1 | //===-- FunctionLoweringInfo.cpp ------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This implements routines for translating functions from LLVM IR into |
10 | // Machine IR. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/CodeGen/FunctionLoweringInfo.h" |
15 | #include "llvm/ADT/APInt.h" |
16 | #include "llvm/Analysis/UniformityAnalysis.h" |
17 | #include "llvm/CodeGen/Analysis.h" |
18 | #include "llvm/CodeGen/MachineFrameInfo.h" |
19 | #include "llvm/CodeGen/MachineFunction.h" |
20 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
21 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
22 | #include "llvm/CodeGen/TargetFrameLowering.h" |
23 | #include "llvm/CodeGen/TargetInstrInfo.h" |
24 | #include "llvm/CodeGen/TargetLowering.h" |
25 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
26 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
27 | #include "llvm/CodeGen/WasmEHFuncInfo.h" |
28 | #include "llvm/CodeGen/WinEHFuncInfo.h" |
29 | #include "llvm/IR/DataLayout.h" |
30 | #include "llvm/IR/DerivedTypes.h" |
31 | #include "llvm/IR/Function.h" |
32 | #include "llvm/IR/Instructions.h" |
33 | #include "llvm/IR/IntrinsicInst.h" |
34 | #include "llvm/IR/Module.h" |
35 | #include "llvm/Support/Debug.h" |
36 | #include "llvm/Support/ErrorHandling.h" |
37 | #include "llvm/Support/raw_ostream.h" |
38 | #include <algorithm> |
39 | using namespace llvm; |
40 | |
41 | #define DEBUG_TYPE "function-lowering-info" |
42 | |
43 | /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by |
44 | /// PHI nodes or outside of the basic block that defines it, or used by a |
45 | /// switch or atomic instruction, which may expand to multiple basic blocks. |
46 | static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { |
47 | if (I->use_empty()) return false; |
48 | if (isa<PHINode>(Val: I)) return true; |
49 | const BasicBlock *BB = I->getParent(); |
50 | for (const User *U : I->users()) |
51 | if (cast<Instruction>(Val: U)->getParent() != BB || isa<PHINode>(Val: U)) |
52 | return true; |
53 | |
54 | return false; |
55 | } |
56 | |
57 | static ISD::NodeType getPreferredExtendForValue(const Instruction *I) { |
58 | // For the users of the source value being used for compare instruction, if |
59 | // the number of signed predicate is greater than unsigned predicate, we |
60 | // prefer to use SIGN_EXTEND. |
61 | // |
62 | // With this optimization, we would be able to reduce some redundant sign or |
63 | // zero extension instruction, and eventually more machine CSE opportunities |
64 | // can be exposed. |
65 | ISD::NodeType ExtendKind = ISD::ANY_EXTEND; |
66 | unsigned NumOfSigned = 0, NumOfUnsigned = 0; |
67 | for (const Use &U : I->uses()) { |
68 | if (const auto *CI = dyn_cast<CmpInst>(Val: U.getUser())) { |
69 | NumOfSigned += CI->isSigned(); |
70 | NumOfUnsigned += CI->isUnsigned(); |
71 | } |
72 | if (const auto *CallI = dyn_cast<CallBase>(Val: U.getUser())) { |
73 | if (!CallI->isArgOperand(U: &U)) |
74 | continue; |
75 | unsigned ArgNo = CallI->getArgOperandNo(U: &U); |
76 | NumOfUnsigned += CallI->paramHasAttr(ArgNo, Kind: Attribute::ZExt); |
77 | NumOfSigned += CallI->paramHasAttr(ArgNo, Kind: Attribute::SExt); |
78 | } |
79 | } |
80 | if (NumOfSigned > NumOfUnsigned) |
81 | ExtendKind = ISD::SIGN_EXTEND; |
82 | |
83 | return ExtendKind; |
84 | } |
85 | |
86 | void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, |
87 | SelectionDAG *DAG) { |
88 | Fn = &fn; |
89 | MF = &mf; |
90 | TLI = MF->getSubtarget().getTargetLowering(); |
