1 | //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file "describes" induction and recurrence variables. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/Analysis/IVDescriptors.h" |
14 | #include "llvm/Analysis/DemandedBits.h" |
15 | #include "llvm/Analysis/LoopInfo.h" |
16 | #include "llvm/Analysis/ScalarEvolution.h" |
17 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
18 | #include "llvm/Analysis/ValueTracking.h" |
19 | #include "llvm/IR/Dominators.h" |
20 | #include "llvm/IR/Instructions.h" |
21 | #include "llvm/IR/Module.h" |
22 | #include "llvm/IR/PatternMatch.h" |
23 | #include "llvm/IR/ValueHandle.h" |
24 | #include "llvm/Support/Debug.h" |
25 | #include "llvm/Support/KnownBits.h" |
26 | |
27 | using namespace llvm; |
28 | using namespace llvm::PatternMatch; |
29 | |
30 | #define DEBUG_TYPE "iv-descriptors" |
31 | |
32 | bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, |
33 | SmallPtrSetImpl<Instruction *> &Set) { |
34 | for (const Use &Use : I->operands()) |
35 | if (!Set.count(Ptr: dyn_cast<Instruction>(Val: Use))) |
36 | return false; |
37 | return true; |
38 | } |
39 | |
40 | bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) { |
41 | switch (Kind) { |
42 | default: |
43 | break; |
44 | case RecurKind::Add: |
45 | case RecurKind::Mul: |
46 | case RecurKind::Or: |
47 | case RecurKind::And: |
48 | case RecurKind::Xor: |
49 | case RecurKind::SMax: |
50 | case RecurKind::SMin: |
51 | case RecurKind::UMax: |
52 | case RecurKind::UMin: |
53 | case RecurKind::IAnyOf: |
54 | case RecurKind::FAnyOf: |
55 | return true; |
56 | } |
57 | return false; |
58 | } |
59 | |
60 | bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) { |
61 | return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind); |
62 | } |
63 | |
64 | /// Determines if Phi may have been type-promoted. If Phi has a single user |
65 | /// that ANDs the Phi with a type mask, return the user. RT is updated to |
66 | /// account for the narrower bit width represented by the mask, and the AND |
67 | /// instruction is added to CI. |
68 | static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT, |
69 | SmallPtrSetImpl<Instruction *> &Visited, |
70 | SmallPtrSetImpl<Instruction *> &CI) { |
71 | if (!Phi->hasOneUse()) |
72 | return Phi; |
73 | |
74 | const APInt *M = nullptr; |
75 | Instruction *I, *J = cast<Instruction>(Val: Phi->use_begin()->getUser()); |
76 | |
77 | // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT |
78 | // with a new integer type of the corresponding bit width. |
79 | if (match(V: J, P: m_And(L: m_Instruction(I), R: m_APInt(Res&: M)))) { |
80 | int32_t Bits = (*M + 1).exactLogBase2(); |
81 | if (Bits > 0) { |
82 | RT = IntegerType::get(C&: Phi->getContext(), NumBits: Bits); |
83 | Visited.insert(Ptr: Phi); |
84 | CI.insert(Ptr: J); |
85 | return J; |
86 | } |
87 | } |
88 | return Phi; |
89 | } |
90 | |
91 | /// Compute the minimal bit width needed to represent a reduction whose exit |
92 | /// instruction is given by Exit. |
93 | static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit, |
94 | DemandedBits *DB, |
95 | AssumptionCache *AC, |
96 | DominatorTree *DT) { |
97 | bool IsSigned = false; |
98 | const DataLayout &DL = Exit->getDataLayout(); |
99 | uint64_t MaxBitWidth = DL.getTypeSizeInBits(Ty: Exit->getType()); |
100 | |
101 | if (DB) { |
102 | // Use the demanded bits analysis to determine the bits that are live out |
103 | // of the exit instruction, rounding up to the nearest power of two. If the |
104 | // use of demanded bits results in a smaller bit width, we know the value |
105 | // must be positive (i.e., IsSigned = false), because if this were not the |
106 | // case, the sign bit would have been demanded. |
107 | auto Mask = DB->getDemandedBits(I: Exit); |
108 | MaxBitWidth = Mask.getBitWidth() - Mask.countl_zero(); |
109 | } |
110 | |
111 | if (MaxBitWidth == DL.getTypeSizeInBits(Ty: Exit->getType()) && AC && DT) { |
112 | // If demanded bits wasn't able to limit the bit width, we can try to use |
113 | // value tracking instead. This can be the case, for example, if the value |
114 | // may be negative. |
115 | auto NumSignBits = ComputeNumSignBits(Op: Exit, DL, Depth: 0, AC, CxtI: nullptr, DT); |
116 | auto NumTypeBits = DL.getTypeSizeInBits(Ty: Exit->getType()); |
117 | MaxBitWidth = NumTypeBits - NumSignBits; |
118 | KnownBits Bits = computeKnownBits(V: Exit, DL); |
119 | if (!Bits.isNonNegative()) { |
120 | // If the value is not known to be non-negative, we set IsSigned to true, |
121 | // meaning that we will use sext instructions instead of zext |
122 | // instructions to restore the original type. |
123 | IsSigned = true; |
124 | // Make sure at least one sign bit is included in the result, so it |
125 | // will get properly sign-extended. |
126 | ++MaxBitWidth; |
127 | } |
128 | } |
129 | MaxBitWidth = llvm::bit_ceil(Value: MaxBitWidth); |
130 | |
131 | return std::make_pair(x: Type::getIntNTy(C&: Exit->getContext(), N: MaxBitWidth), |
132 | y&: IsSigned); |
133 | } |
134 | |
135 | /// Collect cast instructions that can be ignored in the vectorizer's cost |
136 | /// model, given a reduction exit value and the minimal type in which the |
137 | // reduction can be represented. Also search casts to the recurrence type |
138 | // to find the minimum width used by the recurrence. |
139 | static void collectCastInstrs(Loop *TheLoop, Instruction *Exit, |
140 | Type *RecurrenceType, |
141 | SmallPtrSetImpl<Instruction *> &Casts, |
142 | unsigned &MinWidthCastToRecurTy) { |
143 | |
144 | SmallVector<Instruction *, 8> Worklist; |
145 | SmallPtrSet<Instruction *, 8> Visited; |
146 | Worklist.push_back(Elt: Exit); |
147 | MinWidthCastToRecurTy = -1U; |
148 | |
149 | while (!Worklist.empty()) { |
150 | Instruction *Val = Worklist.pop_back_val(); |
151 | Visited.insert(Ptr: Val); |
152 | if (auto *Cast = dyn_cast<CastInst>(Val)) { |
153 | if (Cast->getSrcTy() == RecurrenceType) { |
154 | // If the source type of a cast instruction is equal to the recurrence |
155 | // type, it will be eliminated, and should be ignored in the vectorizer |
156 | // cost model. |
157 | Casts.insert(Ptr: Cast); |
158 | continue; |
159 | } |
160 | if (Cast->getDestTy() == RecurrenceType) { |
161 | // The minimum width used by the recurrence is found by checking for |
162 | // casts on its operands. The minimum width is used by the vectorizer |
163 | // when finding the widest type for in-loop reductions without any |
164 | // loads/stores. |
165 | MinWidthCastToRecurTy = std::min<unsigned>( |
166 | a: MinWidthCastToRecurTy, b: Cast->getSrcTy()->getScalarSizeInBits()); |
167 | continue; |
168 | } |
169 | } |
170 | // Add all operands to the work list if they are loop-varying values that |
171 | // we haven't yet visited. |
172 | for (Value *O : cast<User>(Val)->operands()) |
173 | if (auto *I = dyn_cast<Instruction>(Val: O)) |
174 | if (TheLoop->contains(Inst: I) && !Visited.count(Ptr: I)) |
175 | Worklist.push_back(Elt: I); |
176 | } |
177 | } |
178 | |
179 | // Check if a given Phi node can be recognized as an ordered reduction for |
180 | // vectorizing floating point operations without unsafe math. |
181 | static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst, |
182 | Instruction *Exit, PHINode *Phi) { |
183 | // Currently only FAdd and FMulAdd are supported. |
184 | if (Kind != RecurKind::FAdd && Kind != RecurKind::FMulAdd) |
185 | return false; |
186 | |
187 | if (Kind == RecurKind::FAdd && Exit->getOpcode() != Instruction::FAdd) |
188 | return false; |
189 | |
190 | if (Kind == RecurKind::FMulAdd && |
191 | !RecurrenceDescriptor::isFMulAddIntrinsic(I: Exit)) |
192 | return false; |
193 | |
194 | // Ensure the exit instruction has only one user other than the reduction PHI |
195 | if (Exit != ExactFPMathInst || Exit->hasNUsesOrMore(N: 3)) |
196 | return false; |
197 | |
198 | // The only pattern accepted is the one in which the reduction PHI |
199 | // is used as one of the operands of the exit instruction |
200 | auto *Op0 = Exit->getOperand(i: 0); |
201 | auto *Op1 = Exit->getOperand(i: 1); |
202 | if (Kind == RecurKind::FAdd && Op0 != Phi && Op1 != Phi) |
203 | return false; |
204 | if (Kind == RecurKind::FMulAdd && Exit->getOperand(i: 2) != Phi) |
205 | return false; |
206 | |
207 | LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi |
208 | << ", ExitInst: " << *Exit << "\n" ); |
209 | |
210 | return true; |
211 | } |
212 | |
213 | bool RecurrenceDescriptor::AddReductionVar( |
