1 | //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the LiveDebugVariables analysis. |
10 | // |
11 | // Remove all DBG_VALUE instructions referencing virtual registers and replace |
12 | // them with a data structure tracking where live user variables are kept - in a |
13 | // virtual register or in a stack slot. |
14 | // |
15 | // Allow the data structure to be updated during register allocation when values |
16 | // are moved between registers and stack slots. Finally emit new DBG_VALUE |
17 | // instructions after register allocation is complete. |
18 | // |
19 | //===----------------------------------------------------------------------===// |
20 | |
21 | #include "llvm/CodeGen/LiveDebugVariables.h" |
22 | #include "llvm/ADT/ArrayRef.h" |
23 | #include "llvm/ADT/DenseMap.h" |
24 | #include "llvm/ADT/IntervalMap.h" |
25 | #include "llvm/ADT/MapVector.h" |
26 | #include "llvm/ADT/STLExtras.h" |
27 | #include "llvm/ADT/SmallSet.h" |
28 | #include "llvm/ADT/SmallVector.h" |
29 | #include "llvm/ADT/Statistic.h" |
30 | #include "llvm/ADT/StringRef.h" |
31 | #include "llvm/BinaryFormat/Dwarf.h" |
32 | #include "llvm/CodeGen/LexicalScopes.h" |
33 | #include "llvm/CodeGen/LiveInterval.h" |
34 | #include "llvm/CodeGen/LiveIntervals.h" |
35 | #include "llvm/CodeGen/MachineBasicBlock.h" |
36 | #include "llvm/CodeGen/MachineDominators.h" |
37 | #include "llvm/CodeGen/MachineFunction.h" |
38 | #include "llvm/CodeGen/MachineInstr.h" |
39 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
40 | #include "llvm/CodeGen/MachineOperand.h" |
41 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
42 | #include "llvm/CodeGen/SlotIndexes.h" |
43 | #include "llvm/CodeGen/TargetInstrInfo.h" |
44 | #include "llvm/CodeGen/TargetOpcodes.h" |
45 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
46 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
47 | #include "llvm/CodeGen/VirtRegMap.h" |
48 | #include "llvm/Config/llvm-config.h" |
49 | #include "llvm/IR/DebugInfoMetadata.h" |
50 | #include "llvm/IR/DebugLoc.h" |
51 | #include "llvm/IR/Function.h" |
52 | #include "llvm/InitializePasses.h" |
53 | #include "llvm/Pass.h" |
54 | #include "llvm/Support/Casting.h" |
55 | #include "llvm/Support/CommandLine.h" |
56 | #include "llvm/Support/Debug.h" |
57 | #include "llvm/Support/raw_ostream.h" |
58 | #include <algorithm> |
59 | #include <cassert> |
60 | #include <iterator> |
61 | #include <map> |
62 | #include <memory> |
63 | #include <optional> |
64 | #include <utility> |
65 | |
66 | using namespace llvm; |
67 | |
68 | #define DEBUG_TYPE "livedebugvars" |
69 | |
70 | static cl::opt<bool> |
71 | EnableLDV("live-debug-variables" , cl::init(Val: true), |
72 | cl::desc("Enable the live debug variables pass" ), cl::Hidden); |
73 | |
74 | STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted" ); |
75 | STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted" ); |
76 | |
77 | char LiveDebugVariables::ID = 0; |
78 | |
79 | INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, |
80 | "Debug Variable Analysis" , false, false) |
81 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
82 | INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) |
83 | INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, |
84 | "Debug Variable Analysis" , false, false) |
85 | |
86 | void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { |
87 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
88 | AU.addRequiredTransitive<LiveIntervalsWrapperPass>(); |
89 | AU.setPreservesAll(); |
90 | MachineFunctionPass::getAnalysisUsage(AU); |
91 | } |
92 | |
93 | LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { |
94 | initializeLiveDebugVariablesPass(Registry&: *PassRegistry::getPassRegistry()); |
95 | } |
96 | |
97 | enum : unsigned { UndefLocNo = ~0U }; |
98 | |
99 | namespace { |
100 | /// Describes a debug variable value by location number and expression along |
101 | /// with some flags about the original usage of the location. |
102 | class DbgVariableValue { |
103 | public: |
104 | DbgVariableValue(ArrayRef<unsigned> NewLocs, bool WasIndirect, bool WasList, |
105 | const DIExpression &Expr) |
106 | : WasIndirect(WasIndirect), WasList(WasList), Expression(&Expr) { |
107 | assert(!(WasIndirect && WasList) && |
108 | "DBG_VALUE_LISTs should not be indirect." ); |
109 | SmallVector<unsigned> LocNoVec; |
110 | for (unsigned LocNo : NewLocs) { |
111 | auto It = find(Range&: LocNoVec, Val: LocNo); |
112 | if (It == LocNoVec.end()) |
113 | LocNoVec.push_back(Elt: LocNo); |
114 | else { |
115 | // Loc duplicates an element in LocNos; replace references to Op |
116 | // with references to the duplicating element. |
117 | unsigned OpIdx = LocNoVec.size(); |
118 | unsigned DuplicatingIdx = std::distance(first: LocNoVec.begin(), last: It); |
119 | Expression = |
120 | DIExpression::replaceArg(Expr: Expression, OldArg: OpIdx, NewArg: DuplicatingIdx); |
121 | } |
122 | } |
123 | // FIXME: Debug values referencing 64+ unique machine locations are rare and |
124 | // currently unsupported for performance reasons. If we can verify that |
125 | // performance is acceptable for such debug values, we can increase the |
126 | // bit-width of LocNoCount to 14 to enable up to 16384 unique machine |
127 | // locations. We will also need to verify that this does not cause issues |
128 | // with LiveDebugVariables' use of IntervalMap. |
129 | if (LocNoVec.size() < 64) { |
130 | LocNoCount = LocNoVec.size(); |
131 | if (LocNoCount > 0) { |
132 | LocNos = std::make_unique<unsigned[]>(num: LocNoCount); |
133 | std::copy(LocNoVec.begin(), LocNoVec.end(), loc_nos_begin()); |
134 | } |
135 | } else { |
136 | LLVM_DEBUG(dbgs() << "Found debug value with 64+ unique machine " |
137 | "locations, dropping...\n" ); |
138 | LocNoCount = 1; |
139 | // Turn this into an undef debug value list; right now, the simplest form |
140 | // of this is an expression with one arg, and an undef debug operand. |
141 | Expression = |
142 | DIExpression::get(Context&: Expr.getContext(), Elements: {dwarf::DW_OP_LLVM_arg, 0}); |
143 | if (auto FragmentInfoOpt = Expr.getFragmentInfo()) |
144 | Expression = *DIExpression::createFragmentExpression( |
145 | Expr: Expression, OffsetInBits: FragmentInfoOpt->OffsetInBits, |
146 | SizeInBits: FragmentInfoOpt->SizeInBits); |
147 | LocNos = std::make_unique<unsigned[]>(num: LocNoCount); |
148 | LocNos[0] = UndefLocNo; |
149 | } |
150 | } |
151 | |
152 | DbgVariableValue() : LocNoCount(0), WasIndirect(false), WasList(false) {} |
153 | DbgVariableValue(const DbgVariableValue &Other) |
154 | : LocNoCount(Other.LocNoCount), WasIndirect(Other.getWasIndirect()), |
155 | WasList(Other.getWasList()), Expression(Other.getExpression()) { |
156 | if (Other.getLocNoCount()) { |
157 | LocNos.reset(p: new unsigned[Other.getLocNoCount()]); |
158 | std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin()); |
159 | } |
160 | } |
161 | |
162 | DbgVariableValue &operator=(const DbgVariableValue &Other) { |
163 | if (this == &Other) |
164 | return *this; |
165 | if (Other.getLocNoCount()) { |
166 | LocNos.reset(p: new unsigned[Other.getLocNoCount()]); |
167 | std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin()); |
168 | } else { |
169 | LocNos.release(); |
170 | } |
171 | LocNoCount = Other.getLocNoCount(); |
172 | WasIndirect = Other.getWasIndirect(); |
173 | WasList = Other.getWasList(); |
174 | Expression = Other.getExpression(); |
175 | return *this; |
176 | } |
177 | |
178 | const DIExpression *getExpression() const { return Expression; } |
179 | uint8_t getLocNoCount() const { return LocNoCount; } |
180 | bool containsLocNo(unsigned LocNo) const { |
181 | return is_contained(Range: loc_nos(), Element: LocNo); |
182 | } |
183 | bool getWasIndirect() const { return WasIndirect; } |
184 | bool getWasList() const { return WasList; } |
185 | bool isUndef() const { return LocNoCount == 0 || containsLocNo(LocNo: UndefLocNo); } |
186 | |
187 | DbgVariableValue decrementLocNosAfterPivot(unsigned Pivot) const { |
188 | SmallVector<unsigned, 4> NewLocNos; |
189 | for (unsigned LocNo : loc_nos()) |
190 | NewLocNos.push_back(Elt: LocNo != UndefLocNo && LocNo > Pivot ? LocNo - 1 |
191 | : LocNo); |
192 | return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); |
193 | } |
194 | |
195 | DbgVariableValue remapLocNos(ArrayRef<unsigned> LocNoMap) const { |
196 | SmallVector<unsigned> NewLocNos; |
197 | for (unsigned LocNo : loc_nos()) |
198 | // Undef values don't exist in locations (and thus not in LocNoMap |
199 | // either) so skip over them. See getLocationNo(). |
200 | NewLocNos.push_back(Elt: LocNo == UndefLocNo ? UndefLocNo : LocNoMap[LocNo]); |
201 | return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); |
202 | } |
203 | |
204 | DbgVariableValue changeLocNo(unsigned OldLocNo, unsigned NewLocNo) const { |
205 | SmallVector<unsigned> NewLocNos; |
206 | NewLocNos.assign(in_start: loc_nos_begin(), in_end: loc_nos_end()); |
207 | auto OldLocIt = find(Range&: NewLocNos, Val: OldLocNo); |
208 | assert(OldLocIt != NewLocNos.end() && "Old location must be present." ); |
209 | *OldLocIt = NewLocNo; |
210 | return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); |
211 | } |
212 | |
213 | bool hasLocNoGreaterThan(unsigned LocNo) const { |
214 | return any_of(Range: loc_nos(), |
215 | P: [LocNo](unsigned ThisLocNo) { return ThisLocNo > LocNo; }); |
216 | } |
217 | |
218 | void printLocNos(llvm::raw_ostream &OS) const { |
219 | for (const unsigned &Loc : loc_nos()) |
220 | OS << (&Loc == loc_nos_begin() ? " " : ", " ) << Loc; |
221 | } |
222 | |
223 | friend inline bool operator==(const DbgVariableValue &LHS, |
224 | const DbgVariableValue &RHS) { |
225 | if (std::tie(args: LHS.LocNoCount, args: LHS.WasIndirect, args: LHS.WasList, |
226 | args: LHS.Expression) != |
227 | std::tie(args: RHS.LocNoCount, args: RHS.WasIndirect, args: RHS.WasList, args: RHS.Expression)) |
228 | return false; |
229 | return std::equal(LHS.loc_nos_begin(), LHS.loc_nos_end(), |
230 | RHS.loc_nos_begin()); |
231 | } |
232 | |
233 | friend inline bool operator!=(const DbgVariableValue &LHS, |
234 | const DbgVariableValue &RHS) { |
235 | return !(LHS == RHS); |
236 | } |
237 | |
238 | unsigned *loc_nos_begin() { return LocNos.get(); } |
239 | const unsigned *loc_nos_begin() const { return LocNos.get(); } |
240 | unsigned *loc_nos_end() { return LocNos.get() + LocNoCount; } |
241 | const unsigned *loc_nos_end() const { return LocNos.get() + LocNoCount; } |
242 | ArrayRef<unsigned> loc_nos() const { |
