1 | //===-- llvm/CodeGen/DIEHash.cpp - Dwarf Hashing Framework ----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains support for DWARF4 hashing of DIEs. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "DIEHash.h" |
14 | #include "ByteStreamer.h" |
15 | #include "DwarfCompileUnit.h" |
16 | #include "DwarfDebug.h" |
17 | #include "llvm/ADT/ArrayRef.h" |
18 | #include "llvm/ADT/StringRef.h" |
19 | #include "llvm/BinaryFormat/Dwarf.h" |
20 | #include "llvm/CodeGen/AsmPrinter.h" |
21 | #include "llvm/Support/Debug.h" |
22 | #include "llvm/Support/raw_ostream.h" |
23 | |
24 | using namespace llvm; |
25 | |
26 | #define DEBUG_TYPE "dwarfdebug" |
27 | |
28 | /// Grabs the string in whichever attribute is passed in and returns |
29 | /// a reference to it. |
30 | static StringRef getDIEStringAttr(const DIE &Die, uint16_t Attr) { |
31 | // Iterate through all the attributes until we find the one we're |
32 | // looking for, if we can't find it return an empty string. |
33 | for (const auto &V : Die.values()) |
34 | if (V.getAttribute() == Attr) |
35 | return V.getDIEString().getString(); |
36 | |
37 | return StringRef("" ); |
38 | } |
39 | |
40 | /// Adds the string in \p Str to the hash. This also hashes |
41 | /// a trailing NULL with the string. |
42 | void DIEHash::addString(StringRef Str) { |
43 | LLVM_DEBUG(dbgs() << "Adding string " << Str << " to hash.\n" ); |
44 | Hash.update(Str); |
45 | Hash.update(Data: ArrayRef((uint8_t)'\0')); |
46 | } |
47 | |
48 | // FIXME: The LEB128 routines are copied and only slightly modified out of |
49 | // LEB128.h. |
50 | |
51 | /// Adds the unsigned in \p Value to the hash encoded as a ULEB128. |
52 | void DIEHash::addULEB128(uint64_t Value) { |
53 | LLVM_DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n" ); |
54 | do { |
55 | uint8_t Byte = Value & 0x7f; |
56 | Value >>= 7; |
57 | if (Value != 0) |
58 | Byte |= 0x80; // Mark this byte to show that more bytes will follow. |
59 | Hash.update(Data: Byte); |
60 | } while (Value != 0); |
61 | } |
62 | |
63 | void DIEHash::addSLEB128(int64_t Value) { |
64 | LLVM_DEBUG(dbgs() << "Adding ULEB128 " << Value << " to hash.\n" ); |
65 | bool More; |
66 | do { |
67 | uint8_t Byte = Value & 0x7f; |
68 | Value >>= 7; |
69 | More = !((((Value == 0) && ((Byte & 0x40) == 0)) || |
70 | ((Value == -1) && ((Byte & 0x40) != 0)))); |
71 | if (More) |
72 | Byte |= 0x80; // Mark this byte to show that more bytes will follow. |
73 | Hash.update(Data: Byte); |
74 | } while (More); |
75 | } |
76 | |
77 | /// Including \p Parent adds the context of Parent to the hash.. |
78 | void DIEHash::addParentContext(const DIE &Parent) { |
79 | |
80 | LLVM_DEBUG(dbgs() << "Adding parent context to hash...\n" ); |
81 | |
82 | // [7.27.2] For each surrounding type or namespace beginning with the |
83 | // outermost such construct... |
84 | SmallVector<const DIE *, 1> Parents; |
85 | const DIE *Cur = &Parent; |
86 | while (Cur->getParent()) { |
87 | Parents.push_back(Elt: Cur); |
88 | Cur = Cur->getParent(); |
89 | } |
90 | assert(Cur->getTag() == dwarf::DW_TAG_compile_unit || |
91 | Cur->getTag() == dwarf::DW_TAG_type_unit); |
92 | |
93 | // Reverse iterate over our list to go from the outermost construct to the |
94 | // innermost. |
95 | for (const DIE *Die : llvm::reverse(C&: Parents)) { |
96 | // ... Append the letter "C" to the sequence... |