214 | PHINode *Phi, RecurKind Kind, Loop *TheLoop, FastMathFlags FuncFMF, |
215 | RecurrenceDescriptor &RedDes, DemandedBits *DB, AssumptionCache *AC, |
216 | DominatorTree *DT, ScalarEvolution *SE) { |
217 | if (Phi->getNumIncomingValues() != 2) |
218 | return false; |
219 | |
220 | // Reduction variables are only found in the loop header block. |
221 | if (Phi->getParent() != TheLoop->getHeader()) |
222 | return false; |
223 | |
224 | // Obtain the reduction start value from the value that comes from the loop |
225 | // preheader. |
226 | Value *RdxStart = Phi->getIncomingValueForBlock(BB: TheLoop->getLoopPreheader()); |
227 | |
228 | // ExitInstruction is the single value which is used outside the loop. |
229 | // We only allow for a single reduction value to be used outside the loop. |
230 | // This includes users of the reduction, variables (which form a cycle |
231 | // which ends in the phi node). |
232 | Instruction *ExitInstruction = nullptr; |
233 | |
234 | // Variable to keep last visited store instruction. By the end of the |
235 | // algorithm this variable will be either empty or having intermediate |
236 | // reduction value stored in invariant address. |
237 | StoreInst *IntermediateStore = nullptr; |
238 | |
239 | // Indicates that we found a reduction operation in our scan. |
240 | bool FoundReduxOp = false; |
241 | |
242 | // We start with the PHI node and scan for all of the users of this |
243 | // instruction. All users must be instructions that can be used as reduction |
244 | // variables (such as ADD). We must have a single out-of-block user. The cycle |
245 | // must include the original PHI. |
246 | bool FoundStartPHI = false; |
247 | |
248 | // To recognize min/max patterns formed by a icmp select sequence, we store |
249 | // the number of instruction we saw from the recognized min/max pattern, |
250 | // to make sure we only see exactly the two instructions. |
251 | unsigned NumCmpSelectPatternInst = 0; |
252 | InstDesc ReduxDesc(false, nullptr); |
253 | |
254 | // Data used for determining if the recurrence has been type-promoted. |
255 | Type *RecurrenceType = Phi->getType(); |
256 | SmallPtrSet<Instruction *, 4> CastInsts; |
257 | unsigned MinWidthCastToRecurrenceType; |
258 | Instruction *Start = Phi; |
259 | bool IsSigned = false; |
260 | |
261 | SmallPtrSet<Instruction *, 8> VisitedInsts; |
262 | SmallVector<Instruction *, 8> Worklist; |
263 | |
264 | // Return early if the recurrence kind does not match the type of Phi. If the |
265 | // recurrence kind is arithmetic, we attempt to look through AND operations |
266 | // resulting from the type promotion performed by InstCombine. Vector |
267 | // operations are not limited to the legal integer widths, so we may be able |
268 | // to evaluate the reduction in the narrower width. |
269 | if (RecurrenceType->isFloatingPointTy()) { |
270 | if (!isFloatingPointRecurrenceKind(Kind)) |
271 | return false; |
272 | } else if (RecurrenceType->isIntegerTy()) { |
273 | if (!isIntegerRecurrenceKind(Kind)) |
274 | return false; |
275 | if (!isMinMaxRecurrenceKind(Kind)) |
276 | Start = lookThroughAnd(Phi, RT&: RecurrenceType, Visited&: VisitedInsts, CI&: CastInsts); |
277 | } else { |
278 | // Pointer min/max may exist, but it is not supported as a reduction op. |
279 | return false; |
280 | } |
281 | |
282 | Worklist.push_back(Elt: Start); |
283 | VisitedInsts.insert(Ptr: Start); |
284 | |
285 | // Start with all flags set because we will intersect this with the reduction |
286 | // flags from all the reduction operations. |
287 | FastMathFlags FMF = FastMathFlags::getFast(); |
288 | |
289 | // The first instruction in the use-def chain of the Phi node that requires |
290 | // exact floating point operations. |
291 | Instruction *ExactFPMathInst = nullptr; |
292 | |
293 | // A value in the reduction can be used: |
294 | // - By the reduction: |
295 | // - Reduction operation: |
296 | // - One use of reduction value (safe). |
297 | // - Multiple use of reduction value (not safe). |
298 | // - PHI: |
299 | // - All uses of the PHI must be the reduction (safe). |
300 | // - Otherwise, not safe. |
301 | // - By instructions outside of the loop (safe). |
302 | // * One value may have several outside users, but all outside |
303 | // uses must be of the same value. |
304 | // - By store instructions with a loop invariant address (safe with |
305 | // the following restrictions): |
306 | // * If there are several stores, all must have the same address. |
307 | // * Final value should be stored in that loop invariant address. |
308 | // - By an instruction that is not part of the reduction (not safe). |
309 | // This is either: |
310 | // * An instruction type other than PHI or the reduction operation. |
311 | // * A PHI in the header other than the initial PHI. |
312 | while (!Worklist.empty()) { |
313 | Instruction *Cur = Worklist.pop_back_val(); |
314 | |
315 | // Store instructions are allowed iff it is the store of the reduction |
316 | // value to the same loop invariant memory location. |
317 | if (auto *SI = dyn_cast<StoreInst>(Val: Cur)) { |
318 | if (!SE) { |
319 | LLVM_DEBUG(dbgs() << "Store instructions are not processed without " |
320 | << "Scalar Evolution Analysis\n" ); |
321 | return false; |
322 | } |
323 | |
324 | const SCEV *PtrScev = SE->getSCEV(V: SI->getPointerOperand()); |
325 | // Check it is the same address as previous stores |
326 | if (IntermediateStore) { |
327 | const SCEV *OtherScev = |
328 | SE->getSCEV(V: IntermediateStore->getPointerOperand()); |
329 | |
330 | if (OtherScev != PtrScev) { |
331 | LLVM_DEBUG(dbgs() << "Storing reduction value to different addresses " |
332 | << "inside the loop: " << *SI->getPointerOperand() |
333 | << " and " |
334 | << *IntermediateStore->getPointerOperand() << '\n'); |
335 | return false; |
336 | } |
337 | } |
338 | |
339 | // Check the pointer is loop invariant |
340 | if (!SE->isLoopInvariant(S: PtrScev, L: TheLoop)) { |
341 | LLVM_DEBUG(dbgs() << "Storing reduction value to non-uniform address " |
342 | << "inside the loop: " << *SI->getPointerOperand() |
343 | << '\n'); |
344 | return false; |
345 | } |
346 | |
347 | // IntermediateStore is always the last store in the loop. |
348 | IntermediateStore = SI; |
349 | continue; |
350 | } |
351 | |
352 | // No Users. |
353 | // If the instruction has no users then this is a broken chain and can't be |
354 | // a reduction variable. |
355 | if (Cur->use_empty()) |
356 | return false; |
357 | |
358 | bool IsAPhi = isa<PHINode>(Val: Cur); |
359 | |
360 | // A header PHI use other than the original PHI. |
361 | if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) |
362 | return false; |
363 | |
364 | // Reductions of instructions such as Div, and Sub is only possible if the |
365 | // LHS is the reduction variable. |
366 | if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Val: Cur) && |
367 | !isa<ICmpInst>(Val: Cur) && !isa<FCmpInst>(Val: Cur) && |
368 | !VisitedInsts.count(Ptr: dyn_cast<Instruction>(Val: Cur->getOperand(i: 0)))) |
369 | return false; |
370 | |
371 | // Any reduction instruction must be of one of the allowed kinds. We ignore |
372 | // the starting value (the Phi or an AND instruction if the Phi has been |
373 | // type-promoted). |
374 | if (Cur != Start) { |
375 | ReduxDesc = |
376 | isRecurrenceInstr(L: TheLoop, Phi, I: Cur, Kind, Prev&: ReduxDesc, FuncFMF); |
377 | ExactFPMathInst = ExactFPMathInst == nullptr |
378 | ? ReduxDesc.getExactFPMathInst() |
379 | : ExactFPMathInst; |
380 | if (!ReduxDesc.isRecurrence()) |
381 | return false; |
382 | // FIXME: FMF is allowed on phi, but propagation is not handled correctly. |
383 | if (isa<FPMathOperator>(Val: ReduxDesc.getPatternInst()) && !IsAPhi) { |
384 | FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags(); |
385 | if (auto *Sel = dyn_cast<SelectInst>(Val: ReduxDesc.getPatternInst())) { |
386 | // Accept FMF on either fcmp or select of a min/max idiom. |
387 | // TODO: This is a hack to work-around the fact that FMF may not be |
388 | // assigned/propagated correctly. If that problem is fixed or we |
389 | // standardize on fmin/fmax via intrinsics, this can be removed. |
390 | if (auto *FCmp = dyn_cast<FCmpInst>(Val: Sel->getCondition())) |
391 | CurFMF |= FCmp->getFastMathFlags(); |
392 | } |
393 | FMF &= CurFMF; |
394 | } |
395 | // Update this reduction kind if we matched a new instruction. |
