1 | //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "llvm/Analysis/LazyCallGraph.h" |
10 | |
11 | #include "llvm/ADT/ArrayRef.h" |
12 | #include "llvm/ADT/STLExtras.h" |
13 | #include "llvm/ADT/Sequence.h" |
14 | #include "llvm/ADT/SmallPtrSet.h" |
15 | #include "llvm/ADT/SmallVector.h" |
16 | #include "llvm/ADT/iterator_range.h" |
17 | #include "llvm/Analysis/TargetLibraryInfo.h" |
18 | #include "llvm/IR/Constants.h" |
19 | #include "llvm/IR/Function.h" |
20 | #include "llvm/IR/GlobalVariable.h" |
21 | #include "llvm/IR/InstIterator.h" |
22 | #include "llvm/IR/Instruction.h" |
23 | #include "llvm/IR/Module.h" |
24 | #include "llvm/IR/PassManager.h" |
25 | #include "llvm/Support/Casting.h" |
26 | #include "llvm/Support/Compiler.h" |
27 | #include "llvm/Support/Debug.h" |
28 | #include "llvm/Support/GraphWriter.h" |
29 | #include "llvm/Support/raw_ostream.h" |
30 | #include <algorithm> |
31 | |
32 | #ifdef EXPENSIVE_CHECKS |
33 | #include "llvm/ADT/ScopeExit.h" |
34 | #endif |
35 | |
36 | using namespace llvm; |
37 | |
38 | #define DEBUG_TYPE "lcg" |
39 | |
40 | void LazyCallGraph::EdgeSequence::insertEdgeInternal(Node &TargetN, |
41 | Edge::Kind EK) { |
42 | EdgeIndexMap.try_emplace(Key: &TargetN, Args: Edges.size()); |
43 | Edges.emplace_back(Args&: TargetN, Args&: EK); |
44 | } |
45 | |
46 | void LazyCallGraph::EdgeSequence::setEdgeKind(Node &TargetN, Edge::Kind EK) { |
47 | Edges[EdgeIndexMap.find(Val: &TargetN)->second].setKind(EK); |
48 | } |
49 | |
50 | bool LazyCallGraph::EdgeSequence::removeEdgeInternal(Node &TargetN) { |
51 | auto IndexMapI = EdgeIndexMap.find(Val: &TargetN); |
52 | if (IndexMapI == EdgeIndexMap.end()) |
53 | return false; |
54 | |
55 | Edges[IndexMapI->second] = Edge(); |
56 | EdgeIndexMap.erase(I: IndexMapI); |
57 | return true; |
58 | } |
59 | |
60 | static void addEdge(SmallVectorImpl<LazyCallGraph::Edge> &Edges, |
61 | DenseMap<LazyCallGraph::Node *, int> &EdgeIndexMap, |
62 | LazyCallGraph::Node &N, LazyCallGraph::Edge::Kind EK) { |
63 | if (!EdgeIndexMap.try_emplace(Key: &N, Args: Edges.size()).second) |
64 | return; |
65 | |
66 | LLVM_DEBUG(dbgs() << " Added callable function: " << N.getName() << "\n" ); |
67 | Edges.emplace_back(Args: LazyCallGraph::Edge(N, EK)); |
68 | } |
69 | |
70 | LazyCallGraph::EdgeSequence &LazyCallGraph::Node::populateSlow() { |
71 | assert(!Edges && "Must not have already populated the edges for this node!" ); |
72 | |
73 | LLVM_DEBUG(dbgs() << " Adding functions called by '" << getName() |
74 | << "' to the graph.\n" ); |
75 | |
76 | Edges = EdgeSequence(); |
77 | |
78 | SmallVector<Constant *, 16> Worklist; |
79 | SmallPtrSet<Function *, 4> Callees; |
80 | SmallPtrSet<Constant *, 16> Visited; |
81 | |
82 | // Find all the potential call graph edges in this function. We track both |
83 | // actual call edges and indirect references to functions. The direct calls |
84 | // are trivially added, but to accumulate the latter we walk the instructions |
85 | // and add every operand which is a constant to the worklist to process |
86 | // afterward. |
87 | // |
88 | // Note that we consider *any* function with a definition to be a viable |
89 | // edge. Even if the function's definition is subject to replacement by |
90 | // some other module (say, a weak definition) there may still be |
91 | // optimizations which essentially speculate based on the definition and |
92 | // a way to check that the specific definition is in fact the one being |
93 | // used. For example, this could be done by moving the weak definition to |
94 | // a strong (internal) definition and making the weak definition be an |
95 | // alias. Then a test of the address of the weak function against the new |
96 | // strong definition's address would be an effective way to determine the |
97 | // safety of optimizing a direct call edge. |
98 | for (BasicBlock &BB : *F) |
99 | for (Instruction &I : BB) { |
100 | if (auto *CB = dyn_cast<CallBase>(Val: &I)) |
101 | if (Function *Callee = CB->getCalledFunction()) |
102 | if (!Callee->isDeclaration()) |
103 | if (Callees.insert(Ptr: Callee).second) { |
104 | Visited.insert(Ptr: Callee); |
105 | addEdge(Edges&: Edges->Edges, EdgeIndexMap&: Edges->EdgeIndexMap, N&: G->get(F&: *Callee), |
106 | EK: LazyCallGraph::Edge::Call); |
107 | } |
108 | |
109 | for (Value *Op : I.operand_values()) |
110 | if (Constant *C = dyn_cast<Constant>(Val: Op)) |
111 | if (Visited.insert(Ptr: C).second) |
112 | Worklist.push_back(Elt: C); |
113 | } |
114 | |
115 | // We've collected all the constant (and thus potentially function or |
116 | // function containing) operands to all the instructions in the function. |
117 | // Process them (recursively) collecting every function found. |
118 | visitReferences(Worklist, Visited, Callback: [&](Function &F) { |
119 | addEdge(Edges&: Edges->Edges, EdgeIndexMap&: Edges->EdgeIndexMap, N&: G->get(F), |
120 | EK: LazyCallGraph::Edge::Ref); |
121 | }); |
122 | |
123 | // Add implicit reference edges to any defined libcall functions (if we |
124 | // haven't found an explicit edge). |
125 | for (auto *F : G->LibFunctions) |
126 | if (!Visited.count(Ptr: F)) |
127 | addEdge(Edges&: Edges->Edges, EdgeIndexMap&: Edges->EdgeIndexMap, N&: G->get(F&: *F), |
128 | EK: LazyCallGraph::Edge::Ref); |
129 | |
130 | return *Edges; |
131 | } |
132 | |
133 | void LazyCallGraph::Node::replaceFunction(Function &NewF) { |
134 | assert(F != &NewF && "Must not replace a function with itself!" ); |
135 | F = &NewF; |
136 | } |
137 | |
138 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
139 | LLVM_DUMP_METHOD void LazyCallGraph::Node::dump() const { |
140 | dbgs() << *this << '\n'; |
141 | } |
142 | #endif |
143 | |
144 | static bool isKnownLibFunction(Function &F, TargetLibraryInfo &TLI) { |
145 | LibFunc LF; |
146 | |
147 | // Either this is a normal library function or a "vectorizable" |
148 | // function. Not using the VFDatabase here because this query |
149 | // is related only to libraries handled via the TLI. |
150 | return TLI.getLibFunc(FDecl: F, F&: LF) || |
151 | TLI.isKnownVectorFunctionInLibrary(F: F.getName()); |
152 | } |
153 | |
154 | LazyCallGraph::LazyCallGraph( |
155 | Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) { |
156 | LLVM_DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier() |
157 | << "\n" ); |
158 | for (Function &F : M) { |
159 | if (F.isDeclaration()) |
160 | continue; |
161 | // If this function is a known lib function to LLVM then we want to |
162 | // synthesize reference edges to it to model the fact that LLVM can turn |
163 | // arbitrary code into a library function call. |
164 | if (isKnownLibFunction(F, TLI&: GetTLI(F))) |
165 | LibFunctions.insert(X: &F); |
166 | |
167 | if (F.hasLocalLinkage()) |
168 | continue; |
169 | |
170 | // External linkage defined functions have edges to them from other |
171 | // modules. |
172 | LLVM_DEBUG(dbgs() << " Adding '" << F.getName() |
173 | << "' to entry set of the graph.\n" ); |
174 | addEdge(Edges&: EntryEdges.Edges, EdgeIndexMap&: EntryEdges.EdgeIndexMap, N&: get(F), EK: Edge::Ref); |
175 | } |
176 | |
177 | // Externally visible aliases of internal functions are also viable entry |
178 | // edges to the module. |
179 | for (auto &A : M.aliases()) { |
180 | if (A.hasLocalLinkage()) |
181 | continue; |
182 | if (Function* F = dyn_cast<Function>(Val: A.getAliasee())) { |
183 | LLVM_DEBUG(dbgs() << " Adding '" << F->getName() |
184 | << "' with alias '" << A.getName() |
185 | << "' to entry set of the graph.\n" ); |
186 | addEdge(Edges&: EntryEdges.Edges, EdgeIndexMap&: EntryEdges.EdgeIndexMap, N&: get(F&: *F), EK: Edge::Ref); |
187 | } |
188 | } |
189 | |
190 | // Now add entry nodes for functions reachable via initializers to globals. |
191 | SmallVector<Constant *, 16> Worklist; |
192 | SmallPtrSet<Constant *, 16> Visited; |
193 | for (GlobalVariable &GV : M.globals()) |
194 | if (GV.hasInitializer()) |
195 | if (Visited.insert(Ptr: GV.getInitializer()).second) |
196 | Worklist.push_back(Elt: GV.getInitializer()); |
197 | |
198 | LLVM_DEBUG( |
199 | dbgs() << " Adding functions referenced by global initializers to the " |
200 | "entry set.\n" ); |
201 | visitReferences(Worklist, Visited, Callback: [&](Function &F) { |
202 | addEdge(Edges&: EntryEdges.Edges, EdgeIndexMap&: EntryEdges.EdgeIndexMap, N&: get(F), |
203 | EK: LazyCallGraph::Edge::Ref); |
204 | }); |
205 | } |
206 | |
207 | LazyCallGraph::LazyCallGraph(LazyCallGraph &&G) |
208 | : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)), |
209 | EntryEdges(std::move(G.EntryEdges)), SCCBPA(std::move(G.SCCBPA)), |
210 | SCCMap(std::move(G.SCCMap)), LibFunctions(std::move(G.LibFunctions)) { |
211 | updateGraphPtrs(); |
212 | } |
213 | |
214 | #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) |
215 | void LazyCallGraph::verify() { |
216 | for (RefSCC &RC : postorder_ref_sccs()) { |
217 | RC.verify(); |
218 | } |
219 | } |
220 | #endif |
221 | |
222 | bool LazyCallGraph::invalidate(Module &, const PreservedAnalyses &PA, |
223 | ModuleAnalysisManager::Invalidator &) { |
224 | // Check whether the analysis, all analyses on functions, or the function's |
225 | // CFG have been preserved. |
226 | auto PAC = PA.getChecker<llvm::LazyCallGraphAnalysis>(); |
227 | return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()); |
228 | } |
229 | |
230 | LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) { |
231 | BPA = std::move(G.BPA); |
232 | NodeMap = std::move(G.NodeMap); |
233 | EntryEdges = std::move(G.EntryEdges); |
234 | SCCBPA = std::move(G.SCCBPA); |
235 | SCCMap = std::move(G.SCCMap); |
236 | LibFunctions = std::move(G.LibFunctions); |
237 | updateGraphPtrs(); |
238 | return *this; |
239 | } |
240 | |
241 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
242 | LLVM_DUMP_METHOD void LazyCallGraph::SCC::dump() const { |
243 | dbgs() << *this << '\n'; |
244 | } |
245 | #endif |
246 | |
247 | #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) |
248 | void LazyCallGraph::SCC::verify() { |
249 | assert(OuterRefSCC && "Can't have a null RefSCC!" ); |
250 | assert(!Nodes.empty() && "Can't have an empty SCC!" ); |
251 | |
252 | for (Node *N : Nodes) { |
253 | assert(N && "Can't have a null node!" ); |
254 | assert(OuterRefSCC->G->lookupSCC(*N) == this && |
255 | "Node does not map to this SCC!" ); |
256 | assert(N->DFSNumber == -1 && |
257 | "Must set DFS numbers to -1 when adding a node to an SCC!" ); |
258 | assert(N->LowLink == -1 && |
259 | "Must set low link to -1 when adding a node to an SCC!" ); |
260 | for (Edge &E : **N) |
261 | assert(E.getNode().isPopulated() && "Can't have an unpopulated node!" ); |
262 | |
263 | #ifdef EXPENSIVE_CHECKS |
264 | // Verify that all nodes in this SCC can reach all other nodes. |
265 | SmallVector<Node *, 4> Worklist; |
266 | SmallPtrSet<Node *, 4> Visited; |