97 | addULEB128(Value: 'C'); |
98 | |
99 | // ... Followed by the DWARF tag of the construct... |
100 | addULEB128(Value: Die->getTag()); |
101 | |
102 | // ... Then the name, taken from the DW_AT_name attribute. |
103 | StringRef Name = getDIEStringAttr(Die: *Die, Attr: dwarf::DW_AT_name); |
104 | LLVM_DEBUG(dbgs() << "... adding context: " << Name << "\n" ); |
105 | if (!Name.empty()) |
106 | addString(Str: Name); |
107 | } |
108 | } |
109 | |
110 | // Collect all of the attributes for a particular DIE in single structure. |
111 | void DIEHash::collectAttributes(const DIE &Die, DIEAttrs &Attrs) { |
112 | |
113 | for (const auto &V : Die.values()) { |
114 | LLVM_DEBUG(dbgs() << "Attribute: " |
115 | << dwarf::AttributeString(V.getAttribute()) |
116 | << " added.\n" ); |
117 | switch (V.getAttribute()) { |
118 | #define HANDLE_DIE_HASH_ATTR(NAME) \ |
119 | case dwarf::NAME: \ |
120 | Attrs.NAME = V; \ |
121 | break; |
122 | #include "DIEHashAttributes.def" |
123 | default: |
124 | break; |
125 | } |
126 | } |
127 | } |
128 | |
129 | void DIEHash::hashShallowTypeReference(dwarf::Attribute Attribute, |
130 | const DIE &Entry, StringRef Name) { |
131 | // append the letter 'N' |
132 | addULEB128(Value: 'N'); |
133 | |
134 | // the DWARF attribute code (DW_AT_type or DW_AT_friend), |
135 | addULEB128(Value: Attribute); |
136 | |
137 | // the context of the tag, |
138 | if (const DIE *Parent = Entry.getParent()) |
139 | addParentContext(Parent: *Parent); |
140 | |
141 | // the letter 'E', |
142 | addULEB128(Value: 'E'); |
143 | |
144 | // and the name of the type. |
145 | addString(Str: Name); |
146 | |
147 | // Currently DW_TAG_friends are not used by Clang, but if they do become so, |
148 | // here's the relevant spec text to implement: |
149 | // |
150 | // For DW_TAG_friend, if the referenced entry is the DW_TAG_subprogram, |
151 | // the context is omitted and the name to be used is the ABI-specific name |
152 | // of the subprogram (e.g., the mangled linker name). |
153 | } |
154 | |
155 | void DIEHash::hashRepeatedTypeReference(dwarf::Attribute Attribute, |
156 | unsigned DieNumber) { |
157 | // a) If T is in the list of [previously hashed types], use the letter |
158 | // 'R' as the marker |
159 | addULEB128(Value: 'R'); |
160 | |
161 | addULEB128(Value: Attribute); |
162 | |
163 | // and use the unsigned LEB128 encoding of [the index of T in the |
164 | // list] as the attribute value; |
165 | addULEB128(Value: DieNumber); |
166 | } |
167 | |
168 | void DIEHash::hashDIEEntry(dwarf::Attribute Attribute, dwarf::Tag Tag, |
169 | const DIE &Entry) { |
170 | assert(Tag != dwarf::DW_TAG_friend && "No current LLVM clients emit friend " |
171 | "tags. Add support here when there's " |
172 | "a use case" ); |
173 | // Step 5 |
174 | // If the tag in Step 3 is one of [the below tags] |
175 | if ((Tag == dwarf::DW_TAG_pointer_type || |
176 | Tag == dwarf::DW_TAG_reference_type || |
177 | Tag == dwarf::DW_TAG_rvalue_reference_type || |
178 | Tag == dwarf::DW_TAG_ptr_to_member_type) && |
179 | // and the referenced type (via the [below attributes]) |
180 | // FIXME: This seems overly restrictive, and causes hash mismatches |
181 | // there's a decl/def difference in the containing type of a |
182 | // ptr_to_member_type, but it's what DWARF says, for some reason. |
183 | Attribute == dwarf::DW_AT_type) { |
184 | // ... has a DW_AT_name attribute, |
