1 | //===- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler ------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This implements bottom-up and top-down register pressure reduction list |
10 | // schedulers, using standard algorithms. The basic approach uses a priority |
11 | // queue of available nodes to schedule. One at a time, nodes are taken from |
12 | // the priority queue (thus in priority order), checked for legality to |
13 | // schedule, and emitted if legal. |
14 | // |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #include "ScheduleDAGSDNodes.h" |
18 | #include "llvm/ADT/ArrayRef.h" |
19 | #include "llvm/ADT/DenseMap.h" |
20 | #include "llvm/ADT/STLExtras.h" |
21 | #include "llvm/ADT/SmallSet.h" |
22 | #include "llvm/ADT/SmallVector.h" |
23 | #include "llvm/ADT/Statistic.h" |
24 | #include "llvm/CodeGen/ISDOpcodes.h" |
25 | #include "llvm/CodeGen/MachineFunction.h" |
26 | #include "llvm/CodeGen/MachineOperand.h" |
27 | #include "llvm/CodeGen/Register.h" |
28 | #include "llvm/CodeGen/ScheduleDAG.h" |
29 | #include "llvm/CodeGen/ScheduleHazardRecognizer.h" |
30 | #include "llvm/CodeGen/SchedulerRegistry.h" |
31 | #include "llvm/CodeGen/SelectionDAGISel.h" |
32 | #include "llvm/CodeGen/SelectionDAGNodes.h" |
33 | #include "llvm/CodeGen/TargetInstrInfo.h" |
34 | #include "llvm/CodeGen/TargetLowering.h" |
35 | #include "llvm/CodeGen/TargetOpcodes.h" |
36 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
37 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
38 | #include "llvm/CodeGenTypes/MachineValueType.h" |
39 | #include "llvm/Config/llvm-config.h" |
40 | #include "llvm/IR/InlineAsm.h" |
41 | #include "llvm/MC/MCInstrDesc.h" |
42 | #include "llvm/MC/MCRegisterInfo.h" |
43 | #include "llvm/Support/Casting.h" |
44 | #include "llvm/Support/CodeGen.h" |
45 | #include "llvm/Support/CommandLine.h" |
46 | #include "llvm/Support/Compiler.h" |
47 | #include "llvm/Support/Debug.h" |
48 | #include "llvm/Support/ErrorHandling.h" |
49 | #include "llvm/Support/raw_ostream.h" |
50 | #include <algorithm> |
51 | #include <cassert> |
52 | #include <cstdint> |
53 | #include <cstdlib> |
54 | #include <iterator> |
55 | #include <limits> |
56 | #include <memory> |
57 | #include <utility> |
58 | #include <vector> |
59 | |
60 | using namespace llvm; |
61 | |
62 | #define DEBUG_TYPE "pre-RA-sched" |
63 | |
64 | STATISTIC(NumBacktracks, "Number of times scheduler backtracked" ); |
65 | STATISTIC(NumUnfolds, "Number of nodes unfolded" ); |
66 | STATISTIC(NumDups, "Number of duplicated nodes" ); |
67 | STATISTIC(NumPRCopies, "Number of physical register copies" ); |
68 | |
69 | static RegisterScheduler |
70 | burrListDAGScheduler("list-burr" , |
71 | "Bottom-up register reduction list scheduling" , |
72 | createBURRListDAGScheduler); |
73 | |
74 | static RegisterScheduler |
75 | sourceListDAGScheduler("source" , |
76 | "Similar to list-burr but schedules in source " |
77 | "order when possible" , |
78 | createSourceListDAGScheduler); |
79 | |
80 | static RegisterScheduler |
81 | hybridListDAGScheduler("list-hybrid" , |
82 | "Bottom-up register pressure aware list scheduling " |
83 | "which tries to balance latency and register pressure" , |
84 | createHybridListDAGScheduler); |
85 | |
86 | static RegisterScheduler |
87 | ILPListDAGScheduler("list-ilp" , |
88 | "Bottom-up register pressure aware list scheduling " |
89 | "which tries to balance ILP and register pressure" , |
90 | createILPListDAGScheduler); |
91 | |
92 | static cl::opt<bool> DisableSchedCycles( |
93 | "disable-sched-cycles" , cl::Hidden, cl::init(Val: false), |
94 | cl::desc("Disable cycle-level precision during preRA scheduling" )); |
95 | |
96 | // Temporary sched=list-ilp flags until the heuristics are robust. |
97 | // Some options are also available under sched=list-hybrid. |
98 | static cl::opt<bool> DisableSchedRegPressure( |
99 | "disable-sched-reg-pressure" , cl::Hidden, cl::init(Val: false), |
100 | cl::desc("Disable regpressure priority in sched=list-ilp" )); |
101 | static cl::opt<bool> DisableSchedLiveUses( |
102 | "disable-sched-live-uses" , cl::Hidden, cl::init(Val: true), |
103 | cl::desc("Disable live use priority in sched=list-ilp" )); |
104 | static cl::opt<bool> DisableSchedVRegCycle( |
105 | "disable-sched-vrcycle" , cl::Hidden, cl::init(Val: false), |
106 | cl::desc("Disable virtual register cycle interference checks" )); |
107 | static cl::opt<bool> DisableSchedPhysRegJoin( |
108 | "disable-sched-physreg-join" , cl::Hidden, cl::init(Val: false), |
109 | cl::desc("Disable physreg def-use affinity" )); |
110 | static cl::opt<bool> DisableSchedStalls( |
111 | "disable-sched-stalls" , cl::Hidden, cl::init(Val: true), |
112 | cl::desc("Disable no-stall priority in sched=list-ilp" )); |
113 | static cl::opt<bool> DisableSchedCriticalPath( |
114 | "disable-sched-critical-path" , cl::Hidden, cl::init(Val: false), |
115 | cl::desc("Disable critical path priority in sched=list-ilp" )); |
116 | static cl::opt<bool> DisableSchedHeight( |
117 | "disable-sched-height" , cl::Hidden, cl::init(Val: false), |
118 | cl::desc("Disable scheduled-height priority in sched=list-ilp" )); |
119 | static cl::opt<bool> Disable2AddrHack( |
120 | "disable-2addr-hack" , cl::Hidden, cl::init(Val: true), |
121 | cl::desc("Disable scheduler's two-address hack" )); |
122 | |
123 | static cl::opt<int> MaxReorderWindow( |
124 | "max-sched-reorder" , cl::Hidden, cl::init(Val: 6), |
125 | cl::desc("Number of instructions to allow ahead of the critical path " |
126 | "in sched=list-ilp" )); |
127 | |
128 | static cl::opt<unsigned> AvgIPC( |
129 | "sched-avg-ipc" , cl::Hidden, cl::init(Val: 1), |
130 | cl::desc("Average inst/cycle whan no target itinerary exists." )); |
131 | |
132 | namespace { |
133 | |
134 | //===----------------------------------------------------------------------===// |
135 | /// ScheduleDAGRRList - The actual register reduction list scheduler |
136 | /// implementation. This supports both top-down and bottom-up scheduling. |
137 | /// |
138 | class ScheduleDAGRRList : public ScheduleDAGSDNodes { |
139 | private: |
140 | /// NeedLatency - True if the scheduler will make use of latency information. |
141 | bool NeedLatency; |
142 | |
143 | /// AvailableQueue - The priority queue to use for the available SUnits. |
144 | SchedulingPriorityQueue *AvailableQueue; |
145 | |
146 | /// PendingQueue - This contains all of the instructions whose operands have |
147 | /// been issued, but their results are not ready yet (due to the latency of |
148 | /// the operation). Once the operands becomes available, the instruction is |
149 | /// added to the AvailableQueue. |
150 | std::vector<SUnit *> PendingQueue; |
151 | |
152 | /// HazardRec - The hazard recognizer to use. |
153 | ScheduleHazardRecognizer *HazardRec; |
154 | |
155 | /// CurCycle - The current scheduler state corresponds to this cycle. |
156 | unsigned CurCycle = 0; |
157 | |
158 | /// MinAvailableCycle - Cycle of the soonest available instruction. |
159 | unsigned MinAvailableCycle = ~0u; |
160 | |
161 | /// IssueCount - Count instructions issued in this cycle |
162 | /// Currently valid only for bottom-up scheduling. |
163 | unsigned IssueCount = 0u; |
164 | |
165 | /// LiveRegDefs - A set of physical registers and their definition |
166 | /// that are "live". These nodes must be scheduled before any other nodes that |
167 | /// modifies the registers can be scheduled. |
168 | unsigned NumLiveRegs = 0u; |
169 | std::unique_ptr<SUnit*[]> LiveRegDefs; |
170 | std::unique_ptr<SUnit*[]> LiveRegGens; |
171 | |
172 | // Collect interferences between physical register use/defs. |
173 | // Each interference is an SUnit and set of physical registers. |
174 | SmallVector<SUnit*, 4> Interferences; |
175 | |
176 | using LRegsMapT = DenseMap<SUnit *, SmallVector<unsigned, 4>>; |
177 | |
178 | LRegsMapT LRegsMap; |
179 | |
180 | /// Topo - A topological ordering for SUnits which permits fast IsReachable |
181 | /// and similar queries. |
182 | ScheduleDAGTopologicalSort Topo; |
183 | |
184 | // Hack to keep track of the inverse of FindCallSeqStart without more crazy |
185 | // DAG crawling. |
186 | DenseMap<SUnit*, SUnit*> CallSeqEndForStart; |
187 | |
188 | public: |
189 | ScheduleDAGRRList(MachineFunction &mf, bool needlatency, |
190 | SchedulingPriorityQueue *availqueue, |
191 | CodeGenOptLevel OptLevel) |
192 | : ScheduleDAGSDNodes(mf), NeedLatency(needlatency), |
193 | AvailableQueue(availqueue), Topo(SUnits, nullptr) { |
194 | const TargetSubtargetInfo &STI = mf.getSubtarget(); |
195 | if (DisableSchedCycles || !NeedLatency) |
196 | HazardRec = new ScheduleHazardRecognizer(); |
197 | else |
198 | HazardRec = STI.getInstrInfo()->CreateTargetHazardRecognizer(STI: &STI, DAG: this); |
199 | } |
200 | |
201 | ~ScheduleDAGRRList() override { |
202 | delete HazardRec; |
203 | delete AvailableQueue; |
204 | } |
205 | |
206 | void Schedule() override; |
207 | |
208 | ScheduleHazardRecognizer *getHazardRec() { return HazardRec; } |
209 | |
210 | /// IsReachable - Checks if SU is reachable from TargetSU. |
211 | bool IsReachable(const SUnit *SU, const SUnit *TargetSU) { |
212 | return Topo.IsReachable(SU, TargetSU); |
213 | } |
214 | |
215 | /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will |
216 | /// create a cycle. |
217 | bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) { |
218 | return Topo.WillCreateCycle(TargetSU: SU, SU: TargetSU); |
219 | } |
220 | |
221 | /// AddPredQueued - Queues and update to add a predecessor edge to SUnit SU. |
222 | /// This returns true if this is a new predecessor. |
223 | /// Does *NOT* update the topological ordering! It just queues an update. |
224 | void AddPredQueued(SUnit *SU, const SDep &D) { |
225 | Topo.AddPredQueued(Y: SU, X: D.getSUnit()); |
226 | SU->addPred(D); |
227 | } |
228 | |
229 | /// AddPred - adds a predecessor edge to SUnit SU. |
230 | /// This returns true if this is a new predecessor. |
231 | /// Updates the topological ordering if required. |
232 | void AddPred(SUnit *SU, const SDep &D) { |
233 | Topo.AddPred(Y: SU, X: D.getSUnit()); |
234 | SU->addPred(D); |
235 | } |
236 | |
237 | /// RemovePred - removes a predecessor edge from SUnit SU. |
238 | /// This returns true if an edge was removed. |
239 | /// Updates the topological ordering if required. |
240 | void RemovePred(SUnit *SU, const SDep &D) { |
241 | Topo.RemovePred(M: SU, N: D.getSUnit()); |
242 | SU->removePred(D); |
243 | } |
244 | |
245 | private: |
246 | bool isReady(SUnit *SU) { |
247 | return DisableSchedCycles || !AvailableQueue->hasReadyFilter() || |
248 | AvailableQueue->isReady(SU); |
249 | } |
250 | |
251 | void ReleasePred(SUnit *SU, const SDep *PredEdge); |
252 | void ReleasePredecessors(SUnit *SU); |
253 | void ReleasePending(); |
254 | void AdvanceToCycle(unsigned NextCycle); |
255 | void AdvancePastStalls(SUnit *SU); |
256 | void EmitNode(SUnit *SU); |
257 | void ScheduleNodeBottomUp(SUnit*); |
258 | void CapturePred(SDep *PredEdge); |
259 | void UnscheduleNodeBottomUp(SUnit*); |
260 | void RestoreHazardCheckerBottomUp(); |
261 | void BacktrackBottomUp(SUnit*, SUnit*); |
262 | SUnit *TryUnfoldSU(SUnit *); |
263 | SUnit *CopyAndMoveSuccessors(SUnit*); |
264 | void InsertCopiesAndMoveSuccs(SUnit*, unsigned, |
265 | const TargetRegisterClass*, |
266 | const TargetRegisterClass*, |
267 | SmallVectorImpl<SUnit*>&); |
268 | bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&); |
269 | |
270 | void releaseInterferences(unsigned Reg = 0); |
271 | |
272 | SUnit *PickNodeToScheduleBottomUp(); |
273 | void ListScheduleBottomUp(); |
274 | |
275 | /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it. |
276 | SUnit *CreateNewSUnit(SDNode *N) { |
277 | unsigned NumSUnits = SUnits.size(); |
278 | SUnit *NewNode = newSUnit(N); |
279 | // Update the topological ordering. |
280 | if (NewNode->NodeNum >= NumSUnits) |
281 | Topo.AddSUnitWithoutPredecessors(SU: NewNode); |
282 | return NewNode; |
283 | } |
284 | |
285 | /// CreateClone - Creates a new SUnit from an existing one. |
286 | SUnit *CreateClone(SUnit *N) { |
287 | unsigned NumSUnits = SUnits.size(); |
288 | SUnit *NewNode = Clone(Old: N); |
289 | // Update the topological ordering. |
290 | if (NewNode->NodeNum >= NumSUnits) |
291 | Topo.AddSUnitWithoutPredecessors(SU: NewNode); |
292 | return NewNode; |
293 | } |
294 | |
295 | /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't |
296 | /// need actual latency information but the hybrid scheduler does. |
297 | bool forceUnitLatencies() const override { |
298 | return !NeedLatency; |
299 | } |
300 | }; |
301 | |
302 | } // end anonymous namespace |
303 | |
304 | static constexpr unsigned RegSequenceCost = 1; |
305 | |
306 | /// GetCostForDef - Looks up the register class and cost for a given definition. |
307 | /// Typically this just means looking up the representative register class, |
308 | /// but for untyped values (MVT::Untyped) it means inspecting the node's |
309 | /// opcode to determine what register class is being generated. |
310 | static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos, |
311 | const TargetLowering *TLI, |
312 | const TargetInstrInfo *TII, |
313 | const TargetRegisterInfo *TRI, |
314 | unsigned &RegClass, unsigned &Cost, |
315 | const MachineFunction &MF) { |
316 | MVT VT = RegDefPos.GetValue(); |
317 | |
318 | // Special handling for untyped values. These values can only come from |
319 | // the expansion of custom DAG-to-DAG patterns. |
320 | if (VT == MVT::Untyped) { |
321 | const SDNode *Node = RegDefPos.GetNode(); |
322 | |
323 | // Special handling for CopyFromReg of untyped values. |
324 | if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) { |
325 | Register Reg = cast<RegisterSDNode>(Val: Node->getOperand(Num: 1))->getReg(); |
326 | const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg); |
327 | RegClass = RC->getID(); |
328 | Cost = 1; |
329 | return; |
330 | } |
331 | |
332 | unsigned Opcode = Node->getMachineOpcode(); |
333 | if (Opcode == TargetOpcode::REG_SEQUENCE) { |
334 | unsigned DstRCIdx = Node->getConstantOperandVal(Num: 0); |
335 | const TargetRegisterClass *RC = TRI->getRegClass(i: DstRCIdx); |
336 | RegClass = RC->getID(); |
337 | Cost = RegSequenceCost; |
338 | return; |
339 | } |
340 | |
341 | unsigned Idx = RegDefPos.GetIdx(); |
342 | const MCInstrDesc &Desc = TII->get(Opcode); |
343 | const TargetRegisterClass *RC = TII->getRegClass(MCID: Desc, OpNum: Idx, TRI, MF); |
344 | assert(RC && "Not a valid register class" ); |
345 | RegClass = RC->getID(); |
346 | // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a |
347 | // better way to determine it. |
348 | Cost = 1; |
349 | } else { |
350 | RegClass = TLI->getRepRegClassFor(VT)->getID(); |
351 | Cost = TLI->getRepRegClassCostFor(VT); |
352 | } |
353 | } |
354 | |
355 | /// Schedule - Schedule the DAG using list scheduling. |
356 | void ScheduleDAGRRList::Schedule() { |
357 | LLVM_DEBUG(dbgs() << "********** List Scheduling " << printMBBReference(*BB) |
358 | << " '" << BB->getName() << "' **********\n" ); |
359 | |
360 | CurCycle = 0; |
361 | IssueCount = 0; |
362 | MinAvailableCycle = |
363 | DisableSchedCycles ? 0 : std::numeric_limits<unsigned>::max(); |
364 | NumLiveRegs = 0; |
365 | // Allocate slots for each physical register, plus one for a special register |
366 | // to track the virtual resource of a calling sequence. |
367 | LiveRegDefs.reset(p: new SUnit*[TRI->getNumRegs() + 1]()); |
368 | LiveRegGens.reset(p: new SUnit*[TRI->getNumRegs() + 1]()); |
369 | CallSeqEndForStart.clear(); |
370 | assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences" ); |
371 | |
372 | // Build the scheduling graph. |
373 | BuildSchedGraph(AA: nullptr); |
374 | |
375 | LLVM_DEBUG(dump()); |
376 | Topo.MarkDirty(); |
377 | |
378 | AvailableQueue->initNodes(SUnits); |
379 | |
380 | HazardRec->Reset(); |
381 | |
382 | // Execute the actual scheduling loop. |
383 | ListScheduleBottomUp(); |
384 | |
385 | AvailableQueue->releaseState(); |
386 | |
387 | LLVM_DEBUG({ |
388 | dbgs() << "*** Final schedule ***\n" ; |
389 | dumpSchedule(); |
390 | dbgs() << '\n'; |
391 | }); |
392 | } |
393 | |
394 | //===----------------------------------------------------------------------===// |