267 | Worklist.push_back(N); |
268 | while (!Worklist.empty()) { |
269 | Node *VisitingNode = Worklist.pop_back_val(); |
270 | if (!Visited.insert(VisitingNode).second) |
271 | continue; |
272 | for (Edge &E : (*VisitingNode)->calls()) |
273 | Worklist.push_back(&E.getNode()); |
274 | } |
275 | for (Node *NodeToVisit : Nodes) { |
276 | assert(Visited.contains(NodeToVisit) && |
277 | "Cannot reach all nodes within SCC" ); |
278 | } |
279 | #endif |
280 | } |
281 | } |
282 | #endif |
283 | |
284 | bool LazyCallGraph::SCC::isParentOf(const SCC &C) const { |
285 | if (this == &C) |
286 | return false; |
287 | |
288 | for (Node &N : *this) |
289 | for (Edge &E : N->calls()) |
290 | if (OuterRefSCC->G->lookupSCC(N&: E.getNode()) == &C) |
291 | return true; |
292 | |
293 | // No edges found. |
294 | return false; |
295 | } |
296 | |
297 | bool LazyCallGraph::SCC::isAncestorOf(const SCC &TargetC) const { |
298 | if (this == &TargetC) |
299 | return false; |
300 | |
301 | LazyCallGraph &G = *OuterRefSCC->G; |
302 | |
303 | // Start with this SCC. |
304 | SmallPtrSet<const SCC *, 16> Visited = {this}; |
305 | SmallVector<const SCC *, 16> Worklist = {this}; |
306 | |
307 | // Walk down the graph until we run out of edges or find a path to TargetC. |
308 | do { |
309 | const SCC &C = *Worklist.pop_back_val(); |
310 | for (Node &N : C) |
311 | for (Edge &E : N->calls()) { |
312 | SCC *CalleeC = G.lookupSCC(N&: E.getNode()); |
313 | if (!CalleeC) |
314 | continue; |
315 | |
316 | // If the callee's SCC is the TargetC, we're done. |
317 | if (CalleeC == &TargetC) |
318 | return true; |
319 | |
320 | // If this is the first time we've reached this SCC, put it on the |
321 | // worklist to recurse through. |
322 | if (Visited.insert(Ptr: CalleeC).second) |
323 | Worklist.push_back(Elt: CalleeC); |
324 | } |
325 | } while (!Worklist.empty()); |
326 | |
327 | // No paths found. |
328 | return false; |
329 | } |
330 | |
331 | LazyCallGraph::RefSCC::RefSCC(LazyCallGraph &G) : G(&G) {} |
332 | |
333 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
334 | LLVM_DUMP_METHOD void LazyCallGraph::RefSCC::dump() const { |
335 | dbgs() << *this << '\n'; |
336 | } |
337 | #endif |
338 | |
339 | #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) |
340 | void LazyCallGraph::RefSCC::verify() { |
341 | assert(G && "Can't have a null graph!" ); |
342 | assert(!SCCs.empty() && "Can't have an empty SCC!" ); |
343 | |
344 | // Verify basic properties of the SCCs. |
345 | SmallPtrSet<SCC *, 4> SCCSet; |
346 | for (SCC *C : SCCs) { |
347 | assert(C && "Can't have a null SCC!" ); |
348 | C->verify(); |
349 | assert(&C->getOuterRefSCC() == this && |
350 | "SCC doesn't think it is inside this RefSCC!" ); |
351 | bool Inserted = SCCSet.insert(C).second; |
352 | assert(Inserted && "Found a duplicate SCC!" ); |
353 | auto IndexIt = SCCIndices.find(C); |
354 | assert(IndexIt != SCCIndices.end() && |
355 | "Found an SCC that doesn't have an index!" ); |
356 | } |
357 | |
358 | // Check that our indices map correctly. |
359 | for (auto [C, I] : SCCIndices) { |
360 | assert(C && "Can't have a null SCC in the indices!" ); |
361 | assert(SCCSet.count(C) && "Found an index for an SCC not in the RefSCC!" ); |
362 | assert(SCCs[I] == C && "Index doesn't point to SCC!" ); |
363 | } |
364 | |
365 | // Check that the SCCs are in fact in post-order. |
366 | for (int I = 0, Size = SCCs.size(); I < Size; ++I) { |
367 | SCC &SourceSCC = *SCCs[I]; |
368 | for (Node &N : SourceSCC) |
369 | for (Edge &E : *N) { |
370 | if (!E.isCall()) |
371 | continue; |
372 | SCC &TargetSCC = *G->lookupSCC(E.getNode()); |
373 | if (&TargetSCC.getOuterRefSCC() == this) { |
374 | assert(SCCIndices.find(&TargetSCC)->second <= I && |
375 | "Edge between SCCs violates post-order relationship." ); |
376 | continue; |
377 | } |
378 | } |
379 | } |
380 | |
381 | #ifdef EXPENSIVE_CHECKS |
382 | // Verify that all nodes in this RefSCC can reach all other nodes. |
383 | SmallVector<Node *> Nodes; |
384 | for (SCC *C : SCCs) { |
385 | for (Node &N : *C) |
386 | Nodes.push_back(&N); |
387 | } |
388 | for (Node *N : Nodes) { |
389 | SmallVector<Node *, 4> Worklist; |
390 | SmallPtrSet<Node *, 4> Visited; |
391 | Worklist.push_back(N); |
392 | while (!Worklist.empty()) { |
393 | Node *VisitingNode = Worklist.pop_back_val(); |
394 | if (!Visited.insert(VisitingNode).second) |
395 | continue; |
396 | for (Edge &E : **VisitingNode) |
397 | Worklist.push_back(&E.getNode()); |
398 | } |
399 | for (Node *NodeToVisit : Nodes) { |
400 | assert(Visited.contains(NodeToVisit) && |
401 | "Cannot reach all nodes within RefSCC" ); |
402 | } |
403 | } |
404 | #endif |
405 | } |
406 | #endif |
407 | |
408 | bool LazyCallGraph::RefSCC::isParentOf(const RefSCC &RC) const { |
409 | if (&RC == this) |
410 | return false; |
411 | |
412 | // Search all edges to see if this is a parent. |
413 | for (SCC &C : *this) |
414 | for (Node &N : C) |
415 | for (Edge &E : *N) |
416 | if (G->lookupRefSCC(N&: E.getNode()) == &RC) |
417 | return true; |
418 | |
419 | return false; |
420 | } |
421 | |
422 | bool LazyCallGraph::RefSCC::isAncestorOf(const RefSCC &RC) const { |
423 | if (&RC == this) |
424 | return false; |
425 | |
426 | // For each descendant of this RefSCC, see if one of its children is the |
427 | // argument. If not, add that descendant to the worklist and continue |
428 | // searching. |
429 | SmallVector<const RefSCC *, 4> Worklist; |
430 | SmallPtrSet<const RefSCC *, 4> Visited; |
431 | Worklist.push_back(Elt: this); |
432 | Visited.insert(Ptr: this); |
433 | do { |
434 | const RefSCC &DescendantRC = *Worklist.pop_back_val(); |
435 | for (SCC &C : DescendantRC) |
436 | for (Node &N : C) |
437 | for (Edge &E : *N) { |
438 | auto *ChildRC = G->lookupRefSCC(N&: E.getNode()); |
439 | if (ChildRC == &RC) |
440 | return true; |
441 | if (!ChildRC || !Visited.insert(Ptr: ChildRC).second) |
442 | continue; |
443 | Worklist.push_back(Elt: ChildRC); |
444 | } |
445 | } while (!Worklist.empty()); |
446 | |
447 | return false; |
448 | } |
449 | |
450 | /// Generic helper that updates a postorder sequence of SCCs for a potentially |
451 | /// cycle-introducing edge insertion. |
452 | /// |
453 | /// A postorder sequence of SCCs of a directed graph has one fundamental |
454 | /// property: all deges in the DAG of SCCs point "up" the sequence. That is, |
455 | /// all edges in the SCC DAG point to prior SCCs in the sequence. |
456 | /// |
457 | /// This routine both updates a postorder sequence and uses that sequence to |
458 | /// compute the set of SCCs connected into a cycle. It should only be called to |
459 | /// insert a "downward" edge which will require changing the sequence to |
460 | /// restore it to a postorder. |
461 | /// |
462 | /// When inserting an edge from an earlier SCC to a later SCC in some postorder |
463 | /// sequence, all of the SCCs which may be impacted are in the closed range of |
464 | /// those two within the postorder sequence. The algorithm used here to restore |
465 | /// the state is as follows: |
466 | /// |
467 | /// 1) Starting from the source SCC, construct a set of SCCs which reach the |
468 | /// source SCC consisting of just the source SCC. Then scan toward the |
469 | /// target SCC in postorder and for each SCC, if it has an edge to an SCC |
470 | /// in the set, add it to the set. Otherwise, the source SCC is not |
471 | /// a successor, move it in the postorder sequence to immediately before |
472 | /// the source SCC, shifting the source SCC and all SCCs in the set one |
473 | /// position toward the target SCC. Stop scanning after processing the |
474 | /// target SCC. |
475 | /// 2) If the source SCC is now past the target SCC in the postorder sequence, |
476 | /// and thus the new edge will flow toward the start, we are done. |
477 | /// 3) Otherwise, starting from the target SCC, walk all edges which reach an |
478 | /// SCC between the source and the target, and add them to the set of |
479 | /// connected SCCs, then recurse through them. Once a complete set of the |
480 | /// SCCs the target connects to is known, hoist the remaining SCCs between |
481 | /// the source and the target to be above the target. Note that there is no |
482 | /// need to process the source SCC, it is already known to connect. |
483 | /// 4) At this point, all of the SCCs in the closed range between the source |
484 | /// SCC and the target SCC in the postorder sequence are connected, |
485 | /// including the target SCC and the source SCC. Inserting the edge from |
486 | /// the source SCC to the target SCC will form a cycle out of precisely |
487 | /// these SCCs. Thus we can merge all of the SCCs in this closed range into |
488 | /// a single SCC. |
489 | /// |
490 | /// This process has various important properties: |
491 | /// - Only mutates the SCCs when adding the edge actually changes the SCC |
492 | /// structure. |
493 | /// - Never mutates SCCs which are unaffected by the change. |
494 | /// - Updates the postorder sequence to correctly satisfy the postorder |
495 | /// constraint after the edge is inserted. |
496 | /// - Only reorders SCCs in the closed postorder sequence from the source to |
497 | /// the target, so easy to bound how much has changed even in the ordering. |
498 | /// - Big-O is the number of edges in the closed postorder range of SCCs from |
499 | /// source to target. |
500 | /// |
501 | /// This helper routine, in addition to updating the postorder sequence itself |
502 | /// will also update a map from SCCs to indices within that sequence. |
503 | /// |
504 | /// The sequence and the map must operate on pointers to the SCC type. |
505 | /// |
506 | /// Two callbacks must be provided. The first computes the subset of SCCs in |
507 | /// the postorder closed range from the source to the target which connect to |
508 | /// the source SCC via some (transitive) set of edges. The second computes the |
509 | /// subset of the same range which the target SCC connects to via some |
510 | /// (transitive) set of edges. Both callbacks should populate the set argument |
511 | /// provided. |
512 | template <typename SCCT, typename PostorderSequenceT, typename SCCIndexMapT, |
513 | typename ComputeSourceConnectedSetCallableT, |
514 | typename ComputeTargetConnectedSetCallableT> |
515 | static iterator_range<typename PostorderSequenceT::iterator> |
516 | updatePostorderSequenceForEdgeInsertion( |
517 | SCCT &SourceSCC, SCCT &TargetSCC, PostorderSequenceT &SCCs, |
518 | SCCIndexMapT &SCCIndices, |
519 | ComputeSourceConnectedSetCallableT ComputeSourceConnectedSet, |
520 | ComputeTargetConnectedSetCallableT ComputeTargetConnectedSet) { |
521 | int SourceIdx = SCCIndices[&SourceSCC]; |
522 | int TargetIdx = SCCIndices[&TargetSCC]; |
523 | assert(SourceIdx < TargetIdx && "Cannot have equal indices here!" ); |
