1 | //===- CriticalAntiDepBreaker.cpp - Anti-dep breaker ----------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the CriticalAntiDepBreaker class, which |
10 | // implements register anti-dependence breaking along a blocks |
11 | // critical path during post-RA scheduler. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "CriticalAntiDepBreaker.h" |
16 | #include "llvm/ADT/ArrayRef.h" |
17 | #include "llvm/ADT/DenseMap.h" |
18 | #include "llvm/ADT/SmallVector.h" |
19 | #include "llvm/CodeGen/MachineBasicBlock.h" |
20 | #include "llvm/CodeGen/MachineFrameInfo.h" |
21 | #include "llvm/CodeGen/MachineFunction.h" |
22 | #include "llvm/CodeGen/MachineInstr.h" |
23 | #include "llvm/CodeGen/MachineOperand.h" |
24 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
25 | #include "llvm/CodeGen/RegisterClassInfo.h" |
26 | #include "llvm/CodeGen/ScheduleDAG.h" |
27 | #include "llvm/CodeGen/TargetInstrInfo.h" |
28 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
29 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
30 | #include "llvm/MC/MCInstrDesc.h" |
31 | #include "llvm/MC/MCRegisterInfo.h" |
32 | #include "llvm/Support/Debug.h" |
33 | #include "llvm/Support/raw_ostream.h" |
34 | #include <cassert> |
35 | #include <utility> |
36 | |
37 | using namespace llvm; |
38 | |
39 | #define DEBUG_TYPE "post-RA-sched" |
40 | |
41 | CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi, |
42 | const RegisterClassInfo &RCI) |
43 | : MF(MFi), MRI(MF.getRegInfo()), TII(MF.getSubtarget().getInstrInfo()), |
44 | TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI), |
45 | Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0), |
46 | DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {} |
47 | |
48 | CriticalAntiDepBreaker::~CriticalAntiDepBreaker() = default; |
49 | |
50 | void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { |
51 | const unsigned BBSize = BB->size(); |
52 | for (unsigned i = 1, e = TRI->getNumRegs(); i != e; ++i) { |
53 | // Clear out the register class data. |
54 | Classes[i] = nullptr; |
55 | |
56 | // Initialize the indices to indicate that no registers are live. |
57 | KillIndices[i] = ~0u; |
58 | DefIndices[i] = BBSize; |
59 | } |
60 | |
61 | // Clear "do not change" set. |
62 | KeepRegs.reset(); |
63 | |
64 | bool IsReturnBlock = BB->isReturnBlock(); |
65 | |
66 | // Examine the live-in regs of all successors. |
67 | for (const MachineBasicBlock *Succ : BB->successors()) |
68 | for (const auto &LI : Succ->liveins()) { |
69 | for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) { |
70 | unsigned Reg = *AI; |
71 | Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); |
72 | KillIndices[Reg] = BBSize; |
73 | DefIndices[Reg] = ~0u; |
74 | } |
75 | } |
76 | |
77 | // Mark live-out callee-saved registers. In a return block this is |
78 | // all callee-saved registers. In non-return this is any |
79 | // callee-saved register that is not saved in the prolog. |
80 | const MachineFrameInfo &MFI = MF.getFrameInfo(); |
81 | BitVector Pristine = MFI.getPristineRegs(MF); |
82 | for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I; |
83 | ++I) { |
84 | unsigned Reg = *I; |
85 | if (!IsReturnBlock && !Pristine.test(Idx: Reg)) |
86 | continue; |
87 | for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { |
88 | unsigned Reg = *AI; |
89 | Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); |
90 | KillIndices[Reg] = BBSize; |
91 | DefIndices[Reg] = ~0u; |
92 | } |
93 | } |
94 | } |
95 | |
96 | void CriticalAntiDepBreaker::FinishBlock() { |
97 | RegRefs.clear(); |
98 | KeepRegs.reset(); |
99 | } |
100 | |
101 | void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count, |