395 | // Bottom-Up Scheduling |
396 | //===----------------------------------------------------------------------===// |
397 | |
398 | /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to |
399 | /// the AvailableQueue if the count reaches zero. Also update its cycle bound. |
400 | void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) { |
401 | SUnit *PredSU = PredEdge->getSUnit(); |
402 | |
403 | #ifndef NDEBUG |
404 | if (PredSU->NumSuccsLeft == 0) { |
405 | dbgs() << "*** Scheduling failed! ***\n" ; |
406 | dumpNode(*PredSU); |
407 | dbgs() << " has been released too many times!\n" ; |
408 | llvm_unreachable(nullptr); |
409 | } |
410 | #endif |
411 | --PredSU->NumSuccsLeft; |
412 | |
413 | if (!forceUnitLatencies()) { |
414 | // Updating predecessor's height. This is now the cycle when the |
415 | // predecessor can be scheduled without causing a pipeline stall. |
416 | PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency()); |
417 | } |
418 | |
419 | // If all the node's successors are scheduled, this node is ready |
420 | // to be scheduled. Ignore the special EntrySU node. |
421 | if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) { |
422 | PredSU->isAvailable = true; |
423 | |
424 | unsigned Height = PredSU->getHeight(); |
425 | if (Height < MinAvailableCycle) |
426 | MinAvailableCycle = Height; |
427 | |
428 | if (isReady(SU: PredSU)) { |
429 | AvailableQueue->push(U: PredSU); |
430 | } |
431 | // CapturePred and others may have left the node in the pending queue, avoid |
432 | // adding it twice. |
433 | else if (!PredSU->isPending) { |
434 | PredSU->isPending = true; |
435 | PendingQueue.push_back(x: PredSU); |
436 | } |
437 | } |
438 | } |
439 | |
440 | /// IsChainDependent - Test if Outer is reachable from Inner through |
441 | /// chain dependencies. |
442 | static bool IsChainDependent(SDNode *Outer, SDNode *Inner, |
443 | unsigned NestLevel, |
444 | const TargetInstrInfo *TII) { |
445 | SDNode *N = Outer; |
446 | while (true) { |
447 | if (N == Inner) |
448 | return true; |
449 | // For a TokenFactor, examine each operand. There may be multiple ways |
450 | // to get to the CALLSEQ_BEGIN, but we need to find the path with the |
451 | // most nesting in order to ensure that we find the corresponding match. |
452 | if (N->getOpcode() == ISD::TokenFactor) { |
453 | for (const SDValue &Op : N->op_values()) |
454 | if (IsChainDependent(Outer: Op.getNode(), Inner, NestLevel, TII)) |
455 | return true; |
456 | return false; |
457 | } |
458 | // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END. |
459 | if (N->isMachineOpcode()) { |
460 | if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) { |
461 | ++NestLevel; |
462 | } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) { |
463 | if (NestLevel == 0) |
464 | return false; |
465 | --NestLevel; |
466 | } |
467 | } |
468 | // Otherwise, find the chain and continue climbing. |
469 | for (const SDValue &Op : N->op_values()) |
470 | if (Op.getValueType() == MVT::Other) { |
471 | N = Op.getNode(); |
472 | goto found_chain_operand; |
473 | } |
474 | return false; |
475 | found_chain_operand:; |
476 | if (N->getOpcode() == ISD::EntryToken) |
477 | return false; |
478 | } |
479 | } |
480 | |
481 | /// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate |
482 | /// the corresponding (lowered) CALLSEQ_BEGIN node. |
483 | /// |
484 | /// NestLevel and MaxNested are used in recursion to indcate the current level |
485 | /// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum |
486 | /// level seen so far. |
487 | /// |
488 | /// TODO: It would be better to give CALLSEQ_END an explicit operand to point |
489 | /// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it. |
490 | static SDNode * |
491 | FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest, |
492 | const TargetInstrInfo *TII) { |
493 | while (true) { |
494 | // For a TokenFactor, examine each operand. There may be multiple ways |
495 | // to get to the CALLSEQ_BEGIN, but we need to find the path with the |
496 | // most nesting in order to ensure that we find the corresponding match. |
497 | if (N->getOpcode() == ISD::TokenFactor) { |
498 | SDNode *Best = nullptr; |
499 | unsigned BestMaxNest = MaxNest; |
500 | for (const SDValue &Op : N->op_values()) { |
501 | unsigned MyNestLevel = NestLevel; |
502 | unsigned MyMaxNest = MaxNest; |
503 | if (SDNode *New = FindCallSeqStart(N: Op.getNode(), |
504 | NestLevel&: MyNestLevel, MaxNest&: MyMaxNest, TII)) |
505 | if (!Best || (MyMaxNest > BestMaxNest)) { |
506 | Best = New; |
507 | BestMaxNest = MyMaxNest; |
508 | } |
509 | } |
510 | assert(Best); |
511 | MaxNest = BestMaxNest; |
512 | return Best; |
513 | } |
514 | // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END. |
515 | if (N->isMachineOpcode()) { |
516 | if (N->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) { |
517 | ++NestLevel; |
518 | MaxNest = std::max(a: MaxNest, b: NestLevel); |
519 | } else if (N->getMachineOpcode() == TII->getCallFrameSetupOpcode()) { |
520 | assert(NestLevel != 0); |
521 | --NestLevel; |
522 | if (NestLevel == 0) |
523 | return N; |
524 | } |
525 | } |
526 | // Otherwise, find the chain and continue climbing. |
527 | for (const SDValue &Op : N->op_values()) |
528 | if (Op.getValueType() == MVT::Other) { |
529 | N = Op.getNode(); |
530 | goto found_chain_operand; |
531 | } |
532 | return nullptr; |
533 | found_chain_operand:; |
534 | if (N->getOpcode() == ISD::EntryToken) |
535 | return nullptr; |
536 | } |
537 | } |
538 | |
539 | /// Call ReleasePred for each predecessor, then update register live def/gen. |
540 | /// Always update LiveRegDefs for a register dependence even if the current SU |
541 | /// also defines the register. This effectively create one large live range |
542 | /// across a sequence of two-address node. This is important because the |
543 | /// entire chain must be scheduled together. Example: |
544 | /// |
545 | /// flags = (3) add |
546 | /// flags = (2) addc flags |
547 | /// flags = (1) addc flags |
548 | /// |
549 | /// results in |
550 | /// |
551 | /// LiveRegDefs[flags] = 3 |
552 | /// LiveRegGens[flags] = 1 |
553 | /// |
554 | /// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid |
555 | /// interference on flags. |
556 | void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) { |
557 | // Bottom up: release predecessors |
558 | for (SDep &Pred : SU->Preds) { |
559 | ReleasePred(SU, PredEdge: &Pred); |
560 | if (Pred.isAssignedRegDep()) { |
561 | // This is a physical register dependency and it's impossible or |
562 | // expensive to copy the register. Make sure nothing that can |
563 | // clobber the register is scheduled between the predecessor and |
564 | // this node. |
565 | SUnit *RegDef = LiveRegDefs[Pred.getReg()]; (void)RegDef; |
566 | assert((!RegDef || RegDef == SU || RegDef == Pred.getSUnit()) && |
567 | "interference on register dependence" ); |
568 | LiveRegDefs[Pred.getReg()] = Pred.getSUnit(); |
569 | if (!LiveRegGens[Pred.getReg()]) { |
570 | ++NumLiveRegs; |
571 | LiveRegGens[Pred.getReg()] = SU; |
572 | } |
573 | } |
574 | } |
575 | |
576 | // If we're scheduling a lowered CALLSEQ_END, find the corresponding |
577 | // CALLSEQ_BEGIN. Inject an artificial physical register dependence between |
578 | // these nodes, to prevent other calls from being interscheduled with them. |
579 | unsigned CallResource = TRI->getNumRegs(); |
580 | if (!LiveRegDefs[CallResource]) |
581 | for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) |
582 | if (Node->isMachineOpcode() && |
583 | Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) { |
584 | unsigned NestLevel = 0; |
585 | unsigned MaxNest = 0; |
586 | SDNode *N = FindCallSeqStart(N: Node, NestLevel, MaxNest, TII); |
587 | assert(N && "Must find call sequence start" ); |
588 | |
589 | SUnit *Def = &SUnits[N->getNodeId()]; |
590 | CallSeqEndForStart[Def] = SU; |
591 | |
592 | ++NumLiveRegs; |
593 | LiveRegDefs[CallResource] = Def; |
594 | LiveRegGens[CallResource] = SU; |
595 | break; |
596 | } |
597 | } |
598 | |
599 | /// Check to see if any of the pending instructions are ready to issue. If |
600 | /// so, add them to the available queue. |
601 | void ScheduleDAGRRList::ReleasePending() { |
602 | if (DisableSchedCycles) { |
603 | assert(PendingQueue.empty() && "pending instrs not allowed in this mode" ); |
604 | return; |
605 | } |
606 | |
607 | // If the available queue is empty, it is safe to reset MinAvailableCycle. |
608 | if (AvailableQueue->empty()) |
609 | MinAvailableCycle = std::numeric_limits<unsigned>::max(); |
610 | |
611 | // Check to see if any of the pending instructions are ready to issue. If |
612 | // so, add them to the available queue. |
613 | for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { |
614 | unsigned ReadyCycle = PendingQueue[i]->getHeight(); |
615 | if (ReadyCycle < MinAvailableCycle) |
616 | MinAvailableCycle = ReadyCycle; |
617 | |
618 | if (PendingQueue[i]->isAvailable) { |
619 | if (!isReady(SU: PendingQueue[i])) |
620 | continue; |
621 | AvailableQueue->push(U: PendingQueue[i]); |
622 | } |
623 | PendingQueue[i]->isPending = false; |
624 | PendingQueue[i] = PendingQueue.back(); |
625 | PendingQueue.pop_back(); |
626 | --i; --e; |
627 | } |
628 | } |
629 | |
630 | /// Move the scheduler state forward by the specified number of Cycles. |
631 | void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) { |
632 | if (NextCycle <= CurCycle) |
633 | return; |
634 | |
635 | IssueCount = 0; |
636 | AvailableQueue->setCurCycle(NextCycle); |
637 | if (!HazardRec->isEnabled()) { |
638 | // Bypass lots of virtual calls in case of long latency. |
639 | CurCycle = NextCycle; |
640 | } |
641 | else { |
642 | for (; CurCycle != NextCycle; ++CurCycle) { |
643 | HazardRec->RecedeCycle(); |
644 | } |
645 | } |
646 | // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the |
647 | // available Q to release pending nodes at least once before popping. |
648 | ReleasePending(); |
649 | } |
650 | |
651 | /// Move the scheduler state forward until the specified node's dependents are |
652 | /// ready and can be scheduled with no resource conflicts. |
653 | void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) { |
654 | if (DisableSchedCycles) |
655 | return; |
656 | |
657 | // FIXME: Nodes such as CopyFromReg probably should not advance the current |
658 | // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node |
659 | // has predecessors the cycle will be advanced when they are scheduled. |
660 | // But given the crude nature of modeling latency though such nodes, we |
661 | // currently need to treat these nodes like real instructions. |
662 | // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return; |
663 | |
664 | unsigned ReadyCycle = SU->getHeight(); |
665 | |
666 | // Bump CurCycle to account for latency. We assume the latency of other |
667 | // available instructions may be hidden by the stall (not a full pipe stall). |
668 | // This updates the hazard recognizer's cycle before reserving resources for |
669 | // this instruction. |
670 | AdvanceToCycle(NextCycle: ReadyCycle); |
671 | |
672 | // Calls are scheduled in their preceding cycle, so don't conflict with |
673 | // hazards from instructions after the call. EmitNode will reset the |
674 | // scoreboard state before emitting the call. |
675 | if (SU->isCall) |
676 | return; |
677 | |
678 | // FIXME: For resource conflicts in very long non-pipelined stages, we |
679 | // should probably skip ahead here to avoid useless scoreboard checks. |
680 | int Stalls = 0; |
681 | while (true) { |
682 | ScheduleHazardRecognizer::HazardType HT = |
683 | HazardRec->getHazardType(SU, Stalls: -Stalls); |
684 | |
685 | if (HT == ScheduleHazardRecognizer::NoHazard) |
686 | break; |
687 | |
688 | ++Stalls; |
689 | } |
690 | AdvanceToCycle(NextCycle: CurCycle + Stalls); |
691 | } |
692 | |
693 | /// Record this SUnit in the HazardRecognizer. |
694 | /// Does not update CurCycle. |
695 | void ScheduleDAGRRList::EmitNode(SUnit *SU) { |
696 | if (!HazardRec->isEnabled()) |
697 | return; |
698 | |
699 | // Check for phys reg copy. |
700 | if (!SU->getNode()) |
701 | return; |
702 | |
703 | switch (SU->getNode()->getOpcode()) { |
704 | default: |
705 | assert(SU->getNode()->isMachineOpcode() && |
706 | "This target-independent node should not be scheduled." ); |
707 | break; |
708 | case ISD::MERGE_VALUES: |
709 | case ISD::TokenFactor: |
710 | case ISD::LIFETIME_START: |
711 | case ISD::LIFETIME_END: |
712 | case ISD::CopyToReg: |
713 | case ISD::CopyFromReg: |
714 | case ISD::EH_LABEL: |
715 | // Noops don't affect the scoreboard state. Copies are likely to be |
716 | // removed. |
717 | return; |
718 | case ISD::INLINEASM: |
719 | case ISD::INLINEASM_BR: |
720 | // For inline asm, clear the pipeline state. |
721 | HazardRec->Reset(); |
722 | return; |
723 | } |
724 | if (SU->isCall) { |
725 | // Calls are scheduled with their preceding instructions. For bottom-up |
726 | // scheduling, clear the pipeline state before emitting. |
727 | HazardRec->Reset(); |
728 | } |
729 | |
730 | HazardRec->EmitInstruction(SU); |
731 | } |
732 | |
733 | static void resetVRegCycle(SUnit *SU); |
734 | |
735 | /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending |
736 | /// count of its predecessors. If a predecessor pending count is zero, add it to |
737 | /// the Available queue. |
738 | void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) { |
739 | LLVM_DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: " ); |
740 | LLVM_DEBUG(dumpNode(*SU)); |
741 | |
742 | #ifndef NDEBUG |
743 | if (CurCycle < SU->getHeight()) |
744 | LLVM_DEBUG(dbgs() << " Height [" << SU->getHeight() |
745 | << "] pipeline stall!\n" ); |
746 | #endif |
747 | |
748 | // FIXME: Do not modify node height. It may interfere with |
749 | // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the |
750 | // node its ready cycle can aid heuristics, and after scheduling it can |
751 | // indicate the scheduled cycle. |
752 | SU->setHeightToAtLeast(CurCycle); |
753 | |
754 | // Reserve resources for the scheduled instruction. |
755 | EmitNode(SU); |
756 | |
757 | Sequence.push_back(x: SU); |
758 | |
759 | AvailableQueue->scheduledNode(SU); |
760 | |
761 | // If HazardRec is disabled, and each inst counts as one cycle, then |
762 | // advance CurCycle before ReleasePredecessors to avoid useless pushes to |
763 | // PendingQueue for schedulers that implement HasReadyFilter. |
764 | if (!HazardRec->isEnabled() && AvgIPC < 2) |
765 | AdvanceToCycle(NextCycle: CurCycle + 1); |
766 | |
767 | // Update liveness of predecessors before successors to avoid treating a |
768 | // two-address node as a live range def. |
769 | ReleasePredecessors(SU); |
770 | |
771 | // Release all the implicit physical register defs that are live. |
772 | for (SDep &Succ : SU->Succs) { |
773 | // LiveRegDegs[Succ.getReg()] != SU when SU is a two-address node. |
774 | if (Succ.isAssignedRegDep() && LiveRegDefs[Succ.getReg()] == SU) { |
775 | assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!" ); |
776 | --NumLiveRegs; |
777 | LiveRegDefs[Succ.getReg()] = nullptr; |
778 | LiveRegGens[Succ.getReg()] = nullptr; |
779 | releaseInterferences(Reg: Succ.getReg()); |
780 | } |
781 | } |
782 | // Release the special call resource dependence, if this is the beginning |
783 | // of a call. |
784 | unsigned CallResource = TRI->getNumRegs(); |
785 | if (LiveRegDefs[CallResource] == SU) |
786 | for (const SDNode *SUNode = SU->getNode(); SUNode; |
787 | SUNode = SUNode->getGluedNode()) { |
788 | if (SUNode->isMachineOpcode() && |
789 | SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) { |
790 | assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!" ); |
791 | --NumLiveRegs; |
792 | LiveRegDefs[CallResource] = nullptr; |
793 | LiveRegGens[CallResource] = nullptr; |
794 | releaseInterferences(Reg: CallResource); |
795 | } |
796 | } |
797 | |
798 | resetVRegCycle(SU); |
799 | |
800 | SU->isScheduled = true; |
801 | |
802 | // Conditions under which the scheduler should eagerly advance the cycle: |
803 | // (1) No available instructions |
804 | // (2) All pipelines full, so available instructions must have hazards. |
805 | // |
