1 | //===-- CallingConvLower.cpp - Calling Conventions ------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the CCState class, used for lowering and implementing |
10 | // calling conventions. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/CodeGen/CallingConvLower.h" |
15 | #include "llvm/CodeGen/MachineFrameInfo.h" |
16 | #include "llvm/CodeGen/MachineFunction.h" |
17 | #include "llvm/CodeGen/TargetLowering.h" |
18 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
19 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
20 | #include "llvm/MC/MCRegisterInfo.h" |
21 | #include "llvm/Support/Debug.h" |
22 | #include "llvm/Support/ErrorHandling.h" |
23 | #include "llvm/Support/SaveAndRestore.h" |
24 | #include "llvm/Support/raw_ostream.h" |
25 | |
26 | using namespace llvm; |
27 | |
28 | CCState::CCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF, |
29 | SmallVectorImpl<CCValAssign> &Locs, LLVMContext &Context, |
30 | bool NegativeOffsets) |
31 | : CallingConv(CC), IsVarArg(IsVarArg), MF(MF), |
32 | TRI(*MF.getSubtarget().getRegisterInfo()), Locs(Locs), Context(Context), |
33 | NegativeOffsets(NegativeOffsets) { |
34 | |
35 | // No stack is used. |
36 | StackSize = 0; |
37 | |
38 | clearByValRegsInfo(); |
39 | UsedRegs.resize(N: (TRI.getNumRegs()+31)/32); |
40 | } |
41 | |
42 | /// Allocate space on the stack large enough to pass an argument by value. |
43 | /// The size and alignment information of the argument is encoded in |
44 | /// its parameter attribute. |
45 | void CCState::HandleByVal(unsigned ValNo, MVT ValVT, MVT LocVT, |
46 | CCValAssign::LocInfo LocInfo, int MinSize, |
47 | Align MinAlign, ISD::ArgFlagsTy ArgFlags) { |
48 | Align Alignment = ArgFlags.getNonZeroByValAlign(); |
49 | unsigned Size = ArgFlags.getByValSize(); |
50 | if (MinSize > (int)Size) |
51 | Size = MinSize; |
52 | if (MinAlign > Alignment) |
53 | Alignment = MinAlign; |
54 | ensureMaxAlignment(Alignment); |
55 | MF.getSubtarget().getTargetLowering()->HandleByVal(this, Size, Alignment); |
56 | Size = unsigned(alignTo(Size, A: MinAlign)); |
57 | uint64_t Offset = AllocateStack(Size, Alignment); |
58 | addLoc(V: CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, HTP: LocInfo)); |
59 | } |
60 | |
61 | /// Mark a register and all of its aliases as allocated. |
62 | void CCState::MarkAllocated(MCPhysReg Reg) { |
63 | for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) |
64 | UsedRegs[*AI / 32] |= 1 << (*AI & 31); |
65 | } |
66 | |
67 | void CCState::MarkUnallocated(MCPhysReg Reg) { |
68 | for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI) |
69 | UsedRegs[*AI / 32] &= ~(1 << (*AI & 31)); |
70 | } |
71 | |
72 | bool CCState::IsShadowAllocatedReg(MCRegister Reg) const { |
73 | if (!isAllocated(Reg)) |
74 | return false; |
75 | |
76 | for (auto const &ValAssign : Locs) |
77 | if (ValAssign.isRegLoc() && TRI.regsOverlap(RegA: ValAssign.getLocReg(), RegB: Reg)) |
78 | return false; |
79 | return true; |
80 | } |
81 | |
82 | /// Analyze an array of argument values, |
83 | /// incorporating info about the formals into this state. |
84 | void |
85 | CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins, |
86 | CCAssignFn Fn) { |
87 | unsigned NumArgs = Ins.size(); |
88 | |
89 | for (unsigned i = 0; i != NumArgs; ++i) { |
90 | MVT ArgVT = Ins[i].VT; |
91 | ISD::ArgFlagsTy ArgFlags = Ins[i].Flags; |
92 | if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) |
93 | report_fatal_error(reason: "unable to allocate function argument #" + Twine(i)); |
94 | } |
95 | } |
96 | |
97 | /// Analyze the return values of a function, returning true if the return can |
98 | /// be performed without sret-demotion and false otherwise. |
99 | bool CCState::CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, |
100 | CCAssignFn Fn) { |
101 | // Determine which register each value should be copied into. |
102 | for (unsigned i = 0, e = Outs.size(); i != e; ++i) { |