102 | unsigned InsertPosIndex) { |
103 | // Kill instructions can define registers but are really nops, and there might |
104 | // be a real definition earlier that needs to be paired with uses dominated by |
105 | // this kill. |
106 | |
107 | // FIXME: It may be possible to remove the isKill() restriction once PR18663 |
108 | // has been properly fixed. There can be value in processing kills as seen in |
109 | // the AggressiveAntiDepBreaker class. |
110 | if (MI.isDebugInstr() || MI.isKill()) |
111 | return; |
112 | assert(Count < InsertPosIndex && "Instruction index out of expected range!" ); |
113 | |
114 | for (unsigned Reg = 1; Reg != TRI->getNumRegs(); ++Reg) { |
115 | if (KillIndices[Reg] != ~0u) { |
116 | // If Reg is currently live, then mark that it can't be renamed as |
117 | // we don't know the extent of its live-range anymore (now that it |
118 | // has been scheduled). |
119 | Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); |
120 | KillIndices[Reg] = Count; |
121 | } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { |
122 | // Any register which was defined within the previous scheduling region |
123 | // may have been rescheduled and its lifetime may overlap with registers |
124 | // in ways not reflected in our current liveness state. For each such |
125 | // register, adjust the liveness state to be conservatively correct. |
126 | Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); |
127 | |
128 | // Move the def index to the end of the previous region, to reflect |
129 | // that the def could theoretically have been scheduled at the end. |
130 | DefIndices[Reg] = InsertPosIndex; |
131 | } |
132 | } |
133 | |
134 | PrescanInstruction(MI); |
135 | ScanInstruction(MI, Count); |
136 | } |
137 | |
138 | /// CriticalPathStep - Return the next SUnit after SU on the bottom-up |
139 | /// critical path. |
140 | static const SDep *CriticalPathStep(const SUnit *SU) { |
141 | const SDep *Next = nullptr; |
142 | unsigned NextDepth = 0; |
143 | // Find the predecessor edge with the greatest depth. |
144 | for (const SDep &P : SU->Preds) { |
145 | const SUnit *PredSU = P.getSUnit(); |
146 | unsigned PredLatency = P.getLatency(); |
147 | unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; |
148 | // In the case of a latency tie, prefer an anti-dependency edge over |
149 | // other types of edges. |
150 | if (NextDepth < PredTotalLatency || |
151 | (NextDepth == PredTotalLatency && P.getKind() == SDep::Anti)) { |
152 | NextDepth = PredTotalLatency; |
153 | Next = &P; |
154 | } |
155 | } |
156 | return Next; |
157 | } |
158 | |
159 | void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) { |
160 | // It's not safe to change register allocation for source operands of |
161 | // instructions that have special allocation requirements. Also assume all |
162 | // registers used in a call must not be changed (ABI). |
163 | // FIXME: The issue with predicated instruction is more complex. We are being |
164 | // conservative here because the kill markers cannot be trusted after |
165 | // if-conversion: |
166 | // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14] |
167 | // ... |
168 | // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395] |
169 | // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12] |
170 | // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8) |
171 | // |
172 | // The first R6 kill is not really a kill since it's killed by a predicated |
173 | // instruction which may not be executed. The second R6 def may or may not |
174 | // re-define R6 so it's not safe to change it since the last R6 use cannot be |
175 | // changed. |
176 | bool Special = |
