1 | //===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | /// |
9 | /// \file VarLocBasedImpl.cpp |
10 | /// |
11 | /// LiveDebugValues is an optimistic "available expressions" dataflow |
12 | /// algorithm. The set of expressions is the set of machine locations |
13 | /// (registers, spill slots, constants, and target indices) that a variable |
14 | /// fragment might be located, qualified by a DIExpression and indirect-ness |
15 | /// flag, while each variable is identified by a DebugVariable object. The |
16 | /// availability of an expression begins when a DBG_VALUE instruction specifies |
17 | /// the location of a DebugVariable, and continues until that location is |
18 | /// clobbered or re-specified by a different DBG_VALUE for the same |
19 | /// DebugVariable. |
20 | /// |
21 | /// The output of LiveDebugValues is additional DBG_VALUE instructions, |
22 | /// placed to extend variable locations as far they're available. This file |
23 | /// and the VarLocBasedLDV class is an implementation that explicitly tracks |
24 | /// locations, using the VarLoc class. |
25 | /// |
26 | /// The canonical "available expressions" problem doesn't have expression |
27 | /// clobbering, instead when a variable is re-assigned, any expressions using |
28 | /// that variable get invalidated. LiveDebugValues can map onto "available |
29 | /// expressions" by having every register represented by a variable, which is |
30 | /// used in an expression that becomes available at a DBG_VALUE instruction. |
31 | /// When the register is clobbered, its variable is effectively reassigned, and |
32 | /// expressions computed from it become unavailable. A similar construct is |
33 | /// needed when a DebugVariable has its location re-specified, to invalidate |
34 | /// all other locations for that DebugVariable. |
35 | /// |
36 | /// Using the dataflow analysis to compute the available expressions, we create |
37 | /// a DBG_VALUE at the beginning of each block where the expression is |
38 | /// live-in. This propagates variable locations into every basic block where |
39 | /// the location can be determined, rather than only having DBG_VALUEs in blocks |
40 | /// where locations are specified due to an assignment or some optimization. |
41 | /// Movements of values between registers and spill slots are annotated with |
42 | /// DBG_VALUEs too to track variable values bewteen locations. All this allows |
43 | /// DbgEntityHistoryCalculator to focus on only the locations within individual |
44 | /// blocks, facilitating testing and improving modularity. |
45 | /// |
46 | /// We follow an optimisic dataflow approach, with this lattice: |
47 | /// |
48 | /// \verbatim |
49 | /// ┬ "Unknown" |
50 | /// | |
51 | /// v |
52 | /// True |
53 | /// | |
54 | /// v |
55 | /// ⊥ False |
56 | /// \endverbatim With "True" signifying that the expression is available (and |
57 | /// thus a DebugVariable's location is the corresponding register), while |
58 | /// "False" signifies that the expression is unavailable. "Unknown"s never |
59 | /// survive to the end of the analysis (see below). |
60 | /// |
61 | /// Formally, all DebugVariable locations that are live-out of a block are |
62 | /// initialized to \top. A blocks live-in values take the meet of the lattice |
63 | /// value for every predecessors live-outs, except for the entry block, where |
64 | /// all live-ins are \bot. The usual dataflow propagation occurs: the transfer |
65 | /// function for a block assigns an expression for a DebugVariable to be "True" |
66 | /// if a DBG_VALUE in the block specifies it; "False" if the location is |
67 | /// clobbered; or the live-in value if it is unaffected by the block. We |
68 | /// visit each block in reverse post order until a fixedpoint is reached. The |
69 | /// solution produced is maximal. |
70 | /// |
71 | /// Intuitively, we start by assuming that every expression / variable location |
72 | /// is at least "True", and then propagate "False" from the entry block and any |
73 | /// clobbers until there are no more changes to make. This gives us an accurate |
74 | /// solution because all incorrect locations will have a "False" propagated into |
75 | /// them. It also gives us a solution that copes well with loops by assuming |
76 | /// that variable locations are live-through every loop, and then removing those |
77 | /// that are not through dataflow. |
78 | /// |
79 | /// Within LiveDebugValues: each variable location is represented by a |
80 | /// VarLoc object that identifies the source variable, the set of |
81 | /// machine-locations that currently describe it (a single location for |
82 | /// DBG_VALUE or multiple for DBG_VALUE_LIST), and the DBG_VALUE inst that |
83 | /// specifies the location. Each VarLoc is indexed in the (function-scope) \p |
84 | /// VarLocMap, giving each VarLoc a set of unique indexes, each of which |
85 | /// corresponds to one of the VarLoc's machine-locations and can be used to |
86 | /// lookup the VarLoc in the VarLocMap. Rather than operate directly on machine |
87 | /// locations, the dataflow analysis in this pass identifies locations by their |
88 | /// indices in the VarLocMap, meaning all the variable locations in a block can |
89 | /// be described by a sparse vector of VarLocMap indices. |
90 | /// |
91 | /// All the storage for the dataflow analysis is local to the ExtendRanges |
92 | /// method and passed down to helper methods. "OutLocs" and "InLocs" record the |
93 | /// in and out lattice values for each block. "OpenRanges" maintains a list of |
94 | /// variable locations and, with the "process" method, evaluates the transfer |
95 | /// function of each block. "flushPendingLocs" installs debug value instructions |
96 | /// for each live-in location at the start of blocks, while "Transfers" records |
97 | /// transfers of values between machine-locations. |
98 | /// |
99 | /// We avoid explicitly representing the "Unknown" (\top) lattice value in the |
100 | /// implementation. Instead, unvisited blocks implicitly have all lattice |
101 | /// values set as "Unknown". After being visited, there will be path back to |
102 | /// the entry block where the lattice value is "False", and as the transfer |
103 | /// function cannot make new "Unknown" locations, there are no scenarios where |
104 | /// a block can have an "Unknown" location after being visited. Similarly, we |
105 | /// don't enumerate all possible variable locations before exploring the |
106 | /// function: when a new location is discovered, all blocks previously explored |
107 | /// were implicitly "False" but unrecorded, and become explicitly "False" when |
108 | /// a new VarLoc is created with its bit not set in predecessor InLocs or |
109 | /// OutLocs. |
110 | /// |
111 | //===----------------------------------------------------------------------===// |
112 | |
113 | #include "LiveDebugValues.h" |
114 | |
115 | #include "llvm/ADT/CoalescingBitVector.h" |
116 | #include "llvm/ADT/DenseMap.h" |
117 | #include "llvm/ADT/PostOrderIterator.h" |
118 | #include "llvm/ADT/SmallPtrSet.h" |
119 | #include "llvm/ADT/SmallSet.h" |
120 | #include "llvm/ADT/SmallVector.h" |
121 | #include "llvm/ADT/Statistic.h" |
122 | #include "llvm/BinaryFormat/Dwarf.h" |
123 | #include "llvm/CodeGen/LexicalScopes.h" |
124 | #include "llvm/CodeGen/MachineBasicBlock.h" |
125 | #include "llvm/CodeGen/MachineFunction.h" |
126 | #include "llvm/CodeGen/MachineInstr.h" |
127 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
128 | #include "llvm/CodeGen/MachineMemOperand.h" |
129 | #include "llvm/CodeGen/MachineOperand.h" |
130 | #include "llvm/CodeGen/PseudoSourceValue.h" |
131 | #include "llvm/CodeGen/TargetFrameLowering.h" |
132 | #include "llvm/CodeGen/TargetInstrInfo.h" |
133 | #include "llvm/CodeGen/TargetLowering.h" |
134 | #include "llvm/CodeGen/TargetPassConfig.h" |
135 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
136 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
137 | #include "llvm/Config/llvm-config.h" |
138 | #include "llvm/IR/DebugInfoMetadata.h" |
139 | #include "llvm/IR/DebugLoc.h" |
140 | #include "llvm/IR/Function.h" |
141 | #include "llvm/MC/MCRegisterInfo.h" |
142 | #include "llvm/Support/Casting.h" |
143 | #include "llvm/Support/Debug.h" |
144 | #include "llvm/Support/TypeSize.h" |
145 | #include "llvm/Support/raw_ostream.h" |
146 | #include "llvm/Target/TargetMachine.h" |
147 | #include <algorithm> |
148 | #include <cassert> |
149 | #include <cstdint> |
150 | #include <functional> |
151 | #include <map> |
152 | #include <optional> |
153 | #include <queue> |
154 | #include <tuple> |
155 | #include <utility> |
156 | #include <vector> |
157 | |
158 | using namespace llvm; |
159 | |
160 | #define DEBUG_TYPE "livedebugvalues" |
161 | |
162 | STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted" ); |
163 | |
164 | /// If \p Op is a stack or frame register return true, otherwise return false. |
165 | /// This is used to avoid basing the debug entry values on the registers, since |
166 | /// we do not support it at the moment. |
167 | static bool isRegOtherThanSPAndFP(const MachineOperand &Op, |
168 | const MachineInstr &MI, |
169 | const TargetRegisterInfo *TRI) { |
170 | if (!Op.isReg()) |
171 | return false; |
172 | |
173 | const MachineFunction *MF = MI.getParent()->getParent(); |
174 | const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); |
175 | Register SP = TLI->getStackPointerRegisterToSaveRestore(); |
176 | Register FP = TRI->getFrameRegister(MF: *MF); |
177 | Register Reg = Op.getReg(); |
178 | |
179 | return Reg && Reg != SP && Reg != FP; |
180 | } |
181 | |
182 | namespace { |
183 | |
184 | // Max out the number of statically allocated elements in DefinedRegsSet, as |
185 | // this prevents fallback to std::set::count() operations. |
186 | using DefinedRegsSet = SmallSet<Register, 32>; |
187 | |
188 | // The IDs in this set correspond to MachineLocs in VarLocs, as well as VarLocs |
189 | // that represent Entry Values; every VarLoc in the set will also appear |
190 | // exactly once at Location=0. |
191 | // As a result, each VarLoc may appear more than once in this "set", but each |
192 | // range corresponding to a Reg, SpillLoc, or EntryValue type will still be a |
193 | // "true" set (i.e. each VarLoc may appear only once), and the range Location=0 |
194 | // is the set of all VarLocs. |
195 | using VarLocSet = CoalescingBitVector<uint64_t>; |
196 | |
197 | /// A type-checked pair of {Register Location (or 0), Index}, used to index |
198 | /// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int |
199 | /// for insertion into a \ref VarLocSet, and efficiently converted back. The |
200 | /// type-checker helps ensure that the conversions aren't lossy. |
201 | /// |
202 | /// Why encode a location /into/ the VarLocMap index? This makes it possible |
203 | /// to find the open VarLocs killed by a register def very quickly. This is a |
204 | /// performance-critical operation for LiveDebugValues. |
205 | struct LocIndex { |
206 | using u32_location_t = uint32_t; |
207 | using u32_index_t = uint32_t; |
208 | |
209 | u32_location_t Location; // Physical registers live in the range [1;2^30) (see |
210 | // \ref MCRegister), so we have plenty of range left |
211 | // here to encode non-register locations. |
212 | u32_index_t Index; |
213 | |
214 | /// The location that has an entry for every VarLoc in the map. |
215 | static constexpr u32_location_t kUniversalLocation = 0; |
216 | |
217 | /// The first location that is reserved for VarLocs with locations of kind |
218 | /// RegisterKind. |
219 | static constexpr u32_location_t kFirstRegLocation = 1; |
220 | |
221 | /// The first location greater than 0 that is not reserved for VarLocs with |
222 | /// locations of kind RegisterKind. |
223 | static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30; |
224 | |
225 | /// A special location reserved for VarLocs with locations of kind |
226 | /// SpillLocKind. |
227 | static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation; |
228 | |
229 | /// A special location reserved for VarLocs of kind EntryValueBackupKind and |
230 | /// EntryValueCopyBackupKind. |
231 | static constexpr u32_location_t kEntryValueBackupLocation = |
232 | kFirstInvalidRegLocation + 1; |
233 | |
234 | /// A special location reserved for VarLocs with locations of kind |
235 | /// WasmLocKind. |
236 | /// TODO Placing all Wasm target index locations in this single kWasmLocation |
237 | /// may cause slowdown in compilation time in very large functions. Consider |
238 | /// giving a each target index/offset pair its own u32_location_t if this |
239 | /// becomes a problem. |
240 | static constexpr u32_location_t kWasmLocation = kFirstInvalidRegLocation + 2; |
241 | |
242 | LocIndex(u32_location_t Location, u32_index_t Index) |
243 | : Location(Location), Index(Index) {} |
244 | |
245 | uint64_t getAsRawInteger() const { |
246 | return (static_cast<uint64_t>(Location) << 32) | Index; |
247 | } |
248 | |
249 | template<typename IntT> static LocIndex fromRawInteger(IntT ID) { |
250 | static_assert(std::is_unsigned_v<IntT> && sizeof(ID) == sizeof(uint64_t), |
251 | "Cannot convert raw integer to LocIndex" ); |
252 | return {static_cast<u32_location_t>(ID >> 32), |
253 | static_cast<u32_index_t>(ID)}; |
254 | } |
255 | |
256 | /// Get the start of the interval reserved for VarLocs of kind RegisterKind |
257 | /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1. |
258 | static uint64_t rawIndexForReg(Register Reg) { |
