1 | //===- LiveRegMatrix.cpp - Track register interference --------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the LiveRegMatrix analysis pass. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/CodeGen/LiveRegMatrix.h" |
14 | #include "RegisterCoalescer.h" |
15 | #include "llvm/ADT/Statistic.h" |
16 | #include "llvm/CodeGen/LiveInterval.h" |
17 | #include "llvm/CodeGen/LiveIntervalUnion.h" |
18 | #include "llvm/CodeGen/LiveIntervals.h" |
19 | #include "llvm/CodeGen/MachineFunction.h" |
20 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
21 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
22 | #include "llvm/CodeGen/VirtRegMap.h" |
23 | #include "llvm/InitializePasses.h" |
24 | #include "llvm/MC/LaneBitmask.h" |
25 | #include "llvm/MC/MCRegisterInfo.h" |
26 | #include "llvm/Pass.h" |
27 | #include "llvm/Support/Debug.h" |
28 | #include "llvm/Support/raw_ostream.h" |
29 | #include <cassert> |
30 | |
31 | using namespace llvm; |
32 | |
33 | #define DEBUG_TYPE "regalloc" |
34 | |
35 | STATISTIC(NumAssigned , "Number of registers assigned" ); |
36 | STATISTIC(NumUnassigned , "Number of registers unassigned" ); |
37 | |
38 | char LiveRegMatrix::ID = 0; |
39 | INITIALIZE_PASS_BEGIN(LiveRegMatrix, "liveregmatrix" , |
40 | "Live Register Matrix" , false, false) |
41 | INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) |
42 | INITIALIZE_PASS_DEPENDENCY(VirtRegMap) |
43 | INITIALIZE_PASS_END(LiveRegMatrix, "liveregmatrix" , |
44 | "Live Register Matrix" , false, false) |
45 | |
46 | LiveRegMatrix::LiveRegMatrix() : MachineFunctionPass(ID) {} |
47 | |
48 | void LiveRegMatrix::getAnalysisUsage(AnalysisUsage &AU) const { |
49 | AU.setPreservesAll(); |
50 | AU.addRequiredTransitive<LiveIntervalsWrapperPass>(); |
51 | AU.addRequiredTransitive<VirtRegMap>(); |
52 | MachineFunctionPass::getAnalysisUsage(AU); |
53 | } |
54 | |
55 | bool LiveRegMatrix::runOnMachineFunction(MachineFunction &MF) { |
56 | TRI = MF.getSubtarget().getRegisterInfo(); |
57 | LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); |
58 | VRM = &getAnalysis<VirtRegMap>(); |
59 | |
60 | unsigned NumRegUnits = TRI->getNumRegUnits(); |
61 | if (NumRegUnits != Matrix.size()) |
62 | Queries.reset(p: new LiveIntervalUnion::Query[NumRegUnits]); |
63 | Matrix.init(LIUAlloc, Size: NumRegUnits); |
64 | |
65 | // Make sure no stale queries get reused. |
66 | invalidateVirtRegs(); |
67 | return false; |
68 | } |
69 | |
70 | void LiveRegMatrix::releaseMemory() { |
71 | for (unsigned i = 0, e = Matrix.size(); i != e; ++i) { |
72 | Matrix[i].clear(); |
73 | // No need to clear Queries here, since LiveIntervalUnion::Query doesn't |
74 | // have anything important to clear and LiveRegMatrix's runOnFunction() |
75 | // does a std::unique_ptr::reset anyways. |
76 | } |
77 | } |
78 | |
79 | template <typename Callable> |
80 | static bool foreachUnit(const TargetRegisterInfo *TRI, |
81 | const LiveInterval &VRegInterval, MCRegister PhysReg, |
82 | Callable Func) { |
83 | if (VRegInterval.hasSubRanges()) { |
84 | for (MCRegUnitMaskIterator Units(PhysReg, TRI); Units.isValid(); ++Units) { |
85 | unsigned Unit = (*Units).first; |
86 | LaneBitmask Mask = (*Units).second; |
