1//===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// \file
10//
11// This file defines the interleaved-load-combine pass. The pass searches for
12// ShuffleVectorInstruction that execute interleaving loads. If a matching
13// pattern is found, it adds a combined load and further instructions in a
14// pattern that is detectable by InterleavedAccesPass. The old instructions are
15// left dead to be removed later. The pass is specifically designed to be
16// executed just before InterleavedAccesPass to find any left-over instances
17// that are not detected within former passes.
18//
19//===----------------------------------------------------------------------===//
20
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/MemorySSA.h"
23#include "llvm/Analysis/MemorySSAUpdater.h"
24#include "llvm/Analysis/OptimizationRemarkEmitter.h"
25#include "llvm/Analysis/TargetTransformInfo.h"
26#include "llvm/CodeGen/InterleavedLoadCombine.h"
27#include "llvm/CodeGen/Passes.h"
28#include "llvm/CodeGen/TargetLowering.h"
29#include "llvm/CodeGen/TargetPassConfig.h"
30#include "llvm/CodeGen/TargetSubtargetInfo.h"
31#include "llvm/IR/DataLayout.h"
32#include "llvm/IR/Dominators.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/IRBuilder.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/Module.h"
37#include "llvm/InitializePasses.h"
38#include "llvm/Pass.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/Target/TargetMachine.h"
43
44#include <algorithm>
45#include <cassert>
46#include <list>
47
48using namespace llvm;
49
50#define DEBUG_TYPE "interleaved-load-combine"
51
52namespace {
53
54/// Statistic counter
55STATISTIC(NumInterleavedLoadCombine, "Number of combined loads");
56
57/// Option to disable the pass
58static cl::opt<bool> DisableInterleavedLoadCombine(
59 "disable-" DEBUG_TYPE, cl::init(Val: false), cl::Hidden,
60 cl::desc("Disable combining of interleaved loads"));
61
62struct VectorInfo;
63
64struct InterleavedLoadCombineImpl {
65public:
66 InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA,
67 const TargetTransformInfo &TTI,
68 const TargetMachine &TM)
69 : F(F), DT(DT), MSSA(MSSA),
70 TLI(*TM.getSubtargetImpl(F)->getTargetLowering()), TTI(TTI) {}
71
72 /// Scan the function for interleaved load candidates and execute the
73 /// replacement if applicable.
74 bool run();
75
76private:
77 /// Function this pass is working on
78 Function &F;
79
80 /// Dominator Tree Analysis
81 DominatorTree &DT;
82
83 /// Memory Alias Analyses
84 MemorySSA &MSSA;
85
86 /// Target Lowering Information
87 const TargetLowering &TLI;
88
89 /// Target Transform Information
90 const TargetTransformInfo &TTI;
91
92 /// Find the instruction in sets LIs that dominates all others, return nullptr
93 /// if there is none.
94 LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs);
95
96 /// Replace interleaved load candidates. It does additional
97 /// analyses if this makes sense. Returns true on success and false
98 /// of nothing has been changed.
99 bool combine(std::list<VectorInfo> &InterleavedLoad,
100 OptimizationRemarkEmitter &ORE);
101
102 /// Given a set of VectorInfo containing candidates for a given interleave
103 /// factor, find a set that represents a 'factor' interleaved load.
104 bool findPattern(std::list<VectorInfo> &Candidates,
105 std::list<VectorInfo> &InterleavedLoad, unsigned Factor,
106 const DataLayout &DL);
107}; // InterleavedLoadCombine
108
109/// First Order Polynomial on an n-Bit Integer Value
110///
111/// Polynomial(Value) = Value * B + A + E*2^(n-e)
112///
113/// A and B are the coefficients. E*2^(n-e) is an error within 'e' most
114/// significant bits. It is introduced if an exact computation cannot be proven
115/// (e.q. division by 2).
116///
117/// As part of this optimization multiple loads will be combined. It necessary
118/// to prove that loads are within some relative offset to each other. This
119/// class is used to prove relative offsets of values loaded from memory.
120///
121/// Representing an integer in this form is sound since addition in two's
122/// complement is associative (trivial) and multiplication distributes over the
123/// addition (see Proof(1) in Polynomial::mul). Further, both operations
124/// commute.
125//
126// Example:
127// declare @fn(i64 %IDX, <4 x float>* %PTR) {
128// %Pa1 = add i64 %IDX, 2
129// %Pa2 = lshr i64 %Pa1, 1
130// %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2
131// %Va = load <4 x float>, <4 x float>* %Pa3
132//
133// %Pb1 = add i64 %IDX, 4
134// %Pb2 = lshr i64 %Pb1, 1
135// %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2
136// %Vb = load <4 x float>, <4 x float>* %Pb3
137// ... }
138//
139// The goal is to prove that two loads load consecutive addresses.
140//
141// In this case the polynomials are constructed by the following
142// steps.
143//
144// The number tag #e specifies the error bits.
145//
146// Pa_0 = %IDX #0
147// Pa_1 = %IDX + 2 #0 | add 2
148// Pa_2 = %IDX/2 + 1 #1 | lshr 1
149// Pa_3 = %IDX/2 + 1 #1 | GEP, step signext to i64
150// Pa_4 = (%IDX/2)*16 + 16 #0 | GEP, multiply index by sizeof(4) for floats
151// Pa_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components
152//
153// Pb_0 = %IDX #0
154// Pb_1 = %IDX + 4 #0 | add 2
155// Pb_2 = %IDX/2 + 2 #1 | lshr 1
156// Pb_3 = %IDX/2 + 2 #1 | GEP, step signext to i64
157// Pb_4 = (%IDX/2)*16 + 32 #0 | GEP, multiply index by sizeof(4) for floats
158// Pb_5 = (%IDX/2)*16 + 16 #0 | GEP, add offset of leading components
159//
160// Pb_5 - Pa_5 = 16 #0 | subtract to get the offset
161//
162// Remark: %PTR is not maintained within this class. So in this instance the
163// offset of 16 can only be assumed if the pointers are equal.