243 | return ArrayRef<unsigned>(LocNos.get(), LocNoCount); |
244 | } |
245 | |
246 | private: |
247 | // IntervalMap requires the value object to be very small, to the extent |
248 | // that we do not have enough room for an std::vector. Using a C-style array |
249 | // (with a unique_ptr wrapper for convenience) allows us to optimize for this |
250 | // specific case by packing the array size into only 6 bits (it is highly |
251 | // unlikely that any debug value will need 64+ locations). |
252 | std::unique_ptr<unsigned[]> LocNos; |
253 | uint8_t LocNoCount : 6; |
254 | bool WasIndirect : 1; |
255 | bool WasList : 1; |
256 | const DIExpression *Expression = nullptr; |
257 | }; |
258 | } // namespace |
259 | |
260 | /// Map of where a user value is live to that value. |
261 | using LocMap = IntervalMap<SlotIndex, DbgVariableValue, 4>; |
262 | |
263 | /// Map of stack slot offsets for spilled locations. |
264 | /// Non-spilled locations are not added to the map. |
265 | using SpillOffsetMap = DenseMap<unsigned, unsigned>; |
266 | |
267 | /// Cache to save the location where it can be used as the starting |
268 | /// position as input for calling MachineBasicBlock::SkipPHIsLabelsAndDebug. |
269 | /// This is to prevent MachineBasicBlock::SkipPHIsLabelsAndDebug from |
270 | /// repeatedly searching the same set of PHIs/Labels/Debug instructions |
271 | /// if it is called many times for the same block. |
272 | using BlockSkipInstsMap = |
273 | DenseMap<MachineBasicBlock *, MachineBasicBlock::iterator>; |
274 | |
275 | namespace { |
276 | |
277 | class LDVImpl; |
278 | |
279 | /// A user value is a part of a debug info user variable. |
280 | /// |
281 | /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register |
282 | /// holds part of a user variable. The part is identified by a byte offset. |
283 | /// |
284 | /// UserValues are grouped into equivalence classes for easier searching. Two |
285 | /// user values are related if they are held by the same virtual register. The |
286 | /// equivalence class is the transitive closure of that relation. |
287 | class UserValue { |
288 | const DILocalVariable *Variable; ///< The debug info variable we are part of. |
289 | /// The part of the variable we describe. |
290 | const std::optional<DIExpression::FragmentInfo> Fragment; |
291 | DebugLoc dl; ///< The debug location for the variable. This is |
292 | ///< used by dwarf writer to find lexical scope. |
293 | UserValue *leader; ///< Equivalence class leader. |
294 | UserValue *next = nullptr; ///< Next value in equivalence class, or null. |
295 | |
296 | /// Numbered locations referenced by locmap. |
297 | SmallVector<MachineOperand, 4> locations; |
298 | |
299 | /// Map of slot indices where this value is live. |
300 | LocMap locInts; |
301 | |
302 | /// Set of interval start indexes that have been trimmed to the |
303 | /// lexical scope. |
304 | SmallSet<SlotIndex, 2> trimmedDefs; |
305 | |
306 | /// Insert a DBG_VALUE into MBB at Idx for DbgValue. |
307 | void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, |
308 | SlotIndex StopIdx, DbgVariableValue DbgValue, |
309 | ArrayRef<bool> LocSpills, |
310 | ArrayRef<unsigned> SpillOffsets, LiveIntervals &LIS, |
311 | const TargetInstrInfo &TII, |
312 | const TargetRegisterInfo &TRI, |
313 | BlockSkipInstsMap &BBSkipInstsMap); |
314 | |
315 | /// Replace OldLocNo ranges with NewRegs ranges where NewRegs |
316 | /// is live. Returns true if any changes were made. |
317 | bool splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, |
318 | LiveIntervals &LIS); |
319 | |
320 | public: |
321 | /// Create a new UserValue. |
322 | UserValue(const DILocalVariable *var, |
323 | std::optional<DIExpression::FragmentInfo> Fragment, DebugLoc L, |
324 | LocMap::Allocator &alloc) |
325 | : Variable(var), Fragment(Fragment), dl(std::move(L)), leader(this), |
326 | locInts(alloc) {} |
327 | |
328 | /// Get the leader of this value's equivalence class. |
329 | UserValue *getLeader() { |
330 | UserValue *l = leader; |
331 | while (l != l->leader) |
332 | l = l->leader; |
333 | return leader = l; |
334 | } |
335 | |
336 | /// Return the next UserValue in the equivalence class. |
337 | UserValue *getNext() const { return next; } |
338 | |
339 | /// Merge equivalence classes. |
340 | static UserValue *merge(UserValue *L1, UserValue *L2) { |
341 | L2 = L2->getLeader(); |
342 | if (!L1) |
343 | return L2; |
344 | L1 = L1->getLeader(); |
345 | if (L1 == L2) |
346 | return L1; |
347 | // Splice L2 before L1's members. |
348 | UserValue *End = L2; |
349 | while (End->next) { |
350 | End->leader = L1; |
351 | End = End->next; |
352 | } |
353 | End->leader = L1; |
354 | End->next = L1->next; |
355 | L1->next = L2; |
356 | return L1; |
357 | } |
358 | |
359 | /// Return the location number that matches Loc. |
360 | /// |
361 | /// For undef values we always return location number UndefLocNo without |
362 | /// inserting anything in locations. Since locations is a vector and the |
363 | /// location number is the position in the vector and UndefLocNo is ~0, |
364 | /// we would need a very big vector to put the value at the right position. |
365 | unsigned getLocationNo(const MachineOperand &LocMO) { |
366 | if (LocMO.isReg()) { |
367 | if (LocMO.getReg() == 0) |
368 | return UndefLocNo; |
369 | // For register locations we dont care about use/def and other flags. |
370 | for (unsigned i = 0, e = locations.size(); i != e; ++i) |
371 | if (locations[i].isReg() && |
372 | locations[i].getReg() == LocMO.getReg() && |
373 | locations[i].getSubReg() == LocMO.getSubReg()) |
374 | return i; |
375 | } else |
376 | for (unsigned i = 0, e = locations.size(); i != e; ++i) |
377 | if (LocMO.isIdenticalTo(Other: locations[i])) |
378 | return i; |
379 | locations.push_back(Elt: LocMO); |
380 | // We are storing a MachineOperand outside a MachineInstr. |
381 | locations.back().clearParent(); |
382 | // Don't store def operands. |
383 | if (locations.back().isReg()) { |
384 | if (locations.back().isDef()) |
385 | locations.back().setIsDead(false); |
386 | locations.back().setIsUse(); |
387 | } |
388 | return locations.size() - 1; |
389 | } |
390 | |
391 | /// Remove (recycle) a location number. If \p LocNo still is used by the |
392 | /// locInts nothing is done. |
393 | void removeLocationIfUnused(unsigned LocNo) { |
394 | // Bail out if LocNo still is used. |
395 | for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { |
396 | const DbgVariableValue &DbgValue = I.value(); |
397 | if (DbgValue.containsLocNo(LocNo)) |
398 | return; |
399 | } |
400 | // Remove the entry in the locations vector, and adjust all references to |
401 | // location numbers above the removed entry. |
402 | locations.erase(CI: locations.begin() + LocNo); |
403 | for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { |
404 | const DbgVariableValue &DbgValue = I.value(); |
405 | if (DbgValue.hasLocNoGreaterThan(LocNo)) |
406 | I.setValueUnchecked(DbgValue.decrementLocNosAfterPivot(Pivot: LocNo)); |
407 | } |
408 | } |
409 | |
410 | /// Ensure that all virtual register locations are mapped. |
411 | void mapVirtRegs(LDVImpl *LDV); |
412 | |
413 | /// Add a definition point to this user value. |
414 | void addDef(SlotIndex Idx, ArrayRef<MachineOperand> LocMOs, bool IsIndirect, |
415 | bool IsList, const DIExpression &Expr) { |
416 | SmallVector<unsigned> Locs; |
417 | for (const MachineOperand &Op : LocMOs) |
418 | Locs.push_back(Elt: getLocationNo(LocMO: Op)); |
419 | DbgVariableValue DbgValue(Locs, IsIndirect, IsList, Expr); |
420 | // Add a singular (Idx,Idx) -> value mapping. |
421 | LocMap::iterator I = locInts.find(x: Idx); |
422 | if (!I.valid() || I.start() != Idx) |
423 | I.insert(a: Idx, b: Idx.getNextSlot(), y: std::move(DbgValue)); |
424 | else |
425 | // A later DBG_VALUE at the same SlotIndex overrides the old location. |
426 | I.setValue(std::move(DbgValue)); |
427 | } |
428 | |
429 | /// Extend the current definition as far as possible down. |
430 | /// |
431 | /// Stop when meeting an existing def or when leaving the live |
432 | /// range of VNI. End points where VNI is no longer live are added to Kills. |
433 | /// |
434 | /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a |
435 | /// data-flow analysis to propagate them beyond basic block boundaries. |
436 | /// |
437 | /// \param Idx Starting point for the definition. |
438 | /// \param DbgValue value to propagate. |
439 | /// \param LiveIntervalInfo For each location number key in this map, |
440 | /// restricts liveness to where the LiveRange has the value equal to the\ |
441 | /// VNInfo. |
442 | /// \param [out] Kills Append end points of VNI's live range to Kills. |
443 | /// \param LIS Live intervals analysis. |
444 | void |
445 | extendDef(SlotIndex Idx, DbgVariableValue DbgValue, |
446 | SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> |
447 | &LiveIntervalInfo, |
448 | std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills, |
449 | LiveIntervals &LIS); |
450 | |
451 | /// The value in LI may be copies to other registers. Determine if |
452 | /// any of the copies are available at the kill points, and add defs if |
453 | /// possible. |
454 | /// |
455 | /// \param DbgValue Location number of LI->reg, and DIExpression. |
456 | /// \param LocIntervals Scan for copies of the value for each location in the |
457 | /// corresponding LiveInterval->reg. |
458 | /// \param KilledAt The point where the range of DbgValue could be extended. |
459 | /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here. |
460 | void addDefsFromCopies( |
461 | DbgVariableValue DbgValue, |
462 | SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals, |
463 | SlotIndex KilledAt, |
464 | SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, |
465 | MachineRegisterInfo &MRI, LiveIntervals &LIS); |
466 | |
467 | /// Compute the live intervals of all locations after collecting all their |
468 | /// def points. |
469 | void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, |
470 | LiveIntervals &LIS, LexicalScopes &LS); |
471 | |
472 | /// Replace OldReg ranges with NewRegs ranges where NewRegs is |
473 | /// live. Returns true if any changes were made. |
474 | bool splitRegister(Register OldReg, ArrayRef<Register> NewRegs, |
475 | LiveIntervals &LIS); |
476 | |
477 | /// Rewrite virtual register locations according to the provided virtual |
478 | /// register map. Record the stack slot offsets for the locations that |
479 | /// were spilled. |