396 | // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind' |
397 | // state accurate while processing the worklist? |
398 | if (ReduxDesc.getRecKind() != RecurKind::None) |
399 | Kind = ReduxDesc.getRecKind(); |
400 | } |
401 | |
402 | bool IsASelect = isa<SelectInst>(Val: Cur); |
403 | |
404 | // A conditional reduction operation must only have 2 or less uses in |
405 | // VisitedInsts. |
406 | if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) && |
407 | hasMultipleUsesOf(I: Cur, Insts&: VisitedInsts, MaxNumUses: 2)) |
408 | return false; |
409 | |
410 | // A reduction operation must only have one use of the reduction value. |
411 | if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) && |
412 | !isAnyOfRecurrenceKind(Kind) && hasMultipleUsesOf(I: Cur, Insts&: VisitedInsts, MaxNumUses: 1)) |
413 | return false; |
414 | |
415 | // All inputs to a PHI node must be a reduction value. |
416 | if (IsAPhi && Cur != Phi && !areAllUsesIn(I: Cur, Set&: VisitedInsts)) |
417 | return false; |
418 | |
419 | if ((isIntMinMaxRecurrenceKind(Kind) || Kind == RecurKind::IAnyOf) && |
420 | (isa<ICmpInst>(Val: Cur) || isa<SelectInst>(Val: Cur))) |
421 | ++NumCmpSelectPatternInst; |
422 | if ((isFPMinMaxRecurrenceKind(Kind) || Kind == RecurKind::FAnyOf) && |
423 | (isa<FCmpInst>(Val: Cur) || isa<SelectInst>(Val: Cur))) |
424 | ++NumCmpSelectPatternInst; |
425 | |
426 | // Check whether we found a reduction operator. |
427 | FoundReduxOp |= !IsAPhi && Cur != Start; |
428 | |
429 | // Process users of current instruction. Push non-PHI nodes after PHI nodes |
430 | // onto the stack. This way we are going to have seen all inputs to PHI |
431 | // nodes once we get to them. |
432 | SmallVector<Instruction *, 8> NonPHIs; |
433 | SmallVector<Instruction *, 8> PHIs; |
434 | for (User *U : Cur->users()) { |
435 | Instruction *UI = cast<Instruction>(Val: U); |
436 | |
437 | // If the user is a call to llvm.fmuladd then the instruction can only be |
438 | // the final operand. |
439 | if (isFMulAddIntrinsic(I: UI)) |
440 | if (Cur == UI->getOperand(i: 0) || Cur == UI->getOperand(i: 1)) |
441 | return false; |
442 | |
443 | // Check if we found the exit user. |
444 | BasicBlock *Parent = UI->getParent(); |
445 | if (!TheLoop->contains(BB: Parent)) { |
446 | // If we already know this instruction is used externally, move on to |
447 | // the next user. |
448 | if (ExitInstruction == Cur) |
449 | continue; |
450 | |
451 | // Exit if you find multiple values used outside or if the header phi |
452 | // node is being used. In this case the user uses the value of the |
453 | // previous iteration, in which case we would loose "VF-1" iterations of |
454 | // the reduction operation if we vectorize. |
455 | if (ExitInstruction != nullptr || Cur == Phi) |
456 | return false; |
457 | |
458 | // The instruction used by an outside user must be the last instruction |
459 | // before we feed back to the reduction phi. Otherwise, we loose VF-1 |
460 | // operations on the value. |
461 | if (!is_contained(Range: Phi->operands(), Element: Cur)) |
462 | return false; |
463 | |
464 | ExitInstruction = Cur; |
465 | continue; |
466 | } |
467 | |
468 | // Process instructions only once (termination). Each reduction cycle |
469 | // value must only be used once, except by phi nodes and min/max |
470 | // reductions which are represented as a cmp followed by a select. |
471 | InstDesc IgnoredVal(false, nullptr); |
472 | if (VisitedInsts.insert(Ptr: UI).second) { |
473 | if (isa<PHINode>(Val: UI)) { |
474 | PHIs.push_back(Elt: UI); |
475 | } else { |
476 | StoreInst *SI = dyn_cast<StoreInst>(Val: UI); |
477 | if (SI && SI->getPointerOperand() == Cur) { |
478 | // Reduction variable chain can only be stored somewhere but it |
479 | // can't be used as an address. |
480 | return false; |
481 | } |
482 | NonPHIs.push_back(Elt: UI); |
483 | } |
484 | } else if (!isa<PHINode>(Val: UI) && |
485 | ((!isa<FCmpInst>(Val: UI) && !isa<ICmpInst>(Val: UI) && |
486 | !isa<SelectInst>(Val: UI)) || |
487 | (!isConditionalRdxPattern(Kind, I: UI).isRecurrence() && |
488 | !isAnyOfPattern(Loop: TheLoop, OrigPhi: Phi, I: UI, Prev&: IgnoredVal) |
489 | .isRecurrence() && |
490 | !isMinMaxPattern(I: UI, Kind, Prev: IgnoredVal).isRecurrence()))) |
491 | return false; |
492 | |
493 | // Remember that we completed the cycle. |
494 | if (UI == Phi) |
495 | FoundStartPHI = true; |
496 | } |
497 | Worklist.append(in_start: PHIs.begin(), in_end: PHIs.end()); |
498 | Worklist.append(in_start: NonPHIs.begin(), in_end: NonPHIs.end()); |
499 | } |
500 | |
501 | // This means we have seen one but not the other instruction of the |
502 | // pattern or more than just a select and cmp. Zero implies that we saw a |
503 | // llvm.min/max intrinsic, which is always OK. |
504 | if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2 && |
505 | NumCmpSelectPatternInst != 0) |
506 | return false; |
507 | |
508 | if (isAnyOfRecurrenceKind(Kind) && NumCmpSelectPatternInst != 1) |
509 | return false; |
510 | |
511 | if (IntermediateStore) { |
512 | // Check that stored value goes to the phi node again. This way we make sure |
513 | // that the value stored in IntermediateStore is indeed the final reduction |
514 | // value. |
515 | if (!is_contained(Range: Phi->operands(), Element: IntermediateStore->getValueOperand())) { |
516 | LLVM_DEBUG(dbgs() << "Not a final reduction value stored: " |
517 | << *IntermediateStore << '\n'); |
518 | return false; |
519 | } |
520 | |
521 | // If there is an exit instruction it's value should be stored in |
522 | // IntermediateStore |
523 | if (ExitInstruction && |
524 | IntermediateStore->getValueOperand() != ExitInstruction) { |
525 | LLVM_DEBUG(dbgs() << "Last store Instruction of reduction value does not " |
526 | "store last calculated value of the reduction: " |
527 | << *IntermediateStore << '\n'); |
528 | return false; |
529 | } |
530 | |
531 | // If all uses are inside the loop (intermediate stores), then the |
532 | // reduction value after the loop will be the one used in the last store. |
533 | if (!ExitInstruction) |
534 | ExitInstruction = cast<Instruction>(Val: IntermediateStore->getValueOperand()); |
535 | } |
536 | |
537 | if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) |
538 | return false; |
539 | |
540 | const bool IsOrdered = |
541 | checkOrderedReduction(Kind, ExactFPMathInst, Exit: ExitInstruction, Phi); |
542 | |
543 | if (Start != Phi) { |
544 | // If the starting value is not the same as the phi node, we speculatively |
545 | // looked through an 'and' instruction when evaluating a potential |
546 | // arithmetic reduction to determine if it may have been type-promoted. |
547 | // |
548 | // We now compute the minimal bit width that is required to represent the |
549 | // reduction. If this is the same width that was indicated by the 'and', we |
550 | // can represent the reduction in the smaller type. The 'and' instruction |
551 | // will be eliminated since it will essentially be a cast instruction that |
552 | // can be ignore in the cost model. If we compute a different type than we |
553 | // did when evaluating the 'and', the 'and' will not be eliminated, and we |
554 | // will end up with different kinds of operations in the recurrence |
555 | // expression (e.g., IntegerAND, IntegerADD). We give up if this is |
556 | // the case. |
557 | // |
558 | // The vectorizer relies on InstCombine to perform the actual |
559 | // type-shrinking. It does this by inserting instructions to truncate the |
560 | // exit value of the reduction to the width indicated by RecurrenceType and |
561 | // then extend this value back to the original width. If IsSigned is false, |
562 | // a 'zext' instruction will be generated; otherwise, a 'sext' will be |
563 | // used. |
564 | // |
565 | // TODO: We should not rely on InstCombine to rewrite the reduction in the |
566 | // smaller type. We should just generate a correctly typed expression |
567 | // to begin with. |
568 | Type *ComputedType; |
569 | std::tie(args&: ComputedType, args&: IsSigned) = |
570 | computeRecurrenceType(Exit: ExitInstruction, DB, AC, DT); |
571 | if (ComputedType != RecurrenceType) |
572 | return false; |
573 | } |
574 | |
575 | // Collect cast instructions and the minimum width used by the recurrence. |
576 | // If the starting value is not the same as the phi node and the computed |
577 | // recurrence type is equal to the recurrence type, the recurrence expression |