91 | RegInfo = &MF->getRegInfo(); |
92 | const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); |
93 | UA = DAG->getUniformityInfo(); |
94 | |
95 | // Check whether the function can return without sret-demotion. |
96 | SmallVector<ISD::OutputArg, 4> Outs; |
97 | CallingConv::ID CC = Fn->getCallingConv(); |
98 | |
99 | GetReturnInfo(CC, ReturnType: Fn->getReturnType(), attr: Fn->getAttributes(), Outs, TLI: *TLI, |
100 | DL: mf.getDataLayout()); |
101 | CanLowerReturn = |
102 | TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext()); |
103 | |
104 | // If this personality uses funclets, we need to do a bit more work. |
105 | DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects; |
106 | EHPersonality Personality = classifyEHPersonality( |
107 | Pers: Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr); |
108 | if (isFuncletEHPersonality(Pers: Personality)) { |
109 | // Calculate state numbers if we haven't already. |
110 | WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); |
111 | if (Personality == EHPersonality::MSVC_CXX) |
112 | calculateWinCXXEHStateNumbers(ParentFn: &fn, FuncInfo&: EHInfo); |
113 | else if (isAsynchronousEHPersonality(Pers: Personality)) |
114 | calculateSEHStateNumbers(ParentFn: &fn, FuncInfo&: EHInfo); |
115 | else if (Personality == EHPersonality::CoreCLR) |
116 | calculateClrEHStateNumbers(Fn: &fn, FuncInfo&: EHInfo); |
117 | |
118 | // Map all BB references in the WinEH data to MBBs. |
119 | for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { |
120 | for (WinEHHandlerType &H : TBME.HandlerArray) { |
121 | if (const AllocaInst *AI = H.CatchObj.Alloca) |
122 | CatchObjects.insert(KV: {AI, {}}).first->second.push_back( |
123 | NewVal: &H.CatchObj.FrameIndex); |
124 | else |
125 | H.CatchObj.FrameIndex = INT_MAX; |
126 | } |
127 | } |
128 | } |
129 | |
130 | // Initialize the mapping of values to registers. This is only set up for |
131 | // instruction values that are used outside of the block that defines |
132 | // them. |
133 | const Align StackAlign = TFI->getStackAlign(); |
134 | for (const BasicBlock &BB : *Fn) { |
135 | for (const Instruction &I : BB) { |
136 | if (const AllocaInst *AI = dyn_cast<AllocaInst>(Val: &I)) { |
137 | Type *Ty = AI->getAllocatedType(); |
138 | Align Alignment = AI->getAlign(); |
139 | |
140 | // Static allocas can be folded into the initial stack frame |
141 | // adjustment. For targets that don't realign the stack, don't |
142 | // do this if there is an extra alignment requirement. |
143 | if (AI->isStaticAlloca() && |
144 | (TFI->isStackRealignable() || (Alignment <= StackAlign))) { |
145 | const ConstantInt *CUI = cast<ConstantInt>(Val: AI->getArraySize()); |
146 | uint64_t TySize = |
147 | MF->getDataLayout().getTypeAllocSize(Ty).getKnownMinValue(); |
148 | |
149 | TySize *= CUI->getZExtValue(); // Get total allocated size. |
150 | if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. |
151 | int FrameIndex = INT_MAX; |
152 | auto Iter = CatchObjects.find(Val: AI); |
153 | if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) { |
154 | FrameIndex = MF->getFrameInfo().CreateFixedObject( |
155 | Size: TySize, SPOffset: 0, /*IsImmutable=*/false, /*isAliased=*/true); |
156 | MF->getFrameInfo().setObjectAlignment(ObjectIdx: FrameIndex, Alignment); |
157 | } else { |
158 | FrameIndex = MF->getFrameInfo().CreateStackObject(Size: TySize, Alignment, |
159 | isSpillSlot: false, Alloca: AI); |
160 | } |
161 | |
162 | // Scalable vectors and structures that contain scalable vectors may |
