1 | //===-- LegalizeTypes.h - DAG Type Legalizer class definition ---*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the DAGTypeLegalizer class. This is a private interface |
10 | // shared between the code that implements the SelectionDAG::LegalizeTypes |
11 | // method. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H |
16 | #define LLVM_LIB_CODEGEN_SELECTIONDAG_LEGALIZETYPES_H |
17 | |
18 | #include "MatchContext.h" |
19 | #include "llvm/ADT/DenseMap.h" |
20 | #include "llvm/CodeGen/SelectionDAG.h" |
21 | #include "llvm/CodeGen/TargetLowering.h" |
22 | #include "llvm/Support/Compiler.h" |
23 | |
24 | namespace llvm { |
25 | |
26 | //===----------------------------------------------------------------------===// |
27 | /// This takes an arbitrary SelectionDAG as input and hacks on it until only |
28 | /// value types the target machine can handle are left. This involves promoting |
29 | /// small sizes to large sizes or splitting up large values into small values. |
30 | /// |
31 | class LLVM_LIBRARY_VISIBILITY DAGTypeLegalizer { |
32 | const TargetLowering &TLI; |
33 | SelectionDAG &DAG; |
34 | public: |
35 | /// This pass uses the NodeId on the SDNodes to hold information about the |
36 | /// state of the node. The enum has all the values. |
37 | enum NodeIdFlags { |
38 | /// All operands have been processed, so this node is ready to be handled. |
39 | ReadyToProcess = 0, |
40 | |
41 | /// This is a new node, not before seen, that was created in the process of |
42 | /// legalizing some other node. |
43 | NewNode = -1, |
44 | |
45 | /// This node's ID needs to be set to the number of its unprocessed |
46 | /// operands. |
47 | Unanalyzed = -2, |
48 | |
49 | /// This is a node that has already been processed. |
50 | Processed = -3 |
51 | |
52 | // 1+ - This is a node which has this many unprocessed operands. |
53 | }; |
54 | private: |
55 | |
56 | /// This is a bitvector that contains two bits for each simple value type, |
57 | /// where the two bits correspond to the LegalizeAction enum from |
58 | /// TargetLowering. This can be queried with "getTypeAction(VT)". |
59 | TargetLowering::ValueTypeActionImpl ValueTypeActions; |
60 | |
61 | /// Return how we should legalize values of this type. |
62 | TargetLowering::LegalizeTypeAction getTypeAction(EVT VT) const { |
63 | return TLI.getTypeAction(Context&: *DAG.getContext(), VT); |
64 | } |
65 | |
66 | /// Return true if this type is legal on this target. |
67 | bool isTypeLegal(EVT VT) const { |
68 | return TLI.getTypeAction(Context&: *DAG.getContext(), VT) == TargetLowering::TypeLegal; |
69 | } |
70 | |
71 | /// Return true if this is a simple legal type. |
72 | bool isSimpleLegalType(EVT VT) const { |
73 | return VT.isSimple() && TLI.isTypeLegal(VT); |
74 | } |
75 | |
76 | EVT getSetCCResultType(EVT VT) const { |
77 | return TLI.getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
78 | } |
79 | |
80 | /// Pretend all of this node's results are legal. |
81 | bool IgnoreNodeResults(SDNode *N) const { |
82 | return N->getOpcode() == ISD::TargetConstant || |
83 | N->getOpcode() == ISD::Register; |
84 | } |
85 | |
86 | // Bijection from SDValue to unique id. As each created node gets a |
87 | // new id we do not need to worry about reuse expunging. Should we |
88 | // run out of ids, we can do a one time expensive compactifcation. |
89 | typedef unsigned TableId; |
90 | |
91 | TableId NextValueId = 1; |
92 | |
93 | SmallDenseMap<SDValue, TableId, 8> ValueToIdMap; |
94 | SmallDenseMap<TableId, SDValue, 8> IdToValueMap; |
95 | |
96 | /// For integer nodes that are below legal width, this map indicates what |
97 | /// promoted value to use. |
98 | SmallDenseMap<TableId, TableId, 8> PromotedIntegers; |
99 | |
100 | /// For integer nodes that need to be expanded this map indicates which |
101 | /// operands are the expanded version of the input. |
102 | SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedIntegers; |
103 | |
104 | /// For floating-point nodes converted to integers of the same size, this map |
105 | /// indicates the converted value to use. |
106 | SmallDenseMap<TableId, TableId, 8> SoftenedFloats; |
107 | |
108 | /// For floating-point nodes that have a smaller precision than the smallest |
109 | /// supported precision, this map indicates what promoted value to use. |
110 | SmallDenseMap<TableId, TableId, 8> PromotedFloats; |
111 | |
112 | /// For floating-point nodes that have a smaller precision than the smallest |
113 | /// supported precision, this map indicates the converted value to use. |
114 | SmallDenseMap<TableId, TableId, 8> SoftPromotedHalfs; |
115 | |
116 | /// For float nodes that need to be expanded this map indicates which operands |
117 | /// are the expanded version of the input. |
118 | SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> ExpandedFloats; |
119 | |
120 | /// For nodes that are <1 x ty>, this map indicates the scalar value of type |
121 | /// 'ty' to use. |
122 | SmallDenseMap<TableId, TableId, 8> ScalarizedVectors; |
123 | |
124 | /// For nodes that need to be split this map indicates which operands are the |
125 | /// expanded version of the input. |
126 | SmallDenseMap<TableId, std::pair<TableId, TableId>, 8> SplitVectors; |
127 | |
128 | /// For vector nodes that need to be widened, indicates the widened value to |
129 | /// use. |
130 | SmallDenseMap<TableId, TableId, 8> WidenedVectors; |
131 | |
132 | /// For values that have been replaced with another, indicates the replacement |
133 | /// value to use. |
134 | SmallDenseMap<TableId, TableId, 8> ReplacedValues; |
135 | |
136 | /// This defines a worklist of nodes to process. In order to be pushed onto |
137 | /// this worklist, all operands of a node must have already been processed. |
138 | SmallVector<SDNode*, 128> Worklist; |
139 | |
140 | TableId getTableId(SDValue V) { |
141 | assert(V.getNode() && "Getting TableId on SDValue()" ); |
142 | |
143 | auto I = ValueToIdMap.find(Val: V); |
144 | if (I != ValueToIdMap.end()) { |
145 | // replace if there's been a shift. |
146 | RemapId(Id&: I->second); |
147 | assert(I->second && "All Ids should be nonzero" ); |
148 | return I->second; |
149 | } |
150 | // Add if it's not there. |
151 | ValueToIdMap.insert(KV: std::make_pair(x&: V, y&: NextValueId)); |
152 | IdToValueMap.insert(KV: std::make_pair(x&: NextValueId, y&: V)); |
153 | ++NextValueId; |
154 | assert(NextValueId != 0 && |
155 | "Ran out of Ids. Increase id type size or add compactification" ); |
156 | return NextValueId - 1; |
157 | } |
158 | |
159 | const SDValue &getSDValue(TableId &Id) { |
160 | RemapId(Id); |
161 | assert(Id && "TableId should be non-zero" ); |
162 | auto I = IdToValueMap.find(Val: Id); |
163 | assert(I != IdToValueMap.end() && "cannot find Id in map" ); |
164 | return I->second; |
165 | } |
166 | |
167 | public: |
168 | explicit DAGTypeLegalizer(SelectionDAG &dag) |
169 | : TLI(dag.getTargetLoweringInfo()), DAG(dag), |
170 | ValueTypeActions(TLI.getValueTypeActions()) { |
171 | } |
172 | |
173 | /// This is the main entry point for the type legalizer. This does a |
174 | /// top-down traversal of the dag, legalizing types as it goes. Returns |
175 | /// "true" if it made any changes. |
176 | bool run(); |
177 | |
178 | void NoteDeletion(SDNode *Old, SDNode *New) { |
179 | assert(Old != New && "node replaced with self" ); |
180 | for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { |
181 | TableId NewId = getTableId(V: SDValue(New, i)); |
182 | TableId OldId = getTableId(V: SDValue(Old, i)); |
183 | |
184 | if (OldId != NewId) { |
185 | ReplacedValues[OldId] = NewId; |
186 | |
187 | // Delete Node from tables. We cannot do this when OldId == NewId, |
188 | // because NewId can still have table references to it in |
189 | // ReplacedValues. |
190 | IdToValueMap.erase(Val: OldId); |
