1 | //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This implements the TargetLowering class. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/CodeGen/TargetLowering.h" |
14 | #include "llvm/ADT/STLExtras.h" |
15 | #include "llvm/Analysis/VectorUtils.h" |
16 | #include "llvm/CodeGen/CallingConvLower.h" |
17 | #include "llvm/CodeGen/CodeGenCommonISel.h" |
18 | #include "llvm/CodeGen/MachineFrameInfo.h" |
19 | #include "llvm/CodeGen/MachineFunction.h" |
20 | #include "llvm/CodeGen/MachineJumpTableInfo.h" |
21 | #include "llvm/CodeGen/MachineModuleInfoImpls.h" |
22 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
23 | #include "llvm/CodeGen/SelectionDAG.h" |
24 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
25 | #include "llvm/IR/DataLayout.h" |
26 | #include "llvm/IR/DerivedTypes.h" |
27 | #include "llvm/IR/GlobalVariable.h" |
28 | #include "llvm/IR/LLVMContext.h" |
29 | #include "llvm/MC/MCAsmInfo.h" |
30 | #include "llvm/MC/MCExpr.h" |
31 | #include "llvm/Support/DivisionByConstantInfo.h" |
32 | #include "llvm/Support/ErrorHandling.h" |
33 | #include "llvm/Support/KnownBits.h" |
34 | #include "llvm/Support/MathExtras.h" |
35 | #include "llvm/Target/TargetMachine.h" |
36 | #include <cctype> |
37 | using namespace llvm; |
38 | |
39 | /// NOTE: The TargetMachine owns TLOF. |
40 | TargetLowering::TargetLowering(const TargetMachine &tm) |
41 | : TargetLoweringBase(tm) {} |
42 | |
43 | const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { |
44 | return nullptr; |
45 | } |
46 | |
47 | bool TargetLowering::isPositionIndependent() const { |
48 | return getTargetMachine().isPositionIndependent(); |
49 | } |
50 | |
51 | /// Check whether a given call node is in tail position within its function. If |
52 | /// so, it sets Chain to the input chain of the tail call. |
53 | bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, |
54 | SDValue &Chain) const { |
55 | const Function &F = DAG.getMachineFunction().getFunction(); |
56 | |
57 | // First, check if tail calls have been disabled in this function. |
58 | if (F.getFnAttribute(Kind: "disable-tail-calls" ).getValueAsBool()) |
59 | return false; |
60 | |
61 | // Conservatively require the attributes of the call to match those of |
62 | // the return. Ignore following attributes because they don't affect the |
63 | // call sequence. |
64 | AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); |
65 | for (const auto &Attr : |
66 | {Attribute::Alignment, Attribute::Dereferenceable, |
67 | Attribute::DereferenceableOrNull, Attribute::NoAlias, |
68 | Attribute::NonNull, Attribute::NoUndef, Attribute::Range}) |
69 | CallerAttrs.removeAttribute(Val: Attr); |
70 | |
71 | if (CallerAttrs.hasAttributes()) |
72 | return false; |
73 | |
74 | // It's not safe to eliminate the sign / zero extension of the return value. |
75 | if (CallerAttrs.contains(A: Attribute::ZExt) || |
76 | CallerAttrs.contains(A: Attribute::SExt)) |
77 | return false; |
78 | |
79 | // Check if the only use is a function return node. |
80 | return isUsedByReturnOnly(Node, Chain); |
81 | } |
82 | |
83 | bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, |
84 | const uint32_t *CallerPreservedMask, |
85 | const SmallVectorImpl<CCValAssign> &ArgLocs, |
86 | const SmallVectorImpl<SDValue> &OutVals) const { |
87 | for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { |
88 | const CCValAssign &ArgLoc = ArgLocs[I]; |
89 | if (!ArgLoc.isRegLoc()) |
90 | continue; |
91 | MCRegister Reg = ArgLoc.getLocReg(); |
92 | // Only look at callee saved registers. |
93 | if (MachineOperand::clobbersPhysReg(RegMask: CallerPreservedMask, PhysReg: Reg)) |
94 | continue; |
95 | // Check that we pass the value used for the caller. |
96 | // (We look for a CopyFromReg reading a virtual register that is used |
97 | // for the function live-in value of register Reg) |
98 | SDValue Value = OutVals[I]; |
99 | if (Value->getOpcode() == ISD::AssertZext) |
100 | Value = Value.getOperand(i: 0); |
101 | if (Value->getOpcode() != ISD::CopyFromReg) |
102 | return false; |
103 | Register ArgReg = cast<RegisterSDNode>(Val: Value->getOperand(Num: 1))->getReg(); |
104 | if (MRI.getLiveInPhysReg(VReg: ArgReg) != Reg) |
105 | return false; |
106 | } |
107 | return true; |
108 | } |
109 | |
110 | /// Set CallLoweringInfo attribute flags based on a call instruction |
111 | /// and called function attributes. |
112 | void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, |
113 | unsigned ArgIdx) { |
114 | IsSExt = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::SExt); |
115 | IsZExt = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::ZExt); |
116 | IsInReg = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::InReg); |
117 | IsSRet = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::StructRet); |
118 | IsNest = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::Nest); |
119 | IsByVal = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::ByVal); |
120 | IsPreallocated = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::Preallocated); |
121 | IsInAlloca = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::InAlloca); |
122 | IsReturned = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::Returned); |
123 | IsSwiftSelf = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::SwiftSelf); |
124 | IsSwiftAsync = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::SwiftAsync); |
125 | IsSwiftError = Call->paramHasAttr(ArgNo: ArgIdx, Kind: Attribute::SwiftError); |
126 | Alignment = Call->getParamStackAlign(ArgNo: ArgIdx); |
127 | IndirectType = nullptr; |
128 | assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && |
129 | "multiple ABI attributes?" ); |
130 | if (IsByVal) { |
131 | IndirectType = Call->getParamByValType(ArgNo: ArgIdx); |
132 | if (!Alignment) |
133 | Alignment = Call->getParamAlign(ArgNo: ArgIdx); |
134 | } |
135 | if (IsPreallocated) |
136 | IndirectType = Call->getParamPreallocatedType(ArgNo: ArgIdx); |
137 | if (IsInAlloca) |
138 | IndirectType = Call->getParamInAllocaType(ArgNo: ArgIdx); |
139 | if (IsSRet) |
140 | IndirectType = Call->getParamStructRetType(ArgNo: ArgIdx); |
141 | } |
142 | |
143 | /// Generate a libcall taking the given operands as arguments and returning a |
144 | /// result of type RetVT. |
145 | std::pair<SDValue, SDValue> |
146 | TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, |
147 | ArrayRef<SDValue> Ops, |
148 | MakeLibCallOptions CallOptions, |
149 | const SDLoc &dl, |
150 | SDValue InChain) const { |
151 | if (!InChain) |
152 | InChain = DAG.getEntryNode(); |
153 | |
154 | TargetLowering::ArgListTy Args; |
155 | Args.reserve(n: Ops.size()); |
156 | |
157 | TargetLowering::ArgListEntry Entry; |
158 | for (unsigned i = 0; i < Ops.size(); ++i) { |
159 | SDValue NewOp = Ops[i]; |
160 | Entry.Node = NewOp; |
161 | Entry.Ty = Entry.Node.getValueType().getTypeForEVT(Context&: *DAG.getContext()); |
162 | Entry.IsSExt = shouldSignExtendTypeInLibCall(Type: NewOp.getValueType(), |
163 | IsSigned: CallOptions.IsSExt); |
164 | Entry.IsZExt = !Entry.IsSExt; |
165 | |
166 | if (CallOptions.IsSoften && |
167 | !shouldExtendTypeInLibCall(Type: CallOptions.OpsVTBeforeSoften[i])) { |
168 | Entry.IsSExt = Entry.IsZExt = false; |
169 | } |
170 | Args.push_back(x: Entry); |
171 | } |
172 | |
173 | if (LC == RTLIB::UNKNOWN_LIBCALL) |
174 | report_fatal_error(reason: "Unsupported library call operation!" ); |
175 | SDValue Callee = DAG.getExternalSymbol(Sym: getLibcallName(Call: LC), |
176 | VT: getPointerTy(DL: DAG.getDataLayout())); |
177 | |
178 | Type *RetTy = RetVT.getTypeForEVT(Context&: *DAG.getContext()); |
179 | TargetLowering::CallLoweringInfo CLI(DAG); |
180 | bool signExtend = shouldSignExtendTypeInLibCall(Type: RetVT, IsSigned: CallOptions.IsSExt); |
181 | bool zeroExtend = !signExtend; |
182 | |
183 | if (CallOptions.IsSoften && |
184 | !shouldExtendTypeInLibCall(Type: CallOptions.RetVTBeforeSoften)) { |
185 | signExtend = zeroExtend = false; |
186 | } |
187 | |
188 | CLI.setDebugLoc(dl) |
189 | .setChain(InChain) |
190 | .setLibCallee(CC: getLibcallCallingConv(Call: LC), ResultType: RetTy, Target: Callee, ArgsList: std::move(Args)) |
191 | .setNoReturn(CallOptions.DoesNotReturn) |
192 | .setDiscardResult(!CallOptions.IsReturnValueUsed) |
193 | .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) |
194 | .setSExtResult(signExtend) |
195 | .setZExtResult(zeroExtend); |
196 | return LowerCallTo(CLI); |
197 | } |
198 | |
199 | bool TargetLowering::findOptimalMemOpLowering( |
200 | std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, |
201 | unsigned SrcAS, const AttributeList &FuncAttributes) const { |
202 | if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && |
203 | Op.getSrcAlign() < Op.getDstAlign()) |
204 | return false; |
205 | |
206 | EVT VT = getOptimalMemOpType(Op, FuncAttributes); |
207 | |
208 | if (VT == MVT::Other) { |
209 | // Use the largest integer type whose alignment constraints are satisfied. |
210 | // We only need to check DstAlign here as SrcAlign is always greater or |
211 | // equal to DstAlign (or zero). |
212 | VT = MVT::LAST_INTEGER_VALUETYPE; |
213 | if (Op.isFixedDstAlign()) |
214 | while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && |
215 | !allowsMisalignedMemoryAccesses(VT, AddrSpace: DstAS, Alignment: Op.getDstAlign())) |
216 | VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); |
217 | assert(VT.isInteger()); |
218 | |
219 | // Find the largest legal integer type. |
220 | MVT LVT = MVT::LAST_INTEGER_VALUETYPE; |
221 | while (!isTypeLegal(VT: LVT)) |
222 | LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); |
223 | assert(LVT.isInteger()); |
224 | |
225 | // If the type we've chosen is larger than the largest legal integer type |
226 | // then use that instead. |
227 | if (VT.bitsGT(VT: LVT)) |
228 | VT = LVT; |
229 | } |
230 | |
231 | unsigned NumMemOps = 0; |
232 | uint64_t Size = Op.size(); |
233 | while (Size) { |
234 | unsigned VTSize = VT.getSizeInBits() / 8; |
235 | while (VTSize > Size) { |
236 | // For now, only use non-vector load / store's for the left-over pieces. |
237 | EVT NewVT = VT; |
238 | unsigned NewVTSize; |
239 | |
240 | bool Found = false; |
241 | if (VT.isVector() || VT.isFloatingPoint()) { |
242 | NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; |
243 | if (isOperationLegalOrCustom(Op: ISD::STORE, VT: NewVT) && |
244 | isSafeMemOpType(NewVT.getSimpleVT())) |
245 | Found = true; |
246 | else if (NewVT == MVT::i64 && |
247 | isOperationLegalOrCustom(Op: ISD::STORE, VT: MVT::f64) && |
248 | isSafeMemOpType(MVT::f64)) { |
249 | // i64 is usually not legal on 32-bit targets, but f64 may be. |
250 | NewVT = MVT::f64; |
251 | Found = true; |
252 | } |
253 | } |
254 | |
255 | if (!Found) { |
256 | do { |
257 | NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); |
258 | if (NewVT == MVT::i8) |
259 | break; |
260 | } while (!isSafeMemOpType(NewVT.getSimpleVT())); |
261 | } |
262 | NewVTSize = NewVT.getSizeInBits() / 8; |
263 | |
264 | // If the new VT cannot cover all of the remaining bits, then consider |
265 | // issuing a (or a pair of) unaligned and overlapping load / store. |
266 | unsigned Fast; |
267 | if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && |
268 | allowsMisalignedMemoryAccesses( |
269 | VT, AddrSpace: DstAS, Alignment: Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), |
270 | Flags: MachineMemOperand::MONone, &Fast) && |
271 | Fast) |
272 | VTSize = Size; |
273 | else { |
274 | VT = NewVT; |
275 | VTSize = NewVTSize; |
276 | } |
277 | } |
278 | |
279 | if (++NumMemOps > Limit) |
280 | return false; |
281 | |
282 | MemOps.push_back(x: VT); |
283 | Size -= VTSize; |
284 | } |
285 | |
286 | return true; |
287 | } |
288 | |
289 | /// Soften the operands of a comparison. This code is shared among BR_CC, |
290 | /// SELECT_CC, and SETCC handlers. |
291 | void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, |
292 | SDValue &NewLHS, SDValue &NewRHS, |
293 | ISD::CondCode &CCCode, |
294 | const SDLoc &dl, const SDValue OldLHS, |
295 | const SDValue OldRHS) const { |
296 | SDValue Chain; |
297 | return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, DL: dl, OldLHS, |
298 | OldRHS, Chain); |
299 | } |
300 | |
301 | void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, |
302 | SDValue &NewLHS, SDValue &NewRHS, |
303 | ISD::CondCode &CCCode, |
304 | const SDLoc &dl, const SDValue OldLHS, |
305 | const SDValue OldRHS, |
306 | SDValue &Chain, |
307 | bool IsSignaling) const { |
308 | // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc |
309 | // not supporting it. We can update this code when libgcc provides such |
310 | // functions. |
311 | |
312 | assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) |
313 | && "Unsupported setcc type!" ); |
314 | |
315 | // Expand into one or more soft-fp libcall(s). |
316 | RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; |
317 | bool ShouldInvertCC = false; |
318 | switch (CCCode) { |
319 | case ISD::SETEQ: |
320 | case ISD::SETOEQ: |
321 | LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : |
322 | (VT == MVT::f64) ? RTLIB::OEQ_F64 : |
323 | (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; |
324 | break; |
325 | case ISD::SETNE: |
326 | case ISD::SETUNE: |
327 | LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : |
328 | (VT == MVT::f64) ? RTLIB::UNE_F64 : |
329 | (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; |