164//
165class Polynomial {
166 /// Operations on B
167 enum BOps {
168 LShr,
169 Mul,
170 SExt,
171 Trunc,
172 };
173
174 /// Number of Error Bits e
175 unsigned ErrorMSBs = (unsigned)-1;
176
177 /// Value
178 Value *V = nullptr;
179
180 /// Coefficient B
181 SmallVector<std::pair<BOps, APInt>, 4> B;
182
183 /// Coefficient A
184 APInt A;
185
186public:
187 Polynomial(Value *V) : V(V) {
188 IntegerType *Ty = dyn_cast<IntegerType>(Val: V->getType());
189 if (Ty) {
190 ErrorMSBs = 0;
191 this->V = V;
192 A = APInt(Ty->getBitWidth(), 0);
193 }
194 }
195
196 Polynomial(const APInt &A, unsigned ErrorMSBs = 0)
197 : ErrorMSBs(ErrorMSBs), A(A) {}
198
199 Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0)
200 : ErrorMSBs(ErrorMSBs), A(BitWidth, A) {}
201
202 Polynomial() = default;
203
204 /// Increment and clamp the number of undefined bits.
205 void incErrorMSBs(unsigned amt) {
206 if (ErrorMSBs == (unsigned)-1)
207 return;
208
209 ErrorMSBs += amt;
210 if (ErrorMSBs > A.getBitWidth())
211 ErrorMSBs = A.getBitWidth();
212 }
213
214 /// Decrement and clamp the number of undefined bits.
215 void decErrorMSBs(unsigned amt) {
216 if (ErrorMSBs == (unsigned)-1)
217 return;
218
219 if (ErrorMSBs > amt)
220 ErrorMSBs -= amt;
221 else
222 ErrorMSBs = 0;
223 }
224
225 /// Apply an add on the polynomial
226 Polynomial &add(const APInt &C) {
227 // Note: Addition is associative in two's complement even when in case of
228 // signed overflow.
229 //
230 // Error bits can only propagate into higher significant bits. As these are
231 // already regarded as undefined, there is no change.
232 //
233 // Theorem: Adding a constant to a polynomial does not change the error
234 // term.
235 //
236 // Proof:
237 //
238 // Since the addition is associative and commutes:
239 //
240 // (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e)
241 // [qed]
242
243 if (C.getBitWidth() != A.getBitWidth()) {
244 ErrorMSBs = (unsigned)-1;
245 return *this;
246 }
247
248 A += C;
249 return *this;
250 }
251
252 /// Apply a multiplication onto the polynomial.
253 Polynomial &mul(const APInt &C) {
254 // Note: Multiplication distributes over the addition
255 //
256 // Theorem: Multiplication distributes over the addition
257 //
258 // Proof(1):
259 //
260 // (B+A)*C =-
261 // = (B + A) + (B + A) + .. {C Times}
262 // addition is associative and commutes, hence
263 // = B + B + .. {C Times} .. + A + A + .. {C times}
264 // = B*C + A*C
265 // (see (function add) for signed values and overflows)
266 // [qed]
267 //
268 // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out
269 // to the left.
270 //
271 // Proof(2):
272 //
273 // Let B' and A' be the n-Bit inputs with some unknown errors EA,
274 // EB at e leading bits. B' and A' can be written down as:
275 //
276 // B' = B + 2^(n-e)*EB
277 // A' = A + 2^(n-e)*EA
278 //
279 // Let C' be an input with c trailing zero bits. C' can be written as
280 //
281 // C' = C*2^c
282 //
283 // Therefore we can compute the result by using distributivity and
284 // commutativity.
285 //
286 // (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' =
287 // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
288 // = (B'+A') * C' =
289 // = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
290 // = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' =
291 // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' =
292 // = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c =
293 // = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c =
294 //
295 // Let EC be the final error with EC = C*(EB + EA)
296 //
297 // = (B + A)*C' + EC*2^(n-e)*2^c =
298 // = (B + A)*C' + EC*2^(n-(e-c))
299 //
300 // Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c
301 // less error bits than the input. c bits are shifted out to the left.
302 // [qed]
303
304 if (C.getBitWidth() != A.getBitWidth()) {
305 ErrorMSBs = (unsigned)-1;
306 return *this;
307 }
308
309 // Multiplying by one is a no-op.
310 if (C.isOne()) {
311 return *this;
312 }
313
314 // Multiplying by zero removes the coefficient B and defines all bits.
315 if (C.isZero()) {
316 ErrorMSBs = 0;
317 deleteB();
318 }
319
320 // See Proof(2): Trailing zero bits indicate a left shift. This removes
321 // leading bits from the result even if they are undefined.
322 decErrorMSBs(amt: C.countr_zero());
323
324 A *= C;
325 pushBOperation(Op: Mul, C);
326 return *this;
327 }
328
329 /// Apply a logical shift right on the polynomial
330 Polynomial &lshr(const APInt &C) {
331 // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e')
332 // where
333 // e' = e + 1,
334 // E is a e-bit number,
335 // E' is a e'-bit number,
336 // holds under the following precondition:
337 // pre(1): A % 2 = 0
338 // pre(2): e < n, (see Theorem(2) for the trivial case with e=n)
339 // where >> expresses a logical shift to the right, with adding zeros.
340 //
341 // We need to show that for every, E there is a E'
342 //
343 // B = b_h * 2^(n-1) + b_m * 2 + b_l
344 // A = a_h * 2^(n-1) + a_m * 2 (pre(1))
345 //
346 // where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers
347 //
348 // Let X = (B + A + E*2^(n-e)) >> 1
349 // Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1
350 //
351 // X = [B + A + E*2^(n-e)] >> 1 =
352 // = [ b_h * 2^(n-1) + b_m * 2 + b_l +
353 // + a_h * 2^(n-1) + a_m * 2 +
354 // + E * 2^(n-e) ] >> 1 =
355 //
356 // The sum is built by putting the overflow of [a_m + b+n] into the term
357 // 2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within
358 // this bit is discarded. This is expressed by % 2.
359 //
360 // The bit in position 0 cannot overflow into the term (b_m + a_m).