806 | // If HazardRec is disabled, the cycle was pre-advanced before calling |
807 | // ReleasePredecessors. In that case, IssueCount should remain 0. |
808 | // |
809 | // Check AvailableQueue after ReleasePredecessors in case of zero latency. |
810 | if (HazardRec->isEnabled() || AvgIPC > 1) { |
811 | if (SU->getNode() && SU->getNode()->isMachineOpcode()) |
812 | ++IssueCount; |
813 | if ((HazardRec->isEnabled() && HazardRec->atIssueLimit()) |
814 | || (!HazardRec->isEnabled() && IssueCount == AvgIPC)) |
815 | AdvanceToCycle(NextCycle: CurCycle + 1); |
816 | } |
817 | } |
818 | |
819 | /// CapturePred - This does the opposite of ReleasePred. Since SU is being |
820 | /// unscheduled, increase the succ left count of its predecessors. Remove |
821 | /// them from AvailableQueue if necessary. |
822 | void ScheduleDAGRRList::CapturePred(SDep *PredEdge) { |
823 | SUnit *PredSU = PredEdge->getSUnit(); |
824 | if (PredSU->isAvailable) { |
825 | PredSU->isAvailable = false; |
826 | if (!PredSU->isPending) |
827 | AvailableQueue->remove(SU: PredSU); |
828 | } |
829 | |
830 | assert(PredSU->NumSuccsLeft < std::numeric_limits<unsigned>::max() && |
831 | "NumSuccsLeft will overflow!" ); |
832 | ++PredSU->NumSuccsLeft; |
833 | } |
834 | |
835 | /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and |
836 | /// its predecessor states to reflect the change. |
837 | void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) { |
838 | LLVM_DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: " ); |
839 | LLVM_DEBUG(dumpNode(*SU)); |
840 | |
841 | for (SDep &Pred : SU->Preds) { |
842 | CapturePred(PredEdge: &Pred); |
843 | if (Pred.isAssignedRegDep() && SU == LiveRegGens[Pred.getReg()]){ |
844 | assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!" ); |
845 | assert(LiveRegDefs[Pred.getReg()] == Pred.getSUnit() && |
846 | "Physical register dependency violated?" ); |
847 | --NumLiveRegs; |
848 | LiveRegDefs[Pred.getReg()] = nullptr; |
849 | LiveRegGens[Pred.getReg()] = nullptr; |
850 | releaseInterferences(Reg: Pred.getReg()); |
851 | } |
852 | } |
853 | |
854 | // Reclaim the special call resource dependence, if this is the beginning |
855 | // of a call. |
856 | unsigned CallResource = TRI->getNumRegs(); |
857 | for (const SDNode *SUNode = SU->getNode(); SUNode; |
858 | SUNode = SUNode->getGluedNode()) { |
859 | if (SUNode->isMachineOpcode() && |
860 | SUNode->getMachineOpcode() == TII->getCallFrameSetupOpcode()) { |
861 | SUnit *SeqEnd = CallSeqEndForStart[SU]; |
862 | assert(SeqEnd && "Call sequence start/end must be known" ); |
863 | assert(!LiveRegDefs[CallResource]); |
864 | assert(!LiveRegGens[CallResource]); |
865 | ++NumLiveRegs; |
866 | LiveRegDefs[CallResource] = SU; |
867 | LiveRegGens[CallResource] = SeqEnd; |
868 | } |
869 | } |
870 | |
871 | // Release the special call resource dependence, if this is the end |
872 | // of a call. |
873 | if (LiveRegGens[CallResource] == SU) |
874 | for (const SDNode *SUNode = SU->getNode(); SUNode; |
875 | SUNode = SUNode->getGluedNode()) { |
876 | if (SUNode->isMachineOpcode() && |
877 | SUNode->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) { |
878 | assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!" ); |
879 | assert(LiveRegDefs[CallResource]); |
880 | assert(LiveRegGens[CallResource]); |
881 | --NumLiveRegs; |
882 | LiveRegDefs[CallResource] = nullptr; |
883 | LiveRegGens[CallResource] = nullptr; |
884 | releaseInterferences(Reg: CallResource); |
885 | } |
886 | } |
887 | |
888 | for (auto &Succ : SU->Succs) { |
889 | if (Succ.isAssignedRegDep()) { |
890 | auto Reg = Succ.getReg(); |
891 | if (!LiveRegDefs[Reg]) |
892 | ++NumLiveRegs; |
893 | // This becomes the nearest def. Note that an earlier def may still be |
894 | // pending if this is a two-address node. |
895 | LiveRegDefs[Reg] = SU; |
896 | |
897 | // Update LiveRegGen only if was empty before this unscheduling. |
898 | // This is to avoid incorrect updating LiveRegGen set in previous run. |
899 | if (!LiveRegGens[Reg]) { |
900 | // Find the successor with the lowest height. |
901 | LiveRegGens[Reg] = Succ.getSUnit(); |
902 | for (auto &Succ2 : SU->Succs) { |
903 | if (Succ2.isAssignedRegDep() && Succ2.getReg() == Reg && |
904 | Succ2.getSUnit()->getHeight() < LiveRegGens[Reg]->getHeight()) |
905 | LiveRegGens[Reg] = Succ2.getSUnit(); |
906 | } |
907 | } |
908 | } |
909 | } |
910 | if (SU->getHeight() < MinAvailableCycle) |
911 | MinAvailableCycle = SU->getHeight(); |
912 | |
913 | SU->setHeightDirty(); |
914 | SU->isScheduled = false; |
915 | SU->isAvailable = true; |
916 | if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) { |
917 | // Don't make available until backtracking is complete. |
918 | SU->isPending = true; |
919 | PendingQueue.push_back(x: SU); |
920 | } |
921 | else { |
922 | AvailableQueue->push(U: SU); |
923 | } |
924 | AvailableQueue->unscheduledNode(SU); |
925 | } |
926 | |
927 | /// After backtracking, the hazard checker needs to be restored to a state |
928 | /// corresponding the current cycle. |
929 | void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() { |
930 | HazardRec->Reset(); |
931 | |
932 | unsigned LookAhead = std::min(a: (unsigned)Sequence.size(), |
933 | b: HazardRec->getMaxLookAhead()); |
934 | if (LookAhead == 0) |
935 | return; |
936 | |
937 | std::vector<SUnit *>::const_iterator I = (Sequence.end() - LookAhead); |
938 | unsigned HazardCycle = (*I)->getHeight(); |
939 | for (auto E = Sequence.end(); I != E; ++I) { |
940 | SUnit *SU = *I; |
941 | for (; SU->getHeight() > HazardCycle; ++HazardCycle) { |
942 | HazardRec->RecedeCycle(); |
943 | } |
944 | EmitNode(SU); |
945 | } |
946 | } |
947 | |
948 | /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in |
949 | /// BTCycle in order to schedule a specific node. |
950 | void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) { |
951 | SUnit *OldSU = Sequence.back(); |
952 | while (true) { |
953 | Sequence.pop_back(); |
954 | // FIXME: use ready cycle instead of height |
955 | CurCycle = OldSU->getHeight(); |
956 | UnscheduleNodeBottomUp(SU: OldSU); |
957 | AvailableQueue->setCurCycle(CurCycle); |
958 | if (OldSU == BtSU) |
959 | break; |
960 | OldSU = Sequence.back(); |
961 | } |
962 | |
963 | assert(!SU->isSucc(OldSU) && "Something is wrong!" ); |
964 | |
965 | RestoreHazardCheckerBottomUp(); |
966 | |
967 | ReleasePending(); |
968 | |
969 | ++NumBacktracks; |
970 | } |
971 | |
972 | static bool isOperandOf(const SUnit *SU, SDNode *N) { |
973 | for (const SDNode *SUNode = SU->getNode(); SUNode; |
974 | SUNode = SUNode->getGluedNode()) { |
975 | if (SUNode->isOperandOf(N)) |
976 | return true; |
977 | } |
978 | return false; |
979 | } |
980 | |
981 | /// TryUnfold - Attempt to unfold |
982 | SUnit *ScheduleDAGRRList::TryUnfoldSU(SUnit *SU) { |
983 | SDNode *N = SU->getNode(); |
984 | // Use while over if to ease fall through. |
985 | SmallVector<SDNode *, 2> NewNodes; |
986 | if (!TII->unfoldMemoryOperand(DAG&: *DAG, N, NewNodes)) |
987 | return nullptr; |
988 | |
989 | assert(NewNodes.size() == 2 && "Expected a load folding node!" ); |
990 | |
991 | N = NewNodes[1]; |
992 | SDNode *LoadNode = NewNodes[0]; |
993 | unsigned NumVals = N->getNumValues(); |
994 | unsigned OldNumVals = SU->getNode()->getNumValues(); |
995 | |
996 | // LoadNode may already exist. This can happen when there is another |
997 | // load from the same location and producing the same type of value |
998 | // but it has different alignment or volatileness. |
999 | bool isNewLoad = true; |
1000 | SUnit *LoadSU; |
1001 | if (LoadNode->getNodeId() != -1) { |
1002 | LoadSU = &SUnits[LoadNode->getNodeId()]; |
1003 | // If LoadSU has already been scheduled, we should clone it but |
1004 | // this would negate the benefit to unfolding so just return SU. |
1005 | if (LoadSU->isScheduled) |
1006 | return SU; |
1007 | isNewLoad = false; |
1008 | } else { |
1009 | LoadSU = CreateNewSUnit(N: LoadNode); |
1010 | LoadNode->setNodeId(LoadSU->NodeNum); |
1011 | |
1012 | InitNumRegDefsLeft(SU: LoadSU); |
1013 | computeLatency(SU: LoadSU); |
1014 | } |
1015 | |
1016 | bool isNewN = true; |
1017 | SUnit *NewSU; |
1018 | // This can only happen when isNewLoad is false. |
1019 | if (N->getNodeId() != -1) { |
1020 | NewSU = &SUnits[N->getNodeId()]; |
1021 | // If NewSU has already been scheduled, we need to clone it, but this |
1022 | // negates the benefit to unfolding so just return SU. |
1023 | if (NewSU->isScheduled) { |
1024 | return SU; |
1025 | } |
1026 | isNewN = false; |
1027 | } else { |
1028 | NewSU = CreateNewSUnit(N); |
1029 | N->setNodeId(NewSU->NodeNum); |
1030 | |
1031 | const MCInstrDesc &MCID = TII->get(Opcode: N->getMachineOpcode()); |
1032 | for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { |
1033 | if (MCID.getOperandConstraint(OpNum: i, Constraint: MCOI::TIED_TO) != -1) { |
1034 | NewSU->isTwoAddress = true; |
1035 | break; |
1036 | } |
1037 | } |
1038 | if (MCID.isCommutable()) |
1039 | NewSU->isCommutable = true; |
1040 | |
1041 | InitNumRegDefsLeft(SU: NewSU); |
1042 | computeLatency(SU: NewSU); |
1043 | } |
1044 | |
1045 | LLVM_DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n" ); |
1046 | |
1047 | // Now that we are committed to unfolding replace DAG Uses. |
1048 | for (unsigned i = 0; i != NumVals; ++i) |
1049 | DAG->ReplaceAllUsesOfValueWith(From: SDValue(SU->getNode(), i), To: SDValue(N, i)); |
1050 | DAG->ReplaceAllUsesOfValueWith(From: SDValue(SU->getNode(), OldNumVals - 1), |
1051 | To: SDValue(LoadNode, 1)); |
1052 | |
1053 | // Record all the edges to and from the old SU, by category. |
1054 | SmallVector<SDep, 4> ChainPreds; |
1055 | SmallVector<SDep, 4> ChainSuccs; |
1056 | SmallVector<SDep, 4> LoadPreds; |
1057 | SmallVector<SDep, 4> NodePreds; |
1058 | SmallVector<SDep, 4> NodeSuccs; |
1059 | for (SDep &Pred : SU->Preds) { |
1060 | if (Pred.isCtrl()) |
1061 | ChainPreds.push_back(Elt: Pred); |
1062 | else if (isOperandOf(SU: Pred.getSUnit(), N: LoadNode)) |
1063 | LoadPreds.push_back(Elt: Pred); |
1064 | else |
1065 | NodePreds.push_back(Elt: Pred); |
1066 | } |
1067 | for (SDep &Succ : SU->Succs) { |
1068 | if (Succ.isCtrl()) |
1069 | ChainSuccs.push_back(Elt: Succ); |
1070 | else |
1071 | NodeSuccs.push_back(Elt: Succ); |
1072 | } |
1073 | |
1074 | // Now assign edges to the newly-created nodes. |
1075 | for (const SDep &Pred : ChainPreds) { |
1076 | RemovePred(SU, D: Pred); |
1077 | if (isNewLoad) |
1078 | AddPredQueued(SU: LoadSU, D: Pred); |
1079 | } |
1080 | for (const SDep &Pred : LoadPreds) { |
1081 | RemovePred(SU, D: Pred); |
1082 | if (isNewLoad) |
1083 | AddPredQueued(SU: LoadSU, D: Pred); |
1084 | } |
1085 | for (const SDep &Pred : NodePreds) { |
1086 | RemovePred(SU, D: Pred); |
1087 | AddPredQueued(SU: NewSU, D: Pred); |
1088 | } |
1089 | for (SDep &D : NodeSuccs) { |
1090 | SUnit *SuccDep = D.getSUnit(); |
1091 | D.setSUnit(SU); |
1092 | RemovePred(SU: SuccDep, D); |
1093 | D.setSUnit(NewSU); |
1094 | AddPredQueued(SU: SuccDep, D); |
1095 | // Balance register pressure. |
1096 | if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled && |
1097 | !D.isCtrl() && NewSU->NumRegDefsLeft > 0) |
1098 | --NewSU->NumRegDefsLeft; |
1099 | } |
1100 | for (SDep &D : ChainSuccs) { |
1101 | SUnit *SuccDep = D.getSUnit(); |
1102 | D.setSUnit(SU); |
1103 | RemovePred(SU: SuccDep, D); |
1104 | if (isNewLoad) { |
1105 | D.setSUnit(LoadSU); |
1106 | AddPredQueued(SU: SuccDep, D); |
1107 | } |
1108 | } |
1109 | |
1110 | // Add a data dependency to reflect that NewSU reads the value defined |
1111 | // by LoadSU. |
1112 | SDep D(LoadSU, SDep::Data, 0); |
1113 | D.setLatency(LoadSU->Latency); |
1114 | AddPredQueued(SU: NewSU, D); |
1115 | |
1116 | if (isNewLoad) |
1117 | AvailableQueue->addNode(SU: LoadSU); |
1118 | if (isNewN) |
1119 | AvailableQueue->addNode(SU: NewSU); |
1120 | |
1121 | ++NumUnfolds; |
1122 | |
1123 | if (NewSU->NumSuccsLeft == 0) |
1124 | NewSU->isAvailable = true; |
1125 | |
1126 | return NewSU; |
1127 | } |
1128 | |
1129 | /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled |
1130 | /// successors to the newly created node. |
1131 | SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) { |
1132 | SDNode *N = SU->getNode(); |
1133 | if (!N) |
1134 | return nullptr; |
1135 | |
1136 | LLVM_DEBUG(dbgs() << "Considering duplicating the SU\n" ); |
1137 | LLVM_DEBUG(dumpNode(*SU)); |
1138 | |
1139 | if (N->getGluedNode() && |
1140 | !TII->canCopyGluedNodeDuringSchedule(N)) { |
1141 | LLVM_DEBUG( |
1142 | dbgs() |
1143 | << "Giving up because it has incoming glue and the target does not " |
1144 | "want to copy it\n" ); |
1145 | return nullptr; |
1146 | } |
1147 | |
1148 | SUnit *NewSU; |
1149 | bool TryUnfold = false; |
1150 | for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { |
1151 | MVT VT = N->getSimpleValueType(ResNo: i); |
1152 | if (VT == MVT::Glue) { |
1153 | LLVM_DEBUG(dbgs() << "Giving up because it has outgoing glue\n" ); |
1154 | return nullptr; |
1155 | } else if (VT == MVT::Other) |
1156 | TryUnfold = true; |
1157 | } |
1158 | for (const SDValue &Op : N->op_values()) { |
1159 | MVT VT = Op.getNode()->getSimpleValueType(ResNo: Op.getResNo()); |
1160 | if (VT == MVT::Glue && !TII->canCopyGluedNodeDuringSchedule(N)) { |
1161 | LLVM_DEBUG( |
1162 | dbgs() << "Giving up because it one of the operands is glue and " |
1163 | "the target does not want to copy it\n" ); |
1164 | return nullptr; |
1165 | } |
1166 | } |
1167 | |
1168 | // If possible unfold instruction. |
1169 | if (TryUnfold) { |
1170 | SUnit *UnfoldSU = TryUnfoldSU(SU); |
1171 | if (!UnfoldSU) |
1172 | return nullptr; |
1173 | SU = UnfoldSU; |
1174 | N = SU->getNode(); |
1175 | // If this can be scheduled don't bother duplicating and just return |
1176 | if (SU->NumSuccsLeft == 0) |
1177 | return SU; |
1178 | } |
1179 | |
1180 | LLVM_DEBUG(dbgs() << " Duplicating SU #" << SU->NodeNum << "\n" ); |
1181 | NewSU = CreateClone(N: SU); |
1182 | |
1183 | // New SUnit has the exact same predecessors. |
1184 | for (SDep &Pred : SU->Preds) |
1185 | if (!Pred.isArtificial()) |
1186 | AddPredQueued(SU: NewSU, D: Pred); |
1187 | |
1188 | // Make sure the clone comes after the original. (InstrEmitter assumes |
1189 | // this ordering.) |
1190 | AddPredQueued(SU: NewSU, D: SDep(SU, SDep::Artificial)); |
1191 | |
1192 | // Only copy scheduled successors. Cut them from old node's successor |
1193 | // list and move them over. |
1194 | SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps; |
1195 | for (SDep &Succ : SU->Succs) { |
1196 | if (Succ.isArtificial()) |
1197 | continue; |
1198 | SUnit *SuccSU = Succ.getSUnit(); |
1199 | if (SuccSU->isScheduled) { |
1200 | SDep D = Succ; |
1201 | D.setSUnit(NewSU); |
1202 | AddPredQueued(SU: SuccSU, D); |
1203 | D.setSUnit(SU); |
1204 | DelDeps.emplace_back(Args&: SuccSU, Args&: D); |
1205 | } |
1206 | } |
1207 | for (const auto &[DelSU, DelD] : DelDeps) |
1208 | RemovePred(SU: DelSU, D: DelD); |
1209 | |
1210 | AvailableQueue->updateNode(SU); |
1211 | AvailableQueue->addNode(SU: NewSU); |
1212 | |
1213 | ++NumDups; |
1214 | return NewSU; |
1215 | } |
1216 | |
1217 | /// InsertCopiesAndMoveSuccs - Insert register copies and move all |
1218 | /// scheduled successors of the given SUnit to the last copy. |
1219 | void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg, |
1220 | const TargetRegisterClass *DestRC, |
1221 | const TargetRegisterClass *SrcRC, |
1222 | SmallVectorImpl<SUnit*> &Copies) { |
1223 | SUnit *CopyFromSU = CreateNewSUnit(N: nullptr); |
1224 | CopyFromSU->CopySrcRC = SrcRC; |
1225 | CopyFromSU->CopyDstRC = DestRC; |
1226 | |
1227 | SUnit *CopyToSU = CreateNewSUnit(N: nullptr); |
1228 | CopyToSU->CopySrcRC = DestRC; |
1229 | CopyToSU->CopyDstRC = SrcRC; |
1230 | |
1231 | // Only copy scheduled successors. Cut them from old node's successor |
1232 | // list and move them over. |
1233 | SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps; |
1234 | for (SDep &Succ : SU->Succs) { |
1235 | if (Succ.isArtificial()) |
1236 | continue; |
1237 | SUnit *SuccSU = Succ.getSUnit(); |
1238 | if (SuccSU->isScheduled) { |
1239 | SDep D = Succ; |
1240 | D.setSUnit(CopyToSU); |
1241 | AddPredQueued(SU: SuccSU, D); |
1242 | DelDeps.emplace_back(Args&: SuccSU, Args&: Succ); |
1243 | } |
1244 | else { |
