsigned K = 1; K <= CommonLevels; ++K) { |
2707 | if (Loops[K]) { |
2708 | Bound[K].DirSet |= Bound[K].Direction; |
2709 | #ifndef NDEBUG |
2710 | switch (Bound[K].Direction) { |
2711 | case Dependence::DVEntry::LT: |
2712 | LLVM_DEBUG(dbgs() << " <" ); |
2713 | break; |
2714 | case Dependence::DVEntry::EQ: |
2715 | LLVM_DEBUG(dbgs() << " =" ); |
2716 | break; |
2717 | case Dependence::DVEntry::GT: |
2718 | LLVM_DEBUG(dbgs() << " >" ); |
2719 | break; |
2720 | case Dependence::DVEntry::ALL: |
2721 | LLVM_DEBUG(dbgs() << " *" ); |
2722 | break; |
2723 | default: |
2724 | llvm_unreachable("unexpected Bound[K].Direction" ); |
2725 | } |
2726 | #endif |
2727 | } |
2728 | } |
2729 | LLVM_DEBUG(dbgs() << " ]\n" ); |
2730 | return 1; |
2731 | } |
2732 | if (Loops[Level]) { |
2733 | if (Level > DepthExpanded) { |
2734 | DepthExpanded = Level; |
2735 | // compute bounds for <, =, > at current level |
2736 | findBoundsLT(A, B, Bound, K: Level); |
2737 | findBoundsGT(A, B, Bound, K: Level); |
2738 | findBoundsEQ(A, B, Bound, K: Level); |
2739 | #ifndef NDEBUG |
2740 | LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n'); |
2741 | LLVM_DEBUG(dbgs() << "\t <\t" ); |
2742 | if (Bound[Level].Lower[Dependence::DVEntry::LT]) |
2743 | LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT] |
2744 | << '\t'); |
2745 | else |
2746 | LLVM_DEBUG(dbgs() << "-inf\t" ); |
2747 | if (Bound[Level].Upper[Dependence::DVEntry::LT]) |
2748 | LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT] |
2749 | << '\n'); |
2750 | else |
2751 | LLVM_DEBUG(dbgs() << "+inf\n" ); |
2752 | LLVM_DEBUG(dbgs() << "\t =\t" ); |
2753 | if (Bound[Level].Lower[Dependence::DVEntry::EQ]) |
2754 | LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ] |
2755 | << '\t'); |
2756 | else |
2757 | LLVM_DEBUG(dbgs() << "-inf\t" ); |
2758 | if (Bound[Level].Upper[Dependence::DVEntry::EQ]) |
2759 | LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ] |
2760 | << '\n'); |
2761 | else |
2762 | LLVM_DEBUG(dbgs() << "+inf\n" ); |
2763 | LLVM_DEBUG(dbgs() << "\t >\t" ); |
2764 | if (Bound[Level].Lower[Dependence::DVEntry::GT]) |
2765 | LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT] |
2766 | << '\t'); |
2767 | else |
2768 | LLVM_DEBUG(dbgs() << "-inf\t" ); |
2769 | if (Bound[Level].Upper[Dependence::DVEntry::GT]) |
2770 | LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT] |
2771 | << '\n'); |
2772 | else |
2773 | LLVM_DEBUG(dbgs() << "+inf\n" ); |
2774 | #endif |
2775 | } |
2776 | |
2777 | unsigned NewDeps = 0; |
2778 | |
2779 | // test bounds for <, *, *, ... |
2780 | if (testBounds(DirKind: Dependence::DVEntry::LT, Level, Bound, Delta)) |
2781 | NewDeps += exploreDirections(Level: Level + 1, A, B, Bound, |
2782 | Loops, DepthExpanded, Delta); |
2783 | |
2784 | // Test bounds for =, *, *, ... |
2785 | if (testBounds(DirKind: Dependence::DVEntry::EQ, Level, Bound, Delta)) |
2786 | NewDeps += exploreDirections(Level: Level + 1, A, B, Bound, |
2787 | Loops, DepthExpanded, Delta); |
2788 | |
2789 | // test bounds for >, *, *, ... |
2790 | if (testBounds(DirKind: Dependence::DVEntry::GT, Level, Bound, Delta)) |
2791 | NewDeps += exploreDirections(Level: Level + 1, A, B, Bound, |
2792 | Loops, DepthExpanded, Delta); |
2793 | |
2794 | Bound[Level].Direction = Dependence::DVEntry::ALL; |
2795 | return NewDeps; |
2796 | } |
2797 | else |
2798 | return exploreDirections(Level: Level + 1, A, B, Bound, Loops, DepthExpanded, Delta); |
2799 | } |
2800 | |
2801 | |
2802 | // Returns true iff the current bounds are plausible. |
2803 | bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level, |
2804 | BoundInfo *Bound, const SCEV *Delta) const { |
2805 | Bound[Level].Direction = DirKind; |
2806 | if (const SCEV *LowerBound = getLowerBound(Bound)) |
2807 | if (isKnownPredicate(Pred: CmpInst::ICMP_SGT, X: LowerBound, Y: Delta)) |
2808 | return false; |
2809 | if (const SCEV *UpperBound = getUpperBound(Bound)) |
2810 | if (isKnownPredicate(Pred: CmpInst::ICMP_SGT, X: Delta, Y: UpperBound)) |
2811 | return false; |
2812 | return true; |
2813 | } |
2814 | |
2815 | |
2816 | // Computes the upper and lower bounds for level K |
2817 | // using the * direction. Records them in Bound. |
2818 | // Wolfe gives the equations |
2819 | // |
2820 | // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k |
2821 | // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k |
2822 | // |
2823 | // Since we normalize loops, we can simplify these equations to |
2824 | // |
2825 | // LB^*_k = (A^-_k - B^+_k)U_k |
2826 | // UB^*_k = (A^+_k - B^-_k)U_k |
2827 | // |
2828 | // We must be careful to handle the case where the upper bound is unknown. |
2829 | // Note that the lower bound is always <= 0 |
2830 | // and the upper bound is always >= 0. |
2831 | void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B, |
2832 | BoundInfo *Bound, unsigned K) const { |
2833 | Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity. |
2834 | Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity. |
2835 | if (Bound[K].Iterations) { |
2836 | Bound[K].Lower[Dependence::DVEntry::ALL] = |
2837 | SE->getMulExpr(LHS: SE->getMinusSCEV(LHS: A[K].NegPart, RHS: B[K].PosPart), |
2838 | RHS: Bound[K].Iterations); |
2839 | Bound[K].Upper[Dependence::DVEntry::ALL] = |
2840 | SE->getMulExpr(LHS: SE->getMinusSCEV(LHS: A[K].PosPart, RHS: B[K].NegPart), |
2841 | RHS: Bound[K].Iterations); |
2842 | } |
2843 | else { |
2844 | // If the difference is 0, we won't need to know the number of iterations. |
2845 | if (isKnownPredicate(Pred: CmpInst::ICMP_EQ, X: A[K].NegPart, Y: B[K].PosPart)) |
2846 | Bound[K].Lower[Dependence::DVEntry::ALL] = |
2847 | SE->getZero(Ty: A[K].Coeff->getType()); |
2848 | if (isKnownPredicate(Pred: CmpInst::ICMP_EQ, X: A[K].PosPart, Y: B[K].NegPart)) |
2849 | Bound[K].Upper[Dependence::DVEntry::ALL] = |
2850 | SE->getZero(Ty: A[K].Coeff->getType()); |
2851 | } |
2852 | } |
2853 | |
2854 | |
2855 | // Computes the upper and lower bounds for level K |
2856 | // using the = direction. Records them in Bound. |
2857 | // Wolfe gives the equations |
2858 | // |
2859 | // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k |
2860 | // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k |
2861 | // |
2862 | // Since we normalize loops, we can simplify these equations to |
2863 | // |
2864 | // LB^=_k = (A_k - B_k)^- U_k |
2865 | // UB^=_k = (A_k - B_k)^+ U_k |
2866 | // |
2867 | // We must be careful to handle the case where the upper bound is unknown. |
2868 | // Note that the lower bound is always <= 0 |
2869 | // and the upper bound is always >= 0. |
2870 | void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B, |
2871 | BoundInfo *Bound, unsigned K) const { |
2872 | Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity. |
2873 | Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity. |
2874 | if (Bound[K].Iterations) { |
2875 | const SCEV *Delta = SE->getMinusSCEV(LHS: A[K].Coeff, RHS: B[K].Coeff); |
2876 | const SCEV *NegativePart = getNegativePart(X: Delta); |
2877 | Bound[K].Lower[Dependence::DVEntry::EQ] = |
2878 | SE->getMulExpr(LHS: NegativePart, RHS: Bound[K].Iterations); |
2879 | const SCEV *PositivePart = getPositivePart(X: Delta); |
2880 | Bound[K].Upper[Dependence::DVEntry::EQ] = |
2881 | SE->getMulExpr(LHS: PositivePart, RHS: Bound[K].Iterations); |
2882 | } |
2883 | else { |
2884 | // If the positive/negative part of the difference is 0, |
2885 | // we won't need to know the number of iterations. |
2886 | const SCEV *Delta = SE->getMinusSCEV(LHS: A[K].Coeff, RHS: B[K].Coeff); |
2887 | const SCEV *NegativePart = getNegativePart(X: Delta); |
2888 | if (NegativePart->isZero()) |
2889 | Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero |
2890 | const SCEV *PositivePart = getPositivePart(X: Delta); |
2891 | if (PositivePart->isZero()) |
2892 | Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero |
2893 | } |
2894 | } |
2895 | |
2896 | |
2897 | // Computes the upper and lower bounds for level K |
2898 | // using the < direction. Records them in Bound. |
2899 | // Wolfe gives the equations |
2900 | // |
2901 | // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k |