330 | break; |
331 | case ISD::SETGE: |
332 | case ISD::SETOGE: |
333 | LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : |
334 | (VT == MVT::f64) ? RTLIB::OGE_F64 : |
335 | (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; |
336 | break; |
337 | case ISD::SETLT: |
338 | case ISD::SETOLT: |
339 | LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : |
340 | (VT == MVT::f64) ? RTLIB::OLT_F64 : |
341 | (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; |
342 | break; |
343 | case ISD::SETLE: |
344 | case ISD::SETOLE: |
345 | LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : |
346 | (VT == MVT::f64) ? RTLIB::OLE_F64 : |
347 | (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; |
348 | break; |
349 | case ISD::SETGT: |
350 | case ISD::SETOGT: |
351 | LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : |
352 | (VT == MVT::f64) ? RTLIB::OGT_F64 : |
353 | (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; |
354 | break; |
355 | case ISD::SETO: |
356 | ShouldInvertCC = true; |
357 | [[fallthrough]]; |
358 | case ISD::SETUO: |
359 | LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : |
360 | (VT == MVT::f64) ? RTLIB::UO_F64 : |
361 | (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; |
362 | break; |
363 | case ISD::SETONE: |
364 | // SETONE = O && UNE |
365 | ShouldInvertCC = true; |
366 | [[fallthrough]]; |
367 | case ISD::SETUEQ: |
368 | LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : |
369 | (VT == MVT::f64) ? RTLIB::UO_F64 : |
370 | (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; |
371 | LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : |
372 | (VT == MVT::f64) ? RTLIB::OEQ_F64 : |
373 | (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; |
374 | break; |
375 | default: |
376 | // Invert CC for unordered comparisons |
377 | ShouldInvertCC = true; |
378 | switch (CCCode) { |
379 | case ISD::SETULT: |
380 | LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : |
381 | (VT == MVT::f64) ? RTLIB::OGE_F64 : |
382 | (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; |
383 | break; |
384 | case ISD::SETULE: |
385 | LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : |
386 | (VT == MVT::f64) ? RTLIB::OGT_F64 : |
387 | (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; |
388 | break; |
389 | case ISD::SETUGT: |
390 | LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : |
391 | (VT == MVT::f64) ? RTLIB::OLE_F64 : |
392 | (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; |
393 | break; |
394 | case ISD::SETUGE: |
395 | LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : |
396 | (VT == MVT::f64) ? RTLIB::OLT_F64 : |
397 | (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; |
398 | break; |
399 | default: llvm_unreachable("Do not know how to soften this setcc!" ); |
400 | } |
401 | } |
402 | |
403 | // Use the target specific return value for comparison lib calls. |
404 | EVT RetVT = getCmpLibcallReturnType(); |
405 | SDValue Ops[2] = {NewLHS, NewRHS}; |
406 | TargetLowering::MakeLibCallOptions CallOptions; |
407 | EVT OpsVT[2] = { OldLHS.getValueType(), |
408 | OldRHS.getValueType() }; |
409 | CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, Value: true); |
410 | auto Call = makeLibCall(DAG, LC: LC1, RetVT, Ops, CallOptions, dl, InChain: Chain); |
411 | NewLHS = Call.first; |
412 | NewRHS = DAG.getConstant(Val: 0, DL: dl, VT: RetVT); |
413 | |
414 | CCCode = getCmpLibcallCC(Call: LC1); |
415 | if (ShouldInvertCC) { |
416 | assert(RetVT.isInteger()); |
417 | CCCode = getSetCCInverse(Operation: CCCode, Type: RetVT); |
418 | } |
419 | |
420 | if (LC2 == RTLIB::UNKNOWN_LIBCALL) { |
421 | // Update Chain. |
422 | Chain = Call.second; |
423 | } else { |
424 | EVT SetCCVT = |
425 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: RetVT); |
426 | SDValue Tmp = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: NewLHS, RHS: NewRHS, Cond: CCCode); |
427 | auto Call2 = makeLibCall(DAG, LC: LC2, RetVT, Ops, CallOptions, dl, InChain: Chain); |
428 | CCCode = getCmpLibcallCC(Call: LC2); |
429 | if (ShouldInvertCC) |
430 | CCCode = getSetCCInverse(Operation: CCCode, Type: RetVT); |
431 | NewLHS = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: Call2.first, RHS: NewRHS, Cond: CCCode); |
432 | if (Chain) |
433 | Chain = DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, N1: Call.second, |
434 | N2: Call2.second); |
435 | NewLHS = DAG.getNode(Opcode: ShouldInvertCC ? ISD::AND : ISD::OR, DL: dl, |
436 | VT: Tmp.getValueType(), N1: Tmp, N2: NewLHS); |
437 | NewRHS = SDValue(); |
438 | } |
439 | } |
440 | |
441 | /// Return the entry encoding for a jump table in the current function. The |
442 | /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. |
443 | unsigned TargetLowering::getJumpTableEncoding() const { |
444 | // In non-pic modes, just use the address of a block. |
445 | if (!isPositionIndependent()) |
446 | return MachineJumpTableInfo::EK_BlockAddress; |
447 | |
448 | // In PIC mode, if the target supports a GPRel32 directive, use it. |
449 | if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) |
450 | return MachineJumpTableInfo::EK_GPRel32BlockAddress; |
451 | |
452 | // Otherwise, use a label difference. |
453 | return MachineJumpTableInfo::EK_LabelDifference32; |
454 | } |
455 | |
456 | SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, |
457 | SelectionDAG &DAG) const { |
458 | // If our PIC model is GP relative, use the global offset table as the base. |
459 | unsigned JTEncoding = getJumpTableEncoding(); |
460 | |
461 | if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || |
462 | (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) |
463 | return DAG.getGLOBAL_OFFSET_TABLE(VT: getPointerTy(DL: DAG.getDataLayout())); |
464 | |
465 | return Table; |
466 | } |
467 | |
468 | /// This returns the relocation base for the given PIC jumptable, the same as |
469 | /// getPICJumpTableRelocBase, but as an MCExpr. |
470 | const MCExpr * |
471 | TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, |
472 | unsigned JTI,MCContext &Ctx) const{ |
473 | // The normal PIC reloc base is the label at the start of the jump table. |
474 | return MCSymbolRefExpr::create(Symbol: MF->getJTISymbol(JTI, Ctx), Ctx); |
475 | } |
476 | |
477 | SDValue TargetLowering::expandIndirectJTBranch(const SDLoc &dl, SDValue Value, |
478 | SDValue Addr, int JTI, |
479 | SelectionDAG &DAG) const { |
480 | SDValue Chain = Value; |
481 | // Jump table debug info is only needed if CodeView is enabled. |
482 | if (DAG.getTarget().getTargetTriple().isOSBinFormatCOFF()) { |
483 | Chain = DAG.getJumpTableDebugInfo(JTI, Chain, DL: dl); |
484 | } |
485 | return DAG.getNode(Opcode: ISD::BRIND, DL: dl, VT: MVT::Other, N1: Chain, N2: Addr); |
486 | } |
487 | |
488 | bool |
489 | TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { |
490 | const TargetMachine &TM = getTargetMachine(); |
491 | const GlobalValue *GV = GA->getGlobal(); |
492 | |
493 | // If the address is not even local to this DSO we will have to load it from |
494 | // a got and then add the offset. |
495 | if (!TM.shouldAssumeDSOLocal(GV)) |
496 | return false; |
497 | |
498 | // If the code is position independent we will have to add a base register. |
499 | if (isPositionIndependent()) |
500 | return false; |
501 | |
502 | // Otherwise we can do it. |
503 | return true; |
504 | } |
505 | |
506 | //===----------------------------------------------------------------------===// |
507 | // Optimization Methods |
508 | //===----------------------------------------------------------------------===// |
509 | |
510 | /// If the specified instruction has a constant integer operand and there are |
511 | /// bits set in that constant that are not demanded, then clear those bits and |
512 | /// return true. |
513 | bool TargetLowering::ShrinkDemandedConstant(SDValue Op, |
514 | const APInt &DemandedBits, |
515 | const APInt &DemandedElts, |
516 | TargetLoweringOpt &TLO) const { |
517 | SDLoc DL(Op); |
518 | unsigned Opcode = Op.getOpcode(); |
519 | |
520 | // Early-out if we've ended up calling an undemanded node, leave this to |
521 | // constant folding. |
522 | if (DemandedBits.isZero() || DemandedElts.isZero()) |
523 | return false; |
524 | |
525 | // Do target-specific constant optimization. |
526 | if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) |
527 | return TLO.New.getNode(); |
528 | |
529 | // FIXME: ISD::SELECT, ISD::SELECT_CC |
530 | switch (Opcode) { |
531 | default: |
532 | break; |
533 | case ISD::XOR: |
534 | case ISD::AND: |
535 | case ISD::OR: { |
536 | auto *Op1C = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 1)); |
537 | if (!Op1C || Op1C->isOpaque()) |
538 | return false; |
539 | |
540 | // If this is a 'not' op, don't touch it because that's a canonical form. |
541 | const APInt &C = Op1C->getAPIntValue(); |
542 | if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(RHS: C)) |
543 | return false; |
544 | |
545 | if (!C.isSubsetOf(RHS: DemandedBits)) { |
546 | EVT VT = Op.getValueType(); |
547 | SDValue NewC = TLO.DAG.getConstant(Val: DemandedBits & C, DL, VT); |
548 | SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, N1: Op.getOperand(i: 0), N2: NewC, |
549 | Flags: Op->getFlags()); |
550 | return TLO.CombineTo(O: Op, N: NewOp); |
551 | } |
552 | |
553 | break; |
554 | } |
555 | } |
556 | |
557 | return false; |
558 | } |
559 | |
560 | bool TargetLowering::ShrinkDemandedConstant(SDValue Op, |
561 | const APInt &DemandedBits, |
562 | TargetLoweringOpt &TLO) const { |
563 | EVT VT = Op.getValueType(); |
564 | APInt DemandedElts = VT.isVector() |
565 | ? APInt::getAllOnes(numBits: VT.getVectorNumElements()) |
566 | : APInt(1, 1); |
567 | return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); |
568 | } |
569 | |
570 | /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. |
571 | /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast, |
572 | /// but it could be generalized for targets with other types of implicit |
573 | /// widening casts. |
574 | bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, |
575 | const APInt &DemandedBits, |
576 | TargetLoweringOpt &TLO) const { |
577 | assert(Op.getNumOperands() == 2 && |
578 | "ShrinkDemandedOp only supports binary operators!" ); |
579 | assert(Op.getNode()->getNumValues() == 1 && |
580 | "ShrinkDemandedOp only supports nodes with one result!" ); |
581 | |
582 | EVT VT = Op.getValueType(); |
583 | SelectionDAG &DAG = TLO.DAG; |
584 | SDLoc dl(Op); |
585 | |
586 | // Early return, as this function cannot handle vector types. |
587 | if (VT.isVector()) |
588 | return false; |
589 | |
590 | assert(Op.getOperand(0).getValueType().getScalarSizeInBits() == BitWidth && |
591 | Op.getOperand(1).getValueType().getScalarSizeInBits() == BitWidth && |
592 | "ShrinkDemandedOp only supports operands that have the same size!" ); |
593 | |
594 | // Don't do this if the node has another user, which may require the |
595 | // full value. |
596 | if (!Op.getNode()->hasOneUse()) |
597 | return false; |
598 | |
599 | // Search for the smallest integer type with free casts to and from |
600 | // Op's type. For expedience, just check power-of-2 integer types. |
601 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
602 | unsigned DemandedSize = DemandedBits.getActiveBits(); |
603 | for (unsigned SmallVTBits = llvm::bit_ceil(Value: DemandedSize); |
604 | SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(A: SmallVTBits)) { |
605 | EVT SmallVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: SmallVTBits); |
606 | if (TLI.isTruncateFree(FromVT: VT, ToVT: SmallVT) && TLI.isZExtFree(FromTy: SmallVT, ToTy: VT)) { |
607 | // We found a type with free casts. |
608 | SDValue X = DAG.getNode( |
609 | Opcode: Op.getOpcode(), DL: dl, VT: SmallVT, |
610 | N1: DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: SmallVT, Operand: Op.getOperand(i: 0)), |
611 | N2: DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: SmallVT, Operand: Op.getOperand(i: 1))); |
612 | assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?" ); |
613 | SDValue Z = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT, Operand: X); |
614 | return TLO.CombineTo(O: Op, N: Z); |
615 | } |
616 | } |
617 | return false; |
618 | } |
619 | |
620 | bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, |
621 | DAGCombinerInfo &DCI) const { |
622 | SelectionDAG &DAG = DCI.DAG; |
623 | TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), |
624 | !DCI.isBeforeLegalizeOps()); |
625 | KnownBits Known; |
626 | |
627 | bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); |
628 | if (Simplified) { |
629 | DCI.AddToWorklist(N: Op.getNode()); |
630 | DCI.CommitTargetLoweringOpt(TLO); |
631 | } |
632 | return Simplified; |
633 | } |
634 | |
635 | bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, |
636 | const APInt &DemandedElts, |
637 | DAGCombinerInfo &DCI) const { |
638 | SelectionDAG &DAG = DCI.DAG; |
639 | TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), |
640 | !DCI.isBeforeLegalizeOps()); |
641 | KnownBits Known; |
642 | |
643 | bool Simplified = |
644 | SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); |
645 | if (Simplified) { |
646 | DCI.AddToWorklist(N: Op.getNode()); |
647 | DCI.CommitTargetLoweringOpt(TLO); |
648 | } |
649 | return Simplified; |
650 | } |
651 | |
652 | bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, |
653 | KnownBits &Known, |