524 | |
525 | SmallPtrSet<SCCT *, 4> ConnectedSet; |
526 | |
527 | // Compute the SCCs which (transitively) reach the source. |
528 | ComputeSourceConnectedSet(ConnectedSet); |
529 | |
530 | // Partition the SCCs in this part of the port-order sequence so only SCCs |
531 | // connecting to the source remain between it and the target. This is |
532 | // a benign partition as it preserves postorder. |
533 | auto SourceI = std::stable_partition( |
534 | SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx + 1, |
535 | [&ConnectedSet](SCCT *C) { return !ConnectedSet.count(C); }); |
536 | for (int I = SourceIdx, E = TargetIdx + 1; I < E; ++I) |
537 | SCCIndices.find(SCCs[I])->second = I; |
538 | |
539 | // If the target doesn't connect to the source, then we've corrected the |
540 | // post-order and there are no cycles formed. |
541 | if (!ConnectedSet.count(&TargetSCC)) { |
542 | assert(SourceI > (SCCs.begin() + SourceIdx) && |
543 | "Must have moved the source to fix the post-order." ); |
544 | assert(*std::prev(SourceI) == &TargetSCC && |
545 | "Last SCC to move should have bene the target." ); |
546 | |
547 | // Return an empty range at the target SCC indicating there is nothing to |
548 | // merge. |
549 | return make_range(std::prev(SourceI), std::prev(SourceI)); |
550 | } |
551 | |
552 | assert(SCCs[TargetIdx] == &TargetSCC && |
553 | "Should not have moved target if connected!" ); |
554 | SourceIdx = SourceI - SCCs.begin(); |
555 | assert(SCCs[SourceIdx] == &SourceSCC && |
556 | "Bad updated index computation for the source SCC!" ); |
557 | |
558 | // See whether there are any remaining intervening SCCs between the source |
559 | // and target. If so we need to make sure they all are reachable form the |
560 | // target. |
561 | if (SourceIdx + 1 < TargetIdx) { |
562 | ConnectedSet.clear(); |
563 | ComputeTargetConnectedSet(ConnectedSet); |
564 | |
565 | // Partition SCCs so that only SCCs reached from the target remain between |
566 | // the source and the target. This preserves postorder. |
567 | auto TargetI = std::stable_partition( |
568 | SCCs.begin() + SourceIdx + 1, SCCs.begin() + TargetIdx + 1, |
569 | [&ConnectedSet](SCCT *C) { return ConnectedSet.count(C); }); |
570 | for (int I = SourceIdx + 1, E = TargetIdx + 1; I < E; ++I) |
571 | SCCIndices.find(SCCs[I])->second = I; |
572 | TargetIdx = std::prev(TargetI) - SCCs.begin(); |
573 | assert(SCCs[TargetIdx] == &TargetSCC && |
574 | "Should always end with the target!" ); |
575 | } |
576 | |
577 | // At this point, we know that connecting source to target forms a cycle |
578 | // because target connects back to source, and we know that all the SCCs |
579 | // between the source and target in the postorder sequence participate in that |
580 | // cycle. |
581 | return make_range(SCCs.begin() + SourceIdx, SCCs.begin() + TargetIdx); |
582 | } |
583 | |
584 | bool LazyCallGraph::RefSCC::switchInternalEdgeToCall( |
585 | Node &SourceN, Node &TargetN, |
586 | function_ref<void(ArrayRef<SCC *> MergeSCCs)> MergeCB) { |
587 | assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!" ); |
588 | SmallVector<SCC *, 1> DeletedSCCs; |
589 | |
590 | #ifdef EXPENSIVE_CHECKS |
591 | verify(); |
592 | auto VerifyOnExit = make_scope_exit([&]() { verify(); }); |
593 | #endif |
594 | |
595 | SCC &SourceSCC = *G->lookupSCC(N&: SourceN); |
596 | SCC &TargetSCC = *G->lookupSCC(N&: TargetN); |
597 | |
598 | // If the two nodes are already part of the same SCC, we're also done as |
599 | // we've just added more connectivity. |
600 | if (&SourceSCC == &TargetSCC) { |
601 | SourceN->setEdgeKind(TargetN, EK: Edge::Call); |
602 | return false; // No new cycle. |
603 | } |
604 | |
605 | // At this point we leverage the postorder list of SCCs to detect when the |
606 | // insertion of an edge changes the SCC structure in any way. |
607 | // |
608 | // First and foremost, we can eliminate the need for any changes when the |
609 | // edge is toward the beginning of the postorder sequence because all edges |
610 | // flow in that direction already. Thus adding a new one cannot form a cycle. |
611 | int SourceIdx = SCCIndices[&SourceSCC]; |
612 | int TargetIdx = SCCIndices[&TargetSCC]; |
613 | if (TargetIdx < SourceIdx) { |
614 | SourceN->setEdgeKind(TargetN, EK: Edge::Call); |
615 | return false; // No new cycle. |
616 | } |
617 | |
618 | // Compute the SCCs which (transitively) reach the source. |
619 | auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { |
620 | #ifdef EXPENSIVE_CHECKS |
621 | // Check that the RefSCC is still valid before computing this as the |
622 | // results will be nonsensical of we've broken its invariants. |
623 | verify(); |
624 | #endif |
625 | ConnectedSet.insert(Ptr: &SourceSCC); |
626 | auto IsConnected = [&](SCC &C) { |
627 | for (Node &N : C) |
628 | for (Edge &E : N->calls()) |
629 | if (ConnectedSet.count(Ptr: G->lookupSCC(N&: E.getNode()))) |
630 | return true; |
631 | |
632 | return false; |
633 | }; |
634 | |
635 | for (SCC *C : |
636 | make_range(x: SCCs.begin() + SourceIdx + 1, y: SCCs.begin() + TargetIdx + 1)) |
637 | if (IsConnected(*C)) |
638 | ConnectedSet.insert(Ptr: C); |
639 | }; |
640 | |
641 | // Use a normal worklist to find which SCCs the target connects to. We still |
642 | // bound the search based on the range in the postorder list we care about, |
643 | // but because this is forward connectivity we just "recurse" through the |
644 | // edges. |
645 | auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<SCC *> &ConnectedSet) { |
646 | #ifdef EXPENSIVE_CHECKS |
647 | // Check that the RefSCC is still valid before computing this as the |
648 | // results will be nonsensical of we've broken its invariants. |
649 | verify(); |
650 | #endif |
651 | ConnectedSet.insert(Ptr: &TargetSCC); |
652 | SmallVector<SCC *, 4> Worklist; |
653 | Worklist.push_back(Elt: &TargetSCC); |
654 | do { |
655 | SCC &C = *Worklist.pop_back_val(); |
656 | for (Node &N : C) |
657 | for (Edge &E : *N) { |
658 | if (!E.isCall()) |
659 | continue; |
660 | SCC &EdgeC = *G->lookupSCC(N&: E.getNode()); |
661 | if (&EdgeC.getOuterRefSCC() != this) |
662 | // Not in this RefSCC... |
663 | continue; |
664 | if (SCCIndices.find(Val: &EdgeC)->second <= SourceIdx) |
665 | // Not in the postorder sequence between source and target. |
666 | continue; |
667 | |
668 | if (ConnectedSet.insert(Ptr: &EdgeC).second) |
669 | Worklist.push_back(Elt: &EdgeC); |
670 | } |
671 | } while (!Worklist.empty()); |
672 | }; |
673 | |
674 | // Use a generic helper to update the postorder sequence of SCCs and return |
675 | // a range of any SCCs connected into a cycle by inserting this edge. This |
676 | // routine will also take care of updating the indices into the postorder |
677 | // sequence. |
678 | auto MergeRange = updatePostorderSequenceForEdgeInsertion( |
679 | SourceSCC, TargetSCC, SCCs, SCCIndices, ComputeSourceConnectedSet, |
680 | ComputeTargetConnectedSet); |
681 | |
682 | // Run the user's callback on the merged SCCs before we actually merge them. |
683 | if (MergeCB) |
684 | MergeCB(ArrayRef(MergeRange.begin(), MergeRange.end())); |
685 | |
686 | // If the merge range is empty, then adding the edge didn't actually form any |
687 | // new cycles. We're done. |
688 | if (MergeRange.empty()) { |
689 | // Now that the SCC structure is finalized, flip the kind to call. |
690 | SourceN->setEdgeKind(TargetN, EK: Edge::Call); |
691 | return false; // No new cycle. |
692 | } |
693 | |
694 | #ifdef EXPENSIVE_CHECKS |
695 | // Before merging, check that the RefSCC remains valid after all the |
696 | // postorder updates. |
697 | verify(); |
698 | #endif |
699 | |
700 | // Otherwise we need to merge all the SCCs in the cycle into a single result |
701 | // SCC. |
702 | // |
703 | // NB: We merge into the target because all of these functions were already |
704 | // reachable from the target, meaning any SCC-wide properties deduced about it |
705 | // other than the set of functions within it will not have changed. |
706 | for (SCC *C : MergeRange) { |
707 | assert(C != &TargetSCC && |
708 | "We merge *into* the target and shouldn't process it here!" ); |
709 | SCCIndices.erase(Val: C); |
710 | TargetSCC.Nodes.append(in_start: C->Nodes.begin(), in_end: C->Nodes.end()); |
711 | for (Node *N : C->Nodes) |
712 | G->SCCMap[N] = &TargetSCC; |
713 | C->clear(); |
714 | DeletedSCCs.push_back(Elt: C); |
715 | } |
716 | |
717 | // Erase the merged SCCs from the list and update the indices of the |
718 | // remaining SCCs. |
719 | int IndexOffset = MergeRange.end() - MergeRange.begin(); |
720 | auto EraseEnd = SCCs.erase(CS: MergeRange.begin(), CE: MergeRange.end()); |
721 | for (SCC *C : make_range(x: EraseEnd, y: SCCs.end())) |
722 | SCCIndices[C] -= IndexOffset; |
723 | |
724 | // Now that the SCC structure is finalized, flip the kind to call. |
725 | SourceN->setEdgeKind(TargetN, EK: Edge::Call); |
726 | |
727 | // And we're done, but we did form a new cycle. |
728 | return true; |
729 | } |
730 | |
731 | void LazyCallGraph::RefSCC::switchTrivialInternalEdgeToRef(Node &SourceN, |
732 | Node &TargetN) { |
733 | assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!" ); |
734 | |
735 | #ifdef EXPENSIVE_CHECKS |
736 | verify(); |
737 | auto VerifyOnExit = make_scope_exit([&]() { verify(); }); |
738 | #endif |
739 | |
740 | assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC." ); |
741 | assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC." ); |
742 | assert(G->lookupSCC(SourceN) != G->lookupSCC(TargetN) && |
743 | "Source and Target must be in separate SCCs for this to be trivial!" ); |
744 | |
745 | // Set the edge kind. |
746 | SourceN->setEdgeKind(TargetN, EK: Edge::Ref); |
747 | } |
748 | |
749 | iterator_range<LazyCallGraph::RefSCC::iterator> |
750 | LazyCallGraph::RefSCC::switchInternalEdgeToRef(Node &SourceN, Node &TargetN) { |
751 | assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!" ); |
752 | |
753 | #ifdef EXPENSIVE_CHECKS |
754 | verify(); |
755 | auto VerifyOnExit = make_scope_exit([&]() { verify(); }); |
756 | #endif |
757 | |
758 | assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC." ); |
759 | assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC." ); |
760 | |
761 | SCC &TargetSCC = *G->lookupSCC(N&: TargetN); |
762 | assert(G->lookupSCC(SourceN) == &TargetSCC && "Source and Target must be in " |
763 | "the same SCC to require the " |
764 | "full CG update." ); |
765 | |
766 | // Set the edge kind. |
767 | SourceN->setEdgeKind(TargetN, EK: Edge::Ref); |
768 | |
769 | // Otherwise we are removing a call edge from a single SCC. This may break |
770 | // the cycle. In order to compute the new set of SCCs, we need to do a small |
771 | // DFS over the nodes within the SCC to form any sub-cycles that remain as |
772 | // distinct SCCs and compute a postorder over the resulting SCCs. |