191 | PromotedIntegers.erase(Val: OldId); |
192 | ExpandedIntegers.erase(Val: OldId); |
193 | SoftenedFloats.erase(Val: OldId); |
194 | PromotedFloats.erase(Val: OldId); |
195 | SoftPromotedHalfs.erase(Val: OldId); |
196 | ExpandedFloats.erase(Val: OldId); |
197 | ScalarizedVectors.erase(Val: OldId); |
198 | SplitVectors.erase(Val: OldId); |
199 | WidenedVectors.erase(Val: OldId); |
200 | } |
201 | |
202 | ValueToIdMap.erase(Val: SDValue(Old, i)); |
203 | } |
204 | } |
205 | |
206 | SelectionDAG &getDAG() const { return DAG; } |
207 | |
208 | private: |
209 | SDNode *AnalyzeNewNode(SDNode *N); |
210 | void AnalyzeNewValue(SDValue &Val); |
211 | void PerformExpensiveChecks(); |
212 | void RemapId(TableId &Id); |
213 | void RemapValue(SDValue &V); |
214 | |
215 | // Common routines. |
216 | SDValue BitConvertToInteger(SDValue Op); |
217 | SDValue BitConvertVectorToIntegerVector(SDValue Op); |
218 | SDValue CreateStackStoreLoad(SDValue Op, EVT DestVT); |
219 | bool CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult); |
220 | bool CustomWidenLowerNode(SDNode *N, EVT VT); |
221 | |
222 | /// Replace each result of the given MERGE_VALUES node with the corresponding |
223 | /// input operand, except for the result 'ResNo', for which the corresponding |
224 | /// input operand is returned. |
225 | SDValue DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo); |
226 | |
227 | SDValue JoinIntegers(SDValue Lo, SDValue Hi); |
228 | |
229 | std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node); |
230 | |
231 | SDValue PromoteTargetBoolean(SDValue Bool, EVT ValVT); |
232 | |
233 | void ReplaceValueWith(SDValue From, SDValue To); |
234 | void SplitInteger(SDValue Op, SDValue &Lo, SDValue &Hi); |
235 | void SplitInteger(SDValue Op, EVT LoVT, EVT HiVT, |
236 | SDValue &Lo, SDValue &Hi); |
237 | |
238 | //===--------------------------------------------------------------------===// |
239 | // Integer Promotion Support: LegalizeIntegerTypes.cpp |
240 | //===--------------------------------------------------------------------===// |
241 | |
242 | /// Given a processed operand Op which was promoted to a larger integer type, |
243 | /// this returns the promoted value. The low bits of the promoted value |
244 | /// corresponding to the original type are exactly equal to Op. |
245 | /// The extra bits contain rubbish, so the promoted value may need to be zero- |
246 | /// or sign-extended from the original type before it is usable (the helpers |
247 | /// SExtPromotedInteger and ZExtPromotedInteger can do this for you). |
248 | /// For example, if Op is an i16 and was promoted to an i32, then this method |
249 | /// returns an i32, the lower 16 bits of which coincide with Op, and the upper |
250 | /// 16 bits of which contain rubbish. |
251 | SDValue GetPromotedInteger(SDValue Op) { |
252 | TableId &PromotedId = PromotedIntegers[getTableId(V: Op)]; |
253 | SDValue PromotedOp = getSDValue(Id&: PromotedId); |
254 | assert(PromotedOp.getNode() && "Operand wasn't promoted?" ); |
255 | return PromotedOp; |
256 | } |
257 | void SetPromotedInteger(SDValue Op, SDValue Result); |
258 | |
259 | /// Get a promoted operand and sign extend it to the final size. |
260 | SDValue SExtPromotedInteger(SDValue Op) { |
261 | EVT OldVT = Op.getValueType(); |
262 | SDLoc dl(Op); |
263 | Op = GetPromotedInteger(Op); |
264 | return DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL: dl, VT: Op.getValueType(), N1: Op, |
265 | N2: DAG.getValueType(OldVT)); |
266 | } |
267 | |
268 | /// Get a promoted operand and zero extend it to the final size. |
269 | SDValue ZExtPromotedInteger(SDValue Op) { |
270 | EVT OldVT = Op.getValueType(); |
271 | SDLoc dl(Op); |
272 | Op = GetPromotedInteger(Op); |
273 | return DAG.getZeroExtendInReg(Op, DL: dl, VT: OldVT); |
274 | } |
275 | |
276 | /// Get a promoted operand and zero extend it to the final size. |
277 | SDValue VPSExtPromotedInteger(SDValue Op, SDValue Mask, SDValue EVL) { |
278 | EVT OldVT = Op.getValueType(); |
279 | SDLoc dl(Op); |
280 | Op = GetPromotedInteger(Op); |
281 | // FIXME: Add VP_SIGN_EXTEND_INREG. |
282 | EVT VT = Op.getValueType(); |
283 | unsigned BitsDiff = VT.getScalarSizeInBits() - OldVT.getScalarSizeInBits(); |
284 | SDValue ShiftCst = DAG.getShiftAmountConstant(Val: BitsDiff, VT, DL: dl); |
285 | SDValue Shl = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Op, N2: ShiftCst, N3: Mask, N4: EVL); |
286 | return DAG.getNode(Opcode: ISD::VP_SRA, DL: dl, VT, N1: Shl, N2: ShiftCst, N3: Mask, N4: EVL); |
287 | } |
288 | |
289 | /// Get a promoted operand and zero extend it to the final size. |
290 | SDValue VPZExtPromotedInteger(SDValue Op, SDValue Mask, SDValue EVL) { |
291 | EVT OldVT = Op.getValueType(); |
292 | SDLoc dl(Op); |
293 | Op = GetPromotedInteger(Op); |
294 | return DAG.getVPZeroExtendInReg(Op, Mask, EVL, DL: dl, VT: OldVT); |
295 | } |
296 | |
297 | // Promote the given operand V (vector or scalar) according to N's specific |
298 | // reduction kind. N must be an integer VECREDUCE_* or VP_REDUCE_*. Returns |
299 | // the nominal extension opcode (ISD::(ANY|ZERO|SIGN)_EXTEND) and the |
300 | // promoted value. |
301 | SDValue PromoteIntOpVectorReduction(SDNode *N, SDValue V); |
302 | |
303 | // Integer Result Promotion. |
304 | void PromoteIntegerResult(SDNode *N, unsigned ResNo); |
305 | SDValue PromoteIntRes_MERGE_VALUES(SDNode *N, unsigned ResNo); |
306 | SDValue PromoteIntRes_AssertSext(SDNode *N); |
307 | SDValue PromoteIntRes_AssertZext(SDNode *N); |
308 | SDValue PromoteIntRes_Atomic0(AtomicSDNode *N); |
309 | SDValue PromoteIntRes_Atomic1(AtomicSDNode *N); |
310 | SDValue PromoteIntRes_AtomicCmpSwap(AtomicSDNode *N, unsigned ResNo); |
311 | SDValue (SDNode *N); |
312 | SDValue PromoteIntRes_INSERT_SUBVECTOR(SDNode *N); |
313 | SDValue PromoteIntRes_VECTOR_REVERSE(SDNode *N); |
314 | SDValue PromoteIntRes_VECTOR_SHUFFLE(SDNode *N); |
315 | SDValue PromoteIntRes_VECTOR_SPLICE(SDNode *N); |
316 | SDValue PromoteIntRes_VECTOR_INTERLEAVE_DEINTERLEAVE(SDNode *N); |
317 | SDValue PromoteIntRes_BUILD_VECTOR(SDNode *N); |
318 | SDValue PromoteIntRes_ScalarOp(SDNode *N); |
319 | SDValue PromoteIntRes_STEP_VECTOR(SDNode *N); |
320 | SDValue PromoteIntRes_EXTEND_VECTOR_INREG(SDNode *N); |
321 | SDValue PromoteIntRes_INSERT_VECTOR_ELT(SDNode *N); |
322 | SDValue PromoteIntRes_CONCAT_VECTORS(SDNode *N); |
323 | SDValue PromoteIntRes_BITCAST(SDNode *N); |
324 | SDValue PromoteIntRes_BSWAP(SDNode *N); |
325 | SDValue PromoteIntRes_BITREVERSE(SDNode *N); |
326 | SDValue PromoteIntRes_BUILD_PAIR(SDNode *N); |
327 | SDValue PromoteIntRes_Constant(SDNode *N); |
328 | SDValue PromoteIntRes_CTLZ(SDNode *N); |
329 | SDValue PromoteIntRes_CTPOP_PARITY(SDNode *N); |
330 | SDValue PromoteIntRes_CTTZ(SDNode *N); |
331 | SDValue PromoteIntRes_VP_CttzElements(SDNode *N); |
332 | SDValue (SDNode *N); |
333 | SDValue PromoteIntRes_FP_TO_XINT(SDNode *N); |
334 | SDValue PromoteIntRes_FP_TO_XINT_SAT(SDNode *N); |
335 | SDValue PromoteIntRes_FP_TO_FP16_BF16(SDNode *N); |
336 | SDValue PromoteIntRes_STRICT_FP_TO_FP16_BF16(SDNode *N); |
337 | SDValue PromoteIntRes_XRINT(SDNode *N); |
338 | SDValue PromoteIntRes_FREEZE(SDNode *N); |
339 | SDValue PromoteIntRes_INT_EXTEND(SDNode *N); |
340 | SDValue PromoteIntRes_LOAD(LoadSDNode *N); |
341 | SDValue PromoteIntRes_MLOAD(MaskedLoadSDNode *N); |
342 | SDValue PromoteIntRes_MGATHER(MaskedGatherSDNode *N); |
343 | SDValue PromoteIntRes_VECTOR_COMPRESS(SDNode *N); |
344 | SDValue PromoteIntRes_Overflow(SDNode *N); |
345 | SDValue PromoteIntRes_FFREXP(SDNode *N); |
346 | SDValue PromoteIntRes_SADDSUBO(SDNode *N, unsigned ResNo); |
347 | SDValue PromoteIntRes_CMP(SDNode *N); |
348 | SDValue PromoteIntRes_Select(SDNode *N); |
349 | SDValue PromoteIntRes_SELECT_CC(SDNode *N); |
350 | SDValue PromoteIntRes_SETCC(SDNode *N); |
351 | SDValue PromoteIntRes_SHL(SDNode *N); |