259 | return LocIndex(Reg, 0).getAsRawInteger(); |
260 | } |
261 | |
262 | /// Return a range covering all set indices in the interval reserved for |
263 | /// \p Location in \p Set. |
264 | static auto indexRangeForLocation(const VarLocSet &Set, |
265 | u32_location_t Location) { |
266 | uint64_t Start = LocIndex(Location, 0).getAsRawInteger(); |
267 | uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger(); |
268 | return Set.half_open_range(Start, End); |
269 | } |
270 | }; |
271 | |
272 | // Simple Set for storing all the VarLoc Indices at a Location bucket. |
273 | using VarLocsInRange = SmallSet<LocIndex::u32_index_t, 32>; |
274 | // Vector of all `LocIndex`s for a given VarLoc; the same Location should not |
275 | // appear in any two of these, as each VarLoc appears at most once in any |
276 | // Location bucket. |
277 | using LocIndices = SmallVector<LocIndex, 2>; |
278 | |
279 | class VarLocBasedLDV : public LDVImpl { |
280 | private: |
281 | const TargetRegisterInfo *TRI; |
282 | const TargetInstrInfo *TII; |
283 | const TargetFrameLowering *TFI; |
284 | TargetPassConfig *TPC; |
285 | BitVector CalleeSavedRegs; |
286 | LexicalScopes LS; |
287 | VarLocSet::Allocator Alloc; |
288 | |
289 | const MachineInstr *LastNonDbgMI; |
290 | |
291 | enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore }; |
292 | |
293 | using FragmentInfo = DIExpression::FragmentInfo; |
294 | using OptFragmentInfo = std::optional<DIExpression::FragmentInfo>; |
295 | |
296 | /// A pair of debug variable and value location. |
297 | struct VarLoc { |
298 | // The location at which a spilled variable resides. It consists of a |
299 | // register and an offset. |
300 | struct SpillLoc { |
301 | unsigned SpillBase; |
302 | StackOffset SpillOffset; |
303 | bool operator==(const SpillLoc &Other) const { |
304 | return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset; |
305 | } |
306 | bool operator!=(const SpillLoc &Other) const { |
307 | return !(*this == Other); |
308 | } |
309 | }; |
310 | |
311 | // Target indices used for wasm-specific locations. |
312 | struct WasmLoc { |
313 | // One of TargetIndex values defined in WebAssembly.h. We deal with |
314 | // local-related TargetIndex in this analysis (TI_LOCAL and |
315 | // TI_LOCAL_INDIRECT). Stack operands (TI_OPERAND_STACK) will be handled |
316 | // separately WebAssemblyDebugFixup pass, and we don't associate debug |
317 | // info with values in global operands (TI_GLOBAL_RELOC) at the moment. |
318 | int Index; |
319 | int64_t Offset; |
320 | bool operator==(const WasmLoc &Other) const { |
321 | return Index == Other.Index && Offset == Other.Offset; |
322 | } |
323 | bool operator!=(const WasmLoc &Other) const { return !(*this == Other); } |
324 | }; |
325 | |
326 | /// Identity of the variable at this location. |
327 | const DebugVariable Var; |
328 | |
329 | /// The expression applied to this location. |
330 | const DIExpression *Expr; |
331 | |
332 | /// DBG_VALUE to clone var/expr information from if this location |
333 | /// is moved. |
334 | const MachineInstr &MI; |
335 | |
336 | enum class MachineLocKind { |
337 | InvalidKind = 0, |
338 | RegisterKind, |
339 | SpillLocKind, |
340 | ImmediateKind, |
341 | WasmLocKind |
342 | }; |
343 | |
344 | enum class EntryValueLocKind { |
345 | NonEntryValueKind = 0, |
346 | EntryValueKind, |
347 | EntryValueBackupKind, |
348 | EntryValueCopyBackupKind |
349 | } EVKind = EntryValueLocKind::NonEntryValueKind; |
350 | |
351 | /// The value location. Stored separately to avoid repeatedly |
352 | /// extracting it from MI. |
353 | union MachineLocValue { |
354 | uint64_t RegNo; |
355 | SpillLoc SpillLocation; |
356 | uint64_t Hash; |
357 | int64_t Immediate; |
358 | const ConstantFP *FPImm; |
359 | const ConstantInt *CImm; |
360 | WasmLoc WasmLocation; |
361 | MachineLocValue() : Hash(0) {} |
362 | }; |
363 | |
364 | /// A single machine location; its Kind is either a register, spill |
365 | /// location, or immediate value. |
366 | /// If the VarLoc is not a NonEntryValueKind, then it will use only a |
367 | /// single MachineLoc of RegisterKind. |
368 | struct MachineLoc { |
369 | MachineLocKind Kind; |
370 | MachineLocValue Value; |
371 | bool operator==(const MachineLoc &Other) const { |
372 | if (Kind != Other.Kind) |
373 | return false; |
374 | switch (Kind) { |
375 | case MachineLocKind::SpillLocKind: |
376 | return Value.SpillLocation == Other.Value.SpillLocation; |
377 | case MachineLocKind::WasmLocKind: |
378 | return Value.WasmLocation == Other.Value.WasmLocation; |
379 | case MachineLocKind::RegisterKind: |
380 | case MachineLocKind::ImmediateKind: |
381 | return Value.Hash == Other.Value.Hash; |
382 | default: |
383 | llvm_unreachable("Invalid kind" ); |
384 | } |
385 | } |
386 | bool operator<(const MachineLoc &Other) const { |
387 | switch (Kind) { |
388 | case MachineLocKind::SpillLocKind: |
389 | return std::make_tuple( |
390 | args: Kind, args: Value.SpillLocation.SpillBase, |
391 | args: Value.SpillLocation.SpillOffset.getFixed(), |
392 | args: Value.SpillLocation.SpillOffset.getScalable()) < |
393 | std::make_tuple( |
394 | args: Other.Kind, args: Other.Value.SpillLocation.SpillBase, |
395 | args: Other.Value.SpillLocation.SpillOffset.getFixed(), |
396 | args: Other.Value.SpillLocation.SpillOffset.getScalable()); |
397 | case MachineLocKind::WasmLocKind: |
398 | return std::make_tuple(args: Kind, args: Value.WasmLocation.Index, |
399 | args: Value.WasmLocation.Offset) < |
400 | std::make_tuple(args: Other.Kind, args: Other.Value.WasmLocation.Index, |
401 | args: Other.Value.WasmLocation.Offset); |
402 | case MachineLocKind::RegisterKind: |
403 | case MachineLocKind::ImmediateKind: |
404 | return std::tie(args: Kind, args: Value.Hash) < |
405 | std::tie(args: Other.Kind, args: Other.Value.Hash); |
406 | default: |
407 | llvm_unreachable("Invalid kind" ); |
408 | } |
409 | } |
410 | }; |
411 | |
412 | /// The set of machine locations used to determine the variable's value, in |
413 | /// conjunction with Expr. Initially populated with MI's debug operands, |
414 | /// but may be transformed independently afterwards. |
415 | SmallVector<MachineLoc, 8> Locs; |
416 | /// Used to map the index of each location in Locs back to the index of its |
417 | /// original debug operand in MI. Used when multiple location operands are |
418 | /// coalesced and the original MI's operands need to be accessed while |
419 | /// emitting a debug value. |
420 | SmallVector<unsigned, 8> OrigLocMap; |
421 | |
422 | VarLoc(const MachineInstr &MI) |
423 | : Var(MI.getDebugVariable(), MI.getDebugExpression(), |
424 | MI.getDebugLoc()->getInlinedAt()), |
425 | Expr(MI.getDebugExpression()), MI(MI) { |
426 | assert(MI.isDebugValue() && "not a DBG_VALUE" ); |
427 | assert((MI.isDebugValueList() || MI.getNumOperands() == 4) && |
428 | "malformed DBG_VALUE" ); |
429 | for (const MachineOperand &Op : MI.debug_operands()) { |
430 | MachineLoc ML = GetLocForOp(Op); |
431 | auto It = find(Range&: Locs, Val: ML); |
432 | if (It == Locs.end()) { |
433 | Locs.push_back(Elt: ML); |
434 | OrigLocMap.push_back(Elt: MI.getDebugOperandIndex(Op: &Op)); |
435 | } else { |
436 | // ML duplicates an element in Locs; replace references to Op |
437 | // with references to the duplicating element. |
438 | unsigned OpIdx = Locs.size(); |
439 | unsigned DuplicatingIdx = std::distance(first: Locs.begin(), last: It); |
440 | Expr = DIExpression::replaceArg(Expr, OldArg: OpIdx, NewArg: DuplicatingIdx); |
441 | } |
442 | } |
443 | |
444 | // We create the debug entry values from the factory functions rather |
445 | // than from this ctor. |
446 | assert(EVKind != EntryValueLocKind::EntryValueKind && |
447 | !isEntryBackupLoc()); |
448 | } |
449 | |
450 | static MachineLoc GetLocForOp(const MachineOperand &Op) { |
451 | MachineLocKind Kind; |
452 | MachineLocValue Loc; |
453 | if (Op.isReg()) { |
454 | Kind = MachineLocKind::RegisterKind; |
455 | Loc.RegNo = Op.getReg(); |
456 | } else if (Op.isImm()) { |
457 | Kind = MachineLocKind::ImmediateKind; |
458 | Loc.Immediate = Op.getImm(); |
459 | } else if (Op.isFPImm()) { |
460 | Kind = MachineLocKind::ImmediateKind; |
461 | Loc.FPImm = Op.getFPImm(); |
462 | } else if (Op.isCImm()) { |
463 | Kind = MachineLocKind::ImmediateKind; |
464 | Loc.CImm = Op.getCImm(); |
465 | } else if (Op.isTargetIndex()) { |
466 | Kind = MachineLocKind::WasmLocKind; |
467 | Loc.WasmLocation = {.Index: Op.getIndex(), .Offset: Op.getOffset()}; |
468 | } else |
469 | llvm_unreachable("Invalid Op kind for MachineLoc." ); |
470 | return {.Kind: Kind, .Value: Loc}; |
471 | } |
472 | |
473 | /// Take the variable and machine-location in DBG_VALUE MI, and build an |
474 | /// entry location using the given expression. |
475 | static VarLoc CreateEntryLoc(const MachineInstr &MI, |
476 | const DIExpression *EntryExpr, Register Reg) { |
477 | VarLoc VL(MI); |
478 | assert(VL.Locs.size() == 1 && |
479 | VL.Locs[0].Kind == MachineLocKind::RegisterKind); |
480 | VL.EVKind = EntryValueLocKind::EntryValueKind; |
481 | VL.Expr = EntryExpr; |
482 | VL.Locs[0].Value.RegNo = Reg; |
483 | return VL; |
484 | } |
485 | |
486 | /// Take the variable and machine-location from the DBG_VALUE (from the |
487 | /// function entry), and build an entry value backup location. The backup |
488 | /// location will turn into the normal location if the backup is valid at |
489 | /// the time of the primary location clobbering. |
490 | static VarLoc CreateEntryBackupLoc(const MachineInstr &MI, |
491 | const DIExpression *EntryExpr) { |
492 | VarLoc VL(MI); |
493 | assert(VL.Locs.size() == 1 && |
494 | VL.Locs[0].Kind == MachineLocKind::RegisterKind); |
495 | VL.EVKind = EntryValueLocKind::EntryValueBackupKind; |
496 | VL.Expr = EntryExpr; |
497 | return VL; |
498 | } |
499 | |
500 | /// Take the variable and machine-location from the DBG_VALUE (from the |
501 | /// function entry), and build a copy of an entry value backup location by |
502 | /// setting the register location to NewReg. |
503 | static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI, |
504 | const DIExpression *EntryExpr, |
505 | Register NewReg) { |
506 | VarLoc VL(MI); |
507 | assert(VL.Locs.size() == 1 && |
508 | VL.Locs[0].Kind == MachineLocKind::RegisterKind); |
509 | VL.EVKind = EntryValueLocKind::EntryValueCopyBackupKind; |
510 | VL.Expr = EntryExpr; |
511 | VL.Locs[0].Value.RegNo = NewReg; |
512 | return VL; |
513 | } |
514 | |
515 | /// Copy the register location in DBG_VALUE MI, updating the register to |
516 | /// be NewReg. |
517 | static VarLoc CreateCopyLoc(const VarLoc &OldVL, const MachineLoc &OldML, |
518 | Register NewReg) { |
519 | VarLoc VL = OldVL; |
520 | for (MachineLoc &ML : VL.Locs) |
521 | if (ML == OldML) { |
522 | ML.Kind = MachineLocKind::RegisterKind; |
523 | ML.Value.RegNo = NewReg; |
524 | return VL; |
525 | } |
526 | llvm_unreachable("Should have found OldML in new VarLoc." ); |
527 | } |
528 | |
529 | /// Take the variable described by DBG_VALUE* MI, and create a VarLoc |
530 | /// locating it in the specified spill location. |
531 | static VarLoc CreateSpillLoc(const VarLoc &OldVL, const MachineLoc &OldML, |
532 | unsigned SpillBase, StackOffset SpillOffset) { |
533 | VarLoc VL = OldVL; |
534 | for (MachineLoc &ML : VL.Locs) |
535 | if (ML == OldML) { |
536 | ML.Kind = MachineLocKind::SpillLocKind; |
537 | ML.Value.SpillLocation = {.SpillBase: SpillBase, .SpillOffset: SpillOffset}; |
538 | return VL; |
539 | } |
540 | llvm_unreachable("Should have found OldML in new VarLoc." ); |
541 | } |
542 | |
543 | /// Create a DBG_VALUE representing this VarLoc in the given function. |
544 | /// Copies variable-specific information such as DILocalVariable and |
545 | /// inlining information from the original DBG_VALUE instruction, which may |
546 | /// have been several transfers ago. |
547 | MachineInstr *BuildDbgValue(MachineFunction &MF) const { |
548 | assert(!isEntryBackupLoc() && |
549 | "Tried to produce DBG_VALUE for backup VarLoc" ); |
550 | const DebugLoc &DbgLoc = MI.getDebugLoc(); |
551 | bool Indirect = MI.isIndirectDebugValue(); |
552 | const auto &IID = MI.getDesc(); |
553 | const DILocalVariable *Var = MI.getDebugVariable(); |
554 | NumInserted++; |
555 | |
556 | const DIExpression *DIExpr = Expr; |
557 | SmallVector<MachineOperand, 8> MOs; |
558 | for (unsigned I = 0, E = Locs.size(); I < E; ++I) { |
559 | MachineLocKind LocKind = Locs[I].Kind; |
560 | MachineLocValue Loc = Locs[I].Value; |
561 | const MachineOperand &Orig = MI.getDebugOperand(Index: OrigLocMap[I]); |
562 | switch (LocKind) { |
563 | case MachineLocKind::RegisterKind: |
564 | // An entry value is a register location -- but with an updated |
565 | // expression. The register location of such DBG_VALUE is always the |
566 | // one from the entry DBG_VALUE, it does not matter if the entry value |
567 | // was copied in to another register due to some optimizations. |
568 | // Non-entry value register locations are like the source |
569 | // DBG_VALUE, but with the register number from this VarLoc. |
570 | MOs.push_back(Elt: MachineOperand::CreateReg( |
571 | Reg: EVKind == EntryValueLocKind::EntryValueKind ? Orig.getReg() |
572 | : Register(Loc.RegNo), |
573 | isDef: false)); |
574 | break; |
575 | case MachineLocKind::SpillLocKind: { |
576 | // Spills are indirect DBG_VALUEs, with a base register and offset. |
577 | // Use the original DBG_VALUEs expression to build the spilt location |
578 | // on top of. FIXME: spill locations created before this pass runs |