773 | // |
774 | // However, we specially handle the target node. The target node is known to |
775 | // reach all other nodes in the original SCC by definition. This means that |
776 | // we want the old SCC to be replaced with an SCC containing that node as it |
777 | // will be the root of whatever SCC DAG results from the DFS. Assumptions |
778 | // about an SCC such as the set of functions called will continue to hold, |
779 | // etc. |
780 | |
781 | SCC &OldSCC = TargetSCC; |
782 | SmallVector<std::pair<Node *, EdgeSequence::call_iterator>, 16> DFSStack; |
783 | SmallVector<Node *, 16> PendingSCCStack; |
784 | SmallVector<SCC *, 4> NewSCCs; |
785 | |
786 | // Prepare the nodes for a fresh DFS. |
787 | SmallVector<Node *, 16> Worklist; |
788 | Worklist.swap(RHS&: OldSCC.Nodes); |
789 | for (Node *N : Worklist) { |
790 | N->DFSNumber = N->LowLink = 0; |
791 | G->SCCMap.erase(Val: N); |
792 | } |
793 | |
794 | // Force the target node to be in the old SCC. This also enables us to take |
795 | // a very significant short-cut in the standard Tarjan walk to re-form SCCs |
796 | // below: whenever we build an edge that reaches the target node, we know |
797 | // that the target node eventually connects back to all other nodes in our |
798 | // walk. As a consequence, we can detect and handle participants in that |
799 | // cycle without walking all the edges that form this connection, and instead |
800 | // by relying on the fundamental guarantee coming into this operation (all |
801 | // nodes are reachable from the target due to previously forming an SCC). |
802 | TargetN.DFSNumber = TargetN.LowLink = -1; |
803 | OldSCC.Nodes.push_back(Elt: &TargetN); |
804 | G->SCCMap[&TargetN] = &OldSCC; |
805 | |
806 | // Scan down the stack and DFS across the call edges. |
807 | for (Node *RootN : Worklist) { |
808 | assert(DFSStack.empty() && |
809 | "Cannot begin a new root with a non-empty DFS stack!" ); |
810 | assert(PendingSCCStack.empty() && |
811 | "Cannot begin a new root with pending nodes for an SCC!" ); |
812 | |
813 | // Skip any nodes we've already reached in the DFS. |
814 | if (RootN->DFSNumber != 0) { |
815 | assert(RootN->DFSNumber == -1 && |
816 | "Shouldn't have any mid-DFS root nodes!" ); |
817 | continue; |
818 | } |
819 | |
820 | RootN->DFSNumber = RootN->LowLink = 1; |
821 | int NextDFSNumber = 2; |
822 | |
823 | DFSStack.emplace_back(Args&: RootN, Args: (*RootN)->call_begin()); |
824 | do { |
825 | auto [N, I] = DFSStack.pop_back_val(); |
826 | auto E = (*N)->call_end(); |
827 | while (I != E) { |
828 | Node &ChildN = I->getNode(); |
829 | if (ChildN.DFSNumber == 0) { |
830 | // We haven't yet visited this child, so descend, pushing the current |
831 | // node onto the stack. |
832 | DFSStack.emplace_back(Args&: N, Args&: I); |
833 | |
834 | assert(!G->SCCMap.count(&ChildN) && |
835 | "Found a node with 0 DFS number but already in an SCC!" ); |
836 | ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; |
837 | N = &ChildN; |
838 | I = (*N)->call_begin(); |
839 | E = (*N)->call_end(); |
840 | continue; |
841 | } |
842 | |
843 | // Check for the child already being part of some component. |
844 | if (ChildN.DFSNumber == -1) { |
845 | if (G->lookupSCC(N&: ChildN) == &OldSCC) { |
846 | // If the child is part of the old SCC, we know that it can reach |
847 | // every other node, so we have formed a cycle. Pull the entire DFS |
848 | // and pending stacks into it. See the comment above about setting |
849 | // up the old SCC for why we do this. |
850 | int OldSize = OldSCC.size(); |
851 | OldSCC.Nodes.push_back(Elt: N); |
852 | OldSCC.Nodes.append(in_start: PendingSCCStack.begin(), in_end: PendingSCCStack.end()); |
853 | PendingSCCStack.clear(); |
854 | while (!DFSStack.empty()) |
855 | OldSCC.Nodes.push_back(Elt: DFSStack.pop_back_val().first); |
856 | for (Node &N : drop_begin(RangeOrContainer&: OldSCC, N: OldSize)) { |
857 | N.DFSNumber = N.LowLink = -1; |
858 | G->SCCMap[&N] = &OldSCC; |
859 | } |
860 | N = nullptr; |
861 | break; |
862 | } |
863 | |
864 | // If the child has already been added to some child component, it |
865 | // couldn't impact the low-link of this parent because it isn't |
866 | // connected, and thus its low-link isn't relevant so skip it. |
867 | ++I; |
868 | continue; |
869 | } |
870 | |
871 | // Track the lowest linked child as the lowest link for this node. |
872 | assert(ChildN.LowLink > 0 && "Must have a positive low-link number!" ); |
873 | if (ChildN.LowLink < N->LowLink) |
874 | N->LowLink = ChildN.LowLink; |
875 | |
876 | // Move to the next edge. |
877 | ++I; |
878 | } |
879 | if (!N) |
880 | // Cleared the DFS early, start another round. |
881 | break; |
882 | |
883 | // We've finished processing N and its descendants, put it on our pending |
884 | // SCC stack to eventually get merged into an SCC of nodes. |
885 | PendingSCCStack.push_back(Elt: N); |
886 | |
887 | // If this node is linked to some lower entry, continue walking up the |
888 | // stack. |
889 | if (N->LowLink != N->DFSNumber) |
890 | continue; |
891 | |
892 | // Otherwise, we've completed an SCC. Append it to our post order list of |
893 | // SCCs. |
894 | int RootDFSNumber = N->DFSNumber; |
895 | // Find the range of the node stack by walking down until we pass the |
896 | // root DFS number. |
897 | auto SCCNodes = make_range( |
898 | x: PendingSCCStack.rbegin(), |
899 | y: find_if(Range: reverse(C&: PendingSCCStack), P: [RootDFSNumber](const Node *N) { |
900 | return N->DFSNumber < RootDFSNumber; |
901 | })); |
902 | |
903 | // Form a new SCC out of these nodes and then clear them off our pending |
904 | // stack. |
905 | NewSCCs.push_back(Elt: G->createSCC(Args&: *this, Args&: SCCNodes)); |
906 | for (Node &N : *NewSCCs.back()) { |
907 | N.DFSNumber = N.LowLink = -1; |
908 | G->SCCMap[&N] = NewSCCs.back(); |
909 | } |
910 | PendingSCCStack.erase(CS: SCCNodes.end().base(), CE: PendingSCCStack.end()); |
911 | } while (!DFSStack.empty()); |
912 | } |
913 | |
914 | // Insert the remaining SCCs before the old one. The old SCC can reach all |
915 | // other SCCs we form because it contains the target node of the removed edge |
916 | // of the old SCC. This means that we will have edges into all the new SCCs, |
917 | // which means the old one must come last for postorder. |
918 | int OldIdx = SCCIndices[&OldSCC]; |
919 | SCCs.insert(I: SCCs.begin() + OldIdx, From: NewSCCs.begin(), To: NewSCCs.end()); |
920 | |
921 | // Update the mapping from SCC* to index to use the new SCC*s, and remove the |
922 | // old SCC from the mapping. |
923 | for (int Idx = OldIdx, Size = SCCs.size(); Idx < Size; ++Idx) |
924 | SCCIndices[SCCs[Idx]] = Idx; |
925 | |
926 | return make_range(x: SCCs.begin() + OldIdx, |
927 | y: SCCs.begin() + OldIdx + NewSCCs.size()); |
928 | } |
929 | |
930 | void LazyCallGraph::RefSCC::switchOutgoingEdgeToCall(Node &SourceN, |
931 | Node &TargetN) { |
932 | assert(!(*SourceN)[TargetN].isCall() && "Must start with a ref edge!" ); |
933 | |
934 | assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC." ); |
935 | assert(G->lookupRefSCC(TargetN) != this && |
936 | "Target must not be in this RefSCC." ); |
937 | #ifdef EXPENSIVE_CHECKS |
938 | assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && |
939 | "Target must be a descendant of the Source." ); |
940 | #endif |
941 | |
942 | // Edges between RefSCCs are the same regardless of call or ref, so we can |
943 | // just flip the edge here. |
944 | SourceN->setEdgeKind(TargetN, EK: Edge::Call); |
945 | |
946 | #ifdef EXPENSIVE_CHECKS |
947 | verify(); |
948 | #endif |
949 | } |
950 | |
951 | void LazyCallGraph::RefSCC::switchOutgoingEdgeToRef(Node &SourceN, |
952 | Node &TargetN) { |
953 | assert((*SourceN)[TargetN].isCall() && "Must start with a call edge!" ); |
954 | |
955 | assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC." ); |
956 | assert(G->lookupRefSCC(TargetN) != this && |
957 | "Target must not be in this RefSCC." ); |
958 | #ifdef EXPENSIVE_CHECKS |
959 | assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && |
960 | "Target must be a descendant of the Source." ); |
961 | #endif |
962 | |
963 | // Edges between RefSCCs are the same regardless of call or ref, so we can |
964 | // just flip the edge here. |
965 | SourceN->setEdgeKind(TargetN, EK: Edge::Ref); |
966 | |
967 | #ifdef EXPENSIVE_CHECKS |
968 | verify(); |
969 | #endif |
970 | } |
971 | |
972 | void LazyCallGraph::RefSCC::insertInternalRefEdge(Node &SourceN, |
973 | Node &TargetN) { |
974 | assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC." ); |
975 | assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC." ); |
976 | |
977 | SourceN->insertEdgeInternal(TargetN, EK: Edge::Ref); |
978 | |
979 | #ifdef EXPENSIVE_CHECKS |
980 | verify(); |
981 | #endif |
982 | } |
983 | |
984 | void LazyCallGraph::RefSCC::insertOutgoingEdge(Node &SourceN, Node &TargetN, |
985 | Edge::Kind EK) { |
986 | // First insert it into the caller. |
987 | SourceN->insertEdgeInternal(TargetN, EK); |
988 | |
989 | assert(G->lookupRefSCC(SourceN) == this && "Source must be in this RefSCC." ); |
990 | |
991 | assert(G->lookupRefSCC(TargetN) != this && |
992 | "Target must not be in this RefSCC." ); |
993 | #ifdef EXPENSIVE_CHECKS |
994 | assert(G->lookupRefSCC(TargetN)->isDescendantOf(*this) && |
995 | "Target must be a descendant of the Source." ); |
996 | #endif |
997 | |
998 | #ifdef EXPENSIVE_CHECKS |
999 | verify(); |
1000 | #endif |
1001 | } |
1002 | |
1003 | SmallVector<LazyCallGraph::RefSCC *, 1> |
1004 | LazyCallGraph::RefSCC::insertIncomingRefEdge(Node &SourceN, Node &TargetN) { |
1005 | assert(G->lookupRefSCC(TargetN) == this && "Target must be in this RefSCC." ); |
1006 | RefSCC &SourceC = *G->lookupRefSCC(N&: SourceN); |
1007 | assert(&SourceC != this && "Source must not be in this RefSCC." ); |
1008 | #ifdef EXPENSIVE_CHECKS |
1009 | assert(SourceC.isDescendantOf(*this) && |
1010 | "Source must be a descendant of the Target." ); |
1011 | #endif |
1012 | |
1013 | SmallVector<RefSCC *, 1> DeletedRefSCCs; |
1014 | |
1015 | #ifdef EXPENSIVE_CHECKS |
1016 | verify(); |
1017 | auto VerifyOnExit = make_scope_exit([&]() { verify(); }); |
1018 | #endif |
1019 | |
1020 | int SourceIdx = G->RefSCCIndices[&SourceC]; |
1021 | int TargetIdx = G->RefSCCIndices[this]; |
1022 | assert(SourceIdx < TargetIdx && |
1023 | "Postorder list doesn't see edge as incoming!" ); |
1024 | |
1025 | // Compute the RefSCCs which (transitively) reach the source. We do this by |
1026 | // working backwards from the source using the parent set in each RefSCC, |
1027 | // skipping any RefSCCs that don't fall in the postorder range. This has the |
1028 | // advantage of walking the sparser parent edge (in high fan-out graphs) but |
1029 | // more importantly this removes examining all forward edges in all RefSCCs |
