1 | //===- PhiValues.cpp - Phi Value Analysis ---------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "llvm/Analysis/PhiValues.h" |
10 | #include "llvm/ADT/SmallVector.h" |
11 | #include "llvm/IR/Instructions.h" |
12 | #include "llvm/InitializePasses.h" |
13 | |
14 | using namespace llvm; |
15 | |
16 | void PhiValues::PhiValuesCallbackVH::deleted() { |
17 | PV->invalidateValue(V: getValPtr()); |
18 | } |
19 | |
20 | void PhiValues::PhiValuesCallbackVH::allUsesReplacedWith(Value *) { |
21 | // We could potentially update the cached values we have with the new value, |
22 | // but it's simpler to just treat the old value as invalidated. |
23 | PV->invalidateValue(V: getValPtr()); |
24 | } |
25 | |
26 | bool PhiValues::invalidate(Function &, const PreservedAnalyses &PA, |
27 | FunctionAnalysisManager::Invalidator &) { |
28 | // PhiValues is invalidated if it isn't preserved. |
29 | auto PAC = PA.getChecker<PhiValuesAnalysis>(); |
30 | return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()); |
31 | } |
32 | |
33 | // The goal here is to find all of the non-phi values reachable from this phi, |
34 | // and to do the same for all of the phis reachable from this phi, as doing so |
35 | // is necessary anyway in order to get the values for this phi. We do this using |
36 | // Tarjan's algorithm with Nuutila's improvements to find the strongly connected |
37 | // components of the phi graph rooted in this phi: |
38 | // * All phis in a strongly connected component will have the same reachable |
39 | // non-phi values. The SCC may not be the maximal subgraph for that set of |
40 | // reachable values, but finding out that isn't really necessary (it would |
41 | // only reduce the amount of memory needed to store the values). |
42 | // * Tarjan's algorithm completes components in a bottom-up manner, i.e. it |
43 | // never completes a component before the components reachable from it have |
44 | // been completed. This means that when we complete a component we have |
45 | // everything we need to collect the values reachable from that component. |
46 | // * We collect both the non-phi values reachable from each SCC, as that's what |
47 | // we're ultimately interested in, and all of the reachable values, i.e. |
48 | // including phis, as that makes invalidateValue easier. |
49 | void PhiValues::processPhi(const PHINode *Phi, |
50 | SmallVectorImpl<const PHINode *> &Stack) { |
51 | // Initialize the phi with the next depth number. |
52 | assert(DepthMap.lookup(Phi) == 0); |
53 | assert(NextDepthNumber != UINT_MAX); |
54 | unsigned int RootDepthNumber = ++NextDepthNumber; |
55 | DepthMap[Phi] = RootDepthNumber; |
56 | |
57 | // Recursively process the incoming phis of this phi. |
58 | TrackedValues.insert(V: PhiValuesCallbackVH(const_cast<PHINode *>(Phi), this)); |
59 | for (Value *PhiOp : Phi->incoming_values()) { |
60 | if (PHINode *PhiPhiOp = dyn_cast<PHINode>(Val: PhiOp)) { |
61 | // Recurse if the phi has not yet been visited. |
62 | unsigned int OpDepthNumber = DepthMap.lookup(Val: PhiPhiOp); |
63 | if (OpDepthNumber == 0) { |
64 | processPhi(Phi: PhiPhiOp, Stack); |
65 | OpDepthNumber = DepthMap.lookup(Val: PhiPhiOp); |
66 | assert(OpDepthNumber != 0); |
67 | } |
68 | // If the phi did not become part of a component then this phi and that |
69 | // phi are part of the same component, so adjust the depth number. |
70 | if (!ReachableMap.count(Val: OpDepthNumber)) |
71 | DepthMap[Phi] = std::min(a: DepthMap[Phi], b: OpDepthNumber); |
72 | } else { |
73 | TrackedValues.insert(V: PhiValuesCallbackVH(PhiOp, this)); |
74 | } |
75 | } |
76 | |
77 | // Now that incoming phis have been handled, push this phi to the stack. |
78 | Stack.push_back(Elt: Phi); |
79 | |
80 | // If the depth number has not changed then we've finished collecting the phis |
81 | // of a strongly connected component. |
82 | if (DepthMap[Phi] == RootDepthNumber) { |
83 | // Collect the reachable values for this component. The phis of this |
84 | // component will be those on top of the depth stack with the same or |
85 | // greater depth number. |
86 | ConstValueSet &Reachable = ReachableMap[RootDepthNumber]; |
87 | while (true) { |
88 | const PHINode *ComponentPhi = Stack.pop_back_val(); |
89 | Reachable.insert(X: ComponentPhi); |
90 | |
91 | for (Value *Op : ComponentPhi->incoming_values()) { |
92 | if (PHINode *PhiOp = dyn_cast<PHINode>(Val: Op)) { |
93 | // If this phi is not part of the same component then that component |
94 | // is guaranteed to have been completed before this one. Therefore we |
95 | // can just add its reachable values to the reachable values of this |