361 //
362 // = [ ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) +
363 // + ((b_m + a_m) % 2^(n-2)) * 2 +
364 // + b_l + E * 2^(n-e) ] >> 1 =
365 //
366 // The shift is computed by dividing the terms by 2 and by cutting off
367 // b_l.
368 //
369 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
370 // + ((b_m + a_m) % 2^(n-2)) +
371 // + E * 2^(n-(e+1)) =
372 //
373 // by the definition in the Theorem e+1 = e'
374 //
375 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
376 // + ((b_m + a_m) % 2^(n-2)) +
377 // + E * 2^(n-e') =
378 //
379 // Compute Y by applying distributivity first
380 //
381 // Y = (B >> 1) + (A >> 1) + E*2^(n-e') =
382 // = (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 +
383 // + (a_h * 2^(n-1) + a_m * 2) >> 1 +
384 // + E * 2^(n-e) >> 1 =
385 //
386 // Again, the shift is computed by dividing the terms by 2 and by cutting
387 // off b_l.
388 //
389 // = b_h * 2^(n-2) + b_m +
390 // + a_h * 2^(n-2) + a_m +
391 // + E * 2^(n-(e+1)) =
392 //
393 // Again, the sum is built by putting the overflow of [a_m + b+n] into
394 // the term 2^(n-1). But this time there is room for a second bit in the
395 // term 2^(n-2) we add this bit to a new term and denote it o_h in a
396 // second step.
397 //
398 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) +
399 // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
400 // + ((b_m + a_m) % 2^(n-2)) +
401 // + E * 2^(n-(e+1)) =
402 //
403 // Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1
404 // Further replace e+1 by e'.
405 //
406 // = o_h * 2^(n-1) +
407 // + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
408 // + ((b_m + a_m) % 2^(n-2)) +
409 // + E * 2^(n-e') =
410 //
411 // Move o_h into the error term and construct E'. To ensure that there is
412 // no 2^x with negative x, this step requires pre(2) (e < n).
413 //
414 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
415 // + ((b_m + a_m) % 2^(n-2)) +
416 // + o_h * 2^(e'-1) * 2^(n-e') + | pre(2), move 2^(e'-1)
417 // | out of the old exponent
418 // + E * 2^(n-e') =
419 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
420 // + ((b_m + a_m) % 2^(n-2)) +
421 // + [o_h * 2^(e'-1) + E] * 2^(n-e') + | move 2^(e'-1) out of
422 // | the old exponent
423 //
424 // Let E' = o_h * 2^(e'-1) + E
425 //
426 // = ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
427 // + ((b_m + a_m) % 2^(n-2)) +
428 // + E' * 2^(n-e')
429 //
430 // Because X and Y are distinct only in there error terms and E' can be
431 // constructed as shown the theorem holds.
432 // [qed]
433 //
434 // For completeness in case of the case e=n it is also required to show that
435 // distributivity can be applied.
436 //
437 // In this case Theorem(1) transforms to (the pre-condition on A can also be
438 // dropped)
439 //
440 // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E'
441 // where
442 // A, B, E, E' are two's complement numbers with the same bit
443 // width
444 //
445 // Let A + B + E = X
446 // Let (B >> 1) + (A >> 1) = Y
447 //
448 // Therefore we need to show that for every X and Y there is an E' which
449 // makes the equation
450 //
451 // X = Y + E'
452 //
453 // hold. This is trivially the case for E' = X - Y.
454 //
455 // [qed]
456 //
457 // Remark: Distributing lshr with and arbitrary number n can be expressed as
458 // ((((B + A) lshr 1) lshr 1) ... ) {n times}.
459 // This construction induces n additional error bits at the left.
460
461 if (C.getBitWidth() != A.getBitWidth()) {
462 ErrorMSBs = (unsigned)-1;
463 return *this;
464 }
465
466 if (C.isZero())
467 return *this;
468
469 // Test if the result will be zero
470 unsigned shiftAmt = C.getZExtValue();
471 if (shiftAmt >= C.getBitWidth())
472 return mul(C: APInt(C.getBitWidth(), 0));
473
474 // The proof that shiftAmt LSBs are zero for at least one summand is only
475 // possible for the constant number.
476 //
477 // If this can be proven add shiftAmt to the error counter
478 // `ErrorMSBs`. Otherwise set all bits as undefined.
479 if (A.countr_zero() < shiftAmt)
480 ErrorMSBs = A.getBitWidth();
481 else
482 incErrorMSBs(amt: shiftAmt);
483
484 // Apply the operation.
485 pushBOperation(Op: LShr, C);
486 A = A.lshr(shiftAmt);
487
488 return *this;
489 }
490
491 /// Apply a sign-extend or truncate operation on the polynomial.
492 Polynomial &sextOrTrunc(unsigned n) {
493 if (n < A.getBitWidth()) {
494 // Truncate: Clearly undefined Bits on the MSB side are removed
495 // if there are any.
496 decErrorMSBs(amt: A.getBitWidth() - n);
497 A = A.trunc(width: n);
498 pushBOperation(Op: Trunc, C: APInt(sizeof(n) * 8, n));
499 }
500 if (n > A.getBitWidth()) {
501 // Extend: Clearly extending first and adding later is different
502 // to adding first and extending later in all extended bits.
503 incErrorMSBs(amt: n - A.getBitWidth());
504 A = A.sext(width: n);
505 pushBOperation(Op: SExt, C: APInt(sizeof(n) * 8, n));
506 }
507
508 return *this;
509 }
510
511 /// Test if there is a coefficient B.
512 bool isFirstOrder() const { return V != nullptr; }
513
514 /// Test coefficient B of two Polynomials are equal.
515 bool isCompatibleTo(const Polynomial &o) const {
516 // The polynomial use different bit width.
517 if (A.getBitWidth() != o.A.getBitWidth())
518 return false;
519
520 // If neither Polynomial has the Coefficient B.
521 if (!isFirstOrder() && !o.isFirstOrder())
522 return true;
523
524 // The index variable is different.
525 if (V != o.V)
526 return false;
527
528 // Check the operations.