352 | SDValue PromoteIntRes_SimpleIntBinOp(SDNode *N); |
353 | SDValue PromoteIntRes_ZExtIntBinOp(SDNode *N); |
354 | SDValue PromoteIntRes_SExtIntBinOp(SDNode *N); |
355 | SDValue PromoteIntRes_UMINUMAX(SDNode *N); |
356 | SDValue PromoteIntRes_SIGN_EXTEND_INREG(SDNode *N); |
357 | SDValue PromoteIntRes_SRA(SDNode *N); |
358 | SDValue PromoteIntRes_SRL(SDNode *N); |
359 | SDValue PromoteIntRes_TRUNCATE(SDNode *N); |
360 | SDValue PromoteIntRes_UADDSUBO(SDNode *N, unsigned ResNo); |
361 | SDValue PromoteIntRes_UADDSUBO_CARRY(SDNode *N, unsigned ResNo); |
362 | SDValue PromoteIntRes_SADDSUBO_CARRY(SDNode *N, unsigned ResNo); |
363 | SDValue PromoteIntRes_UNDEF(SDNode *N); |
364 | SDValue PromoteIntRes_VAARG(SDNode *N); |
365 | SDValue PromoteIntRes_VSCALE(SDNode *N); |
366 | SDValue PromoteIntRes_XMULO(SDNode *N, unsigned ResNo); |
367 | template <class MatchContextClass> |
368 | SDValue PromoteIntRes_ADDSUBSHLSAT(SDNode *N); |
369 | SDValue PromoteIntRes_MULFIX(SDNode *N); |
370 | SDValue PromoteIntRes_DIVFIX(SDNode *N); |
371 | SDValue PromoteIntRes_GET_ROUNDING(SDNode *N); |
372 | SDValue PromoteIntRes_VECREDUCE(SDNode *N); |
373 | SDValue PromoteIntRes_VP_REDUCE(SDNode *N); |
374 | SDValue PromoteIntRes_ABS(SDNode *N); |
375 | SDValue PromoteIntRes_Rotate(SDNode *N); |
376 | SDValue PromoteIntRes_FunnelShift(SDNode *N); |
377 | SDValue PromoteIntRes_VPFunnelShift(SDNode *N); |
378 | SDValue PromoteIntRes_IS_FPCLASS(SDNode *N); |
379 | SDValue PromoteIntRes_PATCHPOINT(SDNode *N); |
380 | |
381 | // Integer Operand Promotion. |
382 | bool PromoteIntegerOperand(SDNode *N, unsigned OpNo); |
383 | SDValue PromoteIntOp_ANY_EXTEND(SDNode *N); |
384 | SDValue PromoteIntOp_ATOMIC_STORE(AtomicSDNode *N); |
385 | SDValue PromoteIntOp_BITCAST(SDNode *N); |
386 | SDValue PromoteIntOp_BUILD_PAIR(SDNode *N); |
387 | SDValue PromoteIntOp_BR_CC(SDNode *N, unsigned OpNo); |
388 | SDValue PromoteIntOp_BRCOND(SDNode *N, unsigned OpNo); |
389 | SDValue PromoteIntOp_BUILD_VECTOR(SDNode *N); |
390 | SDValue PromoteIntOp_INSERT_VECTOR_ELT(SDNode *N, unsigned OpNo); |
391 | SDValue (SDNode *N); |
392 | SDValue (SDNode *N); |
393 | SDValue PromoteIntOp_INSERT_SUBVECTOR(SDNode *N); |
394 | SDValue PromoteIntOp_CONCAT_VECTORS(SDNode *N); |
395 | SDValue PromoteIntOp_ScalarOp(SDNode *N); |
396 | SDValue PromoteIntOp_SELECT(SDNode *N, unsigned OpNo); |
397 | SDValue PromoteIntOp_SELECT_CC(SDNode *N, unsigned OpNo); |
398 | SDValue PromoteIntOp_SETCC(SDNode *N, unsigned OpNo); |
399 | SDValue PromoteIntOp_Shift(SDNode *N); |
400 | SDValue PromoteIntOp_CMP(SDNode *N); |
401 | SDValue PromoteIntOp_FunnelShift(SDNode *N); |
402 | SDValue PromoteIntOp_SIGN_EXTEND(SDNode *N); |
403 | SDValue PromoteIntOp_VP_SIGN_EXTEND(SDNode *N); |
404 | SDValue PromoteIntOp_SINT_TO_FP(SDNode *N); |
405 | SDValue PromoteIntOp_STRICT_SINT_TO_FP(SDNode *N); |
406 | SDValue PromoteIntOp_STORE(StoreSDNode *N, unsigned OpNo); |
407 | SDValue PromoteIntOp_TRUNCATE(SDNode *N); |
408 | SDValue PromoteIntOp_UINT_TO_FP(SDNode *N); |
409 | SDValue PromoteIntOp_STRICT_UINT_TO_FP(SDNode *N); |
410 | SDValue PromoteIntOp_ZERO_EXTEND(SDNode *N); |
411 | SDValue PromoteIntOp_VP_ZERO_EXTEND(SDNode *N); |
412 | SDValue PromoteIntOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo); |
413 | SDValue PromoteIntOp_MLOAD(MaskedLoadSDNode *N, unsigned OpNo); |
414 | SDValue PromoteIntOp_MSCATTER(MaskedScatterSDNode *N, unsigned OpNo); |
415 | SDValue PromoteIntOp_MGATHER(MaskedGatherSDNode *N, unsigned OpNo); |
416 | SDValue PromoteIntOp_VECTOR_COMPRESS(SDNode *N, unsigned OpNo); |
417 | SDValue PromoteIntOp_FRAMERETURNADDR(SDNode *N); |
418 | SDValue PromoteIntOp_FIX(SDNode *N); |
419 | SDValue PromoteIntOp_ExpOp(SDNode *N); |
420 | SDValue PromoteIntOp_VECREDUCE(SDNode *N); |
421 | SDValue PromoteIntOp_VP_REDUCE(SDNode *N, unsigned OpNo); |
422 | SDValue PromoteIntOp_SET_ROUNDING(SDNode *N); |
423 | SDValue PromoteIntOp_STACKMAP(SDNode *N, unsigned OpNo); |
424 | SDValue PromoteIntOp_PATCHPOINT(SDNode *N, unsigned OpNo); |
425 | SDValue PromoteIntOp_VP_STRIDED(SDNode *N, unsigned OpNo); |
426 | SDValue PromoteIntOp_VP_SPLICE(SDNode *N, unsigned OpNo); |
427 | |
428 | void SExtOrZExtPromotedOperands(SDValue &LHS, SDValue &RHS); |
429 | void PromoteSetCCOperands(SDValue &LHS,SDValue &RHS, ISD::CondCode Code); |
430 | |
431 | //===--------------------------------------------------------------------===// |
432 | // Integer Expansion Support: LegalizeIntegerTypes.cpp |
433 | //===--------------------------------------------------------------------===// |
434 | |
435 | /// Given a processed operand Op which was expanded into two integers of half |
436 | /// the size, this returns the two halves. The low bits of Op are exactly |
437 | /// equal to the bits of Lo; the high bits exactly equal Hi. |
438 | /// For example, if Op is an i64 which was expanded into two i32's, then this |
439 | /// method returns the two i32's, with Lo being equal to the lower 32 bits of |
440 | /// Op, and Hi being equal to the upper 32 bits. |
441 | void GetExpandedInteger(SDValue Op, SDValue &Lo, SDValue &Hi); |
442 | void SetExpandedInteger(SDValue Op, SDValue Lo, SDValue Hi); |
443 | |
444 | // Integer Result Expansion. |
445 | void ExpandIntegerResult(SDNode *N, unsigned ResNo); |
446 | void ExpandIntRes_ANY_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); |
447 | void ExpandIntRes_AssertSext (SDNode *N, SDValue &Lo, SDValue &Hi); |
448 | void ExpandIntRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi); |
449 | void ExpandIntRes_Constant (SDNode *N, SDValue &Lo, SDValue &Hi); |
450 | void ExpandIntRes_ABS (SDNode *N, SDValue &Lo, SDValue &Hi); |
451 | void ExpandIntRes_CTLZ (SDNode *N, SDValue &Lo, SDValue &Hi); |
452 | void ExpandIntRes_CTPOP (SDNode *N, SDValue &Lo, SDValue &Hi); |
453 | void ExpandIntRes_CTTZ (SDNode *N, SDValue &Lo, SDValue &Hi); |
454 | void ExpandIntRes_LOAD (LoadSDNode *N, SDValue &Lo, SDValue &Hi); |
455 | void ExpandIntRes_READCOUNTER (SDNode *N, SDValue &Lo, SDValue &Hi); |
456 | void ExpandIntRes_SIGN_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); |
457 | void ExpandIntRes_SIGN_EXTEND_INREG (SDNode *N, SDValue &Lo, SDValue &Hi); |
458 | void ExpandIntRes_TRUNCATE (SDNode *N, SDValue &Lo, SDValue &Hi); |
459 | void ExpandIntRes_ZERO_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); |
460 | void ExpandIntRes_GET_ROUNDING (SDNode *N, SDValue &Lo, SDValue &Hi); |
461 | void ExpandIntRes_FP_TO_XINT (SDNode *N, SDValue &Lo, SDValue &Hi); |
462 | void ExpandIntRes_FP_TO_XINT_SAT (SDNode *N, SDValue &Lo, SDValue &Hi); |
463 | void ExpandIntRes_XROUND_XRINT (SDNode *N, SDValue &Lo, SDValue &Hi); |
464 | |
465 | void ExpandIntRes_Logical (SDNode *N, SDValue &Lo, SDValue &Hi); |
466 | void ExpandIntRes_ADDSUB (SDNode *N, SDValue &Lo, SDValue &Hi); |
467 | void ExpandIntRes_ADDSUBC (SDNode *N, SDValue &Lo, SDValue &Hi); |
468 | void ExpandIntRes_ADDSUBE (SDNode *N, SDValue &Lo, SDValue &Hi); |
469 | void ExpandIntRes_UADDSUBO_CARRY (SDNode *N, SDValue &Lo, SDValue &Hi); |
470 | void ExpandIntRes_SADDSUBO_CARRY (SDNode *N, SDValue &Lo, SDValue &Hi); |
471 | void ExpandIntRes_BITREVERSE (SDNode *N, SDValue &Lo, SDValue &Hi); |
472 | void ExpandIntRes_BSWAP (SDNode *N, SDValue &Lo, SDValue &Hi); |
473 | void ExpandIntRes_PARITY (SDNode *N, SDValue &Lo, SDValue &Hi); |
474 | void ExpandIntRes_MUL (SDNode *N, SDValue &Lo, SDValue &Hi); |
475 | void ExpandIntRes_SDIV (SDNode *N, SDValue &Lo, SDValue &Hi); |
476 | void ExpandIntRes_SREM (SDNode *N, SDValue &Lo, SDValue &Hi); |
477 | void ExpandIntRes_UDIV (SDNode *N, SDValue &Lo, SDValue &Hi); |
478 | void ExpandIntRes_UREM (SDNode *N, SDValue &Lo, SDValue &Hi); |
479 | void ExpandIntRes_ShiftThroughStack (SDNode *N, SDValue &Lo, SDValue &Hi); |
480 | void ExpandIntRes_Shift (SDNode *N, SDValue &Lo, SDValue &Hi); |