177 | MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI); |
178 | |
179 | // Scan the register operands for this instruction and update |
180 | // Classes and RegRefs. |
181 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
182 | MachineOperand &MO = MI.getOperand(i); |
183 | if (!MO.isReg()) continue; |
184 | Register Reg = MO.getReg(); |
185 | if (Reg == 0) continue; |
186 | const TargetRegisterClass *NewRC = nullptr; |
187 | |
188 | if (i < MI.getDesc().getNumOperands()) |
189 | NewRC = TII->getRegClass(MCID: MI.getDesc(), OpNum: i, TRI, MF); |
190 | |
191 | // For now, only allow the register to be changed if its register |
192 | // class is consistent across all uses. |
193 | if (!Classes[Reg] && NewRC) |
194 | Classes[Reg] = NewRC; |
195 | else if (!NewRC || Classes[Reg] != NewRC) |
196 | Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); |
197 | |
198 | // Now check for aliases. |
199 | for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { |
200 | // If an alias of the reg is used during the live range, give up. |
201 | // Note that this allows us to skip checking if AntiDepReg |
202 | // overlaps with any of the aliases, among other things. |
203 | unsigned AliasReg = *AI; |
204 | if (Classes[AliasReg]) { |
205 | Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); |
206 | Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); |
207 | } |
208 | } |
209 | |
210 | // If we're still willing to consider this register, note the reference. |
211 | if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1)) |
212 | RegRefs.insert(x: std::make_pair(x&: Reg, y: &MO)); |
213 | |
214 | if (MO.isUse() && Special) { |
215 | if (!KeepRegs.test(Idx: Reg)) { |
216 | for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg)) |
217 | KeepRegs.set(SubReg); |
218 | } |
219 | } |
220 | } |
221 | |
222 | for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { |
223 | const MachineOperand &MO = MI.getOperand(i: I); |
224 | if (!MO.isReg()) continue; |
225 | Register Reg = MO.getReg(); |
226 | if (!Reg.isValid()) |
227 | continue; |
228 | // If this reg is tied and live (Classes[Reg] is set to -1), we can't change |
229 | // it or any of its sub or super regs. We need to use KeepRegs to mark the |
230 | // reg because not all uses of the same reg within an instruction are |
231 | // necessarily tagged as tied. |
232 | // Example: an x86 "xor %eax, %eax" will have one source operand tied to the |
233 | // def register but not the second (see PR20020 for details). |
234 | // FIXME: can this check be relaxed to account for undef uses |
235 | // of a register? In the above 'xor' example, the uses of %eax are undef, so |
236 | // earlier instructions could still replace %eax even though the 'xor' |
237 | // itself can't be changed. |
238 | if (MI.isRegTiedToUseOperand(DefOpIdx: I) && |
239 | Classes[Reg] == reinterpret_cast<TargetRegisterClass *>(-1)) { |
240 | for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg)) { |
241 | KeepRegs.set(SubReg); |
242 | } |
243 | for (MCPhysReg SuperReg : TRI->superregs(Reg)) { |
244 | KeepRegs.set(SuperReg); |
245 | } |
246 | } |
247 | } |
248 | } |
249 | |
250 | void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) { |
251 | // Update liveness. |
252 | // Proceeding upwards, registers that are defed but not used in this |
253 | // instruction are now dead. |
254 | assert(!MI.isKill() && "Attempting to scan a kill instruction" ); |
255 | |
256 | if (!TII->isPredicated(MI)) { |
257 | // Predicated defs are modeled as read + write, i.e. similar to two |
258 | // address updates. |
259 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
