1 | //===- ScalarEvolutionDivision.h - See below --------------------*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the class that knows how to divide SCEV's. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/Analysis/ScalarEvolutionDivision.h" |
14 | #include "llvm/ADT/APInt.h" |
15 | #include "llvm/ADT/DenseMap.h" |
16 | #include "llvm/ADT/SmallVector.h" |
17 | #include "llvm/Analysis/ScalarEvolution.h" |
18 | #include "llvm/Support/Casting.h" |
19 | #include <cassert> |
20 | #include <cstdint> |
21 | |
22 | namespace llvm { |
23 | class Type; |
24 | } // namespace llvm |
25 | |
26 | using namespace llvm; |
27 | |
28 | namespace { |
29 | |
30 | static inline int sizeOfSCEV(const SCEV *S) { |
31 | struct FindSCEVSize { |
32 | int Size = 0; |
33 | |
34 | FindSCEVSize() = default; |
35 | |
36 | bool follow(const SCEV *S) { |
37 | ++Size; |
38 | // Keep looking at all operands of S. |
39 | return true; |
40 | } |
41 | |
42 | bool isDone() const { return false; } |
43 | }; |
44 | |
45 | FindSCEVSize F; |
46 | SCEVTraversal<FindSCEVSize> ST(F); |
47 | ST.visitAll(Root: S); |
48 | return F.Size; |
49 | } |
50 | |
51 | } // namespace |
52 | |
53 | // Computes the Quotient and Remainder of the division of Numerator by |
54 | // Denominator. |
55 | void SCEVDivision::divide(ScalarEvolution &SE, const SCEV *Numerator, |
56 | const SCEV *Denominator, const SCEV **Quotient, |
57 | const SCEV **Remainder) { |
58 | assert(Numerator && Denominator && "Uninitialized SCEV" ); |
59 | |
60 | SCEVDivision D(SE, Numerator, Denominator); |
61 | |
62 | // Check for the trivial case here to avoid having to check for it in the |
63 | // rest of the code. |
64 | if (Numerator == Denominator) { |
65 | *Quotient = D.One; |
66 | *Remainder = D.Zero; |
67 | return; |
68 | } |
69 | |
70 | if (Numerator->isZero()) { |
71 | *Quotient = D.Zero; |
72 | *Remainder = D.Zero; |
73 | return; |
74 | } |
75 | |
76 | // A simple case when N/1. The quotient is N. |
77 | if (Denominator->isOne()) { |
78 | *Quotient = Numerator; |
79 | *Remainder = D.Zero; |
80 | return; |
81 | } |
82 | |
83 | // Split the Denominator when it is a product. |
84 | if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Val: Denominator)) { |
85 | const SCEV *Q, *R; |
86 | *Quotient = Numerator; |
87 | for (const SCEV *Op : T->operands()) { |
88 | divide(SE, Numerator: *Quotient, Denominator: Op, Quotient: &Q, Remainder: &R); |
89 | *Quotient = Q; |
90 | |
91 | // Bail out when the Numerator is not divisible by one of the terms of |
92 | // the Denominator. |
93 | if (!R->isZero()) { |
94 | *Quotient = D.Zero; |
95 | *Remainder = Numerator; |
96 | return; |
97 | } |
98 | } |
99 | *Remainder = D.Zero; |
100 | return; |
101 | } |
102 | |
103 | D.visit(S: Numerator); |
104 | *Quotient = D.Quotient; |
105 | *Remainder = D.Remainder; |
106 | } |
107 | |
108 | void SCEVDivision::visitConstant(const SCEVConstant *Numerator) { |
109 | if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Val: Denominator)) { |
110 | APInt NumeratorVal = Numerator->getAPInt(); |
111 | APInt DenominatorVal = D->getAPInt(); |
112 | uint32_t NumeratorBW = NumeratorVal.getBitWidth(); |
113 | uint32_t DenominatorBW = DenominatorVal.getBitWidth(); |
114 | |
115 | if (NumeratorBW > DenominatorBW) |
116 | DenominatorVal = DenominatorVal.sext(width: NumeratorBW); |
117 | else if (NumeratorBW < DenominatorBW) |
118 | NumeratorVal = NumeratorVal.sext(width: DenominatorBW); |
119 | |
120 | APInt QuotientVal(NumeratorVal.getBitWidth(), 0); |
121 | APInt RemainderVal(NumeratorVal.getBitWidth(), 0); |
122 | APInt::sdivrem(LHS: NumeratorVal, RHS: DenominatorVal, Quotient&: QuotientVal, Remainder&: RemainderVal); |
123 | Quotient = SE.getConstant(Val: QuotientVal); |
124 | Remainder = SE.getConstant(Val: RemainderVal); |
125 | return; |
126 | } |
127 | } |
128 | |
129 | void SCEVDivision::visitVScale(const SCEVVScale *Numerator) { |
130 | return cannotDivide(Numerator); |
131 | } |
132 | |
133 | void SCEVDivision::visitAddRecExpr(const SCEVAddRecExpr *Numerator) { |
134 | const SCEV *StartQ, *StartR, *StepQ, *StepR; |
135 | if (!Numerator->isAffine()) |
136 | return cannotDivide(Numerator); |
137 | divide(SE, Numerator: Numerator->getStart(), Denominator, Quotient: &StartQ, Remainder: &StartR); |
138 | divide(SE, Numerator: Numerator->getStepRecurrence(SE), Denominator, Quotient: &StepQ, Remainder: &StepR); |
139 | // Bail out if the types do not match. |