529 if (B.size() != o.B.size())
530 return false;
531
532 auto *ob = o.B.begin();
533 for (const auto &b : B) {
534 if (b != *ob)
535 return false;
536 ob++;
537 }
538
539 return true;
540 }
541
542 /// Subtract two polynomials, return an undefined polynomial if
543 /// subtraction is not possible.
544 Polynomial operator-(const Polynomial &o) const {
545 // Return an undefined polynomial if incompatible.
546 if (!isCompatibleTo(o))
547 return Polynomial();
548
549 // If the polynomials are compatible (meaning they have the same
550 // coefficient on B), B is eliminated. Thus a polynomial solely
551 // containing A is returned
552 return Polynomial(A - o.A, std::max(a: ErrorMSBs, b: o.ErrorMSBs));
553 }
554
555 /// Subtract a constant from a polynomial,
556 Polynomial operator-(uint64_t C) const {
557 Polynomial Result(*this);
558 Result.A -= C;
559 return Result;
560 }
561
562 /// Add a constant to a polynomial,
563 Polynomial operator+(uint64_t C) const {
564 Polynomial Result(*this);
565 Result.A += C;
566 return Result;
567 }
568
569 /// Returns true if it can be proven that two Polynomials are equal.
570 bool isProvenEqualTo(const Polynomial &o) {
571 // Subtract both polynomials and test if it is fully defined and zero.
572 Polynomial r = *this - o;
573 return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isZero());
574 }
575
576 /// Print the polynomial into a stream.
577 void print(raw_ostream &OS) const {
578 OS << "[{#ErrBits:" << ErrorMSBs << "} ";
579
580 if (V) {
581 for (auto b : B)
582 OS << "(";
583 OS << "(" << *V << ") ";
584
585 for (auto b : B) {
586 switch (b.first) {
587 case LShr:
588 OS << "LShr ";
589 break;
590 case Mul:
591 OS << "Mul ";
592 break;
593 case SExt:
594 OS << "SExt ";
595 break;
596 case Trunc:
597 OS << "Trunc ";
598 break;
599 }
600
601 OS << b.second << ") ";
602 }
603 }
604
605 OS << "+ " << A << "]";
606 }
607
608private:
609 void deleteB() {
610 V = nullptr;
611 B.clear();
612 }
613
614 void pushBOperation(const BOps Op, const APInt &C) {
615 if (isFirstOrder()) {
616 B.push_back(Elt: std::make_pair(x: Op, y: C));
617 return;
618 }
619 }
620};
621
622#ifndef NDEBUG
623static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) {
624 S.print(OS);
625 return OS;
626}
627#endif
628
629/// VectorInfo stores abstract the following information for each vector
630/// element:
631///
632/// 1) The memory address loaded into the element as Polynomial
633/// 2) a set of load instruction necessary to construct the vector,
634/// 3) a set of all other instructions that are necessary to create the vector and
635/// 4) a pointer value that can be used as relative base for all elements.
636struct VectorInfo {
637private:
638 VectorInfo(const VectorInfo &c) : VTy(c.VTy) {
639 llvm_unreachable(
640 "Copying VectorInfo is neither implemented nor necessary,");
641 }
642
643public:
644 /// Information of a Vector Element
645 struct ElementInfo {
646 /// Offset Polynomial.
647 Polynomial Ofs;
648
649 /// The Load Instruction used to Load the entry. LI is null if the pointer
650 /// of the load instruction does not point on to the entry
651 LoadInst *LI;
652
653 ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr)
654 : Ofs(Offset), LI(LI) {}
655 };
656
657 /// Basic-block the load instructions are within
658 BasicBlock *BB = nullptr;
659
660 /// Pointer value of all participation load instructions
661 Value *PV = nullptr;
662
663 /// Participating load instructions
664 std::set<LoadInst *> LIs;
665
666 /// Participating instructions
667 std::set<Instruction *> Is;
668
669 /// Final shuffle-vector instruction
670 ShuffleVectorInst *SVI = nullptr;
671
672 /// Information of the offset for each vector element
673 ElementInfo *EI;
674
675 /// Vector Type
676 FixedVectorType *const VTy;
677
678 VectorInfo(FixedVectorType *VTy) : VTy(VTy) {
679 EI = new ElementInfo[VTy->getNumElements()];
680 }
681
682 VectorInfo &operator=(const VectorInfo &other) = delete;
683
684 virtual ~VectorInfo() { delete[] EI; }
685
686 unsigned getDimension() const { return VTy->getNumElements(); }
687
688 /// Test if the VectorInfo can be part of an interleaved load with the
689 /// specified factor.
690 ///
691 /// \param Factor of the interleave
692 /// \param DL Targets Datalayout
693 ///
694 /// \returns true if this is possible and false if not
695 bool isInterleaved(unsigned Factor, const DataLayout &DL) const {
696 unsigned Size = DL.getTypeAllocSize(Ty: VTy->getElementType());
697 for (unsigned i = 1; i < getDimension(); i++) {
698 if (!EI[i].Ofs.isProvenEqualTo(o: EI[0].Ofs + i * Factor * Size)) {
699 return false;
700 }
701 }
702 return true;
703 }
704
705 /// Recursively computes the vector information stored in V.
706 ///
707 /// This function delegates the work to specialized implementations
708 ///
709 /// \param V Value to operate on
710 /// \param Result Result of the computation
711 ///
712 /// \returns false if no sensible information can be gathered.
713 static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) {
714 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Val: V);
715 if (SVI)
716 return computeFromSVI(SVI, Result, DL);
717 LoadInst *LI = dyn_cast<LoadInst>(Val: V);
718 if (LI)
719 return computeFromLI(LI, Result, DL);
720 BitCastInst *BCI = dyn_cast<BitCastInst>(Val: V);
721 if (BCI)
722 return computeFromBCI(BCI, Result, DL);
723 return false;
724 }
725
726 /// BitCastInst specialization to compute the vector information.
727 ///
728 /// \param BCI BitCastInst to operate on
729 /// \param Result Result of the computation
730 ///
731 /// \returns false if no sensible information can be gathered.