480 | void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, |
481 | const TargetInstrInfo &TII, |
482 | const TargetRegisterInfo &TRI, |
483 | SpillOffsetMap &SpillOffsets); |
484 | |
485 | /// Recreate DBG_VALUE instruction from data structures. |
486 | void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, |
487 | const TargetInstrInfo &TII, |
488 | const TargetRegisterInfo &TRI, |
489 | const SpillOffsetMap &SpillOffsets, |
490 | BlockSkipInstsMap &BBSkipInstsMap); |
491 | |
492 | /// Return DebugLoc of this UserValue. |
493 | const DebugLoc &getDebugLoc() { return dl; } |
494 | |
495 | void print(raw_ostream &, const TargetRegisterInfo *); |
496 | }; |
497 | |
498 | /// A user label is a part of a debug info user label. |
499 | class UserLabel { |
500 | const DILabel *Label; ///< The debug info label we are part of. |
501 | DebugLoc dl; ///< The debug location for the label. This is |
502 | ///< used by dwarf writer to find lexical scope. |
503 | SlotIndex loc; ///< Slot used by the debug label. |
504 | |
505 | /// Insert a DBG_LABEL into MBB at Idx. |
506 | void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, |
507 | LiveIntervals &LIS, const TargetInstrInfo &TII, |
508 | BlockSkipInstsMap &BBSkipInstsMap); |
509 | |
510 | public: |
511 | /// Create a new UserLabel. |
512 | UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx) |
513 | : Label(label), dl(std::move(L)), loc(Idx) {} |
514 | |
515 | /// Does this UserLabel match the parameters? |
516 | bool matches(const DILabel *L, const DILocation *IA, |
517 | const SlotIndex Index) const { |
518 | return Label == L && dl->getInlinedAt() == IA && loc == Index; |
519 | } |
520 | |
521 | /// Recreate DBG_LABEL instruction from data structures. |
522 | void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, |
523 | BlockSkipInstsMap &BBSkipInstsMap); |
524 | |
525 | /// Return DebugLoc of this UserLabel. |
526 | const DebugLoc &getDebugLoc() { return dl; } |
527 | |
528 | void print(raw_ostream &, const TargetRegisterInfo *); |
529 | }; |
530 | |
531 | /// Implementation of the LiveDebugVariables pass. |
532 | class LDVImpl { |
533 | LiveDebugVariables &pass; |
534 | LocMap::Allocator allocator; |
535 | MachineFunction *MF = nullptr; |
536 | LiveIntervals *LIS; |
537 | const TargetRegisterInfo *TRI; |
538 | |
539 | /// Position and VReg of a PHI instruction during register allocation. |
540 | struct PHIValPos { |
541 | SlotIndex SI; /// Slot where this PHI occurs. |
542 | Register Reg; /// VReg this PHI occurs in. |
543 | unsigned SubReg; /// Qualifiying subregister for Reg. |
544 | }; |
545 | |
546 | /// Map from debug instruction number to PHI position during allocation. |
547 | std::map<unsigned, PHIValPos> PHIValToPos; |
548 | /// Index of, for each VReg, which debug instruction numbers and corresponding |
549 | /// PHIs are sensitive to splitting. Each VReg may have multiple PHI defs, |
550 | /// at different positions. |
551 | DenseMap<Register, std::vector<unsigned>> RegToPHIIdx; |
552 | |
553 | /// Record for any debug instructions unlinked from their blocks during |
554 | /// regalloc. Stores the instr and it's location, so that they can be |
555 | /// re-inserted after regalloc is over. |
556 | struct InstrPos { |
557 | MachineInstr *MI; ///< Debug instruction, unlinked from it's block. |
558 | SlotIndex Idx; ///< Slot position where MI should be re-inserted. |
559 | MachineBasicBlock *MBB; ///< Block that MI was in. |
560 | }; |
561 | |
562 | /// Collection of stored debug instructions, preserved until after regalloc. |
563 | SmallVector<InstrPos, 32> StashedDebugInstrs; |
564 | |
565 | /// Whether emitDebugValues is called. |
566 | bool EmitDone = false; |
567 | |
568 | /// Whether the machine function is modified during the pass. |
569 | bool ModifiedMF = false; |
570 | |
571 | /// All allocated UserValue instances. |
572 | SmallVector<std::unique_ptr<UserValue>, 8> userValues; |
573 | |
574 | /// All allocated UserLabel instances. |
575 | SmallVector<std::unique_ptr<UserLabel>, 2> userLabels; |
576 | |
577 | /// Map virtual register to eq class leader. |
578 | using VRMap = DenseMap<unsigned, UserValue *>; |
579 | VRMap virtRegToEqClass; |
580 | |
581 | /// Map to find existing UserValue instances. |
582 | using UVMap = DenseMap<DebugVariable, UserValue *>; |
583 | UVMap userVarMap; |
584 | |
585 | /// Find or create a UserValue. |
586 | UserValue *getUserValue(const DILocalVariable *Var, |
587 | std::optional<DIExpression::FragmentInfo> Fragment, |
588 | const DebugLoc &DL); |
589 | |
590 | /// Find the EC leader for VirtReg or null. |
591 | UserValue *lookupVirtReg(Register VirtReg); |
592 | |
593 | /// Add DBG_VALUE instruction to our maps. |
594 | /// |
595 | /// \param MI DBG_VALUE instruction |
596 | /// \param Idx Last valid SLotIndex before instruction. |
597 | /// |
598 | /// \returns True if the DBG_VALUE instruction should be deleted. |
599 | bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); |
600 | |
601 | /// Track variable location debug instructions while using the instruction |
602 | /// referencing implementation. Such debug instructions do not need to be |
603 | /// updated during regalloc because they identify instructions rather than |
604 | /// register locations. However, they needs to be removed from the |
605 | /// MachineFunction during regalloc, then re-inserted later, to avoid |
606 | /// disrupting the allocator. |
607 | /// |
608 | /// \param MI Any DBG_VALUE / DBG_INSTR_REF / DBG_PHI instruction |
609 | /// \param Idx Last valid SlotIndex before instruction |
610 | /// |
611 | /// \returns Iterator to continue processing from after unlinking. |
612 | MachineBasicBlock::iterator handleDebugInstr(MachineInstr &MI, SlotIndex Idx); |
613 | |
614 | /// Add DBG_LABEL instruction to UserLabel. |
615 | /// |
616 | /// \param MI DBG_LABEL instruction |
617 | /// \param Idx Last valid SlotIndex before instruction. |
618 | /// |
619 | /// \returns True if the DBG_LABEL instruction should be deleted. |
620 | bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx); |
621 | |
622 | /// Collect and erase all DBG_VALUE instructions, adding a UserValue def |
623 | /// for each instruction. |
624 | /// |
625 | /// \param mf MachineFunction to be scanned. |
626 | /// \param InstrRef Whether to operate in instruction referencing mode. If |
627 | /// true, most of LiveDebugVariables doesn't run. |
628 | /// |
629 | /// \returns True if any debug values were found. |
630 | bool collectDebugValues(MachineFunction &mf, bool InstrRef); |
631 | |
632 | /// Compute the live intervals of all user values after collecting all |
633 | /// their def points. |
634 | void computeIntervals(); |
635 | |
636 | public: |
637 | LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} |
638 | |
639 | bool runOnMachineFunction(MachineFunction &mf, bool InstrRef); |
640 | |
641 | /// Release all memory. |
642 | void clear() { |
643 | MF = nullptr; |
644 | PHIValToPos.clear(); |
645 | RegToPHIIdx.clear(); |
646 | StashedDebugInstrs.clear(); |
647 | userValues.clear(); |
648 | userLabels.clear(); |
649 | virtRegToEqClass.clear(); |
650 | userVarMap.clear(); |
651 | // Make sure we call emitDebugValues if the machine function was modified. |
652 | assert((!ModifiedMF || EmitDone) && |
653 | "Dbg values are not emitted in LDV" ); |
654 | EmitDone = false; |
655 | ModifiedMF = false; |
656 | } |
657 | |
658 | /// Map virtual register to an equivalence class. |
659 | void mapVirtReg(Register VirtReg, UserValue *EC); |
660 | |
661 | /// Replace any PHI referring to OldReg with its corresponding NewReg, if |
662 | /// present. |
663 | void splitPHIRegister(Register OldReg, ArrayRef<Register> NewRegs); |
664 | |
665 | /// Replace all references to OldReg with NewRegs. |
666 | void splitRegister(Register OldReg, ArrayRef<Register> NewRegs); |
667 | |
668 | /// Recreate DBG_VALUE instruction from data structures. |
669 | void emitDebugValues(VirtRegMap *VRM); |
670 | |
671 | void print(raw_ostream&); |
672 | }; |
673 | |
674 | } // end anonymous namespace |
675 | |
676 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
677 | static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, |
678 | const LLVMContext &Ctx) { |
679 | if (!DL) |
680 | return; |
681 | |
682 | auto *Scope = cast<DIScope>(DL.getScope()); |
683 | // Omit the directory, because it's likely to be long and uninteresting. |
684 | CommentOS << Scope->getFilename(); |
685 | CommentOS << ':' << DL.getLine(); |
686 | if (DL.getCol() != 0) |
687 | CommentOS << ':' << DL.getCol(); |
688 | |
689 | DebugLoc InlinedAtDL = DL.getInlinedAt(); |
690 | if (!InlinedAtDL) |
691 | return; |
692 | |
693 | CommentOS << " @[ " ; |
694 | printDebugLoc(InlinedAtDL, CommentOS, Ctx); |
695 | CommentOS << " ]" ; |
696 | } |
697 | |
698 | static void printExtendedName(raw_ostream &OS, const DINode *Node, |
699 | const DILocation *DL) { |
700 | const LLVMContext &Ctx = Node->getContext(); |
701 | StringRef Res; |
702 | unsigned Line = 0; |
703 | if (const auto *V = dyn_cast<const DILocalVariable>(Node)) { |
704 | Res = V->getName(); |
705 | Line = V->getLine(); |
706 | } else if (const auto *L = dyn_cast<const DILabel>(Node)) { |
707 | Res = L->getName(); |
708 | Line = L->getLine(); |
709 | } |
710 | |
711 | if (!Res.empty()) |
712 | OS << Res << "," << Line; |
713 | auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr; |
714 | if (InlinedAt) { |
715 | if (DebugLoc InlinedAtDL = InlinedAt) { |
716 | OS << " @[" ; |
717 | printDebugLoc(InlinedAtDL, OS, Ctx); |
718 | OS << "]" ; |
719 | } |
720 | } |
721 | } |
722 | |
723 | void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { |
724 | OS << "!\"" ; |
725 | printExtendedName(OS, Variable, dl); |
726 | |
727 | OS << "\"\t" ; |
728 | for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { |
729 | OS << " [" << I.start() << ';' << I.stop() << "):" ; |
730 | if (I.value().isUndef()) |
731 | OS << " undef" ; |
732 | else { |
733 | I.value().printLocNos(OS); |
734 | if (I.value().getWasIndirect()) |
735 | OS << " ind" ; |
736 | else if (I.value().getWasList()) |
737 | OS << " list" ; |
738 | } |
739 | } |
740 | for (unsigned i = 0, e = locations.size(); i != e; ++i) { |
741 | OS << " Loc" << i << '='; |
742 | locations[i].print(OS, TRI); |
743 | } |
744 | OS << '\n'; |
745 | } |
746 | |
747 | void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { |
748 | OS << "!\"" ; |
749 | printExtendedName(OS, Label, dl); |
750 | |
751 | OS << "\"\t" ; |