579 | // are not recognized, and not handled here. |
580 | unsigned Base = Loc.SpillLocation.SpillBase; |
581 | auto *TRI = MF.getSubtarget().getRegisterInfo(); |
582 | if (MI.isNonListDebugValue()) { |
583 | auto Deref = Indirect ? DIExpression::DerefAfter : 0; |
584 | DIExpr = TRI->prependOffsetExpression( |
585 | Expr: DIExpr, PrependFlags: DIExpression::ApplyOffset | Deref, |
586 | Offset: Loc.SpillLocation.SpillOffset); |
587 | Indirect = true; |
588 | } else { |
589 | SmallVector<uint64_t, 4> Ops; |
590 | TRI->getOffsetOpcodes(Offset: Loc.SpillLocation.SpillOffset, Ops); |
591 | Ops.push_back(Elt: dwarf::DW_OP_deref); |
592 | DIExpr = DIExpression::appendOpsToArg(Expr: DIExpr, Ops, ArgNo: I); |
593 | } |
594 | MOs.push_back(Elt: MachineOperand::CreateReg(Reg: Base, isDef: false)); |
595 | break; |
596 | } |
597 | case MachineLocKind::ImmediateKind: { |
598 | MOs.push_back(Elt: Orig); |
599 | break; |
600 | } |
601 | case MachineLocKind::WasmLocKind: { |
602 | MOs.push_back(Elt: Orig); |
603 | break; |
604 | } |
605 | case MachineLocKind::InvalidKind: |
606 | llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc" ); |
607 | } |
608 | } |
609 | return BuildMI(MF, DL: DbgLoc, MCID: IID, IsIndirect: Indirect, MOs, Variable: Var, Expr: DIExpr); |
610 | } |
611 | |
612 | /// Is the Loc field a constant or constant object? |
613 | bool isConstant(MachineLocKind Kind) const { |
614 | return Kind == MachineLocKind::ImmediateKind; |
615 | } |
616 | |
617 | /// Check if the Loc field is an entry backup location. |
618 | bool isEntryBackupLoc() const { |
619 | return EVKind == EntryValueLocKind::EntryValueBackupKind || |
620 | EVKind == EntryValueLocKind::EntryValueCopyBackupKind; |
621 | } |
622 | |
623 | /// If this variable is described by register \p Reg holding the entry |
624 | /// value, return true. |
625 | bool isEntryValueBackupReg(Register Reg) const { |
626 | return EVKind == EntryValueLocKind::EntryValueBackupKind && usesReg(Reg); |
627 | } |
628 | |
629 | /// If this variable is described by register \p Reg holding a copy of the |
630 | /// entry value, return true. |
631 | bool isEntryValueCopyBackupReg(Register Reg) const { |
632 | return EVKind == EntryValueLocKind::EntryValueCopyBackupKind && |
633 | usesReg(Reg); |
634 | } |
635 | |
636 | /// If this variable is described in whole or part by \p Reg, return true. |
637 | bool usesReg(Register Reg) const { |
638 | MachineLoc RegML; |
639 | RegML.Kind = MachineLocKind::RegisterKind; |
640 | RegML.Value.RegNo = Reg; |
641 | return is_contained(Range: Locs, Element: RegML); |
642 | } |
643 | |
644 | /// If this variable is described in whole or part by \p Reg, return true. |
645 | unsigned getRegIdx(Register Reg) const { |
646 | for (unsigned Idx = 0; Idx < Locs.size(); ++Idx) |
647 | if (Locs[Idx].Kind == MachineLocKind::RegisterKind && |
648 | Register{static_cast<unsigned>(Locs[Idx].Value.RegNo)} == Reg) |
649 | return Idx; |
650 | llvm_unreachable("Could not find given Reg in Locs" ); |
651 | } |
652 | |
653 | /// If this variable is described in whole or part by 1 or more registers, |
654 | /// add each of them to \p Regs and return true. |
655 | bool getDescribingRegs(SmallVectorImpl<uint32_t> &Regs) const { |
656 | bool AnyRegs = false; |
657 | for (const auto &Loc : Locs) |
658 | if (Loc.Kind == MachineLocKind::RegisterKind) { |
659 | Regs.push_back(Elt: Loc.Value.RegNo); |
660 | AnyRegs = true; |
661 | } |
662 | return AnyRegs; |
663 | } |
664 | |
665 | bool containsSpillLocs() const { |
666 | return any_of(Range: Locs, P: [](VarLoc::MachineLoc ML) { |
667 | return ML.Kind == VarLoc::MachineLocKind::SpillLocKind; |
668 | }); |
669 | } |
670 | |
671 | /// If this variable is described in whole or part by \p SpillLocation, |
672 | /// return true. |
673 | bool usesSpillLoc(SpillLoc SpillLocation) const { |
674 | MachineLoc SpillML; |
675 | SpillML.Kind = MachineLocKind::SpillLocKind; |
676 | SpillML.Value.SpillLocation = SpillLocation; |
677 | return is_contained(Range: Locs, Element: SpillML); |
678 | } |
679 | |
680 | /// If this variable is described in whole or part by \p SpillLocation, |
681 | /// return the index . |
682 | unsigned getSpillLocIdx(SpillLoc SpillLocation) const { |
683 | for (unsigned Idx = 0; Idx < Locs.size(); ++Idx) |
684 | if (Locs[Idx].Kind == MachineLocKind::SpillLocKind && |
685 | Locs[Idx].Value.SpillLocation == SpillLocation) |
686 | return Idx; |
687 | llvm_unreachable("Could not find given SpillLoc in Locs" ); |
688 | } |
689 | |
690 | bool containsWasmLocs() const { |
691 | return any_of(Range: Locs, P: [](VarLoc::MachineLoc ML) { |
692 | return ML.Kind == VarLoc::MachineLocKind::WasmLocKind; |
693 | }); |
694 | } |
695 | |
696 | /// If this variable is described in whole or part by \p WasmLocation, |
697 | /// return true. |
698 | bool usesWasmLoc(WasmLoc WasmLocation) const { |
699 | MachineLoc WasmML; |
700 | WasmML.Kind = MachineLocKind::WasmLocKind; |
701 | WasmML.Value.WasmLocation = WasmLocation; |
702 | return is_contained(Range: Locs, Element: WasmML); |
703 | } |
704 | |
705 | /// Determine whether the lexical scope of this value's debug location |
706 | /// dominates MBB. |
707 | bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const { |
708 | return LS.dominates(DL: MI.getDebugLoc().get(), MBB: &MBB); |
709 | } |
710 | |
711 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
712 | // TRI and TII can be null. |
713 | void dump(const TargetRegisterInfo *TRI, const TargetInstrInfo *TII, |
714 | raw_ostream &Out = dbgs()) const { |
715 | Out << "VarLoc(" ; |
716 | for (const MachineLoc &MLoc : Locs) { |
717 | if (Locs.begin() != &MLoc) |
718 | Out << ", " ; |
719 | switch (MLoc.Kind) { |
720 | case MachineLocKind::RegisterKind: |
721 | Out << printReg(MLoc.Value.RegNo, TRI); |
722 | break; |
723 | case MachineLocKind::SpillLocKind: |
724 | Out << printReg(MLoc.Value.SpillLocation.SpillBase, TRI); |
725 | Out << "[" << MLoc.Value.SpillLocation.SpillOffset.getFixed() << " + " |
726 | << MLoc.Value.SpillLocation.SpillOffset.getScalable() |
727 | << "x vscale" |
728 | << "]" ; |
729 | break; |
730 | case MachineLocKind::ImmediateKind: |
731 | Out << MLoc.Value.Immediate; |
732 | break; |
733 | case MachineLocKind::WasmLocKind: { |
734 | if (TII) { |
735 | auto Indices = TII->getSerializableTargetIndices(); |
736 | auto Found = |
737 | find_if(Indices, [&](const std::pair<int, const char *> &I) { |
738 | return I.first == MLoc.Value.WasmLocation.Index; |
739 | }); |
740 | assert(Found != Indices.end()); |
741 | Out << Found->second; |
742 | if (MLoc.Value.WasmLocation.Offset > 0) |
743 | Out << " + " << MLoc.Value.WasmLocation.Offset; |
744 | } else { |
745 | Out << "WasmLoc" ; |
746 | } |
747 | break; |
748 | } |
749 | case MachineLocKind::InvalidKind: |
750 | llvm_unreachable("Invalid VarLoc in dump method" ); |
751 | } |
752 | } |
753 | |
754 | Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", " ; |
755 | if (Var.getInlinedAt()) |
756 | Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n" ; |
757 | else |
758 | Out << "(null))" ; |
759 | |
760 | if (isEntryBackupLoc()) |
761 | Out << " (backup loc)\n" ; |
762 | else |
763 | Out << "\n" ; |
764 | } |
765 | #endif |
766 | |
767 | bool operator==(const VarLoc &Other) const { |
768 | return std::tie(args: EVKind, args: Var, args: Expr, args: Locs) == |
769 | std::tie(args: Other.EVKind, args: Other.Var, args: Other.Expr, args: Other.Locs); |
770 | } |
771 | |
772 | /// This operator guarantees that VarLocs are sorted by Variable first. |
773 | bool operator<(const VarLoc &Other) const { |
774 | return std::tie(args: Var, args: EVKind, args: Locs, args: Expr) < |
775 | std::tie(args: Other.Var, args: Other.EVKind, args: Other.Locs, args: Other.Expr); |
776 | } |
777 | }; |
778 | |
779 | #ifndef NDEBUG |
780 | using VarVec = SmallVector<VarLoc, 32>; |
781 | #endif |
782 | |
783 | /// VarLocMap is used for two things: |
784 | /// 1) Assigning LocIndices to a VarLoc. The LocIndices can be used to |
785 | /// virtually insert a VarLoc into a VarLocSet. |
786 | /// 2) Given a LocIndex, look up the unique associated VarLoc. |
787 | class VarLocMap { |
788 | /// Map a VarLoc to an index within the vector reserved for its location |
789 | /// within Loc2Vars. |
790 | std::map<VarLoc, LocIndices> Var2Indices; |
791 | |
792 | /// Map a location to a vector which holds VarLocs which live in that |
793 | /// location. |
794 | SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars; |
795 | |
796 | public: |
797 | /// Retrieve LocIndices for \p VL. |
798 | LocIndices insert(const VarLoc &VL) { |
799 | LocIndices &Indices = Var2Indices[VL]; |
800 | // If Indices is not empty, VL is already in the map. |
801 | if (!Indices.empty()) |
802 | return Indices; |
803 | SmallVector<LocIndex::u32_location_t, 4> Locations; |
804 | // LocIndices are determined by EVKind and MLs; each Register has a |
805 | // unique location, while all SpillLocs use a single bucket, and any EV |
806 | // VarLocs use only the Backup bucket or none at all (except the |
807 | // compulsory entry at the universal location index). LocIndices will |
808 | // always have an index at the universal location index as the last index. |
809 | if (VL.EVKind == VarLoc::EntryValueLocKind::NonEntryValueKind) { |
810 | VL.getDescribingRegs(Regs&: Locations); |
811 | assert(all_of(Locations, |
812 | [](auto RegNo) { |
813 | return RegNo < LocIndex::kFirstInvalidRegLocation; |
814 | }) && |
815 | "Physreg out of range?" ); |
816 | if (VL.containsSpillLocs()) |
817 | Locations.push_back(Elt: LocIndex::kSpillLocation); |
818 | if (VL.containsWasmLocs()) |
819 | Locations.push_back(Elt: LocIndex::kWasmLocation); |
820 | } else if (VL.EVKind != VarLoc::EntryValueLocKind::EntryValueKind) { |
821 | LocIndex::u32_location_t Loc = LocIndex::kEntryValueBackupLocation; |
822 | Locations.push_back(Elt: Loc); |
823 | } |
824 | Locations.push_back(Elt: LocIndex::kUniversalLocation); |
825 | for (LocIndex::u32_location_t Location : Locations) { |
826 | auto &Vars = Loc2Vars[Location]; |
827 | Indices.push_back( |
828 | Elt: {Location, static_cast<LocIndex::u32_index_t>(Vars.size())}); |
829 | Vars.push_back(x: VL); |
830 | } |
831 | return Indices; |
832 | } |
833 | |
834 | LocIndices getAllIndices(const VarLoc &VL) const { |
835 | auto IndIt = Var2Indices.find(x: VL); |
836 | assert(IndIt != Var2Indices.end() && "VarLoc not tracked" ); |
837 | return IndIt->second; |
838 | } |
839 | |
840 | /// Retrieve the unique VarLoc associated with \p ID. |
841 | const VarLoc &operator[](LocIndex ID) const { |
842 | auto LocIt = Loc2Vars.find(Val: ID.Location); |
843 | assert(LocIt != Loc2Vars.end() && "Location not tracked" ); |
844 | return LocIt->second[ID.Index]; |
845 | } |
846 | }; |
847 | |
848 | using VarLocInMBB = |
849 | SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>; |
850 | struct TransferDebugPair { |
851 | MachineInstr *TransferInst; ///< Instruction where this transfer occurs. |
852 | LocIndex LocationID; ///< Location number for the transfer dest. |
853 | }; |
854 | using TransferMap = SmallVector<TransferDebugPair, 4>; |
855 | // Types for recording Entry Var Locations emitted by a single MachineInstr, |
856 | // as well as recording MachineInstr which last defined a register. |
857 | using InstToEntryLocMap = std::multimap<const MachineInstr *, LocIndex>; |
858 | using RegDefToInstMap = DenseMap<Register, MachineInstr *>; |
859 | |
860 | // Types for recording sets of variable fragments that overlap. For a given |
861 | // local variable, we record all other fragments of that variable that could |
862 | // overlap it, to reduce search time. |
863 | using FragmentOfVar = |
864 | std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; |
865 | using OverlapMap = |
866 | DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; |
867 | |
868 | // Helper while building OverlapMap, a map of all fragments seen for a given |
869 | // DILocalVariable. |
870 | using VarToFragments = |
871 | DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; |
872 | |
873 | /// Collects all VarLocs from \p CollectFrom. Each unique VarLoc is added |
874 | /// to \p Collected once, in order of insertion into \p VarLocIDs. |
875 | static void collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected, |
876 | const VarLocSet &CollectFrom, |
877 | const VarLocMap &VarLocIDs); |
878 | |
879 | /// Get the registers which are used by VarLocs of kind RegisterKind tracked |
880 | /// by \p CollectFrom. |
881 | void getUsedRegs(const VarLocSet &CollectFrom, |
882 | SmallVectorImpl<Register> &UsedRegs) const; |
883 | |
884 | /// This holds the working set of currently open ranges. For fast |
885 | /// access, this is done both as a set of VarLocIDs, and a map of |
886 | /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all |
887 | /// previous open ranges for the same variable. In addition, we keep |
888 | /// two different maps (Vars/EntryValuesBackupVars), so erase/insert |
889 | /// methods act differently depending on whether a VarLoc is primary |
890 | /// location or backup one. In the case the VarLoc is backup location |
891 | /// we will erase/insert from the EntryValuesBackupVars map, otherwise |
892 | /// we perform the operation on the Vars. |
893 | class OpenRangesSet { |
894 | VarLocSet::Allocator &Alloc; |
895 | VarLocSet VarLocs; |
896 | // Map the DebugVariable to recent primary location ID. |
897 | SmallDenseMap<DebugVariable, LocIndices, 8> Vars; |
898 | // Map the DebugVariable to recent backup location ID. |