654 | TargetLoweringOpt &TLO, |
655 | unsigned Depth, |
656 | bool AssumeSingleUse) const { |
657 | EVT VT = Op.getValueType(); |
658 | |
659 | // Since the number of lanes in a scalable vector is unknown at compile time, |
660 | // we track one bit which is implicitly broadcast to all lanes. This means |
661 | // that all lanes in a scalable vector are considered demanded. |
662 | APInt DemandedElts = VT.isFixedLengthVector() |
663 | ? APInt::getAllOnes(numBits: VT.getVectorNumElements()) |
664 | : APInt(1, 1); |
665 | return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, |
666 | AssumeSingleUse); |
667 | } |
668 | |
669 | // TODO: Under what circumstances can we create nodes? Constant folding? |
670 | SDValue TargetLowering::SimplifyMultipleUseDemandedBits( |
671 | SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, |
672 | SelectionDAG &DAG, unsigned Depth) const { |
673 | EVT VT = Op.getValueType(); |
674 | |
675 | // Limit search depth. |
676 | if (Depth >= SelectionDAG::MaxRecursionDepth) |
677 | return SDValue(); |
678 | |
679 | // Ignore UNDEFs. |
680 | if (Op.isUndef()) |
681 | return SDValue(); |
682 | |
683 | // Not demanding any bits/elts from Op. |
684 | if (DemandedBits == 0 || DemandedElts == 0) |
685 | return DAG.getUNDEF(VT); |
686 | |
687 | bool IsLE = DAG.getDataLayout().isLittleEndian(); |
688 | unsigned NumElts = DemandedElts.getBitWidth(); |
689 | unsigned BitWidth = DemandedBits.getBitWidth(); |
690 | KnownBits LHSKnown, RHSKnown; |
691 | switch (Op.getOpcode()) { |
692 | case ISD::BITCAST: { |
693 | if (VT.isScalableVector()) |
694 | return SDValue(); |
695 | |
696 | SDValue Src = peekThroughBitcasts(V: Op.getOperand(i: 0)); |
697 | EVT SrcVT = Src.getValueType(); |
698 | EVT DstVT = Op.getValueType(); |
699 | if (SrcVT == DstVT) |
700 | return Src; |
701 | |
702 | unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); |
703 | unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); |
704 | if (NumSrcEltBits == NumDstEltBits) |
705 | if (SDValue V = SimplifyMultipleUseDemandedBits( |
706 | Op: Src, DemandedBits, DemandedElts, DAG, Depth: Depth + 1)) |
707 | return DAG.getBitcast(VT: DstVT, V); |
708 | |
709 | if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { |
710 | unsigned Scale = NumDstEltBits / NumSrcEltBits; |
711 | unsigned NumSrcElts = SrcVT.getVectorNumElements(); |
712 | APInt DemandedSrcBits = APInt::getZero(numBits: NumSrcEltBits); |
713 | APInt DemandedSrcElts = APInt::getZero(numBits: NumSrcElts); |
714 | for (unsigned i = 0; i != Scale; ++i) { |
715 | unsigned EltOffset = IsLE ? i : (Scale - 1 - i); |
716 | unsigned BitOffset = EltOffset * NumSrcEltBits; |
717 | APInt Sub = DemandedBits.extractBits(numBits: NumSrcEltBits, bitPosition: BitOffset); |
718 | if (!Sub.isZero()) { |
719 | DemandedSrcBits |= Sub; |
720 | for (unsigned j = 0; j != NumElts; ++j) |
721 | if (DemandedElts[j]) |
722 | DemandedSrcElts.setBit((j * Scale) + i); |
723 | } |
724 | } |
725 | |
726 | if (SDValue V = SimplifyMultipleUseDemandedBits( |
727 | Op: Src, DemandedBits: DemandedSrcBits, DemandedElts: DemandedSrcElts, DAG, Depth: Depth + 1)) |
728 | return DAG.getBitcast(VT: DstVT, V); |
729 | } |
730 | |
731 | // TODO - bigendian once we have test coverage. |
732 | if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { |
733 | unsigned Scale = NumSrcEltBits / NumDstEltBits; |
734 | unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; |
735 | APInt DemandedSrcBits = APInt::getZero(numBits: NumSrcEltBits); |
736 | APInt DemandedSrcElts = APInt::getZero(numBits: NumSrcElts); |
737 | for (unsigned i = 0; i != NumElts; ++i) |
738 | if (DemandedElts[i]) { |
739 | unsigned Offset = (i % Scale) * NumDstEltBits; |
740 | DemandedSrcBits.insertBits(SubBits: DemandedBits, bitPosition: Offset); |
741 | DemandedSrcElts.setBit(i / Scale); |
742 | } |
743 | |
744 | if (SDValue V = SimplifyMultipleUseDemandedBits( |
745 | Op: Src, DemandedBits: DemandedSrcBits, DemandedElts: DemandedSrcElts, DAG, Depth: Depth + 1)) |
746 | return DAG.getBitcast(VT: DstVT, V); |
747 | } |
748 | |
749 | break; |
750 | } |
751 | case ISD::FREEZE: { |
752 | SDValue N0 = Op.getOperand(i: 0); |
753 | if (DAG.isGuaranteedNotToBeUndefOrPoison(Op: N0, DemandedElts, |
754 | /*PoisonOnly=*/false)) |
755 | return N0; |
756 | break; |
757 | } |
758 | case ISD::AND: { |
759 | LHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 0), DemandedElts, Depth: Depth + 1); |
760 | RHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 1), DemandedElts, Depth: Depth + 1); |
761 | |
762 | // If all of the demanded bits are known 1 on one side, return the other. |
763 | // These bits cannot contribute to the result of the 'and' in this |
764 | // context. |
765 | if (DemandedBits.isSubsetOf(RHS: LHSKnown.Zero | RHSKnown.One)) |
766 | return Op.getOperand(i: 0); |
767 | if (DemandedBits.isSubsetOf(RHS: RHSKnown.Zero | LHSKnown.One)) |
768 | return Op.getOperand(i: 1); |
769 | break; |
770 | } |
771 | case ISD::OR: { |
772 | LHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 0), DemandedElts, Depth: Depth + 1); |
773 | RHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 1), DemandedElts, Depth: Depth + 1); |
774 | |
775 | // If all of the demanded bits are known zero on one side, return the |
776 | // other. These bits cannot contribute to the result of the 'or' in this |
777 | // context. |
778 | if (DemandedBits.isSubsetOf(RHS: LHSKnown.One | RHSKnown.Zero)) |
779 | return Op.getOperand(i: 0); |
780 | if (DemandedBits.isSubsetOf(RHS: RHSKnown.One | LHSKnown.Zero)) |
781 | return Op.getOperand(i: 1); |
782 | break; |
783 | } |
784 | case ISD::XOR: { |
785 | LHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 0), DemandedElts, Depth: Depth + 1); |
786 | RHSKnown = DAG.computeKnownBits(Op: Op.getOperand(i: 1), DemandedElts, Depth: Depth + 1); |
787 | |
788 | // If all of the demanded bits are known zero on one side, return the |
789 | // other. |
790 | if (DemandedBits.isSubsetOf(RHS: RHSKnown.Zero)) |
791 | return Op.getOperand(i: 0); |
792 | if (DemandedBits.isSubsetOf(RHS: LHSKnown.Zero)) |
793 | return Op.getOperand(i: 1); |
794 | break; |
795 | } |
796 | case ISD::SHL: { |
797 | // If we are only demanding sign bits then we can use the shift source |
798 | // directly. |
799 | if (std::optional<uint64_t> MaxSA = |
800 | DAG.getValidMaximumShiftAmount(V: Op, DemandedElts, Depth: Depth + 1)) { |
801 | SDValue Op0 = Op.getOperand(i: 0); |
802 | unsigned ShAmt = *MaxSA; |
803 | unsigned NumSignBits = |
804 | DAG.ComputeNumSignBits(Op: Op0, DemandedElts, Depth: Depth + 1); |
805 | unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); |
806 | if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) |
807 | return Op0; |
808 | } |
809 | break; |
810 | } |
811 | case ISD::SETCC: { |
812 | SDValue Op0 = Op.getOperand(i: 0); |
813 | SDValue Op1 = Op.getOperand(i: 1); |
814 | ISD::CondCode CC = cast<CondCodeSDNode>(Val: Op.getOperand(i: 2))->get(); |
815 | // If (1) we only need the sign-bit, (2) the setcc operands are the same |
816 | // width as the setcc result, and (3) the result of a setcc conforms to 0 or |
817 | // -1, we may be able to bypass the setcc. |
818 | if (DemandedBits.isSignMask() && |
819 | Op0.getScalarValueSizeInBits() == BitWidth && |
820 | getBooleanContents(Type: Op0.getValueType()) == |
821 | BooleanContent::ZeroOrNegativeOneBooleanContent) { |
822 | // If we're testing X < 0, then this compare isn't needed - just use X! |
823 | // FIXME: We're limiting to integer types here, but this should also work |
824 | // if we don't care about FP signed-zero. The use of SETLT with FP means |
825 | // that we don't care about NaNs. |
826 | if (CC == ISD::SETLT && Op1.getValueType().isInteger() && |
827 | (isNullConstant(V: Op1) || ISD::isBuildVectorAllZeros(N: Op1.getNode()))) |
828 | return Op0; |
829 | } |
830 | break; |
831 | } |
832 | case ISD::SIGN_EXTEND_INREG: { |
833 | // If none of the extended bits are demanded, eliminate the sextinreg. |
834 | SDValue Op0 = Op.getOperand(i: 0); |
835 | EVT ExVT = cast<VTSDNode>(Val: Op.getOperand(i: 1))->getVT(); |
836 | unsigned ExBits = ExVT.getScalarSizeInBits(); |
837 | if (DemandedBits.getActiveBits() <= ExBits && |
838 | shouldRemoveRedundantExtend(Op)) |
839 | return Op0; |
840 | // If the input is already sign extended, just drop the extension. |
841 | unsigned NumSignBits = DAG.ComputeNumSignBits(Op: Op0, DemandedElts, Depth: Depth + 1); |
842 | if (NumSignBits >= (BitWidth - ExBits + 1)) |
843 | return Op0; |
844 | break; |
845 | } |
846 | case ISD::ANY_EXTEND_VECTOR_INREG: |
847 | case ISD::SIGN_EXTEND_VECTOR_INREG: |
848 | case ISD::ZERO_EXTEND_VECTOR_INREG: { |
849 | if (VT.isScalableVector()) |
850 | return SDValue(); |
851 | |
852 | // If we only want the lowest element and none of extended bits, then we can |
853 | // return the bitcasted source vector. |
854 | SDValue Src = Op.getOperand(i: 0); |
855 | EVT SrcVT = Src.getValueType(); |
856 | EVT DstVT = Op.getValueType(); |
857 | if (IsLE && DemandedElts == 1 && |
858 | DstVT.getSizeInBits() == SrcVT.getSizeInBits() && |
859 | DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { |
860 | return DAG.getBitcast(VT: DstVT, V: Src); |
861 | } |
862 | break; |
863 | } |
864 | case ISD::INSERT_VECTOR_ELT: { |
865 | if (VT.isScalableVector()) |
866 | return SDValue(); |
867 | |
868 | // If we don't demand the inserted element, return the base vector. |
869 | SDValue Vec = Op.getOperand(i: 0); |
870 | auto *CIdx = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 2)); |
871 | EVT VecVT = Vec.getValueType(); |
872 | if (CIdx && CIdx->getAPIntValue().ult(RHS: VecVT.getVectorNumElements()) && |
873 | !DemandedElts[CIdx->getZExtValue()]) |
874 | return Vec; |
875 | break; |
876 | } |
877 | case ISD::INSERT_SUBVECTOR: { |
878 | if (VT.isScalableVector()) |
879 | return SDValue(); |
880 | |
881 | SDValue Vec = Op.getOperand(i: 0); |
882 | SDValue Sub = Op.getOperand(i: 1); |
883 | uint64_t Idx = Op.getConstantOperandVal(i: 2); |
884 | unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); |
885 | APInt DemandedSubElts = DemandedElts.extractBits(numBits: NumSubElts, bitPosition: Idx); |
886 | // If we don't demand the inserted subvector, return the base vector. |
887 | if (DemandedSubElts == 0) |
888 | return Vec; |
889 | break; |
890 | } |
891 | case ISD::VECTOR_SHUFFLE: { |
892 | assert(!VT.isScalableVector()); |
893 | ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Val&: Op)->getMask(); |
894 | |
895 | // If all the demanded elts are from one operand and are inline, |
896 | // then we can use the operand directly. |
897 | bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; |
898 | for (unsigned i = 0; i != NumElts; ++i) { |
899 | int M = ShuffleMask[i]; |
900 | if (M < 0 || !DemandedElts[i]) |
901 | continue; |
902 | AllUndef = false; |
903 | IdentityLHS &= (M == (int)i); |
904 | IdentityRHS &= ((M - NumElts) == i); |
905 | } |
906 | |
907 | if (AllUndef) |
908 | return DAG.getUNDEF(VT: Op.getValueType()); |
909 | if (IdentityLHS) |
910 | return Op.getOperand(i: 0); |
911 | if (IdentityRHS) |
912 | return Op.getOperand(i: 1); |
913 | break; |
914 | } |
915 | default: |
916 | // TODO: Probably okay to remove after audit; here to reduce change size |
917 | // in initial enablement patch for scalable vectors |
918 | if (VT.isScalableVector()) |
919 | return SDValue(); |
920 | |
921 | if (Op.getOpcode() >= ISD::BUILTIN_OP_END) |
922 | if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( |
923 | Op, DemandedBits, DemandedElts, DAG, Depth)) |
924 | return V; |
925 | break; |
926 | } |
927 | return SDValue(); |
928 | } |
929 | |
930 | SDValue TargetLowering::SimplifyMultipleUseDemandedBits( |
931 | SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, |
932 | unsigned Depth) const { |
933 | EVT VT = Op.getValueType(); |
934 | // Since the number of lanes in a scalable vector is unknown at compile time, |
935 | // we track one bit which is implicitly broadcast to all lanes. This means |
936 | // that all lanes in a scalable vector are considered demanded. |
937 | APInt DemandedElts = VT.isFixedLengthVector() |
938 | ? APInt::getAllOnes(numBits: VT.getVectorNumElements()) |
939 | : APInt(1, 1); |
940 | return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, |
941 | Depth); |
942 | } |
943 | |
944 | SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( |
945 | SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, |
946 | unsigned Depth) const { |
947 | APInt DemandedBits = APInt::getAllOnes(numBits: Op.getScalarValueSizeInBits()); |
948 | return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, |
949 | Depth); |
950 | } |
951 | |
952 | // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). |
953 | // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). |
954 | static SDValue combineShiftToAVG(SDValue Op, |
955 | TargetLowering::TargetLoweringOpt &TLO, |
956 | const TargetLowering &TLI, |
957 | const APInt &DemandedBits, |
958 | const APInt &DemandedElts, unsigned Depth) { |
959 | assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && |
960 | "SRL or SRA node is required here!" ); |
961 | // Is the right shift using an immediate value of 1? |
962 | ConstantSDNode *N1C = isConstOrConstSplat(N: Op.getOperand(i: 1), DemandedElts); |
963 | if (!N1C || !N1C->isOne()) |
964 | return SDValue(); |
965 | |
966 | // We are looking for an avgfloor |