185 | StringRef Name = getDIEStringAttr(Die: Entry, Attr: dwarf::DW_AT_name); |
186 | if (!Name.empty()) { |
187 | hashShallowTypeReference(Attribute, Entry, Name); |
188 | return; |
189 | } |
190 | } |
191 | |
192 | unsigned &DieNumber = Numbering[&Entry]; |
193 | if (DieNumber) { |
194 | hashRepeatedTypeReference(Attribute, DieNumber); |
195 | return; |
196 | } |
197 | |
198 | // otherwise, b) use the letter 'T' as the marker, ... |
199 | addULEB128(Value: 'T'); |
200 | |
201 | addULEB128(Value: Attribute); |
202 | |
203 | // ... process the type T recursively by performing Steps 2 through 7, and |
204 | // use the result as the attribute value. |
205 | DieNumber = Numbering.size(); |
206 | computeHash(Die: Entry); |
207 | } |
208 | |
209 | void DIEHash::hashRawTypeReference(const DIE &Entry) { |
210 | unsigned &DieNumber = Numbering[&Entry]; |
211 | if (DieNumber) { |
212 | addULEB128(Value: 'R'); |
213 | addULEB128(Value: DieNumber); |
214 | return; |
215 | } |
216 | DieNumber = Numbering.size(); |
217 | addULEB128(Value: 'T'); |
218 | computeHash(Die: Entry); |
219 | } |
220 | |
221 | // Hash all of the values in a block like set of values. This assumes that |
222 | // all of the data is going to be added as integers. |
223 | void DIEHash::hashBlockData(const DIE::const_value_range &Values) { |
224 | for (const auto &V : Values) |
225 | if (V.getType() == DIEValue::isBaseTypeRef) { |
226 | const DIE &C = |
227 | *CU->ExprRefedBaseTypes[V.getDIEBaseTypeRef().getIndex()].Die; |
228 | StringRef Name = getDIEStringAttr(Die: C, Attr: dwarf::DW_AT_name); |
229 | assert(!Name.empty() && |
230 | "Base types referenced from DW_OP_convert should have a name" ); |
231 | hashNestedType(Die: C, Name); |
232 | } else |
233 | Hash.update(Data: (uint64_t)V.getDIEInteger().getValue()); |
234 | } |
235 | |
236 | // Hash the contents of a loclistptr class. |
237 | void DIEHash::hashLocList(const DIELocList &LocList) { |
238 | HashingByteStreamer Streamer(*this); |
239 | DwarfDebug &DD = *AP->getDwarfDebug(); |
240 | const DebugLocStream &Locs = DD.getDebugLocs(); |
241 | const DebugLocStream::List &List = Locs.getList(LI: LocList.getValue()); |
242 | for (const DebugLocStream::Entry &Entry : Locs.getEntries(L: List)) |
243 | DD.emitDebugLocEntry(Streamer, Entry, CU: List.CU); |
244 | } |
245 | |
246 | // Hash an individual attribute \param Attr based on the type of attribute and |
247 | // the form. |
248 | void DIEHash::hashAttribute(const DIEValue &Value, dwarf::Tag Tag) { |
249 | dwarf::Attribute Attribute = Value.getAttribute(); |
250 | |
251 | // Other attribute values use the letter 'A' as the marker, and the value |
252 | // consists of the form code (encoded as an unsigned LEB128 value) followed by |
253 | // the encoding of the value according to the form code. To ensure |
254 | // reproducibility of the signature, the set of forms used in the signature |
255 | // computation is limited to the following: DW_FORM_sdata, DW_FORM_flag, |
256 | // DW_FORM_string, and DW_FORM_block. |
257 | |
258 | switch (Value.getType()) { |
259 | case DIEValue::isNone: |
260 | llvm_unreachable("Expected valid DIEValue" ); |
261 | |
262 | // 7.27 Step 3 |
263 | // ... An attribute that refers to another type entry T is processed as |
264 | // follows: |
265 | case DIEValue::isEntry: |
266 | hashDIEEntry(Attribute, Tag, Entry: Value.getDIEEntry().getEntry()); |
