1 | //===- Localizer.cpp ---------------------- Localize some instrs -*- C++ -*-==// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// \file |
9 | /// This file implements the Localizer class. |
10 | //===----------------------------------------------------------------------===// |
11 | |
12 | #include "llvm/CodeGen/GlobalISel/Localizer.h" |
13 | #include "llvm/ADT/DenseMap.h" |
14 | #include "llvm/ADT/STLExtras.h" |
15 | #include "llvm/Analysis/TargetTransformInfo.h" |
16 | #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" |
17 | #include "llvm/CodeGen/GlobalISel/Utils.h" |
18 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
19 | #include "llvm/CodeGen/TargetLowering.h" |
20 | #include "llvm/InitializePasses.h" |
21 | #include "llvm/Support/Debug.h" |
22 | |
23 | #define DEBUG_TYPE "localizer" |
24 | |
25 | using namespace llvm; |
26 | |
27 | char Localizer::ID = 0; |
28 | INITIALIZE_PASS_BEGIN(Localizer, DEBUG_TYPE, |
29 | "Move/duplicate certain instructions close to their use" , |
30 | false, false) |
31 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
32 | INITIALIZE_PASS_END(Localizer, DEBUG_TYPE, |
33 | "Move/duplicate certain instructions close to their use" , |
34 | false, false) |
35 | |
36 | Localizer::Localizer(std::function<bool(const MachineFunction &)> F) |
37 | : MachineFunctionPass(ID), DoNotRunPass(F) {} |
38 | |
39 | Localizer::Localizer() |
40 | : Localizer([](const MachineFunction &) { return false; }) {} |
41 | |
42 | void Localizer::init(MachineFunction &MF) { |
43 | MRI = &MF.getRegInfo(); |
44 | TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F: MF.getFunction()); |
45 | } |
46 | |
47 | void Localizer::getAnalysisUsage(AnalysisUsage &AU) const { |
48 | AU.addRequired<TargetTransformInfoWrapperPass>(); |
49 | getSelectionDAGFallbackAnalysisUsage(AU); |
50 | MachineFunctionPass::getAnalysisUsage(AU); |
51 | } |
52 | |
53 | bool Localizer::isLocalUse(MachineOperand &MOUse, const MachineInstr &Def, |
54 | MachineBasicBlock *&InsertMBB) { |
55 | MachineInstr &MIUse = *MOUse.getParent(); |
56 | InsertMBB = MIUse.getParent(); |
57 | if (MIUse.isPHI()) |
58 | InsertMBB = MIUse.getOperand(i: MOUse.getOperandNo() + 1).getMBB(); |
59 | return InsertMBB == Def.getParent(); |
60 | } |
61 | |
62 | unsigned Localizer::getNumPhiUses(MachineOperand &Op) const { |
63 | auto *MI = dyn_cast<GPhi>(Val: &*Op.getParent()); |
64 | if (!MI) |
65 | return 0; |
66 | |
67 | Register SrcReg = Op.getReg(); |
68 | unsigned NumUses = 0; |
69 | for (unsigned I = 0, NumVals = MI->getNumIncomingValues(); I < NumVals; ++I) { |
70 | if (MI->getIncomingValue(I) == SrcReg) |
71 | ++NumUses; |
72 | } |
73 | return NumUses; |
74 | } |
75 | |
76 | bool Localizer::localizeInterBlock(MachineFunction &MF, |
77 | LocalizedSetVecT &LocalizedInstrs) { |
78 | bool Changed = false; |
79 | DenseMap<std::pair<MachineBasicBlock *, unsigned>, unsigned> MBBWithLocalDef; |
80 | |
81 | // Since the IRTranslator only emits constants into the entry block, and the |
82 | // rest of the GISel pipeline generally emits constants close to their users, |
83 | // we only localize instructions in the entry block here. This might change if |
84 | // we start doing CSE across blocks. |
85 | auto &MBB = MF.front(); |
86 | auto &TL = *MF.getSubtarget().getTargetLowering(); |
87 | for (MachineInstr &MI : llvm::reverse(C&: MBB)) { |
88 | if (!TL.shouldLocalize(MI, TTI)) |
89 | continue; |
90 | LLVM_DEBUG(dbgs() << "Should localize: " << MI); |
91 | assert(MI.getDesc().getNumDefs() == 1 && |
92 | "More than one definition not supported yet" ); |
93 | Register Reg = MI.getOperand(i: 0).getReg(); |
94 | // Check if all the users of MI are local. |
95 | // We are going to invalidation the list of use operands, so we |
96 | // can't use range iterator. |
97 | for (MachineOperand &MOUse : |
98 | llvm::make_early_inc_range(Range: MRI->use_operands(Reg))) { |
99 | // Check if the use is already local. |
100 | MachineBasicBlock *InsertMBB; |
101 | LLVM_DEBUG(MachineInstr &MIUse = *MOUse.getParent(); |
102 | dbgs() << "Checking use: " << MIUse |
103 | << " #Opd: " << MOUse.getOperandNo() << '\n'); |
104 | if (isLocalUse(MOUse, Def: MI, InsertMBB)) { |
105 | // Even if we're in the same block, if the block is very large we could |
106 | // still have many long live ranges. Try to do intra-block localization |
107 | // too. |
108 | LocalizedInstrs.insert(X: &MI); |
109 | continue; |
110 | } |
111 | |
112 | // PHIs look like a single user but can use the same register in multiple |
113 | // edges, causing remat into each predecessor. Allow this to a certain |