967 | // add(ext, ext) |
968 | // or one of these as a avgceil |
969 | // add(add(ext, ext), 1) |
970 | // add(add(ext, 1), ext) |
971 | // add(ext, add(ext, 1)) |
972 | SDValue Add = Op.getOperand(i: 0); |
973 | if (Add.getOpcode() != ISD::ADD) |
974 | return SDValue(); |
975 | |
976 | SDValue ExtOpA = Add.getOperand(i: 0); |
977 | SDValue ExtOpB = Add.getOperand(i: 1); |
978 | SDValue Add2; |
979 | auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3, SDValue A) { |
980 | ConstantSDNode *ConstOp; |
981 | if ((ConstOp = isConstOrConstSplat(N: Op2, DemandedElts)) && |
982 | ConstOp->isOne()) { |
983 | ExtOpA = Op1; |
984 | ExtOpB = Op3; |
985 | Add2 = A; |
986 | return true; |
987 | } |
988 | if ((ConstOp = isConstOrConstSplat(N: Op3, DemandedElts)) && |
989 | ConstOp->isOne()) { |
990 | ExtOpA = Op1; |
991 | ExtOpB = Op2; |
992 | Add2 = A; |
993 | return true; |
994 | } |
995 | return false; |
996 | }; |
997 | bool IsCeil = |
998 | (ExtOpA.getOpcode() == ISD::ADD && |
999 | MatchOperands(ExtOpA.getOperand(i: 0), ExtOpA.getOperand(i: 1), ExtOpB, ExtOpA)) || |
1000 | (ExtOpB.getOpcode() == ISD::ADD && |
1001 | MatchOperands(ExtOpB.getOperand(i: 0), ExtOpB.getOperand(i: 1), ExtOpA, ExtOpB)); |
1002 | |
1003 | // If the shift is signed (sra): |
1004 | // - Needs >= 2 sign bit for both operands. |
1005 | // - Needs >= 2 zero bits. |
1006 | // If the shift is unsigned (srl): |
1007 | // - Needs >= 1 zero bit for both operands. |
1008 | // - Needs 1 demanded bit zero and >= 2 sign bits. |
1009 | SelectionDAG &DAG = TLO.DAG; |
1010 | unsigned ShiftOpc = Op.getOpcode(); |
1011 | bool IsSigned = false; |
1012 | unsigned KnownBits; |
1013 | unsigned NumSignedA = DAG.ComputeNumSignBits(Op: ExtOpA, DemandedElts, Depth); |
1014 | unsigned NumSignedB = DAG.ComputeNumSignBits(Op: ExtOpB, DemandedElts, Depth); |
1015 | unsigned NumSigned = std::min(a: NumSignedA, b: NumSignedB) - 1; |
1016 | unsigned NumZeroA = |
1017 | DAG.computeKnownBits(Op: ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); |
1018 | unsigned NumZeroB = |
1019 | DAG.computeKnownBits(Op: ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); |
1020 | unsigned NumZero = std::min(a: NumZeroA, b: NumZeroB); |
1021 | |
1022 | switch (ShiftOpc) { |
1023 | default: |
1024 | llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG" ); |
1025 | case ISD::SRA: { |
1026 | if (NumZero >= 2 && NumSigned < NumZero) { |
1027 | IsSigned = false; |
1028 | KnownBits = NumZero; |
1029 | break; |
1030 | } |
1031 | if (NumSigned >= 1) { |
1032 | IsSigned = true; |
1033 | KnownBits = NumSigned; |
1034 | break; |
1035 | } |
1036 | return SDValue(); |
1037 | } |
1038 | case ISD::SRL: { |
1039 | if (NumZero >= 1 && NumSigned < NumZero) { |
1040 | IsSigned = false; |
1041 | KnownBits = NumZero; |
1042 | break; |
1043 | } |
1044 | if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { |
1045 | IsSigned = true; |
1046 | KnownBits = NumSigned; |
1047 | break; |
1048 | } |
1049 | return SDValue(); |
1050 | } |
1051 | } |
1052 | |
1053 | unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) |
1054 | : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); |
1055 | |
1056 | // Find the smallest power-2 type that is legal for this vector size and |
1057 | // operation, given the original type size and the number of known sign/zero |
1058 | // bits. |
1059 | EVT VT = Op.getValueType(); |
1060 | unsigned MinWidth = |
1061 | std::max<unsigned>(a: VT.getScalarSizeInBits() - KnownBits, b: 8); |
1062 | EVT NVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: llvm::bit_ceil(Value: MinWidth)); |
1063 | if (NVT.getScalarSizeInBits() > VT.getScalarSizeInBits()) |
1064 | return SDValue(); |
1065 | if (VT.isVector()) |
1066 | NVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: NVT, EC: VT.getVectorElementCount()); |
1067 | if (TLO.LegalTypes() && !TLI.isOperationLegal(Op: AVGOpc, VT: NVT)) { |
1068 | // If we could not transform, and (both) adds are nuw/nsw, we can use the |
1069 | // larger type size to do the transform. |
1070 | if (TLO.LegalOperations() && !TLI.isOperationLegal(Op: AVGOpc, VT)) |
1071 | return SDValue(); |
1072 | if (DAG.willNotOverflowAdd(IsSigned, N0: Add.getOperand(i: 0), |
1073 | N1: Add.getOperand(i: 1)) && |
1074 | (!Add2 || DAG.willNotOverflowAdd(IsSigned, N0: Add2.getOperand(i: 0), |
1075 | N1: Add2.getOperand(i: 1)))) |
1076 | NVT = VT; |
1077 | else |
1078 | return SDValue(); |
1079 | } |
1080 | |
1081 | // Don't create a AVGFLOOR node with a scalar constant unless its legal as |
1082 | // this is likely to stop other folds (reassociation, value tracking etc.) |
1083 | if (!IsCeil && !TLI.isOperationLegal(Op: AVGOpc, VT: NVT) && |
1084 | (isa<ConstantSDNode>(Val: ExtOpA) || isa<ConstantSDNode>(Val: ExtOpB))) |
1085 | return SDValue(); |
1086 | |
1087 | SDLoc DL(Op); |
1088 | SDValue ResultAVG = |
1089 | DAG.getNode(Opcode: AVGOpc, DL, VT: NVT, N1: DAG.getExtOrTrunc(IsSigned, Op: ExtOpA, DL, VT: NVT), |
1090 | N2: DAG.getExtOrTrunc(IsSigned, Op: ExtOpB, DL, VT: NVT)); |
1091 | return DAG.getExtOrTrunc(IsSigned, Op: ResultAVG, DL, VT); |
1092 | } |
1093 | |
1094 | /// Look at Op. At this point, we know that only the OriginalDemandedBits of the |
1095 | /// result of Op are ever used downstream. If we can use this information to |
1096 | /// simplify Op, create a new simplified DAG node and return true, returning the |
1097 | /// original and new nodes in Old and New. Otherwise, analyze the expression and |
1098 | /// return a mask of Known bits for the expression (used to simplify the |
1099 | /// caller). The Known bits may only be accurate for those bits in the |
1100 | /// OriginalDemandedBits and OriginalDemandedElts. |
1101 | bool TargetLowering::SimplifyDemandedBits( |
1102 | SDValue Op, const APInt &OriginalDemandedBits, |
1103 | const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, |
1104 | unsigned Depth, bool AssumeSingleUse) const { |
1105 | unsigned BitWidth = OriginalDemandedBits.getBitWidth(); |
1106 | assert(Op.getScalarValueSizeInBits() == BitWidth && |
1107 | "Mask size mismatches value type size!" ); |
1108 | |
1109 | // Don't know anything. |
1110 | Known = KnownBits(BitWidth); |
1111 | |
1112 | EVT VT = Op.getValueType(); |
1113 | bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); |
1114 | unsigned NumElts = OriginalDemandedElts.getBitWidth(); |
1115 | assert((!VT.isFixedLengthVector() || NumElts == VT.getVectorNumElements()) && |
1116 | "Unexpected vector size" ); |
1117 | |
1118 | APInt DemandedBits = OriginalDemandedBits; |
1119 | APInt DemandedElts = OriginalDemandedElts; |
1120 | SDLoc dl(Op); |
1121 | |
1122 | // Undef operand. |
1123 | if (Op.isUndef()) |
1124 | return false; |
1125 | |
1126 | // We can't simplify target constants. |
1127 | if (Op.getOpcode() == ISD::TargetConstant) |
1128 | return false; |
1129 | |
1130 | if (Op.getOpcode() == ISD::Constant) { |
1131 | // We know all of the bits for a constant! |
1132 | Known = KnownBits::makeConstant(C: Op->getAsAPIntVal()); |
1133 | return false; |
1134 | } |
1135 | |
1136 | if (Op.getOpcode() == ISD::ConstantFP) { |
1137 | // We know all of the bits for a floating point constant! |
1138 | Known = KnownBits::makeConstant( |
1139 | C: cast<ConstantFPSDNode>(Val&: Op)->getValueAPF().bitcastToAPInt()); |
1140 | return false; |
1141 | } |
1142 | |
1143 | // Other users may use these bits. |
1144 | bool HasMultiUse = false; |
1145 | if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) { |
1146 | if (Depth >= SelectionDAG::MaxRecursionDepth) { |
1147 | // Limit search depth. |
1148 | return false; |
1149 | } |
1150 | // Allow multiple uses, just set the DemandedBits/Elts to all bits. |
1151 | DemandedBits = APInt::getAllOnes(numBits: BitWidth); |
1152 | DemandedElts = APInt::getAllOnes(numBits: NumElts); |
1153 | HasMultiUse = true; |
1154 | } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { |
1155 | // Not demanding any bits/elts from Op. |
1156 | return TLO.CombineTo(O: Op, N: TLO.DAG.getUNDEF(VT)); |
1157 | } else if (Depth >= SelectionDAG::MaxRecursionDepth) { |
1158 | // Limit search depth. |
1159 | return false; |
1160 | } |
1161 | |
1162 | KnownBits Known2; |
1163 | switch (Op.getOpcode()) { |
1164 | case ISD::SCALAR_TO_VECTOR: { |
1165 | if (VT.isScalableVector()) |
1166 | return false; |
1167 | if (!DemandedElts[0]) |
1168 | return TLO.CombineTo(O: Op, N: TLO.DAG.getUNDEF(VT)); |
1169 | |
1170 | KnownBits SrcKnown; |
1171 | SDValue Src = Op.getOperand(i: 0); |
1172 | unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); |
1173 | APInt SrcDemandedBits = DemandedBits.zext(width: SrcBitWidth); |
1174 | if (SimplifyDemandedBits(Op: Src, DemandedBits: SrcDemandedBits, Known&: SrcKnown, TLO, Depth: Depth + 1)) |
1175 | return true; |
1176 | |
1177 | // Upper elements are undef, so only get the knownbits if we just demand |
1178 | // the bottom element. |
1179 | if (DemandedElts == 1) |
1180 | Known = SrcKnown.anyextOrTrunc(BitWidth); |
1181 | break; |
1182 | } |
1183 | case ISD::BUILD_VECTOR: |
1184 | // Collect the known bits that are shared by every demanded element. |
1185 | // TODO: Call SimplifyDemandedBits for non-constant demanded elements. |
1186 | Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); |
1187 | return false; // Don't fall through, will infinitely loop. |
1188 | case ISD::SPLAT_VECTOR: { |
1189 | SDValue Scl = Op.getOperand(i: 0); |
1190 | APInt DemandedSclBits = DemandedBits.zextOrTrunc(width: Scl.getValueSizeInBits()); |
1191 | KnownBits KnownScl; |
1192 | if (SimplifyDemandedBits(Op: Scl, DemandedBits: DemandedSclBits, Known&: KnownScl, TLO, Depth: Depth + 1)) |
1193 | return true; |
1194 | |
1195 | // Implicitly truncate the bits to match the official semantics of |
1196 | // SPLAT_VECTOR. |
1197 | Known = KnownScl.trunc(BitWidth); |
1198 | break; |
1199 | } |
1200 | case ISD::LOAD: { |
1201 | auto *LD = cast<LoadSDNode>(Val&: Op); |
1202 | if (getTargetConstantFromLoad(LD)) { |
1203 | Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); |
1204 | return false; // Don't fall through, will infinitely loop. |
1205 | } |
1206 | if (ISD::isZEXTLoad(N: Op.getNode()) && Op.getResNo() == 0) { |
1207 | // If this is a ZEXTLoad and we are looking at the loaded value. |
1208 | EVT MemVT = LD->getMemoryVT(); |
1209 | unsigned MemBits = MemVT.getScalarSizeInBits(); |
1210 | Known.Zero.setBitsFrom(MemBits); |
1211 | return false; // Don't fall through, will infinitely loop. |
1212 | } |
1213 | break; |
1214 | } |
1215 | case ISD::INSERT_VECTOR_ELT: { |
1216 | if (VT.isScalableVector()) |
1217 | return false; |
1218 | SDValue Vec = Op.getOperand(i: 0); |
1219 | SDValue Scl = Op.getOperand(i: 1); |
1220 | auto *CIdx = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 2)); |
1221 | EVT VecVT = Vec.getValueType(); |
1222 | |
1223 | // If index isn't constant, assume we need all vector elements AND the |
1224 | // inserted element. |
1225 | APInt DemandedVecElts(DemandedElts); |
1226 | if (CIdx && CIdx->getAPIntValue().ult(RHS: VecVT.getVectorNumElements())) { |
1227 | unsigned Idx = CIdx->getZExtValue(); |
1228 | DemandedVecElts.clearBit(BitPosition: Idx); |
1229 | |
1230 | // Inserted element is not required. |
1231 | if (!DemandedElts[Idx]) |
1232 | return TLO.CombineTo(O: Op, N: Vec); |
1233 | } |
1234 | |
1235 | KnownBits KnownScl; |
1236 | unsigned NumSclBits = Scl.getScalarValueSizeInBits(); |
1237 | APInt DemandedSclBits = DemandedBits.zextOrTrunc(width: NumSclBits); |
1238 | if (SimplifyDemandedBits(Op: Scl, DemandedBits: DemandedSclBits, Known&: KnownScl, TLO, Depth: Depth + 1)) |
1239 | return true; |
1240 | |
1241 | Known = KnownScl.anyextOrTrunc(BitWidth); |
1242 | |
1243 | KnownBits KnownVec; |
1244 | if (SimplifyDemandedBits(Op: Vec, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedVecElts, Known&: KnownVec, TLO, |
1245 | Depth: Depth + 1)) |
1246 | return true; |
1247 | |
1248 | if (!!DemandedVecElts) |
1249 | Known = Known.intersectWith(RHS: KnownVec); |
1250 | |
1251 | return false; |
1252 | } |
1253 | case ISD::INSERT_SUBVECTOR: { |
1254 | if (VT.isScalableVector()) |
1255 | return false; |
1256 | // Demand any elements from the subvector and the remainder from the src its |
1257 | // inserted into. |
1258 | SDValue Src = Op.getOperand(i: 0); |
1259 | SDValue Sub = Op.getOperand(i: 1); |
1260 | uint64_t Idx = Op.getConstantOperandVal(i: 2); |
1261 | unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); |
1262 | APInt DemandedSubElts = DemandedElts.extractBits(numBits: NumSubElts, bitPosition: Idx); |
1263 | APInt DemandedSrcElts = DemandedElts; |
1264 | DemandedSrcElts.insertBits(SubBits: APInt::getZero(numBits: NumSubElts), bitPosition: Idx); |
1265 | |
1266 | KnownBits KnownSub, KnownSrc; |
1267 | if (SimplifyDemandedBits(Op: Sub, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedSubElts, Known&: KnownSub, TLO, |
1268 | Depth: Depth + 1)) |
1269 | return true; |
1270 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedSrcElts, Known&: KnownSrc, TLO, |
1271 | Depth: Depth + 1)) |
1272 | return true; |
1273 | |
1274 | Known.Zero.setAllBits(); |
1275 | Known.One.setAllBits(); |
1276 | if (!!DemandedSubElts) |
1277 | Known = Known.intersectWith(RHS: KnownSub); |
1278 | if (!!DemandedSrcElts) |
1279 | Known = Known.intersectWith(RHS: KnownSrc); |
1280 | |
1281 | // Attempt to avoid multi-use src if we don't need anything from it. |
1282 | if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || |
1283 | !DemandedSrcElts.isAllOnes()) { |
1284 | SDValue NewSub = SimplifyMultipleUseDemandedBits( |
1285 | Op: Sub, DemandedBits, DemandedElts: DemandedSubElts, DAG&: TLO.DAG, Depth: Depth + 1); |
1286 | SDValue NewSrc = SimplifyMultipleUseDemandedBits( |
1287 | Op: Src, DemandedBits, DemandedElts: DemandedSrcElts, DAG&: TLO.DAG, Depth: Depth + 1); |
1288 | if (NewSub || NewSrc) { |
1289 | NewSub = NewSub ? NewSub : Sub; |
1290 | NewSrc = NewSrc ? NewSrc : Src; |
1291 | SDValue NewOp = TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, N1: NewSrc, N2: NewSub, |
1292 | N3: Op.getOperand(i: 2)); |
1293 | return TLO.CombineTo(O: Op, N: NewOp); |
1294 | } |
1295 | } |
1296 | break; |
1297 | } |
1298 | case ISD::EXTRACT_SUBVECTOR: { |
1299 | if (VT.isScalableVector()) |
1300 | return false; |
1301 | // Offset the demanded elts by the subvector index. |
1302 | SDValue Src = Op.getOperand(i: 0); |
1303 | if (Src.getValueType().isScalableVector()) |
1304 | break; |
1305 | uint64_t Idx = Op.getConstantOperandVal(i: 1); |
1306 | unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); |
1307 | APInt DemandedSrcElts = DemandedElts.zext(width: NumSrcElts).shl(shiftAmt: Idx); |
1308 | |
1309 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedSrcElts, Known, TLO, |
1310 | Depth: Depth + 1)) |
1311 | return true; |
1312 | |
1313 | // Attempt to avoid multi-use src if we don't need anything from it. |
1314 | if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { |
1315 | SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( |
1316 | Op: Src, DemandedBits, DemandedElts: DemandedSrcElts, DAG&: TLO.DAG, Depth: Depth + 1); |
1317 | if (DemandedSrc) { |
1318 | SDValue NewOp = TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, N1: DemandedSrc, |
1319 | N2: Op.getOperand(i: 1)); |
1320 | return TLO.CombineTo(O: Op, N: NewOp); |
1321 | } |
1322 | } |
1323 | break; |
1324 | } |
1325 | case ISD::CONCAT_VECTORS: { |
1326 | if (VT.isScalableVector()) |
1327 | return false; |
1328 | Known.Zero.setAllBits(); |
1329 | Known.One.setAllBits(); |
1330 | EVT SubVT = Op.getOperand(i: 0).getValueType(); |
1331 | unsigned NumSubVecs = Op.getNumOperands(); |
1332 | unsigned NumSubElts = SubVT.getVectorNumElements(); |
1333 | for (unsigned i = 0; i != NumSubVecs; ++i) { |
1334 | APInt DemandedSubElts = |
1335 | DemandedElts.extractBits(numBits: NumSubElts, bitPosition: i * NumSubElts); |
1336 | if (SimplifyDemandedBits(Op: Op.getOperand(i), OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedSubElts, |
1337 | Known&: Known2, TLO, Depth: Depth + 1)) |
1338 | return true; |
1339 | // Known bits are shared by every demanded subvector element. |
1340 | if (!!DemandedSubElts) |
1341 | Known = Known.intersectWith(RHS: Known2); |
1342 | } |
1343 | break; |
1344 | } |
1345 | case ISD::VECTOR_SHUFFLE: { |
1346 | assert(!VT.isScalableVector()); |
1347 | ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Val&: Op)->getMask(); |
1348 | |
1349 | // Collect demanded elements from shuffle operands.. |
1350 | APInt DemandedLHS, DemandedRHS; |
1351 | if (!getShuffleDemandedElts(SrcWidth: NumElts, Mask: ShuffleMask, DemandedElts, DemandedLHS, |
1352 | DemandedRHS)) |
1353 | break; |
1354 | |
1355 | if (!!DemandedLHS || !!DemandedRHS) { |
1356 | SDValue Op0 = Op.getOperand(i: 0); |
1357 | SDValue Op1 = Op.getOperand(i: 1); |
1358 | |
1359 | Known.Zero.setAllBits(); |
1360 | Known.One.setAllBits(); |
1361 | if (!!DemandedLHS) { |
1362 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedLHS, Known&: Known2, TLO, |
1363 | Depth: Depth + 1)) |
1364 | return true; |
1365 | Known = Known.intersectWith(RHS: Known2); |
1366 | } |
1367 | if (!!DemandedRHS) { |
1368 | if (SimplifyDemandedBits(Op: Op1, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedRHS, Known&: Known2, TLO, |
1369 | Depth: Depth + 1)) |
1370 | return true; |
1371 | Known = Known.intersectWith(RHS: Known2); |
1372 | } |
1373 | |
1374 | // Attempt to avoid multi-use ops if we don't need anything from them. |
1375 | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( |
1376 | Op: Op0, DemandedBits, DemandedElts: DemandedLHS, DAG&: TLO.DAG, Depth: Depth + 1); |
1377 | SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( |
1378 | Op: Op1, DemandedBits, DemandedElts: DemandedRHS, DAG&: TLO.DAG, Depth: Depth + 1); |
1379 | if (DemandedOp0 || DemandedOp1) { |
1380 | Op0 = DemandedOp0 ? DemandedOp0 : Op0; |
1381 | Op1 = DemandedOp1 ? DemandedOp1 : Op1; |
1382 | SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, N1: Op0, N2: Op1, Mask: ShuffleMask); |
1383 | return TLO.CombineTo(O: Op, N: NewOp); |
1384 | } |
1385 | } |
1386 | break; |
1387 | } |
1388 | case ISD::AND: { |
1389 | SDValue Op0 = Op.getOperand(i: 0); |
1390 | SDValue Op1 = Op.getOperand(i: 1); |
1391 | |
1392 | // If the RHS is a constant, check to see if the LHS would be zero without |
1393 | // using the bits from the RHS. Below, we use knowledge about the RHS to |
1394 | // simplify the LHS, here we're using information from the LHS to simplify |
1395 | // the RHS. |
1396 | if (ConstantSDNode *RHSC = isConstOrConstSplat(N: Op1, DemandedElts)) { |
1397 | // Do not increment Depth here; that can cause an infinite loop. |
1398 | KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op: Op0, DemandedElts, Depth); |
1399 | // If the LHS already has zeros where RHSC does, this 'and' is dead. |
1400 | if ((LHSKnown.Zero & DemandedBits) == |
1401 | (~RHSC->getAPIntValue() & DemandedBits)) |
1402 | return TLO.CombineTo(O: Op, N: Op0); |
1403 | |
1404 | // If any of the set bits in the RHS are known zero on the LHS, shrink |
1405 | // the constant. |
1406 | if (ShrinkDemandedConstant(Op, DemandedBits: ~LHSKnown.Zero & DemandedBits, |
1407 | DemandedElts, TLO)) |
1408 | return true; |
1409 | |
1410 | // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its |
1411 | // constant, but if this 'and' is only clearing bits that were just set by |
1412 | // the xor, then this 'and' can be eliminated by shrinking the mask of |
1413 | // the xor. For example, for a 32-bit X: |
1414 | // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 |
1415 | if (isBitwiseNot(V: Op0) && Op0.hasOneUse() && |
1416 | LHSKnown.One == ~RHSC->getAPIntValue()) { |
1417 | SDValue Xor = TLO.DAG.getNode(Opcode: ISD::XOR, DL: dl, VT, N1: Op0.getOperand(i: 0), N2: Op1); |
1418 | return TLO.CombineTo(O: Op, N: Xor); |
1419 | } |
1420 | } |
1421 | |
1422 | // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I) |
1423 | // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits). |
1424 | if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && !VT.isScalableVector() && |
1425 | (Op0.getOperand(i: 0).isUndef() || |
1426 | ISD::isBuildVectorOfConstantSDNodes(N: Op0.getOperand(i: 0).getNode())) && |
1427 | Op0->hasOneUse()) { |
1428 | unsigned NumSubElts = |
1429 | Op0.getOperand(i: 1).getValueType().getVectorNumElements(); |
1430 | unsigned SubIdx = Op0.getConstantOperandVal(i: 2); |
1431 | APInt DemandedSub = |
1432 | APInt::getBitsSet(numBits: NumElts, loBit: SubIdx, hiBit: SubIdx + NumSubElts); |
1433 | KnownBits KnownSubMask = |
1434 | TLO.DAG.computeKnownBits(Op: Op1, DemandedElts: DemandedSub & DemandedElts, Depth: Depth + 1); |
1435 | if (DemandedBits.isSubsetOf(RHS: KnownSubMask.One)) { |
1436 | SDValue NewAnd = |
1437 | TLO.DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Op0.getOperand(i: 0), N2: Op1); |
1438 | SDValue NewInsert = |
1439 | TLO.DAG.getNode(Opcode: ISD::INSERT_SUBVECTOR, DL: dl, VT, N1: NewAnd, |
1440 | N2: Op0.getOperand(i: 1), N3: Op0.getOperand(i: 2)); |
1441 | return TLO.CombineTo(O: Op, N: NewInsert); |
1442 | } |
1443 | } |
1444 | |
1445 | if (SimplifyDemandedBits(Op: Op1, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, Known, TLO, |
1446 | Depth: Depth + 1)) |
1447 | return true; |
1448 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: ~Known.Zero & DemandedBits, OriginalDemandedElts: DemandedElts, |
1449 | Known&: Known2, TLO, Depth: Depth + 1)) |
1450 | return true; |
1451 | |
1452 | // If all of the demanded bits are known one on one side, return the other. |
1453 | // These bits cannot contribute to the result of the 'and'. |
1454 | if (DemandedBits.isSubsetOf(RHS: Known2.Zero | Known.One)) |
1455 | return TLO.CombineTo(O: Op, N: Op0); |
1456 | if (DemandedBits.isSubsetOf(RHS: Known.Zero | Known2.One)) |
1457 | return TLO.CombineTo(O: Op, N: Op1); |
1458 | // If all of the demanded bits in the inputs are known zeros, return zero. |
1459 | if (DemandedBits.isSubsetOf(RHS: Known.Zero | Known2.Zero)) |
1460 | return TLO.CombineTo(O: Op, N: TLO.DAG.getConstant(Val: 0, DL: dl, VT)); |
1461 | // If the RHS is a constant, see if we can simplify it. |
1462 | if (ShrinkDemandedConstant(Op, DemandedBits: ~Known2.Zero & DemandedBits, DemandedElts, |
1463 | TLO)) |
1464 | return true; |
1465 | // If the operation can be done in a smaller type, do so. |
1466 | if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) |
1467 | return true; |
1468 | |
1469 | // Attempt to avoid multi-use ops if we don't need anything from them. |
1470 | if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { |
1471 | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( |
1472 | Op: Op0, DemandedBits, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
1473 | SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( |
1474 | Op: Op1, DemandedBits, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
1475 | if (DemandedOp0 || DemandedOp1) { |
1476 | Op0 = DemandedOp0 ? DemandedOp0 : Op0; |
1477 | Op1 = DemandedOp1 ? DemandedOp1 : Op1; |
1478 | SDValue NewOp = TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, N1: Op0, N2: Op1); |
1479 | return TLO.CombineTo(O: Op, N: NewOp); |
1480 | } |
1481 | } |
1482 | |
1483 | Known &= Known2; |
1484 | break; |
1485 | } |
1486 | case ISD::OR: { |
1487 | SDValue Op0 = Op.getOperand(i: 0); |
1488 | SDValue Op1 = Op.getOperand(i: 1); |
1489 | SDNodeFlags Flags = Op.getNode()->getFlags(); |
1490 | if (SimplifyDemandedBits(Op: Op1, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, Known, TLO, |
1491 | Depth: Depth + 1)) { |
1492 | if (Flags.hasDisjoint()) { |
1493 | Flags.setDisjoint(false); |
1494 | Op->setFlags(Flags); |
1495 | } |
1496 | return true; |
1497 | } |
1498 | |
1499 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: ~Known.One & DemandedBits, OriginalDemandedElts: DemandedElts, |
1500 | Known&: Known2, TLO, Depth: Depth + 1)) { |
1501 | if (Flags.hasDisjoint()) { |
1502 | Flags.setDisjoint(false); |
1503 | Op->setFlags(Flags); |
1504 | } |
1505 | return true; |
1506 | } |
1507 | |
1508 | // If all of the demanded bits are known zero on one side, return the other. |
1509 | // These bits cannot contribute to the result of the 'or'. |
1510 | if (DemandedBits.isSubsetOf(RHS: Known2.One | Known.Zero)) |
1511 | return TLO.CombineTo(O: Op, N: Op0); |
1512 | if (DemandedBits.isSubsetOf(RHS: Known.One | Known2.Zero)) |
1513 | return TLO.CombineTo(O: Op, N: Op1); |
1514 | // If the RHS is a constant, see if we can simplify it. |
1515 | if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) |
1516 | return true; |
1517 | // If the operation can be done in a smaller type, do so. |
1518 | if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) |
1519 | return true; |
1520 | |
1521 | // Attempt to avoid multi-use ops if we don't need anything from them. |
1522 | if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { |
1523 | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( |
1524 | Op: Op0, DemandedBits, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
1525 | SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( |
1526 | Op: Op1, DemandedBits, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
1527 | if (DemandedOp0 || DemandedOp1) { |
1528 | Op0 = DemandedOp0 ? DemandedOp0 : Op0; |
1529 | Op1 = DemandedOp1 ? DemandedOp1 : Op1; |
1530 | SDValue NewOp = TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, N1: Op0, N2: Op1); |
1531 | return TLO.CombineTo(O: Op, N: NewOp); |
1532 | } |
1533 | } |
1534 | |
1535 | // (or (and X, C1), (and (or X, Y), C2)) -> (or (and X, C1|C2), (and Y, C2)) |
1536 | // TODO: Use SimplifyMultipleUseDemandedBits to peek through masks. |
1537 | if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::AND && |
1538 | Op0->hasOneUse() && Op1->hasOneUse()) { |
1539 | // Attempt to match all commutations - m_c_Or would've been useful! |
1540 | for (int I = 0; I != 2; ++I) { |
1541 | SDValue X = Op.getOperand(i: I).getOperand(i: 0); |
1542 | SDValue C1 = Op.getOperand(i: I).getOperand(i: 1); |
1543 | SDValue Alt = Op.getOperand(i: 1 - I).getOperand(i: 0); |
1544 | SDValue C2 = Op.getOperand(i: 1 - I).getOperand(i: 1); |
1545 | if (Alt.getOpcode() == ISD::OR) { |
1546 | for (int J = 0; J != 2; ++J) { |
1547 | if (X == Alt.getOperand(i: J)) { |
1548 | SDValue Y = Alt.getOperand(i: 1 - J); |
1549 | if (SDValue C12 = TLO.DAG.FoldConstantArithmetic(Opcode: ISD::OR, DL: dl, VT, |
1550 | Ops: {C1, C2})) { |
1551 | SDValue MaskX = TLO.DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: X, N2: C12); |
1552 | SDValue MaskY = TLO.DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Y, N2: C2); |
1553 | return TLO.CombineTo( |
1554 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: MaskX, N2: MaskY)); |
1555 | } |
1556 | } |
1557 | } |
1558 | } |
1559 | } |
1560 | } |
1561 | |
1562 | Known |= Known2; |
1563 | break; |