267 | break; |
268 | case DIEValue::isInteger: { |
269 | addULEB128(Value: 'A'); |
270 | addULEB128(Value: Attribute); |
271 | switch (Value.getForm()) { |
272 | case dwarf::DW_FORM_data1: |
273 | case dwarf::DW_FORM_data2: |
274 | case dwarf::DW_FORM_data4: |
275 | case dwarf::DW_FORM_data8: |
276 | case dwarf::DW_FORM_udata: |
277 | case dwarf::DW_FORM_sdata: |
278 | addULEB128(Value: dwarf::DW_FORM_sdata); |
279 | addSLEB128(Value: (int64_t)Value.getDIEInteger().getValue()); |
280 | break; |
281 | // DW_FORM_flag_present is just flag with a value of one. We still give it a |
282 | // value so just use the value. |
283 | case dwarf::DW_FORM_flag_present: |
284 | case dwarf::DW_FORM_flag: |
285 | addULEB128(Value: dwarf::DW_FORM_flag); |
286 | addULEB128(Value: (int64_t)Value.getDIEInteger().getValue()); |
287 | break; |
288 | default: |
289 | llvm_unreachable("Unknown integer form!" ); |
290 | } |
291 | break; |
292 | } |
293 | case DIEValue::isString: |
294 | addULEB128(Value: 'A'); |
295 | addULEB128(Value: Attribute); |
296 | addULEB128(Value: dwarf::DW_FORM_string); |
297 | addString(Str: Value.getDIEString().getString()); |
298 | break; |
299 | case DIEValue::isInlineString: |
300 | addULEB128(Value: 'A'); |
301 | addULEB128(Value: Attribute); |
302 | addULEB128(Value: dwarf::DW_FORM_string); |
303 | addString(Str: Value.getDIEInlineString().getString()); |
304 | break; |
305 | case DIEValue::isBlock: |
306 | case DIEValue::isLoc: |
307 | case DIEValue::isLocList: |
308 | addULEB128(Value: 'A'); |
309 | addULEB128(Value: Attribute); |
310 | addULEB128(Value: dwarf::DW_FORM_block); |
311 | if (Value.getType() == DIEValue::isBlock) { |
312 | addULEB128(Value: Value.getDIEBlock().computeSize(FormParams: AP->getDwarfFormParams())); |
313 | hashBlockData(Values: Value.getDIEBlock().values()); |
314 | } else if (Value.getType() == DIEValue::isLoc) { |
315 | addULEB128(Value: Value.getDIELoc().computeSize(FormParams: AP->getDwarfFormParams())); |
316 | hashBlockData(Values: Value.getDIELoc().values()); |
317 | } else { |
318 | // We could add the block length, but that would take |
319 | // a bit of work and not add a lot of uniqueness |
320 | // to the hash in some way we could test. |
321 | hashLocList(LocList: Value.getDIELocList()); |
322 | } |
323 | break; |
324 | // FIXME: It's uncertain whether or not we should handle this at the moment. |
325 | case DIEValue::isExpr: |
326 | case DIEValue::isLabel: |
327 | case DIEValue::isBaseTypeRef: |
328 | case DIEValue::isDelta: |
329 | case DIEValue::isAddrOffset: |
330 | llvm_unreachable("Add support for additional value types." ); |
331 | } |
332 | } |
333 | |
334 | // Go through the attributes from \param Attrs in the order specified in 7.27.4 |
335 | // and hash them. |
336 | void DIEHash::hashAttributes(const DIEAttrs &Attrs, dwarf::Tag Tag) { |
337 | #define HANDLE_DIE_HASH_ATTR(NAME) \ |
338 | { \ |
339 | if (Attrs.NAME) \ |
340 | hashAttribute(Attrs.NAME, Tag); \ |
341 | } |
342 | #include "DIEHashAttributes.def" |
343 | // FIXME: Add the extended attributes. |
344 | } |
345 | |
346 | // Add all of the attributes for \param Die to the hash. |
347 | void DIEHash::addAttributes(const DIE &Die) { |
348 | DIEAttrs Attrs = {}; |
349 | collectAttributes(Die, Attrs); |
350 | hashAttributes(Attrs, Tag: Die.getTag()); |
351 | } |
352 | |