103 | MVT VT = Outs[i].VT; |
104 | ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; |
105 | if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) |
106 | return false; |
107 | } |
108 | return true; |
109 | } |
110 | |
111 | /// Analyze the returned values of a return, |
112 | /// incorporating info about the result values into this state. |
113 | void CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, |
114 | CCAssignFn Fn) { |
115 | // Determine which register each value should be copied into. |
116 | for (unsigned i = 0, e = Outs.size(); i != e; ++i) { |
117 | MVT VT = Outs[i].VT; |
118 | ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; |
119 | if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this)) |
120 | report_fatal_error(reason: "unable to allocate function return #" + Twine(i)); |
121 | } |
122 | } |
123 | |
124 | /// Analyze the outgoing arguments to a call, |
125 | /// incorporating info about the passed values into this state. |
126 | void CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs, |
127 | CCAssignFn Fn) { |
128 | unsigned NumOps = Outs.size(); |
129 | for (unsigned i = 0; i != NumOps; ++i) { |
130 | MVT ArgVT = Outs[i].VT; |
131 | ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; |
132 | if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { |
133 | #ifndef NDEBUG |
134 | dbgs() << "Call operand #" << i << " has unhandled type " |
135 | << ArgVT << '\n'; |
136 | #endif |
137 | llvm_unreachable(nullptr); |
138 | } |
139 | } |
140 | } |
141 | |
142 | /// Same as above except it takes vectors of types and argument flags. |
143 | void CCState::AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs, |
144 | SmallVectorImpl<ISD::ArgFlagsTy> &Flags, |
145 | CCAssignFn Fn) { |
146 | unsigned NumOps = ArgVTs.size(); |
147 | for (unsigned i = 0; i != NumOps; ++i) { |
148 | MVT ArgVT = ArgVTs[i]; |
149 | ISD::ArgFlagsTy ArgFlags = Flags[i]; |
150 | if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) { |
151 | #ifndef NDEBUG |
152 | dbgs() << "Call operand #" << i << " has unhandled type " |
153 | << ArgVT << '\n'; |
154 | #endif |
155 | llvm_unreachable(nullptr); |
156 | } |
157 | } |
158 | } |
159 | |
160 | /// Analyze the return values of a call, incorporating info about the passed |
161 | /// values into this state. |
162 | void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins, |
163 | CCAssignFn Fn) { |
164 | for (unsigned i = 0, e = Ins.size(); i != e; ++i) { |
165 | MVT VT = Ins[i].VT; |
166 | ISD::ArgFlagsTy Flags = Ins[i].Flags; |
167 | if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) { |
168 | #ifndef NDEBUG |
169 | dbgs() << "Call result #" << i << " has unhandled type " |
170 | << VT << '\n'; |
171 | #endif |
172 | llvm_unreachable(nullptr); |
173 | } |
174 | } |
175 | } |
176 | |
177 | /// Same as above except it's specialized for calls that produce a single value. |
178 | void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) { |
179 | if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) { |
180 | #ifndef NDEBUG |
181 | dbgs() << "Call result has unhandled type " |
182 | << VT << '\n'; |
183 | #endif |
184 | llvm_unreachable(nullptr); |
185 | } |
186 | } |
187 | |
188 | void CCState::ensureMaxAlignment(Align Alignment) { |
189 | if (!AnalyzingMustTailForwardedRegs) |
190 | MF.getFrameInfo().ensureMaxAlignment(Alignment); |
191 | } |
192 | |
193 | static bool isValueTypeInRegForCC(CallingConv::ID CC, MVT VT) { |
194 | if (VT.isVector()) |
195 | return true; // Assume -msse-regparm might be in effect. |
196 | if (!VT.isInteger()) |
197 | return false; |
198 | return (CC == CallingConv::X86_VectorCall || CC == CallingConv::X86_FastCall); |
199 | } |
200 | |
201 | void CCState::getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs, |
202 | MVT VT, CCAssignFn Fn) { |
203 | uint64_t SavedStackSize = StackSize; |
204 | Align SavedMaxStackArgAlign = MaxStackArgAlign; |