260 | MachineOperand &MO = MI.getOperand(i); |
261 | |
262 | if (MO.isRegMask()) { |
263 | auto ClobbersPhysRegAndSubRegs = [&](unsigned PhysReg) { |
264 | return all_of(Range: TRI->subregs_inclusive(Reg: PhysReg), |
265 | P: [&](MCPhysReg SR) { return MO.clobbersPhysReg(PhysReg: SR); }); |
266 | }; |
267 | |
268 | for (unsigned i = 1, e = TRI->getNumRegs(); i != e; ++i) { |
269 | if (ClobbersPhysRegAndSubRegs(i)) { |
270 | DefIndices[i] = Count; |
271 | KillIndices[i] = ~0u; |
272 | KeepRegs.reset(Idx: i); |
273 | Classes[i] = nullptr; |
274 | RegRefs.erase(x: i); |
275 | } |
276 | } |
277 | } |
278 | |
279 | if (!MO.isReg()) continue; |
280 | Register Reg = MO.getReg(); |
281 | if (Reg == 0) continue; |
282 | if (!MO.isDef()) continue; |
283 | |
284 | // Ignore two-addr defs. |
285 | if (MI.isRegTiedToUseOperand(DefOpIdx: i)) |
286 | continue; |
287 | |
288 | // If we've already marked this reg as unchangeable, don't remove |
289 | // it or any of its subregs from KeepRegs. |
290 | bool Keep = KeepRegs.test(Idx: Reg); |
291 | |
292 | // For the reg itself and all subregs: update the def to current; |
293 | // reset the kill state, any restrictions, and references. |
294 | for (MCPhysReg SubregReg : TRI->subregs_inclusive(Reg)) { |
295 | DefIndices[SubregReg] = Count; |
296 | KillIndices[SubregReg] = ~0u; |
297 | Classes[SubregReg] = nullptr; |
298 | RegRefs.erase(x: SubregReg); |
299 | if (!Keep) |
300 | KeepRegs.reset(Idx: SubregReg); |
301 | } |
302 | // Conservatively mark super-registers as unusable. |
303 | for (MCPhysReg SR : TRI->superregs(Reg)) |
304 | Classes[SR] = reinterpret_cast<TargetRegisterClass *>(-1); |
305 | } |
306 | } |
307 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
308 | MachineOperand &MO = MI.getOperand(i); |
309 | if (!MO.isReg()) continue; |
310 | Register Reg = MO.getReg(); |
311 | if (Reg == 0) continue; |
312 | if (!MO.isUse()) continue; |
313 | |
314 | const TargetRegisterClass *NewRC = nullptr; |
315 | if (i < MI.getDesc().getNumOperands()) |
316 | NewRC = TII->getRegClass(MCID: MI.getDesc(), OpNum: i, TRI, MF); |
317 | |
318 | // For now, only allow the register to be changed if its register |
319 | // class is consistent across all uses. |
320 | if (!Classes[Reg] && NewRC) |
321 | Classes[Reg] = NewRC; |
322 | else if (!NewRC || Classes[Reg] != NewRC) |
323 | Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); |
324 | |
325 | RegRefs.insert(x: std::make_pair(x&: Reg, y: &MO)); |
326 | |
327 | // It wasn't previously live but now it is, this is a kill. |
328 | // Repeat for all aliases. |
329 | for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { |
330 | unsigned AliasReg = *AI; |
331 | if (KillIndices[AliasReg] == ~0u) { |
332 | KillIndices[AliasReg] = Count; |
333 | DefIndices[AliasReg] = ~0u; |
334 | } |
335 | } |
336 | } |
337 | } |
338 | |
339 | // Check all machine operands that reference the antidependent register and must |
340 | // be replaced by NewReg. Return true if any of their parent instructions may |
341 | // clobber the new register. |
342 | // |
343 | // Note: AntiDepReg may be referenced by a two-address instruction such that |
344 | // it's use operand is tied to a def operand. We guard against the case in which |
345 | // the two-address instruction also defines NewReg, as may happen with |
346 | // pre/postincrement loads. In this case, both the use and def operands are in |
347 | // RegRefs because the def is inserted by PrescanInstruction and not erased |
348 | // during ScanInstruction. So checking for an instruction with definitions of |
349 | // both NewReg and AntiDepReg covers it. |
350 | bool |