1030 | // within the postorder range which aren't in fact connected. Only connected |
1031 | // RefSCCs (and their edges) are visited here. |
1032 | auto ComputeSourceConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { |
1033 | Set.insert(Ptr: &SourceC); |
1034 | auto IsConnected = [&](RefSCC &RC) { |
1035 | for (SCC &C : RC) |
1036 | for (Node &N : C) |
1037 | for (Edge &E : *N) |
1038 | if (Set.count(Ptr: G->lookupRefSCC(N&: E.getNode()))) |
1039 | return true; |
1040 | |
1041 | return false; |
1042 | }; |
1043 | |
1044 | for (RefSCC *C : make_range(x: G->PostOrderRefSCCs.begin() + SourceIdx + 1, |
1045 | y: G->PostOrderRefSCCs.begin() + TargetIdx + 1)) |
1046 | if (IsConnected(*C)) |
1047 | Set.insert(Ptr: C); |
1048 | }; |
1049 | |
1050 | // Use a normal worklist to find which SCCs the target connects to. We still |
1051 | // bound the search based on the range in the postorder list we care about, |
1052 | // but because this is forward connectivity we just "recurse" through the |
1053 | // edges. |
1054 | auto ComputeTargetConnectedSet = [&](SmallPtrSetImpl<RefSCC *> &Set) { |
1055 | Set.insert(Ptr: this); |
1056 | SmallVector<RefSCC *, 4> Worklist; |
1057 | Worklist.push_back(Elt: this); |
1058 | do { |
1059 | RefSCC &RC = *Worklist.pop_back_val(); |
1060 | for (SCC &C : RC) |
1061 | for (Node &N : C) |
1062 | for (Edge &E : *N) { |
1063 | RefSCC &EdgeRC = *G->lookupRefSCC(N&: E.getNode()); |
1064 | if (G->getRefSCCIndex(RC&: EdgeRC) <= SourceIdx) |
1065 | // Not in the postorder sequence between source and target. |
1066 | continue; |
1067 | |
1068 | if (Set.insert(Ptr: &EdgeRC).second) |
1069 | Worklist.push_back(Elt: &EdgeRC); |
1070 | } |
1071 | } while (!Worklist.empty()); |
1072 | }; |
1073 | |
1074 | // Use a generic helper to update the postorder sequence of RefSCCs and return |
1075 | // a range of any RefSCCs connected into a cycle by inserting this edge. This |
1076 | // routine will also take care of updating the indices into the postorder |
1077 | // sequence. |
1078 | iterator_range<SmallVectorImpl<RefSCC *>::iterator> MergeRange = |
1079 | updatePostorderSequenceForEdgeInsertion( |
1080 | SourceSCC&: SourceC, TargetSCC&: *this, SCCs&: G->PostOrderRefSCCs, SCCIndices&: G->RefSCCIndices, |
1081 | ComputeSourceConnectedSet, ComputeTargetConnectedSet); |
1082 | |
1083 | // Build a set, so we can do fast tests for whether a RefSCC will end up as |
1084 | // part of the merged RefSCC. |
1085 | SmallPtrSet<RefSCC *, 16> MergeSet(MergeRange.begin(), MergeRange.end()); |
1086 | |
1087 | // This RefSCC will always be part of that set, so just insert it here. |
1088 | MergeSet.insert(Ptr: this); |
1089 | |
1090 | // Now that we have identified all the SCCs which need to be merged into |
1091 | // a connected set with the inserted edge, merge all of them into this SCC. |
1092 | SmallVector<SCC *, 16> MergedSCCs; |
1093 | int SCCIndex = 0; |
1094 | for (RefSCC *RC : MergeRange) { |
1095 | assert(RC != this && "We're merging into the target RefSCC, so it " |
1096 | "shouldn't be in the range." ); |
1097 | |
1098 | // Walk the inner SCCs to update their up-pointer and walk all the edges to |
1099 | // update any parent sets. |
1100 | // FIXME: We should try to find a way to avoid this (rather expensive) edge |
1101 | // walk by updating the parent sets in some other manner. |
1102 | for (SCC &InnerC : *RC) { |
1103 | InnerC.OuterRefSCC = this; |
1104 | SCCIndices[&InnerC] = SCCIndex++; |
1105 | for (Node &N : InnerC) |
1106 | G->SCCMap[&N] = &InnerC; |
1107 | } |
1108 | |
1109 | // Now merge in the SCCs. We can actually move here so try to reuse storage |
1110 | // the first time through. |
1111 | if (MergedSCCs.empty()) |
1112 | MergedSCCs = std::move(RC->SCCs); |
1113 | else |
1114 | MergedSCCs.append(in_start: RC->SCCs.begin(), in_end: RC->SCCs.end()); |
1115 | RC->SCCs.clear(); |
1116 | DeletedRefSCCs.push_back(Elt: RC); |
1117 | } |
1118 | |
1119 | // Append our original SCCs to the merged list and move it into place. |
1120 | for (SCC &InnerC : *this) |
1121 | SCCIndices[&InnerC] = SCCIndex++; |
1122 | MergedSCCs.append(in_start: SCCs.begin(), in_end: SCCs.end()); |
1123 | SCCs = std::move(MergedSCCs); |
1124 | |
1125 | // Remove the merged away RefSCCs from the post order sequence. |
1126 | for (RefSCC *RC : MergeRange) |
1127 | G->RefSCCIndices.erase(Val: RC); |
1128 | int IndexOffset = MergeRange.end() - MergeRange.begin(); |
1129 | auto EraseEnd = |
1130 | G->PostOrderRefSCCs.erase(CS: MergeRange.begin(), CE: MergeRange.end()); |
1131 | for (RefSCC *RC : make_range(x: EraseEnd, y: G->PostOrderRefSCCs.end())) |
1132 | G->RefSCCIndices[RC] -= IndexOffset; |
1133 | |
1134 | // At this point we have a merged RefSCC with a post-order SCCs list, just |
1135 | // connect the nodes to form the new edge. |
1136 | SourceN->insertEdgeInternal(TargetN, EK: Edge::Ref); |
1137 | |
1138 | // We return the list of SCCs which were merged so that callers can |
1139 | // invalidate any data they have associated with those SCCs. Note that these |
1140 | // SCCs are no longer in an interesting state (they are totally empty) but |
1141 | // the pointers will remain stable for the life of the graph itself. |
1142 | return DeletedRefSCCs; |
1143 | } |
1144 | |
1145 | void LazyCallGraph::RefSCC::removeOutgoingEdge(Node &SourceN, Node &TargetN) { |
1146 | assert(G->lookupRefSCC(SourceN) == this && |
1147 | "The source must be a member of this RefSCC." ); |
1148 | assert(G->lookupRefSCC(TargetN) != this && |
1149 | "The target must not be a member of this RefSCC" ); |
1150 | |
1151 | #ifdef EXPENSIVE_CHECKS |
1152 | verify(); |
1153 | auto VerifyOnExit = make_scope_exit([&]() { verify(); }); |
1154 | #endif |
1155 | |
1156 | // First remove it from the node. |
1157 | bool Removed = SourceN->removeEdgeInternal(TargetN); |
1158 | (void)Removed; |
1159 | assert(Removed && "Target not in the edge set for this caller?" ); |
1160 | } |
1161 | |
1162 | SmallVector<LazyCallGraph::RefSCC *, 1> |
1163 | LazyCallGraph::RefSCC::removeInternalRefEdges( |
1164 | ArrayRef<std::pair<Node *, Node *>> Edges) { |
1165 | // We return a list of the resulting *new* RefSCCs in post-order. |
1166 | SmallVector<RefSCC *, 1> Result; |
1167 | |
1168 | #ifdef EXPENSIVE_CHECKS |
1169 | // Verify the RefSCC is valid to start with and that either we return an empty |
1170 | // list of result RefSCCs and this RefSCC remains valid, or we return new |
1171 | // RefSCCs and this RefSCC is dead. |
1172 | verify(); |
1173 | auto VerifyOnExit = make_scope_exit([&]() { |
1174 | // If we didn't replace our RefSCC with new ones, check that this one |
1175 | // remains valid. |
1176 | if (G) |
1177 | verify(); |
1178 | }); |
1179 | #endif |
1180 | |
1181 | // First remove the actual edges. |
1182 | for (auto [SourceN, TargetN] : Edges) { |
1183 | assert(!(**SourceN)[*TargetN].isCall() && |
1184 | "Cannot remove a call edge, it must first be made a ref edge" ); |
1185 | |
1186 | bool Removed = (*SourceN)->removeEdgeInternal(TargetN&: *TargetN); |
1187 | (void)Removed; |
1188 | assert(Removed && "Target not in the edge set for this caller?" ); |
1189 | } |
1190 | |
1191 | // Direct self references don't impact the ref graph at all. |
1192 | // If all targets are in the same SCC as the source, because no call edges |
1193 | // were removed there is no RefSCC structure change. |
1194 | if (llvm::all_of(Range&: Edges, P: [&](std::pair<Node *, Node *> E) { |
1195 | return E.first == E.second || |
1196 | G->lookupSCC(N&: *E.first) == G->lookupSCC(N&: *E.second); |
1197 | })) |
1198 | return Result; |
1199 | |
1200 | // We build somewhat synthetic new RefSCCs by providing a postorder mapping |
1201 | // for each inner SCC. We store these inside the low-link field of the nodes |
1202 | // rather than associated with SCCs because this saves a round-trip through |
1203 | // the node->SCC map and in the common case, SCCs are small. We will verify |
1204 | // that we always give the same number to every node in the SCC such that |
1205 | // these are equivalent. |
1206 | int PostOrderNumber = 0; |
1207 | |
1208 | // Reset all the other nodes to prepare for a DFS over them, and add them to |
1209 | // our worklist. |
1210 | SmallVector<Node *, 8> Worklist; |
1211 | for (SCC *C : SCCs) { |
1212 | for (Node &N : *C) |
1213 | N.DFSNumber = N.LowLink = 0; |
1214 | |
1215 | Worklist.append(in_start: C->Nodes.begin(), in_end: C->Nodes.end()); |
1216 | } |
1217 | |
1218 | // Track the number of nodes in this RefSCC so that we can quickly recognize |
1219 | // an important special case of the edge removal not breaking the cycle of |
1220 | // this RefSCC. |
1221 | const int NumRefSCCNodes = Worklist.size(); |
1222 | |
1223 | SmallVector<std::pair<Node *, EdgeSequence::iterator>, 4> DFSStack; |
1224 | SmallVector<Node *, 4> PendingRefSCCStack; |
1225 | do { |
1226 | assert(DFSStack.empty() && |
1227 | "Cannot begin a new root with a non-empty DFS stack!" ); |
1228 | assert(PendingRefSCCStack.empty() && |
1229 | "Cannot begin a new root with pending nodes for an SCC!" ); |
1230 | |
1231 | Node *RootN = Worklist.pop_back_val(); |
1232 | // Skip any nodes we've already reached in the DFS. |
1233 | if (RootN->DFSNumber != 0) { |
1234 | assert(RootN->DFSNumber == -1 && |
1235 | "Shouldn't have any mid-DFS root nodes!" ); |
1236 | continue; |
1237 | } |
1238 | |
1239 | RootN->DFSNumber = RootN->LowLink = 1; |
1240 | int NextDFSNumber = 2; |
1241 | |
1242 | DFSStack.emplace_back(Args&: RootN, Args: (*RootN)->begin()); |
1243 | do { |
1244 | auto [N, I] = DFSStack.pop_back_val(); |
1245 | auto E = (*N)->end(); |
1246 | |
1247 | assert(N->DFSNumber != 0 && "We should always assign a DFS number " |
1248 | "before processing a node." ); |
1249 | |
1250 | while (I != E) { |
1251 | Node &ChildN = I->getNode(); |
1252 | if (ChildN.DFSNumber == 0) { |
1253 | // Mark that we should start at this child when next this node is the |
1254 | // top of the stack. We don't start at the next child to ensure this |
1255 | // child's lowlink is reflected. |
1256 | DFSStack.emplace_back(Args&: N, Args&: I); |
1257 | |
1258 | // Continue, resetting to the child node. |
1259 | ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++; |
1260 | N = &ChildN; |
1261 | I = ChildN->begin(); |
1262 | E = ChildN->end(); |
1263 | continue; |
1264 | } |
1265 | if (ChildN.DFSNumber == -1) { |
1266 | // If this child isn't currently in this RefSCC, no need to process |
1267 | // it. |
1268 | ++I; |
1269 | continue; |
1270 | } |
1271 | |
1272 | // Track the lowest link of the children, if any are still in the stack. |
1273 | // Any child not on the stack will have a LowLink of -1. |
1274 | assert(ChildN.LowLink != 0 && |
1275 | "Low-link must not be zero with a non-zero DFS number." ); |
1276 | if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink) |