752 | OS << loc; |
753 | OS << '\n'; |
754 | } |
755 | |
756 | void LDVImpl::print(raw_ostream &OS) { |
757 | OS << "********** DEBUG VARIABLES **********\n" ; |
758 | for (auto &userValue : userValues) |
759 | userValue->print(OS, TRI); |
760 | OS << "********** DEBUG LABELS **********\n" ; |
761 | for (auto &userLabel : userLabels) |
762 | userLabel->print(OS, TRI); |
763 | } |
764 | #endif |
765 | |
766 | void UserValue::mapVirtRegs(LDVImpl *LDV) { |
767 | for (const MachineOperand &MO : locations) |
768 | if (MO.isReg() && MO.getReg().isVirtual()) |
769 | LDV->mapVirtReg(VirtReg: MO.getReg(), EC: this); |
770 | } |
771 | |
772 | UserValue * |
773 | LDVImpl::getUserValue(const DILocalVariable *Var, |
774 | std::optional<DIExpression::FragmentInfo> Fragment, |
775 | const DebugLoc &DL) { |
776 | // FIXME: Handle partially overlapping fragments. See |
777 | // https://reviews.llvm.org/D70121#1849741. |
778 | DebugVariable ID(Var, Fragment, DL->getInlinedAt()); |
779 | UserValue *&UV = userVarMap[ID]; |
780 | if (!UV) { |
781 | userValues.push_back( |
782 | Elt: std::make_unique<UserValue>(args&: Var, args&: Fragment, args: DL, args&: allocator)); |
783 | UV = userValues.back().get(); |
784 | } |
785 | return UV; |
786 | } |
787 | |
788 | void LDVImpl::mapVirtReg(Register VirtReg, UserValue *EC) { |
789 | assert(VirtReg.isVirtual() && "Only map VirtRegs" ); |
790 | UserValue *&Leader = virtRegToEqClass[VirtReg]; |
791 | Leader = UserValue::merge(L1: Leader, L2: EC); |
792 | } |
793 | |
794 | UserValue *LDVImpl::lookupVirtReg(Register VirtReg) { |
795 | if (UserValue *UV = virtRegToEqClass.lookup(Val: VirtReg)) |
796 | return UV->getLeader(); |
797 | return nullptr; |
798 | } |
799 | |
800 | bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { |
801 | // DBG_VALUE loc, offset, variable, expr |
802 | // DBG_VALUE_LIST variable, expr, locs... |
803 | if (!MI.isDebugValue()) { |
804 | LLVM_DEBUG(dbgs() << "Can't handle non-DBG_VALUE*: " << MI); |
805 | return false; |
806 | } |
807 | if (!MI.getDebugVariableOp().isMetadata()) { |
808 | LLVM_DEBUG(dbgs() << "Can't handle DBG_VALUE* with invalid variable: " |
809 | << MI); |
810 | return false; |
811 | } |
812 | if (MI.isNonListDebugValue() && |
813 | (MI.getNumOperands() != 4 || |
814 | !(MI.getDebugOffset().isImm() || MI.getDebugOffset().isReg()))) { |
815 | LLVM_DEBUG(dbgs() << "Can't handle malformed DBG_VALUE: " << MI); |
816 | return false; |
817 | } |
818 | |
819 | // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual |
820 | // register that hasn't been defined yet. If we do not remove those here, then |
821 | // the re-insertion of the DBG_VALUE instruction after register allocation |
822 | // will be incorrect. |
823 | bool Discard = false; |
824 | for (const MachineOperand &Op : MI.debug_operands()) { |
825 | if (Op.isReg() && Op.getReg().isVirtual()) { |
826 | const Register Reg = Op.getReg(); |
827 | if (!LIS->hasInterval(Reg)) { |
828 | // The DBG_VALUE is described by a virtual register that does not have a |
829 | // live interval. Discard the DBG_VALUE. |
830 | Discard = true; |
831 | LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx |
832 | << " " << MI); |
833 | } else { |
834 | // The DBG_VALUE is only valid if either Reg is live out from Idx, or |
835 | // Reg is defined dead at Idx (where Idx is the slot index for the |
836 | // instruction preceding the DBG_VALUE). |
837 | const LiveInterval &LI = LIS->getInterval(Reg); |
838 | LiveQueryResult LRQ = LI.Query(Idx); |
839 | if (!LRQ.valueOutOrDead()) { |
840 | // We have found a DBG_VALUE with the value in a virtual register that |
841 | // is not live. Discard the DBG_VALUE. |
842 | Discard = true; |
843 | LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx |
844 | << " " << MI); |
845 | } |
846 | } |
847 | } |
848 | } |
849 | |
850 | // Get or create the UserValue for (variable,offset) here. |
851 | bool IsIndirect = MI.isDebugOffsetImm(); |
852 | if (IsIndirect) |
853 | assert(MI.getDebugOffset().getImm() == 0 && |
854 | "DBG_VALUE with nonzero offset" ); |
855 | bool IsList = MI.isDebugValueList(); |
856 | const DILocalVariable *Var = MI.getDebugVariable(); |
857 | const DIExpression *Expr = MI.getDebugExpression(); |
858 | UserValue *UV = getUserValue(Var, Fragment: Expr->getFragmentInfo(), DL: MI.getDebugLoc()); |
859 | if (!Discard) |
860 | UV->addDef(Idx, |
861 | LocMOs: ArrayRef<MachineOperand>(MI.debug_operands().begin(), |
862 | MI.debug_operands().end()), |
863 | IsIndirect, IsList, Expr: *Expr); |
864 | else { |
865 | MachineOperand MO = MachineOperand::CreateReg(Reg: 0U, isDef: false); |
866 | MO.setIsDebug(); |
867 | // We should still pass a list the same size as MI.debug_operands() even if |
868 | // all MOs are undef, so that DbgVariableValue can correctly adjust the |
869 | // expression while removing the duplicated undefs. |
870 | SmallVector<MachineOperand, 4> UndefMOs(MI.getNumDebugOperands(), MO); |
871 | UV->addDef(Idx, LocMOs: UndefMOs, IsIndirect: false, IsList, Expr: *Expr); |
872 | } |
873 | return true; |
874 | } |
875 | |
876 | MachineBasicBlock::iterator LDVImpl::handleDebugInstr(MachineInstr &MI, |
877 | SlotIndex Idx) { |
878 | assert(MI.isDebugValueLike() || MI.isDebugPHI()); |
879 | |
880 | // In instruction referencing mode, there should be no DBG_VALUE instructions |
881 | // that refer to virtual registers. They might still refer to constants. |
882 | if (MI.isDebugValueLike()) |
883 | assert(none_of(MI.debug_operands(), |
884 | [](const MachineOperand &MO) { |
885 | return MO.isReg() && MO.getReg().isVirtual(); |
886 | }) && |
887 | "MIs should not refer to Virtual Registers in InstrRef mode." ); |
888 | |
889 | // Unlink the instruction, store it in the debug instructions collection. |
890 | auto NextInst = std::next(x: MI.getIterator()); |
891 | auto *MBB = MI.getParent(); |
892 | MI.removeFromParent(); |
893 | StashedDebugInstrs.push_back(Elt: {.MI: &MI, .Idx: Idx, .MBB: MBB}); |
894 | return NextInst; |
895 | } |
896 | |
897 | bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) { |
898 | // DBG_LABEL label |
899 | if (MI.getNumOperands() != 1 || !MI.getOperand(i: 0).isMetadata()) { |
900 | LLVM_DEBUG(dbgs() << "Can't handle " << MI); |
901 | return false; |
902 | } |
903 | |
904 | // Get or create the UserLabel for label here. |
905 | const DILabel *Label = MI.getDebugLabel(); |
906 | const DebugLoc &DL = MI.getDebugLoc(); |
907 | bool Found = false; |
908 | for (auto const &L : userLabels) { |
909 | if (L->matches(L: Label, IA: DL->getInlinedAt(), Index: Idx)) { |
910 | Found = true; |
911 | break; |
912 | } |
913 | } |
914 | if (!Found) |
915 | userLabels.push_back(Elt: std::make_unique<UserLabel>(args&: Label, args: DL, args&: Idx)); |
916 | |
917 | return true; |
918 | } |
919 | |
920 | bool LDVImpl::collectDebugValues(MachineFunction &mf, bool InstrRef) { |
921 | bool Changed = false; |
922 | for (MachineBasicBlock &MBB : mf) { |
923 | for (MachineBasicBlock::iterator MBBI = MBB.begin(), MBBE = MBB.end(); |
924 | MBBI != MBBE;) { |
925 | // Use the first debug instruction in the sequence to get a SlotIndex |
926 | // for following consecutive debug instructions. |
927 | if (!MBBI->isDebugOrPseudoInstr()) { |
928 | ++MBBI; |
929 | continue; |
930 | } |
931 | // Debug instructions has no slot index. Use the previous |
932 | // non-debug instruction's SlotIndex as its SlotIndex. |
933 | SlotIndex Idx = |
934 | MBBI == MBB.begin() |
935 | ? LIS->getMBBStartIdx(mbb: &MBB) |
936 | : LIS->getInstructionIndex(Instr: *std::prev(x: MBBI)).getRegSlot(); |
937 | // Handle consecutive debug instructions with the same slot index. |
938 | do { |
939 | // In instruction referencing mode, pass each instr to handleDebugInstr |
940 | // to be unlinked. Ignore DBG_VALUE_LISTs -- they refer to vregs, and |
941 | // need to go through the normal live interval splitting process. |
942 | if (InstrRef && (MBBI->isNonListDebugValue() || MBBI->isDebugPHI() || |
943 | MBBI->isDebugRef())) { |
944 | MBBI = handleDebugInstr(MI&: *MBBI, Idx); |
945 | Changed = true; |
946 | // In normal debug mode, use the dedicated DBG_VALUE / DBG_LABEL handler |
947 | // to track things through register allocation, and erase the instr. |
948 | } else if ((MBBI->isDebugValue() && handleDebugValue(MI&: *MBBI, Idx)) || |
949 | (MBBI->isDebugLabel() && handleDebugLabel(MI&: *MBBI, Idx))) { |
950 | MBBI = MBB.erase(I: MBBI); |
951 | Changed = true; |
952 | } else |
953 | ++MBBI; |
954 | } while (MBBI != MBBE && MBBI->isDebugOrPseudoInstr()); |
955 | } |
956 | } |
957 | return Changed; |
958 | } |
959 | |
960 | void UserValue::extendDef( |
961 | SlotIndex Idx, DbgVariableValue DbgValue, |
962 | SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> |
963 | &LiveIntervalInfo, |
964 | std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills, |
965 | LiveIntervals &LIS) { |
966 | SlotIndex Start = Idx; |
967 | MachineBasicBlock *MBB = LIS.getMBBFromIndex(index: Start); |
968 | SlotIndex Stop = LIS.getMBBEndIdx(mbb: MBB); |
969 | LocMap::iterator I = locInts.find(x: Start); |
970 | |
971 | // Limit to the intersection of the VNIs' live ranges. |
972 | for (auto &LII : LiveIntervalInfo) { |
973 | LiveRange *LR = LII.second.first; |
974 | assert(LR && LII.second.second && "Missing range info for Idx." ); |
975 | LiveInterval::Segment *Segment = LR->getSegmentContaining(Idx: Start); |
976 | assert(Segment && Segment->valno == LII.second.second && |
977 | "Invalid VNInfo for Idx given?" ); |
978 | if (Segment->end < Stop) { |
979 | Stop = Segment->end; |
980 | Kills = {Stop, {LII.first}}; |
981 | } else if (Segment->end == Stop && Kills) { |
982 | // If multiple locations end at the same place, track all of them in |
983 | // Kills. |
984 | Kills->second.push_back(Elt: LII.first); |
985 | } |
986 | } |
987 | |
988 | // There could already be a short def at Start. |
989 | if (I.valid() && I.start() <= Start) { |
990 | // Stop when meeting a different location or an already extended interval. |
991 | Start = Start.getNextSlot(); |
992 | if (I.value() != DbgValue || I.stop() != Start) { |
993 | // Clear `Kills`, as we have a new def available. |
994 | Kills = std::nullopt; |
995 | return; |
996 | } |
997 | // This is a one-slot placeholder. Just skip it. |
998 | ++I; |
999 | } |
1000 | |
1001 | // Limited by the next def. |
1002 | if (I.valid() && I.start() < Stop) { |
1003 | Stop = I.start(); |
1004 | // Clear `Kills`, as we have a new def available. |
1005 | Kills = std::nullopt; |
1006 | } |