481 | |
482 | void ExpandIntRes_MINMAX (SDNode *N, SDValue &Lo, SDValue &Hi); |
483 | |
484 | void ExpandIntRes_CMP (SDNode *N, SDValue &Lo, SDValue &Hi); |
485 | |
486 | void ExpandIntRes_SADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi); |
487 | void ExpandIntRes_UADDSUBO (SDNode *N, SDValue &Lo, SDValue &Hi); |
488 | void ExpandIntRes_XMULO (SDNode *N, SDValue &Lo, SDValue &Hi); |
489 | void ExpandIntRes_AVG (SDNode *N, SDValue &Lo, SDValue &Hi); |
490 | void ExpandIntRes_ADDSUBSAT (SDNode *N, SDValue &Lo, SDValue &Hi); |
491 | void ExpandIntRes_SHLSAT (SDNode *N, SDValue &Lo, SDValue &Hi); |
492 | void ExpandIntRes_MULFIX (SDNode *N, SDValue &Lo, SDValue &Hi); |
493 | void ExpandIntRes_DIVFIX (SDNode *N, SDValue &Lo, SDValue &Hi); |
494 | |
495 | void ExpandIntRes_ATOMIC_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi); |
496 | void ExpandIntRes_VECREDUCE (SDNode *N, SDValue &Lo, SDValue &Hi); |
497 | |
498 | void ExpandIntRes_Rotate (SDNode *N, SDValue &Lo, SDValue &Hi); |
499 | void ExpandIntRes_FunnelShift (SDNode *N, SDValue &Lo, SDValue &Hi); |
500 | |
501 | void ExpandIntRes_VSCALE (SDNode *N, SDValue &Lo, SDValue &Hi); |
502 | |
503 | void ExpandShiftByConstant(SDNode *N, const APInt &Amt, |
504 | SDValue &Lo, SDValue &Hi); |
505 | bool ExpandShiftWithKnownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi); |
506 | bool ExpandShiftWithUnknownAmountBit(SDNode *N, SDValue &Lo, SDValue &Hi); |
507 | |
508 | // Integer Operand Expansion. |
509 | bool ExpandIntegerOperand(SDNode *N, unsigned OpNo); |
510 | SDValue ExpandIntOp_BR_CC(SDNode *N); |
511 | SDValue ExpandIntOp_SELECT_CC(SDNode *N); |
512 | SDValue ExpandIntOp_SETCC(SDNode *N); |
513 | SDValue ExpandIntOp_SETCCCARRY(SDNode *N); |
514 | SDValue ExpandIntOp_Shift(SDNode *N); |
515 | SDValue ExpandIntOp_CMP(SDNode *N); |
516 | SDValue ExpandIntOp_STORE(StoreSDNode *N, unsigned OpNo); |
517 | SDValue ExpandIntOp_TRUNCATE(SDNode *N); |
518 | SDValue ExpandIntOp_XINT_TO_FP(SDNode *N); |
519 | SDValue ExpandIntOp_RETURNADDR(SDNode *N); |
520 | SDValue ExpandIntOp_ATOMIC_STORE(SDNode *N); |
521 | SDValue ExpandIntOp_SPLAT_VECTOR(SDNode *N); |
522 | SDValue ExpandIntOp_STACKMAP(SDNode *N, unsigned OpNo); |
523 | SDValue ExpandIntOp_PATCHPOINT(SDNode *N, unsigned OpNo); |
524 | SDValue ExpandIntOp_VP_STRIDED(SDNode *N, unsigned OpNo); |
525 | |
526 | void IntegerExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, |
527 | ISD::CondCode &CCCode, const SDLoc &dl); |
528 | |
529 | //===--------------------------------------------------------------------===// |
530 | // Float to Integer Conversion Support: LegalizeFloatTypes.cpp |
531 | //===--------------------------------------------------------------------===// |
532 | |
533 | /// GetSoftenedFloat - Given a processed operand Op which was converted to an |
534 | /// integer of the same size, this returns the integer. The integer contains |
535 | /// exactly the same bits as Op - only the type changed. For example, if Op |
536 | /// is an f32 which was softened to an i32, then this method returns an i32, |
537 | /// the bits of which coincide with those of Op |
538 | SDValue GetSoftenedFloat(SDValue Op) { |
539 | TableId Id = getTableId(V: Op); |
540 | auto Iter = SoftenedFloats.find(Val: Id); |
541 | if (Iter == SoftenedFloats.end()) { |
542 | assert(isSimpleLegalType(Op.getValueType()) && |
543 | "Operand wasn't converted to integer?" ); |
544 | return Op; |
545 | } |
546 | SDValue SoftenedOp = getSDValue(Id&: Iter->second); |
547 | assert(SoftenedOp.getNode() && "Unconverted op in SoftenedFloats?" ); |
548 | return SoftenedOp; |
549 | } |
550 | void SetSoftenedFloat(SDValue Op, SDValue Result); |
551 | |
552 | // Convert Float Results to Integer. |
553 | void SoftenFloatResult(SDNode *N, unsigned ResNo); |
554 | SDValue SoftenFloatRes_Unary(SDNode *N, RTLIB::Libcall LC); |
555 | SDValue SoftenFloatRes_Binary(SDNode *N, RTLIB::Libcall LC); |
556 | SDValue SoftenFloatRes_MERGE_VALUES(SDNode *N, unsigned ResNo); |
557 | SDValue SoftenFloatRes_ARITH_FENCE(SDNode *N); |
558 | SDValue SoftenFloatRes_BITCAST(SDNode *N); |
559 | SDValue SoftenFloatRes_BUILD_PAIR(SDNode *N); |
560 | SDValue SoftenFloatRes_ConstantFP(SDNode *N); |
561 | SDValue (SDNode *N); |
562 | SDValue (SDNode *N, unsigned ResNo); |
563 | SDValue SoftenFloatRes_FABS(SDNode *N); |
564 | SDValue SoftenFloatRes_FACOS(SDNode *N); |
565 | SDValue SoftenFloatRes_FASIN(SDNode *N); |
566 | SDValue SoftenFloatRes_FATAN(SDNode *N); |
567 | SDValue SoftenFloatRes_FMINNUM(SDNode *N); |
568 | SDValue SoftenFloatRes_FMAXNUM(SDNode *N); |
569 | SDValue SoftenFloatRes_FADD(SDNode *N); |
570 | SDValue SoftenFloatRes_FCBRT(SDNode *N); |
571 | SDValue SoftenFloatRes_FCEIL(SDNode *N); |
572 | SDValue SoftenFloatRes_FCOPYSIGN(SDNode *N); |
573 | SDValue SoftenFloatRes_FCOS(SDNode *N); |
574 | SDValue SoftenFloatRes_FCOSH(SDNode *N); |
575 | SDValue SoftenFloatRes_FDIV(SDNode *N); |
576 | SDValue SoftenFloatRes_FEXP(SDNode *N); |
577 | SDValue SoftenFloatRes_FEXP2(SDNode *N); |
578 | SDValue SoftenFloatRes_FEXP10(SDNode *N); |
579 | SDValue SoftenFloatRes_FFLOOR(SDNode *N); |
580 | SDValue SoftenFloatRes_FLOG(SDNode *N); |
581 | SDValue SoftenFloatRes_FLOG2(SDNode *N); |
582 | SDValue SoftenFloatRes_FLOG10(SDNode *N); |
583 | SDValue SoftenFloatRes_FMA(SDNode *N); |
584 | SDValue SoftenFloatRes_FMUL(SDNode *N); |
585 | SDValue SoftenFloatRes_FNEARBYINT(SDNode *N); |
586 | SDValue SoftenFloatRes_FNEG(SDNode *N); |
587 | SDValue SoftenFloatRes_FP_EXTEND(SDNode *N); |
588 | SDValue SoftenFloatRes_FP16_TO_FP(SDNode *N); |
589 | SDValue SoftenFloatRes_BF16_TO_FP(SDNode *N); |
590 | SDValue SoftenFloatRes_FP_ROUND(SDNode *N); |
591 | SDValue SoftenFloatRes_FPOW(SDNode *N); |
592 | SDValue SoftenFloatRes_ExpOp(SDNode *N); |
593 | SDValue SoftenFloatRes_FFREXP(SDNode *N); |
594 | SDValue SoftenFloatRes_FREEZE(SDNode *N); |
595 | SDValue SoftenFloatRes_FREM(SDNode *N); |
596 | SDValue SoftenFloatRes_FRINT(SDNode *N); |
597 | SDValue SoftenFloatRes_FROUND(SDNode *N); |
598 | SDValue SoftenFloatRes_FROUNDEVEN(SDNode *N); |
599 | SDValue SoftenFloatRes_FSIN(SDNode *N); |
600 | SDValue SoftenFloatRes_FSINH(SDNode *N); |
601 | SDValue SoftenFloatRes_FSQRT(SDNode *N); |
602 | SDValue SoftenFloatRes_FSUB(SDNode *N); |
603 | SDValue SoftenFloatRes_FTAN(SDNode *N); |
604 | SDValue SoftenFloatRes_FTANH(SDNode *N); |
605 | SDValue SoftenFloatRes_FTRUNC(SDNode *N); |
606 | SDValue SoftenFloatRes_LOAD(SDNode *N); |
607 | SDValue SoftenFloatRes_ATOMIC_LOAD(SDNode *N); |
608 | SDValue SoftenFloatRes_SELECT(SDNode *N); |
609 | SDValue SoftenFloatRes_SELECT_CC(SDNode *N); |
610 | SDValue SoftenFloatRes_UNDEF(SDNode *N); |
611 | SDValue SoftenFloatRes_VAARG(SDNode *N); |
612 | SDValue SoftenFloatRes_XINT_TO_FP(SDNode *N); |
613 | SDValue SoftenFloatRes_VECREDUCE(SDNode *N); |
614 | SDValue SoftenFloatRes_VECREDUCE_SEQ(SDNode *N); |
615 | |
616 | // Convert Float Operand to Integer. |
617 | bool SoftenFloatOperand(SDNode *N, unsigned OpNo); |
618 | SDValue SoftenFloatOp_Unary(SDNode *N, RTLIB::Libcall LC); |
619 | SDValue SoftenFloatOp_BITCAST(SDNode *N); |
620 | SDValue SoftenFloatOp_BR_CC(SDNode *N); |
621 | SDValue SoftenFloatOp_FP_ROUND(SDNode *N); |
622 | SDValue SoftenFloatOp_FP_TO_XINT(SDNode *N); |
623 | SDValue SoftenFloatOp_FP_TO_XINT_SAT(SDNode *N); |
624 | SDValue SoftenFloatOp_LROUND(SDNode *N); |
625 | SDValue SoftenFloatOp_LLROUND(SDNode *N); |
626 | SDValue SoftenFloatOp_LRINT(SDNode *N); |
627 | SDValue SoftenFloatOp_LLRINT(SDNode *N); |
628 | SDValue SoftenFloatOp_SELECT_CC(SDNode *N); |
629 | SDValue SoftenFloatOp_SETCC(SDNode *N); |
630 | SDValue SoftenFloatOp_STORE(SDNode *N, unsigned OpNo); |
631 | SDValue SoftenFloatOp_ATOMIC_STORE(SDNode *N, unsigned OpNo); |
632 | SDValue SoftenFloatOp_FCOPYSIGN(SDNode *N); |
633 | |