2902 | // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k |
2903 | // |
2904 | // Since we normalize loops, we can simplify these equations to |
2905 | // |
2906 | // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k |
2907 | // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k |
2908 | // |
2909 | // We must be careful to handle the case where the upper bound is unknown. |
2910 | void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B, |
2911 | BoundInfo *Bound, unsigned K) const { |
2912 | Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity. |
2913 | Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity. |
2914 | if (Bound[K].Iterations) { |
2915 | const SCEV *Iter_1 = SE->getMinusSCEV( |
2916 | LHS: Bound[K].Iterations, RHS: SE->getOne(Ty: Bound[K].Iterations->getType())); |
2917 | const SCEV *NegPart = |
2918 | getNegativePart(X: SE->getMinusSCEV(LHS: A[K].NegPart, RHS: B[K].Coeff)); |
2919 | Bound[K].Lower[Dependence::DVEntry::LT] = |
2920 | SE->getMinusSCEV(LHS: SE->getMulExpr(LHS: NegPart, RHS: Iter_1), RHS: B[K].Coeff); |
2921 | const SCEV *PosPart = |
2922 | getPositivePart(X: SE->getMinusSCEV(LHS: A[K].PosPart, RHS: B[K].Coeff)); |
2923 | Bound[K].Upper[Dependence::DVEntry::LT] = |
2924 | SE->getMinusSCEV(LHS: SE->getMulExpr(LHS: PosPart, RHS: Iter_1), RHS: B[K].Coeff); |
2925 | } |
2926 | else { |
2927 | // If the positive/negative part of the difference is 0, |
2928 | // we won't need to know the number of iterations. |
2929 | const SCEV *NegPart = |
2930 | getNegativePart(X: SE->getMinusSCEV(LHS: A[K].NegPart, RHS: B[K].Coeff)); |
2931 | if (NegPart->isZero()) |
2932 | Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(V: B[K].Coeff); |
2933 | const SCEV *PosPart = |
2934 | getPositivePart(X: SE->getMinusSCEV(LHS: A[K].PosPart, RHS: B[K].Coeff)); |
2935 | if (PosPart->isZero()) |
2936 | Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(V: B[K].Coeff); |
2937 | } |
2938 | } |
2939 | |
2940 | |
2941 | // Computes the upper and lower bounds for level K |
2942 | // using the > direction. Records them in Bound. |
2943 | // Wolfe gives the equations |
2944 | // |
2945 | // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k |
2946 | // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k |
2947 | // |
2948 | // Since we normalize loops, we can simplify these equations to |
2949 | // |
2950 | // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k |
2951 | // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k |
2952 | // |
2953 | // We must be careful to handle the case where the upper bound is unknown. |
2954 | void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B, |
2955 | BoundInfo *Bound, unsigned K) const { |
2956 | Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity. |
2957 | Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity. |
2958 | if (Bound[K].Iterations) { |
2959 | const SCEV *Iter_1 = SE->getMinusSCEV( |
2960 | LHS: Bound[K].Iterations, RHS: SE->getOne(Ty: Bound[K].Iterations->getType())); |
2961 | const SCEV *NegPart = |
2962 | getNegativePart(X: SE->getMinusSCEV(LHS: A[K].Coeff, RHS: B[K].PosPart)); |
2963 | Bound[K].Lower[Dependence::DVEntry::GT] = |
2964 | SE->getAddExpr(LHS: SE->getMulExpr(LHS: NegPart, RHS: Iter_1), RHS: A[K].Coeff); |
2965 | const SCEV *PosPart = |
2966 | getPositivePart(X: SE->getMinusSCEV(LHS: A[K].Coeff, RHS: B[K].NegPart)); |
2967 | Bound[K].Upper[Dependence::DVEntry::GT] = |
2968 | SE->getAddExpr(LHS: SE->getMulExpr(LHS: PosPart, RHS: Iter_1), RHS: A[K].Coeff); |
2969 | } |
2970 | else { |
2971 | // If the positive/negative part of the difference is 0, |
2972 | // we won't need to know the number of iterations. |
2973 | const SCEV *NegPart = getNegativePart(X: SE->getMinusSCEV(LHS: A[K].Coeff, RHS: B[K].PosPart)); |
2974 | if (NegPart->isZero()) |
2975 | Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff; |
2976 | const SCEV *PosPart = getPositivePart(X: SE->getMinusSCEV(LHS: A[K].Coeff, RHS: B[K].NegPart)); |
2977 | if (PosPart->isZero()) |
2978 | Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff; |
2979 | } |
2980 | } |
2981 | |
2982 | |
2983 | // X^+ = max(X, 0) |
2984 | const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const { |
2985 | return SE->getSMaxExpr(LHS: X, RHS: SE->getZero(Ty: X->getType())); |
2986 | } |
2987 | |
2988 | |
2989 | // X^- = min(X, 0) |
2990 | const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const { |
2991 | return SE->getSMinExpr(LHS: X, RHS: SE->getZero(Ty: X->getType())); |
2992 | } |
2993 | |
2994 | |
2995 | // Walks through the subscript, |
2996 | // collecting each coefficient, the associated loop bounds, |
2997 | // and recording its positive and negative parts for later use. |
2998 | DependenceInfo::CoefficientInfo * |
2999 | DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag, |
3000 | const SCEV *&Constant) const { |
3001 | const SCEV *Zero = SE->getZero(Ty: Subscript->getType()); |
3002 | CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1]; |
3003 | for (unsigned K = 1; K <= MaxLevels; ++K) { |
3004 | CI[K].Coeff = Zero; |
3005 | CI[K].PosPart = Zero; |
3006 | CI[K].NegPart = Zero; |
3007 | CI[K].Iterations = nullptr; |
3008 | } |
3009 | while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Val: Subscript)) { |
3010 | const Loop *L = AddRec->getLoop(); |
3011 | unsigned K = SrcFlag ? mapSrcLoop(SrcLoop: L) : mapDstLoop(DstLoop: L); |
3012 | CI[K].Coeff = AddRec->getStepRecurrence(SE&: *SE); |
3013 | CI[K].PosPart = getPositivePart(X: CI[K].Coeff); |
3014 | CI[K].NegPart = getNegativePart(X: CI[K].Coeff); |
3015 | CI[K].Iterations = collectUpperBound(L, T: Subscript->getType()); |
3016 | Subscript = AddRec->getStart(); |
3017 | } |
3018 | Constant = Subscript; |
3019 | #ifndef NDEBUG |
3020 | LLVM_DEBUG(dbgs() << "\tCoefficient Info\n" ); |
3021 | for (unsigned K = 1; K <= MaxLevels; ++K) { |
3022 | LLVM_DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff); |
3023 | LLVM_DEBUG(dbgs() << "\tPos Part = " ); |
3024 | LLVM_DEBUG(dbgs() << *CI[K].PosPart); |
3025 | LLVM_DEBUG(dbgs() << "\tNeg Part = " ); |
3026 | LLVM_DEBUG(dbgs() << *CI[K].NegPart); |
3027 | LLVM_DEBUG(dbgs() << "\tUpper Bound = " ); |
3028 | if (CI[K].Iterations) |
3029 | LLVM_DEBUG(dbgs() << *CI[K].Iterations); |
3030 | else |
3031 | LLVM_DEBUG(dbgs() << "+inf" ); |
3032 | LLVM_DEBUG(dbgs() << '\n'); |
3033 | } |
3034 | LLVM_DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n'); |
3035 | #endif |
3036 | return CI; |
3037 | } |
3038 | |
3039 | |
3040 | // Looks through all the bounds info and |
3041 | // computes the lower bound given the current direction settings |
3042 | // at each level. If the lower bound for any level is -inf, |
3043 | // the result is -inf. |
3044 | const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const { |
3045 | const SCEV *Sum = Bound[1].Lower[Bound[1].Direction]; |
3046 | for (unsigned K = 2; Sum && K <= MaxLevels; ++K) { |
3047 | if (Bound[K].Lower[Bound[K].Direction]) |
3048 | Sum = SE->getAddExpr(LHS: Sum, RHS: Bound[K].Lower[Bound[K].Direction]); |
3049 | else |
3050 | Sum = nullptr; |
3051 | } |
3052 | return Sum; |
3053 | } |
3054 | |
3055 | |
3056 | // Looks through all the bounds info and |
3057 | // computes the upper bound given the current direction settings |
3058 | // at each level. If the upper bound at any level is +inf, |
3059 | // the result is +inf. |
3060 | const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const { |
3061 | const SCEV *Sum = Bound[1].Upper[Bound[1].Direction]; |
3062 | for (unsigned K = 2; Sum && K <= MaxLevels; ++K) { |
3063 | if (Bound[K].Upper[Bound[K].Direction]) |
3064 | Sum = SE->getAddExpr(LHS: Sum, RHS: Bound[K].Upper[Bound[K].Direction]); |
3065 | else |
3066 | Sum = nullptr; |
3067 | } |
3068 | return Sum; |
3069 | } |
3070 | |
3071 | |
3072 | //===----------------------------------------------------------------------===// |
3073 | // Constraint manipulation for Delta test. |
3074 | |
3075 | // Given a linear SCEV, |
3076 | // return the coefficient (the step) |
3077 | // corresponding to the specified loop. |
3078 | // If there isn't one, return 0. |