1007 | |
1008 | if (Start < Stop) { |
1009 | DbgVariableValue ExtDbgValue(DbgValue); |
1010 | I.insert(a: Start, b: Stop, y: std::move(ExtDbgValue)); |
1011 | } |
1012 | } |
1013 | |
1014 | void UserValue::addDefsFromCopies( |
1015 | DbgVariableValue DbgValue, |
1016 | SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals, |
1017 | SlotIndex KilledAt, |
1018 | SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, |
1019 | MachineRegisterInfo &MRI, LiveIntervals &LIS) { |
1020 | // Don't track copies from physregs, there are too many uses. |
1021 | if (any_of(Range&: LocIntervals, |
1022 | P: [](auto LocI) { return !LocI.second->reg().isVirtual(); })) |
1023 | return; |
1024 | |
1025 | // Collect all the (vreg, valno) pairs that are copies of LI. |
1026 | SmallDenseMap<unsigned, |
1027 | SmallVector<std::pair<LiveInterval *, const VNInfo *>, 4>> |
1028 | CopyValues; |
1029 | for (auto &LocInterval : LocIntervals) { |
1030 | unsigned LocNo = LocInterval.first; |
1031 | LiveInterval *LI = LocInterval.second; |
1032 | for (MachineOperand &MO : MRI.use_nodbg_operands(Reg: LI->reg())) { |
1033 | MachineInstr *MI = MO.getParent(); |
1034 | // Copies of the full value. |
1035 | if (MO.getSubReg() || !MI->isCopy()) |
1036 | continue; |
1037 | Register DstReg = MI->getOperand(i: 0).getReg(); |
1038 | |
1039 | // Don't follow copies to physregs. These are usually setting up call |
1040 | // arguments, and the argument registers are always call clobbered. We are |
1041 | // better off in the source register which could be a callee-saved |
1042 | // register, or it could be spilled. |
1043 | if (!DstReg.isVirtual()) |
1044 | continue; |
1045 | |
1046 | // Is the value extended to reach this copy? If not, another def may be |
1047 | // blocking it, or we are looking at a wrong value of LI. |
1048 | SlotIndex Idx = LIS.getInstructionIndex(Instr: *MI); |
1049 | LocMap::iterator I = locInts.find(x: Idx.getRegSlot(EC: true)); |
1050 | if (!I.valid() || I.value() != DbgValue) |
1051 | continue; |
1052 | |
1053 | if (!LIS.hasInterval(Reg: DstReg)) |
1054 | continue; |
1055 | LiveInterval *DstLI = &LIS.getInterval(Reg: DstReg); |
1056 | const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx: Idx.getRegSlot()); |
1057 | assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value" ); |
1058 | CopyValues[LocNo].push_back(Elt: std::make_pair(x&: DstLI, y&: DstVNI)); |
1059 | } |
1060 | } |
1061 | |
1062 | if (CopyValues.empty()) |
1063 | return; |
1064 | |
1065 | #if !defined(NDEBUG) |
1066 | for (auto &LocInterval : LocIntervals) |
1067 | LLVM_DEBUG(dbgs() << "Got " << CopyValues[LocInterval.first].size() |
1068 | << " copies of " << *LocInterval.second << '\n'); |
1069 | #endif |
1070 | |
1071 | // Try to add defs of the copied values for the kill point. Check that there |
1072 | // isn't already a def at Idx. |
1073 | LocMap::iterator I = locInts.find(x: KilledAt); |
1074 | if (I.valid() && I.start() <= KilledAt) |
1075 | return; |
1076 | DbgVariableValue NewValue(DbgValue); |
1077 | for (auto &LocInterval : LocIntervals) { |
1078 | unsigned LocNo = LocInterval.first; |
1079 | bool FoundCopy = false; |
1080 | for (auto &LIAndVNI : CopyValues[LocNo]) { |
1081 | LiveInterval *DstLI = LIAndVNI.first; |
1082 | const VNInfo *DstVNI = LIAndVNI.second; |
1083 | if (DstLI->getVNInfoAt(Idx: KilledAt) != DstVNI) |
1084 | continue; |
1085 | LLVM_DEBUG(dbgs() << "Kill at " << KilledAt << " covered by valno #" |
1086 | << DstVNI->id << " in " << *DstLI << '\n'); |
1087 | MachineInstr *CopyMI = LIS.getInstructionFromIndex(index: DstVNI->def); |
1088 | assert(CopyMI && CopyMI->isCopy() && "Bad copy value" ); |
1089 | unsigned NewLocNo = getLocationNo(LocMO: CopyMI->getOperand(i: 0)); |
1090 | NewValue = NewValue.changeLocNo(OldLocNo: LocNo, NewLocNo); |
1091 | FoundCopy = true; |
1092 | break; |
1093 | } |
1094 | // If there are any killed locations we can't find a copy for, we can't |
1095 | // extend the variable value. |
1096 | if (!FoundCopy) |
1097 | return; |
1098 | } |
1099 | I.insert(a: KilledAt, b: KilledAt.getNextSlot(), y: NewValue); |
1100 | NewDefs.push_back(Elt: std::make_pair(x&: KilledAt, y&: NewValue)); |
1101 | } |
1102 | |
1103 | void UserValue::computeIntervals(MachineRegisterInfo &MRI, |
1104 | const TargetRegisterInfo &TRI, |
1105 | LiveIntervals &LIS, LexicalScopes &LS) { |
1106 | SmallVector<std::pair<SlotIndex, DbgVariableValue>, 16> Defs; |
1107 | |
1108 | // Collect all defs to be extended (Skipping undefs). |
1109 | for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) |
1110 | if (!I.value().isUndef()) |
1111 | Defs.push_back(Elt: std::make_pair(x: I.start(), y: I.value())); |
1112 | |
1113 | // Extend all defs, and possibly add new ones along the way. |
1114 | for (unsigned i = 0; i != Defs.size(); ++i) { |
1115 | SlotIndex Idx = Defs[i].first; |
1116 | DbgVariableValue DbgValue = Defs[i].second; |
1117 | SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> LIs; |
1118 | SmallVector<const VNInfo *, 4> VNIs; |
1119 | bool ShouldExtendDef = false; |
1120 | for (unsigned LocNo : DbgValue.loc_nos()) { |
1121 | const MachineOperand &LocMO = locations[LocNo]; |
1122 | if (!LocMO.isReg() || !LocMO.getReg().isVirtual()) { |
1123 | ShouldExtendDef |= !LocMO.isReg(); |
1124 | continue; |
1125 | } |
1126 | ShouldExtendDef = true; |
1127 | LiveInterval *LI = nullptr; |
1128 | const VNInfo *VNI = nullptr; |
1129 | if (LIS.hasInterval(Reg: LocMO.getReg())) { |
1130 | LI = &LIS.getInterval(Reg: LocMO.getReg()); |
1131 | VNI = LI->getVNInfoAt(Idx); |
1132 | } |
1133 | if (LI && VNI) |
1134 | LIs[LocNo] = {LI, VNI}; |
1135 | } |
1136 | if (ShouldExtendDef) { |
1137 | std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> Kills; |
1138 | extendDef(Idx, DbgValue, LiveIntervalInfo&: LIs, Kills, LIS); |
1139 | |
1140 | if (Kills) { |
1141 | SmallVector<std::pair<unsigned, LiveInterval *>, 2> KilledLocIntervals; |
1142 | bool AnySubreg = false; |
1143 | for (unsigned LocNo : Kills->second) { |
1144 | const MachineOperand &LocMO = this->locations[LocNo]; |
1145 | if (LocMO.getSubReg()) { |
1146 | AnySubreg = true; |
1147 | break; |
1148 | } |
1149 | LiveInterval *LI = &LIS.getInterval(Reg: LocMO.getReg()); |
1150 | KilledLocIntervals.push_back(Elt: {LocNo, LI}); |
1151 | } |
1152 | |
1153 | // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that |
1154 | // if the original location for example is %vreg0:sub_hi, and we find a |
1155 | // full register copy in addDefsFromCopies (at the moment it only |
1156 | // handles full register copies), then we must add the sub1 sub-register |
1157 | // index to the new location. However, that is only possible if the new |
1158 | // virtual register is of the same regclass (or if there is an |
1159 | // equivalent sub-register in that regclass). For now, simply skip |
1160 | // handling copies if a sub-register is involved. |
1161 | if (!AnySubreg) |
1162 | addDefsFromCopies(DbgValue, LocIntervals&: KilledLocIntervals, KilledAt: Kills->first, NewDefs&: Defs, |
1163 | MRI, LIS); |
1164 | } |
1165 | } |
1166 | |
1167 | // For physregs, we only mark the start slot idx. DwarfDebug will see it |
1168 | // as if the DBG_VALUE is valid up until the end of the basic block, or |
1169 | // the next def of the physical register. So we do not need to extend the |
1170 | // range. It might actually happen that the DBG_VALUE is the last use of |
1171 | // the physical register (e.g. if this is an unused input argument to a |
1172 | // function). |
1173 | } |
1174 | |
1175 | // The computed intervals may extend beyond the range of the debug |
1176 | // location's lexical scope. In this case, splitting of an interval |
1177 | // can result in an interval outside of the scope being created, |
1178 | // causing extra unnecessary DBG_VALUEs to be emitted. To prevent |
1179 | // this, trim the intervals to the lexical scope in the case of inlined |
1180 | // variables, since heavy inlining may cause production of dramatically big |
1181 | // number of DBG_VALUEs to be generated. |
1182 | if (!dl.getInlinedAt()) |
1183 | return; |
1184 | |
1185 | LexicalScope *Scope = LS.findLexicalScope(DL: dl); |
1186 | if (!Scope) |
1187 | return; |
1188 | |
1189 | SlotIndex PrevEnd; |
1190 | LocMap::iterator I = locInts.begin(); |
1191 | |
1192 | // Iterate over the lexical scope ranges. Each time round the loop |
1193 | // we check the intervals for overlap with the end of the previous |
1194 | // range and the start of the next. The first range is handled as |
1195 | // a special case where there is no PrevEnd. |
1196 | for (const InsnRange &Range : Scope->getRanges()) { |
1197 | SlotIndex RStart = LIS.getInstructionIndex(Instr: *Range.first); |
1198 | SlotIndex REnd = LIS.getInstructionIndex(Instr: *Range.second); |
1199 | |
1200 | // Variable locations at the first instruction of a block should be |
1201 | // based on the block's SlotIndex, not the first instruction's index. |
1202 | if (Range.first == Range.first->getParent()->begin()) |
1203 | RStart = LIS.getSlotIndexes()->getIndexBefore(MI: *Range.first); |
1204 | |
1205 | // At the start of each iteration I has been advanced so that |
1206 | // I.stop() >= PrevEnd. Check for overlap. |
1207 | if (PrevEnd && I.start() < PrevEnd) { |
1208 | SlotIndex IStop = I.stop(); |
1209 | DbgVariableValue DbgValue = I.value(); |
1210 | |
1211 | // Stop overlaps previous end - trim the end of the interval to |
1212 | // the scope range. |
1213 | I.setStopUnchecked(PrevEnd); |
1214 | ++I; |
1215 | |
1216 | // If the interval also overlaps the start of the "next" (i.e. |
1217 | // current) range create a new interval for the remainder (which |
1218 | // may be further trimmed). |
1219 | if (RStart < IStop) |
1220 | I.insert(a: RStart, b: IStop, y: DbgValue); |
1221 | } |
1222 | |
1223 | // Advance I so that I.stop() >= RStart, and check for overlap. |
1224 | I.advanceTo(x: RStart); |
1225 | if (!I.valid()) |
1226 | return; |
1227 | |
1228 | if (I.start() < RStart) { |
1229 | // Interval start overlaps range - trim to the scope range. |
1230 | I.setStartUnchecked(RStart); |
1231 | // Remember that this interval was trimmed. |
1232 | trimmedDefs.insert(V: RStart); |
1233 | } |
1234 | |
1235 | // The end of a lexical scope range is the last instruction in the |
1236 | // range. To convert to an interval we need the index of the |
1237 | // instruction after it. |
1238 | REnd = REnd.getNextIndex(); |
1239 | |
1240 | // Advance I to first interval outside current range. |