899 | SmallDenseMap<DebugVariable, LocIndices, 8> EntryValuesBackupVars; |
900 | OverlapMap &OverlappingFragments; |
901 | |
902 | public: |
903 | OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap) |
904 | : Alloc(Alloc), VarLocs(Alloc), OverlappingFragments(_OLapMap) {} |
905 | |
906 | const VarLocSet &getVarLocs() const { return VarLocs; } |
907 | |
908 | // Fetches all VarLocs in \p VarLocIDs and inserts them into \p Collected. |
909 | // This method is needed to get every VarLoc once, as each VarLoc may have |
910 | // multiple indices in a VarLocMap (corresponding to each applicable |
911 | // location), but all VarLocs appear exactly once at the universal location |
912 | // index. |
913 | void getUniqueVarLocs(SmallVectorImpl<VarLoc> &Collected, |
914 | const VarLocMap &VarLocIDs) const { |
915 | collectAllVarLocs(Collected, CollectFrom: VarLocs, VarLocIDs); |
916 | } |
917 | |
918 | /// Terminate all open ranges for VL.Var by removing it from the set. |
919 | void erase(const VarLoc &VL); |
920 | |
921 | /// Terminate all open ranges listed as indices in \c KillSet with |
922 | /// \c Location by removing them from the set. |
923 | void erase(const VarLocsInRange &KillSet, const VarLocMap &VarLocIDs, |
924 | LocIndex::u32_location_t Location); |
925 | |
926 | /// Insert a new range into the set. |
927 | void insert(LocIndices VarLocIDs, const VarLoc &VL); |
928 | |
929 | /// Insert a set of ranges. |
930 | void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map); |
931 | |
932 | std::optional<LocIndices> getEntryValueBackup(DebugVariable Var); |
933 | |
934 | /// Empty the set. |
935 | void clear() { |
936 | VarLocs.clear(); |
937 | Vars.clear(); |
938 | EntryValuesBackupVars.clear(); |
939 | } |
940 | |
941 | /// Return whether the set is empty or not. |
942 | bool empty() const { |
943 | assert(Vars.empty() == EntryValuesBackupVars.empty() && |
944 | Vars.empty() == VarLocs.empty() && |
945 | "open ranges are inconsistent" ); |
946 | return VarLocs.empty(); |
947 | } |
948 | |
949 | /// Get an empty range of VarLoc IDs. |
950 | auto getEmptyVarLocRange() const { |
951 | return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(), |
952 | getVarLocs().end()); |
953 | } |
954 | |
955 | /// Get all set IDs for VarLocs with MLs of kind RegisterKind in \p Reg. |
956 | auto getRegisterVarLocs(Register Reg) const { |
957 | return LocIndex::indexRangeForLocation(Set: getVarLocs(), Location: Reg); |
958 | } |
959 | |
960 | /// Get all set IDs for VarLocs with MLs of kind SpillLocKind. |
961 | auto getSpillVarLocs() const { |
962 | return LocIndex::indexRangeForLocation(Set: getVarLocs(), |
963 | Location: LocIndex::kSpillLocation); |
964 | } |
965 | |
966 | /// Get all set IDs for VarLocs of EVKind EntryValueBackupKind or |
967 | /// EntryValueCopyBackupKind. |
968 | auto getEntryValueBackupVarLocs() const { |
969 | return LocIndex::indexRangeForLocation( |
970 | Set: getVarLocs(), Location: LocIndex::kEntryValueBackupLocation); |
971 | } |
972 | |
973 | /// Get all set IDs for VarLocs with MLs of kind WasmLocKind. |
974 | auto getWasmVarLocs() const { |
975 | return LocIndex::indexRangeForLocation(Set: getVarLocs(), |
976 | Location: LocIndex::kWasmLocation); |
977 | } |
978 | }; |
979 | |
980 | /// Collect all VarLoc IDs from \p CollectFrom for VarLocs with MLs of kind |
981 | /// RegisterKind which are located in any reg in \p Regs. The IDs for each |
982 | /// VarLoc correspond to entries in the universal location bucket, which every |
983 | /// VarLoc has exactly 1 entry for. Insert collected IDs into \p Collected. |
984 | static void collectIDsForRegs(VarLocsInRange &Collected, |
985 | const DefinedRegsSet &Regs, |
986 | const VarLocSet &CollectFrom, |
987 | const VarLocMap &VarLocIDs); |
988 | |
989 | VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) { |
990 | std::unique_ptr<VarLocSet> &VLS = Locs[MBB]; |
991 | if (!VLS) |
992 | VLS = std::make_unique<VarLocSet>(args&: Alloc); |
993 | return *VLS; |
994 | } |
995 | |
996 | const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, |
997 | const VarLocInMBB &Locs) const { |
998 | auto It = Locs.find(Val: MBB); |
999 | assert(It != Locs.end() && "MBB not in map" ); |
1000 | return *It->second; |
1001 | } |
1002 | |
1003 | /// Tests whether this instruction is a spill to a stack location. |
1004 | bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); |
1005 | |
1006 | /// Decide if @MI is a spill instruction and return true if it is. We use 2 |
1007 | /// criteria to make this decision: |
1008 | /// - Is this instruction a store to a spill slot? |
1009 | /// - Is there a register operand that is both used and killed? |
1010 | /// TODO: Store optimization can fold spills into other stores (including |
1011 | /// other spills). We do not handle this yet (more than one memory operand). |
1012 | bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, |
1013 | Register &Reg); |
1014 | |
1015 | /// Returns true if the given machine instruction is a debug value which we |
1016 | /// can emit entry values for. |
1017 | /// |
1018 | /// Currently, we generate debug entry values only for parameters that are |
1019 | /// unmodified throughout the function and located in a register. |
1020 | bool isEntryValueCandidate(const MachineInstr &MI, |
1021 | const DefinedRegsSet &Regs) const; |
1022 | |
1023 | /// If a given instruction is identified as a spill, return the spill location |
1024 | /// and set \p Reg to the spilled register. |
1025 | std::optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI, |
1026 | MachineFunction *MF, |
1027 | Register &Reg); |
1028 | /// Given a spill instruction, extract the register and offset used to |
1029 | /// address the spill location in a target independent way. |
1030 | VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); |
1031 | void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges, |
1032 | TransferMap &Transfers, VarLocMap &VarLocIDs, |
1033 | LocIndex OldVarID, TransferKind Kind, |
1034 | const VarLoc::MachineLoc &OldLoc, |
1035 | Register NewReg = Register()); |
1036 | |
1037 | void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, |
1038 | VarLocMap &VarLocIDs, |
1039 | InstToEntryLocMap &EntryValTransfers, |
1040 | RegDefToInstMap &RegSetInstrs); |
1041 | void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, |
1042 | VarLocMap &VarLocIDs, TransferMap &Transfers); |
1043 | void cleanupEntryValueTransfers(const MachineInstr *MI, |
1044 | OpenRangesSet &OpenRanges, |
1045 | VarLocMap &VarLocIDs, const VarLoc &EntryVL, |
1046 | InstToEntryLocMap &EntryValTransfers); |
1047 | void removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, |
1048 | VarLocMap &VarLocIDs, const VarLoc &EntryVL, |
1049 | InstToEntryLocMap &EntryValTransfers, |
1050 | RegDefToInstMap &RegSetInstrs); |
1051 | void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, |
1052 | VarLocMap &VarLocIDs, |
1053 | InstToEntryLocMap &EntryValTransfers, |
1054 | VarLocsInRange &KillSet); |
1055 | void recordEntryValue(const MachineInstr &MI, |
1056 | const DefinedRegsSet &DefinedRegs, |
1057 | OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); |
1058 | void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, |
1059 | VarLocMap &VarLocIDs, TransferMap &Transfers); |
1060 | void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges, |
1061 | VarLocMap &VarLocIDs, |
1062 | InstToEntryLocMap &EntryValTransfers, |
1063 | RegDefToInstMap &RegSetInstrs); |
1064 | void transferWasmDef(MachineInstr &MI, OpenRangesSet &OpenRanges, |
1065 | VarLocMap &VarLocIDs); |
1066 | bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges, |
1067 | VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs); |
1068 | |
1069 | void process(MachineInstr &MI, OpenRangesSet &OpenRanges, |
1070 | VarLocMap &VarLocIDs, TransferMap &Transfers, |
1071 | InstToEntryLocMap &EntryValTransfers, |
1072 | RegDefToInstMap &RegSetInstrs); |
1073 | |
1074 | void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, |
1075 | OverlapMap &OLapMap); |
1076 | |
1077 | bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, |
1078 | const VarLocMap &VarLocIDs, |
1079 | SmallPtrSet<const MachineBasicBlock *, 16> &Visited, |
1080 | SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks); |
1081 | |
1082 | /// Create DBG_VALUE insts for inlocs that have been propagated but |
1083 | /// had their instruction creation deferred. |
1084 | void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs); |
1085 | |
1086 | bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree, |
1087 | TargetPassConfig *TPC, unsigned InputBBLimit, |
1088 | unsigned InputDbgValLimit) override; |
1089 | |
1090 | public: |
1091 | /// Default construct and initialize the pass. |
1092 | VarLocBasedLDV(); |
1093 | |
1094 | ~VarLocBasedLDV(); |
1095 | |
1096 | /// Print to ostream with a message. |
1097 | void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, |
1098 | const VarLocMap &VarLocIDs, const char *msg, |
1099 | raw_ostream &Out) const; |
1100 | }; |
1101 | |
1102 | } // end anonymous namespace |
1103 | |
1104 | //===----------------------------------------------------------------------===// |
1105 | // Implementation |
1106 | //===----------------------------------------------------------------------===// |
1107 | |
1108 | VarLocBasedLDV::VarLocBasedLDV() = default; |
1109 | |
1110 | VarLocBasedLDV::~VarLocBasedLDV() = default; |
1111 | |
1112 | /// Erase a variable from the set of open ranges, and additionally erase any |
1113 | /// fragments that may overlap it. If the VarLoc is a backup location, erase |
1114 | /// the variable from the EntryValuesBackupVars set, indicating we should stop |
1115 | /// tracking its backup entry location. Otherwise, if the VarLoc is primary |
1116 | /// location, erase the variable from the Vars set. |
1117 | void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) { |
1118 | // Erasure helper. |
1119 | auto DoErase = [&VL, this](DebugVariable VarToErase) { |
1120 | auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; |
1121 | auto It = EraseFrom->find(Val: VarToErase); |
1122 | if (It != EraseFrom->end()) { |
1123 | LocIndices IDs = It->second; |
1124 | for (LocIndex ID : IDs) |
1125 | VarLocs.reset(Index: ID.getAsRawInteger()); |
1126 | EraseFrom->erase(I: It); |
1127 | } |
1128 | }; |
1129 | |
1130 | DebugVariable Var = VL.Var; |
1131 | |
1132 | // Erase the variable/fragment that ends here. |
1133 | DoErase(Var); |
1134 | |
1135 | // Extract the fragment. Interpret an empty fragment as one that covers all |
1136 | // possible bits. |
1137 | FragmentInfo ThisFragment = Var.getFragmentOrDefault(); |
1138 | |
1139 | // There may be fragments that overlap the designated fragment. Look them up |
1140 | // in the pre-computed overlap map, and erase them too. |
1141 | auto MapIt = OverlappingFragments.find(Val: {Var.getVariable(), ThisFragment}); |
1142 | if (MapIt != OverlappingFragments.end()) { |
1143 | for (auto Fragment : MapIt->second) { |
1144 | VarLocBasedLDV::OptFragmentInfo FragmentHolder; |
1145 | if (!DebugVariable::isDefaultFragment(F: Fragment)) |
1146 | FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment); |
1147 | DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()}); |
1148 | } |
1149 | } |
1150 | } |
1151 | |
1152 | void VarLocBasedLDV::OpenRangesSet::erase(const VarLocsInRange &KillSet, |
1153 | const VarLocMap &VarLocIDs, |
1154 | LocIndex::u32_location_t Location) { |
1155 | VarLocSet RemoveSet(Alloc); |
1156 | for (LocIndex::u32_index_t ID : KillSet) { |
1157 | const VarLoc &VL = VarLocIDs[LocIndex(Location, ID)]; |
1158 | auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; |
1159 | EraseFrom->erase(Val: VL.Var); |
1160 | LocIndices VLI = VarLocIDs.getAllIndices(VL); |
1161 | for (LocIndex ID : VLI) |
1162 | RemoveSet.set(ID.getAsRawInteger()); |
1163 | } |
1164 | VarLocs.intersectWithComplement(Other: RemoveSet); |
1165 | } |
1166 | |
1167 | void VarLocBasedLDV::OpenRangesSet::insertFromLocSet(const VarLocSet &ToLoad, |
1168 | const VarLocMap &Map) { |
1169 | VarLocsInRange UniqueVarLocIDs; |
1170 | DefinedRegsSet Regs; |
1171 | Regs.insert(V: LocIndex::kUniversalLocation); |
1172 | collectIDsForRegs(Collected&: UniqueVarLocIDs, Regs, CollectFrom: ToLoad, VarLocIDs: Map); |
1173 | for (uint64_t ID : UniqueVarLocIDs) { |
1174 | LocIndex Idx = LocIndex::fromRawInteger(ID); |
1175 | const VarLoc &VarL = Map[Idx]; |
1176 | const LocIndices Indices = Map.getAllIndices(VL: VarL); |
1177 | insert(VarLocIDs: Indices, VL: VarL); |
1178 | } |
1179 | } |
1180 | |
1181 | void VarLocBasedLDV::OpenRangesSet::insert(LocIndices VarLocIDs, |
1182 | const VarLoc &VL) { |
1183 | auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; |
1184 | for (LocIndex ID : VarLocIDs) |
1185 | VarLocs.set(ID.getAsRawInteger()); |
1186 | InsertInto->insert(KV: {VL.Var, VarLocIDs}); |
1187 | } |
1188 | |
1189 | /// Return the Loc ID of an entry value backup location, if it exists for the |
1190 | /// variable. |
1191 | std::optional<LocIndices> |
1192 | VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) { |
1193 | auto It = EntryValuesBackupVars.find(Val: Var); |
1194 | if (It != EntryValuesBackupVars.end()) |
1195 | return It->second; |
1196 | |
1197 | return std::nullopt; |
1198 | } |
1199 | |
1200 | void VarLocBasedLDV::collectIDsForRegs(VarLocsInRange &Collected, |
1201 | const DefinedRegsSet &Regs, |
1202 | const VarLocSet &CollectFrom, |
1203 | const VarLocMap &VarLocIDs) { |
1204 | assert(!Regs.empty() && "Nothing to collect" ); |