1564 | } |
1565 | case ISD::XOR: { |
1566 | SDValue Op0 = Op.getOperand(i: 0); |
1567 | SDValue Op1 = Op.getOperand(i: 1); |
1568 | |
1569 | if (SimplifyDemandedBits(Op: Op1, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, Known, TLO, |
1570 | Depth: Depth + 1)) |
1571 | return true; |
1572 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, Known&: Known2, TLO, |
1573 | Depth: Depth + 1)) |
1574 | return true; |
1575 | |
1576 | // If all of the demanded bits are known zero on one side, return the other. |
1577 | // These bits cannot contribute to the result of the 'xor'. |
1578 | if (DemandedBits.isSubsetOf(RHS: Known.Zero)) |
1579 | return TLO.CombineTo(O: Op, N: Op0); |
1580 | if (DemandedBits.isSubsetOf(RHS: Known2.Zero)) |
1581 | return TLO.CombineTo(O: Op, N: Op1); |
1582 | // If the operation can be done in a smaller type, do so. |
1583 | if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) |
1584 | return true; |
1585 | |
1586 | // If all of the unknown bits are known to be zero on one side or the other |
1587 | // turn this into an *inclusive* or. |
1588 | // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 |
1589 | if (DemandedBits.isSubsetOf(RHS: Known.Zero | Known2.Zero)) |
1590 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Op0, N2: Op1)); |
1591 | |
1592 | ConstantSDNode *C = isConstOrConstSplat(N: Op1, DemandedElts); |
1593 | if (C) { |
1594 | // If one side is a constant, and all of the set bits in the constant are |
1595 | // also known set on the other side, turn this into an AND, as we know |
1596 | // the bits will be cleared. |
1597 | // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 |
1598 | // NB: it is okay if more bits are known than are requested |
1599 | if (C->getAPIntValue() == Known2.One) { |
1600 | SDValue ANDC = |
1601 | TLO.DAG.getConstant(Val: ~C->getAPIntValue() & DemandedBits, DL: dl, VT); |
1602 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Op0, N2: ANDC)); |
1603 | } |
1604 | |
1605 | // If the RHS is a constant, see if we can change it. Don't alter a -1 |
1606 | // constant because that's a 'not' op, and that is better for combining |
1607 | // and codegen. |
1608 | if (!C->isAllOnes() && DemandedBits.isSubsetOf(RHS: C->getAPIntValue())) { |
1609 | // We're flipping all demanded bits. Flip the undemanded bits too. |
1610 | SDValue New = TLO.DAG.getNOT(DL: dl, Val: Op0, VT); |
1611 | return TLO.CombineTo(O: Op, N: New); |
1612 | } |
1613 | |
1614 | unsigned Op0Opcode = Op0.getOpcode(); |
1615 | if ((Op0Opcode == ISD::SRL || Op0Opcode == ISD::SHL) && Op0.hasOneUse()) { |
1616 | if (ConstantSDNode *ShiftC = |
1617 | isConstOrConstSplat(N: Op0.getOperand(i: 1), DemandedElts)) { |
1618 | // Don't crash on an oversized shift. We can not guarantee that a |
1619 | // bogus shift has been simplified to undef. |
1620 | if (ShiftC->getAPIntValue().ult(RHS: BitWidth)) { |
1621 | uint64_t ShiftAmt = ShiftC->getZExtValue(); |
1622 | APInt Ones = APInt::getAllOnes(numBits: BitWidth); |
1623 | Ones = Op0Opcode == ISD::SHL ? Ones.shl(shiftAmt: ShiftAmt) |
1624 | : Ones.lshr(shiftAmt: ShiftAmt); |
1625 | const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); |
1626 | if ((DemandedBits & C->getAPIntValue()) == (DemandedBits & Ones) && |
1627 | TLI.isDesirableToCommuteXorWithShift(N: Op.getNode())) { |
1628 | // If the xor constant is a demanded mask, do a 'not' before the |
1629 | // shift: |
1630 | // xor (X << ShiftC), XorC --> (not X) << ShiftC |
1631 | // xor (X >> ShiftC), XorC --> (not X) >> ShiftC |
1632 | SDValue Not = TLO.DAG.getNOT(DL: dl, Val: Op0.getOperand(i: 0), VT); |
1633 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: Op0Opcode, DL: dl, VT, N1: Not, |
1634 | N2: Op0.getOperand(i: 1))); |
1635 | } |
1636 | } |
1637 | } |
1638 | } |
1639 | } |
1640 | |
1641 | // If we can't turn this into a 'not', try to shrink the constant. |
1642 | if (!C || !C->isAllOnes()) |
1643 | if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) |
1644 | return true; |
1645 | |
1646 | // Attempt to avoid multi-use ops if we don't need anything from them. |
1647 | if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { |
1648 | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( |
1649 | Op: Op0, DemandedBits, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
1650 | SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( |
1651 | Op: Op1, DemandedBits, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
1652 | if (DemandedOp0 || DemandedOp1) { |
1653 | Op0 = DemandedOp0 ? DemandedOp0 : Op0; |
1654 | Op1 = DemandedOp1 ? DemandedOp1 : Op1; |
1655 | SDValue NewOp = TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, N1: Op0, N2: Op1); |
1656 | return TLO.CombineTo(O: Op, N: NewOp); |
1657 | } |
1658 | } |
1659 | |
1660 | Known ^= Known2; |
1661 | break; |
1662 | } |
1663 | case ISD::SELECT: |
1664 | if (SimplifyDemandedBits(Op: Op.getOperand(i: 2), OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, |
1665 | Known, TLO, Depth: Depth + 1)) |
1666 | return true; |
1667 | if (SimplifyDemandedBits(Op: Op.getOperand(i: 1), OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, |
1668 | Known&: Known2, TLO, Depth: Depth + 1)) |
1669 | return true; |
1670 | |
1671 | // If the operands are constants, see if we can simplify them. |
1672 | if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) |
1673 | return true; |
1674 | |
1675 | // Only known if known in both the LHS and RHS. |
1676 | Known = Known.intersectWith(RHS: Known2); |
1677 | break; |
1678 | case ISD::VSELECT: |
1679 | if (SimplifyDemandedBits(Op: Op.getOperand(i: 2), OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, |
1680 | Known, TLO, Depth: Depth + 1)) |
1681 | return true; |
1682 | if (SimplifyDemandedBits(Op: Op.getOperand(i: 1), OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, |
1683 | Known&: Known2, TLO, Depth: Depth + 1)) |
1684 | return true; |
1685 | |
1686 | // Only known if known in both the LHS and RHS. |
1687 | Known = Known.intersectWith(RHS: Known2); |
1688 | break; |
1689 | case ISD::SELECT_CC: |
1690 | if (SimplifyDemandedBits(Op: Op.getOperand(i: 3), OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, |
1691 | Known, TLO, Depth: Depth + 1)) |
1692 | return true; |
1693 | if (SimplifyDemandedBits(Op: Op.getOperand(i: 2), OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, |
1694 | Known&: Known2, TLO, Depth: Depth + 1)) |
1695 | return true; |
1696 | |
1697 | // If the operands are constants, see if we can simplify them. |
1698 | if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) |
1699 | return true; |
1700 | |
1701 | // Only known if known in both the LHS and RHS. |
1702 | Known = Known.intersectWith(RHS: Known2); |
1703 | break; |
1704 | case ISD::SETCC: { |
1705 | SDValue Op0 = Op.getOperand(i: 0); |
1706 | SDValue Op1 = Op.getOperand(i: 1); |
1707 | ISD::CondCode CC = cast<CondCodeSDNode>(Val: Op.getOperand(i: 2))->get(); |
1708 | // If (1) we only need the sign-bit, (2) the setcc operands are the same |
1709 | // width as the setcc result, and (3) the result of a setcc conforms to 0 or |
1710 | // -1, we may be able to bypass the setcc. |
1711 | if (DemandedBits.isSignMask() && |
1712 | Op0.getScalarValueSizeInBits() == BitWidth && |
1713 | getBooleanContents(Type: Op0.getValueType()) == |
1714 | BooleanContent::ZeroOrNegativeOneBooleanContent) { |
1715 | // If we're testing X < 0, then this compare isn't needed - just use X! |
1716 | // FIXME: We're limiting to integer types here, but this should also work |
1717 | // if we don't care about FP signed-zero. The use of SETLT with FP means |
1718 | // that we don't care about NaNs. |
1719 | if (CC == ISD::SETLT && Op1.getValueType().isInteger() && |
1720 | (isNullConstant(V: Op1) || ISD::isBuildVectorAllZeros(N: Op1.getNode()))) |
1721 | return TLO.CombineTo(O: Op, N: Op0); |
1722 | |
1723 | // TODO: Should we check for other forms of sign-bit comparisons? |
1724 | // Examples: X <= -1, X >= 0 |
1725 | } |
1726 | if (getBooleanContents(Type: Op0.getValueType()) == |
1727 | TargetLowering::ZeroOrOneBooleanContent && |
1728 | BitWidth > 1) |
1729 | Known.Zero.setBitsFrom(1); |
1730 | break; |
1731 | } |
1732 | case ISD::SHL: { |
1733 | SDValue Op0 = Op.getOperand(i: 0); |
1734 | SDValue Op1 = Op.getOperand(i: 1); |
1735 | EVT ShiftVT = Op1.getValueType(); |
1736 | |
1737 | if (std::optional<uint64_t> KnownSA = |
1738 | TLO.DAG.getValidShiftAmount(V: Op, DemandedElts, Depth: Depth + 1)) { |
1739 | unsigned ShAmt = *KnownSA; |
1740 | if (ShAmt == 0) |
1741 | return TLO.CombineTo(O: Op, N: Op0); |
1742 | |
1743 | // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a |
1744 | // single shift. We can do this if the bottom bits (which are shifted |
1745 | // out) are never demanded. |
1746 | // TODO - support non-uniform vector amounts. |
1747 | if (Op0.getOpcode() == ISD::SRL) { |
1748 | if (!DemandedBits.intersects(RHS: APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: ShAmt))) { |
1749 | if (std::optional<uint64_t> InnerSA = |
1750 | TLO.DAG.getValidShiftAmount(V: Op0, DemandedElts, Depth: Depth + 2)) { |
1751 | unsigned C1 = *InnerSA; |
1752 | unsigned Opc = ISD::SHL; |
1753 | int Diff = ShAmt - C1; |
1754 | if (Diff < 0) { |
1755 | Diff = -Diff; |
1756 | Opc = ISD::SRL; |
1757 | } |
1758 | SDValue NewSA = TLO.DAG.getConstant(Val: Diff, DL: dl, VT: ShiftVT); |
1759 | return TLO.CombineTo( |
1760 | O: Op, N: TLO.DAG.getNode(Opcode: Opc, DL: dl, VT, N1: Op0.getOperand(i: 0), N2: NewSA)); |
1761 | } |
1762 | } |
1763 | } |
1764 | |
1765 | // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits |
1766 | // are not demanded. This will likely allow the anyext to be folded away. |
1767 | // TODO - support non-uniform vector amounts. |
1768 | if (Op0.getOpcode() == ISD::ANY_EXTEND) { |
1769 | SDValue InnerOp = Op0.getOperand(i: 0); |
1770 | EVT InnerVT = InnerOp.getValueType(); |
1771 | unsigned InnerBits = InnerVT.getScalarSizeInBits(); |
1772 | if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && |
1773 | isTypeDesirableForOp(ISD::SHL, VT: InnerVT)) { |
1774 | SDValue NarrowShl = TLO.DAG.getNode( |
1775 | Opcode: ISD::SHL, DL: dl, VT: InnerVT, N1: InnerOp, |
1776 | N2: TLO.DAG.getShiftAmountConstant(Val: ShAmt, VT: InnerVT, DL: dl)); |
1777 | return TLO.CombineTo( |
1778 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT, Operand: NarrowShl)); |
1779 | } |
1780 | |
1781 | // Repeat the SHL optimization above in cases where an extension |
1782 | // intervenes: (shl (anyext (shr x, c1)), c2) to |
1783 | // (shl (anyext x), c2-c1). This requires that the bottom c1 bits |
1784 | // aren't demanded (as above) and that the shifted upper c1 bits of |
1785 | // x aren't demanded. |
1786 | // TODO - support non-uniform vector amounts. |
1787 | if (InnerOp.getOpcode() == ISD::SRL && Op0.hasOneUse() && |
1788 | InnerOp.hasOneUse()) { |
1789 | if (std::optional<uint64_t> SA2 = TLO.DAG.getValidShiftAmount( |
1790 | V: InnerOp, DemandedElts, Depth: Depth + 2)) { |
1791 | unsigned InnerShAmt = *SA2; |
1792 | if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && |
1793 | DemandedBits.getActiveBits() <= |
1794 | (InnerBits - InnerShAmt + ShAmt) && |
1795 | DemandedBits.countr_zero() >= ShAmt) { |
1796 | SDValue NewSA = |
1797 | TLO.DAG.getConstant(Val: ShAmt - InnerShAmt, DL: dl, VT: ShiftVT); |
1798 | SDValue NewExt = TLO.DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT, |
1799 | Operand: InnerOp.getOperand(i: 0)); |
1800 | return TLO.CombineTo( |
1801 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: NewExt, N2: NewSA)); |
1802 | } |
1803 | } |
1804 | } |
1805 | } |
1806 | |
1807 | APInt InDemandedMask = DemandedBits.lshr(shiftAmt: ShAmt); |
1808 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: InDemandedMask, OriginalDemandedElts: DemandedElts, Known, TLO, |
1809 | Depth: Depth + 1)) { |
1810 | SDNodeFlags Flags = Op.getNode()->getFlags(); |
1811 | if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { |
1812 | // Disable the nsw and nuw flags. We can no longer guarantee that we |
1813 | // won't wrap after simplification. |
1814 | Flags.setNoSignedWrap(false); |
1815 | Flags.setNoUnsignedWrap(false); |
1816 | Op->setFlags(Flags); |
1817 | } |
1818 | return true; |
1819 | } |
1820 | Known.Zero <<= ShAmt; |
1821 | Known.One <<= ShAmt; |
1822 | // low bits known zero. |
1823 | Known.Zero.setLowBits(ShAmt); |
1824 | |
1825 | // Attempt to avoid multi-use ops if we don't need anything from them. |
1826 | if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { |
1827 | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( |
1828 | Op: Op0, DemandedBits: InDemandedMask, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
1829 | if (DemandedOp0) { |
1830 | SDValue NewOp = TLO.DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: DemandedOp0, N2: Op1); |
1831 | return TLO.CombineTo(O: Op, N: NewOp); |
1832 | } |
1833 | } |
1834 | |
1835 | // TODO: Can we merge this fold with the one below? |
1836 | // Try shrinking the operation as long as the shift amount will still be |
1837 | // in range. |
1838 | if (ShAmt < DemandedBits.getActiveBits() && !VT.isVector() && |
1839 | Op.getNode()->hasOneUse()) { |
1840 | // Search for the smallest integer type with free casts to and from |
1841 | // Op's type. For expedience, just check power-of-2 integer types. |
1842 | unsigned DemandedSize = DemandedBits.getActiveBits(); |