163 | // need a special StackID to distinguish them from other (fixed size) |
164 | // stack objects. |
165 | if (Ty->isScalableTy()) |
166 | MF->getFrameInfo().setStackID(ObjectIdx: FrameIndex, |
167 | ID: TFI->getStackIDForScalableVectors()); |
168 | |
169 | StaticAllocaMap[AI] = FrameIndex; |
170 | // Update the catch handler information. |
171 | if (Iter != CatchObjects.end()) { |
172 | for (int *CatchObjPtr : Iter->second) |
173 | *CatchObjPtr = FrameIndex; |
174 | } |
175 | } else { |
176 | // FIXME: Overaligned static allocas should be grouped into |
177 | // a single dynamic allocation instead of using a separate |
178 | // stack allocation for each one. |
179 | // Inform the Frame Information that we have variable-sized objects. |
180 | MF->getFrameInfo().CreateVariableSizedObject( |
181 | Alignment: Alignment <= StackAlign ? Align(1) : Alignment, Alloca: AI); |
182 | } |
183 | } else if (auto *Call = dyn_cast<CallBase>(Val: &I)) { |
184 | // Look for inline asm that clobbers the SP register. |
185 | if (Call->isInlineAsm()) { |
186 | Register SP = TLI->getStackPointerRegisterToSaveRestore(); |
187 | const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); |
188 | std::vector<TargetLowering::AsmOperandInfo> Ops = |
189 | TLI->ParseConstraints(DL: Fn->getDataLayout(), TRI, |
190 | Call: *Call); |
191 | for (TargetLowering::AsmOperandInfo &Op : Ops) { |
192 | if (Op.Type == InlineAsm::isClobber) { |
193 | // Clobbers don't have SDValue operands, hence SDValue(). |
194 | TLI->ComputeConstraintToUse(OpInfo&: Op, Op: SDValue(), DAG); |
195 | std::pair<unsigned, const TargetRegisterClass *> PhysReg = |
196 | TLI->getRegForInlineAsmConstraint(TRI, Constraint: Op.ConstraintCode, |
197 | VT: Op.ConstraintVT); |
198 | if (PhysReg.first == SP) |
199 | MF->getFrameInfo().setHasOpaqueSPAdjustment(true); |
200 | } |
201 | } |
202 | } |
203 | // Look for calls to the @llvm.va_start intrinsic. We can omit some |
204 | // prologue boilerplate for variadic functions that don't examine their |
205 | // arguments. |
206 | if (const auto *II = dyn_cast<IntrinsicInst>(Val: &I)) { |
207 | if (II->getIntrinsicID() == Intrinsic::vastart) |
208 | MF->getFrameInfo().setHasVAStart(true); |
209 | } |
210 | |
211 | // If we have a musttail call in a variadic function, we need to ensure |
212 | // we forward implicit register parameters. |
213 | if (const auto *CI = dyn_cast<CallInst>(Val: &I)) { |
214 | if (CI->isMustTailCall() && Fn->isVarArg()) |
215 | MF->getFrameInfo().setHasMustTailInVarArgFunc(true); |
216 | } |
217 | |
218 | // Determine if there is a call to setjmp in the machine function. |
219 | if (Call->hasFnAttr(Kind: Attribute::ReturnsTwice)) |
220 | MF->setExposesReturnsTwice(true); |
221 | } |
222 | |
223 | // Mark values used outside their block as exported, by allocating |
224 | // a virtual register for them. |
225 | if (isUsedOutsideOfDefiningBlock(I: &I)) |
226 | if (!isa<AllocaInst>(Val: I) || !StaticAllocaMap.count(Val: cast<AllocaInst>(Val: &I))) |
227 | InitializeRegForValue(V: &I); |
228 | |
229 | // Decide the preferred extend type for a value. This iterates over all |
230 | // users and therefore isn't cheap, so don't do this at O0. |
231 | if (DAG->getOptLevel() != CodeGenOptLevel::None) |
232 | PreferredExtendType[&I] = getPreferredExtendForValue(I: &I); |
233 | } |
234 | } |
235 | |
236 | // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This |
237 | // also creates the initial PHI MachineInstrs, though none of the input |