1241 | I.advanceTo(x: REnd); |
1242 | if (!I.valid()) |
1243 | return; |
1244 | |
1245 | PrevEnd = REnd; |
1246 | } |
1247 | |
1248 | // Check for overlap with end of final range. |
1249 | if (PrevEnd && I.start() < PrevEnd) |
1250 | I.setStopUnchecked(PrevEnd); |
1251 | } |
1252 | |
1253 | void LDVImpl::computeIntervals() { |
1254 | LexicalScopes LS; |
1255 | LS.initialize(*MF); |
1256 | |
1257 | for (const auto &UV : userValues) { |
1258 | UV->computeIntervals(MRI&: MF->getRegInfo(), TRI: *TRI, LIS&: *LIS, LS); |
1259 | UV->mapVirtRegs(LDV: this); |
1260 | } |
1261 | } |
1262 | |
1263 | bool LDVImpl::runOnMachineFunction(MachineFunction &mf, bool InstrRef) { |
1264 | clear(); |
1265 | MF = &mf; |
1266 | LIS = &pass.getAnalysis<LiveIntervalsWrapperPass>().getLIS(); |
1267 | TRI = mf.getSubtarget().getRegisterInfo(); |
1268 | LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " |
1269 | << mf.getName() << " **********\n" ); |
1270 | |
1271 | bool Changed = collectDebugValues(mf, InstrRef); |
1272 | computeIntervals(); |
1273 | LLVM_DEBUG(print(dbgs())); |
1274 | |
1275 | // Collect the set of VReg / SlotIndexs where PHIs occur; index the sensitive |
1276 | // VRegs too, for when we're notified of a range split. |
1277 | SlotIndexes *Slots = LIS->getSlotIndexes(); |
1278 | for (const auto &PHIIt : MF->DebugPHIPositions) { |
1279 | const MachineFunction::DebugPHIRegallocPos &Position = PHIIt.second; |
1280 | MachineBasicBlock *MBB = Position.MBB; |
1281 | Register Reg = Position.Reg; |
1282 | unsigned SubReg = Position.SubReg; |
1283 | SlotIndex SI = Slots->getMBBStartIdx(mbb: MBB); |
1284 | PHIValPos VP = {.SI: SI, .Reg: Reg, .SubReg: SubReg}; |
1285 | PHIValToPos.insert(x: std::make_pair(x: PHIIt.first, y&: VP)); |
1286 | RegToPHIIdx[Reg].push_back(x: PHIIt.first); |
1287 | } |
1288 | |
1289 | ModifiedMF = Changed; |
1290 | return Changed; |
1291 | } |
1292 | |
1293 | static void removeDebugInstrs(MachineFunction &mf) { |
1294 | for (MachineBasicBlock &MBB : mf) { |
1295 | for (MachineInstr &MI : llvm::make_early_inc_range(Range&: MBB)) |
1296 | if (MI.isDebugInstr()) |
1297 | MBB.erase(I: &MI); |
1298 | } |
1299 | } |
1300 | |
1301 | bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { |
1302 | if (!EnableLDV) |
1303 | return false; |
1304 | if (!mf.getFunction().getSubprogram()) { |
1305 | removeDebugInstrs(mf); |
1306 | return false; |
1307 | } |
1308 | |
1309 | // Have we been asked to track variable locations using instruction |
1310 | // referencing? |
1311 | bool InstrRef = mf.useDebugInstrRef(); |
1312 | |
1313 | if (!pImpl) |
1314 | pImpl = new LDVImpl(this); |
1315 | return static_cast<LDVImpl *>(pImpl)->runOnMachineFunction(mf, InstrRef); |
1316 | } |
1317 | |
1318 | void LiveDebugVariables::releaseMemory() { |
1319 | if (pImpl) |
1320 | static_cast<LDVImpl*>(pImpl)->clear(); |
1321 | } |
1322 | |
1323 | LiveDebugVariables::~LiveDebugVariables() { |
1324 | if (pImpl) |
1325 | delete static_cast<LDVImpl*>(pImpl); |
1326 | } |
1327 | |
1328 | //===----------------------------------------------------------------------===// |
1329 | // Live Range Splitting |
1330 | //===----------------------------------------------------------------------===// |
1331 | |
1332 | bool |
1333 | UserValue::splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, |
1334 | LiveIntervals& LIS) { |
1335 | LLVM_DEBUG({ |
1336 | dbgs() << "Splitting Loc" << OldLocNo << '\t'; |
1337 | print(dbgs(), nullptr); |
1338 | }); |
1339 | bool DidChange = false; |
1340 | LocMap::iterator LocMapI; |
1341 | LocMapI.setMap(locInts); |
1342 | for (Register NewReg : NewRegs) { |
1343 | LiveInterval *LI = &LIS.getInterval(Reg: NewReg); |
1344 | if (LI->empty()) |
1345 | continue; |
1346 | |
1347 | // Don't allocate the new LocNo until it is needed. |
1348 | unsigned NewLocNo = UndefLocNo; |
1349 | |
1350 | // Iterate over the overlaps between locInts and LI. |
1351 | LocMapI.find(x: LI->beginIndex()); |
1352 | if (!LocMapI.valid()) |
1353 | continue; |
1354 | LiveInterval::iterator LII = LI->advanceTo(I: LI->begin(), Pos: LocMapI.start()); |
1355 | LiveInterval::iterator LIE = LI->end(); |
1356 | while (LocMapI.valid() && LII != LIE) { |
1357 | // At this point, we know that LocMapI.stop() > LII->start. |
1358 | LII = LI->advanceTo(I: LII, Pos: LocMapI.start()); |
1359 | if (LII == LIE) |
1360 | break; |
1361 | |
1362 | // Now LII->end > LocMapI.start(). Do we have an overlap? |
1363 | if (LocMapI.value().containsLocNo(LocNo: OldLocNo) && |
1364 | LII->start < LocMapI.stop()) { |
1365 | // Overlapping correct location. Allocate NewLocNo now. |
1366 | if (NewLocNo == UndefLocNo) { |
1367 | MachineOperand MO = MachineOperand::CreateReg(Reg: LI->reg(), isDef: false); |
1368 | MO.setSubReg(locations[OldLocNo].getSubReg()); |
1369 | NewLocNo = getLocationNo(LocMO: MO); |
1370 | DidChange = true; |
1371 | } |
1372 | |
1373 | SlotIndex LStart = LocMapI.start(); |
1374 | SlotIndex LStop = LocMapI.stop(); |
1375 | DbgVariableValue OldDbgValue = LocMapI.value(); |
1376 | |
1377 | // Trim LocMapI down to the LII overlap. |
1378 | if (LStart < LII->start) |
1379 | LocMapI.setStartUnchecked(LII->start); |
1380 | if (LStop > LII->end) |
1381 | LocMapI.setStopUnchecked(LII->end); |
1382 | |
1383 | // Change the value in the overlap. This may trigger coalescing. |
1384 | LocMapI.setValue(OldDbgValue.changeLocNo(OldLocNo, NewLocNo)); |
1385 | |
1386 | // Re-insert any removed OldDbgValue ranges. |
1387 | if (LStart < LocMapI.start()) { |
1388 | LocMapI.insert(a: LStart, b: LocMapI.start(), y: OldDbgValue); |
1389 | ++LocMapI; |
1390 | assert(LocMapI.valid() && "Unexpected coalescing" ); |
1391 | } |
1392 | if (LStop > LocMapI.stop()) { |
1393 | ++LocMapI; |
1394 | LocMapI.insert(a: LII->end, b: LStop, y: OldDbgValue); |
1395 | --LocMapI; |
1396 | } |
1397 | } |
1398 | |
1399 | // Advance to the next overlap. |
1400 | if (LII->end < LocMapI.stop()) { |
1401 | if (++LII == LIE) |
1402 | break; |
1403 | LocMapI.advanceTo(x: LII->start); |
1404 | } else { |
1405 | ++LocMapI; |
1406 | if (!LocMapI.valid()) |
1407 | break; |
1408 | LII = LI->advanceTo(I: LII, Pos: LocMapI.start()); |
1409 | } |
1410 | } |
1411 | } |
1412 | |
1413 | // Finally, remove OldLocNo unless it is still used by some interval in the |
1414 | // locInts map. One case when OldLocNo still is in use is when the register |
1415 | // has been spilled. In such situations the spilled register is kept as a |
1416 | // location until rewriteLocations is called (VirtRegMap is mapping the old |
1417 | // register to the spill slot). So for a while we can have locations that map |
1418 | // to virtual registers that have been removed from both the MachineFunction |
1419 | // and from LiveIntervals. |
1420 | // |
1421 | // We may also just be using the location for a value with a different |
1422 | // expression. |
1423 | removeLocationIfUnused(LocNo: OldLocNo); |
1424 | |
1425 | LLVM_DEBUG({ |
1426 | dbgs() << "Split result: \t" ; |
1427 | print(dbgs(), nullptr); |
1428 | }); |
1429 | return DidChange; |
1430 | } |
1431 | |
1432 | bool |
1433 | UserValue::splitRegister(Register OldReg, ArrayRef<Register> NewRegs, |
1434 | LiveIntervals &LIS) { |
1435 | bool DidChange = false; |
1436 | // Split locations referring to OldReg. Iterate backwards so splitLocation can |
1437 | // safely erase unused locations. |
1438 | for (unsigned i = locations.size(); i ; --i) { |
1439 | unsigned LocNo = i-1; |
1440 | const MachineOperand *Loc = &locations[LocNo]; |
1441 | if (!Loc->isReg() || Loc->getReg() != OldReg) |
1442 | continue; |
1443 | DidChange |= splitLocation(OldLocNo: LocNo, NewRegs, LIS); |
1444 | } |
1445 | return DidChange; |
1446 | } |
1447 | |
1448 | void LDVImpl::splitPHIRegister(Register OldReg, ArrayRef<Register> NewRegs) { |
1449 | auto RegIt = RegToPHIIdx.find(Val: OldReg); |
1450 | if (RegIt == RegToPHIIdx.end()) |
1451 | return; |
1452 | |
1453 | std::vector<std::pair<Register, unsigned>> NewRegIdxes; |
1454 | // Iterate over all the debug instruction numbers affected by this split. |
1455 | for (unsigned InstrID : RegIt->second) { |
1456 | auto PHIIt = PHIValToPos.find(x: InstrID); |
1457 | assert(PHIIt != PHIValToPos.end()); |
1458 | const SlotIndex &Slot = PHIIt->second.SI; |
1459 | assert(OldReg == PHIIt->second.Reg); |
1460 | |
1461 | // Find the new register that covers this position. |
1462 | for (auto NewReg : NewRegs) { |
1463 | const LiveInterval &LI = LIS->getInterval(Reg: NewReg); |
1464 | auto LII = LI.find(Pos: Slot); |
1465 | if (LII != LI.end() && LII->start <= Slot) { |
1466 | // This new register covers this PHI position, record this for indexing. |
1467 | NewRegIdxes.push_back(x: std::make_pair(x&: NewReg, y&: InstrID)); |
1468 | // Record that this value lives in a different VReg now. |
1469 | PHIIt->second.Reg = NewReg; |
1470 | break; |
1471 | } |
1472 | } |
1473 | |
1474 | // If we do not find a new register covering this PHI, then register |
1475 | // allocation has dropped its location, for example because it's not live. |
1476 | // The old VReg will not be mapped to a physreg, and the instruction |
1477 | // number will have been optimized out. |
1478 | } |
1479 | |
1480 | // Re-create register index using the new register numbers. |
1481 | RegToPHIIdx.erase(I: RegIt); |
1482 | for (auto &RegAndInstr : NewRegIdxes) |
1483 | RegToPHIIdx[RegAndInstr.first].push_back(x: RegAndInstr.second); |
1484 | } |
1485 | |
1486 | void LDVImpl::splitRegister(Register OldReg, ArrayRef<Register> NewRegs) { |
1487 | // Consider whether this split range affects any PHI locations. |
1488 | splitPHIRegister(OldReg, NewRegs); |
1489 | |
1490 | // Check whether any intervals mapped by a DBG_VALUE were split and need |
1491 | // updating. |
1492 | bool DidChange = false; |
1493 | for (UserValue *UV = lookupVirtReg(VirtReg: OldReg); UV; UV = UV->getNext()) |
1494 | DidChange |= UV->splitRegister(OldReg, NewRegs, LIS&: *LIS); |
1495 | |
1496 | if (!DidChange) |
1497 | return; |
1498 | |
1499 | // Map all of the new virtual registers. |
1500 | UserValue *UV = lookupVirtReg(VirtReg: OldReg); |
1501 | for (Register NewReg : NewRegs) |
1502 | mapVirtReg(VirtReg: NewReg, EC: UV); |
1503 | } |
1504 | |
1505 | void LiveDebugVariables:: |
1506 | splitRegister(Register OldReg, ArrayRef<Register> NewRegs, LiveIntervals &LIS) { |
1507 | if (pImpl) |
1508 | static_cast<LDVImpl*>(pImpl)->splitRegister(OldReg, NewRegs); |
1509 | } |
1510 | |
1511 | void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, |