732 static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result,
733 const DataLayout &DL) {
734 Instruction *Op = dyn_cast<Instruction>(Val: BCI->getOperand(i_nocapture: 0));
735
736 if (!Op)
737 return false;
738
739 FixedVectorType *VTy = dyn_cast<FixedVectorType>(Val: Op->getType());
740 if (!VTy)
741 return false;
742
743 // We can only cast from large to smaller vectors
744 if (Result.VTy->getNumElements() % VTy->getNumElements())
745 return false;
746
747 unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements();
748 unsigned NewSize = DL.getTypeAllocSize(Ty: Result.VTy->getElementType());
749 unsigned OldSize = DL.getTypeAllocSize(Ty: VTy->getElementType());
750
751 if (NewSize * Factor != OldSize)
752 return false;
753
754 VectorInfo Old(VTy);
755 if (!compute(V: Op, Result&: Old, DL))
756 return false;
757
758 for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) {
759 for (unsigned j = 0; j < Factor; j++) {
760 Result.EI[i + j] =
761 ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize,
762 j == 0 ? Old.EI[i / Factor].LI : nullptr);
763 }
764 }
765
766 Result.BB = Old.BB;
767 Result.PV = Old.PV;
768 Result.LIs.insert(first: Old.LIs.begin(), last: Old.LIs.end());
769 Result.Is.insert(first: Old.Is.begin(), last: Old.Is.end());
770 Result.Is.insert(x: BCI);
771 Result.SVI = nullptr;
772
773 return true;
774 }
775
776 /// ShuffleVectorInst specialization to compute vector information.
777 ///
778 /// \param SVI ShuffleVectorInst to operate on
779 /// \param Result Result of the computation
780 ///
781 /// Compute the left and the right side vector information and merge them by
782 /// applying the shuffle operation. This function also ensures that the left
783 /// and right side have compatible loads. This means that all loads are with
784 /// in the same basic block and are based on the same pointer.
785 ///
786 /// \returns false if no sensible information can be gathered.
787 static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result,
788 const DataLayout &DL) {
789 FixedVectorType *ArgTy =
790 cast<FixedVectorType>(Val: SVI->getOperand(i_nocapture: 0)->getType());
791
792 // Compute the left hand vector information.
793 VectorInfo LHS(ArgTy);
794 if (!compute(V: SVI->getOperand(i_nocapture: 0), Result&: LHS, DL))
795 LHS.BB = nullptr;
796
797 // Compute the right hand vector information.
798 VectorInfo RHS(ArgTy);
799 if (!compute(V: SVI->getOperand(i_nocapture: 1), Result&: RHS, DL))
800 RHS.BB = nullptr;
801
802 // Neither operand produced sensible results?
803 if (!LHS.BB && !RHS.BB)
804 return false;
805 // Only RHS produced sensible results?
806 else if (!LHS.BB) {
807 Result.BB = RHS.BB;
808 Result.PV = RHS.PV;
809 }
810 // Only LHS produced sensible results?
811 else if (!RHS.BB) {
812 Result.BB = LHS.BB;
813 Result.PV = LHS.PV;
814 }
815 // Both operands produced sensible results?
816 else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) {
817 Result.BB = LHS.BB;
818 Result.PV = LHS.PV;
819 }
820 // Both operands produced sensible results but they are incompatible.
821 else {
822 return false;
823 }
824
825 // Merge and apply the operation on the offset information.
826 if (LHS.BB) {
827 Result.LIs.insert(first: LHS.LIs.begin(), last: LHS.LIs.end());
828 Result.Is.insert(first: LHS.Is.begin(), last: LHS.Is.end());
829 }
830 if (RHS.BB) {
831 Result.LIs.insert(first: RHS.LIs.begin(), last: RHS.LIs.end());
832 Result.Is.insert(first: RHS.Is.begin(), last: RHS.Is.end());
833 }
834 Result.Is.insert(x: SVI);
835 Result.SVI = SVI;
836
837 int j = 0;
838 for (int i : SVI->getShuffleMask()) {
839 assert((i < 2 * (signed)ArgTy->getNumElements()) &&
840 "Invalid ShuffleVectorInst (index out of bounds)");
841
842 if (i < 0)
843 Result.EI[j] = ElementInfo();
844 else if (i < (signed)ArgTy->getNumElements()) {
845 if (LHS.BB)
846 Result.EI[j] = LHS.EI[i];
847 else
848 Result.EI[j] = ElementInfo();
849 } else {
850 if (RHS.BB)
851 Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()];
852 else
853 Result.EI[j] = ElementInfo();
854 }
855 j++;
856 }
857
858 return true;
859 }
860
861 /// LoadInst specialization to compute vector information.
862 ///
863 /// This function also acts as abort condition to the recursion.
864 ///
865 /// \param LI LoadInst to operate on
866 /// \param Result Result of the computation
867 ///
868 /// \returns false if no sensible information can be gathered.
869 static bool computeFromLI(LoadInst *LI, VectorInfo &Result,
870 const DataLayout &DL) {
871 Value *BasePtr;
872 Polynomial Offset;
873
874 if (LI->isVolatile())
875 return false;
876
877 if (LI->isAtomic())
878 return false;
879
880 if (!DL.typeSizeEqualsStoreSize(Ty: Result.VTy->getElementType()))
881 return false;
882
883 // Get the base polynomial
884 computePolynomialFromPointer(Ptr&: *LI->getPointerOperand(), Result&: Offset, BasePtr, DL);
885
886 Result.BB = LI->getParent();
887 Result.PV = BasePtr;
888 Result.LIs.insert(x: LI);
889 Result.Is.insert(x: LI);
890
891 for (unsigned i = 0; i < Result.getDimension(); i++) {
892 Value *Idx[2] = {
893 ConstantInt::get(Ty: Type::getInt32Ty(C&: LI->getContext()), V: 0),
894 ConstantInt::get(Ty: Type::getInt32Ty(C&: LI->getContext()), V: i),
895 };
896 int64_t Ofs = DL.getIndexedOffsetInType(ElemTy: Result.VTy, Indices: Idx);
897 Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr);
898 }
899
900 return true;
901 }
902
903 /// Recursively compute polynomial of a value.