87 | for (const LiveInterval::SubRange &S : VRegInterval.subranges()) { |
88 | if ((S.LaneMask & Mask).any()) { |
89 | if (Func(Unit, S)) |
90 | return true; |
91 | break; |
92 | } |
93 | } |
94 | } |
95 | } else { |
96 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) { |
97 | if (Func(Unit, VRegInterval)) |
98 | return true; |
99 | } |
100 | } |
101 | return false; |
102 | } |
103 | |
104 | void LiveRegMatrix::assign(const LiveInterval &VirtReg, MCRegister PhysReg) { |
105 | LLVM_DEBUG(dbgs() << "assigning " << printReg(VirtReg.reg(), TRI) << " to " |
106 | << printReg(PhysReg, TRI) << ':'); |
107 | assert(!VRM->hasPhys(VirtReg.reg()) && "Duplicate VirtReg assignment" ); |
108 | VRM->assignVirt2Phys(virtReg: VirtReg.reg(), physReg: PhysReg); |
109 | |
110 | foreachUnit( |
111 | TRI, VRegInterval: VirtReg, PhysReg, Func: [&](unsigned Unit, const LiveRange &Range) { |
112 | LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << ' ' << Range); |
113 | Matrix[Unit].unify(VirtReg, Range); |
114 | return false; |
115 | }); |
116 | |
117 | ++NumAssigned; |
118 | LLVM_DEBUG(dbgs() << '\n'); |
119 | } |
120 | |
121 | void LiveRegMatrix::unassign(const LiveInterval &VirtReg) { |
122 | Register PhysReg = VRM->getPhys(virtReg: VirtReg.reg()); |
123 | LLVM_DEBUG(dbgs() << "unassigning " << printReg(VirtReg.reg(), TRI) |
124 | << " from " << printReg(PhysReg, TRI) << ':'); |
125 | VRM->clearVirt(virtReg: VirtReg.reg()); |
126 | |
127 | foreachUnit(TRI, VRegInterval: VirtReg, PhysReg, |
128 | Func: [&](unsigned Unit, const LiveRange &Range) { |
129 | LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI)); |
130 | Matrix[Unit].extract(VirtReg, Range); |
131 | return false; |
132 | }); |
133 | |
134 | ++NumUnassigned; |
135 | LLVM_DEBUG(dbgs() << '\n'); |
136 | } |
137 | |
138 | bool LiveRegMatrix::isPhysRegUsed(MCRegister PhysReg) const { |
139 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) { |
140 | if (!Matrix[Unit].empty()) |
141 | return true; |
142 | } |
143 | return false; |
144 | } |
145 | |
146 | bool LiveRegMatrix::checkRegMaskInterference(const LiveInterval &VirtReg, |
147 | MCRegister PhysReg) { |
148 | // Check if the cached information is valid. |
149 | // The same BitVector can be reused for all PhysRegs. |
150 | // We could cache multiple VirtRegs if it becomes necessary. |
151 | if (RegMaskVirtReg != VirtReg.reg() || RegMaskTag != UserTag) { |
152 | RegMaskVirtReg = VirtReg.reg(); |
153 | RegMaskTag = UserTag; |
154 | RegMaskUsable.clear(); |
155 | LIS->checkRegMaskInterference(LI: VirtReg, UsableRegs&: RegMaskUsable); |
156 | } |
157 | |
158 | // The BitVector is indexed by PhysReg, not register unit. |
159 | // Regmask interference is more fine grained than regunits. |
160 | // For example, a Win64 call can clobber %ymm8 yet preserve %xmm8. |
161 | return !RegMaskUsable.empty() && (!PhysReg || !RegMaskUsable.test(Idx: PhysReg)); |
162 | } |
163 | |
164 | bool LiveRegMatrix::checkRegUnitInterference(const LiveInterval &VirtReg, |
165 | MCRegister PhysReg) { |
166 | if (VirtReg.empty()) |
167 | return false; |
168 | CoalescerPair CP(VirtReg.reg(), PhysReg, *TRI); |
169 | |
170 | bool Result = foreachUnit(TRI, VRegInterval: VirtReg, PhysReg, Func: [&](unsigned Unit, |