1245 | // Avoid scheduling the def-side copy before other successors. Otherwise, |
1246 | // we could introduce another physreg interference on the copy and |
1247 | // continue inserting copies indefinitely. |
1248 | AddPredQueued(SU: SuccSU, D: SDep(CopyFromSU, SDep::Artificial)); |
1249 | } |
1250 | } |
1251 | for (const auto &[DelSU, DelD] : DelDeps) |
1252 | RemovePred(SU: DelSU, D: DelD); |
1253 | |
1254 | SDep FromDep(SU, SDep::Data, Reg); |
1255 | FromDep.setLatency(SU->Latency); |
1256 | AddPredQueued(SU: CopyFromSU, D: FromDep); |
1257 | SDep ToDep(CopyFromSU, SDep::Data, 0); |
1258 | ToDep.setLatency(CopyFromSU->Latency); |
1259 | AddPredQueued(SU: CopyToSU, D: ToDep); |
1260 | |
1261 | AvailableQueue->updateNode(SU); |
1262 | AvailableQueue->addNode(SU: CopyFromSU); |
1263 | AvailableQueue->addNode(SU: CopyToSU); |
1264 | Copies.push_back(Elt: CopyFromSU); |
1265 | Copies.push_back(Elt: CopyToSU); |
1266 | |
1267 | ++NumPRCopies; |
1268 | } |
1269 | |
1270 | /// getPhysicalRegisterVT - Returns the ValueType of the physical register |
1271 | /// definition of the specified node. |
1272 | /// FIXME: Move to SelectionDAG? |
1273 | static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg, |
1274 | const TargetInstrInfo *TII) { |
1275 | unsigned NumRes; |
1276 | if (N->getOpcode() == ISD::CopyFromReg) { |
1277 | // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type. |
1278 | NumRes = 1; |
1279 | } else { |
1280 | const MCInstrDesc &MCID = TII->get(Opcode: N->getMachineOpcode()); |
1281 | assert(!MCID.implicit_defs().empty() && |
1282 | "Physical reg def must be in implicit def list!" ); |
1283 | NumRes = MCID.getNumDefs(); |
1284 | for (MCPhysReg ImpDef : MCID.implicit_defs()) { |
1285 | if (Reg == ImpDef) |
1286 | break; |
1287 | ++NumRes; |
1288 | } |
1289 | } |
1290 | return N->getSimpleValueType(ResNo: NumRes); |
1291 | } |
1292 | |
1293 | /// CheckForLiveRegDef - Return true and update live register vector if the |
1294 | /// specified register def of the specified SUnit clobbers any "live" registers. |
1295 | static void CheckForLiveRegDef(SUnit *SU, unsigned Reg, SUnit **LiveRegDefs, |
1296 | SmallSet<unsigned, 4> &RegAdded, |
1297 | SmallVectorImpl<unsigned> &LRegs, |
1298 | const TargetRegisterInfo *TRI, |
1299 | const SDNode *Node = nullptr) { |
1300 | for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) { |
1301 | |
1302 | // Check if Ref is live. |
1303 | if (!LiveRegDefs[*AliasI]) continue; |
1304 | |
1305 | // Allow multiple uses of the same def. |
1306 | if (LiveRegDefs[*AliasI] == SU) continue; |
1307 | |
1308 | // Allow multiple uses of same def |
1309 | if (Node && LiveRegDefs[*AliasI]->getNode() == Node) |
1310 | continue; |
1311 | |
1312 | // Add Reg to the set of interfering live regs. |
1313 | if (RegAdded.insert(V: *AliasI).second) { |
1314 | LRegs.push_back(Elt: *AliasI); |
1315 | } |
1316 | } |
1317 | } |
1318 | |
1319 | /// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered |
1320 | /// by RegMask, and add them to LRegs. |
1321 | static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask, |
1322 | ArrayRef<SUnit*> LiveRegDefs, |
1323 | SmallSet<unsigned, 4> &RegAdded, |
1324 | SmallVectorImpl<unsigned> &LRegs) { |
1325 | // Look at all live registers. Skip Reg0 and the special CallResource. |
1326 | for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) { |
1327 | if (!LiveRegDefs[i]) continue; |
1328 | if (LiveRegDefs[i] == SU) continue; |
1329 | if (!MachineOperand::clobbersPhysReg(RegMask, PhysReg: i)) continue; |
1330 | if (RegAdded.insert(V: i).second) |
1331 | LRegs.push_back(Elt: i); |
1332 | } |
1333 | } |
1334 | |
1335 | /// getNodeRegMask - Returns the register mask attached to an SDNode, if any. |
1336 | static const uint32_t *getNodeRegMask(const SDNode *N) { |
1337 | for (const SDValue &Op : N->op_values()) |
1338 | if (const auto *RegOp = dyn_cast<RegisterMaskSDNode>(Val: Op.getNode())) |
1339 | return RegOp->getRegMask(); |
1340 | return nullptr; |
1341 | } |
1342 | |
1343 | /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay |
1344 | /// scheduling of the given node to satisfy live physical register dependencies. |
1345 | /// If the specific node is the last one that's available to schedule, do |
1346 | /// whatever is necessary (i.e. backtracking or cloning) to make it possible. |
1347 | bool ScheduleDAGRRList:: |
1348 | DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) { |
1349 | if (NumLiveRegs == 0) |
1350 | return false; |
1351 | |
1352 | SmallSet<unsigned, 4> RegAdded; |
1353 | // If this node would clobber any "live" register, then it's not ready. |
1354 | // |
1355 | // If SU is the currently live definition of the same register that it uses, |
1356 | // then we are free to schedule it. |
1357 | for (SDep &Pred : SU->Preds) { |
1358 | if (Pred.isAssignedRegDep() && LiveRegDefs[Pred.getReg()] != SU) |
1359 | CheckForLiveRegDef(SU: Pred.getSUnit(), Reg: Pred.getReg(), LiveRegDefs: LiveRegDefs.get(), |
1360 | RegAdded, LRegs, TRI); |
1361 | } |
1362 | |
1363 | for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) { |
1364 | if (Node->getOpcode() == ISD::INLINEASM || |
1365 | Node->getOpcode() == ISD::INLINEASM_BR) { |
1366 | // Inline asm can clobber physical defs. |
1367 | unsigned NumOps = Node->getNumOperands(); |
1368 | if (Node->getOperand(Num: NumOps-1).getValueType() == MVT::Glue) |
1369 | --NumOps; // Ignore the glue operand. |
1370 | |
1371 | for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { |
1372 | unsigned Flags = Node->getConstantOperandVal(Num: i); |
1373 | const InlineAsm::Flag F(Flags); |
1374 | unsigned NumVals = F.getNumOperandRegisters(); |
1375 | |
1376 | ++i; // Skip the ID value. |
1377 | if (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || |
1378 | F.isClobberKind()) { |
1379 | // Check for def of register or earlyclobber register. |
1380 | for (; NumVals; --NumVals, ++i) { |
1381 | Register Reg = cast<RegisterSDNode>(Val: Node->getOperand(Num: i))->getReg(); |
1382 | if (Reg.isPhysical()) |
1383 | CheckForLiveRegDef(SU, Reg, LiveRegDefs: LiveRegDefs.get(), RegAdded, LRegs, TRI); |
1384 | } |
1385 | } else |
1386 | i += NumVals; |
1387 | } |
1388 | continue; |
1389 | } |
1390 | |
1391 | if (Node->getOpcode() == ISD::CopyToReg) { |
1392 | Register Reg = cast<RegisterSDNode>(Val: Node->getOperand(Num: 1))->getReg(); |
1393 | if (Reg.isPhysical()) { |
1394 | SDNode *SrcNode = Node->getOperand(Num: 2).getNode(); |
1395 | CheckForLiveRegDef(SU, Reg, LiveRegDefs: LiveRegDefs.get(), RegAdded, LRegs, TRI, |
1396 | Node: SrcNode); |
1397 | } |
1398 | } |
1399 | |
1400 | if (!Node->isMachineOpcode()) |
1401 | continue; |
1402 | // If we're in the middle of scheduling a call, don't begin scheduling |
1403 | // another call. Also, don't allow any physical registers to be live across |
1404 | // the call. |
1405 | if (Node->getMachineOpcode() == TII->getCallFrameDestroyOpcode()) { |
1406 | // Check the special calling-sequence resource. |
1407 | unsigned CallResource = TRI->getNumRegs(); |
1408 | if (LiveRegDefs[CallResource]) { |
1409 | SDNode *Gen = LiveRegGens[CallResource]->getNode(); |
1410 | while (SDNode *Glued = Gen->getGluedNode()) |
1411 | Gen = Glued; |
1412 | if (!IsChainDependent(Outer: Gen, Inner: Node, NestLevel: 0, TII) && |
1413 | RegAdded.insert(V: CallResource).second) |
1414 | LRegs.push_back(Elt: CallResource); |
1415 | } |
1416 | } |
1417 | if (const uint32_t *RegMask = getNodeRegMask(N: Node)) |
1418 | CheckForLiveRegDefMasked(SU, RegMask, |
1419 | LiveRegDefs: ArrayRef(LiveRegDefs.get(), TRI->getNumRegs()), |
1420 | RegAdded, LRegs); |
1421 | |
1422 | const MCInstrDesc &MCID = TII->get(Opcode: Node->getMachineOpcode()); |
1423 | if (MCID.hasOptionalDef()) { |
1424 | // Most ARM instructions have an OptionalDef for CPSR, to model the S-bit. |
1425 | // This operand can be either a def of CPSR, if the S bit is set; or a use |
1426 | // of %noreg. When the OptionalDef is set to a valid register, we need to |
1427 | // handle it in the same way as an ImplicitDef. |
1428 | for (unsigned i = 0; i < MCID.getNumDefs(); ++i) |
1429 | if (MCID.operands()[i].isOptionalDef()) { |
1430 | const SDValue &OptionalDef = Node->getOperand(Num: i - Node->getNumValues()); |
1431 | Register Reg = cast<RegisterSDNode>(Val: OptionalDef)->getReg(); |
1432 | CheckForLiveRegDef(SU, Reg, LiveRegDefs: LiveRegDefs.get(), RegAdded, LRegs, TRI); |
1433 | } |
1434 | } |
1435 | for (MCPhysReg Reg : MCID.implicit_defs()) |
1436 | CheckForLiveRegDef(SU, Reg, LiveRegDefs: LiveRegDefs.get(), RegAdded, LRegs, TRI); |
1437 | } |
1438 | |
1439 | return !LRegs.empty(); |
1440 | } |
1441 | |
1442 | void ScheduleDAGRRList::releaseInterferences(unsigned Reg) { |
1443 | // Add the nodes that aren't ready back onto the available list. |
1444 | for (unsigned i = Interferences.size(); i > 0; --i) { |
1445 | SUnit *SU = Interferences[i-1]; |
1446 | LRegsMapT::iterator LRegsPos = LRegsMap.find(Val: SU); |
1447 | if (Reg) { |
1448 | SmallVectorImpl<unsigned> &LRegs = LRegsPos->second; |
1449 | if (!is_contained(Range&: LRegs, Element: Reg)) |
1450 | continue; |
1451 | } |
1452 | SU->isPending = false; |
1453 | // The interfering node may no longer be available due to backtracking. |
1454 | // Furthermore, it may have been made available again, in which case it is |
1455 | // now already in the AvailableQueue. |
1456 | if (SU->isAvailable && !SU->NodeQueueId) { |
1457 | LLVM_DEBUG(dbgs() << " Repushing SU #" << SU->NodeNum << '\n'); |
1458 | AvailableQueue->push(U: SU); |
1459 | } |
1460 | if (i < Interferences.size()) |
1461 | Interferences[i-1] = Interferences.back(); |
1462 | Interferences.pop_back(); |
1463 | LRegsMap.erase(I: LRegsPos); |
1464 | } |
1465 | } |
1466 | |
1467 | /// Return a node that can be scheduled in this cycle. Requirements: |
1468 | /// (1) Ready: latency has been satisfied |
1469 | /// (2) No Hazards: resources are available |
1470 | /// (3) No Interferences: may unschedule to break register interferences. |
1471 | SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() { |
1472 | SUnit *CurSU = AvailableQueue->empty() ? nullptr : AvailableQueue->pop(); |
1473 | auto FindAvailableNode = [&]() { |
1474 | while (CurSU) { |
1475 | SmallVector<unsigned, 4> LRegs; |
1476 | if (!DelayForLiveRegsBottomUp(SU: CurSU, LRegs)) |
1477 | break; |
1478 | LLVM_DEBUG(dbgs() << " Interfering reg " ; |
1479 | if (LRegs[0] == TRI->getNumRegs()) dbgs() << "CallResource" ; |
1480 | else dbgs() << printReg(LRegs[0], TRI); |
1481 | dbgs() << " SU #" << CurSU->NodeNum << '\n'); |
1482 | auto [LRegsIter, LRegsInserted] = LRegsMap.try_emplace(Key: CurSU, Args&: LRegs); |
1483 | if (LRegsInserted) { |
1484 | CurSU->isPending = true; // This SU is not in AvailableQueue right now. |
1485 | Interferences.push_back(Elt: CurSU); |
1486 | } |
1487 | else { |
1488 | assert(CurSU->isPending && "Interferences are pending" ); |
1489 | // Update the interference with current live regs. |
1490 | LRegsIter->second = LRegs; |
1491 | } |
1492 | CurSU = AvailableQueue->pop(); |
1493 | } |
1494 | }; |
1495 | FindAvailableNode(); |
1496 | if (CurSU) |
1497 | return CurSU; |
1498 | |
1499 | // We query the topological order in the loop body, so make sure outstanding |
1500 | // updates are applied before entering it (we only enter the loop if there |
1501 | // are some interferences). If we make changes to the ordering, we exit |
1502 | // the loop. |
1503 | |
1504 | // All candidates are delayed due to live physical reg dependencies. |
1505 | // Try backtracking, code duplication, or inserting cross class copies |
1506 | // to resolve it. |
1507 | for (SUnit *TrySU : Interferences) { |
1508 | SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU]; |
1509 | |
1510 | // Try unscheduling up to the point where it's safe to schedule |
1511 | // this node. |
1512 | SUnit *BtSU = nullptr; |
1513 | unsigned LiveCycle = std::numeric_limits<unsigned>::max(); |
1514 | for (unsigned Reg : LRegs) { |
1515 | if (LiveRegGens[Reg]->getHeight() < LiveCycle) { |
1516 | BtSU = LiveRegGens[Reg]; |
1517 | LiveCycle = BtSU->getHeight(); |
1518 | } |
1519 | } |
1520 | if (!WillCreateCycle(SU: TrySU, TargetSU: BtSU)) { |
1521 | // BacktrackBottomUp mutates Interferences! |
1522 | BacktrackBottomUp(SU: TrySU, BtSU); |
1523 | |
1524 | // Force the current node to be scheduled before the node that |
1525 | // requires the physical reg dep. |
1526 | if (BtSU->isAvailable) { |
1527 | BtSU->isAvailable = false; |
1528 | if (!BtSU->isPending) |
1529 | AvailableQueue->remove(SU: BtSU); |
1530 | } |
1531 | LLVM_DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNum |
1532 | << ") to SU(" << TrySU->NodeNum << ")\n" ); |
1533 | AddPredQueued(SU: TrySU, D: SDep(BtSU, SDep::Artificial)); |
1534 | |
1535 | // If one or more successors has been unscheduled, then the current |
1536 | // node is no longer available. |
1537 | if (!TrySU->isAvailable || !TrySU->NodeQueueId) { |
1538 | LLVM_DEBUG(dbgs() << "TrySU not available; choosing node from queue\n" ); |
1539 | CurSU = AvailableQueue->pop(); |
1540 | } else { |
1541 | LLVM_DEBUG(dbgs() << "TrySU available\n" ); |
1542 | // Available and in AvailableQueue |
1543 | AvailableQueue->remove(SU: TrySU); |
1544 | CurSU = TrySU; |
1545 | } |
1546 | FindAvailableNode(); |
1547 | // Interferences has been mutated. We must break. |
1548 | break; |
1549 | } |
1550 | } |
1551 | |
1552 | if (!CurSU) { |
1553 | // Can't backtrack. If it's too expensive to copy the value, then try |
1554 | // duplicate the nodes that produces these "too expensive to copy" |
1555 | // values to break the dependency. In case even that doesn't work, |
1556 | // insert cross class copies. |
1557 | // If it's not too expensive, i.e. cost != -1, issue copies. |
1558 | SUnit *TrySU = Interferences[0]; |
1559 | SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU]; |
1560 | assert(LRegs.size() == 1 && "Can't handle this yet!" ); |
1561 | unsigned Reg = LRegs[0]; |
1562 | SUnit *LRDef = LiveRegDefs[Reg]; |
1563 | MVT VT = getPhysicalRegisterVT(N: LRDef->getNode(), Reg, TII); |
1564 | const TargetRegisterClass *RC = |
1565 | TRI->getMinimalPhysRegClass(Reg, VT); |
1566 | const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC); |
1567 | |
1568 | // If cross copy register class is the same as RC, then it must be possible |
1569 | // copy the value directly. Do not try duplicate the def. |
1570 | // If cross copy register class is not the same as RC, then it's possible to |
1571 | // copy the value but it require cross register class copies and it is |
1572 | // expensive. |
1573 | // If cross copy register class is null, then it's not possible to copy |
1574 | // the value at all. |
1575 | SUnit *NewDef = nullptr; |
1576 | if (DestRC != RC) { |
1577 | NewDef = CopyAndMoveSuccessors(SU: LRDef); |
1578 | if (!DestRC && !NewDef) |
1579 | report_fatal_error(reason: "Can't handle live physical register dependency!" ); |
1580 | } |
1581 | if (!NewDef) { |
1582 | // Issue copies, these can be expensive cross register class copies. |
1583 | SmallVector<SUnit*, 2> Copies; |
1584 | InsertCopiesAndMoveSuccs(SU: LRDef, Reg, DestRC, SrcRC: RC, Copies); |
1585 | LLVM_DEBUG(dbgs() << " Adding an edge from SU #" << TrySU->NodeNum |
1586 | << " to SU #" << Copies.front()->NodeNum << "\n" ); |
1587 | AddPredQueued(SU: TrySU, D: SDep(Copies.front(), SDep::Artificial)); |
1588 | NewDef = Copies.back(); |
1589 | } |
1590 | |
1591 | LLVM_DEBUG(dbgs() << " Adding an edge from SU #" << NewDef->NodeNum |
1592 | << " to SU #" << TrySU->NodeNum << "\n" ); |
1593 | LiveRegDefs[Reg] = NewDef; |
1594 | AddPredQueued(SU: NewDef, D: SDep(TrySU, SDep::Artificial)); |
1595 | TrySU->isAvailable = false; |
1596 | CurSU = NewDef; |
1597 | } |
1598 | assert(CurSU && "Unable to resolve live physical register dependencies!" ); |
1599 | return CurSU; |
1600 | } |
1601 | |
1602 | /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up |
1603 | /// schedulers. |
1604 | void ScheduleDAGRRList::ListScheduleBottomUp() { |
1605 | // Release any predecessors of the special Exit node. |
1606 | ReleasePredecessors(SU: &ExitSU); |
1607 | |
1608 | // Add root to Available queue. |
1609 | if (!SUnits.empty()) { |
1610 | SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()]; |