904 ///
905 /// \param BO Input binary operation
906 /// \param Result Result polynomial
907 static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) {
908 Value *LHS = BO.getOperand(i_nocapture: 0);
909 Value *RHS = BO.getOperand(i_nocapture: 1);
910
911 // Find the RHS Constant if any
912 ConstantInt *C = dyn_cast<ConstantInt>(Val: RHS);
913 if ((!C) && BO.isCommutative()) {
914 C = dyn_cast<ConstantInt>(Val: LHS);
915 if (C)
916 std::swap(a&: LHS, b&: RHS);
917 }
918
919 switch (BO.getOpcode()) {
920 case Instruction::Add:
921 if (!C)
922 break;
923
924 computePolynomial(V&: *LHS, Result);
925 Result.add(C: C->getValue());
926 return;
927
928 case Instruction::LShr:
929 if (!C)
930 break;
931
932 computePolynomial(V&: *LHS, Result);
933 Result.lshr(C: C->getValue());
934 return;
935
936 default:
937 break;
938 }
939
940 Result = Polynomial(&BO);
941 }
942
943 /// Recursively compute polynomial of a value
944 ///
945 /// \param V input value
946 /// \param Result result polynomial
947 static void computePolynomial(Value &V, Polynomial &Result) {
948 if (auto *BO = dyn_cast<BinaryOperator>(Val: &V))
949 computePolynomialBinOp(BO&: *BO, Result);
950 else
951 Result = Polynomial(&V);
952 }
953
954 /// Compute the Polynomial representation of a Pointer type.
955 ///
956 /// \param Ptr input pointer value
957 /// \param Result result polynomial
958 /// \param BasePtr pointer the polynomial is based on
959 /// \param DL Datalayout of the target machine
960 static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result,
961 Value *&BasePtr,
962 const DataLayout &DL) {
963 // Not a pointer type? Return an undefined polynomial
964 PointerType *PtrTy = dyn_cast<PointerType>(Val: Ptr.getType());
965 if (!PtrTy) {
966 Result = Polynomial();
967 BasePtr = nullptr;
968 return;
969 }
970 unsigned PointerBits =
971 DL.getIndexSizeInBits(AS: PtrTy->getPointerAddressSpace());
972
973 /// Skip pointer casts. Return Zero polynomial otherwise
974 if (isa<CastInst>(Val: &Ptr)) {
975 CastInst &CI = *cast<CastInst>(Val: &Ptr);
976 switch (CI.getOpcode()) {
977 case Instruction::BitCast:
978 computePolynomialFromPointer(Ptr&: *CI.getOperand(i_nocapture: 0), Result, BasePtr, DL);
979 break;
980 default:
981 BasePtr = &Ptr;
982 Polynomial(PointerBits, 0);
983 break;
984 }
985 }
986 /// Resolve GetElementPtrInst.
987 else if (isa<GetElementPtrInst>(Val: &Ptr)) {
988 GetElementPtrInst &GEP = *cast<GetElementPtrInst>(Val: &Ptr);
989
990 APInt BaseOffset(PointerBits, 0);
991
992 // Check if we can compute the Offset with accumulateConstantOffset
993 if (GEP.accumulateConstantOffset(DL, Offset&: BaseOffset)) {
994 Result = Polynomial(BaseOffset);
995 BasePtr = GEP.getPointerOperand();
996 return;
997 } else {
998 // Otherwise we allow that the last index operand of the GEP is
999 // non-constant.
1000 unsigned idxOperand, e;
1001 SmallVector<Value *, 4> Indices;
1002 for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e;
1003 idxOperand++) {
1004 ConstantInt *IDX = dyn_cast<ConstantInt>(Val: GEP.getOperand(i_nocapture: idxOperand));
1005 if (!IDX)
1006 break;
1007 Indices.push_back(Elt: IDX);
1008 }
1009
1010 // It must also be the last operand.
1011 if (idxOperand + 1 != e) {
1012 Result = Polynomial();
1013 BasePtr = nullptr;
1014 return;
1015 }
1016
1017 // Compute the polynomial of the index operand.
1018 computePolynomial(V&: *GEP.getOperand(i_nocapture: idxOperand), Result);
1019
1020 // Compute base offset from zero based index, excluding the last
1021 // variable operand.
1022 BaseOffset =
1023 DL.getIndexedOffsetInType(ElemTy: GEP.getSourceElementType(), Indices);
1024
1025 // Apply the operations of GEP to the polynomial.
1026 unsigned ResultSize = DL.getTypeAllocSize(Ty: GEP.getResultElementType());
1027 Result.sextOrTrunc(n: PointerBits);
1028 Result.mul(C: APInt(PointerBits, ResultSize));
1029 Result.add(C: BaseOffset);
1030 BasePtr = GEP.getPointerOperand();
1031 }
1032 }
1033 // All other instructions are handled by using the value as base pointer and
1034 // a zero polynomial.