3079 | // For example, given a*i + b*j + c*k, finding the coefficient |
3080 | // corresponding to the j loop would yield b. |
3081 | const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr, |
3082 | const Loop *TargetLoop) const { |
3083 | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Val: Expr); |
3084 | if (!AddRec) |
3085 | return SE->getZero(Ty: Expr->getType()); |
3086 | if (AddRec->getLoop() == TargetLoop) |
3087 | return AddRec->getStepRecurrence(SE&: *SE); |
3088 | return findCoefficient(Expr: AddRec->getStart(), TargetLoop); |
3089 | } |
3090 | |
3091 | |
3092 | // Given a linear SCEV, |
3093 | // return the SCEV given by zeroing out the coefficient |
3094 | // corresponding to the specified loop. |
3095 | // For example, given a*i + b*j + c*k, zeroing the coefficient |
3096 | // corresponding to the j loop would yield a*i + c*k. |
3097 | const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr, |
3098 | const Loop *TargetLoop) const { |
3099 | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Val: Expr); |
3100 | if (!AddRec) |
3101 | return Expr; // ignore |
3102 | if (AddRec->getLoop() == TargetLoop) |
3103 | return AddRec->getStart(); |
3104 | return SE->getAddRecExpr(Start: zeroCoefficient(Expr: AddRec->getStart(), TargetLoop), |
3105 | Step: AddRec->getStepRecurrence(SE&: *SE), |
3106 | L: AddRec->getLoop(), |
3107 | Flags: AddRec->getNoWrapFlags()); |
3108 | } |
3109 | |
3110 | |
3111 | // Given a linear SCEV Expr, |
3112 | // return the SCEV given by adding some Value to the |
3113 | // coefficient corresponding to the specified TargetLoop. |
3114 | // For example, given a*i + b*j + c*k, adding 1 to the coefficient |
3115 | // corresponding to the j loop would yield a*i + (b+1)*j + c*k. |
3116 | const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr, |
3117 | const Loop *TargetLoop, |
3118 | const SCEV *Value) const { |
3119 | const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Val: Expr); |
3120 | if (!AddRec) // create a new addRec |
3121 | return SE->getAddRecExpr(Start: Expr, |
3122 | Step: Value, |
3123 | L: TargetLoop, |
3124 | Flags: SCEV::FlagAnyWrap); // Worst case, with no info. |
3125 | if (AddRec->getLoop() == TargetLoop) { |
3126 | const SCEV *Sum = SE->getAddExpr(LHS: AddRec->getStepRecurrence(SE&: *SE), RHS: Value); |
3127 | if (Sum->isZero()) |
3128 | return AddRec->getStart(); |
3129 | return SE->getAddRecExpr(Start: AddRec->getStart(), |
3130 | Step: Sum, |
3131 | L: AddRec->getLoop(), |
3132 | Flags: AddRec->getNoWrapFlags()); |
3133 | } |
3134 | if (SE->isLoopInvariant(S: AddRec, L: TargetLoop)) |
3135 | return SE->getAddRecExpr(Start: AddRec, Step: Value, L: TargetLoop, Flags: SCEV::FlagAnyWrap); |
3136 | return SE->getAddRecExpr( |
3137 | Start: addToCoefficient(Expr: AddRec->getStart(), TargetLoop, Value), |
3138 | Step: AddRec->getStepRecurrence(SE&: *SE), L: AddRec->getLoop(), |
3139 | Flags: AddRec->getNoWrapFlags()); |
3140 | } |
3141 | |
3142 | |
3143 | // Review the constraints, looking for opportunities |
3144 | // to simplify a subscript pair (Src and Dst). |
3145 | // Return true if some simplification occurs. |
3146 | // If the simplification isn't exact (that is, if it is conservative |
3147 | // in terms of dependence), set consistent to false. |
3148 | // Corresponds to Figure 5 from the paper |
3149 | // |
3150 | // Practical Dependence Testing |
3151 | // Goff, Kennedy, Tseng |
3152 | // PLDI 1991 |
3153 | bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst, |
3154 | SmallBitVector &Loops, |
3155 | SmallVectorImpl<Constraint> &Constraints, |
3156 | bool &Consistent) { |
3157 | bool Result = false; |
3158 | for (unsigned LI : Loops.set_bits()) { |
3159 | LLVM_DEBUG(dbgs() << "\t Constraint[" << LI << "] is" ); |
3160 | LLVM_DEBUG(Constraints[LI].dump(dbgs())); |
3161 | if (Constraints[LI].isDistance()) |
3162 | Result |= propagateDistance(Src, Dst, CurConstraint&: Constraints[LI], Consistent); |
3163 | else if (Constraints[LI].isLine()) |
3164 | Result |= propagateLine(Src, Dst, CurConstraint&: Constraints[LI], Consistent); |
3165 | else if (Constraints[LI].isPoint()) |
3166 | Result |= propagatePoint(Src, Dst, CurConstraint&: Constraints[LI]); |
3167 | } |
3168 | return Result; |
3169 | } |
3170 | |
3171 | |
3172 | // Attempt to propagate a distance |
3173 | // constraint into a subscript pair (Src and Dst). |
3174 | // Return true if some simplification occurs. |
3175 | // If the simplification isn't exact (that is, if it is conservative |
3176 | // in terms of dependence), set consistent to false. |
3177 | bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst, |
3178 | Constraint &CurConstraint, |
3179 | bool &Consistent) { |
3180 | const Loop *CurLoop = CurConstraint.getAssociatedLoop(); |
3181 | LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n" ); |
3182 | const SCEV *A_K = findCoefficient(Expr: Src, TargetLoop: CurLoop); |
3183 | if (A_K->isZero()) |
3184 | return false; |
3185 | const SCEV *DA_K = SE->getMulExpr(LHS: A_K, RHS: CurConstraint.getD()); |
3186 | Src = SE->getMinusSCEV(LHS: Src, RHS: DA_K); |
3187 | Src = zeroCoefficient(Expr: Src, TargetLoop: CurLoop); |
3188 | LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n" ); |
3189 | LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n" ); |
3190 | Dst = addToCoefficient(Expr: Dst, TargetLoop: CurLoop, Value: SE->getNegativeSCEV(V: A_K)); |
3191 | LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n" ); |
3192 | if (!findCoefficient(Expr: Dst, TargetLoop: CurLoop)->isZero()) |
3193 | Consistent = false; |
3194 | return true; |
3195 | } |
3196 | |
3197 | |
3198 | // Attempt to propagate a line |
3199 | // constraint into a subscript pair (Src and Dst). |
3200 | // Return true if some simplification occurs. |
3201 | // If the simplification isn't exact (that is, if it is conservative |
3202 | // in terms of dependence), set consistent to false. |
3203 | bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst, |
3204 | Constraint &CurConstraint, |
3205 | bool &Consistent) { |
3206 | const Loop *CurLoop = CurConstraint.getAssociatedLoop(); |
3207 | const SCEV *A = CurConstraint.getA(); |
3208 | const SCEV *B = CurConstraint.getB(); |
3209 | const SCEV *C = CurConstraint.getC(); |
3210 | LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C |
3211 | << "\n" ); |
3212 | LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n" ); |
3213 | LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n" ); |
3214 | if (A->isZero()) { |
3215 | const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(Val: B); |
3216 | const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(Val: C); |
3217 | if (!Bconst || !Cconst) return false; |
3218 | APInt Beta = Bconst->getAPInt(); |
3219 | APInt Charlie = Cconst->getAPInt(); |
3220 | APInt CdivB = Charlie.sdiv(RHS: Beta); |
3221 | assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B" ); |
3222 | const SCEV *AP_K = findCoefficient(Expr: Dst, TargetLoop: CurLoop); |
3223 | // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB))); |
3224 | Src = SE->getMinusSCEV(LHS: Src, RHS: SE->getMulExpr(LHS: AP_K, RHS: SE->getConstant(Val: CdivB))); |
3225 | Dst = zeroCoefficient(Expr: Dst, TargetLoop: CurLoop); |
3226 | if (!findCoefficient(Expr: Src, TargetLoop: CurLoop)->isZero()) |
3227 | Consistent = false; |
3228 | } |
3229 | else if (B->isZero()) { |
3230 | const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(Val: A); |
3231 | const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(Val: C); |
3232 | if (!Aconst || !Cconst) return false; |
3233 | APInt Alpha = Aconst->getAPInt(); |
3234 | APInt Charlie = Cconst->getAPInt(); |
3235 | APInt CdivA = Charlie.sdiv(RHS: Alpha); |
3236 | assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A" ); |
3237 | const SCEV *A_K = findCoefficient(Expr: Src, TargetLoop: CurLoop); |
3238 | Src = SE->getAddExpr(LHS: Src, RHS: SE->getMulExpr(LHS: A_K, RHS: SE->getConstant(Val: CdivA))); |
3239 | Src = zeroCoefficient(Expr: Src, TargetLoop: CurLoop); |
3240 | if (!findCoefficient(Expr: Dst, TargetLoop: CurLoop)->isZero()) |
3241 | Consistent = false; |
3242 | } |