1205 | SmallVector<Register, 32> SortedRegs; |
1206 | append_range(C&: SortedRegs, R: Regs); |
1207 | array_pod_sort(Start: SortedRegs.begin(), End: SortedRegs.end()); |
1208 | auto It = CollectFrom.find(Index: LocIndex::rawIndexForReg(Reg: SortedRegs.front())); |
1209 | auto End = CollectFrom.end(); |
1210 | for (Register Reg : SortedRegs) { |
1211 | // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains |
1212 | // all possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which |
1213 | // live in Reg. |
1214 | uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg); |
1215 | uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg: Reg + 1); |
1216 | It.advanceToLowerBound(Index: FirstIndexForReg); |
1217 | |
1218 | // Iterate through that half-open interval and collect all the set IDs. |
1219 | for (; It != End && *It < FirstInvalidIndex; ++It) { |
1220 | LocIndex ItIdx = LocIndex::fromRawInteger(ID: *It); |
1221 | const VarLoc &VL = VarLocIDs[ItIdx]; |
1222 | LocIndices LI = VarLocIDs.getAllIndices(VL); |
1223 | // For now, the back index is always the universal location index. |
1224 | assert(LI.back().Location == LocIndex::kUniversalLocation && |
1225 | "Unexpected order of LocIndices for VarLoc; was it inserted into " |
1226 | "the VarLocMap correctly?" ); |
1227 | Collected.insert(V: LI.back().Index); |
1228 | } |
1229 | |
1230 | if (It == End) |
1231 | return; |
1232 | } |
1233 | } |
1234 | |
1235 | void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom, |
1236 | SmallVectorImpl<Register> &UsedRegs) const { |
1237 | // All register-based VarLocs are assigned indices greater than or equal to |
1238 | // FirstRegIndex. |
1239 | uint64_t FirstRegIndex = |
1240 | LocIndex::rawIndexForReg(Reg: LocIndex::kFirstRegLocation); |
1241 | uint64_t FirstInvalidIndex = |
1242 | LocIndex::rawIndexForReg(Reg: LocIndex::kFirstInvalidRegLocation); |
1243 | for (auto It = CollectFrom.find(Index: FirstRegIndex), |
1244 | End = CollectFrom.find(Index: FirstInvalidIndex); |
1245 | It != End;) { |
1246 | // We found a VarLoc ID for a VarLoc that lives in a register. Figure out |
1247 | // which register and add it to UsedRegs. |
1248 | uint32_t FoundReg = LocIndex::fromRawInteger(ID: *It).Location; |
1249 | assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) && |
1250 | "Duplicate used reg" ); |
1251 | UsedRegs.push_back(Elt: FoundReg); |
1252 | |
1253 | // Skip to the next /set/ register. Note that this finds a lower bound, so |
1254 | // even if there aren't any VarLocs living in `FoundReg+1`, we're still |
1255 | // guaranteed to move on to the next register (or to end()). |
1256 | uint64_t NextRegIndex = LocIndex::rawIndexForReg(Reg: FoundReg + 1); |
1257 | It.advanceToLowerBound(Index: NextRegIndex); |
1258 | } |
1259 | } |
1260 | |
1261 | //===----------------------------------------------------------------------===// |
1262 | // Debug Range Extension Implementation |
1263 | //===----------------------------------------------------------------------===// |
1264 | |
1265 | #ifndef NDEBUG |
1266 | void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF, |
1267 | const VarLocInMBB &V, |
1268 | const VarLocMap &VarLocIDs, |
1269 | const char *msg, |
1270 | raw_ostream &Out) const { |
1271 | Out << '\n' << msg << '\n'; |
1272 | for (const MachineBasicBlock &BB : MF) { |
1273 | if (!V.count(&BB)) |
1274 | continue; |
1275 | const VarLocSet &L = getVarLocsInMBB(&BB, V); |
1276 | if (L.empty()) |
1277 | continue; |
1278 | SmallVector<VarLoc, 32> VarLocs; |
1279 | collectAllVarLocs(VarLocs, L, VarLocIDs); |
1280 | Out << "MBB: " << BB.getNumber() << ":\n" ; |
1281 | for (const VarLoc &VL : VarLocs) { |
1282 | Out << " Var: " << VL.Var.getVariable()->getName(); |
1283 | Out << " MI: " ; |
1284 | VL.dump(TRI, TII, Out); |
1285 | } |
1286 | } |
1287 | Out << "\n" ; |
1288 | } |
1289 | #endif |
1290 | |
1291 | VarLocBasedLDV::VarLoc::SpillLoc |
1292 | VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { |
1293 | assert(MI.hasOneMemOperand() && |
1294 | "Spill instruction does not have exactly one memory operand?" ); |
1295 | auto MMOI = MI.memoperands_begin(); |
1296 | const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); |
1297 | assert(PVal->kind() == PseudoSourceValue::FixedStack && |
1298 | "Inconsistent memory operand in spill instruction" ); |
1299 | int FI = cast<FixedStackPseudoSourceValue>(Val: PVal)->getFrameIndex(); |
1300 | const MachineBasicBlock *MBB = MI.getParent(); |
1301 | Register Reg; |
1302 | StackOffset Offset = TFI->getFrameIndexReference(MF: *MBB->getParent(), FI, FrameReg&: Reg); |
1303 | return {.SpillBase: Reg, .SpillOffset: Offset}; |
1304 | } |
1305 | |
1306 | /// Do cleanup of \p EntryValTransfers created by \p TRInst, by removing the |
1307 | /// Transfer, which uses the to-be-deleted \p EntryVL. |
1308 | void VarLocBasedLDV::cleanupEntryValueTransfers( |
1309 | const MachineInstr *TRInst, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, |
1310 | const VarLoc &EntryVL, InstToEntryLocMap &EntryValTransfers) { |
1311 | if (EntryValTransfers.empty() || TRInst == nullptr) |
1312 | return; |
1313 | |
1314 | auto TransRange = EntryValTransfers.equal_range(x: TRInst); |
1315 | for (auto &TDPair : llvm::make_range(x: TransRange.first, y: TransRange.second)) { |
1316 | const VarLoc &EmittedEV = VarLocIDs[TDPair.second]; |
1317 | if (std::tie(args: EntryVL.Var, args: EntryVL.Locs[0].Value.RegNo, args: EntryVL.Expr) == |
1318 | std::tie(args: EmittedEV.Var, args: EmittedEV.Locs[0].Value.RegNo, |
1319 | args: EmittedEV.Expr)) { |
1320 | OpenRanges.erase(VL: EmittedEV); |
1321 | EntryValTransfers.erase(x: TRInst); |
1322 | break; |
1323 | } |
1324 | } |
1325 | } |
1326 | |
1327 | /// Try to salvage the debug entry value if we encounter a new debug value |
1328 | /// describing the same parameter, otherwise stop tracking the value. Return |
1329 | /// true if we should stop tracking the entry value and do the cleanup of |
1330 | /// emitted Entry Value Transfers, otherwise return false. |
1331 | void VarLocBasedLDV::removeEntryValue(const MachineInstr &MI, |
1332 | OpenRangesSet &OpenRanges, |
1333 | VarLocMap &VarLocIDs, |
1334 | const VarLoc &EntryVL, |
1335 | InstToEntryLocMap &EntryValTransfers, |
1336 | RegDefToInstMap &RegSetInstrs) { |
1337 | // Skip the DBG_VALUE which is the debug entry value itself. |
1338 | if (&MI == &EntryVL.MI) |
1339 | return; |
1340 | |
1341 | // If the parameter's location is not register location, we can not track |
1342 | // the entry value any more. It doesn't have the TransferInst which defines |
1343 | // register, so no Entry Value Transfers have been emitted already. |
1344 | if (!MI.getDebugOperand(Index: 0).isReg()) |
1345 | return; |
1346 | |
1347 | // Try to get non-debug instruction responsible for the DBG_VALUE. |
1348 | const MachineInstr *TransferInst = nullptr; |
1349 | Register Reg = MI.getDebugOperand(Index: 0).getReg(); |
1350 | if (Reg.isValid() && RegSetInstrs.contains(Val: Reg)) |
1351 | TransferInst = RegSetInstrs.find(Val: Reg)->second; |
1352 | |
1353 | // Case of the parameter's DBG_VALUE at the start of entry MBB. |
1354 | if (!TransferInst && !LastNonDbgMI && MI.getParent()->isEntryBlock()) |
1355 | return; |
1356 | |
1357 | // If the debug expression from the DBG_VALUE is not empty, we can assume the |
1358 | // parameter's value has changed indicating that we should stop tracking its |
1359 | // entry value as well. |
1360 | if (MI.getDebugExpression()->getNumElements() == 0 && TransferInst) { |
1361 | // If the DBG_VALUE comes from a copy instruction that copies the entry |
1362 | // value, it means the parameter's value has not changed and we should be |
1363 | // able to use its entry value. |
1364 | // TODO: Try to keep tracking of an entry value if we encounter a propagated |
1365 | // DBG_VALUE describing the copy of the entry value. (Propagated entry value |
1366 | // does not indicate the parameter modification.) |
1367 | auto DestSrc = TII->isCopyLikeInstr(MI: *TransferInst); |
1368 | if (DestSrc) { |
1369 | const MachineOperand *SrcRegOp, *DestRegOp; |
1370 | SrcRegOp = DestSrc->Source; |
1371 | DestRegOp = DestSrc->Destination; |
1372 | if (Reg == DestRegOp->getReg()) { |
1373 | for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { |
1374 | const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)]; |
1375 | if (VL.isEntryValueCopyBackupReg(Reg) && |
1376 | // Entry Values should not be variadic. |
1377 | VL.MI.getDebugOperand(Index: 0).getReg() == SrcRegOp->getReg()) |
1378 | return; |
1379 | } |
1380 | } |
1381 | } |
1382 | } |
1383 | |
1384 | LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: " ; |
1385 | MI.print(dbgs(), /*IsStandalone*/ false, |
1386 | /*SkipOpers*/ false, /*SkipDebugLoc*/ false, |
1387 | /*AddNewLine*/ true, TII)); |
1388 | cleanupEntryValueTransfers(TRInst: TransferInst, OpenRanges, VarLocIDs, EntryVL, |
1389 | EntryValTransfers); |
1390 | OpenRanges.erase(VL: EntryVL); |
1391 | } |
1392 | |
1393 | /// End all previous ranges related to @MI and start a new range from @MI |
1394 | /// if it is a DBG_VALUE instr. |
1395 | void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI, |
1396 | OpenRangesSet &OpenRanges, |
1397 | VarLocMap &VarLocIDs, |
1398 | InstToEntryLocMap &EntryValTransfers, |
1399 | RegDefToInstMap &RegSetInstrs) { |
1400 | if (!MI.isDebugValue()) |
1401 | return; |
1402 | const DILocalVariable *Var = MI.getDebugVariable(); |
1403 | const DIExpression *Expr = MI.getDebugExpression(); |
1404 | const DILocation *DebugLoc = MI.getDebugLoc(); |
1405 | const DILocation *InlinedAt = DebugLoc->getInlinedAt(); |
1406 | assert(Var->isValidLocationForIntrinsic(DebugLoc) && |
1407 | "Expected inlined-at fields to agree" ); |
1408 | |
1409 | DebugVariable V(Var, Expr, InlinedAt); |
1410 | |
1411 | // Check if this DBG_VALUE indicates a parameter's value changing. |
1412 | // If that is the case, we should stop tracking its entry value. |
1413 | auto EntryValBackupID = OpenRanges.getEntryValueBackup(Var: V); |
1414 | if (Var->isParameter() && EntryValBackupID) { |
1415 | const VarLoc &EntryVL = VarLocIDs[EntryValBackupID->back()]; |
1416 | removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL, EntryValTransfers, |
1417 | RegSetInstrs); |
1418 | } |
1419 | |
1420 | if (all_of(Range: MI.debug_operands(), P: [](const MachineOperand &MO) { |
1421 | return (MO.isReg() && MO.getReg()) || MO.isImm() || MO.isFPImm() || |
1422 | MO.isCImm() || MO.isTargetIndex(); |
1423 | })) { |
1424 | // Use normal VarLoc constructor for registers and immediates. |
1425 | VarLoc VL(MI); |
1426 | // End all previous ranges of VL.Var. |
1427 | OpenRanges.erase(VL); |
1428 | |
1429 | LocIndices IDs = VarLocIDs.insert(VL); |
1430 | // Add the VarLoc to OpenRanges from this DBG_VALUE. |
1431 | OpenRanges.insert(VarLocIDs: IDs, VL); |
1432 | } else if (MI.memoperands().size() > 0) { |
1433 | llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?" ); |
1434 | } else { |
1435 | // This must be an undefined location. If it has an open range, erase it. |
1436 | assert(MI.isUndefDebugValue() && |
1437 | "Unexpected non-undef DBG_VALUE encountered" ); |
1438 | VarLoc VL(MI); |
1439 | OpenRanges.erase(VL); |
1440 | } |
1441 | } |
1442 | |
1443 | // This should be removed later, doesn't fit the new design. |
1444 | void VarLocBasedLDV::collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected, |
1445 | const VarLocSet &CollectFrom, |
1446 | const VarLocMap &VarLocIDs) { |
1447 | // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all |
1448 | // possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which live |
1449 | // in Reg. |
1450 | uint64_t FirstIndex = LocIndex::rawIndexForReg(Reg: LocIndex::kUniversalLocation); |
1451 | uint64_t FirstInvalidIndex = |
1452 | LocIndex::rawIndexForReg(Reg: LocIndex::kUniversalLocation + 1); |
1453 | // Iterate through that half-open interval and collect all the set IDs. |
1454 | for (auto It = CollectFrom.find(Index: FirstIndex), End = CollectFrom.end(); |
1455 | It != End && *It < FirstInvalidIndex; ++It) { |
1456 | LocIndex RegIdx = LocIndex::fromRawInteger(ID: *It); |
1457 | Collected.push_back(Elt: VarLocIDs[RegIdx]); |
1458 | } |
1459 | } |
1460 | |
1461 | /// Turn the entry value backup locations into primary locations. |
1462 | void VarLocBasedLDV::emitEntryValues(MachineInstr &MI, |
1463 | OpenRangesSet &OpenRanges, |
1464 | VarLocMap &VarLocIDs, |
1465 | InstToEntryLocMap &EntryValTransfers, |
1466 | VarLocsInRange &KillSet) { |
1467 | // Do not insert entry value locations after a terminator. |
1468 | if (MI.isTerminator()) |
1469 | return; |
1470 | |
1471 | for (uint32_t ID : KillSet) { |
1472 | // The KillSet IDs are indices for the universal location bucket. |
1473 | LocIndex Idx = LocIndex(LocIndex::kUniversalLocation, ID); |
1474 | const VarLoc &VL = VarLocIDs[Idx]; |
1475 | if (!VL.Var.getVariable()->isParameter()) |
1476 | continue; |
1477 | |
1478 | auto DebugVar = VL.Var; |
1479 | std::optional<LocIndices> EntryValBackupIDs = |
1480 | OpenRanges.getEntryValueBackup(Var: DebugVar); |
1481 | |
1482 | // If the parameter has the entry value backup, it means we should |
1483 | // be able to use its entry value. |
1484 | if (!EntryValBackupIDs) |
1485 | continue; |
1486 | |
1487 | const VarLoc &EntryVL = VarLocIDs[EntryValBackupIDs->back()]; |
1488 | VarLoc EntryLoc = VarLoc::CreateEntryLoc(MI: EntryVL.MI, EntryExpr: EntryVL.Expr, |
1489 | Reg: EntryVL.Locs[0].Value.RegNo); |
1490 | LocIndices EntryValueIDs = VarLocIDs.insert(VL: EntryLoc); |