1843 | for (unsigned SmallVTBits = llvm::bit_ceil(Value: DemandedSize); |
1844 | SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(A: SmallVTBits)) { |
1845 | EVT SmallVT = EVT::getIntegerVT(Context&: *TLO.DAG.getContext(), BitWidth: SmallVTBits); |
1846 | if (isNarrowingProfitable(SrcVT: VT, DestVT: SmallVT) && |
1847 | isTypeDesirableForOp(ISD::SHL, VT: SmallVT) && |
1848 | isTruncateFree(FromVT: VT, ToVT: SmallVT) && isZExtFree(FromTy: SmallVT, ToTy: VT) && |
1849 | (!TLO.LegalOperations() || isOperationLegal(Op: ISD::SHL, VT: SmallVT))) { |
1850 | assert(DemandedSize <= SmallVTBits && |
1851 | "Narrowed below demanded bits?" ); |
1852 | // We found a type with free casts. |
1853 | SDValue NarrowShl = TLO.DAG.getNode( |
1854 | Opcode: ISD::SHL, DL: dl, VT: SmallVT, |
1855 | N1: TLO.DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: SmallVT, Operand: Op.getOperand(i: 0)), |
1856 | N2: TLO.DAG.getShiftAmountConstant(Val: ShAmt, VT: SmallVT, DL: dl)); |
1857 | return TLO.CombineTo( |
1858 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT, Operand: NarrowShl)); |
1859 | } |
1860 | } |
1861 | } |
1862 | |
1863 | // Narrow shift to lower half - similar to ShrinkDemandedOp. |
1864 | // (shl i64:x, K) -> (i64 zero_extend (shl (i32 (trunc i64:x)), K)) |
1865 | // Only do this if we demand the upper half so the knownbits are correct. |
1866 | unsigned HalfWidth = BitWidth / 2; |
1867 | if ((BitWidth % 2) == 0 && !VT.isVector() && ShAmt < HalfWidth && |
1868 | DemandedBits.countLeadingOnes() >= HalfWidth) { |
1869 | EVT HalfVT = EVT::getIntegerVT(Context&: *TLO.DAG.getContext(), BitWidth: HalfWidth); |
1870 | if (isNarrowingProfitable(SrcVT: VT, DestVT: HalfVT) && |
1871 | isTypeDesirableForOp(ISD::SHL, VT: HalfVT) && |
1872 | isTruncateFree(FromVT: VT, ToVT: HalfVT) && isZExtFree(FromTy: HalfVT, ToTy: VT) && |
1873 | (!TLO.LegalOperations() || isOperationLegal(Op: ISD::SHL, VT: HalfVT))) { |
1874 | // If we're demanding the upper bits at all, we must ensure |
1875 | // that the upper bits of the shift result are known to be zero, |
1876 | // which is equivalent to the narrow shift being NUW. |
1877 | if (bool IsNUW = (Known.countMinLeadingZeros() >= HalfWidth)) { |
1878 | bool IsNSW = Known.countMinSignBits() > HalfWidth; |
1879 | SDNodeFlags Flags; |
1880 | Flags.setNoSignedWrap(IsNSW); |
1881 | Flags.setNoUnsignedWrap(IsNUW); |
1882 | SDValue NewOp = TLO.DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: HalfVT, Operand: Op0); |
1883 | SDValue NewShiftAmt = |
1884 | TLO.DAG.getShiftAmountConstant(Val: ShAmt, VT: HalfVT, DL: dl); |
1885 | SDValue NewShift = TLO.DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: HalfVT, N1: NewOp, |
1886 | N2: NewShiftAmt, Flags); |
1887 | SDValue NewExt = |
1888 | TLO.DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: NewShift); |
1889 | return TLO.CombineTo(O: Op, N: NewExt); |
1890 | } |
1891 | } |
1892 | } |
1893 | } else { |
1894 | // This is a variable shift, so we can't shift the demand mask by a known |
1895 | // amount. But if we are not demanding high bits, then we are not |
1896 | // demanding those bits from the pre-shifted operand either. |
1897 | if (unsigned CTLZ = DemandedBits.countl_zero()) { |
1898 | APInt DemandedFromOp(APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: BitWidth - CTLZ)); |
1899 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: DemandedFromOp, OriginalDemandedElts: DemandedElts, Known, TLO, |
1900 | Depth: Depth + 1)) { |
1901 | SDNodeFlags Flags = Op.getNode()->getFlags(); |
1902 | if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { |
1903 | // Disable the nsw and nuw flags. We can no longer guarantee that we |
1904 | // won't wrap after simplification. |
1905 | Flags.setNoSignedWrap(false); |
1906 | Flags.setNoUnsignedWrap(false); |
1907 | Op->setFlags(Flags); |
1908 | } |
1909 | return true; |
1910 | } |
1911 | Known.resetAll(); |
1912 | } |
1913 | } |
1914 | |
1915 | // If we are only demanding sign bits then we can use the shift source |
1916 | // directly. |
1917 | if (std::optional<uint64_t> MaxSA = |
1918 | TLO.DAG.getValidMaximumShiftAmount(V: Op, DemandedElts, Depth: Depth + 1)) { |
1919 | unsigned ShAmt = *MaxSA; |
1920 | unsigned NumSignBits = |
1921 | TLO.DAG.ComputeNumSignBits(Op: Op0, DemandedElts, Depth: Depth + 1); |
1922 | unsigned UpperDemandedBits = BitWidth - DemandedBits.countr_zero(); |
1923 | if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) |
1924 | return TLO.CombineTo(O: Op, N: Op0); |
1925 | } |
1926 | break; |
1927 | } |
1928 | case ISD::SRL: { |
1929 | SDValue Op0 = Op.getOperand(i: 0); |
1930 | SDValue Op1 = Op.getOperand(i: 1); |
1931 | EVT ShiftVT = Op1.getValueType(); |
1932 | |
1933 | if (std::optional<uint64_t> KnownSA = |
1934 | TLO.DAG.getValidShiftAmount(V: Op, DemandedElts, Depth: Depth + 1)) { |
1935 | unsigned ShAmt = *KnownSA; |
1936 | if (ShAmt == 0) |
1937 | return TLO.CombineTo(O: Op, N: Op0); |
1938 | |
1939 | // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a |
1940 | // single shift. We can do this if the top bits (which are shifted out) |
1941 | // are never demanded. |
1942 | // TODO - support non-uniform vector amounts. |
1943 | if (Op0.getOpcode() == ISD::SHL) { |
1944 | if (!DemandedBits.intersects(RHS: APInt::getHighBitsSet(numBits: BitWidth, hiBitsSet: ShAmt))) { |
1945 | if (std::optional<uint64_t> InnerSA = |
1946 | TLO.DAG.getValidShiftAmount(V: Op0, DemandedElts, Depth: Depth + 2)) { |
1947 | unsigned C1 = *InnerSA; |
1948 | unsigned Opc = ISD::SRL; |
1949 | int Diff = ShAmt - C1; |
1950 | if (Diff < 0) { |
1951 | Diff = -Diff; |
1952 | Opc = ISD::SHL; |
1953 | } |
1954 | SDValue NewSA = TLO.DAG.getConstant(Val: Diff, DL: dl, VT: ShiftVT); |
1955 | return TLO.CombineTo( |
1956 | O: Op, N: TLO.DAG.getNode(Opcode: Opc, DL: dl, VT, N1: Op0.getOperand(i: 0), N2: NewSA)); |
1957 | } |
1958 | } |
1959 | } |
1960 | |
1961 | APInt InDemandedMask = (DemandedBits << ShAmt); |
1962 | |
1963 | // If the shift is exact, then it does demand the low bits (and knows that |
1964 | // they are zero). |
1965 | if (Op->getFlags().hasExact()) |
1966 | InDemandedMask.setLowBits(ShAmt); |
1967 | |
1968 | // Narrow shift to lower half - similar to ShrinkDemandedOp. |
1969 | // (srl i64:x, K) -> (i64 zero_extend (srl (i32 (trunc i64:x)), K)) |
1970 | if ((BitWidth % 2) == 0 && !VT.isVector()) { |
1971 | APInt HiBits = APInt::getHighBitsSet(numBits: BitWidth, hiBitsSet: BitWidth / 2); |
1972 | EVT HalfVT = EVT::getIntegerVT(Context&: *TLO.DAG.getContext(), BitWidth: BitWidth / 2); |
1973 | if (isNarrowingProfitable(SrcVT: VT, DestVT: HalfVT) && |
1974 | isTypeDesirableForOp(ISD::SRL, VT: HalfVT) && |
1975 | isTruncateFree(FromVT: VT, ToVT: HalfVT) && isZExtFree(FromTy: HalfVT, ToTy: VT) && |
1976 | (!TLO.LegalOperations() || isOperationLegal(Op: ISD::SRL, VT: HalfVT)) && |
1977 | ((InDemandedMask.countLeadingZeros() >= (BitWidth / 2)) || |
1978 | TLO.DAG.MaskedValueIsZero(Op: Op0, Mask: HiBits))) { |
1979 | SDValue NewOp = TLO.DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: HalfVT, Operand: Op0); |
1980 | SDValue NewShiftAmt = |
1981 | TLO.DAG.getShiftAmountConstant(Val: ShAmt, VT: HalfVT, DL: dl); |
1982 | SDValue NewShift = |
1983 | TLO.DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: HalfVT, N1: NewOp, N2: NewShiftAmt); |
1984 | return TLO.CombineTo( |
1985 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: NewShift)); |
1986 | } |
1987 | } |
1988 | |
1989 | // Compute the new bits that are at the top now. |
1990 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: InDemandedMask, OriginalDemandedElts: DemandedElts, Known, TLO, |
1991 | Depth: Depth + 1)) |
1992 | return true; |
1993 | Known.Zero.lshrInPlace(ShiftAmt: ShAmt); |
1994 | Known.One.lshrInPlace(ShiftAmt: ShAmt); |
1995 | // High bits known zero. |
1996 | Known.Zero.setHighBits(ShAmt); |
1997 | |
1998 | // Attempt to avoid multi-use ops if we don't need anything from them. |
1999 | if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { |
2000 | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( |
2001 | Op: Op0, DemandedBits: InDemandedMask, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
2002 | if (DemandedOp0) { |
2003 | SDValue NewOp = TLO.DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: DemandedOp0, N2: Op1); |
2004 | return TLO.CombineTo(O: Op, N: NewOp); |
2005 | } |
2006 | } |
2007 | } else { |
2008 | // Use generic knownbits computation as it has support for non-uniform |
2009 | // shift amounts. |
2010 | Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); |
2011 | } |
2012 | |
2013 | // Try to match AVG patterns (after shift simplification). |
2014 | if (SDValue AVG = combineShiftToAVG(Op, TLO, TLI: *this, DemandedBits, |
2015 | DemandedElts, Depth: Depth + 1)) |
2016 | return TLO.CombineTo(O: Op, N: AVG); |
2017 | |
2018 | break; |
2019 | } |
2020 | case ISD::SRA: { |
2021 | SDValue Op0 = Op.getOperand(i: 0); |
2022 | SDValue Op1 = Op.getOperand(i: 1); |
2023 | EVT ShiftVT = Op1.getValueType(); |
2024 | |
2025 | // If we only want bits that already match the signbit then we don't need |
2026 | // to shift. |
2027 | unsigned NumHiDemandedBits = BitWidth - DemandedBits.countr_zero(); |
2028 | if (TLO.DAG.ComputeNumSignBits(Op: Op0, DemandedElts, Depth: Depth + 1) >= |
2029 | NumHiDemandedBits) |
2030 | return TLO.CombineTo(O: Op, N: Op0); |
2031 | |
2032 | // If this is an arithmetic shift right and only the low-bit is set, we can |
2033 | // always convert this into a logical shr, even if the shift amount is |
2034 | // variable. The low bit of the shift cannot be an input sign bit unless |
2035 | // the shift amount is >= the size of the datatype, which is undefined. |
2036 | if (DemandedBits.isOne()) |
2037 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op0, N2: Op1)); |
2038 | |
2039 | if (std::optional<uint64_t> KnownSA = |
2040 | TLO.DAG.getValidShiftAmount(V: Op, DemandedElts, Depth: Depth + 1)) { |
2041 | unsigned ShAmt = *KnownSA; |
2042 | if (ShAmt == 0) |
2043 | return TLO.CombineTo(O: Op, N: Op0); |
2044 | |
2045 | // fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target |
2046 | // supports sext_inreg. |
2047 | if (Op0.getOpcode() == ISD::SHL) { |
2048 | if (std::optional<uint64_t> InnerSA = |
2049 | TLO.DAG.getValidShiftAmount(V: Op0, DemandedElts, Depth: Depth + 2)) { |
2050 | unsigned LowBits = BitWidth - ShAmt; |
2051 | EVT ExtVT = EVT::getIntegerVT(Context&: *TLO.DAG.getContext(), BitWidth: LowBits); |
2052 | if (VT.isVector()) |
2053 | ExtVT = EVT::getVectorVT(Context&: *TLO.DAG.getContext(), VT: ExtVT, |
2054 | EC: VT.getVectorElementCount()); |
2055 | |
2056 | if (*InnerSA == ShAmt) { |
2057 | if (!TLO.LegalOperations() || |
2058 | getOperationAction(Op: ISD::SIGN_EXTEND_INREG, VT: ExtVT) == Legal) |
2059 | return TLO.CombineTo( |
2060 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL: dl, VT, |
2061 | N1: Op0.getOperand(i: 0), |
2062 | N2: TLO.DAG.getValueType(ExtVT))); |
2063 | |
2064 | // Even if we can't convert to sext_inreg, we might be able to |
2065 | // remove this shift pair if the input is already sign extended. |
2066 | unsigned NumSignBits = |
2067 | TLO.DAG.ComputeNumSignBits(Op: Op0.getOperand(i: 0), DemandedElts); |
2068 | if (NumSignBits > ShAmt) |
2069 | return TLO.CombineTo(O: Op, N: Op0.getOperand(i: 0)); |
2070 | } |
2071 | } |
2072 | } |
2073 | |
2074 | APInt InDemandedMask = (DemandedBits << ShAmt); |
2075 | |
2076 | // If the shift is exact, then it does demand the low bits (and knows that |
2077 | // they are zero). |
2078 | if (Op->getFlags().hasExact()) |
2079 | InDemandedMask.setLowBits(ShAmt); |
2080 | |
2081 | // If any of the demanded bits are produced by the sign extension, we also |
2082 | // demand the input sign bit. |
2083 | if (DemandedBits.countl_zero() < ShAmt) |
2084 | InDemandedMask.setSignBit(); |
2085 | |
2086 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: InDemandedMask, OriginalDemandedElts: DemandedElts, Known, TLO, |
2087 | Depth: Depth + 1)) |
2088 | return true; |
2089 | Known.Zero.lshrInPlace(ShiftAmt: ShAmt); |
2090 | Known.One.lshrInPlace(ShiftAmt: ShAmt); |
2091 | |
2092 | // If the input sign bit is known to be zero, or if none of the top bits |
2093 | // are demanded, turn this into an unsigned shift right. |
2094 | if (Known.Zero[BitWidth - ShAmt - 1] || |
2095 | DemandedBits.countl_zero() >= ShAmt) { |
2096 | SDNodeFlags Flags; |
2097 | Flags.setExact(Op->getFlags().hasExact()); |
2098 | return TLO.CombineTo( |
2099 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op0, N2: Op1, Flags)); |
2100 | } |
2101 | |
2102 | int Log2 = DemandedBits.exactLogBase2(); |
2103 | if (Log2 >= 0) { |
2104 | // The bit must come from the sign. |
2105 | SDValue NewSA = TLO.DAG.getConstant(Val: BitWidth - 1 - Log2, DL: dl, VT: ShiftVT); |
2106 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op0, N2: NewSA)); |
2107 | } |
2108 | |
2109 | if (Known.One[BitWidth - ShAmt - 1]) |
2110 | // New bits are known one. |
2111 | Known.One.setHighBits(ShAmt); |
2112 | |
2113 | // Attempt to avoid multi-use ops if we don't need anything from them. |
2114 | if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { |
2115 | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( |
2116 | Op: Op0, DemandedBits: InDemandedMask, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
2117 | if (DemandedOp0) { |
2118 | SDValue NewOp = TLO.DAG.getNode(Opcode: ISD::SRA, DL: dl, VT, N1: DemandedOp0, N2: Op1); |