3243 | else if (isKnownPredicate(Pred: CmpInst::ICMP_EQ, X: A, Y: B)) { |
3244 | const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(Val: A); |
3245 | const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(Val: C); |
3246 | if (!Aconst || !Cconst) return false; |
3247 | APInt Alpha = Aconst->getAPInt(); |
3248 | APInt Charlie = Cconst->getAPInt(); |
3249 | APInt CdivA = Charlie.sdiv(RHS: Alpha); |
3250 | assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A" ); |
3251 | const SCEV *A_K = findCoefficient(Expr: Src, TargetLoop: CurLoop); |
3252 | Src = SE->getAddExpr(LHS: Src, RHS: SE->getMulExpr(LHS: A_K, RHS: SE->getConstant(Val: CdivA))); |
3253 | Src = zeroCoefficient(Expr: Src, TargetLoop: CurLoop); |
3254 | Dst = addToCoefficient(Expr: Dst, TargetLoop: CurLoop, Value: A_K); |
3255 | if (!findCoefficient(Expr: Dst, TargetLoop: CurLoop)->isZero()) |
3256 | Consistent = false; |
3257 | } |
3258 | else { |
3259 | // paper is incorrect here, or perhaps just misleading |
3260 | const SCEV *A_K = findCoefficient(Expr: Src, TargetLoop: CurLoop); |
3261 | Src = SE->getMulExpr(LHS: Src, RHS: A); |
3262 | Dst = SE->getMulExpr(LHS: Dst, RHS: A); |
3263 | Src = SE->getAddExpr(LHS: Src, RHS: SE->getMulExpr(LHS: A_K, RHS: C)); |
3264 | Src = zeroCoefficient(Expr: Src, TargetLoop: CurLoop); |
3265 | Dst = addToCoefficient(Expr: Dst, TargetLoop: CurLoop, Value: SE->getMulExpr(LHS: A_K, RHS: B)); |
3266 | if (!findCoefficient(Expr: Dst, TargetLoop: CurLoop)->isZero()) |
3267 | Consistent = false; |
3268 | } |
3269 | LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n" ); |
3270 | LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n" ); |
3271 | return true; |
3272 | } |
3273 | |
3274 | |
3275 | // Attempt to propagate a point |
3276 | // constraint into a subscript pair (Src and Dst). |
3277 | // Return true if some simplification occurs. |
3278 | bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst, |
3279 | Constraint &CurConstraint) { |
3280 | const Loop *CurLoop = CurConstraint.getAssociatedLoop(); |
3281 | const SCEV *A_K = findCoefficient(Expr: Src, TargetLoop: CurLoop); |
3282 | const SCEV *AP_K = findCoefficient(Expr: Dst, TargetLoop: CurLoop); |
3283 | const SCEV *XA_K = SE->getMulExpr(LHS: A_K, RHS: CurConstraint.getX()); |
3284 | const SCEV *YAP_K = SE->getMulExpr(LHS: AP_K, RHS: CurConstraint.getY()); |
3285 | LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n" ); |
3286 | Src = SE->getAddExpr(LHS: Src, RHS: SE->getMinusSCEV(LHS: XA_K, RHS: YAP_K)); |
3287 | Src = zeroCoefficient(Expr: Src, TargetLoop: CurLoop); |
3288 | LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n" ); |
3289 | LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n" ); |
3290 | Dst = zeroCoefficient(Expr: Dst, TargetLoop: CurLoop); |
3291 | LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n" ); |
3292 | return true; |
3293 | } |
3294 | |
3295 | |
3296 | // Update direction vector entry based on the current constraint. |
3297 | void DependenceInfo::updateDirection(Dependence::DVEntry &Level, |
3298 | const Constraint &CurConstraint) const { |
3299 | LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =" ); |
3300 | LLVM_DEBUG(CurConstraint.dump(dbgs())); |
3301 | if (CurConstraint.isAny()) |
3302 | ; // use defaults |
3303 | else if (CurConstraint.isDistance()) { |
3304 | // this one is consistent, the others aren't |
3305 | Level.Scalar = false; |
3306 | Level.Distance = CurConstraint.getD(); |
3307 | unsigned NewDirection = Dependence::DVEntry::NONE; |
3308 | if (!SE->isKnownNonZero(S: Level.Distance)) // if may be zero |
3309 | NewDirection = Dependence::DVEntry::EQ; |
3310 | if (!SE->isKnownNonPositive(S: Level.Distance)) // if may be positive |
3311 | NewDirection |= Dependence::DVEntry::LT; |
3312 | if (!SE->isKnownNonNegative(S: Level.Distance)) // if may be negative |
3313 | NewDirection |= Dependence::DVEntry::GT; |
3314 | Level.Direction &= NewDirection; |
3315 | } |
3316 | else if (CurConstraint.isLine()) { |
3317 | Level.Scalar = false; |
3318 | Level.Distance = nullptr; |
3319 | // direction should be accurate |
3320 | } |
3321 | else if (CurConstraint.isPoint()) { |
3322 | Level.Scalar = false; |
3323 | Level.Distance = nullptr; |
3324 | unsigned NewDirection = Dependence::DVEntry::NONE; |
3325 | if (!isKnownPredicate(Pred: CmpInst::ICMP_NE, |
3326 | X: CurConstraint.getY(), |
3327 | Y: CurConstraint.getX())) |
3328 | // if X may be = Y |
3329 | NewDirection |= Dependence::DVEntry::EQ; |
3330 | if (!isKnownPredicate(Pred: CmpInst::ICMP_SLE, |
3331 | X: CurConstraint.getY(), |
3332 | Y: CurConstraint.getX())) |
3333 | // if Y may be > X |
3334 | NewDirection |= Dependence::DVEntry::LT; |
3335 | if (!isKnownPredicate(Pred: CmpInst::ICMP_SGE, |
3336 | X: CurConstraint.getY(), |
3337 | Y: CurConstraint.getX())) |
3338 | // if Y may be < X |
3339 | NewDirection |= Dependence::DVEntry::GT; |
3340 | Level.Direction &= NewDirection; |
3341 | } |
3342 | else |
3343 | llvm_unreachable("constraint has unexpected kind" ); |
3344 | } |
3345 | |
3346 | /// Check if we can delinearize the subscripts. If the SCEVs representing the |
3347 | /// source and destination array references are recurrences on a nested loop, |
3348 | /// this function flattens the nested recurrences into separate recurrences |
3349 | /// for each loop level. |
3350 | bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst, |
3351 | SmallVectorImpl<Subscript> &Pair) { |
3352 | assert(isLoadOrStore(Src) && "instruction is not load or store" ); |
3353 | assert(isLoadOrStore(Dst) && "instruction is not load or store" ); |
3354 | Value *SrcPtr = getLoadStorePointerOperand(V: Src); |
3355 | Value *DstPtr = getLoadStorePointerOperand(V: Dst); |
3356 | Loop *SrcLoop = LI->getLoopFor(BB: Src->getParent()); |
3357 | Loop *DstLoop = LI->getLoopFor(BB: Dst->getParent()); |
3358 | const SCEV *SrcAccessFn = SE->getSCEVAtScope(V: SrcPtr, L: SrcLoop); |
3359 | const SCEV *DstAccessFn = SE->getSCEVAtScope(V: DstPtr, L: DstLoop); |
3360 | const SCEVUnknown *SrcBase = |
3361 | dyn_cast<SCEVUnknown>(Val: SE->getPointerBase(V: SrcAccessFn)); |
3362 | const SCEVUnknown *DstBase = |
3363 | dyn_cast<SCEVUnknown>(Val: SE->getPointerBase(V: DstAccessFn)); |
3364 | |
3365 | if (!SrcBase || !DstBase || SrcBase != DstBase) |
3366 | return false; |
3367 | |
3368 | SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts; |
3369 | |
3370 | if (!tryDelinearizeFixedSize(Src, Dst, SrcAccessFn, DstAccessFn, |
3371 | SrcSubscripts, DstSubscripts) && |
3372 | !tryDelinearizeParametricSize(Src, Dst, SrcAccessFn, DstAccessFn, |
3373 | SrcSubscripts, DstSubscripts)) |
3374 | return false; |
3375 | |
3376 | int Size = SrcSubscripts.size(); |
3377 | LLVM_DEBUG({ |
3378 | dbgs() << "\nSrcSubscripts: " ; |
3379 | for (int I = 0; I < Size; I++) |
3380 | dbgs() << *SrcSubscripts[I]; |
3381 | dbgs() << "\nDstSubscripts: " ; |
3382 | for (int I = 0; I < Size; I++) |
3383 | dbgs() << *DstSubscripts[I]; |
3384 | }); |
3385 | |
3386 | // The delinearization transforms a single-subscript MIV dependence test into |
3387 | // a multi-subscript SIV dependence test that is easier to compute. So we |
3388 | // resize Pair to contain as many pairs of subscripts as the delinearization |
3389 | // has found, and then initialize the pairs following the delinearization. |
3390 | Pair.resize(N: Size); |
3391 | for (int I = 0; I < Size; ++I) { |
3392 | Pair[I].Src = SrcSubscripts[I]; |
3393 | Pair[I].Dst = DstSubscripts[I]; |
3394 | unifySubscriptType(Pairs: &Pair[I]); |
3395 | } |
3396 | |
3397 | return true; |
3398 | } |
3399 | |
3400 | /// Try to delinearize \p SrcAccessFn and \p DstAccessFn if the underlying |
3401 | /// arrays accessed are fixed-size arrays. Return true if delinearization was |
3402 | /// successful. |
3403 | bool DependenceInfo::tryDelinearizeFixedSize( |
3404 | Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn, |
3405 | const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts, |
3406 | SmallVectorImpl<const SCEV *> &DstSubscripts) { |
3407 | LLVM_DEBUG({ |
3408 | const SCEVUnknown *SrcBase = |
3409 | dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn)); |