205 | unsigned NumLocs = Locs.size(); |
206 | |
207 | // Set the 'inreg' flag if it is used for this calling convention. |
208 | ISD::ArgFlagsTy Flags; |
209 | if (isValueTypeInRegForCC(CC: CallingConv, VT)) |
210 | Flags.setInReg(); |
211 | |
212 | // Allocate something of this value type repeatedly until we get assigned a |
213 | // location in memory. |
214 | bool HaveRegParm; |
215 | do { |
216 | if (Fn(0, VT, VT, CCValAssign::Full, Flags, *this)) { |
217 | #ifndef NDEBUG |
218 | dbgs() << "Call has unhandled type " << VT |
219 | << " while computing remaining regparms\n" ; |
220 | #endif |
221 | llvm_unreachable(nullptr); |
222 | } |
223 | HaveRegParm = Locs.back().isRegLoc(); |
224 | } while (HaveRegParm); |
225 | |
226 | // Copy all the registers from the value locations we added. |
227 | assert(NumLocs < Locs.size() && "CC assignment failed to add location" ); |
228 | for (unsigned I = NumLocs, E = Locs.size(); I != E; ++I) |
229 | if (Locs[I].isRegLoc()) |
230 | Regs.push_back(Elt: MCPhysReg(Locs[I].getLocReg())); |
231 | |
232 | // Clear the assigned values and stack memory. We leave the registers marked |
233 | // as allocated so that future queries don't return the same registers, i.e. |
234 | // when i64 and f64 are both passed in GPRs. |
235 | StackSize = SavedStackSize; |
236 | MaxStackArgAlign = SavedMaxStackArgAlign; |
237 | Locs.truncate(N: NumLocs); |
238 | } |
239 | |
240 | void CCState::analyzeMustTailForwardedRegisters( |
241 | SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes, |
242 | CCAssignFn Fn) { |
243 | // Oftentimes calling conventions will not user register parameters for |
244 | // variadic functions, so we need to assume we're not variadic so that we get |
245 | // all the registers that might be used in a non-variadic call. |
246 | SaveAndRestore SavedVarArg(IsVarArg, false); |
247 | SaveAndRestore SavedMustTail(AnalyzingMustTailForwardedRegs, true); |
248 | |
249 | for (MVT RegVT : RegParmTypes) { |
250 | SmallVector<MCPhysReg, 8> RemainingRegs; |
251 | getRemainingRegParmsForType(Regs&: RemainingRegs, VT: RegVT, Fn); |
252 | const TargetLowering *TL = MF.getSubtarget().getTargetLowering(); |
253 | const TargetRegisterClass *RC = TL->getRegClassFor(VT: RegVT); |
254 | for (MCPhysReg PReg : RemainingRegs) { |
255 | Register VReg = MF.addLiveIn(PReg, RC); |
256 | Forwards.push_back(Elt: ForwardedRegister(VReg, PReg, RegVT)); |
257 | } |
258 | } |
259 | } |
260 | |
261 | bool CCState::resultsCompatible(CallingConv::ID CalleeCC, |
262 | CallingConv::ID CallerCC, MachineFunction &MF, |
263 | LLVMContext &C, |
264 | const SmallVectorImpl<ISD::InputArg> &Ins, |
265 | CCAssignFn CalleeFn, CCAssignFn CallerFn) { |
266 | if (CalleeCC == CallerCC) |
267 | return true; |
268 | SmallVector<CCValAssign, 4> RVLocs1; |
269 | CCState CCInfo1(CalleeCC, false, MF, RVLocs1, C); |
270 | CCInfo1.AnalyzeCallResult(Ins, Fn: CalleeFn); |
271 | |
272 | SmallVector<CCValAssign, 4> RVLocs2; |
273 | CCState CCInfo2(CallerCC, false, MF, RVLocs2, C); |
274 | CCInfo2.AnalyzeCallResult(Ins, Fn: CallerFn); |
275 | |
276 | auto AreCompatible = [](const CCValAssign &Loc1, const CCValAssign &Loc2) { |
277 | assert(!Loc1.isPendingLoc() && !Loc2.isPendingLoc() && |
278 | "The location must have been decided by now" ); |
279 | // Must fill the same part of their locations. |
280 | if (Loc1.getLocInfo() != Loc2.getLocInfo()) |
281 | return false; |
282 | // Must both be in the same registers, or both in memory at the same offset. |
283 | if (Loc1.isRegLoc() && Loc2.isRegLoc()) |
284 | return Loc1.getLocReg() == Loc2.getLocReg(); |
285 | if (Loc1.isMemLoc() && Loc2.isMemLoc()) |
286 | return Loc1.getLocMemOffset() == Loc2.getLocMemOffset(); |
287 | llvm_unreachable("Unknown location kind" ); |
288 | }; |
289 | |
290 | return std::equal(first1: RVLocs1.begin(), last1: RVLocs1.end(), first2: RVLocs2.begin(), |
291 | last2: RVLocs2.end(), binary_pred: AreCompatible); |
292 | } |
293 | |