238 | // operands are populated. |
239 | for (const BasicBlock &BB : *Fn) { |
240 | // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks |
241 | // are really data, and no instructions can live here. |
242 | if (BB.isEHPad()) { |
243 | const Instruction *PadInst = BB.getFirstNonPHI(); |
244 | // If this is a non-landingpad EH pad, mark this function as using |
245 | // funclets. |
246 | // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid |
247 | // setting this in such cases in order to improve frame layout. |
248 | if (!isa<LandingPadInst>(Val: PadInst)) { |
249 | MF->setHasEHScopes(true); |
250 | MF->setHasEHFunclets(true); |
251 | MF->getFrameInfo().setHasOpaqueSPAdjustment(true); |
252 | } |
253 | if (isa<CatchSwitchInst>(Val: PadInst)) { |
254 | assert(&*BB.begin() == PadInst && |
255 | "WinEHPrepare failed to remove PHIs from imaginary BBs" ); |
256 | continue; |
257 | } |
258 | if (isa<FuncletPadInst>(Val: PadInst) && |
259 | Personality != EHPersonality::Wasm_CXX) |
260 | assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs" ); |
261 | } |
262 | |
263 | MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB: &BB); |
264 | MBBMap[&BB] = MBB; |
265 | MF->push_back(MBB); |
266 | |
267 | // Transfer the address-taken flag. This is necessary because there could |
268 | // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only |
269 | // the first one should be marked. |
270 | if (BB.hasAddressTaken()) |
271 | MBB->setAddressTakenIRBlock(const_cast<BasicBlock *>(&BB)); |
272 | |
273 | // Mark landing pad blocks. |
274 | if (BB.isEHPad()) |
275 | MBB->setIsEHPad(); |
276 | |
277 | // Create Machine PHI nodes for LLVM PHI nodes, lowering them as |
278 | // appropriate. |
279 | for (const PHINode &PN : BB.phis()) { |
280 | if (PN.use_empty()) |
281 | continue; |
282 | |
283 | // Skip empty types |
284 | if (PN.getType()->isEmptyTy()) |
285 | continue; |
286 | |
287 | DebugLoc DL = PN.getDebugLoc(); |
288 | unsigned PHIReg = ValueMap[&PN]; |
289 | assert(PHIReg && "PHI node does not have an assigned virtual register!" ); |
290 | |
291 | SmallVector<EVT, 4> ValueVTs; |
292 | ComputeValueVTs(TLI: *TLI, DL: MF->getDataLayout(), Ty: PN.getType(), ValueVTs); |
293 | for (EVT VT : ValueVTs) { |
294 | unsigned NumRegisters = TLI->getNumRegisters(Context&: Fn->getContext(), VT); |
295 | const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
296 | for (unsigned i = 0; i != NumRegisters; ++i) |
297 | BuildMI(BB: MBB, MIMD: DL, MCID: TII->get(Opcode: TargetOpcode::PHI), DestReg: PHIReg + i); |
298 | PHIReg += NumRegisters; |
299 | } |
300 | } |
301 | } |
302 | |
303 | if (isFuncletEHPersonality(Pers: Personality)) { |
304 | WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo(); |
305 | |
306 | // Map all BB references in the WinEH data to MBBs. |
307 | for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) { |
308 | for (WinEHHandlerType &H : TBME.HandlerArray) { |
309 | if (H.Handler) |
310 | H.Handler = MBBMap[cast<const BasicBlock *>(Val&: H.Handler)]; |
311 | } |
312 | } |
313 | for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap) |
314 | if (UME.Cleanup) |
315 | UME.Cleanup = MBBMap[cast<const BasicBlock *>(Val&: UME.Cleanup)]; |
316 | for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) { |
317 | const auto *BB = cast<const BasicBlock *>(Val&: UME.Handler); |
318 | UME.Handler = MBBMap[BB]; |
319 | } |
320 | for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) { |
321 | const auto *BB = cast<const BasicBlock *>(Val&: CME.Handler); |