3410 | const SCEVUnknown *DstBase = |
3411 | dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn)); |
3412 | assert(SrcBase && DstBase && SrcBase == DstBase && |
3413 | "expected src and dst scev unknowns to be equal" ); |
3414 | }); |
3415 | |
3416 | SmallVector<int, 4> SrcSizes; |
3417 | SmallVector<int, 4> DstSizes; |
3418 | if (!tryDelinearizeFixedSizeImpl(SE, Inst: Src, AccessFn: SrcAccessFn, Subscripts&: SrcSubscripts, |
3419 | Sizes&: SrcSizes) || |
3420 | !tryDelinearizeFixedSizeImpl(SE, Inst: Dst, AccessFn: DstAccessFn, Subscripts&: DstSubscripts, |
3421 | Sizes&: DstSizes)) |
3422 | return false; |
3423 | |
3424 | // Check that the two size arrays are non-empty and equal in length and |
3425 | // value. |
3426 | if (SrcSizes.size() != DstSizes.size() || |
3427 | !std::equal(SrcSizes.begin(), SrcSizes.end(), DstSizes.begin())) { |
3428 | SrcSubscripts.clear(); |
3429 | DstSubscripts.clear(); |
3430 | return false; |
3431 | } |
3432 | |
3433 | assert(SrcSubscripts.size() == DstSubscripts.size() && |
3434 | "Expected equal number of entries in the list of SrcSubscripts and " |
3435 | "DstSubscripts." ); |
3436 | |
3437 | Value *SrcPtr = getLoadStorePointerOperand(V: Src); |
3438 | Value *DstPtr = getLoadStorePointerOperand(V: Dst); |
3439 | |
3440 | // In general we cannot safely assume that the subscripts recovered from GEPs |
3441 | // are in the range of values defined for their corresponding array |
3442 | // dimensions. For example some C language usage/interpretation make it |
3443 | // impossible to verify this at compile-time. As such we can only delinearize |
3444 | // iff the subscripts are positive and are less than the range of the |
3445 | // dimension. |
3446 | if (!DisableDelinearizationChecks) { |
3447 | auto AllIndicesInRange = [&](SmallVector<int, 4> &DimensionSizes, |
3448 | SmallVectorImpl<const SCEV *> &Subscripts, |
3449 | Value *Ptr) { |
3450 | size_t SSize = Subscripts.size(); |
3451 | for (size_t I = 1; I < SSize; ++I) { |
3452 | const SCEV *S = Subscripts[I]; |
3453 | if (!isKnownNonNegative(S, Ptr)) |
3454 | return false; |
3455 | if (auto *SType = dyn_cast<IntegerType>(Val: S->getType())) { |
3456 | const SCEV *Range = SE->getConstant( |
3457 | V: ConstantInt::get(Ty: SType, V: DimensionSizes[I - 1], IsSigned: false)); |
3458 | if (!isKnownLessThan(S, Size: Range)) |
3459 | return false; |
3460 | } |
3461 | } |
3462 | return true; |
3463 | }; |
3464 | |
3465 | if (!AllIndicesInRange(SrcSizes, SrcSubscripts, SrcPtr) || |
3466 | !AllIndicesInRange(DstSizes, DstSubscripts, DstPtr)) { |
3467 | SrcSubscripts.clear(); |
3468 | DstSubscripts.clear(); |
3469 | return false; |
3470 | } |
3471 | } |
3472 | LLVM_DEBUG({ |
3473 | dbgs() << "Delinearized subscripts of fixed-size array\n" |
3474 | << "SrcGEP:" << *SrcPtr << "\n" |
3475 | << "DstGEP:" << *DstPtr << "\n" ; |
3476 | }); |
3477 | return true; |
3478 | } |
3479 | |
3480 | bool DependenceInfo::tryDelinearizeParametricSize( |
3481 | Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn, |
3482 | const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts, |
3483 | SmallVectorImpl<const SCEV *> &DstSubscripts) { |
3484 | |
3485 | Value *SrcPtr = getLoadStorePointerOperand(V: Src); |
3486 | Value *DstPtr = getLoadStorePointerOperand(V: Dst); |
3487 | const SCEVUnknown *SrcBase = |
3488 | dyn_cast<SCEVUnknown>(Val: SE->getPointerBase(V: SrcAccessFn)); |
3489 | const SCEVUnknown *DstBase = |
3490 | dyn_cast<SCEVUnknown>(Val: SE->getPointerBase(V: DstAccessFn)); |
3491 | assert(SrcBase && DstBase && SrcBase == DstBase && |
3492 | "expected src and dst scev unknowns to be equal" ); |
3493 | |
3494 | const SCEV *ElementSize = SE->getElementSize(Inst: Src); |
3495 | if (ElementSize != SE->getElementSize(Inst: Dst)) |
3496 | return false; |
3497 | |
3498 | const SCEV *SrcSCEV = SE->getMinusSCEV(LHS: SrcAccessFn, RHS: SrcBase); |
3499 | const SCEV *DstSCEV = SE->getMinusSCEV(LHS: DstAccessFn, RHS: DstBase); |
3500 | |
3501 | const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(Val: SrcSCEV); |
3502 | const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(Val: DstSCEV); |
3503 | if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine()) |
3504 | return false; |
3505 | |
3506 | // First step: collect parametric terms in both array references. |
3507 | SmallVector<const SCEV *, 4> Terms; |
3508 | collectParametricTerms(SE&: *SE, Expr: SrcAR, Terms); |
3509 | collectParametricTerms(SE&: *SE, Expr: DstAR, Terms); |
3510 | |
3511 | // Second step: find subscript sizes. |
3512 | SmallVector<const SCEV *, 4> Sizes; |
3513 | findArrayDimensions(SE&: *SE, Terms, Sizes, ElementSize); |
3514 | |
3515 | // Third step: compute the access functions for each subscript. |
3516 | computeAccessFunctions(SE&: *SE, Expr: SrcAR, Subscripts&: SrcSubscripts, Sizes); |
3517 | computeAccessFunctions(SE&: *SE, Expr: DstAR, Subscripts&: DstSubscripts, Sizes); |
3518 | |
3519 | // Fail when there is only a subscript: that's a linearized access function. |
3520 | if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 || |
3521 | SrcSubscripts.size() != DstSubscripts.size()) |
3522 | return false; |
3523 | |
3524 | size_t Size = SrcSubscripts.size(); |
3525 | |
3526 | // Statically check that the array bounds are in-range. The first subscript we |
3527 | // don't have a size for and it cannot overflow into another subscript, so is |
3528 | // always safe. The others need to be 0 <= subscript[i] < bound, for both src |
3529 | // and dst. |
3530 | // FIXME: It may be better to record these sizes and add them as constraints |
3531 | // to the dependency checks. |
3532 | if (!DisableDelinearizationChecks) |
3533 | for (size_t I = 1; I < Size; ++I) { |
3534 | if (!isKnownNonNegative(S: SrcSubscripts[I], Ptr: SrcPtr)) |
3535 | return false; |
3536 | |
3537 | if (!isKnownLessThan(S: SrcSubscripts[I], Size: Sizes[I - 1])) |
3538 | return false; |
3539 | |
3540 | if (!isKnownNonNegative(S: DstSubscripts[I], Ptr: DstPtr)) |
3541 | return false; |
3542 | |
3543 | if (!isKnownLessThan(S: DstSubscripts[I], Size: Sizes[I - 1])) |
3544 | return false; |
3545 | } |
3546 | |
3547 | return true; |
3548 | } |
3549 | |
3550 | //===----------------------------------------------------------------------===// |
3551 | |
3552 | #ifndef NDEBUG |
3553 | // For debugging purposes, dump a small bit vector to dbgs(). |
3554 | static void dumpSmallBitVector(SmallBitVector &BV) { |
3555 | dbgs() << "{" ; |
3556 | for (unsigned VI : BV.set_bits()) { |
3557 | dbgs() << VI; |
3558 | if (BV.find_next(VI) >= 0) |
3559 | dbgs() << ' '; |
3560 | } |
3561 | dbgs() << "}\n" ; |
3562 | } |
3563 | #endif |
3564 | |
3565 | bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA, |
3566 | FunctionAnalysisManager::Invalidator &Inv) { |
3567 | // Check if the analysis itself has been invalidated. |
3568 | auto PAC = PA.getChecker<DependenceAnalysis>(); |
3569 | if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) |
3570 | return true; |
3571 | |
3572 | // Check transitive dependencies. |
3573 | return Inv.invalidate<AAManager>(IR&: F, PA) || |
3574 | Inv.invalidate<ScalarEvolutionAnalysis>(IR&: F, PA) || |
3575 | Inv.invalidate<LoopAnalysis>(IR&: F, PA); |
3576 | } |
3577 | |
3578 | // depends - |
3579 | // Returns NULL if there is no dependence. |
3580 | // Otherwise, return a Dependence with as many details as possible. |
3581 | // Corresponds to Section 3.1 in the paper |
3582 | // |
3583 | // Practical Dependence Testing |
3584 | // Goff, Kennedy, Tseng |
3585 | // PLDI 1991 |
3586 | // |
3587 | // Care is required to keep the routine below, getSplitIteration(), |
3588 | // up to date with respect to this routine. |
3589 | std::unique_ptr<Dependence> |
3590 | DependenceInfo::depends(Instruction *Src, Instruction *Dst, |
3591 | bool PossiblyLoopIndependent) { |
3592 | if (Src == Dst) |
3593 | PossiblyLoopIndependent = false; |
3594 | |
3595 | if (!(Src->mayReadOrWriteMemory() && Dst->mayReadOrWriteMemory())) |
3596 | // if both instructions don't reference memory, there's no dependence |
3597 | return nullptr; |
3598 | |
3599 | if (!isLoadOrStore(I: Src) || !isLoadOrStore(I: Dst)) { |