351 | CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin, |
352 | RegRefIter RegRefEnd, |
353 | unsigned NewReg) { |
354 | for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) { |
355 | MachineOperand *RefOper = I->second; |
356 | |
357 | // Don't allow the instruction defining AntiDepReg to earlyclobber its |
358 | // operands, in case they may be assigned to NewReg. In this case antidep |
359 | // breaking must fail, but it's too rare to bother optimizing. |
360 | if (RefOper->isDef() && RefOper->isEarlyClobber()) |
361 | return true; |
362 | |
363 | // Handle cases in which this instruction defines NewReg. |
364 | MachineInstr *MI = RefOper->getParent(); |
365 | for (const MachineOperand &CheckOper : MI->operands()) { |
366 | if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(PhysReg: NewReg)) |
367 | return true; |
368 | |
369 | if (!CheckOper.isReg() || !CheckOper.isDef() || |
370 | CheckOper.getReg() != NewReg) |
371 | continue; |
372 | |
373 | // Don't allow the instruction to define NewReg and AntiDepReg. |
374 | // When AntiDepReg is renamed it will be an illegal op. |
375 | if (RefOper->isDef()) |
376 | return true; |
377 | |
378 | // Don't allow an instruction using AntiDepReg to be earlyclobbered by |
379 | // NewReg. |
380 | if (CheckOper.isEarlyClobber()) |
381 | return true; |
382 | |
383 | // Don't allow inline asm to define NewReg at all. Who knows what it's |
384 | // doing with it. |
385 | if (MI->isInlineAsm()) |
386 | return true; |
387 | } |
388 | } |
389 | return false; |
390 | } |
391 | |
392 | unsigned CriticalAntiDepBreaker:: |
393 | findSuitableFreeRegister(RegRefIter RegRefBegin, |
394 | RegRefIter RegRefEnd, |
395 | unsigned AntiDepReg, |
396 | unsigned LastNewReg, |
397 | const TargetRegisterClass *RC, |
398 | SmallVectorImpl<unsigned> &Forbid) { |
399 | ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC); |
400 | for (unsigned NewReg : Order) { |
401 | // Don't replace a register with itself. |
402 | if (NewReg == AntiDepReg) continue; |
403 | // Don't replace a register with one that was recently used to repair |
404 | // an anti-dependence with this AntiDepReg, because that would |
405 | // re-introduce that anti-dependence. |
406 | if (NewReg == LastNewReg) continue; |
407 | // If any instructions that define AntiDepReg also define the NewReg, it's |
408 | // not suitable. For example, Instruction with multiple definitions can |
409 | // result in this condition. |
410 | if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue; |
411 | // If NewReg is dead and NewReg's most recent def is not before |
412 | // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. |
413 | assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) |
414 | && "Kill and Def maps aren't consistent for AntiDepReg!" ); |
415 | assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) |
416 | && "Kill and Def maps aren't consistent for NewReg!" ); |
417 | if (KillIndices[NewReg] != ~0u || |
418 | Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) || |
419 | KillIndices[AntiDepReg] > DefIndices[NewReg]) |
420 | continue; |
421 | // If NewReg overlaps any of the forbidden registers, we can't use it. |
422 | bool Forbidden = false; |
423 | for (unsigned R : Forbid) |
424 | if (TRI->regsOverlap(RegA: NewReg, RegB: R)) { |
425 | Forbidden = true; |
426 | break; |
427 | } |
428 | if (Forbidden) continue; |
429 | return NewReg; |
430 | } |
431 | |
432 | // No registers are free and available! |
433 | return 0; |
434 | } |
435 | |
436 | unsigned CriticalAntiDepBreaker:: |
437 | BreakAntiDependencies(const std::vector<SUnit> &SUnits, |
438 | MachineBasicBlock::iterator Begin, |
439 | MachineBasicBlock::iterator End, |