1611 | assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!" ); |
1612 | RootSU->isAvailable = true; |
1613 | AvailableQueue->push(U: RootSU); |
1614 | } |
1615 | |
1616 | // While Available queue is not empty, grab the node with the highest |
1617 | // priority. If it is not ready put it back. Schedule the node. |
1618 | Sequence.reserve(n: SUnits.size()); |
1619 | while (!AvailableQueue->empty() || !Interferences.empty()) { |
1620 | LLVM_DEBUG(dbgs() << "\nExamining Available:\n" ; |
1621 | AvailableQueue->dump(this)); |
1622 | |
1623 | // Pick the best node to schedule taking all constraints into |
1624 | // consideration. |
1625 | SUnit *SU = PickNodeToScheduleBottomUp(); |
1626 | |
1627 | AdvancePastStalls(SU); |
1628 | |
1629 | ScheduleNodeBottomUp(SU); |
1630 | |
1631 | while (AvailableQueue->empty() && !PendingQueue.empty()) { |
1632 | // Advance the cycle to free resources. Skip ahead to the next ready SU. |
1633 | assert(MinAvailableCycle < std::numeric_limits<unsigned>::max() && |
1634 | "MinAvailableCycle uninitialized" ); |
1635 | AdvanceToCycle(NextCycle: std::max(a: CurCycle + 1, b: MinAvailableCycle)); |
1636 | } |
1637 | } |
1638 | |
1639 | // Reverse the order if it is bottom up. |
1640 | std::reverse(first: Sequence.begin(), last: Sequence.end()); |
1641 | |
1642 | #ifndef NDEBUG |
1643 | VerifyScheduledSequence(/*isBottomUp=*/true); |
1644 | #endif |
1645 | } |
1646 | |
1647 | namespace { |
1648 | |
1649 | class RegReductionPQBase; |
1650 | |
1651 | struct queue_sort { |
1652 | bool isReady(SUnit* SU, unsigned CurCycle) const { return true; } |
1653 | }; |
1654 | |
1655 | #ifndef NDEBUG |
1656 | template<class SF> |
1657 | struct reverse_sort : public queue_sort { |
1658 | SF &SortFunc; |
1659 | |
1660 | reverse_sort(SF &sf) : SortFunc(sf) {} |
1661 | |
1662 | bool operator()(SUnit* left, SUnit* right) const { |
1663 | // reverse left/right rather than simply !SortFunc(left, right) |
1664 | // to expose different paths in the comparison logic. |
1665 | return SortFunc(right, left); |
1666 | } |
1667 | }; |
1668 | #endif // NDEBUG |
1669 | |
1670 | /// bu_ls_rr_sort - Priority function for bottom up register pressure |
1671 | // reduction scheduler. |
1672 | struct bu_ls_rr_sort : public queue_sort { |
1673 | enum { |
1674 | IsBottomUp = true, |
1675 | HasReadyFilter = false |
1676 | }; |
1677 | |
1678 | RegReductionPQBase *SPQ; |
1679 | |
1680 | bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {} |
1681 | |
1682 | bool operator()(SUnit* left, SUnit* right) const; |
1683 | }; |
1684 | |
1685 | // src_ls_rr_sort - Priority function for source order scheduler. |
1686 | struct src_ls_rr_sort : public queue_sort { |
1687 | enum { |
1688 | IsBottomUp = true, |
1689 | HasReadyFilter = false |
1690 | }; |
1691 | |
1692 | RegReductionPQBase *SPQ; |
1693 | |
1694 | src_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {} |
1695 | |
1696 | bool operator()(SUnit* left, SUnit* right) const; |
1697 | }; |
1698 | |
1699 | // hybrid_ls_rr_sort - Priority function for hybrid scheduler. |
1700 | struct hybrid_ls_rr_sort : public queue_sort { |
1701 | enum { |
1702 | IsBottomUp = true, |
1703 | HasReadyFilter = false |
1704 | }; |
1705 | |
1706 | RegReductionPQBase *SPQ; |
1707 | |
1708 | hybrid_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {} |
1709 | |
1710 | bool isReady(SUnit *SU, unsigned CurCycle) const; |
1711 | |
1712 | bool operator()(SUnit* left, SUnit* right) const; |
1713 | }; |
1714 | |
1715 | // ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism) |
1716 | // scheduler. |
1717 | struct ilp_ls_rr_sort : public queue_sort { |
1718 | enum { |
1719 | IsBottomUp = true, |
1720 | HasReadyFilter = false |
1721 | }; |
1722 | |
1723 | RegReductionPQBase *SPQ; |
1724 | |
1725 | ilp_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {} |
1726 | |
1727 | bool isReady(SUnit *SU, unsigned CurCycle) const; |
1728 | |
1729 | bool operator()(SUnit* left, SUnit* right) const; |
1730 | }; |
1731 | |
1732 | class RegReductionPQBase : public SchedulingPriorityQueue { |
1733 | protected: |
1734 | std::vector<SUnit *> Queue; |
1735 | unsigned CurQueueId = 0; |
1736 | bool TracksRegPressure; |
1737 | bool SrcOrder; |
1738 | |
1739 | // SUnits - The SUnits for the current graph. |
1740 | std::vector<SUnit> *SUnits = nullptr; |
1741 | |
1742 | MachineFunction &MF; |
1743 | const TargetInstrInfo *TII = nullptr; |
1744 | const TargetRegisterInfo *TRI = nullptr; |
1745 | const TargetLowering *TLI = nullptr; |
1746 | ScheduleDAGRRList *scheduleDAG = nullptr; |
1747 | |
1748 | // SethiUllmanNumbers - The SethiUllman number for each node. |
1749 | std::vector<unsigned> SethiUllmanNumbers; |
1750 | |
1751 | /// RegPressure - Tracking current reg pressure per register class. |
1752 | std::vector<unsigned> RegPressure; |
1753 | |
1754 | /// RegLimit - Tracking the number of allocatable registers per register |
1755 | /// class. |
1756 | std::vector<unsigned> RegLimit; |
1757 | |
1758 | public: |
1759 | RegReductionPQBase(MachineFunction &mf, |
1760 | bool hasReadyFilter, |
1761 | bool tracksrp, |
1762 | bool srcorder, |
1763 | const TargetInstrInfo *tii, |
1764 | const TargetRegisterInfo *tri, |
1765 | const TargetLowering *tli) |
1766 | : SchedulingPriorityQueue(hasReadyFilter), TracksRegPressure(tracksrp), |
1767 | SrcOrder(srcorder), MF(mf), TII(tii), TRI(tri), TLI(tli) { |
1768 | if (TracksRegPressure) { |
1769 | unsigned NumRC = TRI->getNumRegClasses(); |
1770 | RegLimit.resize(new_size: NumRC); |
1771 | RegPressure.resize(new_size: NumRC); |
1772 | std::fill(RegLimit.begin(), RegLimit.end(), 0); |
1773 | std::fill(RegPressure.begin(), RegPressure.end(), 0); |
1774 | for (const TargetRegisterClass *RC : TRI->regclasses()) |
1775 | RegLimit[RC->getID()] = tri->getRegPressureLimit(RC, MF); |
1776 | } |
1777 | } |
1778 | |
1779 | void setScheduleDAG(ScheduleDAGRRList *scheduleDag) { |
1780 | scheduleDAG = scheduleDag; |
1781 | } |
1782 | |
1783 | ScheduleHazardRecognizer* getHazardRec() { |
1784 | return scheduleDAG->getHazardRec(); |
1785 | } |
1786 | |
1787 | void initNodes(std::vector<SUnit> &sunits) override; |
1788 | |
1789 | void addNode(const SUnit *SU) override; |
1790 | |
1791 | void updateNode(const SUnit *SU) override; |
1792 | |
1793 | void releaseState() override { |
1794 | SUnits = nullptr; |
1795 | SethiUllmanNumbers.clear(); |
1796 | std::fill(RegPressure.begin(), RegPressure.end(), 0); |
1797 | } |
1798 | |
1799 | unsigned getNodePriority(const SUnit *SU) const; |
1800 | |
1801 | unsigned getNodeOrdering(const SUnit *SU) const { |
1802 | if (!SU->getNode()) return 0; |
1803 | |
1804 | return SU->getNode()->getIROrder(); |
1805 | } |
1806 | |
1807 | bool empty() const override { return Queue.empty(); } |
1808 | |
1809 | void push(SUnit *U) override { |
1810 | assert(!U->NodeQueueId && "Node in the queue already" ); |
1811 | U->NodeQueueId = ++CurQueueId; |
1812 | Queue.push_back(x: U); |
1813 | } |
1814 | |
1815 | void remove(SUnit *SU) override { |
1816 | assert(!Queue.empty() && "Queue is empty!" ); |
1817 | assert(SU->NodeQueueId != 0 && "Not in queue!" ); |
1818 | std::vector<SUnit *>::iterator I = llvm::find(Range&: Queue, Val: SU); |
1819 | if (I != std::prev(x: Queue.end())) |
1820 | std::swap(a&: *I, b&: Queue.back()); |
1821 | Queue.pop_back(); |
1822 | SU->NodeQueueId = 0; |
1823 | } |
1824 | |
1825 | bool tracksRegPressure() const override { return TracksRegPressure; } |
1826 | |
1827 | void dumpRegPressure() const; |
1828 | |
1829 | bool HighRegPressure(const SUnit *SU) const; |
1830 | |
1831 | bool MayReduceRegPressure(SUnit *SU) const; |
1832 | |
1833 | int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const; |
1834 | |
1835 | void scheduledNode(SUnit *SU) override; |
1836 | |
1837 | void unscheduledNode(SUnit *SU) override; |
1838 | |
1839 | protected: |
1840 | bool canClobber(const SUnit *SU, const SUnit *Op); |
1841 | void AddPseudoTwoAddrDeps(); |
1842 | void PrescheduleNodesWithMultipleUses(); |
1843 | void CalculateSethiUllmanNumbers(); |
1844 | }; |
1845 | |
1846 | template<class SF> |
1847 | static SUnit *popFromQueueImpl(std::vector<SUnit *> &Q, SF &Picker) { |
1848 | unsigned BestIdx = 0; |
1849 | // Only compute the cost for the first 1000 items in the queue, to avoid |
1850 | // excessive compile-times for very large queues. |
1851 | for (unsigned I = 1, E = std::min(a: Q.size(), b: (decltype(Q.size()))1000); I != E; |
1852 | I++) |
1853 | if (Picker(Q[BestIdx], Q[I])) |
1854 | BestIdx = I; |
1855 | SUnit *V = Q[BestIdx]; |
1856 | if (BestIdx + 1 != Q.size()) |
1857 | std::swap(a&: Q[BestIdx], b&: Q.back()); |
1858 | Q.pop_back(); |
1859 | return V; |
1860 | } |
1861 | |
1862 | template<class SF> |
1863 | SUnit *popFromQueue(std::vector<SUnit *> &Q, SF &Picker, ScheduleDAG *DAG) { |
1864 | #ifndef NDEBUG |
1865 | if (DAG->StressSched) { |
1866 | reverse_sort<SF> RPicker(Picker); |
1867 | return popFromQueueImpl(Q, RPicker); |
1868 | } |
1869 | #endif |
1870 | (void)DAG; |
1871 | return popFromQueueImpl(Q, Picker); |
1872 | } |
1873 | |
1874 | //===----------------------------------------------------------------------===// |
1875 | // RegReductionPriorityQueue Definition |
1876 | //===----------------------------------------------------------------------===// |
1877 | // |
1878 | // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers |
1879 | // to reduce register pressure. |
1880 | // |
1881 | template<class SF> |
1882 | class RegReductionPriorityQueue : public RegReductionPQBase { |
1883 | SF Picker; |
1884 | |
1885 | public: |
1886 | RegReductionPriorityQueue(MachineFunction &mf, |
1887 | bool tracksrp, |
1888 | bool srcorder, |
1889 | const TargetInstrInfo *tii, |
1890 | const TargetRegisterInfo *tri, |
1891 | const TargetLowering *tli) |
1892 | : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder, |
1893 | tii, tri, tli), |
1894 | Picker(this) {} |
1895 | |
1896 | bool isBottomUp() const override { return SF::IsBottomUp; } |
1897 | |
1898 | bool isReady(SUnit *U) const override { |
1899 | return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle()); |
1900 | } |
1901 | |
1902 | SUnit *pop() override { |
1903 | if (Queue.empty()) return nullptr; |
1904 | |
1905 | SUnit *V = popFromQueue(Queue, Picker, scheduleDAG); |
1906 | V->NodeQueueId = 0; |
1907 | return V; |
1908 | } |
1909 | |
1910 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
1911 | LLVM_DUMP_METHOD void dump(ScheduleDAG *DAG) const override { |
1912 | // Emulate pop() without clobbering NodeQueueIds. |
1913 | std::vector<SUnit *> DumpQueue = Queue; |
1914 | SF DumpPicker = Picker; |
1915 | while (!DumpQueue.empty()) { |
1916 | SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG); |
1917 | dbgs() << "Height " << SU->getHeight() << ": " ; |
1918 | DAG->dumpNode(*SU); |
1919 | } |
1920 | } |
1921 | #endif |
1922 | }; |
1923 | |
1924 | using BURegReductionPriorityQueue = RegReductionPriorityQueue<bu_ls_rr_sort>; |
1925 | using SrcRegReductionPriorityQueue = RegReductionPriorityQueue<src_ls_rr_sort>; |
1926 | using HybridBURRPriorityQueue = RegReductionPriorityQueue<hybrid_ls_rr_sort>; |
1927 | using ILPBURRPriorityQueue = RegReductionPriorityQueue<ilp_ls_rr_sort>; |
1928 | |
1929 | } // end anonymous namespace |
1930 | |
1931 | //===----------------------------------------------------------------------===// |
1932 | // Static Node Priority for Register Pressure Reduction |
1933 | //===----------------------------------------------------------------------===// |
1934 | |
1935 | // Check for special nodes that bypass scheduling heuristics. |
1936 | // Currently this pushes TokenFactor nodes down, but may be used for other |
1937 | // pseudo-ops as well. |
1938 | // |
1939 | // Return -1 to schedule right above left, 1 for left above right. |
1940 | // Return 0 if no bias exists. |
1941 | static int checkSpecialNodes(const SUnit *left, const SUnit *right) { |
1942 | bool LSchedLow = left->isScheduleLow; |
1943 | bool RSchedLow = right->isScheduleLow; |
1944 | if (LSchedLow != RSchedLow) |
1945 | return LSchedLow < RSchedLow ? 1 : -1; |
1946 | return 0; |
1947 | } |
1948 | |
1949 | /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number. |
1950 | /// Smaller number is the higher priority. |
1951 | static unsigned |
1952 | CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) { |
1953 | if (SUNumbers[SU->NodeNum] != 0) |
1954 | return SUNumbers[SU->NodeNum]; |
1955 | |
1956 | // Use WorkList to avoid stack overflow on excessively large IRs. |
1957 | struct WorkState { |
1958 | WorkState(const SUnit *SU) : SU(SU) {} |
1959 | const SUnit *SU; |
1960 | unsigned PredsProcessed = 0; |
1961 | }; |
1962 | |
1963 | SmallVector<WorkState, 16> WorkList; |
1964 | WorkList.push_back(Elt: SU); |
1965 | while (!WorkList.empty()) { |
1966 | auto &Temp = WorkList.back(); |
1967 | auto *TempSU = Temp.SU; |
1968 | bool AllPredsKnown = true; |
1969 | // Try to find a non-evaluated pred and push it into the processing stack. |
1970 | for (unsigned P = Temp.PredsProcessed; P < TempSU->Preds.size(); ++P) { |
1971 | auto &Pred = TempSU->Preds[P]; |
1972 | if (Pred.isCtrl()) continue; // ignore chain preds |
1973 | SUnit *PredSU = Pred.getSUnit(); |
1974 | if (SUNumbers[PredSU->NodeNum] == 0) { |
1975 | #ifndef NDEBUG |
1976 | // In debug mode, check that we don't have such element in the stack. |
1977 | for (auto It : WorkList) |
1978 | assert(It.SU != PredSU && "Trying to push an element twice?" ); |
1979 | #endif |
1980 | // Next time start processing this one starting from the next pred. |
1981 | Temp.PredsProcessed = P + 1; |
1982 | WorkList.push_back(Elt: PredSU); |
1983 | AllPredsKnown = false; |
1984 | break; |
1985 | } |
1986 | } |
1987 | |
1988 | if (!AllPredsKnown) |
1989 | continue; |
1990 | |
1991 | // Once all preds are known, we can calculate the answer for this one. |
1992 | unsigned SethiUllmanNumber = 0; |
1993 | unsigned = 0; |
1994 | for (const SDep &Pred : TempSU->Preds) { |
1995 | if (Pred.isCtrl()) continue; // ignore chain preds |
1996 | SUnit *PredSU = Pred.getSUnit(); |
1997 | unsigned PredSethiUllman = SUNumbers[PredSU->NodeNum]; |
1998 | assert(PredSethiUllman > 0 && "We should have evaluated this pred!" ); |
1999 | if (PredSethiUllman > SethiUllmanNumber) { |
2000 | SethiUllmanNumber = PredSethiUllman; |
2001 | Extra = 0; |
2002 | } else if (PredSethiUllman == SethiUllmanNumber) |
2003 | ++Extra; |
2004 | } |
2005 | |
2006 | SethiUllmanNumber += Extra; |
2007 | if (SethiUllmanNumber == 0) |
2008 | SethiUllmanNumber = 1; |
2009 | SUNumbers[TempSU->NodeNum] = SethiUllmanNumber; |
2010 | WorkList.pop_back(); |
2011 | } |
2012 | |
2013 | assert(SUNumbers[SU->NodeNum] > 0 && "SethiUllman should never be zero!" ); |
2014 | return SUNumbers[SU->NodeNum]; |
2015 | } |
2016 | |
2017 | /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all |
2018 | /// scheduling units. |
2019 | void RegReductionPQBase::CalculateSethiUllmanNumbers() { |
2020 | SethiUllmanNumbers.assign(n: SUnits->size(), val: 0); |
2021 | |
2022 | for (const SUnit &SU : *SUnits) |
2023 | CalcNodeSethiUllmanNumber(SU: &SU, SUNumbers&: SethiUllmanNumbers); |
2024 | } |
2025 | |
2026 | void RegReductionPQBase::addNode(const SUnit *SU) { |
2027 | unsigned SUSize = SethiUllmanNumbers.size(); |
2028 | if (SUnits->size() > SUSize) |
2029 | SethiUllmanNumbers.resize(new_size: SUSize*2, x: 0); |
2030 | CalcNodeSethiUllmanNumber(SU, SUNumbers&: SethiUllmanNumbers); |
2031 | } |
2032 | |
2033 | void RegReductionPQBase::updateNode(const SUnit *SU) { |
2034 | SethiUllmanNumbers[SU->NodeNum] = 0; |
2035 | CalcNodeSethiUllmanNumber(SU, SUNumbers&: SethiUllmanNumbers); |
2036 | } |
2037 | |
2038 | // Lower priority means schedule further down. For bottom-up scheduling, lower |
2039 | // priority SUs are scheduled before higher priority SUs. |
2040 | unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const { |
2041 | assert(SU->NodeNum < SethiUllmanNumbers.size()); |
2042 | unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0; |
2043 | if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg) |
2044 | // CopyToReg should be close to its uses to facilitate coalescing and |
2045 | // avoid spilling. |
2046 | return 0; |
2047 | if (Opc == TargetOpcode::EXTRACT_SUBREG || |