634 | //===--------------------------------------------------------------------===// |
635 | // Float Expansion Support: LegalizeFloatTypes.cpp |
636 | //===--------------------------------------------------------------------===// |
637 | |
638 | /// Given a processed operand Op which was expanded into two floating-point |
639 | /// values of half the size, this returns the two halves. |
640 | /// The low bits of Op are exactly equal to the bits of Lo; the high bits |
641 | /// exactly equal Hi. For example, if Op is a ppcf128 which was expanded |
642 | /// into two f64's, then this method returns the two f64's, with Lo being |
643 | /// equal to the lower 64 bits of Op, and Hi to the upper 64 bits. |
644 | void GetExpandedFloat(SDValue Op, SDValue &Lo, SDValue &Hi); |
645 | void SetExpandedFloat(SDValue Op, SDValue Lo, SDValue Hi); |
646 | |
647 | // Float Result Expansion. |
648 | void ExpandFloatResult(SDNode *N, unsigned ResNo); |
649 | void ExpandFloatRes_ConstantFP(SDNode *N, SDValue &Lo, SDValue &Hi); |
650 | void ExpandFloatRes_Unary(SDNode *N, RTLIB::Libcall LC, |
651 | SDValue &Lo, SDValue &Hi); |
652 | void ExpandFloatRes_Binary(SDNode *N, RTLIB::Libcall LC, |
653 | SDValue &Lo, SDValue &Hi); |
654 | // clang-format off |
655 | void ExpandFloatRes_FABS (SDNode *N, SDValue &Lo, SDValue &Hi); |
656 | void ExpandFloatRes_FACOS (SDNode *N, SDValue &Lo, SDValue &Hi); |
657 | void ExpandFloatRes_FASIN (SDNode *N, SDValue &Lo, SDValue &Hi); |
658 | void ExpandFloatRes_FATAN (SDNode *N, SDValue &Lo, SDValue &Hi); |
659 | void ExpandFloatRes_FMINNUM (SDNode *N, SDValue &Lo, SDValue &Hi); |
660 | void ExpandFloatRes_FMAXNUM (SDNode *N, SDValue &Lo, SDValue &Hi); |
661 | void ExpandFloatRes_FADD (SDNode *N, SDValue &Lo, SDValue &Hi); |
662 | void ExpandFloatRes_FCBRT (SDNode *N, SDValue &Lo, SDValue &Hi); |
663 | void ExpandFloatRes_FCEIL (SDNode *N, SDValue &Lo, SDValue &Hi); |
664 | void ExpandFloatRes_FCOPYSIGN (SDNode *N, SDValue &Lo, SDValue &Hi); |
665 | void ExpandFloatRes_FCOS (SDNode *N, SDValue &Lo, SDValue &Hi); |
666 | void ExpandFloatRes_FCOSH (SDNode *N, SDValue &Lo, SDValue &Hi); |
667 | void ExpandFloatRes_FDIV (SDNode *N, SDValue &Lo, SDValue &Hi); |
668 | void ExpandFloatRes_FEXP (SDNode *N, SDValue &Lo, SDValue &Hi); |
669 | void ExpandFloatRes_FEXP2 (SDNode *N, SDValue &Lo, SDValue &Hi); |
670 | void ExpandFloatRes_FEXP10 (SDNode *N, SDValue &Lo, SDValue &Hi); |
671 | void ExpandFloatRes_FFLOOR (SDNode *N, SDValue &Lo, SDValue &Hi); |
672 | void ExpandFloatRes_FLOG (SDNode *N, SDValue &Lo, SDValue &Hi); |
673 | void ExpandFloatRes_FLOG2 (SDNode *N, SDValue &Lo, SDValue &Hi); |
674 | void ExpandFloatRes_FLOG10 (SDNode *N, SDValue &Lo, SDValue &Hi); |
675 | void ExpandFloatRes_FMA (SDNode *N, SDValue &Lo, SDValue &Hi); |
676 | void ExpandFloatRes_FMUL (SDNode *N, SDValue &Lo, SDValue &Hi); |
677 | void ExpandFloatRes_FNEARBYINT(SDNode *N, SDValue &Lo, SDValue &Hi); |
678 | void ExpandFloatRes_FNEG (SDNode *N, SDValue &Lo, SDValue &Hi); |
679 | void ExpandFloatRes_FP_EXTEND (SDNode *N, SDValue &Lo, SDValue &Hi); |
680 | void ExpandFloatRes_FPOW (SDNode *N, SDValue &Lo, SDValue &Hi); |
681 | void ExpandFloatRes_FPOWI (SDNode *N, SDValue &Lo, SDValue &Hi); |
682 | void ExpandFloatRes_FLDEXP (SDNode *N, SDValue &Lo, SDValue &Hi); |
683 | void ExpandFloatRes_FREEZE (SDNode *N, SDValue &Lo, SDValue &Hi); |
684 | void ExpandFloatRes_FREM (SDNode *N, SDValue &Lo, SDValue &Hi); |
685 | void ExpandFloatRes_FRINT (SDNode *N, SDValue &Lo, SDValue &Hi); |
686 | void ExpandFloatRes_FROUND (SDNode *N, SDValue &Lo, SDValue &Hi); |
687 | void ExpandFloatRes_FROUNDEVEN(SDNode *N, SDValue &Lo, SDValue &Hi); |
688 | void ExpandFloatRes_FSIN (SDNode *N, SDValue &Lo, SDValue &Hi); |
689 | void ExpandFloatRes_FSINH (SDNode *N, SDValue &Lo, SDValue &Hi); |
690 | void ExpandFloatRes_FSQRT (SDNode *N, SDValue &Lo, SDValue &Hi); |
691 | void ExpandFloatRes_FSUB (SDNode *N, SDValue &Lo, SDValue &Hi); |
692 | void ExpandFloatRes_FTAN (SDNode *N, SDValue &Lo, SDValue &Hi); |
693 | void ExpandFloatRes_FTANH (SDNode *N, SDValue &Lo, SDValue &Hi); |
694 | void ExpandFloatRes_FTRUNC (SDNode *N, SDValue &Lo, SDValue &Hi); |
695 | void ExpandFloatRes_LOAD (SDNode *N, SDValue &Lo, SDValue &Hi); |
696 | void ExpandFloatRes_XINT_TO_FP(SDNode *N, SDValue &Lo, SDValue &Hi); |
697 | // clang-format on |
698 | |
699 | // Float Operand Expansion. |
700 | bool ExpandFloatOperand(SDNode *N, unsigned OpNo); |
701 | SDValue ExpandFloatOp_BR_CC(SDNode *N); |
702 | SDValue ExpandFloatOp_FCOPYSIGN(SDNode *N); |
703 | SDValue ExpandFloatOp_FP_ROUND(SDNode *N); |
704 | SDValue ExpandFloatOp_FP_TO_XINT(SDNode *N); |
705 | SDValue ExpandFloatOp_LROUND(SDNode *N); |
706 | SDValue ExpandFloatOp_LLROUND(SDNode *N); |
707 | SDValue ExpandFloatOp_LRINT(SDNode *N); |
708 | SDValue ExpandFloatOp_LLRINT(SDNode *N); |
709 | SDValue ExpandFloatOp_SELECT_CC(SDNode *N); |
710 | SDValue ExpandFloatOp_SETCC(SDNode *N); |
711 | SDValue ExpandFloatOp_STORE(SDNode *N, unsigned OpNo); |
712 | |
713 | void FloatExpandSetCCOperands(SDValue &NewLHS, SDValue &NewRHS, |
714 | ISD::CondCode &CCCode, const SDLoc &dl, |
715 | SDValue &Chain, bool IsSignaling = false); |
716 | |
717 | //===--------------------------------------------------------------------===// |
718 | // Float promotion support: LegalizeFloatTypes.cpp |
719 | //===--------------------------------------------------------------------===// |
720 | |
721 | SDValue GetPromotedFloat(SDValue Op) { |
722 | TableId &PromotedId = PromotedFloats[getTableId(V: Op)]; |
723 | SDValue PromotedOp = getSDValue(Id&: PromotedId); |
724 | assert(PromotedOp.getNode() && "Operand wasn't promoted?" ); |
725 | return PromotedOp; |
726 | } |
727 | void SetPromotedFloat(SDValue Op, SDValue Result); |
728 | |
729 | void PromoteFloatResult(SDNode *N, unsigned ResNo); |
730 | SDValue PromoteFloatRes_BITCAST(SDNode *N); |
731 | SDValue PromoteFloatRes_BinOp(SDNode *N); |
732 | SDValue PromoteFloatRes_ConstantFP(SDNode *N); |
733 | SDValue (SDNode *N); |
734 | SDValue PromoteFloatRes_FCOPYSIGN(SDNode *N); |
735 | SDValue PromoteFloatRes_FMAD(SDNode *N); |
736 | SDValue PromoteFloatRes_ExpOp(SDNode *N); |
737 | SDValue PromoteFloatRes_FFREXP(SDNode *N); |
738 | SDValue PromoteFloatRes_FP_ROUND(SDNode *N); |
739 | SDValue PromoteFloatRes_STRICT_FP_ROUND(SDNode *N); |
740 | SDValue PromoteFloatRes_LOAD(SDNode *N); |
741 | SDValue PromoteFloatRes_ATOMIC_LOAD(SDNode *N); |
742 | SDValue PromoteFloatRes_SELECT(SDNode *N); |
743 | SDValue PromoteFloatRes_SELECT_CC(SDNode *N); |
744 | SDValue PromoteFloatRes_UnaryOp(SDNode *N); |
745 | SDValue PromoteFloatRes_UNDEF(SDNode *N); |
746 | SDValue BitcastToInt_ATOMIC_SWAP(SDNode *N); |
747 | SDValue PromoteFloatRes_XINT_TO_FP(SDNode *N); |
748 | SDValue PromoteFloatRes_VECREDUCE(SDNode *N); |
749 | SDValue PromoteFloatRes_VECREDUCE_SEQ(SDNode *N); |
750 | |
751 | bool PromoteFloatOperand(SDNode *N, unsigned OpNo); |
752 | SDValue PromoteFloatOp_BITCAST(SDNode *N, unsigned OpNo); |
753 | SDValue PromoteFloatOp_FCOPYSIGN(SDNode *N, unsigned OpNo); |
754 | SDValue PromoteFloatOp_FP_EXTEND(SDNode *N, unsigned OpNo); |
755 | SDValue PromoteFloatOp_STRICT_FP_EXTEND(SDNode *N, unsigned OpNo); |
756 | SDValue PromoteFloatOp_UnaryOp(SDNode *N, unsigned OpNo); |
757 | SDValue PromoteFloatOp_FP_TO_XINT_SAT(SDNode *N, unsigned OpNo); |
758 | SDValue PromoteFloatOp_STORE(SDNode *N, unsigned OpNo); |
759 | SDValue PromoteFloatOp_ATOMIC_STORE(SDNode *N, unsigned OpNo); |
760 | SDValue PromoteFloatOp_SELECT_CC(SDNode *N, unsigned OpNo); |
761 | SDValue PromoteFloatOp_SETCC(SDNode *N, unsigned OpNo); |
762 | |
763 | //===--------------------------------------------------------------------===// |
764 | // Half soft promotion support: LegalizeFloatTypes.cpp |
765 | //===--------------------------------------------------------------------===// |
