1 | //===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the LatencyPriorityQueue class, which is a |
10 | // SchedulingPriorityQueue that schedules using latency information to |
11 | // reduce the length of the critical path through the basic block. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "llvm/CodeGen/LatencyPriorityQueue.h" |
16 | #include "llvm/Config/llvm-config.h" |
17 | #include "llvm/Support/Debug.h" |
18 | #include "llvm/Support/raw_ostream.h" |
19 | using namespace llvm; |
20 | |
21 | #define DEBUG_TYPE "scheduler" |
22 | |
23 | bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const { |
24 | // The isScheduleHigh flag allows nodes with wraparound dependencies that |
25 | // cannot easily be modeled as edges with latencies to be scheduled as |
26 | // soon as possible in a top-down schedule. |
27 | if (LHS->isScheduleHigh && !RHS->isScheduleHigh) |
28 | return false; |
29 | if (!LHS->isScheduleHigh && RHS->isScheduleHigh) |
30 | return true; |
31 | |
32 | unsigned LHSNum = LHS->NodeNum; |
33 | unsigned RHSNum = RHS->NodeNum; |
34 | |
35 | // The most important heuristic is scheduling the critical path. |
36 | unsigned LHSLatency = PQ->getLatency(NodeNum: LHSNum); |
37 | unsigned RHSLatency = PQ->getLatency(NodeNum: RHSNum); |
38 | if (LHSLatency < RHSLatency) return true; |
39 | if (LHSLatency > RHSLatency) return false; |
40 | |
41 | // After that, if two nodes have identical latencies, look to see if one will |
42 | // unblock more other nodes than the other. |
43 | unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(NodeNum: LHSNum); |
44 | unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(NodeNum: RHSNum); |
45 | if (LHSBlocked < RHSBlocked) return true; |
46 | if (LHSBlocked > RHSBlocked) return false; |
47 | |
48 | // Finally, just to provide a stable ordering, use the node number as a |
49 | // deciding factor. |
50 | return RHSNum < LHSNum; |
51 | } |
52 | |
53 | |
54 | /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor |
55 | /// of SU, return it, otherwise return null. |
56 | SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) { |
57 | SUnit *OnlyAvailablePred = nullptr; |
58 | for (const SDep &P : SU->Preds) { |
59 | SUnit &Pred = *P.getSUnit(); |
60 | if (!Pred.isScheduled) { |
61 | // We found an available, but not scheduled, predecessor. If it's the |
62 | // only one we have found, keep track of it... otherwise give up. |
63 | if (OnlyAvailablePred && OnlyAvailablePred != &Pred) |
64 | return nullptr; |
65 | OnlyAvailablePred = &Pred; |
66 | } |
67 | } |
68 | |
69 | return OnlyAvailablePred; |
70 | } |
71 | |
72 | void LatencyPriorityQueue::push(SUnit *SU) { |
73 | // Look at all of the successors of this node. Count the number of nodes that |
74 | // this node is the sole unscheduled node for. |
75 | unsigned NumNodesBlocking = 0; |
76 | for (const SDep &Succ : SU->Succs) |
77 | if (getSingleUnscheduledPred(SU: Succ.getSUnit()) == SU) |
78 | ++NumNodesBlocking; |
79 | NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking; |
80 | |
81 | Queue.push_back(x: SU); |
82 | } |
83 | |
84 | |
85 | // scheduledNode - As nodes are scheduled, we look to see if there are any |
86 | // successor nodes that have a single unscheduled predecessor. If so, that |
87 | // single predecessor has a higher priority, since scheduling it will make |
88 | // the node available. |
89 | void LatencyPriorityQueue::scheduledNode(SUnit *SU) { |
90 | for (const SDep &Succ : SU->Succs) |
91 | AdjustPriorityOfUnscheduledPreds(SU: Succ.getSUnit()); |
92 | } |
93 | |
94 | /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just |
95 | /// scheduled. If SU is not itself available, then there is at least one |
96 | /// predecessor node that has not been scheduled yet. If SU has exactly ONE |
97 | /// unscheduled predecessor, we want to increase its priority: it getting |
98 | /// scheduled will make this node available, so it is better than some other |
99 | /// node of the same priority that will not make a node available. |
100 | void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) { |
101 | if (SU->isAvailable) return; // All preds scheduled. |
102 | |
103 | SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU); |
104 | if (!OnlyAvailablePred || !OnlyAvailablePred->isAvailable) return; |
105 | |
106 | // Okay, we found a single predecessor that is available, but not scheduled. |
107 | // Since it is available, it must be in the priority queue. First remove it. |
108 | remove(SU: OnlyAvailablePred); |
109 | |
110 | // Reinsert the node into the priority queue, which recomputes its |
111 | // NumNodesSolelyBlocking value. |
112 | push(SU: OnlyAvailablePred); |
113 | } |
114 | |
115 | SUnit *LatencyPriorityQueue::pop() { |
116 | if (empty()) return nullptr; |
117 | std::vector<SUnit *>::iterator Best = Queue.begin(); |
118 | for (std::vector<SUnit *>::iterator I = std::next(x: Queue.begin()), |
119 | E = Queue.end(); I != E; ++I) |
120 | if (Picker(*Best, *I)) |
121 | Best = I; |
122 | SUnit *V = *Best; |
123 | if (Best != std::prev(x: Queue.end())) |
124 | std::swap(a&: *Best, b&: Queue.back()); |
125 | Queue.pop_back(); |
126 | return V; |
127 | } |
128 | |
129 | void LatencyPriorityQueue::remove(SUnit *SU) { |
130 | assert(!Queue.empty() && "Queue is empty!" ); |
131 | std::vector<SUnit *>::iterator I = find(Range&: Queue, Val: SU); |
132 | assert(I != Queue.end() && "Queue doesn't contain the SU being removed!" ); |
133 | if (I != std::prev(x: Queue.end())) |
134 | std::swap(a&: *I, b&: Queue.back()); |
135 | Queue.pop_back(); |
136 | } |
137 | |
138 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
139 | LLVM_DUMP_METHOD void LatencyPriorityQueue::dump(ScheduleDAG *DAG) const { |
140 | dbgs() << "Latency Priority Queue\n" ; |
141 | dbgs() << " Number of Queue Entries: " << Queue.size() << "\n" ; |
142 | for (const SUnit *SU : Queue) { |
143 | dbgs() << " " ; |
144 | DAG->dumpNode(*SU); |
145 | } |
146 | } |
147 | #endif |
148 | |