440 | unsigned InsertPosIndex, |
441 | DbgValueVector &DbgValues) { |
442 | // The code below assumes that there is at least one instruction, |
443 | // so just duck out immediately if the block is empty. |
444 | if (SUnits.empty()) return 0; |
445 | |
446 | // Keep a map of the MachineInstr*'s back to the SUnit representing them. |
447 | // This is used for updating debug information. |
448 | // |
449 | // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap |
450 | DenseMap<MachineInstr *, const SUnit *> MISUnitMap; |
451 | |
452 | // Find the node at the bottom of the critical path. |
453 | const SUnit *Max = nullptr; |
454 | for (const SUnit &SU : SUnits) { |
455 | MISUnitMap[SU.getInstr()] = &SU; |
456 | if (!Max || SU.getDepth() + SU.Latency > Max->getDepth() + Max->Latency) |
457 | Max = &SU; |
458 | } |
459 | assert(Max && "Failed to find bottom of the critical path" ); |
460 | |
461 | #ifndef NDEBUG |
462 | { |
463 | LLVM_DEBUG(dbgs() << "Critical path has total latency " |
464 | << (Max->getDepth() + Max->Latency) << "\n" ); |
465 | LLVM_DEBUG(dbgs() << "Available regs:" ); |
466 | for (unsigned Reg = 1; Reg < TRI->getNumRegs(); ++Reg) { |
467 | if (KillIndices[Reg] == ~0u) |
468 | LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); |
469 | } |
470 | LLVM_DEBUG(dbgs() << '\n'); |
471 | } |
472 | #endif |
473 | |
474 | // Track progress along the critical path through the SUnit graph as we walk |
475 | // the instructions. |
476 | const SUnit *CriticalPathSU = Max; |
477 | MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); |
478 | |
479 | // Consider this pattern: |
480 | // A = ... |
481 | // ... = A |
482 | // A = ... |
483 | // ... = A |
484 | // A = ... |
485 | // ... = A |
486 | // A = ... |
487 | // ... = A |
488 | // There are three anti-dependencies here, and without special care, |
489 | // we'd break all of them using the same register: |
490 | // A = ... |
491 | // ... = A |
492 | // B = ... |
493 | // ... = B |
494 | // B = ... |
495 | // ... = B |
496 | // B = ... |
497 | // ... = B |
498 | // because at each anti-dependence, B is the first register that |
499 | // isn't A which is free. This re-introduces anti-dependencies |
500 | // at all but one of the original anti-dependencies that we were |
501 | // trying to break. To avoid this, keep track of the most recent |
502 | // register that each register was replaced with, avoid |
503 | // using it to repair an anti-dependence on the same register. |
504 | // This lets us produce this: |
505 | // A = ... |
506 | // ... = A |
507 | // B = ... |
508 | // ... = B |
509 | // C = ... |
510 | // ... = C |
511 | // B = ... |
512 | // ... = B |
513 | // This still has an anti-dependence on B, but at least it isn't on the |
514 | // original critical path. |
515 | // |
516 | // TODO: If we tracked more than one register here, we could potentially |
517 | // fix that remaining critical edge too. This is a little more involved, |
518 | // because unlike the most recent register, less recent registers should |
519 | // still be considered, though only if no other registers are available. |
520 | std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0); |
521 | |
522 | // Attempt to break anti-dependence edges on the critical path. Walk the |
523 | // instructions from the bottom up, tracking information about liveness |
524 | // as we go to help determine which registers are available. |
525 | unsigned Broken = 0; |
526 | unsigned Count = InsertPosIndex - 1; |
527 | for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) { |
528 | MachineInstr &MI = *--I; |
529 | // Kill instructions can define registers but are really nops, and there |