1512 | const TargetInstrInfo &TII, |
1513 | const TargetRegisterInfo &TRI, |
1514 | SpillOffsetMap &SpillOffsets) { |
1515 | // Build a set of new locations with new numbers so we can coalesce our |
1516 | // IntervalMap if two vreg intervals collapse to the same physical location. |
1517 | // Use MapVector instead of SetVector because MapVector::insert returns the |
1518 | // position of the previously or newly inserted element. The boolean value |
1519 | // tracks if the location was produced by a spill. |
1520 | // FIXME: This will be problematic if we ever support direct and indirect |
1521 | // frame index locations, i.e. expressing both variables in memory and |
1522 | // 'int x, *px = &x'. The "spilled" bit must become part of the location. |
1523 | MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations; |
1524 | SmallVector<unsigned, 4> LocNoMap(locations.size()); |
1525 | for (unsigned I = 0, E = locations.size(); I != E; ++I) { |
1526 | bool Spilled = false; |
1527 | unsigned SpillOffset = 0; |
1528 | MachineOperand Loc = locations[I]; |
1529 | // Only virtual registers are rewritten. |
1530 | if (Loc.isReg() && Loc.getReg() && Loc.getReg().isVirtual()) { |
1531 | Register VirtReg = Loc.getReg(); |
1532 | if (VRM.isAssignedReg(virtReg: VirtReg) && |
1533 | Register::isPhysicalRegister(Reg: VRM.getPhys(virtReg: VirtReg))) { |
1534 | // This can create a %noreg operand in rare cases when the sub-register |
1535 | // index is no longer available. That means the user value is in a |
1536 | // non-existent sub-register, and %noreg is exactly what we want. |
1537 | Loc.substPhysReg(Reg: VRM.getPhys(virtReg: VirtReg), TRI); |
1538 | } else if (VRM.getStackSlot(virtReg: VirtReg) != VirtRegMap::NO_STACK_SLOT) { |
1539 | // Retrieve the stack slot offset. |
1540 | unsigned SpillSize; |
1541 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
1542 | const TargetRegisterClass *TRC = MRI.getRegClass(Reg: VirtReg); |
1543 | bool Success = TII.getStackSlotRange(RC: TRC, SubIdx: Loc.getSubReg(), Size&: SpillSize, |
1544 | Offset&: SpillOffset, MF); |
1545 | |
1546 | // FIXME: Invalidate the location if the offset couldn't be calculated. |
1547 | (void)Success; |
1548 | |
1549 | Loc = MachineOperand::CreateFI(Idx: VRM.getStackSlot(virtReg: VirtReg)); |
1550 | Spilled = true; |
1551 | } else { |
1552 | Loc.setReg(0); |
1553 | Loc.setSubReg(0); |
1554 | } |
1555 | } |
1556 | |
1557 | // Insert this location if it doesn't already exist and record a mapping |
1558 | // from the old number to the new number. |
1559 | auto InsertResult = NewLocations.insert(KV: {Loc, {Spilled, SpillOffset}}); |
1560 | unsigned NewLocNo = std::distance(first: NewLocations.begin(), last: InsertResult.first); |
1561 | LocNoMap[I] = NewLocNo; |
1562 | } |
1563 | |
1564 | // Rewrite the locations and record the stack slot offsets for spills. |
1565 | locations.clear(); |
1566 | SpillOffsets.clear(); |
1567 | for (auto &Pair : NewLocations) { |
1568 | bool Spilled; |
1569 | unsigned SpillOffset; |
1570 | std::tie(args&: Spilled, args&: SpillOffset) = Pair.second; |
1571 | locations.push_back(Elt: Pair.first); |
1572 | if (Spilled) { |
1573 | unsigned NewLocNo = std::distance(first: &*NewLocations.begin(), last: &Pair); |
1574 | SpillOffsets[NewLocNo] = SpillOffset; |
1575 | } |
1576 | } |
1577 | |
1578 | // Update the interval map, but only coalesce left, since intervals to the |
1579 | // right use the old location numbers. This should merge two contiguous |
1580 | // DBG_VALUE intervals with different vregs that were allocated to the same |
1581 | // physical register. |
1582 | for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { |
1583 | I.setValueUnchecked(I.value().remapLocNos(LocNoMap)); |
1584 | I.setStart(I.start()); |
1585 | } |
1586 | } |
1587 | |
1588 | /// Find an iterator for inserting a DBG_VALUE instruction. |
1589 | static MachineBasicBlock::iterator |
1590 | findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, LiveIntervals &LIS, |
1591 | BlockSkipInstsMap &BBSkipInstsMap) { |
1592 | SlotIndex Start = LIS.getMBBStartIdx(mbb: MBB); |
1593 | Idx = Idx.getBaseIndex(); |
1594 | |
1595 | // Try to find an insert location by going backwards from Idx. |
1596 | MachineInstr *MI; |
1597 | while (!(MI = LIS.getInstructionFromIndex(index: Idx))) { |
1598 | // We've reached the beginning of MBB. |
1599 | if (Idx == Start) { |
1600 | // Retrieve the last PHI/Label/Debug location found when calling |
1601 | // SkipPHIsLabelsAndDebug last time. Start searching from there. |
1602 | // |
1603 | // Note the iterator kept in BBSkipInstsMap is one step back based |
1604 | // on the iterator returned by SkipPHIsLabelsAndDebug last time. |
1605 | // One exception is when SkipPHIsLabelsAndDebug returns MBB->begin(), |
1606 | // BBSkipInstsMap won't save it. This is to consider the case that |
1607 | // new instructions may be inserted at the beginning of MBB after |
1608 | // last call of SkipPHIsLabelsAndDebug. If we save MBB->begin() in |
1609 | // BBSkipInstsMap, after new non-phi/non-label/non-debug instructions |
1610 | // are inserted at the beginning of the MBB, the iterator in |
1611 | // BBSkipInstsMap won't point to the beginning of the MBB anymore. |
1612 | // Therefore The next search in SkipPHIsLabelsAndDebug will skip those |
1613 | // newly added instructions and that is unwanted. |
1614 | MachineBasicBlock::iterator BeginIt; |
1615 | auto MapIt = BBSkipInstsMap.find(Val: MBB); |
1616 | if (MapIt == BBSkipInstsMap.end()) |
1617 | BeginIt = MBB->begin(); |
1618 | else |
1619 | BeginIt = std::next(x: MapIt->second); |
1620 | auto I = MBB->SkipPHIsLabelsAndDebug(I: BeginIt); |
1621 | if (I != BeginIt) |
1622 | BBSkipInstsMap[MBB] = std::prev(x: I); |
1623 | return I; |
1624 | } |
1625 | Idx = Idx.getPrevIndex(); |
1626 | } |
1627 | |
1628 | // Don't insert anything after the first terminator, though. |
1629 | return MI->isTerminator() ? MBB->getFirstTerminator() : |
1630 | std::next(x: MachineBasicBlock::iterator(MI)); |
1631 | } |
1632 | |
1633 | /// Find an iterator for inserting the next DBG_VALUE instruction |
1634 | /// (or end if no more insert locations found). |
1635 | static MachineBasicBlock::iterator |
1636 | findNextInsertLocation(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, |
1637 | SlotIndex StopIdx, ArrayRef<MachineOperand> LocMOs, |
1638 | LiveIntervals &LIS, const TargetRegisterInfo &TRI) { |
1639 | SmallVector<Register, 4> Regs; |
1640 | for (const MachineOperand &LocMO : LocMOs) |
1641 | if (LocMO.isReg()) |
1642 | Regs.push_back(Elt: LocMO.getReg()); |
1643 | if (Regs.empty()) |
1644 | return MBB->instr_end(); |
1645 | |
1646 | // Find the next instruction in the MBB that define the register Reg. |
1647 | while (I != MBB->end() && !I->isTerminator()) { |
1648 | if (!LIS.isNotInMIMap(Instr: *I) && |
1649 | SlotIndex::isEarlierEqualInstr(A: StopIdx, B: LIS.getInstructionIndex(Instr: *I))) |
1650 | break; |
1651 | if (any_of(Range&: Regs, P: [&I, &TRI](Register &Reg) { |
1652 | return I->definesRegister(Reg, TRI: &TRI); |
1653 | })) |
1654 | // The insert location is directly after the instruction/bundle. |
1655 | return std::next(x: I); |
1656 | ++I; |
1657 | } |
1658 | return MBB->end(); |
1659 | } |
1660 | |
1661 | void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, |
1662 | SlotIndex StopIdx, DbgVariableValue DbgValue, |
1663 | ArrayRef<bool> LocSpills, |
1664 | ArrayRef<unsigned> SpillOffsets, |
1665 | LiveIntervals &LIS, const TargetInstrInfo &TII, |
1666 | const TargetRegisterInfo &TRI, |
1667 | BlockSkipInstsMap &BBSkipInstsMap) { |
1668 | SlotIndex MBBEndIdx = LIS.getMBBEndIdx(mbb: &*MBB); |
1669 | // Only search within the current MBB. |
1670 | StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; |
1671 | MachineBasicBlock::iterator I = |
1672 | findInsertLocation(MBB, Idx: StartIdx, LIS, BBSkipInstsMap); |
1673 | // Undef values don't exist in locations so create new "noreg" register MOs |
1674 | // for them. See getLocationNo(). |
1675 | SmallVector<MachineOperand, 8> MOs; |
1676 | if (DbgValue.isUndef()) { |
1677 | MOs.assign(NumElts: DbgValue.loc_nos().size(), |
1678 | Elt: MachineOperand::CreateReg( |
1679 | /* Reg */ 0, /* isDef */ false, /* isImp */ false, |
1680 | /* isKill */ false, /* isDead */ false, |
1681 | /* isUndef */ false, /* isEarlyClobber */ false, |
1682 | /* SubReg */ 0, /* isDebug */ true)); |
1683 | } else { |
1684 | for (unsigned LocNo : DbgValue.loc_nos()) |
1685 | MOs.push_back(Elt: locations[LocNo]); |
1686 | } |
1687 | |
1688 | ++NumInsertedDebugValues; |
1689 | |
1690 | assert(cast<DILocalVariable>(Variable) |
1691 | ->isValidLocationForIntrinsic(getDebugLoc()) && |
1692 | "Expected inlined-at fields to agree" ); |
1693 | |
1694 | // If the location was spilled, the new DBG_VALUE will be indirect. If the |
1695 | // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate |
1696 | // that the original virtual register was a pointer. Also, add the stack slot |
1697 | // offset for the spilled register to the expression. |
1698 | const DIExpression *Expr = DbgValue.getExpression(); |
1699 | bool IsIndirect = DbgValue.getWasIndirect(); |
1700 | bool IsList = DbgValue.getWasList(); |
1701 | for (unsigned I = 0, E = LocSpills.size(); I != E; ++I) { |
1702 | if (LocSpills[I]) { |
1703 | if (!IsList) { |
1704 | uint8_t DIExprFlags = DIExpression::ApplyOffset; |
1705 | if (IsIndirect) |
1706 | DIExprFlags |= DIExpression::DerefAfter; |
1707 | Expr = DIExpression::prepend(Expr, Flags: DIExprFlags, Offset: SpillOffsets[I]); |
1708 | IsIndirect = true; |
1709 | } else { |
1710 | SmallVector<uint64_t, 4> Ops; |
1711 | DIExpression::appendOffset(Ops, Offset: SpillOffsets[I]); |
1712 | Ops.push_back(Elt: dwarf::DW_OP_deref); |
1713 | Expr = DIExpression::appendOpsToArg(Expr, Ops, ArgNo: I); |
1714 | } |
1715 | } |
1716 | |
1717 | assert((!LocSpills[I] || MOs[I].isFI()) && |
1718 | "a spilled location must be a frame index" ); |
1719 | } |
1720 | |
1721 | unsigned DbgValueOpcode = |
1722 | IsList ? TargetOpcode::DBG_VALUE_LIST : TargetOpcode::DBG_VALUE; |
1723 | do { |
1724 | BuildMI(BB&: *MBB, I, DL: getDebugLoc(), MCID: TII.get(Opcode: DbgValueOpcode), IsIndirect, MOs, |
1725 | Variable, Expr); |
1726 | |
1727 | // Continue and insert DBG_VALUES after every redefinition of a register |
1728 | // associated with the debug value within the range |
1729 | I = findNextInsertLocation(MBB, I, StopIdx, LocMOs: MOs, LIS, TRI); |
1730 | } while (I != MBB->end()); |
1731 | } |
1732 | |