578 | // will be represented in a narrower or wider type. If there are any cast |
579 | // instructions that will be unnecessary, collect them in CastsFromRecurTy. |
580 | // Note that the 'and' instruction was already included in this list. |
581 | // |
582 | // TODO: A better way to represent this may be to tag in some way all the |
583 | // instructions that are a part of the reduction. The vectorizer cost |
584 | // model could then apply the recurrence type to these instructions, |
585 | // without needing a white list of instructions to ignore. |
586 | // This may also be useful for the inloop reductions, if it can be |
587 | // kept simple enough. |
588 | collectCastInstrs(TheLoop, Exit: ExitInstruction, RecurrenceType, Casts&: CastInsts, |
589 | MinWidthCastToRecurTy&: MinWidthCastToRecurrenceType); |
590 | |
591 | // We found a reduction var if we have reached the original phi node and we |
592 | // only have a single instruction with out-of-loop users. |
593 | |
594 | // The ExitInstruction(Instruction which is allowed to have out-of-loop users) |
595 | // is saved as part of the RecurrenceDescriptor. |
596 | |
597 | // Save the description of this reduction variable. |
598 | RecurrenceDescriptor RD(RdxStart, ExitInstruction, IntermediateStore, Kind, |
599 | FMF, ExactFPMathInst, RecurrenceType, IsSigned, |
600 | IsOrdered, CastInsts, MinWidthCastToRecurrenceType); |
601 | RedDes = RD; |
602 | |
603 | return true; |
604 | } |
605 | |
606 | // We are looking for loops that do something like this: |
607 | // int r = 0; |
608 | // for (int i = 0; i < n; i++) { |
609 | // if (src[i] > 3) |
610 | // r = 3; |
611 | // } |
612 | // where the reduction value (r) only has two states, in this example 0 or 3. |
613 | // The generated LLVM IR for this type of loop will be like this: |
614 | // for.body: |
615 | // %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ] |
616 | // ... |
617 | // %cmp = icmp sgt i32 %5, 3 |
618 | // %spec.select = select i1 %cmp, i32 3, i32 %r |
619 | // ... |
620 | // In general we can support vectorization of loops where 'r' flips between |
621 | // any two non-constants, provided they are loop invariant. The only thing |
622 | // we actually care about at the end of the loop is whether or not any lane |
623 | // in the selected vector is different from the start value. The final |
624 | // across-vector reduction after the loop simply involves choosing the start |
625 | // value if nothing changed (0 in the example above) or the other selected |
626 | // value (3 in the example above). |
627 | RecurrenceDescriptor::InstDesc |
628 | RecurrenceDescriptor::isAnyOfPattern(Loop *Loop, PHINode *OrigPhi, |
629 | Instruction *I, InstDesc &Prev) { |
630 | // We must handle the select(cmp(),x,y) as a single instruction. Advance to |
631 | // the select. |
632 | CmpInst::Predicate Pred; |
633 | if (match(V: I, P: m_OneUse(SubPattern: m_Cmp(Pred, L: m_Value(), R: m_Value())))) { |
634 | if (auto *Select = dyn_cast<SelectInst>(Val: *I->user_begin())) |
635 | return InstDesc(Select, Prev.getRecKind()); |
636 | } |
637 | |
638 | if (!match(V: I, |
639 | P: m_Select(C: m_Cmp(Pred, L: m_Value(), R: m_Value()), L: m_Value(), R: m_Value()))) |
640 | return InstDesc(false, I); |
641 | |
642 | SelectInst *SI = cast<SelectInst>(Val: I); |
643 | Value *NonPhi = nullptr; |
644 | |
645 | if (OrigPhi == dyn_cast<PHINode>(Val: SI->getTrueValue())) |
646 | NonPhi = SI->getFalseValue(); |
647 | else if (OrigPhi == dyn_cast<PHINode>(Val: SI->getFalseValue())) |
648 | NonPhi = SI->getTrueValue(); |
649 | else |
650 | return InstDesc(false, I); |
651 | |
652 | // We are looking for selects of the form: |
653 | // select(cmp(), phi, loop_invariant) or |
654 | // select(cmp(), loop_invariant, phi) |
655 | if (!Loop->isLoopInvariant(V: NonPhi)) |
656 | return InstDesc(false, I); |
657 | |
658 | return InstDesc(I, isa<ICmpInst>(Val: I->getOperand(i: 0)) ? RecurKind::IAnyOf |
659 | : RecurKind::FAnyOf); |
660 | } |
661 | |
662 | RecurrenceDescriptor::InstDesc |
663 | RecurrenceDescriptor::isMinMaxPattern(Instruction *I, RecurKind Kind, |
664 | const InstDesc &Prev) { |
665 | assert((isa<CmpInst>(I) || isa<SelectInst>(I) || isa<CallInst>(I)) && |
666 | "Expected a cmp or select or call instruction" ); |
667 | if (!isMinMaxRecurrenceKind(Kind)) |
668 | return InstDesc(false, I); |
669 | |
670 | // We must handle the select(cmp()) as a single instruction. Advance to the |
671 | // select. |
672 | CmpInst::Predicate Pred; |
673 | if (match(V: I, P: m_OneUse(SubPattern: m_Cmp(Pred, L: m_Value(), R: m_Value())))) { |
674 | if (auto *Select = dyn_cast<SelectInst>(Val: *I->user_begin())) |
675 | return InstDesc(Select, Prev.getRecKind()); |
676 | } |
677 | |
678 | // Only match select with single use cmp condition, or a min/max intrinsic. |
679 | if (!isa<IntrinsicInst>(Val: I) && |
680 | !match(V: I, P: m_Select(C: m_OneUse(SubPattern: m_Cmp(Pred, L: m_Value(), R: m_Value())), L: m_Value(), |
681 | R: m_Value()))) |
682 | return InstDesc(false, I); |
683 | |
684 | // Look for a min/max pattern. |
685 | if (match(V: I, P: m_UMin(L: m_Value(), R: m_Value()))) |
686 | return InstDesc(Kind == RecurKind::UMin, I); |
687 | if (match(V: I, P: m_UMax(L: m_Value(), R: m_Value()))) |
688 | return InstDesc(Kind == RecurKind::UMax, I); |
689 | if (match(V: I, P: m_SMax(L: m_Value(), R: m_Value()))) |
690 | return InstDesc(Kind == RecurKind::SMax, I); |
691 | if (match(V: I, P: m_SMin(L: m_Value(), R: m_Value()))) |
692 | return InstDesc(Kind == RecurKind::SMin, I); |
693 | if (match(V: I, P: m_OrdFMin(L: m_Value(), R: m_Value()))) |
694 | return InstDesc(Kind == RecurKind::FMin, I); |
695 | if (match(V: I, P: m_OrdFMax(L: m_Value(), R: m_Value()))) |
696 | return InstDesc(Kind == RecurKind::FMax, I); |
697 | if (match(V: I, P: m_UnordFMin(L: m_Value(), R: m_Value()))) |
698 | return InstDesc(Kind == RecurKind::FMin, I); |
699 | if (match(V: I, P: m_UnordFMax(L: m_Value(), R: m_Value()))) |
700 | return InstDesc(Kind == RecurKind::FMax, I); |
701 | if (match(V: I, P: m_Intrinsic<Intrinsic::minnum>(Op0: m_Value(), Op1: m_Value()))) |
702 | return InstDesc(Kind == RecurKind::FMin, I); |
703 | if (match(V: I, P: m_Intrinsic<Intrinsic::maxnum>(Op0: m_Value(), Op1: m_Value()))) |
704 | return InstDesc(Kind == RecurKind::FMax, I); |
705 | if (match(V: I, P: m_Intrinsic<Intrinsic::minimum>(Op0: m_Value(), Op1: m_Value()))) |
706 | return InstDesc(Kind == RecurKind::FMinimum, I); |
707 | if (match(V: I, P: m_Intrinsic<Intrinsic::maximum>(Op0: m_Value(), Op1: m_Value()))) |
708 | return InstDesc(Kind == RecurKind::FMaximum, I); |
709 | |
710 | return InstDesc(false, I); |
711 | } |
712 | |
713 | /// Returns true if the select instruction has users in the compare-and-add |
714 | /// reduction pattern below. The select instruction argument is the last one |
715 | /// in the sequence. |
716 | /// |
717 | /// %sum.1 = phi ... |
718 | /// ... |
719 | /// %cmp = fcmp pred %0, %CFP |
720 | /// %add = fadd %0, %sum.1 |
721 | /// %sum.2 = select %cmp, %add, %sum.1 |
722 | RecurrenceDescriptor::InstDesc |
723 | RecurrenceDescriptor::isConditionalRdxPattern(RecurKind Kind, Instruction *I) { |
724 | SelectInst *SI = dyn_cast<SelectInst>(Val: I); |
725 | if (!SI) |
726 | return InstDesc(false, I); |
727 | |
728 | CmpInst *CI = dyn_cast<CmpInst>(Val: SI->getCondition()); |
729 | // Only handle single use cases for now. |
730 | if (!CI || !CI->hasOneUse()) |
731 | return InstDesc(false, I); |
732 | |
733 | Value *TrueVal = SI->getTrueValue(); |
734 | Value *FalseVal = SI->getFalseValue(); |
735 | // Handle only when either of operands of select instruction is a PHI |
736 | // node for now. |
737 | if ((isa<PHINode>(Val: *TrueVal) && isa<PHINode>(Val: *FalseVal)) || |
738 | (!isa<PHINode>(Val: *TrueVal) && !isa<PHINode>(Val: *FalseVal))) |
739 | return InstDesc(false, I); |
740 | |
741 | Instruction *I1 = |
742 | isa<PHINode>(Val: *TrueVal) ? dyn_cast<Instruction>(Val: FalseVal) |
743 | : dyn_cast<Instruction>(Val: TrueVal); |
744 | if (!I1 || !I1->isBinaryOp()) |
745 | return InstDesc(false, I); |
746 | |
747 | Value *Op1, *Op2; |
748 | if (!(((m_FAdd(L: m_Value(V&: Op1), R: m_Value(V&: Op2)).match(V: I1) || |
749 | m_FSub(L: m_Value(V&: Op1), R: m_Value(V&: Op2)).match(V: I1)) && |
750 | I1->isFast()) || |
751 | (m_FMul(L: m_Value(V&: Op1), R: m_Value(V&: Op2)).match(V: I1) && (I1->isFast())) || |
752 | ((m_Add(L: m_Value(V&: Op1), R: m_Value(V&: Op2)).match(V: I1) || |