530 | // might be a real definition earlier that needs to be paired with uses |
531 | // dominated by this kill. |
532 | |
533 | // FIXME: It may be possible to remove the isKill() restriction once PR18663 |
534 | // has been properly fixed. There can be value in processing kills as seen |
535 | // in the AggressiveAntiDepBreaker class. |
536 | if (MI.isDebugInstr() || MI.isKill()) |
537 | continue; |
538 | |
539 | // Check if this instruction has a dependence on the critical path that |
540 | // is an anti-dependence that we may be able to break. If it is, set |
541 | // AntiDepReg to the non-zero register associated with the anti-dependence. |
542 | // |
543 | // We limit our attention to the critical path as a heuristic to avoid |
544 | // breaking anti-dependence edges that aren't going to significantly |
545 | // impact the overall schedule. There are a limited number of registers |
546 | // and we want to save them for the important edges. |
547 | // |
548 | // TODO: Instructions with multiple defs could have multiple |
549 | // anti-dependencies. The current code here only knows how to break one |
550 | // edge per instruction. Note that we'd have to be able to break all of |
551 | // the anti-dependencies in an instruction in order to be effective. |
552 | unsigned AntiDepReg = 0; |
553 | if (&MI == CriticalPathMI) { |
554 | if (const SDep *Edge = CriticalPathStep(SU: CriticalPathSU)) { |
555 | const SUnit *NextSU = Edge->getSUnit(); |
556 | |
557 | // Only consider anti-dependence edges. |
558 | if (Edge->getKind() == SDep::Anti) { |
559 | AntiDepReg = Edge->getReg(); |
560 | assert(AntiDepReg != 0 && "Anti-dependence on reg0?" ); |
561 | if (!MRI.isAllocatable(PhysReg: AntiDepReg)) |
562 | // Don't break anti-dependencies on non-allocatable registers. |
563 | AntiDepReg = 0; |
564 | else if (KeepRegs.test(Idx: AntiDepReg)) |
565 | // Don't break anti-dependencies if a use down below requires |
566 | // this exact register. |
567 | AntiDepReg = 0; |
568 | else { |
569 | // If the SUnit has other dependencies on the SUnit that it |
570 | // anti-depends on, don't bother breaking the anti-dependency |
571 | // since those edges would prevent such units from being |
572 | // scheduled past each other regardless. |
573 | // |
574 | // Also, if there are dependencies on other SUnits with the |
575 | // same register as the anti-dependency, don't attempt to |
576 | // break it. |
577 | for (const SDep &P : CriticalPathSU->Preds) |
578 | if (P.getSUnit() == NextSU |
579 | ? (P.getKind() != SDep::Anti || P.getReg() != AntiDepReg) |
580 | : (P.getKind() == SDep::Data && |
581 | P.getReg() == AntiDepReg)) { |
582 | AntiDepReg = 0; |
583 | break; |
584 | } |
585 | } |
586 | } |
587 | CriticalPathSU = NextSU; |
588 | CriticalPathMI = CriticalPathSU->getInstr(); |
589 | } else { |
590 | // We've reached the end of the critical path. |
591 | CriticalPathSU = nullptr; |
592 | CriticalPathMI = nullptr; |
593 | } |
594 | } |
595 | |
596 | PrescanInstruction(MI); |
597 | |
598 | SmallVector<unsigned, 2> ForbidRegs; |
599 | |
600 | // If MI's defs have a special allocation requirement, don't allow |
601 | // any def registers to be changed. Also assume all registers |
602 | // defined in a call must not be changed (ABI). |
603 | if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI)) |
604 | // If this instruction's defs have special allocation requirement, don't |
605 | // break this anti-dependency. |
606 | AntiDepReg = 0; |
607 | else if (AntiDepReg) { |
608 | // If this instruction has a use of AntiDepReg, breaking it |
609 | // is invalid. If the instruction defines other registers, |