1277 | N->LowLink = ChildN.LowLink; |
1278 | ++I; |
1279 | } |
1280 | |
1281 | // We've finished processing N and its descendants, put it on our pending |
1282 | // stack to eventually get merged into a RefSCC. |
1283 | PendingRefSCCStack.push_back(Elt: N); |
1284 | |
1285 | // If this node is linked to some lower entry, continue walking up the |
1286 | // stack. |
1287 | if (N->LowLink != N->DFSNumber) { |
1288 | assert(!DFSStack.empty() && |
1289 | "We never found a viable root for a RefSCC to pop off!" ); |
1290 | continue; |
1291 | } |
1292 | |
1293 | // Otherwise, form a new RefSCC from the top of the pending node stack. |
1294 | int RefSCCNumber = PostOrderNumber++; |
1295 | int RootDFSNumber = N->DFSNumber; |
1296 | |
1297 | // Find the range of the node stack by walking down until we pass the |
1298 | // root DFS number. Update the DFS numbers and low link numbers in the |
1299 | // process to avoid re-walking this list where possible. |
1300 | auto StackRI = find_if(Range: reverse(C&: PendingRefSCCStack), P: [&](Node *N) { |
1301 | if (N->DFSNumber < RootDFSNumber) |
1302 | // We've found the bottom. |
1303 | return true; |
1304 | |
1305 | // Update this node and keep scanning. |
1306 | N->DFSNumber = -1; |
1307 | // Save the post-order number in the lowlink field so that we can use |
1308 | // it to map SCCs into new RefSCCs after we finish the DFS. |
1309 | N->LowLink = RefSCCNumber; |
1310 | return false; |
1311 | }); |
1312 | auto RefSCCNodes = make_range(x: StackRI.base(), y: PendingRefSCCStack.end()); |
1313 | |
1314 | // If we find a cycle containing all nodes originally in this RefSCC then |
1315 | // the removal hasn't changed the structure at all. This is an important |
1316 | // special case, and we can directly exit the entire routine more |
1317 | // efficiently as soon as we discover it. |
1318 | if (llvm::size(Range&: RefSCCNodes) == NumRefSCCNodes) { |
1319 | // Clear out the low link field as we won't need it. |
1320 | for (Node *N : RefSCCNodes) |
1321 | N->LowLink = -1; |
1322 | // Return the empty result immediately. |
1323 | return Result; |
1324 | } |
1325 | |
1326 | // We've already marked the nodes internally with the RefSCC number so |
1327 | // just clear them off the stack and continue. |
1328 | PendingRefSCCStack.erase(CS: RefSCCNodes.begin(), CE: PendingRefSCCStack.end()); |
1329 | } while (!DFSStack.empty()); |
1330 | |
1331 | assert(DFSStack.empty() && "Didn't flush the entire DFS stack!" ); |
1332 | assert(PendingRefSCCStack.empty() && "Didn't flush all pending nodes!" ); |
1333 | } while (!Worklist.empty()); |
1334 | |
1335 | assert(PostOrderNumber > 1 && |
1336 | "Should never finish the DFS when the existing RefSCC remains valid!" ); |
1337 | |
1338 | // Otherwise we create a collection of new RefSCC nodes and build |
1339 | // a radix-sort style map from postorder number to these new RefSCCs. We then |
1340 | // append SCCs to each of these RefSCCs in the order they occurred in the |
1341 | // original SCCs container. |
1342 | for (int I = 0; I < PostOrderNumber; ++I) |
1343 | Result.push_back(Elt: G->createRefSCC(Args&: *G)); |
1344 | |
1345 | // Insert the resulting postorder sequence into the global graph postorder |
1346 | // sequence before the current RefSCC in that sequence, and then remove the |
1347 | // current one. |
1348 | // |
1349 | // FIXME: It'd be nice to change the APIs so that we returned an iterator |
1350 | // range over the global postorder sequence and generally use that sequence |
1351 | // rather than building a separate result vector here. |
1352 | int Idx = G->getRefSCCIndex(RC&: *this); |
1353 | G->PostOrderRefSCCs.erase(CI: G->PostOrderRefSCCs.begin() + Idx); |
1354 | G->PostOrderRefSCCs.insert(I: G->PostOrderRefSCCs.begin() + Idx, From: Result.begin(), |
1355 | To: Result.end()); |
1356 | for (int I : seq<int>(Begin: Idx, End: G->PostOrderRefSCCs.size())) |
1357 | G->RefSCCIndices[G->PostOrderRefSCCs[I]] = I; |
1358 | |
1359 | for (SCC *C : SCCs) { |
1360 | // We store the SCC number in the node's low-link field above. |
1361 | int SCCNumber = C->begin()->LowLink; |
1362 | // Clear out all the SCC's node's low-link fields now that we're done |
1363 | // using them as side-storage. |
1364 | for (Node &N : *C) { |
1365 | assert(N.LowLink == SCCNumber && |
1366 | "Cannot have different numbers for nodes in the same SCC!" ); |
1367 | N.LowLink = -1; |
1368 | } |
1369 | |
1370 | RefSCC &RC = *Result[SCCNumber]; |
1371 | int SCCIndex = RC.SCCs.size(); |
1372 | RC.SCCs.push_back(Elt: C); |
1373 | RC.SCCIndices[C] = SCCIndex; |
1374 | C->OuterRefSCC = &RC; |
1375 | } |
1376 | |
1377 | // Now that we've moved things into the new RefSCCs, clear out our current |
1378 | // one. |
1379 | G = nullptr; |
1380 | SCCs.clear(); |
1381 | SCCIndices.clear(); |
1382 | |
1383 | #ifdef EXPENSIVE_CHECKS |
1384 | // Verify the new RefSCCs we've built. |
1385 | for (RefSCC *RC : Result) |
1386 | RC->verify(); |
1387 | #endif |
1388 | |
1389 | // Return the new list of SCCs. |
1390 | return Result; |
1391 | } |
1392 | |
1393 | void LazyCallGraph::RefSCC::insertTrivialCallEdge(Node &SourceN, |
1394 | Node &TargetN) { |
1395 | #ifdef EXPENSIVE_CHECKS |
1396 | auto ExitVerifier = make_scope_exit([this] { verify(); }); |
1397 | |
1398 | // Check that we aren't breaking some invariants of the SCC graph. Note that |
1399 | // this is quadratic in the number of edges in the call graph! |
1400 | SCC &SourceC = *G->lookupSCC(SourceN); |
1401 | SCC &TargetC = *G->lookupSCC(TargetN); |
1402 | if (&SourceC != &TargetC) |
1403 | assert(SourceC.isAncestorOf(TargetC) && |
1404 | "Call edge is not trivial in the SCC graph!" ); |
1405 | #endif |
1406 | |
1407 | // First insert it into the source or find the existing edge. |
1408 | auto [Iterator, Inserted] = |
1409 | SourceN->EdgeIndexMap.try_emplace(Key: &TargetN, Args: SourceN->Edges.size()); |
1410 | if (!Inserted) { |
1411 | // Already an edge, just update it. |
1412 | Edge &E = SourceN->Edges[Iterator->second]; |
1413 | if (E.isCall()) |
1414 | return; // Nothing to do! |
1415 | E.setKind(Edge::Call); |
1416 | } else { |
1417 | // Create the new edge. |
1418 | SourceN->Edges.emplace_back(Args&: TargetN, Args: Edge::Call); |
1419 | } |
1420 | } |
1421 | |
1422 | void LazyCallGraph::RefSCC::insertTrivialRefEdge(Node &SourceN, Node &TargetN) { |
1423 | #ifdef EXPENSIVE_CHECKS |
1424 | auto ExitVerifier = make_scope_exit([this] { verify(); }); |
1425 | |
1426 | // Check that we aren't breaking some invariants of the RefSCC graph. |
1427 | RefSCC &SourceRC = *G->lookupRefSCC(SourceN); |
1428 | RefSCC &TargetRC = *G->lookupRefSCC(TargetN); |
1429 | if (&SourceRC != &TargetRC) |
1430 | assert(SourceRC.isAncestorOf(TargetRC) && |
1431 | "Ref edge is not trivial in the RefSCC graph!" ); |
1432 | #endif |
1433 | |
1434 | // First insert it into the source or find the existing edge. |
1435 | auto [Iterator, Inserted] = |
1436 | SourceN->EdgeIndexMap.try_emplace(Key: &TargetN, Args: SourceN->Edges.size()); |
1437 | (void)Iterator; |
1438 | if (!Inserted) |
1439 | // Already an edge, we're done. |
1440 | return; |
1441 | |
1442 | // Create the new edge. |
1443 | SourceN->Edges.emplace_back(Args&: TargetN, Args: Edge::Ref); |
1444 | } |
1445 | |
1446 | void LazyCallGraph::RefSCC::replaceNodeFunction(Node &N, Function &NewF) { |
1447 | Function &OldF = N.getFunction(); |
1448 | |
1449 | #ifdef EXPENSIVE_CHECKS |
1450 | auto ExitVerifier = make_scope_exit([this] { verify(); }); |
1451 | |
1452 | assert(G->lookupRefSCC(N) == this && |
1453 | "Cannot replace the function of a node outside this RefSCC." ); |
1454 | |
1455 | assert(G->NodeMap.find(&NewF) == G->NodeMap.end() && |
1456 | "Must not have already walked the new function!'" ); |
1457 | |
1458 | // It is important that this replacement not introduce graph changes so we |
1459 | // insist that the caller has already removed every use of the original |
1460 | // function and that all uses of the new function correspond to existing |
1461 | // edges in the graph. The common and expected way to use this is when |
1462 | // replacing the function itself in the IR without changing the call graph |
1463 | // shape and just updating the analysis based on that. |
1464 | assert(&OldF != &NewF && "Cannot replace a function with itself!" ); |
1465 | assert(OldF.use_empty() && |
1466 | "Must have moved all uses from the old function to the new!" ); |
1467 | #endif |
1468 | |
1469 | N.replaceFunction(NewF); |
1470 | |
1471 | // Update various call graph maps. |
1472 | G->NodeMap.erase(Val: &OldF); |
1473 | G->NodeMap[&NewF] = &N; |
1474 | |
1475 | // Update lib functions. |
1476 | if (G->isLibFunction(F&: OldF)) { |
1477 | G->LibFunctions.remove(X: &OldF); |
1478 | G->LibFunctions.insert(X: &NewF); |
1479 | } |
1480 | } |
1481 | |
1482 | void LazyCallGraph::insertEdge(Node &SourceN, Node &TargetN, Edge::Kind EK) { |
1483 | assert(SCCMap.empty() && |
1484 | "This method cannot be called after SCCs have been formed!" ); |
1485 | |
1486 | return SourceN->insertEdgeInternal(TargetN, EK); |
1487 | } |
1488 | |
1489 | void LazyCallGraph::removeEdge(Node &SourceN, Node &TargetN) { |
1490 | assert(SCCMap.empty() && |
1491 | "This method cannot be called after SCCs have been formed!" ); |
1492 | |
1493 | bool Removed = SourceN->removeEdgeInternal(TargetN); |
1494 | (void)Removed; |
1495 | assert(Removed && "Target not in the edge set for this caller?" ); |
1496 | } |
1497 | |
1498 | void LazyCallGraph::markDeadFunction(Function &F) { |
1499 | // FIXME: This is unnecessarily restrictive. We should be able to remove |
1500 | // functions which recursively call themselves. |
1501 | assert(F.hasZeroLiveUses() && |
1502 | "This routine should only be called on trivially dead functions!" ); |
1503 | |
1504 | // We shouldn't remove library functions as they are never really dead while |
1505 | // the call graph is in use -- every function definition refers to them. |
1506 | assert(!isLibFunction(F) && |
1507 | "Must not remove lib functions from the call graph!" ); |
1508 | |
1509 | auto NI = NodeMap.find(Val: &F); |
1510 | assert(NI != NodeMap.end() && "Removed function should be known!" ); |
1511 | |
1512 | Node &N = *NI->second; |
1513 | |
1514 | // Remove all call edges out of dead function. |
1515 | for (Edge E : *N) { |
1516 | if (E.isCall()) |
1517 | N->setEdgeKind(TargetN&: E.getNode(), EK: Edge::Ref); |
1518 | } |
1519 | } |
1520 | |
1521 | void LazyCallGraph::removeDeadFunctions(ArrayRef<Function *> DeadFs) { |
1522 | if (DeadFs.empty()) |
1523 | return; |
1524 | |
1525 | // Group dead functions by the RefSCC they're in. |
1526 | DenseMap<RefSCC *, SmallVector<Node *, 1>> RCs; |
1527 | for (Function *DeadF : DeadFs) { |
1528 | Node *N = lookup(F: *DeadF); |
1529 | #ifndef NDEBUG |
1530 | for (Edge &E : **N) { |