766 | |
767 | SDValue GetSoftPromotedHalf(SDValue Op) { |
768 | TableId &PromotedId = SoftPromotedHalfs[getTableId(V: Op)]; |
769 | SDValue PromotedOp = getSDValue(Id&: PromotedId); |
770 | assert(PromotedOp.getNode() && "Operand wasn't promoted?" ); |
771 | return PromotedOp; |
772 | } |
773 | void SetSoftPromotedHalf(SDValue Op, SDValue Result); |
774 | |
775 | void SoftPromoteHalfResult(SDNode *N, unsigned ResNo); |
776 | SDValue SoftPromoteHalfRes_ARITH_FENCE(SDNode *N); |
777 | SDValue SoftPromoteHalfRes_BinOp(SDNode *N); |
778 | SDValue SoftPromoteHalfRes_BITCAST(SDNode *N); |
779 | SDValue SoftPromoteHalfRes_ConstantFP(SDNode *N); |
780 | SDValue (SDNode *N); |
781 | SDValue SoftPromoteHalfRes_FCOPYSIGN(SDNode *N); |
782 | SDValue SoftPromoteHalfRes_FMAD(SDNode *N); |
783 | SDValue SoftPromoteHalfRes_ExpOp(SDNode *N); |
784 | SDValue SoftPromoteHalfRes_FFREXP(SDNode *N); |
785 | SDValue SoftPromoteHalfRes_FP_ROUND(SDNode *N); |
786 | SDValue SoftPromoteHalfRes_LOAD(SDNode *N); |
787 | SDValue SoftPromoteHalfRes_ATOMIC_LOAD(SDNode *N); |
788 | SDValue SoftPromoteHalfRes_SELECT(SDNode *N); |
789 | SDValue SoftPromoteHalfRes_SELECT_CC(SDNode *N); |
790 | SDValue SoftPromoteHalfRes_UnaryOp(SDNode *N); |
791 | SDValue SoftPromoteHalfRes_XINT_TO_FP(SDNode *N); |
792 | SDValue SoftPromoteHalfRes_UNDEF(SDNode *N); |
793 | SDValue SoftPromoteHalfRes_VECREDUCE(SDNode *N); |
794 | SDValue SoftPromoteHalfRes_VECREDUCE_SEQ(SDNode *N); |
795 | |
796 | bool SoftPromoteHalfOperand(SDNode *N, unsigned OpNo); |
797 | SDValue SoftPromoteHalfOp_BITCAST(SDNode *N); |
798 | SDValue SoftPromoteHalfOp_FCOPYSIGN(SDNode *N, unsigned OpNo); |
799 | SDValue SoftPromoteHalfOp_FP_EXTEND(SDNode *N); |
800 | SDValue SoftPromoteHalfOp_FP_TO_XINT(SDNode *N); |
801 | SDValue SoftPromoteHalfOp_FP_TO_XINT_SAT(SDNode *N); |
802 | SDValue SoftPromoteHalfOp_SETCC(SDNode *N); |
803 | SDValue SoftPromoteHalfOp_SELECT_CC(SDNode *N, unsigned OpNo); |
804 | SDValue SoftPromoteHalfOp_STORE(SDNode *N, unsigned OpNo); |
805 | SDValue SoftPromoteHalfOp_ATOMIC_STORE(SDNode *N, unsigned OpNo); |
806 | SDValue SoftPromoteHalfOp_STACKMAP(SDNode *N, unsigned OpNo); |
807 | SDValue SoftPromoteHalfOp_PATCHPOINT(SDNode *N, unsigned OpNo); |
808 | |
809 | //===--------------------------------------------------------------------===// |
810 | // Scalarization Support: LegalizeVectorTypes.cpp |
811 | //===--------------------------------------------------------------------===// |
812 | |
813 | /// Given a processed one-element vector Op which was scalarized to its |
814 | /// element type, this returns the element. For example, if Op is a v1i32, |
815 | /// Op = < i32 val >, this method returns val, an i32. |
816 | SDValue GetScalarizedVector(SDValue Op) { |
817 | TableId &ScalarizedId = ScalarizedVectors[getTableId(V: Op)]; |
818 | SDValue ScalarizedOp = getSDValue(Id&: ScalarizedId); |
819 | assert(ScalarizedOp.getNode() && "Operand wasn't scalarized?" ); |
820 | return ScalarizedOp; |
821 | } |
822 | void SetScalarizedVector(SDValue Op, SDValue Result); |
823 | |
824 | // Vector Result Scalarization: <1 x ty> -> ty. |
825 | void ScalarizeVectorResult(SDNode *N, unsigned ResNo); |
826 | SDValue ScalarizeVecRes_MERGE_VALUES(SDNode *N, unsigned ResNo); |
827 | SDValue ScalarizeVecRes_BinOp(SDNode *N); |
828 | SDValue ScalarizeVecRes_CMP(SDNode *N); |
829 | SDValue ScalarizeVecRes_TernaryOp(SDNode *N); |
830 | SDValue ScalarizeVecRes_UnaryOp(SDNode *N); |
831 | SDValue ScalarizeVecRes_StrictFPOp(SDNode *N); |
832 | SDValue ScalarizeVecRes_OverflowOp(SDNode *N, unsigned ResNo); |
833 | SDValue ScalarizeVecRes_InregOp(SDNode *N); |
834 | SDValue ScalarizeVecRes_VecInregOp(SDNode *N); |
835 | |
836 | SDValue ScalarizeVecRes_ADDRSPACECAST(SDNode *N); |
837 | SDValue ScalarizeVecRes_BITCAST(SDNode *N); |
838 | SDValue ScalarizeVecRes_BUILD_VECTOR(SDNode *N); |
839 | SDValue (SDNode *N); |
840 | SDValue ScalarizeVecRes_FP_ROUND(SDNode *N); |
841 | SDValue ScalarizeVecRes_ExpOp(SDNode *N); |
842 | SDValue ScalarizeVecRes_INSERT_VECTOR_ELT(SDNode *N); |
843 | SDValue ScalarizeVecRes_LOAD(LoadSDNode *N); |
844 | SDValue ScalarizeVecRes_SCALAR_TO_VECTOR(SDNode *N); |
845 | SDValue ScalarizeVecRes_VSELECT(SDNode *N); |
846 | SDValue ScalarizeVecRes_SELECT(SDNode *N); |
847 | SDValue ScalarizeVecRes_SELECT_CC(SDNode *N); |
848 | SDValue ScalarizeVecRes_SETCC(SDNode *N); |
849 | SDValue ScalarizeVecRes_UNDEF(SDNode *N); |
850 | SDValue ScalarizeVecRes_VECTOR_SHUFFLE(SDNode *N); |
851 | SDValue ScalarizeVecRes_FP_TO_XINT_SAT(SDNode *N); |
852 | SDValue ScalarizeVecRes_IS_FPCLASS(SDNode *N); |
853 | |
854 | SDValue ScalarizeVecRes_FIX(SDNode *N); |
855 | SDValue ScalarizeVecRes_FFREXP(SDNode *N, unsigned ResNo); |
856 | |
857 | // Vector Operand Scalarization: <1 x ty> -> ty. |
858 | bool ScalarizeVectorOperand(SDNode *N, unsigned OpNo); |
859 | SDValue ScalarizeVecOp_BITCAST(SDNode *N); |
860 | SDValue ScalarizeVecOp_UnaryOp(SDNode *N); |
861 | SDValue ScalarizeVecOp_UnaryOp_StrictFP(SDNode *N); |
862 | SDValue ScalarizeVecOp_CONCAT_VECTORS(SDNode *N); |
863 | SDValue (SDNode *N); |
864 | SDValue ScalarizeVecOp_VSELECT(SDNode *N); |
865 | SDValue ScalarizeVecOp_VSETCC(SDNode *N); |
866 | SDValue ScalarizeVecOp_STORE(StoreSDNode *N, unsigned OpNo); |
867 | SDValue ScalarizeVecOp_FP_ROUND(SDNode *N, unsigned OpNo); |
868 | SDValue ScalarizeVecOp_STRICT_FP_ROUND(SDNode *N, unsigned OpNo); |
869 | SDValue ScalarizeVecOp_FP_EXTEND(SDNode *N); |
870 | SDValue ScalarizeVecOp_STRICT_FP_EXTEND(SDNode *N); |
871 | SDValue ScalarizeVecOp_VECREDUCE(SDNode *N); |
872 | SDValue ScalarizeVecOp_VECREDUCE_SEQ(SDNode *N); |
873 | SDValue ScalarizeVecOp_CMP(SDNode *N); |
874 | |
875 | //===--------------------------------------------------------------------===// |
876 | // Vector Splitting Support: LegalizeVectorTypes.cpp |
877 | //===--------------------------------------------------------------------===// |
878 | |
879 | /// Given a processed vector Op which was split into vectors of half the size, |
880 | /// this method returns the halves. The first elements of Op coincide with the |
881 | /// elements of Lo; the remaining elements of Op coincide with the elements of |
882 | /// Hi: Op is what you would get by concatenating Lo and Hi. |
883 | /// For example, if Op is a v8i32 that was split into two v4i32's, then this |
884 | /// method returns the two v4i32's, with Lo corresponding to the first 4 |
885 | /// elements of Op, and Hi to the last 4 elements. |
886 | void GetSplitVector(SDValue Op, SDValue &Lo, SDValue &Hi); |
887 | void SetSplitVector(SDValue Op, SDValue Lo, SDValue Hi); |
888 | |
889 | /// Split mask operator of a VP intrinsic. |
890 | std::pair<SDValue, SDValue> SplitMask(SDValue Mask); |
891 | |
892 | /// Split mask operator of a VP intrinsic in a given location. |
893 | std::pair<SDValue, SDValue> SplitMask(SDValue Mask, const SDLoc &DL); |
894 | |
895 | // Helper function for incrementing the pointer when splitting |
896 | // memory operations |
897 | void IncrementPointer(MemSDNode *N, EVT MemVT, MachinePointerInfo &MPI, |
898 | SDValue &Ptr, uint64_t *ScaledOffset = nullptr); |
899 | |
900 | // Vector Result Splitting: <128 x ty> -> 2 x <64 x ty>. |
901 | void SplitVectorResult(SDNode *N, unsigned ResNo); |
902 | void SplitVecRes_BinOp(SDNode *N, SDValue &Lo, SDValue &Hi); |
903 | void SplitVecRes_TernaryOp(SDNode *N, SDValue &Lo, SDValue &Hi); |
904 | void SplitVecRes_CMP(SDNode *N, SDValue &Lo, SDValue &Hi); |
905 | void SplitVecRes_UnaryOp(SDNode *N, SDValue &Lo, SDValue &Hi); |
906 | void SplitVecRes_ADDRSPACECAST(SDNode *N, SDValue &Lo, SDValue &Hi); |
907 | void SplitVecRes_FFREXP(SDNode *N, unsigned ResNo, SDValue &Lo, SDValue &Hi); |
908 | void SplitVecRes_ExtendOp(SDNode *N, SDValue &Lo, SDValue &Hi); |