353 | void DIEHash::hashNestedType(const DIE &Die, StringRef Name) { |
354 | // 7.27 Step 7 |
355 | // ... append the letter 'S', |
356 | addULEB128(Value: 'S'); |
357 | |
358 | // the tag of C, |
359 | addULEB128(Value: Die.getTag()); |
360 | |
361 | // and the name. |
362 | addString(Str: Name); |
363 | } |
364 | |
365 | // Compute the hash of a DIE. This is based on the type signature computation |
366 | // given in section 7.27 of the DWARF4 standard. It is the md5 hash of a |
367 | // flattened description of the DIE. |
368 | void DIEHash::computeHash(const DIE &Die) { |
369 | // Append the letter 'D', followed by the DWARF tag of the DIE. |
370 | addULEB128(Value: 'D'); |
371 | addULEB128(Value: Die.getTag()); |
372 | |
373 | // Add each of the attributes of the DIE. |
374 | addAttributes(Die); |
375 | |
376 | // Then hash each of the children of the DIE. |
377 | for (const auto &C : Die.children()) { |
378 | // 7.27 Step 7 |
379 | // If C is a nested type entry or a member function entry, ... |
380 | if (isType(T: C.getTag()) || (C.getTag() == dwarf::DW_TAG_subprogram && isType(T: C.getParent()->getTag()))) { |
381 | StringRef Name = getDIEStringAttr(Die: C, Attr: dwarf::DW_AT_name); |
382 | // ... and has a DW_AT_name attribute |
383 | if (!Name.empty()) { |
384 | hashNestedType(Die: C, Name); |
385 | continue; |
386 | } |
387 | } |
388 | computeHash(Die: C); |
389 | } |
390 | |
391 | // Following the last (or if there are no children), append a zero byte. |
392 | Hash.update(Data: ArrayRef((uint8_t)'\0')); |
393 | } |
394 | |
395 | /// This is based on the type signature computation given in section 7.27 of the |
396 | /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE |
397 | /// with the inclusion of the full CU and all top level CU entities. |
398 | // TODO: Initialize the type chain at 0 instead of 1 for CU signatures. |
399 | uint64_t DIEHash::computeCUSignature(StringRef DWOName, const DIE &Die) { |
400 | Numbering.clear(); |
401 | Numbering[&Die] = 1; |
402 | |
403 | if (!DWOName.empty()) |
404 | Hash.update(Str: DWOName); |
405 | // Hash the DIE. |
406 | computeHash(Die); |
407 | |
408 | // Now return the result. |
409 | MD5::MD5Result Result; |
410 | Hash.final(Result); |
411 | |
412 | // ... take the least significant 8 bytes and return those. Our MD5 |
413 | // implementation always returns its results in little endian, so we actually |
414 | // need the "high" word. |
415 | return Result.high(); |
416 | } |
417 | |
418 | /// This is based on the type signature computation given in section 7.27 of the |
419 | /// DWARF4 standard. It is an md5 hash of the flattened description of the DIE |
420 | /// with the inclusion of additional forms not specifically called out in the |
421 | /// standard. |
422 | uint64_t DIEHash::computeTypeSignature(const DIE &Die) { |
423 | Numbering.clear(); |
424 | Numbering[&Die] = 1; |
425 | |
426 | if (const DIE *Parent = Die.getParent()) |
427 | addParentContext(Parent: *Parent); |
428 | |
429 | // Hash the DIE. |
430 | computeHash(Die); |
431 | |
432 | // Now return the result. |
433 | MD5::MD5Result Result; |
434 | Hash.final(Result); |
435 | |
436 | // ... take the least significant 8 bytes and return those. Our MD5 |
437 | // implementation always returns its results in little endian, so we actually |
438 | // need the "high" word. |
439 | return Result.high(); |
440 | } |
441 | |