1531 | assert(!E.isCall() && |
1532 | "dead function shouldn't have any outgoing call edges" ); |
1533 | } |
1534 | #endif |
1535 | RefSCC *RC = lookupRefSCC(N&: *N); |
1536 | RCs[RC].push_back(Elt: N); |
1537 | } |
1538 | // Remove outgoing edges from all dead functions. Dead functions should |
1539 | // already have had their call edges removed in markDeadFunction(), so we only |
1540 | // need to worry about spurious ref edges. |
1541 | for (auto [RC, DeadNs] : RCs) { |
1542 | SmallVector<std::pair<Node *, Node *>> InternalEdgesToRemove; |
1543 | for (Node *DeadN : DeadNs) { |
1544 | for (Edge &E : **DeadN) { |
1545 | if (lookupRefSCC(N&: E.getNode()) == RC) |
1546 | InternalEdgesToRemove.push_back(Elt: {DeadN, &E.getNode()}); |
1547 | else |
1548 | RC->removeOutgoingEdge(SourceN&: *DeadN, TargetN&: E.getNode()); |
1549 | } |
1550 | } |
1551 | // We ignore the returned RefSCCs since at this point we're done with CGSCC |
1552 | // iteration and don't need to add it to any worklists. |
1553 | (void)RC->removeInternalRefEdges(Edges: InternalEdgesToRemove); |
1554 | for (Node *DeadN : DeadNs) { |
1555 | RefSCC *DeadRC = lookupRefSCC(N&: *DeadN); |
1556 | assert(DeadRC->size() == 1); |
1557 | assert(DeadRC->begin()->size() == 1); |
1558 | DeadRC->clear(); |
1559 | DeadRC->G = nullptr; |
1560 | } |
1561 | } |
1562 | // Clean up data structures. |
1563 | for (Function *DeadF : DeadFs) { |
1564 | Node &N = *lookup(F: *DeadF); |
1565 | |
1566 | EntryEdges.removeEdgeInternal(TargetN&: N); |
1567 | SCCMap.erase(I: SCCMap.find(Val: &N)); |
1568 | NodeMap.erase(I: NodeMap.find(Val: DeadF)); |
1569 | |
1570 | N.clear(); |
1571 | N.G = nullptr; |
1572 | N.F = nullptr; |
1573 | } |
1574 | } |
1575 | |
1576 | // Gets the Edge::Kind from one function to another by looking at the function's |
1577 | // instructions. Asserts if there is no edge. |
1578 | // Useful for determining what type of edge should exist between functions when |
1579 | // the edge hasn't been created yet. |
1580 | static LazyCallGraph::Edge::Kind getEdgeKind(Function &OriginalFunction, |
1581 | Function &NewFunction) { |
1582 | // In release builds, assume that if there are no direct calls to the new |
1583 | // function, then there is a ref edge. In debug builds, keep track of |
1584 | // references to assert that there is actually a ref edge if there is no call |
1585 | // edge. |
1586 | #ifndef NDEBUG |
1587 | SmallVector<Constant *, 16> Worklist; |
1588 | SmallPtrSet<Constant *, 16> Visited; |
1589 | #endif |
1590 | |
1591 | for (Instruction &I : instructions(F&: OriginalFunction)) { |
1592 | if (auto *CB = dyn_cast<CallBase>(Val: &I)) { |
1593 | if (Function *Callee = CB->getCalledFunction()) { |
1594 | if (Callee == &NewFunction) |
1595 | return LazyCallGraph::Edge::Kind::Call; |
1596 | } |
1597 | } |
1598 | #ifndef NDEBUG |
1599 | for (Value *Op : I.operand_values()) { |
1600 | if (Constant *C = dyn_cast<Constant>(Op)) { |
1601 | if (Visited.insert(C).second) |
1602 | Worklist.push_back(C); |
1603 | } |
1604 | } |
1605 | #endif |
1606 | } |
1607 | |
1608 | #ifndef NDEBUG |
1609 | bool FoundNewFunction = false; |
1610 | LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &F) { |
1611 | if (&F == &NewFunction) |
1612 | FoundNewFunction = true; |
1613 | }); |
1614 | assert(FoundNewFunction && "No edge from original function to new function" ); |
1615 | #endif |
1616 | |
1617 | return LazyCallGraph::Edge::Kind::Ref; |
1618 | } |
1619 | |
1620 | void LazyCallGraph::addSplitFunction(Function &OriginalFunction, |
1621 | Function &NewFunction) { |
1622 | assert(lookup(OriginalFunction) && |
1623 | "Original function's node should already exist" ); |
1624 | Node &OriginalN = get(F&: OriginalFunction); |
1625 | SCC *OriginalC = lookupSCC(N&: OriginalN); |
1626 | RefSCC *OriginalRC = lookupRefSCC(N&: OriginalN); |
1627 | |
1628 | #ifdef EXPENSIVE_CHECKS |
1629 | OriginalRC->verify(); |
1630 | auto VerifyOnExit = make_scope_exit([&]() { OriginalRC->verify(); }); |
1631 | #endif |
1632 | |
1633 | assert(!lookup(NewFunction) && |
1634 | "New function's node should not already exist" ); |
1635 | Node &NewN = initNode(F&: NewFunction); |
1636 | |
1637 | Edge::Kind EK = getEdgeKind(OriginalFunction, NewFunction); |
1638 | |
1639 | SCC *NewC = nullptr; |
1640 | for (Edge &E : *NewN) { |
1641 | Node &EN = E.getNode(); |
1642 | if (EK == Edge::Kind::Call && E.isCall() && lookupSCC(N&: EN) == OriginalC) { |
1643 | // If the edge to the new function is a call edge and there is a call edge |
1644 | // from the new function to any function in the original function's SCC, |
1645 | // it is in the same SCC (and RefSCC) as the original function. |
1646 | NewC = OriginalC; |
1647 | NewC->Nodes.push_back(Elt: &NewN); |
1648 | break; |
1649 | } |
1650 | } |
1651 | |
1652 | if (!NewC) { |
1653 | for (Edge &E : *NewN) { |
1654 | Node &EN = E.getNode(); |
1655 | if (lookupRefSCC(N&: EN) == OriginalRC) { |
1656 | // If there is any edge from the new function to any function in the |
1657 | // original function's RefSCC, it is in the same RefSCC as the original |
1658 | // function but a new SCC. |
1659 | RefSCC *NewRC = OriginalRC; |
1660 | NewC = createSCC(Args&: *NewRC, Args: SmallVector<Node *, 1>({&NewN})); |
1661 | |
1662 | // The new function's SCC is not the same as the original function's |
1663 | // SCC, since that case was handled earlier. If the edge from the |
1664 | // original function to the new function was a call edge, then we need |
1665 | // to insert the newly created function's SCC before the original |
1666 | // function's SCC. Otherwise, either the new SCC comes after the |
1667 | // original function's SCC, or it doesn't matter, and in both cases we |
1668 | // can add it to the very end. |
1669 | int InsertIndex = EK == Edge::Kind::Call ? NewRC->SCCIndices[OriginalC] |
1670 | : NewRC->SCCIndices.size(); |
1671 | NewRC->SCCs.insert(I: NewRC->SCCs.begin() + InsertIndex, Elt: NewC); |
1672 | for (int I = InsertIndex, Size = NewRC->SCCs.size(); I < Size; ++I) |
1673 | NewRC->SCCIndices[NewRC->SCCs[I]] = I; |
1674 | |
1675 | break; |
1676 | } |
1677 | } |
1678 | } |
1679 | |
1680 | if (!NewC) { |
1681 | // We didn't find any edges back to the original function's RefSCC, so the |
1682 | // new function belongs in a new RefSCC. The new RefSCC goes before the |
1683 | // original function's RefSCC. |
1684 | RefSCC *NewRC = createRefSCC(Args&: *this); |
1685 | NewC = createSCC(Args&: *NewRC, Args: SmallVector<Node *, 1>({&NewN})); |
1686 | NewRC->SCCIndices[NewC] = 0; |
1687 | NewRC->SCCs.push_back(Elt: NewC); |
1688 | auto OriginalRCIndex = RefSCCIndices.find(Val: OriginalRC)->second; |
1689 | PostOrderRefSCCs.insert(I: PostOrderRefSCCs.begin() + OriginalRCIndex, Elt: NewRC); |
1690 | for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I) |
1691 | RefSCCIndices[PostOrderRefSCCs[I]] = I; |
1692 | } |
1693 | |
1694 | SCCMap[&NewN] = NewC; |
1695 | |
1696 | OriginalN->insertEdgeInternal(TargetN&: NewN, EK); |
1697 | } |
1698 | |
1699 | void LazyCallGraph::addSplitRefRecursiveFunctions( |
1700 | Function &OriginalFunction, ArrayRef<Function *> NewFunctions) { |
1701 | assert(!NewFunctions.empty() && "Can't add zero functions" ); |
1702 | assert(lookup(OriginalFunction) && |
1703 | "Original function's node should already exist" ); |
1704 | Node &OriginalN = get(F&: OriginalFunction); |
1705 | RefSCC *OriginalRC = lookupRefSCC(N&: OriginalN); |
1706 | |
1707 | #ifdef EXPENSIVE_CHECKS |
1708 | OriginalRC->verify(); |
1709 | auto VerifyOnExit = make_scope_exit([&]() { |
1710 | OriginalRC->verify(); |
1711 | for (Function *NewFunction : NewFunctions) |
1712 | lookupRefSCC(get(*NewFunction))->verify(); |
1713 | }); |
1714 | #endif |
1715 | |
1716 | bool ExistsRefToOriginalRefSCC = false; |
1717 | |
1718 | for (Function *NewFunction : NewFunctions) { |
1719 | Node &NewN = initNode(F&: *NewFunction); |
1720 | |
1721 | OriginalN->insertEdgeInternal(TargetN&: NewN, EK: Edge::Kind::Ref); |
1722 | |
1723 | // Check if there is any edge from any new function back to any function in |
1724 | // the original function's RefSCC. |
1725 | for (Edge &E : *NewN) { |
1726 | if (lookupRefSCC(N&: E.getNode()) == OriginalRC) { |
1727 | ExistsRefToOriginalRefSCC = true; |
1728 | break; |
1729 | } |
1730 | } |
1731 | } |
1732 | |
1733 | RefSCC *NewRC; |
1734 | if (ExistsRefToOriginalRefSCC) { |
1735 | // If there is any edge from any new function to any function in the |
1736 | // original function's RefSCC, all new functions will be in the same RefSCC |
1737 | // as the original function. |
1738 | NewRC = OriginalRC; |
1739 | } else { |
1740 | // Otherwise the new functions are in their own RefSCC. |
1741 | NewRC = createRefSCC(Args&: *this); |
1742 | // The new RefSCC goes before the original function's RefSCC in postorder |
1743 | // since there are only edges from the original function's RefSCC to the new |
1744 | // RefSCC. |
1745 | auto OriginalRCIndex = RefSCCIndices.find(Val: OriginalRC)->second; |
1746 | PostOrderRefSCCs.insert(I: PostOrderRefSCCs.begin() + OriginalRCIndex, Elt: NewRC); |
1747 | for (int I = OriginalRCIndex, Size = PostOrderRefSCCs.size(); I < Size; ++I) |
1748 | RefSCCIndices[PostOrderRefSCCs[I]] = I; |
1749 | } |
1750 | |
1751 | for (Function *NewFunction : NewFunctions) { |
1752 | Node &NewN = get(F&: *NewFunction); |
1753 | // Each new function is in its own new SCC. The original function can only |
1754 | // have a ref edge to new functions, and no other existing functions can |
1755 | // have references to new functions. Each new function only has a ref edge |
1756 | // to the other new functions. |
1757 | SCC *NewC = createSCC(Args&: *NewRC, Args: SmallVector<Node *, 1>({&NewN})); |
1758 | // The new SCCs are either sibling SCCs or parent SCCs to all other existing |
1759 | // SCCs in the RefSCC. Either way, they can go at the back of the postorder |
1760 | // SCC list. |
1761 | auto Index = NewRC->SCCIndices.size(); |
1762 | NewRC->SCCIndices[NewC] = Index; |
1763 | NewRC->SCCs.push_back(Elt: NewC); |
1764 | SCCMap[&NewN] = NewC; |
1765 | } |
1766 | |
1767 | #ifndef NDEBUG |
1768 | for (Function *F1 : NewFunctions) { |
1769 | assert(getEdgeKind(OriginalFunction, *F1) == Edge::Kind::Ref && |
1770 | "Expected ref edges from original function to every new function" ); |
1771 | Node &N1 = get(*F1); |
1772 | for (Function *F2 : NewFunctions) { |
1773 | if (F1 == F2) |
1774 | continue; |
1775 | Node &N2 = get(*F2); |
1776 | assert(!N1->lookup(N2)->isCall() && |
1777 | "Edges between new functions must be ref edges" ); |
1778 | } |
1779 | } |
1780 | #endif |
1781 | } |
1782 | |
1783 | LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) { |
1784 | return *new (MappedN = BPA.Allocate()) Node(*this, F); |
1785 | } |
1786 | |
1787 | void LazyCallGraph::updateGraphPtrs() { |