96 | // component. |
97 | unsigned int OpDepthNumber = DepthMap[PhiOp]; |
98 | if (OpDepthNumber != RootDepthNumber) { |
99 | auto It = ReachableMap.find(Val: OpDepthNumber); |
100 | if (It != ReachableMap.end()) |
101 | Reachable.insert(Start: It->second.begin(), End: It->second.end()); |
102 | } |
103 | } else |
104 | Reachable.insert(X: Op); |
105 | } |
106 | |
107 | if (Stack.empty()) |
108 | break; |
109 | |
110 | unsigned int &ComponentDepthNumber = DepthMap[Stack.back()]; |
111 | if (ComponentDepthNumber < RootDepthNumber) |
112 | break; |
113 | |
114 | ComponentDepthNumber = RootDepthNumber; |
115 | } |
116 | |
117 | // Filter out phis to get the non-phi reachable values. |
118 | ValueSet &NonPhi = NonPhiReachableMap[RootDepthNumber]; |
119 | for (const Value *V : Reachable) |
120 | if (!isa<PHINode>(Val: V)) |
121 | NonPhi.insert(X: const_cast<Value *>(V)); |
122 | } |
123 | } |
124 | |
125 | const PhiValues::ValueSet &PhiValues::getValuesForPhi(const PHINode *PN) { |
126 | unsigned int DepthNumber = DepthMap.lookup(Val: PN); |
127 | if (DepthNumber == 0) { |
128 | SmallVector<const PHINode *, 8> Stack; |
129 | processPhi(Phi: PN, Stack); |
130 | DepthNumber = DepthMap.lookup(Val: PN); |
131 | assert(Stack.empty()); |
132 | assert(DepthNumber != 0); |
133 | } |
134 | return NonPhiReachableMap[DepthNumber]; |
135 | } |
136 | |
137 | void PhiValues::invalidateValue(const Value *V) { |
138 | // Components that can reach V are invalid. |
139 | SmallVector<unsigned int, 8> InvalidComponents; |
140 | for (auto &Pair : ReachableMap) |
141 | if (Pair.second.count(key: V)) |
142 | InvalidComponents.push_back(Elt: Pair.first); |
143 | |
144 | for (unsigned int N : InvalidComponents) { |
145 | for (const Value *V : ReachableMap[N]) |
146 | if (const PHINode *PN = dyn_cast<PHINode>(Val: V)) |
147 | DepthMap.erase(Val: PN); |
148 | NonPhiReachableMap.erase(Val: N); |
149 | ReachableMap.erase(Val: N); |
150 | } |
151 | // This value is no longer tracked |
152 | auto It = TrackedValues.find_as(Val: V); |
153 | if (It != TrackedValues.end()) |
154 | TrackedValues.erase(I: It); |
155 | } |
156 | |
157 | void PhiValues::releaseMemory() { |
158 | DepthMap.clear(); |
159 | NonPhiReachableMap.clear(); |
160 | ReachableMap.clear(); |
161 | } |
162 | |
163 | void PhiValues::print(raw_ostream &OS) const { |
164 | // Iterate through the phi nodes of the function rather than iterating through |
165 | // DepthMap in order to get predictable ordering. |
166 | for (const BasicBlock &BB : F) { |
167 | for (const PHINode &PN : BB.phis()) { |
168 | OS << "PHI " ; |
169 | PN.printAsOperand(O&: OS, PrintType: false); |
170 | OS << " has values:\n" ; |
171 | unsigned int N = DepthMap.lookup(Val: &PN); |
172 | auto It = NonPhiReachableMap.find(Val: N); |
173 | if (It == NonPhiReachableMap.end()) |
174 | OS << " UNKNOWN\n" ; |
175 | else if (It->second.empty()) |
176 | OS << " NONE\n" ; |
177 | else |
178 | for (Value *V : It->second) |
179 | // Printing of an instruction prints two spaces at the start, so |
180 | // handle instructions and everything else slightly differently in |
181 | // order to get consistent indenting. |
182 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) |
183 | OS << *I << "\n" ; |
184 | else |
185 | OS << " " << *V << "\n" ; |
186 | } |
187 | } |
188 | } |
189 | |
190 | AnalysisKey PhiValuesAnalysis::Key; |
191 | PhiValues PhiValuesAnalysis::run(Function &F, FunctionAnalysisManager &) { |
192 | return PhiValues(F); |
193 | } |
194 | |
195 | PreservedAnalyses PhiValuesPrinterPass::run(Function &F, |
196 | FunctionAnalysisManager &AM) { |
197 | OS << "PHI Values for function: " << F.getName() << "\n" ; |
198 | PhiValues &PI = AM.getResult<PhiValuesAnalysis>(IR&: F); |
199 | for (const BasicBlock &BB : F) |
200 | for (const PHINode &PN : BB.phis()) |
201 | PI.getValuesForPhi(PN: &PN); |
202 | PI.print(OS); |
203 | return PreservedAnalyses::all(); |
204 | } |
205 | |
206 | PhiValuesWrapperPass::PhiValuesWrapperPass() : FunctionPass(ID) { |
207 | initializePhiValuesWrapperPassPass(*PassRegistry::getPassRegistry()); |
208 | } |
209 | |
210 | bool PhiValuesWrapperPass::runOnFunction(Function &F) { |
211 | Result.reset(p: new PhiValues(F)); |
212 | return false; |
213 | } |
214 | |
215 | void PhiValuesWrapperPass::releaseMemory() { |
216 | Result->releaseMemory(); |
217 | } |
218 | |
219 | void PhiValuesWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
220 | AU.setPreservesAll(); |
221 | } |
222 | |
223 | char PhiValuesWrapperPass::ID = 0; |
224 | |
225 | INITIALIZE_PASS(PhiValuesWrapperPass, "phi-values" , "Phi Values Analysis" , false, |
226 | true) |
227 | |