1035 else {
1036 BasePtr = &Ptr;
1037 Polynomial(DL.getIndexSizeInBits(AS: PtrTy->getPointerAddressSpace()), 0);
1038 }
1039 }
1040
1041#ifndef NDEBUG
1042 void print(raw_ostream &OS) const {
1043 if (PV)
1044 OS << *PV;
1045 else
1046 OS << "(none)";
1047 OS << " + ";
1048 for (unsigned i = 0; i < getDimension(); i++)
1049 OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs;
1050 OS << "]";
1051 }
1052#endif
1053};
1054
1055} // anonymous namespace
1056
1057bool InterleavedLoadCombineImpl::findPattern(
1058 std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad,
1059 unsigned Factor, const DataLayout &DL) {
1060 for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) {
1061 unsigned i;
1062 // Try to find an interleaved load using the front of Worklist as first line
1063 unsigned Size = DL.getTypeAllocSize(Ty: C0->VTy->getElementType());
1064
1065 // List containing iterators pointing to the VectorInfos of the candidates
1066 std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end());
1067
1068 for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) {
1069 if (C->VTy != C0->VTy)
1070 continue;
1071 if (C->BB != C0->BB)
1072 continue;
1073 if (C->PV != C0->PV)
1074 continue;
1075
1076 // Check the current value matches any of factor - 1 remaining lines
1077 for (i = 1; i < Factor; i++) {
1078 if (C->EI[0].Ofs.isProvenEqualTo(o: C0->EI[0].Ofs + i * Size)) {
1079 Res[i] = C;
1080 }
1081 }
1082
1083 for (i = 1; i < Factor; i++) {
1084 if (Res[i] == Candidates.end())
1085 break;
1086 }
1087 if (i == Factor) {
1088 Res[0] = C0;
1089 break;
1090 }
1091 }
1092
1093 if (Res[0] != Candidates.end()) {
1094 // Move the result into the output
1095 for (unsigned i = 0; i < Factor; i++) {
1096 InterleavedLoad.splice(position: InterleavedLoad.end(), x&: Candidates, i: Res[i]);
1097 }
1098
1099 return true;
1100 }
1101 }
1102 return false;
1103}
1104
1105LoadInst *
1106InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) {
1107 assert(!LIs.empty() && "No load instructions given.");
1108
1109 // All LIs are within the same BB. Select the first for a reference.
1110 BasicBlock *BB = (*LIs.begin())->getParent();
1111 BasicBlock::iterator FLI = llvm::find_if(
1112 Range&: *BB, P: [&LIs](Instruction &I) -> bool { return is_contained(Range: LIs, Element: &I); });
1113 assert(FLI != BB->end());
1114
1115 return cast<LoadInst>(Val&: FLI);
1116}
1117
1118bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad,
1119 OptimizationRemarkEmitter &ORE) {
1120 LLVM_DEBUG(dbgs() << "Checking interleaved load\n");
1121
1122 // The insertion point is the LoadInst which loads the first values. The
1123 // following tests are used to proof that the combined load can be inserted
1124 // just before InsertionPoint.
1125 LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI;
1126
1127 // Test if the offset is computed
1128 if (!InsertionPoint)
1129 return false;
1130
1131 std::set<LoadInst *> LIs;
1132 std::set<Instruction *> Is;
1133 std::set<Instruction *> SVIs;
1134
1135 InstructionCost InterleavedCost;
1136 InstructionCost InstructionCost = 0;
1137 const TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency;
1138
1139 // Get the interleave factor
1140 unsigned Factor = InterleavedLoad.size();
1141
1142 // Merge all input sets used in analysis
1143 for (auto &VI : InterleavedLoad) {
1144 // Generate a set of all load instructions to be combined
1145 LIs.insert(first: VI.LIs.begin(), last: VI.LIs.end());
1146
1147 // Generate a set of all instructions taking part in load
1148 // interleaved. This list excludes the instructions necessary for the
1149 // polynomial construction.
1150 Is.insert(first: VI.Is.begin(), last: VI.Is.end());
1151
1152 // Generate the set of the final ShuffleVectorInst.
1153 SVIs.insert(x: VI.SVI);
1154 }
1155
1156 // There is nothing to combine.
1157 if (LIs.size() < 2)
1158 return false;
1159
1160 // Test if all participating instruction will be dead after the
1161 // transformation. If intermediate results are used, no performance gain can
1162 // be expected. Also sum the cost of the Instructions beeing left dead.
1163 for (const auto &I : Is) {
1164 // Compute the old cost
1165 InstructionCost += TTI.getInstructionCost(U: I, CostKind);
1166
1167 // The final SVIs are allowed not to be dead, all uses will be replaced
1168 if (SVIs.find(x: I) != SVIs.end())
1169 continue;
1170
1171 // If there are users outside the set to be eliminated, we abort the
1172 // transformation. No gain can be expected.
1173 for (auto *U : I->users()) {
1174 if (Is.find(x: dyn_cast<Instruction>(Val: U)) == Is.end())
1175 return false;
1176 }
1177 }
1178
1179 // We need to have a valid cost in order to proceed.
1180 if (!InstructionCost.isValid())
1181 return false;
1182
1183 // We know that all LoadInst are within the same BB. This guarantees that
1184 // either everything or nothing is loaded.
1185 LoadInst *First = findFirstLoad(LIs);
1186
1187 // To be safe that the loads can be combined, iterate over all loads and test
1188 // that the corresponding defining access dominates first LI. This guarantees
1189 // that there are no aliasing stores in between the loads.
1190 auto FMA = MSSA.getMemoryAccess(I: First);
1191 for (auto *LI : LIs) {
1192 auto MADef = MSSA.getMemoryAccess(I: LI)->getDefiningAccess();
1193 if (!MSSA.dominates(A: MADef, B: FMA))
1194 return false;
1195 }
1196 assert(!LIs.empty() && "There are no LoadInst to combine");
1197
1198 // It is necessary that insertion point dominates all final ShuffleVectorInst.
1199 for (auto &VI : InterleavedLoad) {
1200 if (!DT.dominates(Def: InsertionPoint, User: VI.SVI))
1201 return false;
1202 }
1203
1204 // All checks are done. Add instructions detectable by InterleavedAccessPass
1205 // The old instruction will are left dead.
1206 IRBuilder<> Builder(InsertionPoint);
1207 Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType();
1208 unsigned ElementsPerSVI =
1209 cast<FixedVectorType>(Val: InterleavedLoad.front().SVI->getType())
1210 ->getNumElements();
1211 FixedVectorType *ILTy = FixedVectorType::get(ElementType: ETy, NumElts: Factor * ElementsPerSVI);
1212
1213 auto Indices = llvm::to_vector<4>(Range: llvm::seq<unsigned>(Begin: 0, End: Factor));
1214 InterleavedCost = TTI.getInterleavedMemoryOpCost(
1215 Opcode: Instruction::Load, VecTy: ILTy, Factor, Indices, Alignment: InsertionPoint->getAlign(),
1216 AddressSpace: InsertionPoint->getPointerAddressSpace(), CostKind);
1217
1218 if (InterleavedCost >= InstructionCost) {
1219 return false;
1220 }
1221
1222 // Create the wide load and update the MemorySSA.