140 | Type *Ty = Denominator->getType(); |
141 | if (Ty != StartQ->getType() || Ty != StartR->getType() || |
142 | Ty != StepQ->getType() || Ty != StepR->getType()) |
143 | return cannotDivide(Numerator); |
144 | Quotient = SE.getAddRecExpr(Start: StartQ, Step: StepQ, L: Numerator->getLoop(), |
145 | Flags: Numerator->getNoWrapFlags()); |
146 | Remainder = SE.getAddRecExpr(Start: StartR, Step: StepR, L: Numerator->getLoop(), |
147 | Flags: Numerator->getNoWrapFlags()); |
148 | } |
149 | |
150 | void SCEVDivision::visitAddExpr(const SCEVAddExpr *Numerator) { |
151 | SmallVector<const SCEV *, 2> Qs, Rs; |
152 | Type *Ty = Denominator->getType(); |
153 | |
154 | for (const SCEV *Op : Numerator->operands()) { |
155 | const SCEV *Q, *R; |
156 | divide(SE, Numerator: Op, Denominator, Quotient: &Q, Remainder: &R); |
157 | |
158 | // Bail out if types do not match. |
159 | if (Ty != Q->getType() || Ty != R->getType()) |
160 | return cannotDivide(Numerator); |
161 | |
162 | Qs.push_back(Elt: Q); |
163 | Rs.push_back(Elt: R); |
164 | } |
165 | |
166 | if (Qs.size() == 1) { |
167 | Quotient = Qs[0]; |
168 | Remainder = Rs[0]; |
169 | return; |
170 | } |
171 | |
172 | Quotient = SE.getAddExpr(Ops&: Qs); |
173 | Remainder = SE.getAddExpr(Ops&: Rs); |
174 | } |
175 | |
176 | void SCEVDivision::visitMulExpr(const SCEVMulExpr *Numerator) { |
177 | SmallVector<const SCEV *, 2> Qs; |
178 | Type *Ty = Denominator->getType(); |
179 | |
180 | bool FoundDenominatorTerm = false; |
181 | for (const SCEV *Op : Numerator->operands()) { |
182 | // Bail out if types do not match. |
183 | if (Ty != Op->getType()) |
184 | return cannotDivide(Numerator); |
185 | |
186 | if (FoundDenominatorTerm) { |
187 | Qs.push_back(Elt: Op); |
188 | continue; |
189 | } |
190 | |
191 | // Check whether Denominator divides one of the product operands. |
192 | const SCEV *Q, *R; |
193 | divide(SE, Numerator: Op, Denominator, Quotient: &Q, Remainder: &R); |
194 | if (!R->isZero()) { |
195 | Qs.push_back(Elt: Op); |
196 | continue; |
197 | } |
198 | |
199 | // Bail out if types do not match. |
200 | if (Ty != Q->getType()) |
201 | return cannotDivide(Numerator); |
202 | |
203 | FoundDenominatorTerm = true; |
204 | Qs.push_back(Elt: Q); |
205 | } |
206 | |
207 | if (FoundDenominatorTerm) { |
208 | Remainder = Zero; |
209 | if (Qs.size() == 1) |
210 | Quotient = Qs[0]; |
211 | else |
212 | Quotient = SE.getMulExpr(Ops&: Qs); |
213 | return; |
214 | } |
215 | |
216 | if (!isa<SCEVUnknown>(Val: Denominator)) |
217 | return cannotDivide(Numerator); |
218 | |
219 | // The Remainder is obtained by replacing Denominator by 0 in Numerator. |
220 | ValueToSCEVMapTy RewriteMap; |
221 | RewriteMap[cast<SCEVUnknown>(Val: Denominator)->getValue()] = Zero; |
222 | Remainder = SCEVParameterRewriter::rewrite(Scev: Numerator, SE, Map&: RewriteMap); |
223 | |
224 | if (Remainder->isZero()) { |
225 | // The Quotient is obtained by replacing Denominator by 1 in Numerator. |
226 | RewriteMap[cast<SCEVUnknown>(Val: Denominator)->getValue()] = One; |
227 | Quotient = SCEVParameterRewriter::rewrite(Scev: Numerator, SE, Map&: RewriteMap); |
228 | return; |
229 | } |
230 | |
231 | // Quotient is (Numerator - Remainder) divided by Denominator. |
232 | const SCEV *Q, *R; |
233 | const SCEV *Diff = SE.getMinusSCEV(LHS: Numerator, RHS: Remainder); |
234 | // This SCEV does not seem to simplify: fail the division here. |
235 | if (sizeOfSCEV(S: Diff) > sizeOfSCEV(S: Numerator)) |
236 | return cannotDivide(Numerator); |
237 | divide(SE, Numerator: Diff, Denominator, Quotient: &Q, Remainder: &R); |
238 | if (R != Zero) |
239 | return cannotDivide(Numerator); |
240 | Quotient = Q; |
241 | } |
242 | |
243 | SCEVDivision::SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, |
244 | const SCEV *Denominator) |
245 | : SE(S), Denominator(Denominator) { |
246 | Zero = SE.getZero(Ty: Denominator->getType()); |
247 | One = SE.getOne(Ty: Denominator->getType()); |
248 | |
249 | // We generally do not know how to divide Expr by Denominator. We initialize |
250 | // the division to a "cannot divide" state to simplify the rest of the code. |
251 | cannotDivide(Numerator); |
252 | } |
253 | |
254 | // Convenience function for giving up on the division. We set the quotient to |
255 | // be equal to zero and the remainder to be equal to the numerator. |
256 | void SCEVDivision::cannotDivide(const SCEV *Numerator) { |
257 | Quotient = Zero; |
258 | Remainder = Numerator; |
259 | } |
260 | |