610 | // save a list of them so that we don't pick a new register |
611 | // that overlaps any of them. |
612 | for (const MachineOperand &MO : MI.operands()) { |
613 | if (!MO.isReg()) continue; |
614 | Register Reg = MO.getReg(); |
615 | if (Reg == 0) continue; |
616 | if (MO.isUse() && TRI->regsOverlap(RegA: AntiDepReg, RegB: Reg)) { |
617 | AntiDepReg = 0; |
618 | break; |
619 | } |
620 | if (MO.isDef() && Reg != AntiDepReg) |
621 | ForbidRegs.push_back(Elt: Reg); |
622 | } |
623 | } |
624 | |
625 | // Determine AntiDepReg's register class, if it is live and is |
626 | // consistently used within a single class. |
627 | const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] |
628 | : nullptr; |
629 | assert((AntiDepReg == 0 || RC != nullptr) && |
630 | "Register should be live if it's causing an anti-dependence!" ); |
631 | if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) |
632 | AntiDepReg = 0; |
633 | |
634 | // Look for a suitable register to use to break the anti-dependence. |
635 | // |
636 | // TODO: Instead of picking the first free register, consider which might |
637 | // be the best. |
638 | if (AntiDepReg != 0) { |
639 | std::pair<std::multimap<unsigned, MachineOperand *>::iterator, |
640 | std::multimap<unsigned, MachineOperand *>::iterator> |
641 | Range = RegRefs.equal_range(x: AntiDepReg); |
642 | if (unsigned NewReg = findSuitableFreeRegister(RegRefBegin: Range.first, RegRefEnd: Range.second, |
643 | AntiDepReg, |
644 | LastNewReg: LastNewReg[AntiDepReg], |
645 | RC, Forbid&: ForbidRegs)) { |
646 | LLVM_DEBUG(dbgs() << "Breaking anti-dependence edge on " |
647 | << printReg(AntiDepReg, TRI) << " with " |
648 | << RegRefs.count(AntiDepReg) << " references" |
649 | << " using " << printReg(NewReg, TRI) << "!\n" ); |
650 | |
651 | // Update the references to the old register to refer to the new |
652 | // register. |
653 | for (std::multimap<unsigned, MachineOperand *>::iterator |
654 | Q = Range.first, QE = Range.second; Q != QE; ++Q) { |
655 | Q->second->setReg(NewReg); |
656 | // If the SU for the instruction being updated has debug information |
657 | // related to the anti-dependency register, make sure to update that |
658 | // as well. |
659 | const SUnit *SU = MISUnitMap[Q->second->getParent()]; |
660 | if (!SU) continue; |
661 | UpdateDbgValues(DbgValues, ParentMI: Q->second->getParent(), |
662 | OldReg: AntiDepReg, NewReg); |
663 | } |
664 | |
665 | // We just went back in time and modified history; the |
666 | // liveness information for the anti-dependence reg is now |
667 | // inconsistent. Set the state as if it were dead. |
668 | Classes[NewReg] = Classes[AntiDepReg]; |
669 | DefIndices[NewReg] = DefIndices[AntiDepReg]; |
670 | KillIndices[NewReg] = KillIndices[AntiDepReg]; |
671 | assert(((KillIndices[NewReg] == ~0u) != |
672 | (DefIndices[NewReg] == ~0u)) && |
673 | "Kill and Def maps aren't consistent for NewReg!" ); |
674 | |
675 | Classes[AntiDepReg] = nullptr; |
676 | DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; |
677 | KillIndices[AntiDepReg] = ~0u; |
678 | assert(((KillIndices[AntiDepReg] == ~0u) != |
679 | (DefIndices[AntiDepReg] == ~0u)) && |
680 | "Kill and Def maps aren't consistent for AntiDepReg!" ); |
681 | |
682 | RegRefs.erase(x: AntiDepReg); |
683 | LastNewReg[AntiDepReg] = NewReg; |
684 | ++Broken; |
685 | } |
686 | } |
687 | |
688 | ScanInstruction(MI, Count); |
689 | } |
690 | |
691 | return Broken; |
692 | } |
693 | |
694 | AntiDepBreaker * |
695 | llvm::createCriticalAntiDepBreaker(MachineFunction &MFi, |
696 | const RegisterClassInfo &RCI) { |
697 | return new CriticalAntiDepBreaker(MFi, RCI); |
698 | } |
699 | |