3600 | // can only analyze simple loads and stores, i.e., no calls, invokes, etc. |
3601 | LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n" ); |
3602 | return std::make_unique<Dependence>(args&: Src, args&: Dst); |
3603 | } |
3604 | |
3605 | assert(isLoadOrStore(Src) && "instruction is not load or store" ); |
3606 | assert(isLoadOrStore(Dst) && "instruction is not load or store" ); |
3607 | Value *SrcPtr = getLoadStorePointerOperand(V: Src); |
3608 | Value *DstPtr = getLoadStorePointerOperand(V: Dst); |
3609 | |
3610 | switch (underlyingObjectsAlias(AA, DL: F->getDataLayout(), |
3611 | LocA: MemoryLocation::get(Inst: Dst), |
3612 | LocB: MemoryLocation::get(Inst: Src))) { |
3613 | case AliasResult::MayAlias: |
3614 | case AliasResult::PartialAlias: |
3615 | // cannot analyse objects if we don't understand their aliasing. |
3616 | LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n" ); |
3617 | return std::make_unique<Dependence>(args&: Src, args&: Dst); |
3618 | case AliasResult::NoAlias: |
3619 | // If the objects noalias, they are distinct, accesses are independent. |
3620 | LLVM_DEBUG(dbgs() << "no alias\n" ); |
3621 | return nullptr; |
3622 | case AliasResult::MustAlias: |
3623 | break; // The underlying objects alias; test accesses for dependence. |
3624 | } |
3625 | |
3626 | // establish loop nesting levels |
3627 | establishNestingLevels(Src, Dst); |
3628 | LLVM_DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n" ); |
3629 | LLVM_DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n" ); |
3630 | |
3631 | FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels); |
3632 | ++TotalArrayPairs; |
3633 | |
3634 | unsigned Pairs = 1; |
3635 | SmallVector<Subscript, 2> Pair(Pairs); |
3636 | const SCEV *SrcSCEV = SE->getSCEV(V: SrcPtr); |
3637 | const SCEV *DstSCEV = SE->getSCEV(V: DstPtr); |
3638 | LLVM_DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n" ); |
3639 | LLVM_DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n" ); |
3640 | if (SE->getPointerBase(V: SrcSCEV) != SE->getPointerBase(V: DstSCEV)) { |
3641 | // If two pointers have different bases, trying to analyze indexes won't |
3642 | // work; we can't compare them to each other. This can happen, for example, |
3643 | // if one is produced by an LCSSA PHI node. |
3644 | // |
3645 | // We check this upfront so we don't crash in cases where getMinusSCEV() |
3646 | // returns a SCEVCouldNotCompute. |
3647 | LLVM_DEBUG(dbgs() << "can't analyze SCEV with different pointer base\n" ); |
3648 | return std::make_unique<Dependence>(args&: Src, args&: Dst); |
3649 | } |
3650 | Pair[0].Src = SrcSCEV; |
3651 | Pair[0].Dst = DstSCEV; |
3652 | |
3653 | if (Delinearize) { |
3654 | if (tryDelinearize(Src, Dst, Pair)) { |
3655 | LLVM_DEBUG(dbgs() << " delinearized\n" ); |
3656 | Pairs = Pair.size(); |
3657 | } |
3658 | } |
3659 | |
3660 | for (unsigned P = 0; P < Pairs; ++P) { |
3661 | Pair[P].Loops.resize(N: MaxLevels + 1); |
3662 | Pair[P].GroupLoops.resize(N: MaxLevels + 1); |
3663 | Pair[P].Group.resize(N: Pairs); |
3664 | removeMatchingExtensions(Pair: &Pair[P]); |
3665 | Pair[P].Classification = |
3666 | classifyPair(Src: Pair[P].Src, SrcLoopNest: LI->getLoopFor(BB: Src->getParent()), |
3667 | Dst: Pair[P].Dst, DstLoopNest: LI->getLoopFor(BB: Dst->getParent()), |
3668 | Loops&: Pair[P].Loops); |
3669 | Pair[P].GroupLoops = Pair[P].Loops; |
3670 | Pair[P].Group.set(P); |
3671 | LLVM_DEBUG(dbgs() << " subscript " << P << "\n" ); |
3672 | LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n" ); |
3673 | LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n" ); |
3674 | LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n" ); |
3675 | LLVM_DEBUG(dbgs() << "\tloops = " ); |
3676 | LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops)); |
3677 | } |
3678 | |
3679 | SmallBitVector Separable(Pairs); |
3680 | SmallBitVector Coupled(Pairs); |
3681 | |
3682 | // Partition subscripts into separable and minimally-coupled groups |
3683 | // Algorithm in paper is algorithmically better; |
3684 | // this may be faster in practice. Check someday. |
3685 | // |
3686 | // Here's an example of how it works. Consider this code: |
3687 | // |
3688 | // for (i = ...) { |
3689 | // for (j = ...) { |
3690 | // for (k = ...) { |
3691 | // for (l = ...) { |
3692 | // for (m = ...) { |
3693 | // A[i][j][k][m] = ...; |
3694 | // ... = A[0][j][l][i + j]; |
3695 | // } |
3696 | // } |
3697 | // } |
3698 | // } |
3699 | // } |
3700 | // |
3701 | // There are 4 subscripts here: |
3702 | // 0 [i] and [0] |
3703 | // 1 [j] and [j] |
3704 | // 2 [k] and [l] |
3705 | // 3 [m] and [i + j] |
3706 | // |
3707 | // We've already classified each subscript pair as ZIV, SIV, etc., |
3708 | // and collected all the loops mentioned by pair P in Pair[P].Loops. |
3709 | // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops |
3710 | // and set Pair[P].Group = {P}. |
3711 | // |
3712 | // Src Dst Classification Loops GroupLoops Group |
3713 | // 0 [i] [0] SIV {1} {1} {0} |
3714 | // 1 [j] [j] SIV {2} {2} {1} |
3715 | // 2 [k] [l] RDIV {3,4} {3,4} {2} |
3716 | // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3} |
3717 | // |
3718 | // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ. |
3719 | // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc. |
3720 | // |
3721 | // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty. |
3722 | // Next, 0 and 2. Again, the intersection of their GroupLoops is empty. |
3723 | // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty, |
3724 | // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added |
3725 | // to either Separable or Coupled). |
3726 | // |
3727 | // Next, we consider 1 and 2. The intersection of the GroupLoops is empty. |
3728 | // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty, |
3729 | // so Pair[3].Group = {0, 1, 3} and Done = false. |
3730 | // |
3731 | // Next, we compare 2 against 3. The intersection of the GroupLoops is empty. |
3732 | // Since Done remains true, we add 2 to the set of Separable pairs. |
3733 | // |
3734 | // Finally, we consider 3. There's nothing to compare it with, |
3735 | // so Done remains true and we add it to the Coupled set. |
3736 | // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}. |
3737 | // |
3738 | // In the end, we've got 1 separable subscript and 1 coupled group. |
3739 | for (unsigned SI = 0; SI < Pairs; ++SI) { |
3740 | if (Pair[SI].Classification == Subscript::NonLinear) { |
3741 | // ignore these, but collect loops for later |
3742 | ++NonlinearSubscriptPairs; |
3743 | collectCommonLoops(Expression: Pair[SI].Src, |
3744 | LoopNest: LI->getLoopFor(BB: Src->getParent()), |
3745 | Loops&: Pair[SI].Loops); |
3746 | collectCommonLoops(Expression: Pair[SI].Dst, |
3747 | LoopNest: LI->getLoopFor(BB: Dst->getParent()), |
3748 | Loops&: Pair[SI].Loops); |
3749 | Result.Consistent = false; |
3750 | } else if (Pair[SI].Classification == Subscript::ZIV) { |
3751 | // always separable |
3752 | Separable.set(SI); |
3753 | } |
3754 | else { |
3755 | // SIV, RDIV, or MIV, so check for coupled group |
3756 | bool Done = true; |
3757 | for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) { |
3758 | SmallBitVector Intersection = Pair[SI].GroupLoops; |
3759 | Intersection &= Pair[SJ].GroupLoops; |
3760 | if (Intersection.any()) { |
3761 | // accumulate set of all the loops in group |
3762 | Pair[SJ].GroupLoops |= Pair[SI].GroupLoops; |
3763 | // accumulate set of all subscripts in group |
3764 | Pair[SJ].Group |= Pair[SI].Group; |
3765 | Done = false; |
3766 | } |
3767 | } |
3768 | if (Done) { |
3769 | if (Pair[SI].Group.count() == 1) { |
3770 | Separable.set(SI); |
3771 | ++SeparableSubscriptPairs; |
3772 | } |
3773 | else { |
3774 | Coupled.set(SI); |
3775 | ++CoupledSubscriptPairs; |
3776 | } |
3777 | } |
3778 | } |
3779 | } |
3780 | |
3781 | LLVM_DEBUG(dbgs() << " Separable = " ); |
3782 | LLVM_DEBUG(dumpSmallBitVector(Separable)); |
3783 | LLVM_DEBUG(dbgs() << " Coupled = " ); |
3784 | LLVM_DEBUG(dumpSmallBitVector(Coupled)); |
3785 | |
3786 | Constraint NewConstraint; |
3787 | NewConstraint.setAny(SE); |
3788 | |
3789 | // test separable subscripts |