1491 | assert(EntryValueIDs.size() == 1 && |
1492 | "EntryValue loc should not be variadic" ); |
1493 | EntryValTransfers.insert(x: {&MI, EntryValueIDs.back()}); |
1494 | OpenRanges.insert(VarLocIDs: EntryValueIDs, VL: EntryLoc); |
1495 | } |
1496 | } |
1497 | |
1498 | /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc |
1499 | /// with \p OldVarID should be deleted form \p OpenRanges and replaced with |
1500 | /// new VarLoc. If \p NewReg is different than default zero value then the |
1501 | /// new location will be register location created by the copy like instruction, |
1502 | /// otherwise it is variable's location on the stack. |
1503 | void VarLocBasedLDV::insertTransferDebugPair( |
1504 | MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, |
1505 | VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind, |
1506 | const VarLoc::MachineLoc &OldLoc, Register NewReg) { |
1507 | const VarLoc &OldVarLoc = VarLocIDs[OldVarID]; |
1508 | |
1509 | auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) { |
1510 | LocIndices LocIds = VarLocIDs.insert(VL); |
1511 | |
1512 | // Close this variable's previous location range. |
1513 | OpenRanges.erase(VL); |
1514 | |
1515 | // Record the new location as an open range, and a postponed transfer |
1516 | // inserting a DBG_VALUE for this location. |
1517 | OpenRanges.insert(VarLocIDs: LocIds, VL); |
1518 | assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator" ); |
1519 | TransferDebugPair MIP = {.TransferInst: &MI, .LocationID: LocIds.back()}; |
1520 | Transfers.push_back(Elt: MIP); |
1521 | }; |
1522 | |
1523 | // End all previous ranges of VL.Var. |
1524 | OpenRanges.erase(VL: VarLocIDs[OldVarID]); |
1525 | switch (Kind) { |
1526 | case TransferKind::TransferCopy: { |
1527 | assert(NewReg && |
1528 | "No register supplied when handling a copy of a debug value" ); |
1529 | // Create a DBG_VALUE instruction to describe the Var in its new |
1530 | // register location. |
1531 | VarLoc VL = VarLoc::CreateCopyLoc(OldVL: OldVarLoc, OldML: OldLoc, NewReg); |
1532 | ProcessVarLoc(VL); |
1533 | LLVM_DEBUG({ |
1534 | dbgs() << "Creating VarLoc for register copy:" ; |
1535 | VL.dump(TRI, TII); |
1536 | }); |
1537 | return; |
1538 | } |
1539 | case TransferKind::TransferSpill: { |
1540 | // Create a DBG_VALUE instruction to describe the Var in its spilled |
1541 | // location. |
1542 | VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); |
1543 | VarLoc VL = VarLoc::CreateSpillLoc( |
1544 | OldVL: OldVarLoc, OldML: OldLoc, SpillBase: SpillLocation.SpillBase, SpillOffset: SpillLocation.SpillOffset); |
1545 | ProcessVarLoc(VL); |
1546 | LLVM_DEBUG({ |
1547 | dbgs() << "Creating VarLoc for spill:" ; |
1548 | VL.dump(TRI, TII); |
1549 | }); |
1550 | return; |
1551 | } |
1552 | case TransferKind::TransferRestore: { |
1553 | assert(NewReg && |
1554 | "No register supplied when handling a restore of a debug value" ); |
1555 | // DebugInstr refers to the pre-spill location, therefore we can reuse |
1556 | // its expression. |
1557 | VarLoc VL = VarLoc::CreateCopyLoc(OldVL: OldVarLoc, OldML: OldLoc, NewReg); |
1558 | ProcessVarLoc(VL); |
1559 | LLVM_DEBUG({ |
1560 | dbgs() << "Creating VarLoc for restore:" ; |
1561 | VL.dump(TRI, TII); |
1562 | }); |
1563 | return; |
1564 | } |
1565 | } |
1566 | llvm_unreachable("Invalid transfer kind" ); |
1567 | } |
1568 | |
1569 | /// A definition of a register may mark the end of a range. |
1570 | void VarLocBasedLDV::transferRegisterDef(MachineInstr &MI, |
1571 | OpenRangesSet &OpenRanges, |
1572 | VarLocMap &VarLocIDs, |
1573 | InstToEntryLocMap &EntryValTransfers, |
1574 | RegDefToInstMap &RegSetInstrs) { |
1575 | |
1576 | // Meta Instructions do not affect the debug liveness of any register they |
1577 | // define. |
1578 | if (MI.isMetaInstruction()) |
1579 | return; |
1580 | |
1581 | MachineFunction *MF = MI.getMF(); |
1582 | const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); |
1583 | Register SP = TLI->getStackPointerRegisterToSaveRestore(); |
1584 | |
1585 | // Find the regs killed by MI, and find regmasks of preserved regs. |
1586 | DefinedRegsSet DeadRegs; |
1587 | SmallVector<const uint32_t *, 4> RegMasks; |
1588 | for (const MachineOperand &MO : MI.operands()) { |
1589 | // Determine whether the operand is a register def. |
1590 | if (MO.isReg() && MO.isDef() && MO.getReg() && MO.getReg().isPhysical() && |
1591 | !(MI.isCall() && MO.getReg() == SP)) { |
1592 | // Remove ranges of all aliased registers. |
1593 | for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) |
1594 | // FIXME: Can we break out of this loop early if no insertion occurs? |
1595 | DeadRegs.insert(V: *RAI); |
1596 | RegSetInstrs.erase(Val: MO.getReg()); |
1597 | RegSetInstrs.insert(KV: {MO.getReg(), &MI}); |
1598 | } else if (MO.isRegMask()) { |
1599 | RegMasks.push_back(Elt: MO.getRegMask()); |
1600 | } |
1601 | } |
1602 | |
1603 | // Erase VarLocs which reside in one of the dead registers. For performance |
1604 | // reasons, it's critical to not iterate over the full set of open VarLocs. |
1605 | // Iterate over the set of dying/used regs instead. |
1606 | if (!RegMasks.empty()) { |
1607 | SmallVector<Register, 32> UsedRegs; |
1608 | getUsedRegs(CollectFrom: OpenRanges.getVarLocs(), UsedRegs); |
1609 | for (Register Reg : UsedRegs) { |
1610 | // Remove ranges of all clobbered registers. Register masks don't usually |
1611 | // list SP as preserved. Assume that call instructions never clobber SP, |
1612 | // because some backends (e.g., AArch64) never list SP in the regmask. |
1613 | // While the debug info may be off for an instruction or two around |
1614 | // callee-cleanup calls, transferring the DEBUG_VALUE across the call is |
1615 | // still a better user experience. |
1616 | if (Reg == SP) |
1617 | continue; |
1618 | bool AnyRegMaskKillsReg = |
1619 | any_of(Range&: RegMasks, P: [Reg](const uint32_t *RegMask) { |
1620 | return MachineOperand::clobbersPhysReg(RegMask, PhysReg: Reg); |
1621 | }); |
1622 | if (AnyRegMaskKillsReg) |
1623 | DeadRegs.insert(V: Reg); |
1624 | if (AnyRegMaskKillsReg) { |
1625 | RegSetInstrs.erase(Val: Reg); |
1626 | RegSetInstrs.insert(KV: {Reg, &MI}); |
1627 | } |
1628 | } |
1629 | } |
1630 | |
1631 | if (DeadRegs.empty()) |
1632 | return; |
1633 | |
1634 | VarLocsInRange KillSet; |
1635 | collectIDsForRegs(Collected&: KillSet, Regs: DeadRegs, CollectFrom: OpenRanges.getVarLocs(), VarLocIDs); |
1636 | OpenRanges.erase(KillSet, VarLocIDs, Location: LocIndex::kUniversalLocation); |
1637 | |
1638 | if (TPC) { |
1639 | auto &TM = TPC->getTM<TargetMachine>(); |
1640 | if (TM.Options.ShouldEmitDebugEntryValues()) |
1641 | emitEntryValues(MI, OpenRanges, VarLocIDs, EntryValTransfers, KillSet); |
1642 | } |
1643 | } |
1644 | |
1645 | void VarLocBasedLDV::transferWasmDef(MachineInstr &MI, |
1646 | OpenRangesSet &OpenRanges, |
1647 | VarLocMap &VarLocIDs) { |
1648 | // If this is not a Wasm local.set or local.tee, which sets local values, |
1649 | // return. |
1650 | int Index; |
1651 | int64_t Offset; |
1652 | if (!TII->isExplicitTargetIndexDef(MI, Index, Offset)) |
1653 | return; |
1654 | |
1655 | // Find the target indices killed by MI, and delete those variable locations |
1656 | // from the open range. |
1657 | VarLocsInRange KillSet; |
1658 | VarLoc::WasmLoc Loc{.Index: Index, .Offset: Offset}; |
1659 | for (uint64_t ID : OpenRanges.getWasmVarLocs()) { |
1660 | LocIndex Idx = LocIndex::fromRawInteger(ID); |
1661 | const VarLoc &VL = VarLocIDs[Idx]; |
1662 | assert(VL.containsWasmLocs() && "Broken VarLocSet?" ); |
1663 | if (VL.usesWasmLoc(WasmLocation: Loc)) |
1664 | KillSet.insert(V: ID); |
1665 | } |
1666 | OpenRanges.erase(KillSet, VarLocIDs, Location: LocIndex::kWasmLocation); |
1667 | } |
1668 | |
1669 | bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI, |
1670 | MachineFunction *MF) { |
1671 | // TODO: Handle multiple stores folded into one. |
1672 | if (!MI.hasOneMemOperand()) |
1673 | return false; |
1674 | |
1675 | if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) |
1676 | return false; // This is not a spill instruction, since no valid size was |
1677 | // returned from either function. |
1678 | |
1679 | return true; |
1680 | } |
1681 | |
1682 | bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI, |
1683 | MachineFunction *MF, Register &Reg) { |
1684 | if (!isSpillInstruction(MI, MF)) |
1685 | return false; |
1686 | |
1687 | auto isKilledReg = [&](const MachineOperand MO, Register &Reg) { |
1688 | if (!MO.isReg() || !MO.isUse()) { |
1689 | Reg = 0; |
1690 | return false; |
1691 | } |
1692 | Reg = MO.getReg(); |
1693 | return MO.isKill(); |
1694 | }; |
1695 | |
1696 | for (const MachineOperand &MO : MI.operands()) { |
1697 | // In a spill instruction generated by the InlineSpiller the spilled |
1698 | // register has its kill flag set. |
1699 | if (isKilledReg(MO, Reg)) |
1700 | return true; |
1701 | if (Reg != 0) { |
1702 | // Check whether next instruction kills the spilled register. |
1703 | // FIXME: Current solution does not cover search for killed register in |
1704 | // bundles and instructions further down the chain. |
1705 | auto NextI = std::next(x: MI.getIterator()); |
1706 | // Skip next instruction that points to basic block end iterator. |
1707 | if (MI.getParent()->end() == NextI) |
1708 | continue; |
1709 | Register RegNext; |
1710 | for (const MachineOperand &MONext : NextI->operands()) { |
1711 | // Return true if we came across the register from the |
1712 | // previous spill instruction that is killed in NextI. |
1713 | if (isKilledReg(MONext, RegNext) && RegNext == Reg) |
1714 | return true; |
1715 | } |
1716 | } |
1717 | } |
1718 | // Return false if we didn't find spilled register. |
1719 | return false; |
1720 | } |
1721 | |
1722 | std::optional<VarLocBasedLDV::VarLoc::SpillLoc> |
1723 | VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI, |
1724 | MachineFunction *MF, Register &Reg) { |
1725 | if (!MI.hasOneMemOperand()) |
1726 | return std::nullopt; |
1727 | |
1728 | // FIXME: Handle folded restore instructions with more than one memory |
1729 | // operand. |
1730 | if (MI.getRestoreSize(TII)) { |
1731 | Reg = MI.getOperand(i: 0).getReg(); |
1732 | return extractSpillBaseRegAndOffset(MI); |
1733 | } |
1734 | return std::nullopt; |
1735 | } |
1736 | |
1737 | /// A spilled register may indicate that we have to end the current range of |
1738 | /// a variable and create a new one for the spill location. |
1739 | /// A restored register may indicate the reverse situation. |
1740 | /// We don't want to insert any instructions in process(), so we just create |
1741 | /// the DBG_VALUE without inserting it and keep track of it in \p Transfers. |
1742 | /// It will be inserted into the BB when we're done iterating over the |
1743 | /// instructions. |
1744 | void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI, |
1745 | OpenRangesSet &OpenRanges, |
1746 | VarLocMap &VarLocIDs, |
1747 | TransferMap &Transfers) { |
1748 | MachineFunction *MF = MI.getMF(); |
1749 | TransferKind TKind; |
1750 | Register Reg; |
1751 | std::optional<VarLoc::SpillLoc> Loc; |
1752 | |
1753 | LLVM_DEBUG(dbgs() << "Examining instruction: " ; MI.dump();); |
1754 | |
1755 | // First, if there are any DBG_VALUEs pointing at a spill slot that is |
1756 | // written to, then close the variable location. The value in memory |
1757 | // will have changed. |
1758 | VarLocsInRange KillSet; |
1759 | if (isSpillInstruction(MI, MF)) { |
1760 | Loc = extractSpillBaseRegAndOffset(MI); |
1761 | for (uint64_t ID : OpenRanges.getSpillVarLocs()) { |
1762 | LocIndex Idx = LocIndex::fromRawInteger(ID); |
1763 | const VarLoc &VL = VarLocIDs[Idx]; |
1764 | assert(VL.containsSpillLocs() && "Broken VarLocSet?" ); |
1765 | if (VL.usesSpillLoc(SpillLocation: *Loc)) { |
1766 | // This location is overwritten by the current instruction -- terminate |
1767 | // the open range, and insert an explicit DBG_VALUE $noreg. |
1768 | // |
1769 | // Doing this at a later stage would require re-interpreting all |
1770 | // DBG_VALUes and DIExpressions to identify whether they point at |
1771 | // memory, and then analysing all memory writes to see if they |
1772 | // overwrite that memory, which is expensive. |
1773 | // |
1774 | // At this stage, we already know which DBG_VALUEs are for spills and |
1775 | // where they are located; it's best to fix handle overwrites now. |
1776 | KillSet.insert(V: ID); |
1777 | unsigned SpillLocIdx = VL.getSpillLocIdx(SpillLocation: *Loc); |
1778 | VarLoc::MachineLoc OldLoc = VL.Locs[SpillLocIdx]; |
1779 | VarLoc UndefVL = VarLoc::CreateCopyLoc(OldVL: VL, OldML: OldLoc, NewReg: 0); |
1780 | LocIndices UndefLocIDs = VarLocIDs.insert(VL: UndefVL); |
1781 | Transfers.push_back(Elt: {.TransferInst: &MI, .LocationID: UndefLocIDs.back()}); |
1782 | } |
1783 | } |
1784 | OpenRanges.erase(KillSet, VarLocIDs, Location: LocIndex::kSpillLocation); |
1785 | } |
1786 | |
1787 | // Try to recognise spill and restore instructions that may create a new |
1788 | // variable location. |
1789 | if (isLocationSpill(MI, MF, Reg)) { |
1790 | TKind = TransferKind::TransferSpill; |
1791 | LLVM_DEBUG(dbgs() << "Recognized as spill: " ; MI.dump();); |
1792 | LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) |
1793 | << "\n" ); |
1794 | } else { |
1795 | if (!(Loc = isRestoreInstruction(MI, MF, Reg))) |
1796 | return; |
1797 | TKind = TransferKind::TransferRestore; |
1798 | LLVM_DEBUG(dbgs() << "Recognized as restore: " ; MI.dump();); |