753 | m_Sub(L: m_Value(V&: Op1), R: m_Value(V&: Op2)).match(V: I1))) || |
754 | (m_Mul(L: m_Value(V&: Op1), R: m_Value(V&: Op2)).match(V: I1)))) |
755 | return InstDesc(false, I); |
756 | |
757 | Instruction *IPhi = isa<PHINode>(Val: *Op1) ? dyn_cast<Instruction>(Val: Op1) |
758 | : dyn_cast<Instruction>(Val: Op2); |
759 | if (!IPhi || IPhi != FalseVal) |
760 | return InstDesc(false, I); |
761 | |
762 | return InstDesc(true, SI); |
763 | } |
764 | |
765 | RecurrenceDescriptor::InstDesc |
766 | RecurrenceDescriptor::isRecurrenceInstr(Loop *L, PHINode *OrigPhi, |
767 | Instruction *I, RecurKind Kind, |
768 | InstDesc &Prev, FastMathFlags FuncFMF) { |
769 | assert(Prev.getRecKind() == RecurKind::None || Prev.getRecKind() == Kind); |
770 | switch (I->getOpcode()) { |
771 | default: |
772 | return InstDesc(false, I); |
773 | case Instruction::PHI: |
774 | return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst()); |
775 | case Instruction::Sub: |
776 | case Instruction::Add: |
777 | return InstDesc(Kind == RecurKind::Add, I); |
778 | case Instruction::Mul: |
779 | return InstDesc(Kind == RecurKind::Mul, I); |
780 | case Instruction::And: |
781 | return InstDesc(Kind == RecurKind::And, I); |
782 | case Instruction::Or: |
783 | return InstDesc(Kind == RecurKind::Or, I); |
784 | case Instruction::Xor: |
785 | return InstDesc(Kind == RecurKind::Xor, I); |
786 | case Instruction::FDiv: |
787 | case Instruction::FMul: |
788 | return InstDesc(Kind == RecurKind::FMul, I, |
789 | I->hasAllowReassoc() ? nullptr : I); |
790 | case Instruction::FSub: |
791 | case Instruction::FAdd: |
792 | return InstDesc(Kind == RecurKind::FAdd, I, |
793 | I->hasAllowReassoc() ? nullptr : I); |
794 | case Instruction::Select: |
795 | if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul || |
796 | Kind == RecurKind::Add || Kind == RecurKind::Mul) |
797 | return isConditionalRdxPattern(Kind, I); |
798 | [[fallthrough]]; |
799 | case Instruction::FCmp: |
800 | case Instruction::ICmp: |
801 | case Instruction::Call: |
802 | if (isAnyOfRecurrenceKind(Kind)) |
803 | return isAnyOfPattern(Loop: L, OrigPhi, I, Prev); |
804 | auto HasRequiredFMF = [&]() { |
805 | if (FuncFMF.noNaNs() && FuncFMF.noSignedZeros()) |
806 | return true; |
807 | if (isa<FPMathOperator>(Val: I) && I->hasNoNaNs() && I->hasNoSignedZeros()) |
808 | return true; |
809 | // minimum and maximum intrinsics do not require nsz and nnan flags since |
810 | // NaN and signed zeroes are propagated in the intrinsic implementation. |
811 | return match(V: I, P: m_Intrinsic<Intrinsic::minimum>(Op0: m_Value(), Op1: m_Value())) || |
812 | match(V: I, P: m_Intrinsic<Intrinsic::maximum>(Op0: m_Value(), Op1: m_Value())); |
813 | }; |
814 | if (isIntMinMaxRecurrenceKind(Kind) || |
815 | (HasRequiredFMF() && isFPMinMaxRecurrenceKind(Kind))) |
816 | return isMinMaxPattern(I, Kind, Prev); |
817 | else if (isFMulAddIntrinsic(I)) |
818 | return InstDesc(Kind == RecurKind::FMulAdd, I, |
819 | I->hasAllowReassoc() ? nullptr : I); |
820 | return InstDesc(false, I); |
821 | } |
822 | } |
823 | |
824 | bool RecurrenceDescriptor::hasMultipleUsesOf( |
825 | Instruction *I, SmallPtrSetImpl<Instruction *> &Insts, |
826 | unsigned MaxNumUses) { |
827 | unsigned NumUses = 0; |
828 | for (const Use &U : I->operands()) { |
829 | if (Insts.count(Ptr: dyn_cast<Instruction>(Val: U))) |
830 | ++NumUses; |
831 | if (NumUses > MaxNumUses) |
832 | return true; |
833 | } |
834 | |
835 | return false; |
836 | } |
837 | |
838 | bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, |
839 | RecurrenceDescriptor &RedDes, |
840 | DemandedBits *DB, AssumptionCache *AC, |
841 | DominatorTree *DT, |
842 | ScalarEvolution *SE) { |
843 | BasicBlock * = TheLoop->getHeader(); |
844 | Function &F = *Header->getParent(); |
845 | FastMathFlags FMF; |
846 | FMF.setNoNaNs( |
847 | F.getFnAttribute(Kind: "no-nans-fp-math" ).getValueAsBool()); |
848 | FMF.setNoSignedZeros( |
849 | F.getFnAttribute(Kind: "no-signed-zeros-fp-math" ).getValueAsBool()); |
850 | |
851 | if (AddReductionVar(Phi, Kind: RecurKind::Add, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
852 | SE)) { |
853 | LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n" ); |
854 | return true; |
855 | } |
856 | if (AddReductionVar(Phi, Kind: RecurKind::Mul, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
857 | SE)) { |
858 | LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n" ); |
859 | return true; |
860 | } |
861 | if (AddReductionVar(Phi, Kind: RecurKind::Or, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
862 | SE)) { |
863 | LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n" ); |
864 | return true; |
865 | } |
866 | if (AddReductionVar(Phi, Kind: RecurKind::And, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
867 | SE)) { |
868 | LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n" ); |
869 | return true; |
870 | } |
871 | if (AddReductionVar(Phi, Kind: RecurKind::Xor, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
872 | SE)) { |
873 | LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n" ); |
874 | return true; |
875 | } |
876 | if (AddReductionVar(Phi, Kind: RecurKind::SMax, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
877 | SE)) { |
878 | LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n" ); |
879 | return true; |
880 | } |
881 | if (AddReductionVar(Phi, Kind: RecurKind::SMin, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
882 | SE)) { |
883 | LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n" ); |
884 | return true; |
885 | } |
886 | if (AddReductionVar(Phi, Kind: RecurKind::UMax, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
887 | SE)) { |
888 | LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n" ); |
889 | return true; |
890 | } |
891 | if (AddReductionVar(Phi, Kind: RecurKind::UMin, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
892 | SE)) { |
893 | LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n" ); |
894 | return true; |
895 | } |
896 | if (AddReductionVar(Phi, Kind: RecurKind::IAnyOf, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
897 | SE)) { |
898 | LLVM_DEBUG(dbgs() << "Found an integer conditional select reduction PHI." |
899 | << *Phi << "\n" ); |
900 | return true; |
901 | } |
902 | if (AddReductionVar(Phi, Kind: RecurKind::FMul, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
903 | SE)) { |
904 | LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n" ); |
905 | return true; |
906 | } |
907 | if (AddReductionVar(Phi, Kind: RecurKind::FAdd, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
908 | SE)) { |
909 | LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n" ); |
910 | return true; |
911 | } |
912 | if (AddReductionVar(Phi, Kind: RecurKind::FMax, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
913 | SE)) { |
914 | LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n" ); |
915 | return true; |
916 | } |
917 | if (AddReductionVar(Phi, Kind: RecurKind::FMin, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
918 | SE)) { |
919 | LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n" ); |
920 | return true; |
921 | } |
922 | if (AddReductionVar(Phi, Kind: RecurKind::FAnyOf, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
923 | SE)) { |
924 | LLVM_DEBUG(dbgs() << "Found a float conditional select reduction PHI." |
925 | << " PHI." << *Phi << "\n" ); |
926 | return true; |
927 | } |
928 | if (AddReductionVar(Phi, Kind: RecurKind::FMulAdd, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
929 | SE)) { |
930 | LLVM_DEBUG(dbgs() << "Found an FMulAdd reduction PHI." << *Phi << "\n" ); |
931 | return true; |
932 | } |
933 | if (AddReductionVar(Phi, Kind: RecurKind::FMaximum, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
934 | SE)) { |
935 | LLVM_DEBUG(dbgs() << "Found a float MAXIMUM reduction PHI." << *Phi << "\n" ); |
936 | return true; |
937 | } |
938 | if (AddReductionVar(Phi, Kind: RecurKind::FMinimum, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
939 | SE)) { |
940 | LLVM_DEBUG(dbgs() << "Found a float MINIMUM reduction PHI." << *Phi << "\n" ); |
941 | return true; |
942 | } |
943 | // Not a reduction of known type. |
944 | return false; |
945 | } |
946 | |
947 | bool RecurrenceDescriptor::isFixedOrderRecurrence(PHINode *Phi, Loop *TheLoop, |
948 | DominatorTree *DT) { |
949 | |
950 | // Ensure the phi node is in the loop header and has two incoming values. |