2048 | Opc == TargetOpcode::SUBREG_TO_REG || |
2049 | Opc == TargetOpcode::INSERT_SUBREG) |
2050 | // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be |
2051 | // close to their uses to facilitate coalescing. |
2052 | return 0; |
2053 | if (SU->NumSuccs == 0 && SU->NumPreds != 0) |
2054 | // If SU does not have a register use, i.e. it doesn't produce a value |
2055 | // that would be consumed (e.g. store), then it terminates a chain of |
2056 | // computation. Give it a large SethiUllman number so it will be |
2057 | // scheduled right before its predecessors that it doesn't lengthen |
2058 | // their live ranges. |
2059 | return 0xffff; |
2060 | if (SU->NumPreds == 0 && SU->NumSuccs != 0) |
2061 | // If SU does not have a register def, schedule it close to its uses |
2062 | // because it does not lengthen any live ranges. |
2063 | return 0; |
2064 | #if 1 |
2065 | return SethiUllmanNumbers[SU->NodeNum]; |
2066 | #else |
2067 | unsigned Priority = SethiUllmanNumbers[SU->NodeNum]; |
2068 | if (SU->isCallOp) { |
2069 | // FIXME: This assumes all of the defs are used as call operands. |
2070 | int NP = (int)Priority - SU->getNode()->getNumValues(); |
2071 | return (NP > 0) ? NP : 0; |
2072 | } |
2073 | return Priority; |
2074 | #endif |
2075 | } |
2076 | |
2077 | //===----------------------------------------------------------------------===// |
2078 | // Register Pressure Tracking |
2079 | //===----------------------------------------------------------------------===// |
2080 | |
2081 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
2082 | LLVM_DUMP_METHOD void RegReductionPQBase::dumpRegPressure() const { |
2083 | for (const TargetRegisterClass *RC : TRI->regclasses()) { |
2084 | unsigned Id = RC->getID(); |
2085 | unsigned RP = RegPressure[Id]; |
2086 | if (!RP) continue; |
2087 | LLVM_DEBUG(dbgs() << TRI->getRegClassName(RC) << ": " << RP << " / " |
2088 | << RegLimit[Id] << '\n'); |
2089 | } |
2090 | } |
2091 | #endif |
2092 | |
2093 | bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const { |
2094 | if (!TLI) |
2095 | return false; |
2096 | |
2097 | for (const SDep &Pred : SU->Preds) { |
2098 | if (Pred.isCtrl()) |
2099 | continue; |
2100 | SUnit *PredSU = Pred.getSUnit(); |
2101 | // NumRegDefsLeft is zero when enough uses of this node have been scheduled |
2102 | // to cover the number of registers defined (they are all live). |
2103 | if (PredSU->NumRegDefsLeft == 0) { |
2104 | continue; |
2105 | } |
2106 | for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG); |
2107 | RegDefPos.IsValid(); RegDefPos.Advance()) { |
2108 | unsigned RCId, Cost; |
2109 | GetCostForDef(RegDefPos, TLI, TII, TRI, RegClass&: RCId, Cost, MF); |
2110 | |
2111 | if ((RegPressure[RCId] + Cost) >= RegLimit[RCId]) |
2112 | return true; |
2113 | } |
2114 | } |
2115 | return false; |
2116 | } |
2117 | |
2118 | bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const { |
2119 | const SDNode *N = SU->getNode(); |
2120 | |
2121 | if (!N->isMachineOpcode() || !SU->NumSuccs) |
2122 | return false; |
2123 | |
2124 | unsigned NumDefs = TII->get(Opcode: N->getMachineOpcode()).getNumDefs(); |
2125 | for (unsigned i = 0; i != NumDefs; ++i) { |
2126 | MVT VT = N->getSimpleValueType(ResNo: i); |
2127 | if (!N->hasAnyUseOfValue(Value: i)) |
2128 | continue; |
2129 | unsigned RCId = TLI->getRepRegClassFor(VT)->getID(); |
2130 | if (RegPressure[RCId] >= RegLimit[RCId]) |
2131 | return true; |
2132 | } |
2133 | return false; |
2134 | } |
2135 | |
2136 | // Compute the register pressure contribution by this instruction by count up |
2137 | // for uses that are not live and down for defs. Only count register classes |
2138 | // that are already under high pressure. As a side effect, compute the number of |
2139 | // uses of registers that are already live. |
2140 | // |
2141 | // FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure |
2142 | // so could probably be factored. |
2143 | int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const { |
2144 | LiveUses = 0; |
2145 | int PDiff = 0; |
2146 | for (const SDep &Pred : SU->Preds) { |
2147 | if (Pred.isCtrl()) |
2148 | continue; |
2149 | SUnit *PredSU = Pred.getSUnit(); |
2150 | // NumRegDefsLeft is zero when enough uses of this node have been scheduled |
2151 | // to cover the number of registers defined (they are all live). |
2152 | if (PredSU->NumRegDefsLeft == 0) { |
2153 | if (PredSU->getNode()->isMachineOpcode()) |
2154 | ++LiveUses; |
2155 | continue; |
2156 | } |
2157 | for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG); |
2158 | RegDefPos.IsValid(); RegDefPos.Advance()) { |
2159 | MVT VT = RegDefPos.GetValue(); |
2160 | unsigned RCId = TLI->getRepRegClassFor(VT)->getID(); |
2161 | if (RegPressure[RCId] >= RegLimit[RCId]) |
2162 | ++PDiff; |
2163 | } |
2164 | } |
2165 | const SDNode *N = SU->getNode(); |
2166 | |
2167 | if (!N || !N->isMachineOpcode() || !SU->NumSuccs) |
2168 | return PDiff; |
2169 | |
2170 | unsigned NumDefs = TII->get(Opcode: N->getMachineOpcode()).getNumDefs(); |
2171 | for (unsigned i = 0; i != NumDefs; ++i) { |
2172 | MVT VT = N->getSimpleValueType(ResNo: i); |
2173 | if (!N->hasAnyUseOfValue(Value: i)) |
2174 | continue; |
2175 | unsigned RCId = TLI->getRepRegClassFor(VT)->getID(); |
2176 | if (RegPressure[RCId] >= RegLimit[RCId]) |
2177 | --PDiff; |
2178 | } |
2179 | return PDiff; |
2180 | } |
2181 | |
2182 | void RegReductionPQBase::scheduledNode(SUnit *SU) { |
2183 | if (!TracksRegPressure) |
2184 | return; |
2185 | |
2186 | if (!SU->getNode()) |
2187 | return; |
2188 | |
2189 | for (const SDep &Pred : SU->Preds) { |
2190 | if (Pred.isCtrl()) |
2191 | continue; |
2192 | SUnit *PredSU = Pred.getSUnit(); |
2193 | // NumRegDefsLeft is zero when enough uses of this node have been scheduled |
2194 | // to cover the number of registers defined (they are all live). |
2195 | if (PredSU->NumRegDefsLeft == 0) { |
2196 | continue; |
2197 | } |
2198 | // FIXME: The ScheduleDAG currently loses information about which of a |
2199 | // node's values is consumed by each dependence. Consequently, if the node |
2200 | // defines multiple register classes, we don't know which to pressurize |
2201 | // here. Instead the following loop consumes the register defs in an |
2202 | // arbitrary order. At least it handles the common case of clustered loads |
2203 | // to the same class. For precise liveness, each SDep needs to indicate the |
2204 | // result number. But that tightly couples the ScheduleDAG with the |
2205 | // SelectionDAG making updates tricky. A simpler hack would be to attach a |
2206 | // value type or register class to SDep. |
2207 | // |
2208 | // The most important aspect of register tracking is balancing the increase |
2209 | // here with the reduction further below. Note that this SU may use multiple |
2210 | // defs in PredSU. The can't be determined here, but we've already |
2211 | // compensated by reducing NumRegDefsLeft in PredSU during |
2212 | // ScheduleDAGSDNodes::AddSchedEdges. |
2213 | --PredSU->NumRegDefsLeft; |
2214 | unsigned SkipRegDefs = PredSU->NumRegDefsLeft; |
2215 | for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG); |
2216 | RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) { |
2217 | if (SkipRegDefs) |
2218 | continue; |
2219 | |
2220 | unsigned RCId, Cost; |
2221 | GetCostForDef(RegDefPos, TLI, TII, TRI, RegClass&: RCId, Cost, MF); |
2222 | RegPressure[RCId] += Cost; |
2223 | break; |
2224 | } |
2225 | } |
2226 | |
2227 | // We should have this assert, but there may be dead SDNodes that never |
2228 | // materialize as SUnits, so they don't appear to generate liveness. |
2229 | //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses"); |
2230 | int SkipRegDefs = (int)SU->NumRegDefsLeft; |
2231 | for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG); |
2232 | RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) { |
2233 | if (SkipRegDefs > 0) |
2234 | continue; |
2235 | unsigned RCId, Cost; |
2236 | GetCostForDef(RegDefPos, TLI, TII, TRI, RegClass&: RCId, Cost, MF); |
2237 | if (RegPressure[RCId] < Cost) { |
2238 | // Register pressure tracking is imprecise. This can happen. But we try |
2239 | // hard not to let it happen because it likely results in poor scheduling. |
2240 | LLVM_DEBUG(dbgs() << " SU(" << SU->NodeNum |
2241 | << ") has too many regdefs\n" ); |
2242 | RegPressure[RCId] = 0; |
2243 | } |
2244 | else { |
2245 | RegPressure[RCId] -= Cost; |
2246 | } |
2247 | } |
2248 | LLVM_DEBUG(dumpRegPressure()); |
2249 | } |
2250 | |
2251 | void RegReductionPQBase::unscheduledNode(SUnit *SU) { |
2252 | if (!TracksRegPressure) |
2253 | return; |
2254 | |
2255 | const SDNode *N = SU->getNode(); |
2256 | if (!N) return; |
2257 | |
2258 | if (!N->isMachineOpcode()) { |
2259 | if (N->getOpcode() != ISD::CopyToReg) |
2260 | return; |
2261 | } else { |
2262 | unsigned Opc = N->getMachineOpcode(); |
2263 | if (Opc == TargetOpcode::EXTRACT_SUBREG || |
2264 | Opc == TargetOpcode::INSERT_SUBREG || |
2265 | Opc == TargetOpcode::SUBREG_TO_REG || |
2266 | Opc == TargetOpcode::REG_SEQUENCE || |
2267 | Opc == TargetOpcode::IMPLICIT_DEF) |
2268 | return; |
2269 | } |
2270 | |
2271 | for (const SDep &Pred : SU->Preds) { |
2272 | if (Pred.isCtrl()) |
2273 | continue; |
2274 | SUnit *PredSU = Pred.getSUnit(); |
2275 | // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only |
2276 | // counts data deps. |
2277 | if (PredSU->NumSuccsLeft != PredSU->Succs.size()) |
2278 | continue; |
2279 | const SDNode *PN = PredSU->getNode(); |
2280 | if (!PN->isMachineOpcode()) { |
2281 | if (PN->getOpcode() == ISD::CopyFromReg) { |
2282 | MVT VT = PN->getSimpleValueType(ResNo: 0); |
2283 | unsigned RCId = TLI->getRepRegClassFor(VT)->getID(); |
2284 | RegPressure[RCId] += TLI->getRepRegClassCostFor(VT); |
2285 | } |
2286 | continue; |
2287 | } |
2288 | unsigned POpc = PN->getMachineOpcode(); |
2289 | if (POpc == TargetOpcode::IMPLICIT_DEF) |
2290 | continue; |
2291 | if (POpc == TargetOpcode::EXTRACT_SUBREG || |
2292 | POpc == TargetOpcode::INSERT_SUBREG || |
2293 | POpc == TargetOpcode::SUBREG_TO_REG) { |
2294 | MVT VT = PN->getSimpleValueType(ResNo: 0); |
2295 | unsigned RCId = TLI->getRepRegClassFor(VT)->getID(); |
2296 | RegPressure[RCId] += TLI->getRepRegClassCostFor(VT); |
2297 | continue; |
2298 | } |
2299 | if (POpc == TargetOpcode::REG_SEQUENCE) { |
2300 | unsigned DstRCIdx = PN->getConstantOperandVal(Num: 0); |
2301 | const TargetRegisterClass *RC = TRI->getRegClass(i: DstRCIdx); |
2302 | unsigned RCId = RC->getID(); |
2303 | // REG_SEQUENCE is untyped, so getRepRegClassCostFor could not be used |
2304 | // here. Instead use the same constant as in GetCostForDef. |
2305 | RegPressure[RCId] += RegSequenceCost; |
2306 | continue; |
2307 | } |
2308 | unsigned NumDefs = TII->get(Opcode: PN->getMachineOpcode()).getNumDefs(); |
2309 | for (unsigned i = 0; i != NumDefs; ++i) { |
2310 | MVT VT = PN->getSimpleValueType(ResNo: i); |
2311 | if (!PN->hasAnyUseOfValue(Value: i)) |
2312 | continue; |
2313 | unsigned RCId = TLI->getRepRegClassFor(VT)->getID(); |
2314 | if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT)) |
2315 | // Register pressure tracking is imprecise. This can happen. |
2316 | RegPressure[RCId] = 0; |
2317 | else |
2318 | RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT); |
2319 | } |
2320 | } |
2321 | |
2322 | // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses() |
2323 | // may transfer data dependencies to CopyToReg. |
2324 | if (SU->NumSuccs && N->isMachineOpcode()) { |
2325 | unsigned NumDefs = TII->get(Opcode: N->getMachineOpcode()).getNumDefs(); |
2326 | for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) { |
2327 | MVT VT = N->getSimpleValueType(ResNo: i); |
2328 | if (VT == MVT::Glue || VT == MVT::Other) |
2329 | continue; |
2330 | if (!N->hasAnyUseOfValue(Value: i)) |
2331 | continue; |
2332 | unsigned RCId = TLI->getRepRegClassFor(VT)->getID(); |
2333 | RegPressure[RCId] += TLI->getRepRegClassCostFor(VT); |
2334 | } |
2335 | } |
2336 | |
2337 | LLVM_DEBUG(dumpRegPressure()); |
2338 | } |
2339 | |
2340 | //===----------------------------------------------------------------------===// |
2341 | // Dynamic Node Priority for Register Pressure Reduction |
2342 | //===----------------------------------------------------------------------===// |
2343 | |
2344 | /// closestSucc - Returns the scheduled cycle of the successor which is |
2345 | /// closest to the current cycle. |
2346 | static unsigned closestSucc(const SUnit *SU) { |
2347 | unsigned MaxHeight = 0; |
2348 | for (const SDep &Succ : SU->Succs) { |
2349 | if (Succ.isCtrl()) continue; // ignore chain succs |
2350 | unsigned Height = Succ.getSUnit()->getHeight(); |
2351 | // If there are bunch of CopyToRegs stacked up, they should be considered |
2352 | // to be at the same position. |
2353 | if (Succ.getSUnit()->getNode() && |
2354 | Succ.getSUnit()->getNode()->getOpcode() == ISD::CopyToReg) |
2355 | Height = closestSucc(SU: Succ.getSUnit())+1; |
2356 | if (Height > MaxHeight) |
2357 | MaxHeight = Height; |
2358 | } |
2359 | return MaxHeight; |
2360 | } |
2361 | |
2362 | /// calcMaxScratches - Returns an cost estimate of the worse case requirement |
2363 | /// for scratch registers, i.e. number of data dependencies. |
2364 | static unsigned calcMaxScratches(const SUnit *SU) { |
2365 | unsigned Scratches = 0; |
2366 | for (const SDep &Pred : SU->Preds) { |
2367 | if (Pred.isCtrl()) continue; // ignore chain preds |
2368 | Scratches++; |
2369 | } |
2370 | return Scratches; |
2371 | } |
2372 | |
2373 | /// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are |
2374 | /// CopyFromReg from a virtual register. |
2375 | static bool hasOnlyLiveInOpers(const SUnit *SU) { |
2376 | bool RetVal = false; |
2377 | for (const SDep &Pred : SU->Preds) { |
2378 | if (Pred.isCtrl()) continue; |
2379 | const SUnit *PredSU = Pred.getSUnit(); |
2380 | if (PredSU->getNode() && |
2381 | PredSU->getNode()->getOpcode() == ISD::CopyFromReg) { |
2382 | Register Reg = |
2383 | cast<RegisterSDNode>(Val: PredSU->getNode()->getOperand(Num: 1))->getReg(); |
2384 | if (Reg.isVirtual()) { |
2385 | RetVal = true; |
2386 | continue; |
2387 | } |
2388 | } |
2389 | return false; |
2390 | } |
2391 | return RetVal; |
2392 | } |
2393 | |
2394 | /// hasOnlyLiveOutUses - Return true if SU has only value successors that are |
2395 | /// CopyToReg to a virtual register. This SU def is probably a liveout and |
2396 | /// it has no other use. It should be scheduled closer to the terminator. |
2397 | static bool hasOnlyLiveOutUses(const SUnit *SU) { |
2398 | bool RetVal = false; |
2399 | for (const SDep &Succ : SU->Succs) { |
2400 | if (Succ.isCtrl()) continue; |
2401 | const SUnit *SuccSU = Succ.getSUnit(); |
2402 | if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) { |
2403 | Register Reg = |
2404 | cast<RegisterSDNode>(Val: SuccSU->getNode()->getOperand(Num: 1))->getReg(); |
2405 | if (Reg.isVirtual()) { |
2406 | RetVal = true; |
2407 | continue; |
2408 | } |
2409 | } |
2410 | return false; |
2411 | } |
2412 | return RetVal; |
2413 | } |
2414 | |
2415 | // Set isVRegCycle for a node with only live in opers and live out uses. Also |
2416 | // set isVRegCycle for its CopyFromReg operands. |
2417 | // |
2418 | // This is only relevant for single-block loops, in which case the VRegCycle |
2419 | // node is likely an induction variable in which the operand and target virtual |
2420 | // registers should be coalesced (e.g. pre/post increment values). Setting the |
2421 | // isVRegCycle flag helps the scheduler prioritize other uses of the same |
2422 | // CopyFromReg so that this node becomes the virtual register "kill". This |
2423 | // avoids interference between the values live in and out of the block and |
2424 | // eliminates a copy inside the loop. |
2425 | static void initVRegCycle(SUnit *SU) { |
2426 | if (DisableSchedVRegCycle) |
2427 | return; |
2428 | |
2429 | if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU)) |
2430 | return; |
2431 | |
2432 | LLVM_DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n" ); |
2433 | |
2434 | SU->isVRegCycle = true; |
2435 | |
2436 | for (const SDep &Pred : SU->Preds) { |
2437 | if (Pred.isCtrl()) continue; |
2438 | Pred.getSUnit()->isVRegCycle = true; |