1223 auto Ptr = InsertionPoint->getPointerOperand();
1224 auto LI = Builder.CreateAlignedLoad(Ty: ILTy, Ptr, Align: InsertionPoint->getAlign(),
1225 Name: "interleaved.wide.load");
1226 auto MSSAU = MemorySSAUpdater(&MSSA);
1227 MemoryUse *MSSALoad = cast<MemoryUse>(Val: MSSAU.createMemoryAccessBefore(
1228 I: LI, Definition: nullptr, InsertPt: MSSA.getMemoryAccess(I: InsertionPoint)));
1229 MSSAU.insertUse(Use: MSSALoad, /*RenameUses=*/ true);
1230
1231 // Create the final SVIs and replace all uses.
1232 int i = 0;
1233 for (auto &VI : InterleavedLoad) {
1234 SmallVector<int, 4> Mask;
1235 for (unsigned j = 0; j < ElementsPerSVI; j++)
1236 Mask.push_back(Elt: i + j * Factor);
1237
1238 Builder.SetInsertPoint(VI.SVI);
1239 auto SVI = Builder.CreateShuffleVector(V: LI, Mask, Name: "interleaved.shuffle");
1240 VI.SVI->replaceAllUsesWith(V: SVI);
1241 i++;
1242 }
1243
1244 NumInterleavedLoadCombine++;
1245 ORE.emit(RemarkBuilder: [&]() {
1246 return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI)
1247 << "Load interleaved combined with factor "
1248 << ore::NV("Factor", Factor);
1249 });
1250
1251 return true;
1252}
1253
1254bool InterleavedLoadCombineImpl::run() {
1255 OptimizationRemarkEmitter ORE(&F);
1256 bool changed = false;
1257 unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor();
1258
1259 auto &DL = F.getDataLayout();
1260
1261 // Start with the highest factor to avoid combining and recombining.
1262 for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) {
1263 std::list<VectorInfo> Candidates;
1264
1265 for (BasicBlock &BB : F) {
1266 for (Instruction &I : BB) {
1267 if (auto SVI = dyn_cast<ShuffleVectorInst>(Val: &I)) {
1268 // We don't support scalable vectors in this pass.
1269 if (isa<ScalableVectorType>(Val: SVI->getType()))
1270 continue;
1271
1272 Candidates.emplace_back(args: cast<FixedVectorType>(Val: SVI->getType()));
1273
1274 if (!VectorInfo::computeFromSVI(SVI, Result&: Candidates.back(), DL)) {
1275 Candidates.pop_back();
1276 continue;
1277 }
1278
1279 if (!Candidates.back().isInterleaved(Factor, DL)) {
1280 Candidates.pop_back();
1281 }
1282 }
1283 }
1284 }
1285
1286 std::list<VectorInfo> InterleavedLoad;
1287 while (findPattern(Candidates, InterleavedLoad, Factor, DL)) {
1288 if (combine(InterleavedLoad, ORE)) {
1289 changed = true;
1290 } else {
1291 // Remove the first element of the Interleaved Load but put the others
1292 // back on the list and continue searching
1293 Candidates.splice(position: Candidates.begin(), x&: InterleavedLoad,
1294 first: std::next(x: InterleavedLoad.begin()),
1295 last: InterleavedLoad.end());
1296 }
1297 InterleavedLoad.clear();
1298 }
1299 }
1300
1301 return changed;
1302}
1303
1304namespace {
1305/// This pass combines interleaved loads into a pattern detectable by
1306/// InterleavedAccessPass.
1307struct InterleavedLoadCombine : public FunctionPass {
1308 static char ID;
1309
1310 InterleavedLoadCombine() : FunctionPass(ID) {
1311 initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry());
1312 }
1313
1314 StringRef getPassName() const override {
1315 return "Interleaved Load Combine Pass";
1316 }
1317
1318 bool runOnFunction(Function &F) override {
1319 if (DisableInterleavedLoadCombine)
1320 return false;
1321
1322 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1323 if (!TPC)
1324 return false;
1325
1326 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName()
1327 << "\n");
1328
1329 return InterleavedLoadCombineImpl(
1330 F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
1331 getAnalysis<MemorySSAWrapperPass>().getMSSA(),
1332 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
1333 TPC->getTM<TargetMachine>())
1334 .run();
1335 }
1336
1337 void getAnalysisUsage(AnalysisUsage &AU) const override {
1338 AU.addRequired<MemorySSAWrapperPass>();
1339 AU.addRequired<DominatorTreeWrapperPass>();
1340 AU.addRequired<TargetTransformInfoWrapperPass>();
1341 FunctionPass::getAnalysisUsage(AU);
1342 }
1343
1344private:
1345};
1346} // anonymous namespace
1347
1348PreservedAnalyses
1349InterleavedLoadCombinePass::run(Function &F, FunctionAnalysisManager &FAM) {
1350
1351 auto &DT = FAM.getResult<DominatorTreeAnalysis>(IR&: F);
1352 auto &MemSSA = FAM.getResult<MemorySSAAnalysis>(IR&: F).getMSSA();
1353 auto &TTI = FAM.getResult<TargetIRAnalysis>(IR&: F);
1354 bool Changed = InterleavedLoadCombineImpl(F, DT, MemSSA, TTI, *TM).run();
1355 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
1356}
1357
1358char InterleavedLoadCombine::ID = 0;
1359
1360INITIALIZE_PASS_BEGIN(
1361 InterleavedLoadCombine, DEBUG_TYPE,
1362 "Combine interleaved loads into wide loads and shufflevector instructions",
1363 false, false)
1364INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1365INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1366INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1367INITIALIZE_PASS_END(
1368 InterleavedLoadCombine, DEBUG_TYPE,
1369 "Combine interleaved loads into wide loads and shufflevector instructions",
1370 false, false)
1371
1372FunctionPass *
1373llvm::createInterleavedLoadCombinePass() {
1374 auto P = new InterleavedLoadCombine();
1375 return P;
1376}
1377