1799 | LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) |
1800 | << "\n" ); |
1801 | } |
1802 | // Check if the register or spill location is the location of a debug value. |
1803 | auto TransferCandidates = OpenRanges.getEmptyVarLocRange(); |
1804 | if (TKind == TransferKind::TransferSpill) |
1805 | TransferCandidates = OpenRanges.getRegisterVarLocs(Reg); |
1806 | else if (TKind == TransferKind::TransferRestore) |
1807 | TransferCandidates = OpenRanges.getSpillVarLocs(); |
1808 | for (uint64_t ID : TransferCandidates) { |
1809 | LocIndex Idx = LocIndex::fromRawInteger(ID); |
1810 | const VarLoc &VL = VarLocIDs[Idx]; |
1811 | unsigned LocIdx; |
1812 | if (TKind == TransferKind::TransferSpill) { |
1813 | assert(VL.usesReg(Reg) && "Broken VarLocSet?" ); |
1814 | LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '(' |
1815 | << VL.Var.getVariable()->getName() << ")\n" ); |
1816 | LocIdx = VL.getRegIdx(Reg); |
1817 | } else { |
1818 | assert(TKind == TransferKind::TransferRestore && VL.containsSpillLocs() && |
1819 | "Broken VarLocSet?" ); |
1820 | if (!VL.usesSpillLoc(SpillLocation: *Loc)) |
1821 | // The spill location is not the location of a debug value. |
1822 | continue; |
1823 | LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '(' |
1824 | << VL.Var.getVariable()->getName() << ")\n" ); |
1825 | LocIdx = VL.getSpillLocIdx(SpillLocation: *Loc); |
1826 | } |
1827 | VarLoc::MachineLoc MLoc = VL.Locs[LocIdx]; |
1828 | insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, OldVarID: Idx, Kind: TKind, |
1829 | OldLoc: MLoc, NewReg: Reg); |
1830 | // FIXME: A comment should explain why it's correct to return early here, |
1831 | // if that is in fact correct. |
1832 | return; |
1833 | } |
1834 | } |
1835 | |
1836 | /// If \p MI is a register copy instruction, that copies a previously tracked |
1837 | /// value from one register to another register that is callee saved, we |
1838 | /// create new DBG_VALUE instruction described with copy destination register. |
1839 | void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI, |
1840 | OpenRangesSet &OpenRanges, |
1841 | VarLocMap &VarLocIDs, |
1842 | TransferMap &Transfers) { |
1843 | auto DestSrc = TII->isCopyLikeInstr(MI); |
1844 | if (!DestSrc) |
1845 | return; |
1846 | |
1847 | const MachineOperand *DestRegOp = DestSrc->Destination; |
1848 | const MachineOperand *SrcRegOp = DestSrc->Source; |
1849 | |
1850 | if (!DestRegOp->isDef()) |
1851 | return; |
1852 | |
1853 | auto isCalleeSavedReg = [&](Register Reg) { |
1854 | for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) |
1855 | if (CalleeSavedRegs.test(Idx: *RAI)) |
1856 | return true; |
1857 | return false; |
1858 | }; |
1859 | |
1860 | Register SrcReg = SrcRegOp->getReg(); |
1861 | Register DestReg = DestRegOp->getReg(); |
1862 | |
1863 | // We want to recognize instructions where destination register is callee |
1864 | // saved register. If register that could be clobbered by the call is |
1865 | // included, there would be a great chance that it is going to be clobbered |
1866 | // soon. It is more likely that previous register location, which is callee |
1867 | // saved, is going to stay unclobbered longer, even if it is killed. |
1868 | if (!isCalleeSavedReg(DestReg)) |
1869 | return; |
1870 | |
1871 | // Remember an entry value movement. If we encounter a new debug value of |
1872 | // a parameter describing only a moving of the value around, rather then |
1873 | // modifying it, we are still able to use the entry value if needed. |
1874 | if (isRegOtherThanSPAndFP(Op: *DestRegOp, MI, TRI)) { |
1875 | for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { |
1876 | LocIndex Idx = LocIndex::fromRawInteger(ID); |
1877 | const VarLoc &VL = VarLocIDs[Idx]; |
1878 | if (VL.isEntryValueBackupReg(Reg: SrcReg)) { |
1879 | LLVM_DEBUG(dbgs() << "Copy of the entry value: " ; MI.dump();); |
1880 | VarLoc EntryValLocCopyBackup = |
1881 | VarLoc::CreateEntryCopyBackupLoc(MI: VL.MI, EntryExpr: VL.Expr, NewReg: DestReg); |
1882 | // Stop tracking the original entry value. |
1883 | OpenRanges.erase(VL); |
1884 | |
1885 | // Start tracking the entry value copy. |
1886 | LocIndices EntryValCopyLocIDs = VarLocIDs.insert(VL: EntryValLocCopyBackup); |
1887 | OpenRanges.insert(VarLocIDs: EntryValCopyLocIDs, VL: EntryValLocCopyBackup); |
1888 | break; |
1889 | } |
1890 | } |
1891 | } |
1892 | |
1893 | if (!SrcRegOp->isKill()) |
1894 | return; |
1895 | |
1896 | for (uint64_t ID : OpenRanges.getRegisterVarLocs(Reg: SrcReg)) { |
1897 | LocIndex Idx = LocIndex::fromRawInteger(ID); |
1898 | assert(VarLocIDs[Idx].usesReg(SrcReg) && "Broken VarLocSet?" ); |
1899 | VarLoc::MachineLocValue Loc; |
1900 | Loc.RegNo = SrcReg; |
1901 | VarLoc::MachineLoc MLoc{.Kind: VarLoc::MachineLocKind::RegisterKind, .Value: Loc}; |
1902 | insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, OldVarID: Idx, |
1903 | Kind: TransferKind::TransferCopy, OldLoc: MLoc, NewReg: DestReg); |
1904 | // FIXME: A comment should explain why it's correct to return early here, |
1905 | // if that is in fact correct. |
1906 | return; |
1907 | } |
1908 | } |
1909 | |
1910 | /// Terminate all open ranges at the end of the current basic block. |
1911 | bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB, |
1912 | OpenRangesSet &OpenRanges, |
1913 | VarLocInMBB &OutLocs, |
1914 | const VarLocMap &VarLocIDs) { |
1915 | bool Changed = false; |
1916 | LLVM_DEBUG({ |
1917 | VarVec VarLocs; |
1918 | OpenRanges.getUniqueVarLocs(VarLocs, VarLocIDs); |
1919 | for (VarLoc &VL : VarLocs) { |
1920 | // Copy OpenRanges to OutLocs, if not already present. |
1921 | dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": " ; |
1922 | VL.dump(TRI, TII); |
1923 | } |
1924 | }); |
1925 | VarLocSet &VLS = getVarLocsInMBB(MBB: CurMBB, Locs&: OutLocs); |
1926 | Changed = VLS != OpenRanges.getVarLocs(); |
1927 | // New OutLocs set may be different due to spill, restore or register |
1928 | // copy instruction processing. |
1929 | if (Changed) |
1930 | VLS = OpenRanges.getVarLocs(); |
1931 | OpenRanges.clear(); |
1932 | return Changed; |
1933 | } |
1934 | |
1935 | /// Accumulate a mapping between each DILocalVariable fragment and other |
1936 | /// fragments of that DILocalVariable which overlap. This reduces work during |
1937 | /// the data-flow stage from "Find any overlapping fragments" to "Check if the |
1938 | /// known-to-overlap fragments are present". |
1939 | /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for |
1940 | /// fragment usage. |
1941 | /// \param SeenFragments Map from DILocalVariable to all fragments of that |
1942 | /// Variable which are known to exist. |
1943 | /// \param OverlappingFragments The overlap map being constructed, from one |
1944 | /// Var/Fragment pair to a vector of fragments known to overlap. |
1945 | void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI, |
1946 | VarToFragments &SeenFragments, |
1947 | OverlapMap &OverlappingFragments) { |
1948 | DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), |
1949 | MI.getDebugLoc()->getInlinedAt()); |
1950 | FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); |
1951 | |
1952 | // If this is the first sighting of this variable, then we are guaranteed |
1953 | // there are currently no overlapping fragments either. Initialize the set |
1954 | // of seen fragments, record no overlaps for the current one, and return. |
1955 | auto SeenIt = SeenFragments.find(Val: MIVar.getVariable()); |
1956 | if (SeenIt == SeenFragments.end()) { |
1957 | SmallSet<FragmentInfo, 4> OneFragment; |
1958 | OneFragment.insert(V: ThisFragment); |
1959 | SeenFragments.insert(KV: {MIVar.getVariable(), OneFragment}); |
1960 | |
1961 | OverlappingFragments.insert(KV: {{MIVar.getVariable(), ThisFragment}, {}}); |
1962 | return; |
1963 | } |
1964 | |
1965 | // If this particular Variable/Fragment pair already exists in the overlap |
1966 | // map, it has already been accounted for. |
1967 | auto IsInOLapMap = |
1968 | OverlappingFragments.insert(KV: {{MIVar.getVariable(), ThisFragment}, {}}); |
1969 | if (!IsInOLapMap.second) |
1970 | return; |
1971 | |
1972 | auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; |
1973 | auto &AllSeenFragments = SeenIt->second; |
1974 | |
1975 | // Otherwise, examine all other seen fragments for this variable, with "this" |
1976 | // fragment being a previously unseen fragment. Record any pair of |
1977 | // overlapping fragments. |
1978 | for (const auto &ASeenFragment : AllSeenFragments) { |
1979 | // Does this previously seen fragment overlap? |
1980 | if (DIExpression::fragmentsOverlap(A: ThisFragment, B: ASeenFragment)) { |
1981 | // Yes: Mark the current fragment as being overlapped. |
1982 | ThisFragmentsOverlaps.push_back(Elt: ASeenFragment); |
1983 | // Mark the previously seen fragment as being overlapped by the current |
1984 | // one. |
1985 | auto ASeenFragmentsOverlaps = |
1986 | OverlappingFragments.find(Val: {MIVar.getVariable(), ASeenFragment}); |
1987 | assert(ASeenFragmentsOverlaps != OverlappingFragments.end() && |
1988 | "Previously seen var fragment has no vector of overlaps" ); |
1989 | ASeenFragmentsOverlaps->second.push_back(Elt: ThisFragment); |
1990 | } |
1991 | } |
1992 | |
1993 | AllSeenFragments.insert(V: ThisFragment); |
1994 | } |
1995 | |
1996 | /// This routine creates OpenRanges. |
1997 | void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges, |
1998 | VarLocMap &VarLocIDs, TransferMap &Transfers, |
1999 | InstToEntryLocMap &EntryValTransfers, |
2000 | RegDefToInstMap &RegSetInstrs) { |
2001 | if (!MI.isDebugInstr()) |
2002 | LastNonDbgMI = &MI; |
2003 | transferDebugValue(MI, OpenRanges, VarLocIDs, EntryValTransfers, |
2004 | RegSetInstrs); |
2005 | transferRegisterDef(MI, OpenRanges, VarLocIDs, EntryValTransfers, |
2006 | RegSetInstrs); |
2007 | transferWasmDef(MI, OpenRanges, VarLocIDs); |
2008 | transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers); |
2009 | transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers); |
2010 | } |
2011 | |
2012 | /// This routine joins the analysis results of all incoming edges in @MBB by |
2013 | /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same |
2014 | /// source variable in all the predecessors of @MBB reside in the same location. |
2015 | bool VarLocBasedLDV::join( |
2016 | MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, |
2017 | const VarLocMap &VarLocIDs, |
2018 | SmallPtrSet<const MachineBasicBlock *, 16> &Visited, |
2019 | SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) { |
2020 | LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n" ); |
2021 | |
2022 | VarLocSet InLocsT(Alloc); // Temporary incoming locations. |
2023 | |
2024 | // For all predecessors of this MBB, find the set of VarLocs that |
2025 | // can be joined. |
2026 | int NumVisited = 0; |
2027 | for (auto *p : MBB.predecessors()) { |
2028 | // Ignore backedges if we have not visited the predecessor yet. As the |
2029 | // predecessor hasn't yet had locations propagated into it, most locations |
2030 | // will not yet be valid, so treat them as all being uninitialized and |
2031 | // potentially valid. If a location guessed to be correct here is |
2032 | // invalidated later, we will remove it when we revisit this block. |
2033 | if (!Visited.count(Ptr: p)) { |
2034 | LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber() |
2035 | << "\n" ); |
2036 | continue; |
2037 | } |
2038 | auto OL = OutLocs.find(Val: p); |
2039 | // Join is null in case of empty OutLocs from any of the pred. |
2040 | if (OL == OutLocs.end()) |
2041 | return false; |
2042 | |
2043 | // Just copy over the Out locs to incoming locs for the first visited |
2044 | // predecessor, and for all other predecessors join the Out locs. |
2045 | VarLocSet &OutLocVLS = *OL->second; |
2046 | if (!NumVisited) |
2047 | InLocsT = OutLocVLS; |
2048 | else |
2049 | InLocsT &= OutLocVLS; |
2050 | |
2051 | LLVM_DEBUG({ |
2052 | if (!InLocsT.empty()) { |
2053 | VarVec VarLocs; |
2054 | collectAllVarLocs(VarLocs, InLocsT, VarLocIDs); |
2055 | for (const VarLoc &VL : VarLocs) |
2056 | dbgs() << " gathered candidate incoming var: " |
2057 | << VL.Var.getVariable()->getName() << "\n" ; |
2058 | } |
2059 | }); |
2060 | |
2061 | NumVisited++; |
2062 | } |
2063 | |
2064 | // Filter out DBG_VALUES that are out of scope. |
2065 | VarLocSet KillSet(Alloc); |
2066 | bool IsArtificial = ArtificialBlocks.count(Ptr: &MBB); |
2067 | if (!IsArtificial) { |
2068 | for (uint64_t ID : InLocsT) { |
2069 | LocIndex Idx = LocIndex::fromRawInteger(ID); |
2070 | if (!VarLocIDs[Idx].dominates(LS, MBB)) { |
2071 | KillSet.set(ID); |
2072 | LLVM_DEBUG({ |
2073 | auto Name = VarLocIDs[Idx].Var.getVariable()->getName(); |
2074 | dbgs() << " killing " << Name << ", it doesn't dominate MBB\n" ; |
2075 | }); |
2076 | } |
2077 | } |
2078 | } |
2079 | InLocsT.intersectWithComplement(Other: KillSet); |
2080 | |
2081 | // As we are processing blocks in reverse post-order we |
2082 | // should have processed at least one predecessor, unless it |
2083 | // is the entry block which has no predecessor. |
2084 | assert((NumVisited || MBB.pred_empty()) && |
2085 | "Should have processed at least one predecessor" ); |
2086 | |
2087 | VarLocSet &ILS = getVarLocsInMBB(MBB: &MBB, Locs&: InLocs); |
2088 | bool Changed = false; |
2089 | if (ILS != InLocsT) { |
2090 | ILS = InLocsT; |
2091 | Changed = true; |
2092 | } |
2093 | |
2094 | return Changed; |
2095 | } |
2096 | |
2097 | void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs, |
2098 | VarLocMap &VarLocIDs) { |