114 | // extent. |
115 | unsigned NumPhiUses = getNumPhiUses(Op&: MOUse); |
116 | const unsigned PhiThreshold = 2; // FIXME: Tune this more. |
117 | if (NumPhiUses > PhiThreshold) |
118 | continue; |
119 | |
120 | LLVM_DEBUG(dbgs() << "Fixing non-local use\n" ); |
121 | Changed = true; |
122 | auto MBBAndReg = std::make_pair(x&: InsertMBB, y&: Reg); |
123 | auto NewVRegIt = MBBWithLocalDef.find(Val: MBBAndReg); |
124 | if (NewVRegIt == MBBWithLocalDef.end()) { |
125 | // Create the localized instruction. |
126 | MachineInstr *LocalizedMI = MF.CloneMachineInstr(Orig: &MI); |
127 | LocalizedInstrs.insert(X: LocalizedMI); |
128 | MachineInstr &UseMI = *MOUse.getParent(); |
129 | if (MRI->hasOneUse(RegNo: Reg) && !UseMI.isPHI()) |
130 | InsertMBB->insert(I: UseMI, MI: LocalizedMI); |
131 | else |
132 | InsertMBB->insert(I: InsertMBB->SkipPHIsAndLabels(I: InsertMBB->begin()), |
133 | MI: LocalizedMI); |
134 | |
135 | // Set a new register for the definition. |
136 | Register NewReg = MRI->cloneVirtualRegister(VReg: Reg); |
137 | LocalizedMI->getOperand(i: 0).setReg(NewReg); |
138 | NewVRegIt = |
139 | MBBWithLocalDef.insert(KV: std::make_pair(x&: MBBAndReg, y&: NewReg)).first; |
140 | LLVM_DEBUG(dbgs() << "Inserted: " << *LocalizedMI); |
141 | } |
142 | LLVM_DEBUG(dbgs() << "Update use with: " << printReg(NewVRegIt->second) |
143 | << '\n'); |
144 | // Update the user reg. |
145 | MOUse.setReg(NewVRegIt->second); |
146 | } |
147 | } |
148 | return Changed; |
149 | } |
150 | |
151 | bool Localizer::localizeIntraBlock(LocalizedSetVecT &LocalizedInstrs) { |
152 | bool Changed = false; |
153 | |
154 | // For each already-localized instruction which has multiple users, then we |
155 | // scan the block top down from the current position until we hit one of them. |
156 | |
157 | // FIXME: Consider doing inst duplication if live ranges are very long due to |
158 | // many users, but this case may be better served by regalloc improvements. |
159 | |
160 | for (MachineInstr *MI : LocalizedInstrs) { |
161 | Register Reg = MI->getOperand(i: 0).getReg(); |
162 | MachineBasicBlock &MBB = *MI->getParent(); |
163 | // All of the user MIs of this reg. |
164 | SmallPtrSet<MachineInstr *, 32> Users; |
165 | for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { |
166 | if (!UseMI.isPHI()) |
167 | Users.insert(Ptr: &UseMI); |
168 | } |
169 | MachineBasicBlock::iterator II(MI); |
170 | // If all the users were PHIs then they're not going to be in our block, we |
171 | // may still benefit from sinking, especially since the value might be live |
172 | // across a call. |
173 | if (Users.empty()) { |
174 | // Make sure we don't sink in between two terminator sequences by scanning |
175 | // forward, not backward. |
176 | II = MBB.getFirstTerminatorForward(); |
177 | LLVM_DEBUG(dbgs() << "Only phi users: moving inst to end: " << *MI); |
178 | } else { |
179 | ++II; |
180 | while (II != MBB.end() && !Users.count(Ptr: &*II)) |
181 | ++II; |
182 | assert(II != MBB.end() && "Didn't find the user in the MBB" ); |
183 | LLVM_DEBUG(dbgs() << "Intra-block: moving " << *MI << " before " << *II); |
184 | } |
185 | |
186 | MI->removeFromParent(); |
187 | MBB.insert(I: II, MI); |
188 | Changed = true; |
189 | |
190 | // If the instruction (constant) being localized has single user, we can |
191 | // propagate debug location from user. |
192 | if (Users.size() == 1) { |
193 | const auto &DefDL = MI->getDebugLoc(); |
194 | const auto &UserDL = (*Users.begin())->getDebugLoc(); |
195 | |
196 | if ((!DefDL || DefDL.getLine() == 0) && UserDL && UserDL.getLine() != 0) { |
197 | MI->setDebugLoc(UserDL); |
198 | } |
199 | } |
200 | } |
201 | return Changed; |
202 | } |
203 | |
204 | bool Localizer::runOnMachineFunction(MachineFunction &MF) { |
205 | // If the ISel pipeline failed, do not bother running that pass. |
206 | if (MF.getProperties().hasProperty( |
207 | P: MachineFunctionProperties::Property::FailedISel)) |
208 | return false; |
209 | |
210 | // Don't run the pass if the target asked so. |
211 | if (DoNotRunPass(MF)) |
212 | return false; |
213 | |
214 | LLVM_DEBUG(dbgs() << "Localize instructions for: " << MF.getName() << '\n'); |
215 | |
216 | init(MF); |
217 | |
218 | // Keep track of the instructions we localized. We'll do a second pass of |
219 | // intra-block localization to further reduce live ranges. |
220 | LocalizedSetVecT LocalizedInstrs; |
221 | |
222 | bool Changed = localizeInterBlock(MF, LocalizedInstrs); |
223 | Changed |= localizeIntraBlock(LocalizedInstrs); |
224 | return Changed; |
225 | } |
226 | |