3790 | for (unsigned SI : Separable.set_bits()) { |
3791 | LLVM_DEBUG(dbgs() << "testing subscript " << SI); |
3792 | switch (Pair[SI].Classification) { |
3793 | case Subscript::ZIV: |
3794 | LLVM_DEBUG(dbgs() << ", ZIV\n" ); |
3795 | if (testZIV(Src: Pair[SI].Src, Dst: Pair[SI].Dst, Result)) |
3796 | return nullptr; |
3797 | break; |
3798 | case Subscript::SIV: { |
3799 | LLVM_DEBUG(dbgs() << ", SIV\n" ); |
3800 | unsigned Level; |
3801 | const SCEV *SplitIter = nullptr; |
3802 | if (testSIV(Src: Pair[SI].Src, Dst: Pair[SI].Dst, Level, Result, NewConstraint, |
3803 | SplitIter)) |
3804 | return nullptr; |
3805 | break; |
3806 | } |
3807 | case Subscript::RDIV: |
3808 | LLVM_DEBUG(dbgs() << ", RDIV\n" ); |
3809 | if (testRDIV(Src: Pair[SI].Src, Dst: Pair[SI].Dst, Result)) |
3810 | return nullptr; |
3811 | break; |
3812 | case Subscript::MIV: |
3813 | LLVM_DEBUG(dbgs() << ", MIV\n" ); |
3814 | if (testMIV(Src: Pair[SI].Src, Dst: Pair[SI].Dst, Loops: Pair[SI].Loops, Result)) |
3815 | return nullptr; |
3816 | break; |
3817 | default: |
3818 | llvm_unreachable("subscript has unexpected classification" ); |
3819 | } |
3820 | } |
3821 | |
3822 | if (Coupled.count()) { |
3823 | // test coupled subscript groups |
3824 | LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n" ); |
3825 | LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n" ); |
3826 | SmallVector<Constraint, 4> Constraints(MaxLevels + 1); |
3827 | for (unsigned II = 0; II <= MaxLevels; ++II) |
3828 | Constraints[II].setAny(SE); |
3829 | for (unsigned SI : Coupled.set_bits()) { |
3830 | LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { " ); |
3831 | SmallBitVector Group(Pair[SI].Group); |
3832 | SmallBitVector Sivs(Pairs); |
3833 | SmallBitVector Mivs(Pairs); |
3834 | SmallBitVector ConstrainedLevels(MaxLevels + 1); |
3835 | SmallVector<Subscript *, 4> PairsInGroup; |
3836 | for (unsigned SJ : Group.set_bits()) { |
3837 | LLVM_DEBUG(dbgs() << SJ << " " ); |
3838 | if (Pair[SJ].Classification == Subscript::SIV) |
3839 | Sivs.set(SJ); |
3840 | else |
3841 | Mivs.set(SJ); |
3842 | PairsInGroup.push_back(Elt: &Pair[SJ]); |
3843 | } |
3844 | unifySubscriptType(Pairs: PairsInGroup); |
3845 | LLVM_DEBUG(dbgs() << "}\n" ); |
3846 | while (Sivs.any()) { |
3847 | bool Changed = false; |
3848 | for (unsigned SJ : Sivs.set_bits()) { |
3849 | LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n" ); |
3850 | // SJ is an SIV subscript that's part of the current coupled group |
3851 | unsigned Level; |
3852 | const SCEV *SplitIter = nullptr; |
3853 | LLVM_DEBUG(dbgs() << "SIV\n" ); |
3854 | if (testSIV(Src: Pair[SJ].Src, Dst: Pair[SJ].Dst, Level, Result, NewConstraint, |
3855 | SplitIter)) |
3856 | return nullptr; |
3857 | ConstrainedLevels.set(Level); |
3858 | if (intersectConstraints(X: &Constraints[Level], Y: &NewConstraint)) { |
3859 | if (Constraints[Level].isEmpty()) { |
3860 | ++DeltaIndependence; |
3861 | return nullptr; |
3862 | } |
3863 | Changed = true; |
3864 | } |
3865 | Sivs.reset(Idx: SJ); |
3866 | } |
3867 | if (Changed) { |
3868 | // propagate, possibly creating new SIVs and ZIVs |
3869 | LLVM_DEBUG(dbgs() << " propagating\n" ); |
3870 | LLVM_DEBUG(dbgs() << "\tMivs = " ); |
3871 | LLVM_DEBUG(dumpSmallBitVector(Mivs)); |
3872 | for (unsigned SJ : Mivs.set_bits()) { |
3873 | // SJ is an MIV subscript that's part of the current coupled group |
3874 | LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n" ); |
3875 | if (propagate(Src&: Pair[SJ].Src, Dst&: Pair[SJ].Dst, Loops&: Pair[SJ].Loops, |
3876 | Constraints, Consistent&: Result.Consistent)) { |
3877 | LLVM_DEBUG(dbgs() << "\t Changed\n" ); |
3878 | ++DeltaPropagations; |
3879 | Pair[SJ].Classification = |
3880 | classifyPair(Src: Pair[SJ].Src, SrcLoopNest: LI->getLoopFor(BB: Src->getParent()), |
3881 | Dst: Pair[SJ].Dst, DstLoopNest: LI->getLoopFor(BB: Dst->getParent()), |
3882 | Loops&: Pair[SJ].Loops); |
3883 | switch (Pair[SJ].Classification) { |
3884 | case Subscript::ZIV: |
3885 | LLVM_DEBUG(dbgs() << "ZIV\n" ); |
3886 | if (testZIV(Src: Pair[SJ].Src, Dst: Pair[SJ].Dst, Result)) |
3887 | return nullptr; |
3888 | Mivs.reset(Idx: SJ); |
3889 | break; |
3890 | case Subscript::SIV: |
3891 | Sivs.set(SJ); |
3892 | Mivs.reset(Idx: SJ); |
3893 | break; |
3894 | case Subscript::RDIV: |
3895 | case Subscript::MIV: |
3896 | break; |
3897 | default: |
3898 | llvm_unreachable("bad subscript classification" ); |
3899 | } |
3900 | } |
3901 | } |
3902 | } |
3903 | } |
3904 | |
3905 | // test & propagate remaining RDIVs |
3906 | for (unsigned SJ : Mivs.set_bits()) { |
3907 | if (Pair[SJ].Classification == Subscript::RDIV) { |
3908 | LLVM_DEBUG(dbgs() << "RDIV test\n" ); |
3909 | if (testRDIV(Src: Pair[SJ].Src, Dst: Pair[SJ].Dst, Result)) |
3910 | return nullptr; |
3911 | // I don't yet understand how to propagate RDIV results |
3912 | Mivs.reset(Idx: SJ); |
3913 | } |
3914 | } |
3915 | |
3916 | // test remaining MIVs |
3917 | // This code is temporary. |
3918 | // Better to somehow test all remaining subscripts simultaneously. |
3919 | for (unsigned SJ : Mivs.set_bits()) { |
3920 | if (Pair[SJ].Classification == Subscript::MIV) { |
3921 | LLVM_DEBUG(dbgs() << "MIV test\n" ); |
3922 | if (testMIV(Src: Pair[SJ].Src, Dst: Pair[SJ].Dst, Loops: Pair[SJ].Loops, Result)) |
3923 | return nullptr; |
3924 | } |
3925 | else |
3926 | llvm_unreachable("expected only MIV subscripts at this point" ); |
3927 | } |
3928 | |
3929 | // update Result.DV from constraint vector |
3930 | LLVM_DEBUG(dbgs() << " updating\n" ); |
3931 | for (unsigned SJ : ConstrainedLevels.set_bits()) { |
3932 | if (SJ > CommonLevels) |
3933 | break; |
3934 | updateDirection(Level&: Result.DV[SJ - 1], CurConstraint: Constraints[SJ]); |
3935 | if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE) |
3936 | return nullptr; |
3937 | } |
3938 | } |
3939 | } |
3940 | |
3941 | // Make sure the Scalar flags are set correctly. |
3942 | SmallBitVector CompleteLoops(MaxLevels + 1); |
3943 | for (unsigned SI = 0; SI < Pairs; ++SI) |
3944 | CompleteLoops |= Pair[SI].Loops; |
3945 | for (unsigned II = 1; II <= CommonLevels; ++II) |
3946 | if (CompleteLoops[II]) |
3947 | Result.DV[II - 1].Scalar = false; |
3948 | |
3949 | if (PossiblyLoopIndependent) { |
3950 | // Make sure the LoopIndependent flag is set correctly. |
3951 | // All directions must include equal, otherwise no |
3952 | // loop-independent dependence is possible. |
3953 | for (unsigned II = 1; II <= CommonLevels; ++II) { |
3954 | if (!(Result.getDirection(Level: II) & Dependence::DVEntry::EQ)) { |
3955 | Result.LoopIndependent = false; |
3956 | break; |
3957 | } |
3958 | } |
3959 | } |
3960 | else { |
3961 | // On the other hand, if all directions are equal and there's no |
3962 | // loop-independent dependence possible, then no dependence exists. |
3963 | bool AllEqual = true; |
3964 | for (unsigned II = 1; II <= CommonLevels; ++II) { |
3965 | if (Result.getDirection(Level: II) != Dependence::DVEntry::EQ) { |
3966 | AllEqual = false; |
3967 | break; |
3968 | } |
3969 | } |
3970 | if (AllEqual) |
3971 | return nullptr; |
3972 | } |
3973 | |
3974 | return std::make_unique<FullDependence>(args: std::move(Result)); |
3975 | } |
3976 | |
3977 | //===----------------------------------------------------------------------===// |
3978 | // getSplitIteration - |
3979 | // Rather than spend rarely-used space recording the splitting iteration |
3980 | // during the Weak-Crossing SIV test, we re-compute it on demand. |
3981 | // The re-computation is basically a repeat of the entire dependence test, |
3982 | // though simplified since we know that the dependence exists. |
3983 | // It's tedious, since we must go through all propagations, etc. |
3984 | // |
3985 | // Care is required to keep this code up to date with respect to the routine |
3986 | // above, depends(). |
3987 | // |
3988 | // Generally, the dependence analyzer will be used to build |
3989 | // a dependence graph for a function (basically a map from instructions |
3990 | // to dependences). Looking for cycles in the graph shows us loops |
3991 | // that cannot be trivially vectorized/parallelized. |
3992 | // |