1733 | void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, |
1734 | LiveIntervals &LIS, const TargetInstrInfo &TII, |
1735 | BlockSkipInstsMap &BBSkipInstsMap) { |
1736 | MachineBasicBlock::iterator I = |
1737 | findInsertLocation(MBB, Idx, LIS, BBSkipInstsMap); |
1738 | ++NumInsertedDebugLabels; |
1739 | BuildMI(BB&: *MBB, I, MIMD: getDebugLoc(), MCID: TII.get(Opcode: TargetOpcode::DBG_LABEL)) |
1740 | .addMetadata(MD: Label); |
1741 | } |
1742 | |
1743 | void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, |
1744 | const TargetInstrInfo &TII, |
1745 | const TargetRegisterInfo &TRI, |
1746 | const SpillOffsetMap &SpillOffsets, |
1747 | BlockSkipInstsMap &BBSkipInstsMap) { |
1748 | MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); |
1749 | |
1750 | for (LocMap::const_iterator I = locInts.begin(); I.valid();) { |
1751 | SlotIndex Start = I.start(); |
1752 | SlotIndex Stop = I.stop(); |
1753 | DbgVariableValue DbgValue = I.value(); |
1754 | |
1755 | SmallVector<bool> SpilledLocs; |
1756 | SmallVector<unsigned> LocSpillOffsets; |
1757 | for (unsigned LocNo : DbgValue.loc_nos()) { |
1758 | auto SpillIt = |
1759 | !DbgValue.isUndef() ? SpillOffsets.find(Val: LocNo) : SpillOffsets.end(); |
1760 | bool Spilled = SpillIt != SpillOffsets.end(); |
1761 | SpilledLocs.push_back(Elt: Spilled); |
1762 | LocSpillOffsets.push_back(Elt: Spilled ? SpillIt->second : 0); |
1763 | } |
1764 | |
1765 | // If the interval start was trimmed to the lexical scope insert the |
1766 | // DBG_VALUE at the previous index (otherwise it appears after the |
1767 | // first instruction in the range). |
1768 | if (trimmedDefs.count(V: Start)) |
1769 | Start = Start.getPrevIndex(); |
1770 | |
1771 | LLVM_DEBUG(auto &dbg = dbgs(); dbg << "\t[" << Start << ';' << Stop << "):" ; |
1772 | DbgValue.printLocNos(dbg)); |
1773 | MachineFunction::iterator MBB = LIS.getMBBFromIndex(index: Start)->getIterator(); |
1774 | SlotIndex MBBEnd = LIS.getMBBEndIdx(mbb: &*MBB); |
1775 | |
1776 | LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); |
1777 | insertDebugValue(MBB: &*MBB, StartIdx: Start, StopIdx: Stop, DbgValue, LocSpills: SpilledLocs, SpillOffsets: LocSpillOffsets, |
1778 | LIS, TII, TRI, BBSkipInstsMap); |
1779 | // This interval may span multiple basic blocks. |
1780 | // Insert a DBG_VALUE into each one. |
1781 | while (Stop > MBBEnd) { |
1782 | // Move to the next block. |
1783 | Start = MBBEnd; |
1784 | if (++MBB == MFEnd) |
1785 | break; |
1786 | MBBEnd = LIS.getMBBEndIdx(mbb: &*MBB); |
1787 | LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); |
1788 | insertDebugValue(MBB: &*MBB, StartIdx: Start, StopIdx: Stop, DbgValue, LocSpills: SpilledLocs, |
1789 | SpillOffsets: LocSpillOffsets, LIS, TII, TRI, BBSkipInstsMap); |
1790 | } |
1791 | LLVM_DEBUG(dbgs() << '\n'); |
1792 | if (MBB == MFEnd) |
1793 | break; |
1794 | |
1795 | ++I; |
1796 | } |
1797 | } |
1798 | |
1799 | void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, |
1800 | BlockSkipInstsMap &BBSkipInstsMap) { |
1801 | LLVM_DEBUG(dbgs() << "\t" << loc); |
1802 | MachineFunction::iterator MBB = LIS.getMBBFromIndex(index: loc)->getIterator(); |
1803 | |
1804 | LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB)); |
1805 | insertDebugLabel(MBB: &*MBB, Idx: loc, LIS, TII, BBSkipInstsMap); |
1806 | |
1807 | LLVM_DEBUG(dbgs() << '\n'); |
1808 | } |
1809 | |
1810 | void LDVImpl::emitDebugValues(VirtRegMap *VRM) { |
1811 | LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n" ); |
1812 | if (!MF) |
1813 | return; |
1814 | |
1815 | BlockSkipInstsMap BBSkipInstsMap; |
1816 | const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
1817 | SpillOffsetMap SpillOffsets; |
1818 | for (auto &userValue : userValues) { |
1819 | LLVM_DEBUG(userValue->print(dbgs(), TRI)); |
1820 | userValue->rewriteLocations(VRM&: *VRM, MF: *MF, TII: *TII, TRI: *TRI, SpillOffsets); |
1821 | userValue->emitDebugValues(VRM, LIS&: *LIS, TII: *TII, TRI: *TRI, SpillOffsets, |
1822 | BBSkipInstsMap); |
1823 | } |
1824 | LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n" ); |
1825 | for (auto &userLabel : userLabels) { |
1826 | LLVM_DEBUG(userLabel->print(dbgs(), TRI)); |
1827 | userLabel->emitDebugLabel(LIS&: *LIS, TII: *TII, BBSkipInstsMap); |
1828 | } |
1829 | |
1830 | LLVM_DEBUG(dbgs() << "********** EMITTING DEBUG PHIS **********\n" ); |
1831 | |
1832 | auto Slots = LIS->getSlotIndexes(); |
1833 | for (auto &It : PHIValToPos) { |
1834 | // For each ex-PHI, identify its physreg location or stack slot, and emit |
1835 | // a DBG_PHI for it. |
1836 | unsigned InstNum = It.first; |
1837 | auto Slot = It.second.SI; |
1838 | Register Reg = It.second.Reg; |
1839 | unsigned SubReg = It.second.SubReg; |
1840 | |
1841 | MachineBasicBlock *OrigMBB = Slots->getMBBFromIndex(index: Slot); |
1842 | if (VRM->isAssignedReg(virtReg: Reg) && |
1843 | Register::isPhysicalRegister(Reg: VRM->getPhys(virtReg: Reg))) { |
1844 | unsigned PhysReg = VRM->getPhys(virtReg: Reg); |
1845 | if (SubReg != 0) |
1846 | PhysReg = TRI->getSubReg(Reg: PhysReg, Idx: SubReg); |
1847 | |
1848 | auto Builder = BuildMI(BB&: *OrigMBB, I: OrigMBB->begin(), MIMD: DebugLoc(), |
1849 | MCID: TII->get(Opcode: TargetOpcode::DBG_PHI)); |
1850 | Builder.addReg(RegNo: PhysReg); |
1851 | Builder.addImm(Val: InstNum); |
1852 | } else if (VRM->getStackSlot(virtReg: Reg) != VirtRegMap::NO_STACK_SLOT) { |
1853 | const MachineRegisterInfo &MRI = MF->getRegInfo(); |
1854 | const TargetRegisterClass *TRC = MRI.getRegClass(Reg); |
1855 | unsigned SpillSize, SpillOffset; |
1856 | |
1857 | unsigned regSizeInBits = TRI->getRegSizeInBits(RC: *TRC); |
1858 | if (SubReg) |
1859 | regSizeInBits = TRI->getSubRegIdxSize(Idx: SubReg); |
1860 | |
1861 | // Test whether this location is legal with the given subreg. If the |
1862 | // subregister has a nonzero offset, drop this location, it's too complex |
1863 | // to describe. (TODO: future work). |
1864 | bool Success = |
1865 | TII->getStackSlotRange(RC: TRC, SubIdx: SubReg, Size&: SpillSize, Offset&: SpillOffset, MF: *MF); |
1866 | |
1867 | if (Success && SpillOffset == 0) { |
1868 | auto Builder = BuildMI(BB&: *OrigMBB, I: OrigMBB->begin(), MIMD: DebugLoc(), |
1869 | MCID: TII->get(Opcode: TargetOpcode::DBG_PHI)); |
1870 | Builder.addFrameIndex(Idx: VRM->getStackSlot(virtReg: Reg)); |
1871 | Builder.addImm(Val: InstNum); |
1872 | // Record how large the original value is. The stack slot might be |
1873 | // merged and altered during optimisation, but we will want to know how |
1874 | // large the value is, at this DBG_PHI. |
1875 | Builder.addImm(Val: regSizeInBits); |
1876 | } |
1877 | |
1878 | LLVM_DEBUG( |
1879 | if (SpillOffset != 0) { |
1880 | dbgs() << "DBG_PHI for Vreg " << Reg << " subreg " << SubReg << |
1881 | " has nonzero offset\n" ; |
1882 | } |
1883 | ); |
1884 | } |
1885 | // If there was no mapping for a value ID, it's optimized out. Create no |
1886 | // DBG_PHI, and any variables using this value will become optimized out. |
1887 | } |
1888 | MF->DebugPHIPositions.clear(); |
1889 | |
1890 | LLVM_DEBUG(dbgs() << "********** EMITTING INSTR REFERENCES **********\n" ); |
1891 | |
1892 | // Re-insert any debug instrs back in the position they were. We must |
1893 | // re-insert in the same order to ensure that debug instructions don't swap, |
1894 | // which could re-order assignments. Do so in a batch -- once we find the |
1895 | // insert position, insert all instructions at the same SlotIdx. They are |
1896 | // guaranteed to appear in-sequence in StashedDebugInstrs because we insert |
1897 | // them in order. |
1898 | for (auto *StashIt = StashedDebugInstrs.begin(); |
1899 | StashIt != StashedDebugInstrs.end(); ++StashIt) { |
1900 | SlotIndex Idx = StashIt->Idx; |
1901 | MachineBasicBlock *MBB = StashIt->MBB; |
1902 | MachineInstr *MI = StashIt->MI; |
1903 | |
1904 | auto EmitInstsHere = [this, &StashIt, MBB, Idx, |
1905 | MI](MachineBasicBlock::iterator InsertPos) { |
1906 | // Insert this debug instruction. |
1907 | MBB->insert(I: InsertPos, MI); |
1908 | |
1909 | // Look at subsequent stashed debug instructions: if they're at the same |
1910 | // index, insert those too. |
1911 | auto NextItem = std::next(x: StashIt); |
1912 | while (NextItem != StashedDebugInstrs.end() && NextItem->Idx == Idx) { |
1913 | assert(NextItem->MBB == MBB && "Instrs with same slot index should be" |
1914 | "in the same block" ); |
1915 | MBB->insert(I: InsertPos, MI: NextItem->MI); |
1916 | StashIt = NextItem; |
1917 | NextItem = std::next(x: StashIt); |
1918 | }; |
1919 | }; |
1920 | |
1921 | // Start block index: find the first non-debug instr in the block, and |
1922 | // insert before it. |
1923 | if (Idx == Slots->getMBBStartIdx(mbb: MBB)) { |
1924 | MachineBasicBlock::iterator InsertPos = |
1925 | findInsertLocation(MBB, Idx, LIS&: *LIS, BBSkipInstsMap); |
1926 | EmitInstsHere(InsertPos); |
1927 | continue; |
1928 | } |
1929 | |
1930 | if (MachineInstr *Pos = Slots->getInstructionFromIndex(index: Idx)) { |
1931 | // Insert at the end of any debug instructions. |
1932 | auto PostDebug = std::next(x: Pos->getIterator()); |
1933 | PostDebug = skipDebugInstructionsForward(It: PostDebug, End: MBB->instr_end()); |
1934 | EmitInstsHere(PostDebug); |
1935 | } else { |
1936 | // Insert position disappeared; walk forwards through slots until we |
1937 | // find a new one. |
1938 | SlotIndex End = Slots->getMBBEndIdx(mbb: MBB); |
1939 | for (; Idx < End; Idx = Slots->getNextNonNullIndex(Index: Idx)) { |
1940 | Pos = Slots->getInstructionFromIndex(index: Idx); |
1941 | if (Pos) { |
1942 | EmitInstsHere(Pos->getIterator()); |
1943 | break; |
1944 | } |
1945 | } |
1946 | |
1947 | // We have reached the end of the block and didn't find anywhere to |
1948 | // insert! It's not safe to discard any debug instructions; place them |
1949 | // in front of the first terminator, or in front of end(). |
1950 | if (Idx >= End) { |
1951 | auto TermIt = MBB->getFirstTerminator(); |
1952 | EmitInstsHere(TermIt); |
1953 | } |
1954 | } |
1955 | } |
1956 | |
1957 | EmitDone = true; |
1958 | BBSkipInstsMap.clear(); |
1959 | } |
1960 | |
1961 | void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { |
1962 | if (pImpl) |
1963 | static_cast<LDVImpl*>(pImpl)->emitDebugValues(VRM); |
1964 | } |
1965 | |
1966 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
1967 | LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { |
1968 | if (pImpl) |
1969 | static_cast<LDVImpl*>(pImpl)->print(dbgs()); |
1970 | } |
1971 | #endif |
1972 | |