2439 | } |
2440 | } |
2441 | |
2442 | // After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of |
2443 | // CopyFromReg operands. We should no longer penalize other uses of this VReg. |
2444 | static void resetVRegCycle(SUnit *SU) { |
2445 | if (!SU->isVRegCycle) |
2446 | return; |
2447 | |
2448 | for (const SDep &Pred : SU->Preds) { |
2449 | if (Pred.isCtrl()) continue; // ignore chain preds |
2450 | SUnit *PredSU = Pred.getSUnit(); |
2451 | if (PredSU->isVRegCycle) { |
2452 | assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg && |
2453 | "VRegCycle def must be CopyFromReg" ); |
2454 | Pred.getSUnit()->isVRegCycle = false; |
2455 | } |
2456 | } |
2457 | } |
2458 | |
2459 | // Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This |
2460 | // means a node that defines the VRegCycle has not been scheduled yet. |
2461 | static bool hasVRegCycleUse(const SUnit *SU) { |
2462 | // If this SU also defines the VReg, don't hoist it as a "use". |
2463 | if (SU->isVRegCycle) |
2464 | return false; |
2465 | |
2466 | for (const SDep &Pred : SU->Preds) { |
2467 | if (Pred.isCtrl()) continue; // ignore chain preds |
2468 | if (Pred.getSUnit()->isVRegCycle && |
2469 | Pred.getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) { |
2470 | LLVM_DEBUG(dbgs() << " VReg cycle use: SU (" << SU->NodeNum << ")\n" ); |
2471 | return true; |
2472 | } |
2473 | } |
2474 | return false; |
2475 | } |
2476 | |
2477 | // Check for either a dependence (latency) or resource (hazard) stall. |
2478 | // |
2479 | // Note: The ScheduleHazardRecognizer interface requires a non-const SU. |
2480 | static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) { |
2481 | if ((int)SPQ->getCurCycle() < Height) return true; |
2482 | if (SPQ->getHazardRec()->getHazardType(SU, Stalls: 0) |
2483 | != ScheduleHazardRecognizer::NoHazard) |
2484 | return true; |
2485 | return false; |
2486 | } |
2487 | |
2488 | // Return -1 if left has higher priority, 1 if right has higher priority. |
2489 | // Return 0 if latency-based priority is equivalent. |
2490 | static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref, |
2491 | RegReductionPQBase *SPQ) { |
2492 | // Scheduling an instruction that uses a VReg whose postincrement has not yet |
2493 | // been scheduled will induce a copy. Model this as an extra cycle of latency. |
2494 | int LPenalty = hasVRegCycleUse(SU: left) ? 1 : 0; |
2495 | int RPenalty = hasVRegCycleUse(SU: right) ? 1 : 0; |
2496 | int LHeight = (int)left->getHeight() + LPenalty; |
2497 | int RHeight = (int)right->getHeight() + RPenalty; |
2498 | |
2499 | bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) && |
2500 | BUHasStall(SU: left, Height: LHeight, SPQ); |
2501 | bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) && |
2502 | BUHasStall(SU: right, Height: RHeight, SPQ); |
2503 | |
2504 | // If scheduling one of the node will cause a pipeline stall, delay it. |
2505 | // If scheduling either one of the node will cause a pipeline stall, sort |
2506 | // them according to their height. |
2507 | if (LStall) { |
2508 | if (!RStall) |
2509 | return 1; |
2510 | if (LHeight != RHeight) |
2511 | return LHeight > RHeight ? 1 : -1; |
2512 | } else if (RStall) |
2513 | return -1; |
2514 | |
2515 | // If either node is scheduling for latency, sort them by height/depth |
2516 | // and latency. |
2517 | if (!checkPref || (left->SchedulingPref == Sched::ILP || |
2518 | right->SchedulingPref == Sched::ILP)) { |
2519 | // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer |
2520 | // is enabled, grouping instructions by cycle, then its height is already |
2521 | // covered so only its depth matters. We also reach this point if both stall |
2522 | // but have the same height. |
2523 | if (!SPQ->getHazardRec()->isEnabled()) { |
2524 | if (LHeight != RHeight) |
2525 | return LHeight > RHeight ? 1 : -1; |
2526 | } |
2527 | int LDepth = left->getDepth() - LPenalty; |
2528 | int RDepth = right->getDepth() - RPenalty; |
2529 | if (LDepth != RDepth) { |
2530 | LLVM_DEBUG(dbgs() << " Comparing latency of SU (" << left->NodeNum |
2531 | << ") depth " << LDepth << " vs SU (" << right->NodeNum |
2532 | << ") depth " << RDepth << "\n" ); |
2533 | return LDepth < RDepth ? 1 : -1; |
2534 | } |
2535 | if (left->Latency != right->Latency) |
2536 | return left->Latency > right->Latency ? 1 : -1; |
2537 | } |
2538 | return 0; |
2539 | } |
2540 | |
2541 | static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) { |
2542 | // Schedule physical register definitions close to their use. This is |
2543 | // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as |
2544 | // long as shortening physreg live ranges is generally good, we can defer |
2545 | // creating a subtarget hook. |
2546 | if (!DisableSchedPhysRegJoin) { |
2547 | bool LHasPhysReg = left->hasPhysRegDefs; |
2548 | bool RHasPhysReg = right->hasPhysRegDefs; |
2549 | if (LHasPhysReg != RHasPhysReg) { |
2550 | #ifndef NDEBUG |
2551 | static const char *const PhysRegMsg[] = { " has no physreg" , |
2552 | " defines a physreg" }; |
2553 | #endif |
2554 | LLVM_DEBUG(dbgs() << " SU (" << left->NodeNum << ") " |
2555 | << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum |
2556 | << ") " << PhysRegMsg[RHasPhysReg] << "\n" ); |
2557 | return LHasPhysReg < RHasPhysReg; |
2558 | } |
2559 | } |
2560 | |
2561 | // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down. |
2562 | unsigned LPriority = SPQ->getNodePriority(SU: left); |
2563 | unsigned RPriority = SPQ->getNodePriority(SU: right); |
2564 | |
2565 | // Be really careful about hoisting call operands above previous calls. |
2566 | // Only allows it if it would reduce register pressure. |
2567 | if (left->isCall && right->isCallOp) { |
2568 | unsigned RNumVals = right->getNode()->getNumValues(); |
2569 | RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0; |
2570 | } |
2571 | if (right->isCall && left->isCallOp) { |
2572 | unsigned LNumVals = left->getNode()->getNumValues(); |
2573 | LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0; |
2574 | } |
2575 | |
2576 | if (LPriority != RPriority) |
2577 | return LPriority > RPriority; |
2578 | |
2579 | // One or both of the nodes are calls and their sethi-ullman numbers are the |
2580 | // same, then keep source order. |
2581 | if (left->isCall || right->isCall) { |
2582 | unsigned LOrder = SPQ->getNodeOrdering(SU: left); |
2583 | unsigned ROrder = SPQ->getNodeOrdering(SU: right); |
2584 | |
2585 | // Prefer an ordering where the lower the non-zero order number, the higher |
2586 | // the preference. |
2587 | if ((LOrder || ROrder) && LOrder != ROrder) |
2588 | return LOrder != 0 && (LOrder < ROrder || ROrder == 0); |
2589 | } |
2590 | |
2591 | // Try schedule def + use closer when Sethi-Ullman numbers are the same. |
2592 | // e.g. |
2593 | // t1 = op t2, c1 |
2594 | // t3 = op t4, c2 |
2595 | // |
2596 | // and the following instructions are both ready. |
2597 | // t2 = op c3 |
2598 | // t4 = op c4 |
2599 | // |
2600 | // Then schedule t2 = op first. |
2601 | // i.e. |
2602 | // t4 = op c4 |
2603 | // t2 = op c3 |
2604 | // t1 = op t2, c1 |
2605 | // t3 = op t4, c2 |
2606 | // |
2607 | // This creates more short live intervals. |
2608 | unsigned LDist = closestSucc(SU: left); |
2609 | unsigned RDist = closestSucc(SU: right); |
2610 | if (LDist != RDist) |
2611 | return LDist < RDist; |
2612 | |
2613 | // How many registers becomes live when the node is scheduled. |
2614 | unsigned LScratch = calcMaxScratches(SU: left); |
2615 | unsigned RScratch = calcMaxScratches(SU: right); |
2616 | if (LScratch != RScratch) |
2617 | return LScratch > RScratch; |
2618 | |
2619 | // Comparing latency against a call makes little sense unless the node |
2620 | // is register pressure-neutral. |
2621 | if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0)) |
2622 | return (left->NodeQueueId > right->NodeQueueId); |
2623 | |
2624 | // Do not compare latencies when one or both of the nodes are calls. |
2625 | if (!DisableSchedCycles && |
2626 | !(left->isCall || right->isCall)) { |
2627 | int result = BUCompareLatency(left, right, checkPref: false /*checkPref*/, SPQ); |
2628 | if (result != 0) |
2629 | return result > 0; |
2630 | } |
2631 | else { |
2632 | if (left->getHeight() != right->getHeight()) |
2633 | return left->getHeight() > right->getHeight(); |
2634 | |
2635 | if (left->getDepth() != right->getDepth()) |
2636 | return left->getDepth() < right->getDepth(); |
2637 | } |
2638 | |
2639 | assert(left->NodeQueueId && right->NodeQueueId && |
2640 | "NodeQueueId cannot be zero" ); |
2641 | return (left->NodeQueueId > right->NodeQueueId); |
2642 | } |
2643 | |
2644 | // Bottom up |
2645 | bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const { |
2646 | if (int res = checkSpecialNodes(left, right)) |
2647 | return res > 0; |
2648 | |
2649 | return BURRSort(left, right, SPQ); |
2650 | } |
2651 | |
2652 | // Source order, otherwise bottom up. |
2653 | bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const { |
2654 | if (int res = checkSpecialNodes(left, right)) |
2655 | return res > 0; |
2656 | |
2657 | unsigned LOrder = SPQ->getNodeOrdering(SU: left); |
2658 | unsigned ROrder = SPQ->getNodeOrdering(SU: right); |
2659 | |
2660 | // Prefer an ordering where the lower the non-zero order number, the higher |
2661 | // the preference. |
2662 | if ((LOrder || ROrder) && LOrder != ROrder) |
2663 | return LOrder != 0 && (LOrder < ROrder || ROrder == 0); |
2664 | |
2665 | return BURRSort(left, right, SPQ); |
2666 | } |
2667 | |
2668 | // If the time between now and when the instruction will be ready can cover |
2669 | // the spill code, then avoid adding it to the ready queue. This gives long |
2670 | // stalls highest priority and allows hoisting across calls. It should also |
2671 | // speed up processing the available queue. |
2672 | bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const { |
2673 | static const unsigned ReadyDelay = 3; |
2674 | |
2675 | if (SPQ->MayReduceRegPressure(SU)) return true; |
2676 | |
2677 | if (SU->getHeight() > (CurCycle + ReadyDelay)) return false; |
2678 | |
2679 | if (SPQ->getHazardRec()->getHazardType(SU, Stalls: -ReadyDelay) |
2680 | != ScheduleHazardRecognizer::NoHazard) |
2681 | return false; |
2682 | |
2683 | return true; |
2684 | } |
2685 | |
2686 | // Return true if right should be scheduled with higher priority than left. |
2687 | bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const { |
2688 | if (int res = checkSpecialNodes(left, right)) |
2689 | return res > 0; |
2690 | |
2691 | if (left->isCall || right->isCall) |
2692 | // No way to compute latency of calls. |
2693 | return BURRSort(left, right, SPQ); |
2694 | |
2695 | bool LHigh = SPQ->HighRegPressure(SU: left); |
2696 | bool RHigh = SPQ->HighRegPressure(SU: right); |
2697 | // Avoid causing spills. If register pressure is high, schedule for |
2698 | // register pressure reduction. |
2699 | if (LHigh && !RHigh) { |
2700 | LLVM_DEBUG(dbgs() << " pressure SU(" << left->NodeNum << ") > SU(" |
2701 | << right->NodeNum << ")\n" ); |
2702 | return true; |
2703 | } |
2704 | else if (!LHigh && RHigh) { |
2705 | LLVM_DEBUG(dbgs() << " pressure SU(" << right->NodeNum << ") > SU(" |
2706 | << left->NodeNum << ")\n" ); |
2707 | return false; |
2708 | } |
2709 | if (!LHigh && !RHigh) { |
2710 | int result = BUCompareLatency(left, right, checkPref: true /*checkPref*/, SPQ); |
2711 | if (result != 0) |
2712 | return result > 0; |
2713 | } |
2714 | return BURRSort(left, right, SPQ); |
2715 | } |
2716 | |
2717 | // Schedule as many instructions in each cycle as possible. So don't make an |
2718 | // instruction available unless it is ready in the current cycle. |
2719 | bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const { |
2720 | if (SU->getHeight() > CurCycle) return false; |
2721 | |
2722 | if (SPQ->getHazardRec()->getHazardType(SU, Stalls: 0) |
2723 | != ScheduleHazardRecognizer::NoHazard) |
2724 | return false; |
2725 | |
2726 | return true; |
2727 | } |
2728 | |
2729 | static bool canEnableCoalescing(SUnit *SU) { |
2730 | unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0; |
2731 | if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg) |
2732 | // CopyToReg should be close to its uses to facilitate coalescing and |
2733 | // avoid spilling. |
2734 | return true; |
2735 | |
2736 | if (Opc == TargetOpcode::EXTRACT_SUBREG || |
2737 | Opc == TargetOpcode::SUBREG_TO_REG || |
2738 | Opc == TargetOpcode::INSERT_SUBREG) |
2739 | // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be |
2740 | // close to their uses to facilitate coalescing. |
2741 | return true; |
2742 | |
2743 | if (SU->NumPreds == 0 && SU->NumSuccs != 0) |
2744 | // If SU does not have a register def, schedule it close to its uses |
2745 | // because it does not lengthen any live ranges. |
2746 | return true; |
2747 | |
2748 | return false; |
2749 | } |
2750 | |
2751 | // list-ilp is currently an experimental scheduler that allows various |
2752 | // heuristics to be enabled prior to the normal register reduction logic. |
2753 | bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const { |
2754 | if (int res = checkSpecialNodes(left, right)) |
2755 | return res > 0; |
2756 | |
2757 | if (left->isCall || right->isCall) |
2758 | // No way to compute latency of calls. |
2759 | return BURRSort(left, right, SPQ); |
2760 | |
2761 | unsigned LLiveUses = 0, RLiveUses = 0; |
2762 | int LPDiff = 0, RPDiff = 0; |
2763 | if (!DisableSchedRegPressure || !DisableSchedLiveUses) { |
2764 | LPDiff = SPQ->RegPressureDiff(SU: left, LiveUses&: LLiveUses); |
2765 | RPDiff = SPQ->RegPressureDiff(SU: right, LiveUses&: RLiveUses); |
2766 | } |
2767 | if (!DisableSchedRegPressure && LPDiff != RPDiff) { |
2768 | LLVM_DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum |
2769 | << "): " << LPDiff << " != SU(" << right->NodeNum |
2770 | << "): " << RPDiff << "\n" ); |
2771 | return LPDiff > RPDiff; |
2772 | } |
2773 | |
2774 | if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) { |
2775 | bool LReduce = canEnableCoalescing(SU: left); |
2776 | bool RReduce = canEnableCoalescing(SU: right); |
2777 | if (LReduce && !RReduce) return false; |
2778 | if (RReduce && !LReduce) return true; |
2779 | } |
2780 | |
2781 | if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) { |
2782 | LLVM_DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses |
2783 | << " != SU(" << right->NodeNum << "): " << RLiveUses |
2784 | << "\n" ); |
2785 | return LLiveUses < RLiveUses; |
2786 | } |
2787 | |
2788 | if (!DisableSchedStalls) { |
2789 | bool LStall = BUHasStall(SU: left, Height: left->getHeight(), SPQ); |
2790 | bool RStall = BUHasStall(SU: right, Height: right->getHeight(), SPQ); |
2791 | if (LStall != RStall) |
2792 | return left->getHeight() > right->getHeight(); |
2793 | } |
2794 | |
2795 | if (!DisableSchedCriticalPath) { |
2796 | int spread = (int)left->getDepth() - (int)right->getDepth(); |
2797 | if (std::abs(x: spread) > MaxReorderWindow) { |
2798 | LLVM_DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): " |
2799 | << left->getDepth() << " != SU(" << right->NodeNum |
2800 | << "): " << right->getDepth() << "\n" ); |
2801 | return left->getDepth() < right->getDepth(); |
2802 | } |
2803 | } |
2804 | |
2805 | if (!DisableSchedHeight && left->getHeight() != right->getHeight()) { |
2806 | int spread = (int)left->getHeight() - (int)right->getHeight(); |
2807 | if (std::abs(x: spread) > MaxReorderWindow) |
2808 | return left->getHeight() > right->getHeight(); |
2809 | } |
2810 | |
2811 | return BURRSort(left, right, SPQ); |
2812 | } |
2813 | |
2814 | void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) { |
2815 | SUnits = &sunits; |
2816 | // Add pseudo dependency edges for two-address nodes. |
2817 | if (!Disable2AddrHack) |
2818 | AddPseudoTwoAddrDeps(); |
2819 | // Reroute edges to nodes with multiple uses. |
2820 | if (!TracksRegPressure && !SrcOrder) |
2821 | PrescheduleNodesWithMultipleUses(); |
2822 | // Calculate node priorities. |
2823 | CalculateSethiUllmanNumbers(); |
2824 | |
2825 | // For single block loops, mark nodes that look like canonical IV increments. |
2826 | if (scheduleDAG->BB->isSuccessor(MBB: scheduleDAG->BB)) |
2827 | for (SUnit &SU : sunits) |