951 | if (Phi->getParent() != TheLoop->getHeader() || |
952 | Phi->getNumIncomingValues() != 2) |
953 | return false; |
954 | |
955 | // Ensure the loop has a preheader and a single latch block. The loop |
956 | // vectorizer will need the latch to set up the next iteration of the loop. |
957 | auto * = TheLoop->getLoopPreheader(); |
958 | auto *Latch = TheLoop->getLoopLatch(); |
959 | if (!Preheader || !Latch) |
960 | return false; |
961 | |
962 | // Ensure the phi node's incoming blocks are the loop preheader and latch. |
963 | if (Phi->getBasicBlockIndex(BB: Preheader) < 0 || |
964 | Phi->getBasicBlockIndex(BB: Latch) < 0) |
965 | return false; |
966 | |
967 | // Get the previous value. The previous value comes from the latch edge while |
968 | // the initial value comes from the preheader edge. |
969 | auto *Previous = dyn_cast<Instruction>(Val: Phi->getIncomingValueForBlock(BB: Latch)); |
970 | |
971 | // If Previous is a phi in the header, go through incoming values from the |
972 | // latch until we find a non-phi value. Use this as the new Previous, all uses |
973 | // in the header will be dominated by the original phi, but need to be moved |
974 | // after the non-phi previous value. |
975 | SmallPtrSet<PHINode *, 4> SeenPhis; |
976 | while (auto *PrevPhi = dyn_cast_or_null<PHINode>(Val: Previous)) { |
977 | if (PrevPhi->getParent() != Phi->getParent()) |
978 | return false; |
979 | if (!SeenPhis.insert(Ptr: PrevPhi).second) |
980 | return false; |
981 | Previous = dyn_cast<Instruction>(Val: PrevPhi->getIncomingValueForBlock(BB: Latch)); |
982 | } |
983 | |
984 | if (!Previous || !TheLoop->contains(Inst: Previous) || isa<PHINode>(Val: Previous)) |
985 | return false; |
986 | |
987 | // Ensure every user of the phi node (recursively) is dominated by the |
988 | // previous value. The dominance requirement ensures the loop vectorizer will |
989 | // not need to vectorize the initial value prior to the first iteration of the |
990 | // loop. |
991 | // TODO: Consider extending this sinking to handle memory instructions. |
992 | |
993 | SmallPtrSet<Value *, 8> Seen; |
994 | BasicBlock *PhiBB = Phi->getParent(); |
995 | SmallVector<Instruction *, 8> WorkList; |
996 | auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) { |
997 | // Cyclic dependence. |
998 | if (Previous == SinkCandidate) |
999 | return false; |
1000 | |
1001 | if (!Seen.insert(Ptr: SinkCandidate).second) |
1002 | return true; |
1003 | if (DT->dominates(Def: Previous, |
1004 | User: SinkCandidate)) // We already are good w/o sinking. |
1005 | return true; |
1006 | |
1007 | if (SinkCandidate->getParent() != PhiBB || |
1008 | SinkCandidate->mayHaveSideEffects() || |
1009 | SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator()) |
1010 | return false; |
1011 | |
1012 | // If we reach a PHI node that is not dominated by Previous, we reached a |
1013 | // header PHI. No need for sinking. |
1014 | if (isa<PHINode>(Val: SinkCandidate)) |
1015 | return true; |
1016 | |
1017 | // Sink User tentatively and check its users |
1018 | WorkList.push_back(Elt: SinkCandidate); |
1019 | return true; |
1020 | }; |
1021 | |
1022 | WorkList.push_back(Elt: Phi); |
1023 | // Try to recursively sink instructions and their users after Previous. |
1024 | while (!WorkList.empty()) { |
1025 | Instruction *Current = WorkList.pop_back_val(); |
1026 | for (User *User : Current->users()) { |
1027 | if (!TryToPushSinkCandidate(cast<Instruction>(Val: User))) |
1028 | return false; |
1029 | } |
1030 | } |
1031 | |
1032 | return true; |
1033 | } |
1034 | |
1035 | /// This function returns the identity element (or neutral element) for |
1036 | /// the operation K. |
1037 | Value *RecurrenceDescriptor::getRecurrenceIdentity(RecurKind K, Type *Tp, |
1038 | FastMathFlags FMF) const { |
1039 | switch (K) { |
1040 | case RecurKind::Xor: |
1041 | case RecurKind::Add: |
1042 | case RecurKind::Or: |
1043 | // Adding, Xoring, Oring zero to a number does not change it. |
1044 | return ConstantInt::get(Ty: Tp, V: 0); |
1045 | case RecurKind::Mul: |
1046 | // Multiplying a number by 1 does not change it. |
1047 | return ConstantInt::get(Ty: Tp, V: 1); |
1048 | case RecurKind::And: |
1049 | // AND-ing a number with an all-1 value does not change it. |
1050 | return ConstantInt::get(Ty: Tp, V: -1, IsSigned: true); |
1051 | case RecurKind::FMul: |
1052 | // Multiplying a number by 1 does not change it. |
1053 | return ConstantFP::get(Ty: Tp, V: 1.0L); |
1054 | case RecurKind::FMulAdd: |
1055 | case RecurKind::FAdd: |
1056 | // Adding zero to a number does not change it. |
1057 | // FIXME: Ideally we should not need to check FMF for FAdd and should always |
1058 | // use -0.0. However, this will currently result in mixed vectors of 0.0/-0.0. |
1059 | // Instead, we should ensure that 1) the FMF from FAdd are propagated to the PHI |
1060 | // nodes where possible, and 2) PHIs with the nsz flag + -0.0 use 0.0. This would |
1061 | // mean we can then remove the check for noSignedZeros() below (see D98963). |
1062 | if (FMF.noSignedZeros()) |
1063 | return ConstantFP::get(Ty: Tp, V: 0.0L); |
1064 | return ConstantFP::get(Ty: Tp, V: -0.0L); |
1065 | case RecurKind::UMin: |
1066 | return ConstantInt::get(Ty: Tp, V: -1, IsSigned: true); |
1067 | case RecurKind::UMax: |
1068 | return ConstantInt::get(Ty: Tp, V: 0); |
1069 | case RecurKind::SMin: |
1070 | return ConstantInt::get(Ty: Tp, |
1071 | V: APInt::getSignedMaxValue(numBits: Tp->getIntegerBitWidth())); |
1072 | case RecurKind::SMax: |
1073 | return ConstantInt::get(Ty: Tp, |
1074 | V: APInt::getSignedMinValue(numBits: Tp->getIntegerBitWidth())); |
1075 | case RecurKind::FMin: |
1076 | assert((FMF.noNaNs() && FMF.noSignedZeros()) && |
1077 | "nnan, nsz is expected to be set for FP min reduction." ); |
1078 | return ConstantFP::getInfinity(Ty: Tp, Negative: false /*Negative*/); |
1079 | case RecurKind::FMax: |
1080 | assert((FMF.noNaNs() && FMF.noSignedZeros()) && |
1081 | "nnan, nsz is expected to be set for FP max reduction." ); |
1082 | return ConstantFP::getInfinity(Ty: Tp, Negative: true /*Negative*/); |
1083 | case RecurKind::FMinimum: |
1084 | return ConstantFP::getInfinity(Ty: Tp, Negative: false /*Negative*/); |
1085 | case RecurKind::FMaximum: |
1086 | return ConstantFP::getInfinity(Ty: Tp, Negative: true /*Negative*/); |
1087 | case RecurKind::IAnyOf: |
1088 | case RecurKind::FAnyOf: |
1089 | return getRecurrenceStartValue(); |
1090 | break; |
1091 | default: |
1092 | llvm_unreachable("Unknown recurrence kind" ); |
1093 | } |
1094 | } |
1095 | |
1096 | unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) { |
1097 | switch (Kind) { |
1098 | case RecurKind::Add: |
1099 | return Instruction::Add; |
1100 | case RecurKind::Mul: |
1101 | return Instruction::Mul; |
1102 | case RecurKind::Or: |
1103 | return Instruction::Or; |
1104 | case RecurKind::And: |
1105 | return Instruction::And; |
1106 | case RecurKind::Xor: |
1107 | return Instruction::Xor; |
1108 | case RecurKind::FMul: |
1109 | return Instruction::FMul; |
1110 | case RecurKind::FMulAdd: |
1111 | case RecurKind::FAdd: |
1112 | return Instruction::FAdd; |
1113 | case RecurKind::SMax: |
1114 | case RecurKind::SMin: |
1115 | case RecurKind::UMax: |
1116 | case RecurKind::UMin: |
1117 | case RecurKind::IAnyOf: |
1118 | return Instruction::ICmp; |
1119 | case RecurKind::FMax: |
1120 | case RecurKind::FMin: |
1121 | case RecurKind::FMaximum: |
1122 | case RecurKind::FMinimum: |
1123 | case RecurKind::FAnyOf: |
1124 | return Instruction::FCmp; |
1125 | default: |
1126 | llvm_unreachable("Unknown recurrence operation" ); |
1127 | } |
1128 | } |
1129 | |
1130 | SmallVector<Instruction *, 4> |
1131 | RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const { |
1132 | SmallVector<Instruction *, 4> ReductionOperations; |
1133 | unsigned RedOp = getOpcode(Kind); |
1134 | |
1135 | // Search down from the Phi to the LoopExitInstr, looking for instructions |
1136 | // with a single user of the correct type for the reduction. |
1137 | |
1138 | // Note that we check that the type of the operand is correct for each item in |
1139 | // the chain, including the last (the loop exit value). This can come up from |
1140 | // sub, which would otherwise be treated as an add reduction. MinMax also need |
1141 | // to check for a pair of icmp/select, for which we use getNextInstruction and |
1142 | // isCorrectOpcode functions to step the right number of instruction, and |