2099 | // PendingInLocs records all locations propagated into blocks, which have |
2100 | // not had DBG_VALUE insts created. Go through and create those insts now. |
2101 | for (auto &Iter : PendingInLocs) { |
2102 | // Map is keyed on a constant pointer, unwrap it so we can insert insts. |
2103 | auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first); |
2104 | VarLocSet &Pending = *Iter.second; |
2105 | |
2106 | SmallVector<VarLoc, 32> VarLocs; |
2107 | collectAllVarLocs(Collected&: VarLocs, CollectFrom: Pending, VarLocIDs); |
2108 | |
2109 | for (VarLoc DiffIt : VarLocs) { |
2110 | // The ID location is live-in to MBB -- work out what kind of machine |
2111 | // location it is and create a DBG_VALUE. |
2112 | if (DiffIt.isEntryBackupLoc()) |
2113 | continue; |
2114 | MachineInstr *MI = DiffIt.BuildDbgValue(MF&: *MBB.getParent()); |
2115 | MBB.insert(I: MBB.instr_begin(), M: MI); |
2116 | |
2117 | (void)MI; |
2118 | LLVM_DEBUG(dbgs() << "Inserted: " ; MI->dump();); |
2119 | } |
2120 | } |
2121 | } |
2122 | |
2123 | bool VarLocBasedLDV::isEntryValueCandidate( |
2124 | const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const { |
2125 | assert(MI.isDebugValue() && "This must be DBG_VALUE." ); |
2126 | |
2127 | // TODO: Add support for local variables that are expressed in terms of |
2128 | // parameters entry values. |
2129 | // TODO: Add support for modified arguments that can be expressed |
2130 | // by using its entry value. |
2131 | auto *DIVar = MI.getDebugVariable(); |
2132 | if (!DIVar->isParameter()) |
2133 | return false; |
2134 | |
2135 | // Do not consider parameters that belong to an inlined function. |
2136 | if (MI.getDebugLoc()->getInlinedAt()) |
2137 | return false; |
2138 | |
2139 | // Only consider parameters that are described using registers. Parameters |
2140 | // that are passed on the stack are not yet supported, so ignore debug |
2141 | // values that are described by the frame or stack pointer. |
2142 | if (!isRegOtherThanSPAndFP(Op: MI.getDebugOperand(Index: 0), MI, TRI)) |
2143 | return false; |
2144 | |
2145 | // If a parameter's value has been propagated from the caller, then the |
2146 | // parameter's DBG_VALUE may be described using a register defined by some |
2147 | // instruction in the entry block, in which case we shouldn't create an |
2148 | // entry value. |
2149 | if (DefinedRegs.count(V: MI.getDebugOperand(Index: 0).getReg())) |
2150 | return false; |
2151 | |
2152 | // TODO: Add support for parameters that have a pre-existing debug expressions |
2153 | // (e.g. fragments). |
2154 | // A simple deref expression is equivalent to an indirect debug value. |
2155 | const DIExpression *Expr = MI.getDebugExpression(); |
2156 | if (Expr->getNumElements() > 0 && !Expr->isDeref()) |
2157 | return false; |
2158 | |
2159 | return true; |
2160 | } |
2161 | |
2162 | /// Collect all register defines (including aliases) for the given instruction. |
2163 | static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs, |
2164 | const TargetRegisterInfo *TRI) { |
2165 | for (const MachineOperand &MO : MI.all_defs()) { |
2166 | if (MO.getReg() && MO.getReg().isPhysical()) { |
2167 | Regs.insert(V: MO.getReg()); |
2168 | for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) |
2169 | Regs.insert(V: *AI); |
2170 | } |
2171 | } |
2172 | } |
2173 | |
2174 | /// This routine records the entry values of function parameters. The values |
2175 | /// could be used as backup values. If we loose the track of some unmodified |
2176 | /// parameters, the backup values will be used as a primary locations. |
2177 | void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI, |
2178 | const DefinedRegsSet &DefinedRegs, |
2179 | OpenRangesSet &OpenRanges, |
2180 | VarLocMap &VarLocIDs) { |
2181 | if (TPC) { |
2182 | auto &TM = TPC->getTM<TargetMachine>(); |
2183 | if (!TM.Options.ShouldEmitDebugEntryValues()) |
2184 | return; |
2185 | } |
2186 | |
2187 | DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(), |
2188 | MI.getDebugLoc()->getInlinedAt()); |
2189 | |
2190 | if (!isEntryValueCandidate(MI, DefinedRegs) || |
2191 | OpenRanges.getEntryValueBackup(Var: V)) |
2192 | return; |
2193 | |
2194 | LLVM_DEBUG(dbgs() << "Creating the backup entry location: " ; MI.dump();); |
2195 | |
2196 | // Create the entry value and use it as a backup location until it is |
2197 | // valid. It is valid until a parameter is not changed. |
2198 | DIExpression *NewExpr = |
2199 | DIExpression::prepend(Expr: MI.getDebugExpression(), Flags: DIExpression::EntryValue); |
2200 | VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, EntryExpr: NewExpr); |
2201 | LocIndices EntryValLocIDs = VarLocIDs.insert(VL: EntryValLocAsBackup); |
2202 | OpenRanges.insert(VarLocIDs: EntryValLocIDs, VL: EntryValLocAsBackup); |
2203 | } |
2204 | |
2205 | /// Calculate the liveness information for the given machine function and |
2206 | /// extend ranges across basic blocks. |
2207 | bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, |
2208 | MachineDominatorTree *DomTree, |
2209 | TargetPassConfig *TPC, unsigned InputBBLimit, |
2210 | unsigned InputDbgValLimit) { |
2211 | (void)DomTree; |
2212 | LLVM_DEBUG(dbgs() << "\nDebug Range Extension: " << MF.getName() << "\n" ); |
2213 | |
2214 | if (!MF.getFunction().getSubprogram()) |
2215 | // VarLocBaseLDV will already have removed all DBG_VALUEs. |
2216 | return false; |
2217 | |
2218 | // Skip functions from NoDebug compilation units. |
2219 | if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() == |
2220 | DICompileUnit::NoDebug) |
2221 | return false; |
2222 | |
2223 | TRI = MF.getSubtarget().getRegisterInfo(); |
2224 | TII = MF.getSubtarget().getInstrInfo(); |
2225 | TFI = MF.getSubtarget().getFrameLowering(); |
2226 | TFI->getCalleeSaves(MF, SavedRegs&: CalleeSavedRegs); |
2227 | this->TPC = TPC; |
2228 | LS.initialize(MF); |
2229 | |
2230 | bool Changed = false; |
2231 | bool OLChanged = false; |
2232 | bool MBBJoined = false; |
2233 | |
2234 | VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors. |
2235 | OverlapMap OverlapFragments; // Map of overlapping variable fragments. |
2236 | OpenRangesSet OpenRanges(Alloc, OverlapFragments); |
2237 | // Ranges that are open until end of bb. |
2238 | VarLocInMBB OutLocs; // Ranges that exist beyond bb. |
2239 | VarLocInMBB InLocs; // Ranges that are incoming after joining. |
2240 | TransferMap Transfers; // DBG_VALUEs associated with transfers (such as |
2241 | // spills, copies and restores). |
2242 | // Map responsible MI to attached Transfer emitted from Backup Entry Value. |
2243 | InstToEntryLocMap EntryValTransfers; |
2244 | // Map a Register to the last MI which clobbered it. |
2245 | RegDefToInstMap RegSetInstrs; |
2246 | |
2247 | VarToFragments SeenFragments; |
2248 | |
2249 | // Blocks which are artificial, i.e. blocks which exclusively contain |
2250 | // instructions without locations, or with line 0 locations. |
2251 | SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; |
2252 | |
2253 | DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; |
2254 | DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; |
2255 | std::priority_queue<unsigned int, std::vector<unsigned int>, |
2256 | std::greater<unsigned int>> |
2257 | Worklist; |
2258 | std::priority_queue<unsigned int, std::vector<unsigned int>, |
2259 | std::greater<unsigned int>> |
2260 | Pending; |
2261 | |
2262 | // Set of register defines that are seen when traversing the entry block |
2263 | // looking for debug entry value candidates. |
2264 | DefinedRegsSet DefinedRegs; |
2265 | |
2266 | // Only in the case of entry MBB collect DBG_VALUEs representing |
2267 | // function parameters in order to generate debug entry values for them. |
2268 | MachineBasicBlock &First_MBB = *(MF.begin()); |
2269 | for (auto &MI : First_MBB) { |
2270 | collectRegDefs(MI, Regs&: DefinedRegs, TRI); |
2271 | if (MI.isDebugValue()) |
2272 | recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs); |
2273 | } |
2274 | |
2275 | // Initialize per-block structures and scan for fragment overlaps. |
2276 | for (auto &MBB : MF) |
2277 | for (auto &MI : MBB) |
2278 | if (MI.isDebugValue()) |
2279 | accumulateFragmentMap(MI, SeenFragments, OverlappingFragments&: OverlapFragments); |
2280 | |
2281 | auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { |
2282 | if (const DebugLoc &DL = MI.getDebugLoc()) |
2283 | return DL.getLine() != 0; |
2284 | return false; |
2285 | }; |
2286 | for (auto &MBB : MF) |
2287 | if (none_of(Range: MBB.instrs(), P: hasNonArtificialLocation)) |
2288 | ArtificialBlocks.insert(Ptr: &MBB); |
2289 | |
2290 | LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, |
2291 | "OutLocs after initialization" , dbgs())); |
2292 | |
2293 | ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); |
2294 | unsigned int RPONumber = 0; |
2295 | for (MachineBasicBlock *MBB : RPOT) { |
2296 | OrderToBB[RPONumber] = MBB; |
2297 | BBToOrder[MBB] = RPONumber; |
2298 | Worklist.push(x: RPONumber); |
2299 | ++RPONumber; |
2300 | } |
2301 | |
2302 | if (RPONumber > InputBBLimit) { |
2303 | unsigned NumInputDbgValues = 0; |
2304 | for (auto &MBB : MF) |
2305 | for (auto &MI : MBB) |
2306 | if (MI.isDebugValue()) |
2307 | ++NumInputDbgValues; |
2308 | if (NumInputDbgValues > InputDbgValLimit) { |
2309 | LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName() |
2310 | << " has " << RPONumber << " basic blocks and " |
2311 | << NumInputDbgValues |
2312 | << " input DBG_VALUEs, exceeding limits.\n" ); |
2313 | return false; |
2314 | } |
2315 | } |
2316 | |
2317 | // This is a standard "union of predecessor outs" dataflow problem. |
2318 | // To solve it, we perform join() and process() using the two worklist method |
2319 | // until the ranges converge. |
2320 | // Ranges have converged when both worklists are empty. |
2321 | SmallPtrSet<const MachineBasicBlock *, 16> Visited; |
2322 | while (!Worklist.empty() || !Pending.empty()) { |
2323 | // We track what is on the pending worklist to avoid inserting the same |
2324 | // thing twice. We could avoid this with a custom priority queue, but this |
2325 | // is probably not worth it. |
2326 | SmallPtrSet<MachineBasicBlock *, 16> OnPending; |
2327 | LLVM_DEBUG(dbgs() << "Processing Worklist\n" ); |
2328 | while (!Worklist.empty()) { |
2329 | MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; |
2330 | Worklist.pop(); |
2331 | MBBJoined = join(MBB&: *MBB, OutLocs, InLocs, VarLocIDs, Visited, |
2332 | ArtificialBlocks); |
2333 | MBBJoined |= Visited.insert(Ptr: MBB).second; |
2334 | if (MBBJoined) { |
2335 | MBBJoined = false; |
2336 | Changed = true; |
2337 | // Now that we have started to extend ranges across BBs we need to |
2338 | // examine spill, copy and restore instructions to see whether they |
2339 | // operate with registers that correspond to user variables. |
2340 | // First load any pending inlocs. |
2341 | OpenRanges.insertFromLocSet(ToLoad: getVarLocsInMBB(MBB, Locs&: InLocs), Map: VarLocIDs); |
2342 | LastNonDbgMI = nullptr; |
2343 | RegSetInstrs.clear(); |
2344 | for (auto &MI : *MBB) |
2345 | process(MI, OpenRanges, VarLocIDs, Transfers, EntryValTransfers, |
2346 | RegSetInstrs); |
2347 | OLChanged |= transferTerminator(CurMBB: MBB, OpenRanges, OutLocs, VarLocIDs); |
2348 | |
2349 | LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, |
2350 | "OutLocs after propagating" , dbgs())); |
2351 | LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, |
2352 | "InLocs after propagating" , dbgs())); |
2353 | |
2354 | if (OLChanged) { |
2355 | OLChanged = false; |
2356 | for (auto *s : MBB->successors()) |
2357 | if (OnPending.insert(Ptr: s).second) { |
2358 | Pending.push(x: BBToOrder[s]); |
2359 | } |
2360 | } |
2361 | } |
2362 | } |
2363 | Worklist.swap(pq&: Pending); |
2364 | // At this point, pending must be empty, since it was just the empty |
2365 | // worklist |
2366 | assert(Pending.empty() && "Pending should be empty" ); |
2367 | } |
2368 | |
2369 | // Add any DBG_VALUE instructions created by location transfers. |
2370 | for (auto &TR : Transfers) { |
2371 | assert(!TR.TransferInst->isTerminator() && |
2372 | "Cannot insert DBG_VALUE after terminator" ); |
2373 | MachineBasicBlock *MBB = TR.TransferInst->getParent(); |
2374 | const VarLoc &VL = VarLocIDs[TR.LocationID]; |
2375 | MachineInstr *MI = VL.BuildDbgValue(MF); |
2376 | MBB->insertAfterBundle(I: TR.TransferInst->getIterator(), MI); |
2377 | } |
2378 | Transfers.clear(); |
2379 | |
2380 | // Add DBG_VALUEs created using Backup Entry Value location. |
2381 | for (auto &TR : EntryValTransfers) { |
2382 | MachineInstr *TRInst = const_cast<MachineInstr *>(TR.first); |
2383 | assert(!TRInst->isTerminator() && |
2384 | "Cannot insert DBG_VALUE after terminator" ); |
2385 | MachineBasicBlock *MBB = TRInst->getParent(); |
2386 | const VarLoc &VL = VarLocIDs[TR.second]; |
2387 | MachineInstr *MI = VL.BuildDbgValue(MF); |
2388 | MBB->insertAfterBundle(I: TRInst->getIterator(), MI); |
2389 | } |
2390 | EntryValTransfers.clear(); |
2391 | |
2392 | // Deferred inlocs will not have had any DBG_VALUE insts created; do |
2393 | // that now. |
2394 | flushPendingLocs(PendingInLocs&: InLocs, VarLocIDs); |
2395 | |
2396 | LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs" , dbgs())); |
2397 | LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs" , dbgs())); |
2398 | return Changed; |
2399 | } |
2400 | |
2401 | LDVImpl * |
2402 | llvm::makeVarLocBasedLiveDebugValues() |
2403 | { |
2404 | return new VarLocBasedLDV(); |
2405 | } |
2406 | |