909 | void SplitVecRes_InregOp(SDNode *N, SDValue &Lo, SDValue &Hi); |
910 | void SplitVecRes_ExtVecInRegOp(SDNode *N, SDValue &Lo, SDValue &Hi); |
911 | void SplitVecRes_StrictFPOp(SDNode *N, SDValue &Lo, SDValue &Hi); |
912 | void SplitVecRes_OverflowOp(SDNode *N, unsigned ResNo, |
913 | SDValue &Lo, SDValue &Hi); |
914 | |
915 | void SplitVecRes_FIX(SDNode *N, SDValue &Lo, SDValue &Hi); |
916 | |
917 | void SplitVecRes_BITCAST(SDNode *N, SDValue &Lo, SDValue &Hi); |
918 | void SplitVecRes_BUILD_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); |
919 | void SplitVecRes_CONCAT_VECTORS(SDNode *N, SDValue &Lo, SDValue &Hi); |
920 | void (SDNode *N, SDValue &Lo, SDValue &Hi); |
921 | void SplitVecRes_INSERT_SUBVECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); |
922 | void SplitVecRes_FPOp_MultiType(SDNode *N, SDValue &Lo, SDValue &Hi); |
923 | void SplitVecRes_IS_FPCLASS(SDNode *N, SDValue &Lo, SDValue &Hi); |
924 | void SplitVecRes_INSERT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); |
925 | void SplitVecRes_LOAD(LoadSDNode *LD, SDValue &Lo, SDValue &Hi); |
926 | void SplitVecRes_VP_LOAD(VPLoadSDNode *LD, SDValue &Lo, SDValue &Hi); |
927 | void SplitVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *SLD, SDValue &Lo, |
928 | SDValue &Hi); |
929 | void SplitVecRes_MLOAD(MaskedLoadSDNode *MLD, SDValue &Lo, SDValue &Hi); |
930 | void SplitVecRes_Gather(MemSDNode *VPGT, SDValue &Lo, SDValue &Hi, |
931 | bool SplitSETCC = false); |
932 | void SplitVecRes_VECTOR_COMPRESS(SDNode *N, SDValue &Lo, SDValue &Hi); |
933 | void SplitVecRes_ScalarOp(SDNode *N, SDValue &Lo, SDValue &Hi); |
934 | void SplitVecRes_VP_SPLAT(SDNode *N, SDValue &Lo, SDValue &Hi); |
935 | void SplitVecRes_STEP_VECTOR(SDNode *N, SDValue &Lo, SDValue &Hi); |
936 | void SplitVecRes_SETCC(SDNode *N, SDValue &Lo, SDValue &Hi); |
937 | void SplitVecRes_VECTOR_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi); |
938 | void SplitVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N, SDValue &Lo, |
939 | SDValue &Hi); |
940 | void SplitVecRes_VECTOR_SPLICE(SDNode *N, SDValue &Lo, SDValue &Hi); |
941 | void SplitVecRes_VECTOR_DEINTERLEAVE(SDNode *N); |
942 | void SplitVecRes_VECTOR_INTERLEAVE(SDNode *N); |
943 | void SplitVecRes_VAARG(SDNode *N, SDValue &Lo, SDValue &Hi); |
944 | void SplitVecRes_FP_TO_XINT_SAT(SDNode *N, SDValue &Lo, SDValue &Hi); |
945 | void SplitVecRes_VP_REVERSE(SDNode *N, SDValue &Lo, SDValue &Hi); |
946 | |
947 | // Vector Operand Splitting: <128 x ty> -> 2 x <64 x ty>. |
948 | bool SplitVectorOperand(SDNode *N, unsigned OpNo); |
949 | SDValue SplitVecOp_VSELECT(SDNode *N, unsigned OpNo); |
950 | SDValue SplitVecOp_VECREDUCE(SDNode *N, unsigned OpNo); |
951 | SDValue SplitVecOp_VECREDUCE_SEQ(SDNode *N); |
952 | SDValue SplitVecOp_VP_REDUCE(SDNode *N, unsigned OpNo); |
953 | SDValue SplitVecOp_UnaryOp(SDNode *N); |
954 | SDValue SplitVecOp_TruncateHelper(SDNode *N); |
955 | |
956 | SDValue SplitVecOp_BITCAST(SDNode *N); |
957 | SDValue SplitVecOp_INSERT_SUBVECTOR(SDNode *N, unsigned OpNo); |
958 | SDValue (SDNode *N); |
959 | SDValue (SDNode *N); |
960 | SDValue SplitVecOp_ExtVecInRegOp(SDNode *N); |
961 | SDValue SplitVecOp_STORE(StoreSDNode *N, unsigned OpNo); |
962 | SDValue SplitVecOp_VP_STORE(VPStoreSDNode *N, unsigned OpNo); |
963 | SDValue SplitVecOp_VP_STRIDED_STORE(VPStridedStoreSDNode *N, unsigned OpNo); |
964 | SDValue SplitVecOp_MSTORE(MaskedStoreSDNode *N, unsigned OpNo); |
965 | SDValue SplitVecOp_Scatter(MemSDNode *N, unsigned OpNo); |
966 | SDValue SplitVecOp_Gather(MemSDNode *MGT, unsigned OpNo); |
967 | SDValue SplitVecOp_CONCAT_VECTORS(SDNode *N); |
968 | SDValue SplitVecOp_VSETCC(SDNode *N); |
969 | SDValue SplitVecOp_FP_ROUND(SDNode *N); |
970 | SDValue SplitVecOp_FPOpDifferentTypes(SDNode *N); |
971 | SDValue SplitVecOp_CMP(SDNode *N); |
972 | SDValue SplitVecOp_FP_TO_XINT_SAT(SDNode *N); |
973 | SDValue SplitVecOp_VP_CttzElements(SDNode *N); |
974 | |
975 | //===--------------------------------------------------------------------===// |
976 | // Vector Widening Support: LegalizeVectorTypes.cpp |
977 | //===--------------------------------------------------------------------===// |
978 | |
979 | /// Given a processed vector Op which was widened into a larger vector, this |
980 | /// method returns the larger vector. The elements of the returned vector |
981 | /// consist of the elements of Op followed by elements containing rubbish. |
982 | /// For example, if Op is a v2i32 that was widened to a v4i32, then this |
983 | /// method returns a v4i32 for which the first two elements are the same as |
984 | /// those of Op, while the last two elements contain rubbish. |
985 | SDValue GetWidenedVector(SDValue Op) { |
986 | TableId &WidenedId = WidenedVectors[getTableId(V: Op)]; |
987 | SDValue WidenedOp = getSDValue(Id&: WidenedId); |
988 | assert(WidenedOp.getNode() && "Operand wasn't widened?" ); |
989 | return WidenedOp; |
990 | } |
991 | void SetWidenedVector(SDValue Op, SDValue Result); |
992 | |
993 | /// Given a mask Mask, returns the larger vector into which Mask was widened. |
994 | SDValue GetWidenedMask(SDValue Mask, ElementCount EC) { |
995 | // For VP operations, we must also widen the mask. Note that the mask type |
996 | // may not actually need widening, leading it be split along with the VP |
997 | // operation. |
998 | // FIXME: This could lead to an infinite split/widen loop. We only handle |
999 | // the case where the mask needs widening to an identically-sized type as |
1000 | // the vector inputs. |
1001 | assert(getTypeAction(Mask.getValueType()) == |
1002 | TargetLowering::TypeWidenVector && |
1003 | "Unable to widen binary VP op" ); |
1004 | Mask = GetWidenedVector(Op: Mask); |
1005 | assert(Mask.getValueType().getVectorElementCount() == EC && |
1006 | "Unable to widen binary VP op" ); |
1007 | return Mask; |
1008 | } |
1009 | |
1010 | // Widen Vector Result Promotion. |
1011 | void WidenVectorResult(SDNode *N, unsigned ResNo); |
1012 | SDValue WidenVecRes_MERGE_VALUES(SDNode* N, unsigned ResNo); |
1013 | SDValue WidenVecRes_ADDRSPACECAST(SDNode *N); |
1014 | SDValue WidenVecRes_AssertZext(SDNode* N); |
1015 | SDValue WidenVecRes_BITCAST(SDNode* N); |
1016 | SDValue WidenVecRes_BUILD_VECTOR(SDNode* N); |
1017 | SDValue WidenVecRes_CONCAT_VECTORS(SDNode* N); |
1018 | SDValue WidenVecRes_EXTEND_VECTOR_INREG(SDNode* N); |
1019 | SDValue (SDNode* N); |
1020 | SDValue WidenVecRes_INSERT_SUBVECTOR(SDNode *N); |
1021 | SDValue WidenVecRes_INSERT_VECTOR_ELT(SDNode* N); |
1022 | SDValue WidenVecRes_LOAD(SDNode* N); |
1023 | SDValue WidenVecRes_VP_LOAD(VPLoadSDNode *N); |
1024 | SDValue WidenVecRes_VP_STRIDED_LOAD(VPStridedLoadSDNode *N); |
1025 | SDValue WidenVecRes_VECTOR_COMPRESS(SDNode *N); |
1026 | SDValue WidenVecRes_MLOAD(MaskedLoadSDNode* N); |
1027 | SDValue WidenVecRes_MGATHER(MaskedGatherSDNode* N); |
1028 | SDValue WidenVecRes_VP_GATHER(VPGatherSDNode* N); |
1029 | SDValue WidenVecRes_ScalarOp(SDNode* N); |
1030 | SDValue WidenVecRes_Select(SDNode *N); |
1031 | SDValue WidenVSELECTMask(SDNode *N); |
1032 | SDValue WidenVecRes_SELECT_CC(SDNode* N); |
1033 | SDValue WidenVecRes_SETCC(SDNode* N); |
1034 | SDValue WidenVecRes_STRICT_FSETCC(SDNode* N); |
1035 | SDValue WidenVecRes_UNDEF(SDNode *N); |
1036 | SDValue WidenVecRes_VECTOR_SHUFFLE(ShuffleVectorSDNode *N); |
1037 | SDValue WidenVecRes_VECTOR_REVERSE(SDNode *N); |
1038 | |
1039 | SDValue WidenVecRes_Ternary(SDNode *N); |
1040 | SDValue WidenVecRes_Binary(SDNode *N); |
1041 | SDValue WidenVecRes_CMP(SDNode *N); |
1042 | SDValue WidenVecRes_BinaryCanTrap(SDNode *N); |
1043 | SDValue (SDNode *N); |
1044 | SDValue WidenVecRes_StrictFP(SDNode *N); |
1045 | SDValue WidenVecRes_OverflowOp(SDNode *N, unsigned ResNo); |
1046 | SDValue WidenVecRes_Convert(SDNode *N); |
1047 | SDValue WidenVecRes_Convert_StrictFP(SDNode *N); |