1143 | // check the icmp/select pair. |
1144 | // FIXME: We also do not attempt to look through Select's yet, which might |
1145 | // be part of the reduction chain, or attempt to looks through And's to find a |
1146 | // smaller bitwidth. Subs are also currently not allowed (which are usually |
1147 | // treated as part of a add reduction) as they are expected to generally be |
1148 | // more expensive than out-of-loop reductions, and need to be costed more |
1149 | // carefully. |
1150 | unsigned ExpectedUses = 1; |
1151 | if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) |
1152 | ExpectedUses = 2; |
1153 | |
1154 | auto getNextInstruction = [&](Instruction *Cur) -> Instruction * { |
1155 | for (auto *User : Cur->users()) { |
1156 | Instruction *UI = cast<Instruction>(Val: User); |
1157 | if (isa<PHINode>(Val: UI)) |
1158 | continue; |
1159 | if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { |
1160 | // We are expecting a icmp/select pair, which we go to the next select |
1161 | // instruction if we can. We already know that Cur has 2 uses. |
1162 | if (isa<SelectInst>(Val: UI)) |
1163 | return UI; |
1164 | continue; |
1165 | } |
1166 | return UI; |
1167 | } |
1168 | return nullptr; |
1169 | }; |
1170 | auto isCorrectOpcode = [&](Instruction *Cur) { |
1171 | if (RedOp == Instruction::ICmp || RedOp == Instruction::FCmp) { |
1172 | Value *LHS, *RHS; |
1173 | return SelectPatternResult::isMinOrMax( |
1174 | SPF: matchSelectPattern(V: Cur, LHS, RHS).Flavor); |
1175 | } |
1176 | // Recognize a call to the llvm.fmuladd intrinsic. |
1177 | if (isFMulAddIntrinsic(I: Cur)) |
1178 | return true; |
1179 | |
1180 | return Cur->getOpcode() == RedOp; |
1181 | }; |
1182 | |
1183 | // Attempt to look through Phis which are part of the reduction chain |
1184 | unsigned = 0; |
1185 | Instruction *RdxInstr = LoopExitInstr; |
1186 | if (auto ExitPhi = dyn_cast<PHINode>(Val: LoopExitInstr)) { |
1187 | if (ExitPhi->getNumIncomingValues() != 2) |
1188 | return {}; |
1189 | |
1190 | Instruction *Inc0 = dyn_cast<Instruction>(Val: ExitPhi->getIncomingValue(i: 0)); |
1191 | Instruction *Inc1 = dyn_cast<Instruction>(Val: ExitPhi->getIncomingValue(i: 1)); |
1192 | |
1193 | Instruction *Chain = nullptr; |
1194 | if (Inc0 == Phi) |
1195 | Chain = Inc1; |
1196 | else if (Inc1 == Phi) |
1197 | Chain = Inc0; |
1198 | else |
1199 | return {}; |
1200 | |
1201 | RdxInstr = Chain; |
1202 | ExtraPhiUses = 1; |
1203 | } |
1204 | |
1205 | // The loop exit instruction we check first (as a quick test) but add last. We |
1206 | // check the opcode is correct (and dont allow them to be Subs) and that they |
1207 | // have expected to have the expected number of uses. They will have one use |
1208 | // from the phi and one from a LCSSA value, no matter the type. |
1209 | if (!isCorrectOpcode(RdxInstr) || !LoopExitInstr->hasNUses(N: 2)) |
1210 | return {}; |
1211 | |
1212 | // Check that the Phi has one (or two for min/max) uses, plus an extra use |
1213 | // for conditional reductions. |
1214 | if (!Phi->hasNUses(N: ExpectedUses + ExtraPhiUses)) |
1215 | return {}; |
1216 | |
1217 | Instruction *Cur = getNextInstruction(Phi); |
1218 | |
1219 | // Each other instruction in the chain should have the expected number of uses |
1220 | // and be the correct opcode. |
1221 | while (Cur != RdxInstr) { |
1222 | if (!Cur || !isCorrectOpcode(Cur) || !Cur->hasNUses(N: ExpectedUses)) |
1223 | return {}; |
1224 | |
1225 | ReductionOperations.push_back(Elt: Cur); |
1226 | Cur = getNextInstruction(Cur); |
1227 | } |
1228 | |
1229 | ReductionOperations.push_back(Elt: Cur); |
1230 | return ReductionOperations; |
1231 | } |
1232 | |
1233 | InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, |
1234 | const SCEV *Step, BinaryOperator *BOp, |
1235 | SmallVectorImpl<Instruction *> *Casts) |
1236 | : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { |
1237 | assert(IK != IK_NoInduction && "Not an induction" ); |
1238 | |
1239 | // Start value type should match the induction kind and the value |
1240 | // itself should not be null. |
1241 | assert(StartValue && "StartValue is null" ); |
1242 | assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && |
1243 | "StartValue is not a pointer for pointer induction" ); |
1244 | assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && |
1245 | "StartValue is not an integer for integer induction" ); |
1246 | |
1247 | // Check the Step Value. It should be non-zero integer value. |
1248 | assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && |
1249 | "Step value is zero" ); |
1250 | |
1251 | assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && |
1252 | "StepValue is not an integer" ); |
1253 | |
1254 | assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && |
1255 | "StepValue is not FP for FpInduction" ); |
1256 | assert((IK != IK_FpInduction || |
1257 | (InductionBinOp && |
1258 | (InductionBinOp->getOpcode() == Instruction::FAdd || |
1259 | InductionBinOp->getOpcode() == Instruction::FSub))) && |
1260 | "Binary opcode should be specified for FP induction" ); |
1261 | |
1262 | if (Casts) { |
1263 | for (auto &Inst : *Casts) { |
1264 | RedundantCasts.push_back(Elt: Inst); |
1265 | } |
1266 | } |
1267 | } |
1268 | |
1269 | ConstantInt *InductionDescriptor::getConstIntStepValue() const { |
1270 | if (isa<SCEVConstant>(Val: Step)) |
1271 | return dyn_cast<ConstantInt>(Val: cast<SCEVConstant>(Val: Step)->getValue()); |
1272 | return nullptr; |
1273 | } |
1274 | |
1275 | bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, |
1276 | ScalarEvolution *SE, |
1277 | InductionDescriptor &D) { |
1278 | |
1279 | // Here we only handle FP induction variables. |
1280 | assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type" ); |
1281 | |
1282 | if (TheLoop->getHeader() != Phi->getParent()) |
1283 | return false; |
1284 | |
1285 | // The loop may have multiple entrances or multiple exits; we can analyze |
1286 | // this phi if it has a unique entry value and a unique backedge value. |
1287 | if (Phi->getNumIncomingValues() != 2) |
1288 | return false; |
1289 | Value *BEValue = nullptr, *StartValue = nullptr; |
1290 | if (TheLoop->contains(BB: Phi->getIncomingBlock(i: 0))) { |
1291 | BEValue = Phi->getIncomingValue(i: 0); |
1292 | StartValue = Phi->getIncomingValue(i: 1); |
1293 | } else { |
1294 | assert(TheLoop->contains(Phi->getIncomingBlock(1)) && |
1295 | "Unexpected Phi node in the loop" ); |
1296 | BEValue = Phi->getIncomingValue(i: 1); |
1297 | StartValue = Phi->getIncomingValue(i: 0); |
1298 | } |
1299 | |
1300 | BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val: BEValue); |
1301 | if (!BOp) |
1302 | return false; |
1303 | |
1304 | Value *Addend = nullptr; |
1305 | if (BOp->getOpcode() == Instruction::FAdd) { |
1306 | if (BOp->getOperand(i_nocapture: 0) == Phi) |
1307 | Addend = BOp->getOperand(i_nocapture: 1); |
1308 | else if (BOp->getOperand(i_nocapture: 1) == Phi) |
1309 | Addend = BOp->getOperand(i_nocapture: 0); |
1310 | } else if (BOp->getOpcode() == Instruction::FSub) |
1311 | if (BOp->getOperand(i_nocapture: 0) == Phi) |
1312 | Addend = BOp->getOperand(i_nocapture: 1); |
1313 | |
1314 | if (!Addend) |
1315 | return false; |
1316 | |
1317 | // The addend should be loop invariant |
1318 | if (auto *I = dyn_cast<Instruction>(Val: Addend)) |
1319 | if (TheLoop->contains(Inst: I)) |
1320 | return false; |
1321 | |
1322 | // FP Step has unknown SCEV |
1323 | const SCEV *Step = SE->getUnknown(V: Addend); |
1324 | D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); |
1325 | return true; |
1326 | } |
1327 | |
1328 | /// This function is called when we suspect that the update-chain of a phi node |
1329 | /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, |
1330 | /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime |
1331 | /// predicate P under which the SCEV expression for the phi can be the |
1332 | /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the |
1333 | /// cast instructions that are involved in the update-chain of this induction. |
1334 | /// A caller that adds the required runtime predicate can be free to drop these |
1335 | /// cast instructions, and compute the phi using \p AR (instead of some scev |
1336 | /// expression with casts). |
1337 | /// |
1338 | /// For example, without a predicate the scev expression can take the following |
1339 | /// form: |
1340 | /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) |
1341 | /// |