322 | CME.Handler = MBBMap[BB]; |
323 | } |
324 | } else if (Personality == EHPersonality::Wasm_CXX) { |
325 | WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo(); |
326 | calculateWasmEHInfo(F: &fn, EHInfo); |
327 | |
328 | // Map all BB references in the Wasm EH data to MBBs. |
329 | DenseMap<BBOrMBB, BBOrMBB> SrcToUnwindDest; |
330 | for (auto &KV : EHInfo.SrcToUnwindDest) { |
331 | const auto *Src = cast<const BasicBlock *>(Val&: KV.first); |
332 | const auto *Dest = cast<const BasicBlock *>(Val&: KV.second); |
333 | SrcToUnwindDest[MBBMap[Src]] = MBBMap[Dest]; |
334 | } |
335 | EHInfo.SrcToUnwindDest = std::move(SrcToUnwindDest); |
336 | DenseMap<BBOrMBB, SmallPtrSet<BBOrMBB, 4>> UnwindDestToSrcs; |
337 | for (auto &KV : EHInfo.UnwindDestToSrcs) { |
338 | const auto *Dest = cast<const BasicBlock *>(Val&: KV.first); |
339 | UnwindDestToSrcs[MBBMap[Dest]] = SmallPtrSet<BBOrMBB, 4>(); |
340 | for (const auto P : KV.second) |
341 | UnwindDestToSrcs[MBBMap[Dest]].insert( |
342 | Ptr: MBBMap[cast<const BasicBlock *>(Val: P)]); |
343 | } |
344 | EHInfo.UnwindDestToSrcs = std::move(UnwindDestToSrcs); |
345 | } |
346 | } |
347 | |
348 | /// clear - Clear out all the function-specific state. This returns this |
349 | /// FunctionLoweringInfo to an empty state, ready to be used for a |
350 | /// different function. |
351 | void FunctionLoweringInfo::clear() { |
352 | MBBMap.clear(); |
353 | ValueMap.clear(); |
354 | VirtReg2Value.clear(); |
355 | StaticAllocaMap.clear(); |
356 | LiveOutRegInfo.clear(); |
357 | VisitedBBs.clear(); |
358 | ArgDbgValues.clear(); |
359 | DescribedArgs.clear(); |
360 | ByValArgFrameIndexMap.clear(); |
361 | RegFixups.clear(); |
362 | RegsWithFixups.clear(); |
363 | StatepointStackSlots.clear(); |
364 | StatepointRelocationMaps.clear(); |
365 | PreferredExtendType.clear(); |
366 | PreprocessedDbgDeclares.clear(); |
367 | PreprocessedDVRDeclares.clear(); |
368 | } |
369 | |
370 | /// CreateReg - Allocate a single virtual register for the given type. |
371 | Register FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) { |
372 | return RegInfo->createVirtualRegister(RegClass: TLI->getRegClassFor(VT, isDivergent)); |
373 | } |
374 | |
375 | /// CreateRegs - Allocate the appropriate number of virtual registers of |
376 | /// the correctly promoted or expanded types. Assign these registers |
377 | /// consecutive vreg numbers and return the first assigned number. |
378 | /// |
379 | /// In the case that the given value has struct or array type, this function |
380 | /// will assign registers for each member or element. |
381 | /// |
382 | Register FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) { |
383 | SmallVector<EVT, 4> ValueVTs; |
384 | ComputeValueVTs(TLI: *TLI, DL: MF->getDataLayout(), Ty, ValueVTs); |
385 | |
386 | Register FirstReg; |
387 | for (EVT ValueVT : ValueVTs) { |
388 | MVT RegisterVT = TLI->getRegisterType(Context&: Ty->getContext(), VT: ValueVT); |
389 | |
390 | unsigned NumRegs = TLI->getNumRegisters(Context&: Ty->getContext(), VT: ValueVT); |
391 | for (unsigned i = 0; i != NumRegs; ++i) { |
392 | Register R = CreateReg(VT: RegisterVT, isDivergent); |
393 | if (!FirstReg) FirstReg = R; |
394 | } |
395 | } |
396 | return FirstReg; |
397 | } |
398 | |
399 | Register FunctionLoweringInfo::CreateRegs(const Value *V) { |
400 | return CreateRegs(Ty: V->getType(), isDivergent: UA && UA->isDivergent(V) && |
401 | !TLI->requiresUniformRegister(MF&: *MF, V)); |
402 | } |
403 | |