1048 | SDValue WidenVecRes_FP_TO_XINT_SAT(SDNode *N); |
1049 | SDValue WidenVecRes_XRINT(SDNode *N); |
1050 | SDValue WidenVecRes_FCOPYSIGN(SDNode *N); |
1051 | SDValue WidenVecRes_UnarySameEltsWithScalarArg(SDNode *N); |
1052 | SDValue WidenVecRes_ExpOp(SDNode *N); |
1053 | SDValue WidenVecRes_Unary(SDNode *N); |
1054 | SDValue WidenVecRes_InregOp(SDNode *N); |
1055 | |
1056 | // Widen Vector Operand. |
1057 | bool WidenVectorOperand(SDNode *N, unsigned OpNo); |
1058 | SDValue WidenVecOp_BITCAST(SDNode *N); |
1059 | SDValue WidenVecOp_CONCAT_VECTORS(SDNode *N); |
1060 | SDValue WidenVecOp_EXTEND(SDNode *N); |
1061 | SDValue WidenVecOp_CMP(SDNode *N); |
1062 | SDValue (SDNode *N); |
1063 | SDValue WidenVecOp_INSERT_SUBVECTOR(SDNode *N); |
1064 | SDValue (SDNode *N); |
1065 | SDValue WidenVecOp_EXTEND_VECTOR_INREG(SDNode *N); |
1066 | SDValue WidenVecOp_STORE(SDNode* N); |
1067 | SDValue WidenVecOp_VP_STORE(SDNode *N, unsigned OpNo); |
1068 | SDValue WidenVecOp_VP_STRIDED_STORE(SDNode *N, unsigned OpNo); |
1069 | SDValue WidenVecOp_MSTORE(SDNode* N, unsigned OpNo); |
1070 | SDValue WidenVecOp_MGATHER(SDNode* N, unsigned OpNo); |
1071 | SDValue WidenVecOp_MSCATTER(SDNode* N, unsigned OpNo); |
1072 | SDValue WidenVecOp_VP_SCATTER(SDNode* N, unsigned OpNo); |
1073 | SDValue WidenVecOp_VP_SPLAT(SDNode *N, unsigned OpNo); |
1074 | SDValue WidenVecOp_SETCC(SDNode* N); |
1075 | SDValue WidenVecOp_STRICT_FSETCC(SDNode* N); |
1076 | SDValue WidenVecOp_VSELECT(SDNode *N); |
1077 | |
1078 | SDValue WidenVecOp_Convert(SDNode *N); |
1079 | SDValue WidenVecOp_FP_TO_XINT_SAT(SDNode *N); |
1080 | SDValue WidenVecOp_UnrollVectorOp(SDNode *N); |
1081 | SDValue WidenVecOp_IS_FPCLASS(SDNode *N); |
1082 | SDValue WidenVecOp_VECREDUCE(SDNode *N); |
1083 | SDValue WidenVecOp_VECREDUCE_SEQ(SDNode *N); |
1084 | SDValue WidenVecOp_VP_REDUCE(SDNode *N); |
1085 | SDValue WidenVecOp_ExpOp(SDNode *N); |
1086 | SDValue WidenVecOp_VP_CttzElements(SDNode *N); |
1087 | |
1088 | /// Helper function to generate a set of operations to perform |
1089 | /// a vector operation for a wider type. |
1090 | /// |
1091 | SDValue UnrollVectorOp_StrictFP(SDNode *N, unsigned ResNE); |
1092 | |
1093 | //===--------------------------------------------------------------------===// |
1094 | // Vector Widening Utilities Support: LegalizeVectorTypes.cpp |
1095 | //===--------------------------------------------------------------------===// |
1096 | |
1097 | /// Helper function to generate a set of loads to load a vector with a |
1098 | /// resulting wider type. It takes: |
1099 | /// LdChain: list of chains for the load to be generated. |
1100 | /// Ld: load to widen |
1101 | SDValue GenWidenVectorLoads(SmallVectorImpl<SDValue> &LdChain, |
1102 | LoadSDNode *LD); |
1103 | |
1104 | /// Helper function to generate a set of extension loads to load a vector with |
1105 | /// a resulting wider type. It takes: |
1106 | /// LdChain: list of chains for the load to be generated. |
1107 | /// Ld: load to widen |
1108 | /// ExtType: extension element type |
1109 | SDValue GenWidenVectorExtLoads(SmallVectorImpl<SDValue> &LdChain, |
1110 | LoadSDNode *LD, ISD::LoadExtType ExtType); |
1111 | |
1112 | /// Helper function to generate a set of stores to store a widen vector into |
1113 | /// non-widen memory. Returns true if successful, false otherwise. |
1114 | /// StChain: list of chains for the stores we have generated |
1115 | /// ST: store of a widen value |
1116 | bool GenWidenVectorStores(SmallVectorImpl<SDValue> &StChain, StoreSDNode *ST); |
1117 | |
1118 | /// Modifies a vector input (widen or narrows) to a vector of NVT. The |
1119 | /// input vector must have the same element type as NVT. |
1120 | /// When FillWithZeroes is "on" the vector will be widened with zeroes. |
1121 | /// By default, the vector will be widened with undefined values. |
1122 | SDValue ModifyToType(SDValue InOp, EVT NVT, bool FillWithZeroes = false); |
1123 | |
1124 | /// Return a mask of vector type MaskVT to replace InMask. Also adjust |
1125 | /// MaskVT to ToMaskVT if needed with vector extension or truncation. |
1126 | SDValue convertMask(SDValue InMask, EVT MaskVT, EVT ToMaskVT); |
1127 | |
1128 | //===--------------------------------------------------------------------===// |
1129 | // Generic Splitting: LegalizeTypesGeneric.cpp |
1130 | //===--------------------------------------------------------------------===// |
1131 | |
1132 | // Legalization methods which only use that the illegal type is split into two |
1133 | // not necessarily identical types. As such they can be used for splitting |
1134 | // vectors and expanding integers and floats. |
1135 | |
1136 | void GetSplitOp(SDValue Op, SDValue &Lo, SDValue &Hi) { |
1137 | if (Op.getValueType().isVector()) |
1138 | GetSplitVector(Op, Lo, Hi); |
1139 | else if (Op.getValueType().isInteger()) |
1140 | GetExpandedInteger(Op, Lo, Hi); |
1141 | else |
1142 | GetExpandedFloat(Op, Lo, Hi); |
1143 | } |
1144 | |
1145 | /// Use ISD::EXTRACT_ELEMENT nodes to extract the low and high parts of the |
1146 | /// given value. |
1147 | void GetPairElements(SDValue Pair, SDValue &Lo, SDValue &Hi); |
1148 | |
1149 | // Generic Result Splitting. |
1150 | void SplitRes_MERGE_VALUES(SDNode *N, unsigned ResNo, |
1151 | SDValue &Lo, SDValue &Hi); |
1152 | void SplitVecRes_AssertZext (SDNode *N, SDValue &Lo, SDValue &Hi); |
1153 | void SplitRes_ARITH_FENCE (SDNode *N, SDValue &Lo, SDValue &Hi); |
1154 | void SplitRes_Select (SDNode *N, SDValue &Lo, SDValue &Hi); |
1155 | void SplitRes_SELECT_CC (SDNode *N, SDValue &Lo, SDValue &Hi); |
1156 | void SplitRes_UNDEF (SDNode *N, SDValue &Lo, SDValue &Hi); |
1157 | void SplitRes_FREEZE (SDNode *N, SDValue &Lo, SDValue &Hi); |
1158 | |
1159 | //===--------------------------------------------------------------------===// |
1160 | // Generic Expansion: LegalizeTypesGeneric.cpp |
1161 | //===--------------------------------------------------------------------===// |
1162 | |
1163 | // Legalization methods which only use that the illegal type is split into two |
1164 | // identical types of half the size, and that the Lo/Hi part is stored first |
1165 | // in memory on little/big-endian machines, followed by the Hi/Lo part. As |
1166 | // such they can be used for expanding integers and floats. |
1167 | |
1168 | void GetExpandedOp(SDValue Op, SDValue &Lo, SDValue &Hi) { |
1169 | if (Op.getValueType().isInteger()) |
1170 | GetExpandedInteger(Op, Lo, Hi); |
1171 | else |
1172 | GetExpandedFloat(Op, Lo, Hi); |
1173 | } |
1174 | |
1175 | |
1176 | /// This function will split the integer \p Op into \p NumElements |
1177 | /// operations of type \p EltVT and store them in \p Ops. |
1178 | void IntegerToVector(SDValue Op, unsigned NumElements, |
1179 | SmallVectorImpl<SDValue> &Ops, EVT EltVT); |
1180 | |
1181 | // Generic Result Expansion. |
1182 | void ExpandRes_MERGE_VALUES (SDNode *N, unsigned ResNo, |
1183 | SDValue &Lo, SDValue &Hi); |
1184 | void ExpandRes_BITCAST (SDNode *N, SDValue &Lo, SDValue &Hi); |
1185 | void ExpandRes_BUILD_PAIR (SDNode *N, SDValue &Lo, SDValue &Hi); |
1186 | void ExpandRes_EXTRACT_ELEMENT (SDNode *N, SDValue &Lo, SDValue &Hi); |
1187 | void ExpandRes_EXTRACT_VECTOR_ELT(SDNode *N, SDValue &Lo, SDValue &Hi); |
1188 | void ExpandRes_NormalLoad (SDNode *N, SDValue &Lo, SDValue &Hi); |
1189 | void ExpandRes_VAARG (SDNode *N, SDValue &Lo, SDValue &Hi); |
1190 | |
1191 | // Generic Operand Expansion. |
1192 | SDValue ExpandOp_BITCAST (SDNode *N); |
1193 | SDValue ExpandOp_BUILD_VECTOR (SDNode *N); |
1194 | SDValue ExpandOp_EXTRACT_ELEMENT (SDNode *N); |
1195 | SDValue ExpandOp_INSERT_VECTOR_ELT(SDNode *N); |
1196 | SDValue ExpandOp_SCALAR_TO_VECTOR (SDNode *N); |
1197 | SDValue ExpandOp_NormalStore (SDNode *N, unsigned OpNo); |
1198 | }; |
1199 | |
1200 | } // end namespace llvm. |
1201 | |
1202 | #endif |
1203 | |