1788 | // Walk the node map to update their graph pointers. While this iterates in |
1789 | // an unstable order, the order has no effect, so it remains correct. |
1790 | for (auto &FunctionNodePair : NodeMap) |
1791 | FunctionNodePair.second->G = this; |
1792 | |
1793 | for (auto *RC : PostOrderRefSCCs) |
1794 | RC->G = this; |
1795 | } |
1796 | |
1797 | LazyCallGraph::Node &LazyCallGraph::initNode(Function &F) { |
1798 | Node &N = get(F); |
1799 | N.DFSNumber = N.LowLink = -1; |
1800 | N.populate(); |
1801 | NodeMap[&F] = &N; |
1802 | return N; |
1803 | } |
1804 | |
1805 | template <typename RootsT, typename GetBeginT, typename GetEndT, |
1806 | typename GetNodeT, typename FormSCCCallbackT> |
1807 | void LazyCallGraph::buildGenericSCCs(RootsT &&Roots, GetBeginT &&GetBegin, |
1808 | GetEndT &&GetEnd, GetNodeT &&GetNode, |
1809 | FormSCCCallbackT &&FormSCC) { |
1810 | using EdgeItT = decltype(GetBegin(std::declval<Node &>())); |
1811 | |
1812 | SmallVector<std::pair<Node *, EdgeItT>, 16> DFSStack; |
1813 | SmallVector<Node *, 16> PendingSCCStack; |
1814 | |
1815 | // Scan down the stack and DFS across the call edges. |
1816 | for (Node *RootN : Roots) { |
1817 | assert(DFSStack.empty() && |
1818 | "Cannot begin a new root with a non-empty DFS stack!" ); |
1819 | assert(PendingSCCStack.empty() && |
1820 | "Cannot begin a new root with pending nodes for an SCC!" ); |
1821 | |
1822 | // Skip any nodes we've already reached in the DFS. |
1823 | if (RootN->DFSNumber != 0) { |
1824 | assert(RootN->DFSNumber == -1 && |
1825 | "Shouldn't have any mid-DFS root nodes!" ); |
1826 | continue; |
1827 | } |
1828 | |
1829 | RootN->DFSNumber = RootN->LowLink = 1; |
1830 | int NextDFSNumber = 2; |
1831 | |
1832 | DFSStack.emplace_back(RootN, GetBegin(*RootN)); |
1833 | do { |
1834 | auto [N, I] = DFSStack.pop_back_val(); |
1835 | auto E = GetEnd(*N); |
1836 | while (I != E) { |
1837 | Node &ChildN = GetNode(I); |
1838 | if (ChildN.DFSNumber == 0) { |
1839 | // We haven't yet visited this child, so descend, pushing the current |
1840 | // node onto the stack. |
1841 | DFSStack.emplace_back(N, I); |
1842 | |
1843 | ChildN.DFSNumber = ChildN.LowLink = NextDFSNumber++; |
1844 | N = &ChildN; |
1845 | I = GetBegin(*N); |
1846 | E = GetEnd(*N); |
1847 | continue; |
1848 | } |
1849 | |
1850 | // If the child has already been added to some child component, it |
1851 | // couldn't impact the low-link of this parent because it isn't |
1852 | // connected, and thus its low-link isn't relevant so skip it. |
1853 | if (ChildN.DFSNumber == -1) { |
1854 | ++I; |
1855 | continue; |
1856 | } |
1857 | |
1858 | // Track the lowest linked child as the lowest link for this node. |
1859 | assert(ChildN.LowLink > 0 && "Must have a positive low-link number!" ); |
1860 | if (ChildN.LowLink < N->LowLink) |
1861 | N->LowLink = ChildN.LowLink; |
1862 | |
1863 | // Move to the next edge. |
1864 | ++I; |
1865 | } |
1866 | |
1867 | // We've finished processing N and its descendants, put it on our pending |
1868 | // SCC stack to eventually get merged into an SCC of nodes. |
1869 | PendingSCCStack.push_back(Elt: N); |
1870 | |
1871 | // If this node is linked to some lower entry, continue walking up the |
1872 | // stack. |
1873 | if (N->LowLink != N->DFSNumber) |
1874 | continue; |
1875 | |
1876 | // Otherwise, we've completed an SCC. Append it to our post order list of |
1877 | // SCCs. |
1878 | int RootDFSNumber = N->DFSNumber; |
1879 | // Find the range of the node stack by walking down until we pass the |
1880 | // root DFS number. |
1881 | auto SCCNodes = make_range( |
1882 | PendingSCCStack.rbegin(), |
1883 | find_if(reverse(C&: PendingSCCStack), [RootDFSNumber](const Node *N) { |
1884 | return N->DFSNumber < RootDFSNumber; |
1885 | })); |
1886 | // Form a new SCC out of these nodes and then clear them off our pending |
1887 | // stack. |
1888 | FormSCC(SCCNodes); |
1889 | PendingSCCStack.erase(SCCNodes.end().base(), PendingSCCStack.end()); |
1890 | } while (!DFSStack.empty()); |
1891 | } |
1892 | } |
1893 | |
1894 | /// Build the internal SCCs for a RefSCC from a sequence of nodes. |
1895 | /// |
1896 | /// Appends the SCCs to the provided vector and updates the map with their |
1897 | /// indices. Both the vector and map must be empty when passed into this |
1898 | /// routine. |
1899 | void LazyCallGraph::buildSCCs(RefSCC &RC, node_stack_range Nodes) { |
1900 | assert(RC.SCCs.empty() && "Already built SCCs!" ); |
1901 | assert(RC.SCCIndices.empty() && "Already mapped SCC indices!" ); |
1902 | |
1903 | for (Node *N : Nodes) { |
1904 | assert(N->LowLink >= (*Nodes.begin())->LowLink && |
1905 | "We cannot have a low link in an SCC lower than its root on the " |
1906 | "stack!" ); |
1907 | |
1908 | // This node will go into the next RefSCC, clear out its DFS and low link |
1909 | // as we scan. |
1910 | N->DFSNumber = N->LowLink = 0; |
1911 | } |
1912 | |
1913 | // Each RefSCC contains a DAG of the call SCCs. To build these, we do |
1914 | // a direct walk of the call edges using Tarjan's algorithm. We reuse the |
1915 | // internal storage as we won't need it for the outer graph's DFS any longer. |
1916 | buildGenericSCCs( |
1917 | Roots&: Nodes, GetBegin: [](Node &N) { return N->call_begin(); }, |
1918 | GetEnd: [](Node &N) { return N->call_end(); }, |
1919 | GetNode: [](EdgeSequence::call_iterator I) -> Node & { return I->getNode(); }, |
1920 | FormSCC: [this, &RC](node_stack_range Nodes) { |
1921 | RC.SCCs.push_back(Elt: createSCC(Args&: RC, Args&: Nodes)); |
1922 | for (Node &N : *RC.SCCs.back()) { |
1923 | N.DFSNumber = N.LowLink = -1; |
1924 | SCCMap[&N] = RC.SCCs.back(); |
1925 | } |
1926 | }); |
1927 | |
1928 | // Wire up the SCC indices. |
1929 | for (int I = 0, Size = RC.SCCs.size(); I < Size; ++I) |
1930 | RC.SCCIndices[RC.SCCs[I]] = I; |
1931 | } |
1932 | |
1933 | void LazyCallGraph::buildRefSCCs() { |
1934 | if (EntryEdges.empty() || !PostOrderRefSCCs.empty()) |
1935 | // RefSCCs are either non-existent or already built! |
1936 | return; |
1937 | |
1938 | assert(RefSCCIndices.empty() && "Already mapped RefSCC indices!" ); |
1939 | |
1940 | SmallVector<Node *, 16> Roots; |
1941 | for (Edge &E : *this) |
1942 | Roots.push_back(Elt: &E.getNode()); |
1943 | |
1944 | // The roots will be iterated in order. |
1945 | buildGenericSCCs( |
1946 | Roots, |
1947 | GetBegin: [](Node &N) { |
1948 | // We need to populate each node as we begin to walk its edges. |
1949 | N.populate(); |
1950 | return N->begin(); |
1951 | }, |
1952 | GetEnd: [](Node &N) { return N->end(); }, |
1953 | GetNode: [](EdgeSequence::iterator I) -> Node & { return I->getNode(); }, |
1954 | FormSCC: [this](node_stack_range Nodes) { |
1955 | RefSCC *NewRC = createRefSCC(Args&: *this); |
1956 | buildSCCs(RC&: *NewRC, Nodes); |
1957 | |
1958 | // Push the new node into the postorder list and remember its position |
1959 | // in the index map. |
1960 | bool Inserted = |
1961 | RefSCCIndices.try_emplace(Key: NewRC, Args: PostOrderRefSCCs.size()).second; |
1962 | (void)Inserted; |
1963 | assert(Inserted && "Cannot already have this RefSCC in the index map!" ); |
1964 | PostOrderRefSCCs.push_back(Elt: NewRC); |
1965 | #ifdef EXPENSIVE_CHECKS |
1966 | NewRC->verify(); |
1967 | #endif |
1968 | }); |
1969 | } |
1970 | |
1971 | void LazyCallGraph::visitReferences(SmallVectorImpl<Constant *> &Worklist, |
1972 | SmallPtrSetImpl<Constant *> &Visited, |
1973 | function_ref<void(Function &)> Callback) { |
1974 | while (!Worklist.empty()) { |
1975 | Constant *C = Worklist.pop_back_val(); |
1976 | |
1977 | if (Function *F = dyn_cast<Function>(Val: C)) { |
1978 | if (!F->isDeclaration()) |
1979 | Callback(*F); |
1980 | continue; |
1981 | } |
1982 | |
1983 | // blockaddresses are weird and don't participate in the call graph anyway, |
1984 | // skip them. |
1985 | if (isa<BlockAddress>(Val: C)) |
1986 | continue; |
1987 | |
1988 | for (Value *Op : C->operand_values()) |
1989 | if (Visited.insert(Ptr: cast<Constant>(Val: Op)).second) |
1990 | Worklist.push_back(Elt: cast<Constant>(Val: Op)); |
1991 | } |
1992 | } |
1993 | |
1994 | AnalysisKey LazyCallGraphAnalysis::Key; |
1995 | |
1996 | LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {} |
1997 | |
1998 | static void printNode(raw_ostream &OS, LazyCallGraph::Node &N) { |
1999 | OS << " Edges in function: " << N.getFunction().getName() << "\n" ; |
2000 | for (LazyCallGraph::Edge &E : N.populate()) |
2001 | OS << " " << (E.isCall() ? "call" : "ref " ) << " -> " |
2002 | << E.getFunction().getName() << "\n" ; |
2003 | |
2004 | OS << "\n" ; |
2005 | } |
2006 | |
2007 | static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &C) { |
2008 | OS << " SCC with " << C.size() << " functions:\n" ; |
2009 | |
2010 | for (LazyCallGraph::Node &N : C) |
2011 | OS << " " << N.getFunction().getName() << "\n" ; |
2012 | } |
2013 | |
2014 | static void printRefSCC(raw_ostream &OS, LazyCallGraph::RefSCC &C) { |
2015 | OS << " RefSCC with " << C.size() << " call SCCs:\n" ; |
2016 | |
2017 | for (LazyCallGraph::SCC &InnerC : C) |
2018 | printSCC(OS, C&: InnerC); |
2019 | |
2020 | OS << "\n" ; |
2021 | } |
2022 | |
2023 | PreservedAnalyses LazyCallGraphPrinterPass::run(Module &M, |
2024 | ModuleAnalysisManager &AM) { |
2025 | LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(IR&: M); |
2026 | |
2027 | OS << "Printing the call graph for module: " << M.getModuleIdentifier() |
2028 | << "\n\n" ; |
2029 | |
2030 | for (Function &F : M) |
2031 | printNode(OS, N&: G.get(F)); |
2032 | |
2033 | G.buildRefSCCs(); |
2034 | for (LazyCallGraph::RefSCC &C : G.postorder_ref_sccs()) |
2035 | printRefSCC(OS, C); |
2036 | |
2037 | return PreservedAnalyses::all(); |
2038 | } |
2039 | |
2040 | LazyCallGraphDOTPrinterPass::LazyCallGraphDOTPrinterPass(raw_ostream &OS) |
2041 | : OS(OS) {} |
2042 | |
2043 | static void printNodeDOT(raw_ostream &OS, LazyCallGraph::Node &N) { |
2044 | std::string Name = |
2045 | "\"" + DOT::EscapeString(Label: std::string(N.getFunction().getName())) + "\"" ; |
2046 | |
2047 | for (LazyCallGraph::Edge &E : N.populate()) { |
2048 | OS << " " << Name << " -> \"" |
2049 | << DOT::EscapeString(Label: std::string(E.getFunction().getName())) << "\"" ; |
2050 | if (!E.isCall()) // It is a ref edge. |
2051 | OS << " [style=dashed,label=\"ref\"]" ; |
2052 | OS << ";\n" ; |
2053 | } |
2054 | |
2055 | OS << "\n" ; |
2056 | } |
2057 | |
2058 | PreservedAnalyses LazyCallGraphDOTPrinterPass::run(Module &M, |
2059 | ModuleAnalysisManager &AM) { |
2060 | LazyCallGraph &G = AM.getResult<LazyCallGraphAnalysis>(IR&: M); |
2061 | |
2062 | OS << "digraph \"" << DOT::EscapeString(Label: M.getModuleIdentifier()) << "\" {\n" ; |
2063 | |
2064 | for (Function &F : M) |
2065 | printNodeDOT(OS, N&: G.get(F)); |
2066 | |
2067 | OS << "}\n" ; |
2068 | |
2069 | return PreservedAnalyses::all(); |
2070 | } |
2071 | |