3993 | // We can try to improve the situation by examining all the dependences |
3994 | // that make up the cycle, looking for ones we can break. |
3995 | // Sometimes, peeling the first or last iteration of a loop will break |
3996 | // dependences, and we've got flags for those possibilities. |
3997 | // Sometimes, splitting a loop at some other iteration will do the trick, |
3998 | // and we've got a flag for that case. Rather than waste the space to |
3999 | // record the exact iteration (since we rarely know), we provide |
4000 | // a method that calculates the iteration. It's a drag that it must work |
4001 | // from scratch, but wonderful in that it's possible. |
4002 | // |
4003 | // Here's an example: |
4004 | // |
4005 | // for (i = 0; i < 10; i++) |
4006 | // A[i] = ... |
4007 | // ... = A[11 - i] |
4008 | // |
4009 | // There's a loop-carried flow dependence from the store to the load, |
4010 | // found by the weak-crossing SIV test. The dependence will have a flag, |
4011 | // indicating that the dependence can be broken by splitting the loop. |
4012 | // Calling getSplitIteration will return 5. |
4013 | // Splitting the loop breaks the dependence, like so: |
4014 | // |
4015 | // for (i = 0; i <= 5; i++) |
4016 | // A[i] = ... |
4017 | // ... = A[11 - i] |
4018 | // for (i = 6; i < 10; i++) |
4019 | // A[i] = ... |
4020 | // ... = A[11 - i] |
4021 | // |
4022 | // breaks the dependence and allows us to vectorize/parallelize |
4023 | // both loops. |
4024 | const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep, |
4025 | unsigned SplitLevel) { |
4026 | assert(Dep.isSplitable(SplitLevel) && |
4027 | "Dep should be splitable at SplitLevel" ); |
4028 | Instruction *Src = Dep.getSrc(); |
4029 | Instruction *Dst = Dep.getDst(); |
4030 | assert(Src->mayReadFromMemory() || Src->mayWriteToMemory()); |
4031 | assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory()); |
4032 | assert(isLoadOrStore(Src)); |
4033 | assert(isLoadOrStore(Dst)); |
4034 | Value *SrcPtr = getLoadStorePointerOperand(V: Src); |
4035 | Value *DstPtr = getLoadStorePointerOperand(V: Dst); |
4036 | assert(underlyingObjectsAlias( |
4037 | AA, F->getDataLayout(), MemoryLocation::get(Dst), |
4038 | MemoryLocation::get(Src)) == AliasResult::MustAlias); |
4039 | |
4040 | // establish loop nesting levels |
4041 | establishNestingLevels(Src, Dst); |
4042 | |
4043 | FullDependence Result(Src, Dst, false, CommonLevels); |
4044 | |
4045 | unsigned Pairs = 1; |
4046 | SmallVector<Subscript, 2> Pair(Pairs); |
4047 | const SCEV *SrcSCEV = SE->getSCEV(V: SrcPtr); |
4048 | const SCEV *DstSCEV = SE->getSCEV(V: DstPtr); |
4049 | Pair[0].Src = SrcSCEV; |
4050 | Pair[0].Dst = DstSCEV; |
4051 | |
4052 | if (Delinearize) { |
4053 | if (tryDelinearize(Src, Dst, Pair)) { |
4054 | LLVM_DEBUG(dbgs() << " delinearized\n" ); |
4055 | Pairs = Pair.size(); |
4056 | } |
4057 | } |
4058 | |
4059 | for (unsigned P = 0; P < Pairs; ++P) { |
4060 | Pair[P].Loops.resize(N: MaxLevels + 1); |
4061 | Pair[P].GroupLoops.resize(N: MaxLevels + 1); |
4062 | Pair[P].Group.resize(N: Pairs); |
4063 | removeMatchingExtensions(Pair: &Pair[P]); |
4064 | Pair[P].Classification = |
4065 | classifyPair(Src: Pair[P].Src, SrcLoopNest: LI->getLoopFor(BB: Src->getParent()), |
4066 | Dst: Pair[P].Dst, DstLoopNest: LI->getLoopFor(BB: Dst->getParent()), |
4067 | Loops&: Pair[P].Loops); |
4068 | Pair[P].GroupLoops = Pair[P].Loops; |
4069 | Pair[P].Group.set(P); |
4070 | } |
4071 | |
4072 | SmallBitVector Separable(Pairs); |
4073 | SmallBitVector Coupled(Pairs); |
4074 | |
4075 | // partition subscripts into separable and minimally-coupled groups |
4076 | for (unsigned SI = 0; SI < Pairs; ++SI) { |
4077 | if (Pair[SI].Classification == Subscript::NonLinear) { |
4078 | // ignore these, but collect loops for later |
4079 | collectCommonLoops(Expression: Pair[SI].Src, |
4080 | LoopNest: LI->getLoopFor(BB: Src->getParent()), |
4081 | Loops&: Pair[SI].Loops); |
4082 | collectCommonLoops(Expression: Pair[SI].Dst, |
4083 | LoopNest: LI->getLoopFor(BB: Dst->getParent()), |
4084 | Loops&: Pair[SI].Loops); |
4085 | Result.Consistent = false; |
4086 | } |
4087 | else if (Pair[SI].Classification == Subscript::ZIV) |
4088 | Separable.set(SI); |
4089 | else { |
4090 | // SIV, RDIV, or MIV, so check for coupled group |
4091 | bool Done = true; |
4092 | for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) { |
4093 | SmallBitVector Intersection = Pair[SI].GroupLoops; |
4094 | Intersection &= Pair[SJ].GroupLoops; |
4095 | if (Intersection.any()) { |
4096 | // accumulate set of all the loops in group |
4097 | Pair[SJ].GroupLoops |= Pair[SI].GroupLoops; |
4098 | // accumulate set of all subscripts in group |
4099 | Pair[SJ].Group |= Pair[SI].Group; |
4100 | Done = false; |
4101 | } |
4102 | } |
4103 | if (Done) { |
4104 | if (Pair[SI].Group.count() == 1) |
4105 | Separable.set(SI); |
4106 | else |
4107 | Coupled.set(SI); |
4108 | } |
4109 | } |
4110 | } |
4111 | |
4112 | Constraint NewConstraint; |
4113 | NewConstraint.setAny(SE); |
4114 | |
4115 | // test separable subscripts |
4116 | for (unsigned SI : Separable.set_bits()) { |
4117 | switch (Pair[SI].Classification) { |
4118 | case Subscript::SIV: { |
4119 | unsigned Level; |
4120 | const SCEV *SplitIter = nullptr; |
4121 | (void) testSIV(Src: Pair[SI].Src, Dst: Pair[SI].Dst, Level, |
4122 | Result, NewConstraint, SplitIter); |
4123 | if (Level == SplitLevel) { |
4124 | assert(SplitIter != nullptr); |
4125 | return SplitIter; |
4126 | } |
4127 | break; |
4128 | } |
4129 | case Subscript::ZIV: |
4130 | case Subscript::RDIV: |
4131 | case Subscript::MIV: |
4132 | break; |
4133 | default: |
4134 | llvm_unreachable("subscript has unexpected classification" ); |
4135 | } |
4136 | } |
4137 | |
4138 | if (Coupled.count()) { |
4139 | // test coupled subscript groups |
4140 | SmallVector<Constraint, 4> Constraints(MaxLevels + 1); |
4141 | for (unsigned II = 0; II <= MaxLevels; ++II) |
4142 | Constraints[II].setAny(SE); |
4143 | for (unsigned SI : Coupled.set_bits()) { |
4144 | SmallBitVector Group(Pair[SI].Group); |
4145 | SmallBitVector Sivs(Pairs); |
4146 | SmallBitVector Mivs(Pairs); |
4147 | SmallBitVector ConstrainedLevels(MaxLevels + 1); |
4148 | for (unsigned SJ : Group.set_bits()) { |
4149 | if (Pair[SJ].Classification == Subscript::SIV) |
4150 | Sivs.set(SJ); |
4151 | else |
4152 | Mivs.set(SJ); |
4153 | } |
4154 | while (Sivs.any()) { |
4155 | bool Changed = false; |
4156 | for (unsigned SJ : Sivs.set_bits()) { |
4157 | // SJ is an SIV subscript that's part of the current coupled group |
4158 | unsigned Level; |
4159 | const SCEV *SplitIter = nullptr; |
4160 | (void) testSIV(Src: Pair[SJ].Src, Dst: Pair[SJ].Dst, Level, |
4161 | Result, NewConstraint, SplitIter); |
4162 | if (Level == SplitLevel && SplitIter) |
4163 | return SplitIter; |
4164 | ConstrainedLevels.set(Level); |
4165 | if (intersectConstraints(X: &Constraints[Level], Y: &NewConstraint)) |
4166 | Changed = true; |
4167 | Sivs.reset(Idx: SJ); |
4168 | } |
4169 | if (Changed) { |
4170 | // propagate, possibly creating new SIVs and ZIVs |
4171 | for (unsigned SJ : Mivs.set_bits()) { |
4172 | // SJ is an MIV subscript that's part of the current coupled group |
4173 | if (propagate(Src&: Pair[SJ].Src, Dst&: Pair[SJ].Dst, |
4174 | Loops&: Pair[SJ].Loops, Constraints, Consistent&: Result.Consistent)) { |
4175 | Pair[SJ].Classification = |
4176 | classifyPair(Src: Pair[SJ].Src, SrcLoopNest: LI->getLoopFor(BB: Src->getParent()), |
4177 | Dst: Pair[SJ].Dst, DstLoopNest: LI->getLoopFor(BB: Dst->getParent()), |
4178 | Loops&: Pair[SJ].Loops); |
4179 | switch (Pair[SJ].Classification) { |
4180 | case Subscript::ZIV: |
4181 | Mivs.reset(Idx: SJ); |
4182 | break; |
4183 | case Subscript::SIV: |
4184 | Sivs.set(SJ); |
4185 | Mivs.reset(Idx: SJ); |
4186 | break; |
4187 | case Subscript::RDIV: |
4188 | case Subscript::MIV: |
4189 | break; |
4190 | default: |
4191 | llvm_unreachable("bad subscript classification" ); |
4192 | } |
4193 | } |
4194 | } |
4195 | } |
4196 | } |
4197 | } |
4198 | } |
4199 | llvm_unreachable("somehow reached end of routine" ); |
4200 | return nullptr; |
4201 | } |
4202 | |