171 | const LiveRange &Range) { |
172 | const LiveRange &UnitRange = LIS->getRegUnit(Unit); |
173 | return Range.overlaps(Other: UnitRange, CP, *LIS->getSlotIndexes()); |
174 | }); |
175 | return Result; |
176 | } |
177 | |
178 | LiveIntervalUnion::Query &LiveRegMatrix::query(const LiveRange &LR, |
179 | MCRegister RegUnit) { |
180 | LiveIntervalUnion::Query &Q = Queries[RegUnit]; |
181 | Q.init(NewUserTag: UserTag, NewLR: LR, NewLiveUnion: Matrix[RegUnit]); |
182 | return Q; |
183 | } |
184 | |
185 | LiveRegMatrix::InterferenceKind |
186 | LiveRegMatrix::checkInterference(const LiveInterval &VirtReg, |
187 | MCRegister PhysReg) { |
188 | if (VirtReg.empty()) |
189 | return IK_Free; |
190 | |
191 | // Regmask interference is the fastest check. |
192 | if (checkRegMaskInterference(VirtReg, PhysReg)) |
193 | return IK_RegMask; |
194 | |
195 | // Check for fixed interference. |
196 | if (checkRegUnitInterference(VirtReg, PhysReg)) |
197 | return IK_RegUnit; |
198 | |
199 | // Check the matrix for virtual register interference. |
200 | bool Interference = foreachUnit(TRI, VRegInterval: VirtReg, PhysReg, |
201 | Func: [&](MCRegister Unit, const LiveRange &LR) { |
202 | return query(LR, RegUnit: Unit).checkInterference(); |
203 | }); |
204 | if (Interference) |
205 | return IK_VirtReg; |
206 | |
207 | return IK_Free; |
208 | } |
209 | |
210 | bool LiveRegMatrix::checkInterference(SlotIndex Start, SlotIndex End, |
211 | MCRegister PhysReg) { |
212 | // Construct artificial live range containing only one segment [Start, End). |
213 | VNInfo valno(0, Start); |
214 | LiveRange::Segment Seg(Start, End, &valno); |
215 | LiveRange LR; |
216 | LR.addSegment(S: Seg); |
217 | |
218 | // Check for interference with that segment |
219 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) { |
220 | // LR is stack-allocated. LiveRegMatrix caches queries by a key that |
221 | // includes the address of the live range. If (for the same reg unit) this |
222 | // checkInterference overload is called twice, without any other query() |
223 | // calls in between (on heap-allocated LiveRanges) - which would invalidate |
224 | // the cached query - the LR address seen the second time may well be the |
225 | // same as that seen the first time, while the Start/End/valno may not - yet |
226 | // the same cached result would be fetched. To avoid that, we don't cache |
227 | // this query. |
228 | // |
229 | // FIXME: the usability of the Query API needs to be improved to avoid |
230 | // subtle bugs due to query identity. Avoiding caching, for example, would |
231 | // greatly simplify things. |
232 | LiveIntervalUnion::Query Q; |
233 | Q.reset(NewUserTag: UserTag, NewLR: LR, NewLiveUnion: Matrix[Unit]); |
234 | if (Q.checkInterference()) |
235 | return true; |
236 | } |
237 | return false; |
238 | } |
239 | |
240 | Register LiveRegMatrix::getOneVReg(unsigned PhysReg) const { |
241 | const LiveInterval *VRegInterval = nullptr; |
242 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) { |
243 | if ((VRegInterval = Matrix[Unit].getOneVReg())) |
244 | return VRegInterval->reg(); |
245 | } |
246 | |
247 | return MCRegister::NoRegister; |
248 | } |
249 | |