1342 | /// It corresponds to the following IR sequence: |
1343 | /// %for.body: |
1344 | /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] |
1345 | /// %casted_phi = "ExtTrunc i64 %x" |
1346 | /// %add = add i64 %casted_phi, %step |
1347 | /// |
1348 | /// where %x is given in \p PN, |
1349 | /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, |
1350 | /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of |
1351 | /// several forms, for example, such as: |
1352 | /// ExtTrunc1: %casted_phi = and %x, 2^n-1 |
1353 | /// or: |
1354 | /// ExtTrunc2: %t = shl %x, m |
1355 | /// %casted_phi = ashr %t, m |
1356 | /// |
1357 | /// If we are able to find such sequence, we return the instructions |
1358 | /// we found, namely %casted_phi and the instructions on its use-def chain up |
1359 | /// to the phi (not including the phi). |
1360 | static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, |
1361 | const SCEVUnknown *PhiScev, |
1362 | const SCEVAddRecExpr *AR, |
1363 | SmallVectorImpl<Instruction *> &CastInsts) { |
1364 | |
1365 | assert(CastInsts.empty() && "CastInsts is expected to be empty." ); |
1366 | auto *PN = cast<PHINode>(Val: PhiScev->getValue()); |
1367 | assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression" ); |
1368 | const Loop *L = AR->getLoop(); |
1369 | |
1370 | // Find any cast instructions that participate in the def-use chain of |
1371 | // PhiScev in the loop. |
1372 | // FORNOW/TODO: We currently expect the def-use chain to include only |
1373 | // two-operand instructions, where one of the operands is an invariant. |
1374 | // createAddRecFromPHIWithCasts() currently does not support anything more |
1375 | // involved than that, so we keep the search simple. This can be |
1376 | // extended/generalized as needed. |
1377 | |
1378 | auto getDef = [&](const Value *Val) -> Value * { |
1379 | const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val); |
1380 | if (!BinOp) |
1381 | return nullptr; |
1382 | Value *Op0 = BinOp->getOperand(i_nocapture: 0); |
1383 | Value *Op1 = BinOp->getOperand(i_nocapture: 1); |
1384 | Value *Def = nullptr; |
1385 | if (L->isLoopInvariant(V: Op0)) |
1386 | Def = Op1; |
1387 | else if (L->isLoopInvariant(V: Op1)) |
1388 | Def = Op0; |
1389 | return Def; |
1390 | }; |
1391 | |
1392 | // Look for the instruction that defines the induction via the |
1393 | // loop backedge. |
1394 | BasicBlock *Latch = L->getLoopLatch(); |
1395 | if (!Latch) |
1396 | return false; |
1397 | Value *Val = PN->getIncomingValueForBlock(BB: Latch); |
1398 | if (!Val) |
1399 | return false; |
1400 | |
1401 | // Follow the def-use chain until the induction phi is reached. |
1402 | // If on the way we encounter a Value that has the same SCEV Expr as the |
1403 | // phi node, we can consider the instructions we visit from that point |
1404 | // as part of the cast-sequence that can be ignored. |
1405 | bool InCastSequence = false; |
1406 | auto *Inst = dyn_cast<Instruction>(Val); |
1407 | while (Val != PN) { |
1408 | // If we encountered a phi node other than PN, or if we left the loop, |
1409 | // we bail out. |
1410 | if (!Inst || !L->contains(Inst)) { |
1411 | return false; |
1412 | } |
1413 | auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: PSE.getSCEV(V: Val)); |
1414 | if (AddRec && PSE.areAddRecsEqualWithPreds(AR1: AddRec, AR2: AR)) |
1415 | InCastSequence = true; |
1416 | if (InCastSequence) { |
1417 | // Only the last instruction in the cast sequence is expected to have |
1418 | // uses outside the induction def-use chain. |
1419 | if (!CastInsts.empty()) |
1420 | if (!Inst->hasOneUse()) |
1421 | return false; |
1422 | CastInsts.push_back(Elt: Inst); |
1423 | } |
1424 | Val = getDef(Val); |
1425 | if (!Val) |
1426 | return false; |
1427 | Inst = dyn_cast<Instruction>(Val); |
1428 | } |
1429 | |
1430 | return InCastSequence; |
1431 | } |
1432 | |
1433 | bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, |
1434 | PredicatedScalarEvolution &PSE, |
1435 | InductionDescriptor &D, bool Assume) { |
1436 | Type *PhiTy = Phi->getType(); |
1437 | |
1438 | // Handle integer and pointer inductions variables. |
1439 | // Now we handle also FP induction but not trying to make a |
1440 | // recurrent expression from the PHI node in-place. |
1441 | |
1442 | if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() && |
1443 | !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) |
1444 | return false; |
1445 | |
1446 | if (PhiTy->isFloatingPointTy()) |
1447 | return isFPInductionPHI(Phi, TheLoop, SE: PSE.getSE(), D); |
1448 | |
1449 | const SCEV *PhiScev = PSE.getSCEV(V: Phi); |
1450 | const auto *AR = dyn_cast<SCEVAddRecExpr>(Val: PhiScev); |
1451 | |
1452 | // We need this expression to be an AddRecExpr. |
1453 | if (Assume && !AR) |
1454 | AR = PSE.getAsAddRec(V: Phi); |
1455 | |
1456 | if (!AR) { |
1457 | LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n" ); |
1458 | return false; |
1459 | } |
1460 | |
1461 | // Record any Cast instructions that participate in the induction update |
1462 | const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(Val: PhiScev); |
1463 | // If we started from an UnknownSCEV, and managed to build an addRecurrence |
1464 | // only after enabling Assume with PSCEV, this means we may have encountered |
1465 | // cast instructions that required adding a runtime check in order to |
1466 | // guarantee the correctness of the AddRecurrence respresentation of the |
1467 | // induction. |
1468 | if (PhiScev != AR && SymbolicPhi) { |
1469 | SmallVector<Instruction *, 2> Casts; |
1470 | if (getCastsForInductionPHI(PSE, PhiScev: SymbolicPhi, AR, CastInsts&: Casts)) |
1471 | return isInductionPHI(Phi, L: TheLoop, SE: PSE.getSE(), D, Expr: AR, CastsToIgnore: &Casts); |
1472 | } |
1473 | |
1474 | return isInductionPHI(Phi, L: TheLoop, SE: PSE.getSE(), D, Expr: AR); |
1475 | } |
1476 | |
1477 | bool InductionDescriptor::isInductionPHI( |
1478 | PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, |
1479 | InductionDescriptor &D, const SCEV *Expr, |
1480 | SmallVectorImpl<Instruction *> *CastsToIgnore) { |
1481 | Type *PhiTy = Phi->getType(); |
1482 | // We only handle integer and pointer inductions variables. |
1483 | if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) |
1484 | return false; |
1485 | |
1486 | // Check that the PHI is consecutive. |
1487 | const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(V: Phi); |
1488 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: PhiScev); |
1489 | |
1490 | if (!AR) { |
1491 | LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n" ); |
1492 | return false; |
1493 | } |
1494 | |
1495 | if (AR->getLoop() != TheLoop) { |
1496 | // FIXME: We should treat this as a uniform. Unfortunately, we |
1497 | // don't currently know how to handled uniform PHIs. |
1498 | LLVM_DEBUG( |
1499 | dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n" ); |
1500 | return false; |
1501 | } |
1502 | |
1503 | // This function assumes that InductionPhi is called only on Phi nodes |
1504 | // present inside loop headers. Check for the same, and throw an assert if |
1505 | // the current Phi is not present inside the loop header. |
1506 | assert(Phi->getParent() == AR->getLoop()->getHeader() |
1507 | && "Invalid Phi node, not present in loop header" ); |
1508 | |
1509 | Value *StartValue = |
1510 | Phi->getIncomingValueForBlock(BB: AR->getLoop()->getLoopPreheader()); |
1511 | |
1512 | BasicBlock *Latch = AR->getLoop()->getLoopLatch(); |
1513 | if (!Latch) |
1514 | return false; |
1515 | |
1516 | const SCEV *Step = AR->getStepRecurrence(SE&: *SE); |
1517 | // Calculate the pointer stride and check if it is consecutive. |
1518 | // The stride may be a constant or a loop invariant integer value. |
1519 | const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Val: Step); |
1520 | if (!ConstStep && !SE->isLoopInvariant(S: Step, L: TheLoop)) |
1521 | return false; |
1522 | |
1523 | if (PhiTy->isIntegerTy()) { |
1524 | BinaryOperator *BOp = |
1525 | dyn_cast<BinaryOperator>(Val: Phi->getIncomingValueForBlock(BB: Latch)); |
1526 | D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp, |
1527 | CastsToIgnore); |
1528 | return true; |
1529 | } |
1530 | |
1531 | assert(PhiTy->isPointerTy() && "The PHI must be a pointer" ); |
1532 | |
1533 | // This allows induction variables w/non-constant steps. |
1534 | D = InductionDescriptor(StartValue, IK_PtrInduction, Step); |
1535 | return true; |
1536 | } |
1537 | |