2828 | initVRegCycle(SU: &SU); |
2829 | } |
2830 | |
2831 | //===----------------------------------------------------------------------===// |
2832 | // Preschedule for Register Pressure |
2833 | //===----------------------------------------------------------------------===// |
2834 | |
2835 | bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) { |
2836 | if (SU->isTwoAddress) { |
2837 | unsigned Opc = SU->getNode()->getMachineOpcode(); |
2838 | const MCInstrDesc &MCID = TII->get(Opcode: Opc); |
2839 | unsigned NumRes = MCID.getNumDefs(); |
2840 | unsigned NumOps = MCID.getNumOperands() - NumRes; |
2841 | for (unsigned i = 0; i != NumOps; ++i) { |
2842 | if (MCID.getOperandConstraint(OpNum: i+NumRes, Constraint: MCOI::TIED_TO) != -1) { |
2843 | SDNode *DU = SU->getNode()->getOperand(Num: i).getNode(); |
2844 | if (DU->getNodeId() != -1 && |
2845 | Op->OrigNode == &(*SUnits)[DU->getNodeId()]) |
2846 | return true; |
2847 | } |
2848 | } |
2849 | } |
2850 | return false; |
2851 | } |
2852 | |
2853 | /// canClobberReachingPhysRegUse - True if SU would clobber one of it's |
2854 | /// successor's explicit physregs whose definition can reach DepSU. |
2855 | /// i.e. DepSU should not be scheduled above SU. |
2856 | static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU, |
2857 | ScheduleDAGRRList *scheduleDAG, |
2858 | const TargetInstrInfo *TII, |
2859 | const TargetRegisterInfo *TRI) { |
2860 | ArrayRef<MCPhysReg> ImpDefs = |
2861 | TII->get(Opcode: SU->getNode()->getMachineOpcode()).implicit_defs(); |
2862 | const uint32_t *RegMask = getNodeRegMask(N: SU->getNode()); |
2863 | if (ImpDefs.empty() && !RegMask) |
2864 | return false; |
2865 | |
2866 | for (const SDep &Succ : SU->Succs) { |
2867 | SUnit *SuccSU = Succ.getSUnit(); |
2868 | for (const SDep &SuccPred : SuccSU->Preds) { |
2869 | if (!SuccPred.isAssignedRegDep()) |
2870 | continue; |
2871 | |
2872 | if (RegMask && |
2873 | MachineOperand::clobbersPhysReg(RegMask, PhysReg: SuccPred.getReg()) && |
2874 | scheduleDAG->IsReachable(SU: DepSU, TargetSU: SuccPred.getSUnit())) |
2875 | return true; |
2876 | |
2877 | for (MCPhysReg ImpDef : ImpDefs) { |
2878 | // Return true if SU clobbers this physical register use and the |
2879 | // definition of the register reaches from DepSU. IsReachable queries |
2880 | // a topological forward sort of the DAG (following the successors). |
2881 | if (TRI->regsOverlap(RegA: ImpDef, RegB: SuccPred.getReg()) && |
2882 | scheduleDAG->IsReachable(SU: DepSU, TargetSU: SuccPred.getSUnit())) |
2883 | return true; |
2884 | } |
2885 | } |
2886 | } |
2887 | return false; |
2888 | } |
2889 | |
2890 | /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's |
2891 | /// physical register defs. |
2892 | static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU, |
2893 | const TargetInstrInfo *TII, |
2894 | const TargetRegisterInfo *TRI) { |
2895 | SDNode *N = SuccSU->getNode(); |
2896 | unsigned NumDefs = TII->get(Opcode: N->getMachineOpcode()).getNumDefs(); |
2897 | ArrayRef<MCPhysReg> ImpDefs = TII->get(Opcode: N->getMachineOpcode()).implicit_defs(); |
2898 | assert(!ImpDefs.empty() && "Caller should check hasPhysRegDefs" ); |
2899 | for (const SDNode *SUNode = SU->getNode(); SUNode; |
2900 | SUNode = SUNode->getGluedNode()) { |
2901 | if (!SUNode->isMachineOpcode()) |
2902 | continue; |
2903 | ArrayRef<MCPhysReg> SUImpDefs = |
2904 | TII->get(Opcode: SUNode->getMachineOpcode()).implicit_defs(); |
2905 | const uint32_t *SURegMask = getNodeRegMask(N: SUNode); |
2906 | if (SUImpDefs.empty() && !SURegMask) |
2907 | continue; |
2908 | for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) { |
2909 | MVT VT = N->getSimpleValueType(ResNo: i); |
2910 | if (VT == MVT::Glue || VT == MVT::Other) |
2911 | continue; |
2912 | if (!N->hasAnyUseOfValue(Value: i)) |
2913 | continue; |
2914 | MCPhysReg Reg = ImpDefs[i - NumDefs]; |
2915 | if (SURegMask && MachineOperand::clobbersPhysReg(RegMask: SURegMask, PhysReg: Reg)) |
2916 | return true; |
2917 | for (MCPhysReg SUReg : SUImpDefs) { |
2918 | if (TRI->regsOverlap(RegA: Reg, RegB: SUReg)) |
2919 | return true; |
2920 | } |
2921 | } |
2922 | } |
2923 | return false; |
2924 | } |
2925 | |
2926 | /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses |
2927 | /// are not handled well by the general register pressure reduction |
2928 | /// heuristics. When presented with code like this: |
2929 | /// |
2930 | /// N |
2931 | /// / | |
2932 | /// / | |
2933 | /// U store |
2934 | /// | |
2935 | /// ... |
2936 | /// |
2937 | /// the heuristics tend to push the store up, but since the |
2938 | /// operand of the store has another use (U), this would increase |
2939 | /// the length of that other use (the U->N edge). |
2940 | /// |
2941 | /// This function transforms code like the above to route U's |
2942 | /// dependence through the store when possible, like this: |
2943 | /// |
2944 | /// N |
2945 | /// || |
2946 | /// || |
2947 | /// store |
2948 | /// | |
2949 | /// U |
2950 | /// | |
2951 | /// ... |
2952 | /// |
2953 | /// This results in the store being scheduled immediately |
2954 | /// after N, which shortens the U->N live range, reducing |
2955 | /// register pressure. |
2956 | void RegReductionPQBase::PrescheduleNodesWithMultipleUses() { |
2957 | // Visit all the nodes in topological order, working top-down. |
2958 | for (SUnit &SU : *SUnits) { |
2959 | // For now, only look at nodes with no data successors, such as stores. |
2960 | // These are especially important, due to the heuristics in |
2961 | // getNodePriority for nodes with no data successors. |
2962 | if (SU.NumSuccs != 0) |
2963 | continue; |
2964 | // For now, only look at nodes with exactly one data predecessor. |
2965 | if (SU.NumPreds != 1) |
2966 | continue; |
2967 | // Avoid prescheduling copies to virtual registers, which don't behave |
2968 | // like other nodes from the perspective of scheduling heuristics. |
2969 | if (SDNode *N = SU.getNode()) |
2970 | if (N->getOpcode() == ISD::CopyToReg && |
2971 | cast<RegisterSDNode>(Val: N->getOperand(Num: 1))->getReg().isVirtual()) |
2972 | continue; |
2973 | |
2974 | SDNode *PredFrameSetup = nullptr; |
2975 | for (const SDep &Pred : SU.Preds) |
2976 | if (Pred.isCtrl() && Pred.getSUnit()) { |
2977 | // Find the predecessor which is not data dependence. |
2978 | SDNode *PredND = Pred.getSUnit()->getNode(); |
2979 | |
2980 | // If PredND is FrameSetup, we should not pre-scheduled the node, |
2981 | // or else, when bottom up scheduling, ADJCALLSTACKDOWN and |
2982 | // ADJCALLSTACKUP may hold CallResource too long and make other |
2983 | // calls can't be scheduled. If there's no other available node |
2984 | // to schedule, the schedular will try to rename the register by |
2985 | // creating copy to avoid the conflict which will fail because |
2986 | // CallResource is not a real physical register. |
2987 | if (PredND && PredND->isMachineOpcode() && |
2988 | (PredND->getMachineOpcode() == TII->getCallFrameSetupOpcode())) { |
2989 | PredFrameSetup = PredND; |
2990 | break; |
2991 | } |
2992 | } |
2993 | // Skip the node has FrameSetup parent. |
2994 | if (PredFrameSetup != nullptr) |
2995 | continue; |
2996 | |
2997 | // Locate the single data predecessor. |
2998 | SUnit *PredSU = nullptr; |
2999 | for (const SDep &Pred : SU.Preds) |
3000 | if (!Pred.isCtrl()) { |
3001 | PredSU = Pred.getSUnit(); |
3002 | break; |
3003 | } |
3004 | assert(PredSU); |
3005 | |
3006 | // Don't rewrite edges that carry physregs, because that requires additional |
3007 | // support infrastructure. |
3008 | if (PredSU->hasPhysRegDefs) |
3009 | continue; |
3010 | // Short-circuit the case where SU is PredSU's only data successor. |
3011 | if (PredSU->NumSuccs == 1) |
3012 | continue; |
3013 | // Avoid prescheduling to copies from virtual registers, which don't behave |
3014 | // like other nodes from the perspective of scheduling heuristics. |
3015 | if (SDNode *N = SU.getNode()) |
3016 | if (N->getOpcode() == ISD::CopyFromReg && |
3017 | cast<RegisterSDNode>(Val: N->getOperand(Num: 1))->getReg().isVirtual()) |
3018 | continue; |
3019 | |
3020 | // Perform checks on the successors of PredSU. |
3021 | for (const SDep &PredSucc : PredSU->Succs) { |
3022 | SUnit *PredSuccSU = PredSucc.getSUnit(); |
3023 | if (PredSuccSU == &SU) continue; |
3024 | // If PredSU has another successor with no data successors, for |
3025 | // now don't attempt to choose either over the other. |
3026 | if (PredSuccSU->NumSuccs == 0) |
3027 | goto outer_loop_continue; |
3028 | // Don't break physical register dependencies. |
3029 | if (SU.hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs) |
3030 | if (canClobberPhysRegDefs(SuccSU: PredSuccSU, SU: &SU, TII, TRI)) |
3031 | goto outer_loop_continue; |
3032 | // Don't introduce graph cycles. |
3033 | if (scheduleDAG->IsReachable(SU: &SU, TargetSU: PredSuccSU)) |
3034 | goto outer_loop_continue; |
3035 | } |
3036 | |
3037 | // Ok, the transformation is safe and the heuristics suggest it is |
3038 | // profitable. Update the graph. |
3039 | LLVM_DEBUG( |
3040 | dbgs() << " Prescheduling SU #" << SU.NodeNum << " next to PredSU #" |
3041 | << PredSU->NodeNum |
3042 | << " to guide scheduling in the presence of multiple uses\n" ); |
3043 | for (unsigned i = 0; i != PredSU->Succs.size(); ++i) { |
3044 | SDep Edge = PredSU->Succs[i]; |
3045 | assert(!Edge.isAssignedRegDep()); |
3046 | SUnit *SuccSU = Edge.getSUnit(); |
3047 | if (SuccSU != &SU) { |
3048 | Edge.setSUnit(PredSU); |
3049 | scheduleDAG->RemovePred(SU: SuccSU, D: Edge); |
3050 | scheduleDAG->AddPredQueued(SU: &SU, D: Edge); |
3051 | Edge.setSUnit(&SU); |
3052 | scheduleDAG->AddPredQueued(SU: SuccSU, D: Edge); |
3053 | --i; |
3054 | } |
3055 | } |
3056 | outer_loop_continue:; |
3057 | } |
3058 | } |
3059 | |
3060 | /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses |
3061 | /// it as a def&use operand. Add a pseudo control edge from it to the other |
3062 | /// node (if it won't create a cycle) so the two-address one will be scheduled |
3063 | /// first (lower in the schedule). If both nodes are two-address, favor the |
3064 | /// one that has a CopyToReg use (more likely to be a loop induction update). |
3065 | /// If both are two-address, but one is commutable while the other is not |
3066 | /// commutable, favor the one that's not commutable. |
3067 | void RegReductionPQBase::AddPseudoTwoAddrDeps() { |
3068 | for (SUnit &SU : *SUnits) { |
3069 | if (!SU.isTwoAddress) |
3070 | continue; |
3071 | |
3072 | SDNode *Node = SU.getNode(); |
3073 | if (!Node || !Node->isMachineOpcode() || SU.getNode()->getGluedNode()) |
3074 | continue; |
3075 | |
3076 | bool isLiveOut = hasOnlyLiveOutUses(SU: &SU); |
3077 | unsigned Opc = Node->getMachineOpcode(); |
3078 | const MCInstrDesc &MCID = TII->get(Opcode: Opc); |
3079 | unsigned NumRes = MCID.getNumDefs(); |
3080 | unsigned NumOps = MCID.getNumOperands() - NumRes; |
3081 | for (unsigned j = 0; j != NumOps; ++j) { |
3082 | if (MCID.getOperandConstraint(OpNum: j+NumRes, Constraint: MCOI::TIED_TO) == -1) |
3083 | continue; |
3084 | SDNode *DU = SU.getNode()->getOperand(Num: j).getNode(); |
3085 | if (DU->getNodeId() == -1) |
3086 | continue; |
3087 | const SUnit *DUSU = &(*SUnits)[DU->getNodeId()]; |
3088 | if (!DUSU) |
3089 | continue; |
3090 | for (const SDep &Succ : DUSU->Succs) { |
3091 | if (Succ.isCtrl()) |
3092 | continue; |
3093 | SUnit *SuccSU = Succ.getSUnit(); |
3094 | if (SuccSU == &SU) |
3095 | continue; |
3096 | // Be conservative. Ignore if nodes aren't at roughly the same |
3097 | // depth and height. |
3098 | if (SuccSU->getHeight() < SU.getHeight() && |
3099 | (SU.getHeight() - SuccSU->getHeight()) > 1) |
3100 | continue; |
3101 | // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge |
3102 | // constrains whatever is using the copy, instead of the copy |
3103 | // itself. In the case that the copy is coalesced, this |
3104 | // preserves the intent of the pseudo two-address heurietics. |
3105 | while (SuccSU->Succs.size() == 1 && |
3106 | SuccSU->getNode()->isMachineOpcode() && |
3107 | SuccSU->getNode()->getMachineOpcode() == |
3108 | TargetOpcode::COPY_TO_REGCLASS) |
3109 | SuccSU = SuccSU->Succs.front().getSUnit(); |
3110 | // Don't constrain non-instruction nodes. |
3111 | if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode()) |
3112 | continue; |
3113 | // Don't constrain nodes with physical register defs if the |
3114 | // predecessor can clobber them. |
3115 | if (SuccSU->hasPhysRegDefs && SU.hasPhysRegClobbers) { |
3116 | if (canClobberPhysRegDefs(SuccSU, SU: &SU, TII, TRI)) |
3117 | continue; |
3118 | } |
3119 | // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG; |
3120 | // these may be coalesced away. We want them close to their uses. |
3121 | unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode(); |
3122 | if (SuccOpc == TargetOpcode::EXTRACT_SUBREG || |
3123 | SuccOpc == TargetOpcode::INSERT_SUBREG || |
3124 | SuccOpc == TargetOpcode::SUBREG_TO_REG) |
3125 | continue; |
3126 | if (!canClobberReachingPhysRegUse(DepSU: SuccSU, SU: &SU, scheduleDAG, TII, TRI) && |
3127 | (!canClobber(SU: SuccSU, Op: DUSU) || |
3128 | (isLiveOut && !hasOnlyLiveOutUses(SU: SuccSU)) || |
3129 | (!SU.isCommutable && SuccSU->isCommutable)) && |
3130 | !scheduleDAG->IsReachable(SU: SuccSU, TargetSU: &SU)) { |
3131 | LLVM_DEBUG(dbgs() |
3132 | << " Adding a pseudo-two-addr edge from SU #" |
3133 | << SU.NodeNum << " to SU #" << SuccSU->NodeNum << "\n" ); |
3134 | scheduleDAG->AddPredQueued(SU: &SU, D: SDep(SuccSU, SDep::Artificial)); |
3135 | } |
3136 | } |
3137 | } |
3138 | } |
3139 | } |
3140 | |
3141 | //===----------------------------------------------------------------------===// |
3142 | // Public Constructor Functions |
3143 | //===----------------------------------------------------------------------===// |
3144 | |
3145 | ScheduleDAGSDNodes *llvm::createBURRListDAGScheduler(SelectionDAGISel *IS, |
3146 | CodeGenOptLevel OptLevel) { |
3147 | const TargetSubtargetInfo &STI = IS->MF->getSubtarget(); |
3148 | const TargetInstrInfo *TII = STI.getInstrInfo(); |
3149 | const TargetRegisterInfo *TRI = STI.getRegisterInfo(); |
3150 | |
3151 | BURegReductionPriorityQueue *PQ = |
3152 | new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, nullptr); |
3153 | ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel); |
3154 | PQ->setScheduleDAG(SD); |
3155 | return SD; |
3156 | } |
3157 | |
3158 | ScheduleDAGSDNodes * |
3159 | llvm::createSourceListDAGScheduler(SelectionDAGISel *IS, |
3160 | CodeGenOptLevel OptLevel) { |
3161 | const TargetSubtargetInfo &STI = IS->MF->getSubtarget(); |
3162 | const TargetInstrInfo *TII = STI.getInstrInfo(); |
3163 | const TargetRegisterInfo *TRI = STI.getRegisterInfo(); |
3164 | |
3165 | SrcRegReductionPriorityQueue *PQ = |
3166 | new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, nullptr); |
3167 | ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel); |
3168 | PQ->setScheduleDAG(SD); |
3169 | return SD; |
3170 | } |
3171 | |
3172 | ScheduleDAGSDNodes * |
3173 | llvm::createHybridListDAGScheduler(SelectionDAGISel *IS, |
3174 | CodeGenOptLevel OptLevel) { |
3175 | const TargetSubtargetInfo &STI = IS->MF->getSubtarget(); |
3176 | const TargetInstrInfo *TII = STI.getInstrInfo(); |
3177 | const TargetRegisterInfo *TRI = STI.getRegisterInfo(); |
3178 | const TargetLowering *TLI = IS->TLI; |
3179 | |
3180 | HybridBURRPriorityQueue *PQ = |
3181 | new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI); |
3182 | |
3183 | ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel); |
3184 | PQ->setScheduleDAG(SD); |
3185 | return SD; |
3186 | } |
3187 | |
3188 | ScheduleDAGSDNodes *llvm::createILPListDAGScheduler(SelectionDAGISel *IS, |
3189 | CodeGenOptLevel OptLevel) { |
3190 | const TargetSubtargetInfo &STI = IS->MF->getSubtarget(); |
3191 | const TargetInstrInfo *TII = STI.getInstrInfo(); |
3192 | const TargetRegisterInfo *TRI = STI.getRegisterInfo(); |
3193 | const TargetLowering *TLI = IS->TLI; |
3194 | |
3195 | ILPBURRPriorityQueue *PQ = |
3196 | new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI); |
3197 | ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel); |
3198 | PQ->setScheduleDAG(SD); |
3199 | return SD; |
3200 | } |
3201 | |