404 | Register FunctionLoweringInfo::InitializeRegForValue(const Value *V) { |
405 | // Tokens live in vregs only when used for convergence control. |
406 | if (V->getType()->isTokenTy() && !isa<ConvergenceControlInst>(Val: V)) |
407 | return 0; |
408 | Register &R = ValueMap[V]; |
409 | assert(R == Register() && "Already initialized this value register!" ); |
410 | assert(VirtReg2Value.empty()); |
411 | return R = CreateRegs(V); |
412 | } |
413 | |
414 | /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the |
415 | /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If |
416 | /// the register's LiveOutInfo is for a smaller bit width, it is extended to |
417 | /// the larger bit width by zero extension. The bit width must be no smaller |
418 | /// than the LiveOutInfo's existing bit width. |
419 | const FunctionLoweringInfo::LiveOutInfo * |
420 | FunctionLoweringInfo::GetLiveOutRegInfo(Register Reg, unsigned BitWidth) { |
421 | if (!LiveOutRegInfo.inBounds(n: Reg)) |
422 | return nullptr; |
423 | |
424 | LiveOutInfo *LOI = &LiveOutRegInfo[Reg]; |
425 | if (!LOI->IsValid) |
426 | return nullptr; |
427 | |
428 | if (BitWidth > LOI->Known.getBitWidth()) { |
429 | LOI->NumSignBits = 1; |
430 | LOI->Known = LOI->Known.anyext(BitWidth); |
431 | } |
432 | |
433 | return LOI; |
434 | } |
435 | |
436 | /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination |
437 | /// register based on the LiveOutInfo of its operands. |
438 | void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) { |
439 | Type *Ty = PN->getType(); |
440 | if (!Ty->isIntegerTy() || Ty->isVectorTy()) |
441 | return; |
442 | |
443 | SmallVector<EVT, 1> ValueVTs; |
444 | ComputeValueVTs(TLI: *TLI, DL: MF->getDataLayout(), Ty, ValueVTs); |
445 | assert(ValueVTs.size() == 1 && |
446 | "PHIs with non-vector integer types should have a single VT." ); |
447 | EVT IntVT = ValueVTs[0]; |
448 | |
449 | if (TLI->getNumRegisters(Context&: PN->getContext(), VT: IntVT) != 1) |
450 | return; |
451 | IntVT = TLI->getRegisterType(Context&: PN->getContext(), VT: IntVT); |
452 | unsigned BitWidth = IntVT.getSizeInBits(); |
453 | |
454 | auto It = ValueMap.find(Val: PN); |
455 | if (It == ValueMap.end()) |
456 | return; |
457 | |
458 | Register DestReg = It->second; |
459 | if (DestReg == 0) |
460 | return; |
461 | assert(DestReg.isVirtual() && "Expected a virtual reg" ); |
462 | LiveOutRegInfo.grow(n: DestReg); |
463 | LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg]; |
464 | |
465 | Value *V = PN->getIncomingValue(i: 0); |
466 | if (isa<UndefValue>(Val: V) || isa<ConstantExpr>(Val: V)) { |
467 | DestLOI.NumSignBits = 1; |
468 | DestLOI.Known = KnownBits(BitWidth); |
469 | return; |
470 | } |
471 | |
472 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: V)) { |
473 | APInt Val; |
474 | if (TLI->signExtendConstant(C: CI)) |
475 | Val = CI->getValue().sext(width: BitWidth); |
476 | else |
477 | Val = CI->getValue().zext(width: BitWidth); |
478 | DestLOI.NumSignBits = Val.getNumSignBits(); |
479 | DestLOI.Known = KnownBits::makeConstant(C: Val); |
480 | } else { |
481 | assert(ValueMap.count(V) && "V should have been placed in ValueMap when its" |
482 | "CopyToReg node was created." ); |
483 | Register SrcReg = ValueMap[V]; |
484 | if (!SrcReg.isVirtual()) { |
485 | DestLOI.IsValid = false; |
486 | return; |
487 | } |
488 | const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(Reg: SrcReg, BitWidth); |
489 | if (!SrcLOI) { |
490 | DestLOI.IsValid = false; |
491 | return; |
492 | } |
493 | DestLOI = *SrcLOI; |
494 | } |
495 | |
496 | assert(DestLOI.Known.Zero.getBitWidth() == BitWidth && |
497 | DestLOI.Known.One.getBitWidth() == BitWidth && |
498 | "Masks should have the same bit width as the type." ); |
499 | |
500 | for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { |
501 | Value *V = PN->getIncomingValue(i); |
502 | if (isa<UndefValue>(Val: V) || isa<ConstantExpr>(Val: V)) { |
503 | DestLOI.NumSignBits = 1; |
504 | DestLOI.Known = KnownBits(BitWidth); |
505 | return; |
506 | } |
507 | |
508 | if (ConstantInt *CI = dyn_cast<ConstantInt>(Val: V)) { |
509 | APInt Val; |
510 | if (TLI->signExtendConstant(C: CI)) |
511 | Val = CI->getValue().sext(width: BitWidth); |
512 | else |
513 | Val = CI->getValue().zext(width: BitWidth); |
514 | DestLOI.NumSignBits = std::min(a: DestLOI.NumSignBits, b: Val.getNumSignBits()); |
515 | DestLOI.Known.Zero &= ~Val; |
516 | DestLOI.Known.One &= Val; |
517 | continue; |
518 | } |
519 | |
520 | assert(ValueMap.count(V) && "V should have been placed in ValueMap when " |
521 | "its CopyToReg node was created." ); |
522 | Register SrcReg = ValueMap[V]; |
523 | if (!SrcReg.isVirtual()) { |
524 | DestLOI.IsValid = false; |
525 | return; |
526 | } |
527 | const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(Reg: SrcReg, BitWidth); |
528 | if (!SrcLOI) { |
529 | DestLOI.IsValid = false; |
530 | return; |
531 | } |
532 | DestLOI.NumSignBits = std::min(a: DestLOI.NumSignBits, b: SrcLOI->NumSignBits); |
533 | DestLOI.Known = DestLOI.Known.intersectWith(RHS: SrcLOI->Known); |
534 | } |
535 | } |
536 | |
537 | /// setArgumentFrameIndex - Record frame index for the byval |
538 | /// argument. This overrides previous frame index entry for this argument, |
539 | /// if any. |
540 | void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A, |
541 | int FI) { |
542 | ByValArgFrameIndexMap[A] = FI; |
543 | } |
544 | |
545 | /// getArgumentFrameIndex - Get frame index for the byval argument. |
546 | /// If the argument does not have any assigned frame index then 0 is |
547 | /// returned. |
548 | int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) { |
549 | auto I = ByValArgFrameIndexMap.find(Val: A); |
550 | if (I != ByValArgFrameIndexMap.end()) |
551 | return I->second; |
552 | LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n" ); |
553 | return INT_MAX; |
554 | } |
555 | |
556 | Register FunctionLoweringInfo::getCatchPadExceptionPointerVReg( |
557 | const Value *CPI, const TargetRegisterClass *RC) { |
558 | MachineRegisterInfo &MRI = MF->getRegInfo(); |
559 | auto I = CatchPadExceptionPointers.insert(KV: {CPI, 0}); |
560 | Register &VReg = I.first->second; |
561 | if (I.second) |
562 | VReg = MRI.createVirtualRegister(RegClass: RC); |
563 | assert(VReg && "null vreg in exception pointer table!" ); |
564 | return VReg; |
565 | } |
566 | |
567 | const Value * |
568 | FunctionLoweringInfo::getValueFromVirtualReg(Register Vreg) { |
569 | if (VirtReg2Value.empty()) { |
570 | SmallVector<EVT, 4> ValueVTs; |
571 | for (auto &P : ValueMap) { |
572 | ValueVTs.clear(); |
573 | ComputeValueVTs(TLI: *TLI, DL: Fn->getDataLayout(), |
574 | Ty: P.first->getType(), ValueVTs); |
575 | unsigned Reg = P.second; |
576 | for (EVT VT : ValueVTs) { |
577 | unsigned NumRegisters = TLI->getNumRegisters(Context&: Fn->getContext(), VT); |
578 | for (unsigned i = 0, e = NumRegisters; i != e; ++i) |
579 | VirtReg2Value[Reg++] = P.first; |
580 | } |
581 | } |
582 | } |
583 | return VirtReg2Value.lookup(Val: Vreg); |
584 | } |
585 | |