2119 | return TLO.CombineTo(O: Op, N: NewOp); |
2120 | } |
2121 | } |
2122 | } |
2123 | |
2124 | // Try to match AVG patterns (after shift simplification). |
2125 | if (SDValue AVG = combineShiftToAVG(Op, TLO, TLI: *this, DemandedBits, |
2126 | DemandedElts, Depth: Depth + 1)) |
2127 | return TLO.CombineTo(O: Op, N: AVG); |
2128 | |
2129 | break; |
2130 | } |
2131 | case ISD::FSHL: |
2132 | case ISD::FSHR: { |
2133 | SDValue Op0 = Op.getOperand(i: 0); |
2134 | SDValue Op1 = Op.getOperand(i: 1); |
2135 | SDValue Op2 = Op.getOperand(i: 2); |
2136 | bool IsFSHL = (Op.getOpcode() == ISD::FSHL); |
2137 | |
2138 | if (ConstantSDNode *SA = isConstOrConstSplat(N: Op2, DemandedElts)) { |
2139 | unsigned Amt = SA->getAPIntValue().urem(RHS: BitWidth); |
2140 | |
2141 | // For fshl, 0-shift returns the 1st arg. |
2142 | // For fshr, 0-shift returns the 2nd arg. |
2143 | if (Amt == 0) { |
2144 | if (SimplifyDemandedBits(Op: IsFSHL ? Op0 : Op1, OriginalDemandedBits: DemandedBits, OriginalDemandedElts: DemandedElts, |
2145 | Known, TLO, Depth: Depth + 1)) |
2146 | return true; |
2147 | break; |
2148 | } |
2149 | |
2150 | // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) |
2151 | // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) |
2152 | APInt Demanded0 = DemandedBits.lshr(shiftAmt: IsFSHL ? Amt : (BitWidth - Amt)); |
2153 | APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); |
2154 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: Demanded0, OriginalDemandedElts: DemandedElts, Known&: Known2, TLO, |
2155 | Depth: Depth + 1)) |
2156 | return true; |
2157 | if (SimplifyDemandedBits(Op: Op1, OriginalDemandedBits: Demanded1, OriginalDemandedElts: DemandedElts, Known, TLO, |
2158 | Depth: Depth + 1)) |
2159 | return true; |
2160 | |
2161 | Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); |
2162 | Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); |
2163 | Known.One.lshrInPlace(ShiftAmt: IsFSHL ? (BitWidth - Amt) : Amt); |
2164 | Known.Zero.lshrInPlace(ShiftAmt: IsFSHL ? (BitWidth - Amt) : Amt); |
2165 | Known = Known.unionWith(RHS: Known2); |
2166 | |
2167 | // Attempt to avoid multi-use ops if we don't need anything from them. |
2168 | if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || |
2169 | !DemandedElts.isAllOnes()) { |
2170 | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( |
2171 | Op: Op0, DemandedBits: Demanded0, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
2172 | SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( |
2173 | Op: Op1, DemandedBits: Demanded1, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
2174 | if (DemandedOp0 || DemandedOp1) { |
2175 | DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; |
2176 | DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; |
2177 | SDValue NewOp = TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, N1: DemandedOp0, |
2178 | N2: DemandedOp1, N3: Op2); |
2179 | return TLO.CombineTo(O: Op, N: NewOp); |
2180 | } |
2181 | } |
2182 | } |
2183 | |
2184 | // For pow-2 bitwidths we only demand the bottom modulo amt bits. |
2185 | if (isPowerOf2_32(Value: BitWidth)) { |
2186 | APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); |
2187 | if (SimplifyDemandedBits(Op: Op2, OriginalDemandedBits: DemandedAmtBits, OriginalDemandedElts: DemandedElts, |
2188 | Known&: Known2, TLO, Depth: Depth + 1)) |
2189 | return true; |
2190 | } |
2191 | break; |
2192 | } |
2193 | case ISD::ROTL: |
2194 | case ISD::ROTR: { |
2195 | SDValue Op0 = Op.getOperand(i: 0); |
2196 | SDValue Op1 = Op.getOperand(i: 1); |
2197 | bool IsROTL = (Op.getOpcode() == ISD::ROTL); |
2198 | |
2199 | // If we're rotating an 0/-1 value, then it stays an 0/-1 value. |
2200 | if (BitWidth == TLO.DAG.ComputeNumSignBits(Op: Op0, DemandedElts, Depth: Depth + 1)) |
2201 | return TLO.CombineTo(O: Op, N: Op0); |
2202 | |
2203 | if (ConstantSDNode *SA = isConstOrConstSplat(N: Op1, DemandedElts)) { |
2204 | unsigned Amt = SA->getAPIntValue().urem(RHS: BitWidth); |
2205 | unsigned RevAmt = BitWidth - Amt; |
2206 | |
2207 | // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) |
2208 | // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) |
2209 | APInt Demanded0 = DemandedBits.rotr(rotateAmt: IsROTL ? Amt : RevAmt); |
2210 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: Demanded0, OriginalDemandedElts: DemandedElts, Known&: Known2, TLO, |
2211 | Depth: Depth + 1)) |
2212 | return true; |
2213 | |
2214 | // rot*(x, 0) --> x |
2215 | if (Amt == 0) |
2216 | return TLO.CombineTo(O: Op, N: Op0); |
2217 | |
2218 | // See if we don't demand either half of the rotated bits. |
2219 | if ((!TLO.LegalOperations() || isOperationLegal(Op: ISD::SHL, VT)) && |
2220 | DemandedBits.countr_zero() >= (IsROTL ? Amt : RevAmt)) { |
2221 | Op1 = TLO.DAG.getConstant(Val: IsROTL ? Amt : RevAmt, DL: dl, VT: Op1.getValueType()); |
2222 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Op0, N2: Op1)); |
2223 | } |
2224 | if ((!TLO.LegalOperations() || isOperationLegal(Op: ISD::SRL, VT)) && |
2225 | DemandedBits.countl_zero() >= (IsROTL ? RevAmt : Amt)) { |
2226 | Op1 = TLO.DAG.getConstant(Val: IsROTL ? RevAmt : Amt, DL: dl, VT: Op1.getValueType()); |
2227 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op0, N2: Op1)); |
2228 | } |
2229 | } |
2230 | |
2231 | // For pow-2 bitwidths we only demand the bottom modulo amt bits. |
2232 | if (isPowerOf2_32(Value: BitWidth)) { |
2233 | APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); |
2234 | if (SimplifyDemandedBits(Op: Op1, OriginalDemandedBits: DemandedAmtBits, OriginalDemandedElts: DemandedElts, Known&: Known2, TLO, |
2235 | Depth: Depth + 1)) |
2236 | return true; |
2237 | } |
2238 | break; |
2239 | } |
2240 | case ISD::SMIN: |
2241 | case ISD::SMAX: |
2242 | case ISD::UMIN: |
2243 | case ISD::UMAX: { |
2244 | unsigned Opc = Op.getOpcode(); |
2245 | SDValue Op0 = Op.getOperand(i: 0); |
2246 | SDValue Op1 = Op.getOperand(i: 1); |
2247 | |
2248 | // If we're only demanding signbits, then we can simplify to OR/AND node. |
2249 | unsigned BitOp = |
2250 | (Opc == ISD::SMIN || Opc == ISD::UMAX) ? ISD::OR : ISD::AND; |
2251 | unsigned NumSignBits = |
2252 | std::min(a: TLO.DAG.ComputeNumSignBits(Op: Op0, DemandedElts, Depth: Depth + 1), |
2253 | b: TLO.DAG.ComputeNumSignBits(Op: Op1, DemandedElts, Depth: Depth + 1)); |
2254 | unsigned NumDemandedUpperBits = BitWidth - DemandedBits.countr_zero(); |
2255 | if (NumSignBits >= NumDemandedUpperBits) |
2256 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: BitOp, DL: SDLoc(Op), VT, N1: Op0, N2: Op1)); |
2257 | |
2258 | // Check if one arg is always less/greater than (or equal) to the other arg. |
2259 | KnownBits Known0 = TLO.DAG.computeKnownBits(Op: Op0, DemandedElts, Depth: Depth + 1); |
2260 | KnownBits Known1 = TLO.DAG.computeKnownBits(Op: Op1, DemandedElts, Depth: Depth + 1); |
2261 | switch (Opc) { |
2262 | case ISD::SMIN: |
2263 | if (std::optional<bool> IsSLE = KnownBits::sle(LHS: Known0, RHS: Known1)) |
2264 | return TLO.CombineTo(O: Op, N: *IsSLE ? Op0 : Op1); |
2265 | if (std::optional<bool> IsSLT = KnownBits::slt(LHS: Known0, RHS: Known1)) |
2266 | return TLO.CombineTo(O: Op, N: *IsSLT ? Op0 : Op1); |
2267 | Known = KnownBits::smin(LHS: Known0, RHS: Known1); |
2268 | break; |
2269 | case ISD::SMAX: |
2270 | if (std::optional<bool> IsSGE = KnownBits::sge(LHS: Known0, RHS: Known1)) |
2271 | return TLO.CombineTo(O: Op, N: *IsSGE ? Op0 : Op1); |
2272 | if (std::optional<bool> IsSGT = KnownBits::sgt(LHS: Known0, RHS: Known1)) |
2273 | return TLO.CombineTo(O: Op, N: *IsSGT ? Op0 : Op1); |
2274 | Known = KnownBits::smax(LHS: Known0, RHS: Known1); |
2275 | break; |
2276 | case ISD::UMIN: |
2277 | if (std::optional<bool> IsULE = KnownBits::ule(LHS: Known0, RHS: Known1)) |
2278 | return TLO.CombineTo(O: Op, N: *IsULE ? Op0 : Op1); |
2279 | if (std::optional<bool> IsULT = KnownBits::ult(LHS: Known0, RHS: Known1)) |
2280 | return TLO.CombineTo(O: Op, N: *IsULT ? Op0 : Op1); |
2281 | Known = KnownBits::umin(LHS: Known0, RHS: Known1); |
2282 | break; |
2283 | case ISD::UMAX: |
2284 | if (std::optional<bool> IsUGE = KnownBits::uge(LHS: Known0, RHS: Known1)) |
2285 | return TLO.CombineTo(O: Op, N: *IsUGE ? Op0 : Op1); |
2286 | if (std::optional<bool> IsUGT = KnownBits::ugt(LHS: Known0, RHS: Known1)) |
2287 | return TLO.CombineTo(O: Op, N: *IsUGT ? Op0 : Op1); |
2288 | Known = KnownBits::umax(LHS: Known0, RHS: Known1); |
2289 | break; |
2290 | } |
2291 | break; |
2292 | } |
2293 | case ISD::BITREVERSE: { |
2294 | SDValue Src = Op.getOperand(i: 0); |
2295 | APInt DemandedSrcBits = DemandedBits.reverseBits(); |
2296 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: DemandedSrcBits, OriginalDemandedElts: DemandedElts, Known&: Known2, TLO, |
2297 | Depth: Depth + 1)) |
2298 | return true; |
2299 | Known.One = Known2.One.reverseBits(); |
2300 | Known.Zero = Known2.Zero.reverseBits(); |
2301 | break; |
2302 | } |
2303 | case ISD::BSWAP: { |
2304 | SDValue Src = Op.getOperand(i: 0); |
2305 | |
2306 | // If the only bits demanded come from one byte of the bswap result, |
2307 | // just shift the input byte into position to eliminate the bswap. |
2308 | unsigned NLZ = DemandedBits.countl_zero(); |
2309 | unsigned NTZ = DemandedBits.countr_zero(); |
2310 | |
2311 | // Round NTZ down to the next byte. If we have 11 trailing zeros, then |
2312 | // we need all the bits down to bit 8. Likewise, round NLZ. If we |
2313 | // have 14 leading zeros, round to 8. |
2314 | NLZ = alignDown(Value: NLZ, Align: 8); |
2315 | NTZ = alignDown(Value: NTZ, Align: 8); |
2316 | // If we need exactly one byte, we can do this transformation. |
2317 | if (BitWidth - NLZ - NTZ == 8) { |
2318 | // Replace this with either a left or right shift to get the byte into |
2319 | // the right place. |
2320 | unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; |
2321 | if (!TLO.LegalOperations() || isOperationLegal(Op: ShiftOpcode, VT)) { |
2322 | unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; |
2323 | SDValue ShAmt = TLO.DAG.getShiftAmountConstant(Val: ShiftAmount, VT, DL: dl); |
2324 | SDValue NewOp = TLO.DAG.getNode(Opcode: ShiftOpcode, DL: dl, VT, N1: Src, N2: ShAmt); |
2325 | return TLO.CombineTo(O: Op, N: NewOp); |
2326 | } |
2327 | } |
2328 | |
2329 | APInt DemandedSrcBits = DemandedBits.byteSwap(); |
2330 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: DemandedSrcBits, OriginalDemandedElts: DemandedElts, Known&: Known2, TLO, |
2331 | Depth: Depth + 1)) |
2332 | return true; |
2333 | Known.One = Known2.One.byteSwap(); |
2334 | Known.Zero = Known2.Zero.byteSwap(); |
2335 | break; |
2336 | } |
2337 | case ISD::CTPOP: { |
2338 | // If only 1 bit is demanded, replace with PARITY as long as we're before |
2339 | // op legalization. |
2340 | // FIXME: Limit to scalars for now. |
2341 | if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) |
2342 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: ISD::PARITY, DL: dl, VT, |
2343 | Operand: Op.getOperand(i: 0))); |
2344 | |
2345 | Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); |
2346 | break; |
2347 | } |
2348 | case ISD::SIGN_EXTEND_INREG: { |
2349 | SDValue Op0 = Op.getOperand(i: 0); |
2350 | EVT ExVT = cast<VTSDNode>(Val: Op.getOperand(i: 1))->getVT(); |
2351 | unsigned ExVTBits = ExVT.getScalarSizeInBits(); |
2352 | |
2353 | // If we only care about the highest bit, don't bother shifting right. |
2354 | if (DemandedBits.isSignMask()) { |
2355 | unsigned MinSignedBits = |
2356 | TLO.DAG.ComputeMaxSignificantBits(Op: Op0, DemandedElts, Depth: Depth + 1); |
2357 | bool AlreadySignExtended = ExVTBits >= MinSignedBits; |
2358 | // However if the input is already sign extended we expect the sign |
2359 | // extension to be dropped altogether later and do not simplify. |
2360 | if (!AlreadySignExtended) { |
2361 | // Compute the correct shift amount type, which must be getShiftAmountTy |
2362 | // for scalar types after legalization. |
2363 | SDValue ShiftAmt = |
2364 | TLO.DAG.getShiftAmountConstant(Val: BitWidth - ExVTBits, VT, DL: dl); |
2365 | return TLO.CombineTo(O: Op, |
2366 | N: TLO.DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Op0, N2: ShiftAmt)); |
2367 | } |
2368 | } |
2369 | |
2370 | // If none of the extended bits are demanded, eliminate the sextinreg. |
2371 | if (DemandedBits.getActiveBits() <= ExVTBits) |
2372 | return TLO.CombineTo(O: Op, N: Op0); |
2373 | |
2374 | APInt InputDemandedBits = DemandedBits.getLoBits(numBits: ExVTBits); |
2375 | |
2376 | // Since the sign extended bits are demanded, we know that the sign |
2377 | // bit is demanded. |
2378 | InputDemandedBits.setBit(ExVTBits - 1); |
2379 | |
2380 | if (SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: InputDemandedBits, OriginalDemandedElts: DemandedElts, Known, TLO, |
2381 | Depth: Depth + 1)) |
2382 | return true; |
2383 | |
2384 | // If the sign bit of the input is known set or clear, then we know the |
2385 | // top bits of the result. |
2386 | |
2387 | // If the input sign bit is known zero, convert this into a zero extension. |
2388 | if (Known.Zero[ExVTBits - 1]) |
2389 | return TLO.CombineTo(O: Op, N: TLO.DAG.getZeroExtendInReg(Op: Op0, DL: dl, VT: ExVT)); |
2390 | |
2391 | APInt Mask = APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: ExVTBits); |
2392 | if (Known.One[ExVTBits - 1]) { // Input sign bit known set |
2393 | Known.One.setBitsFrom(ExVTBits); |
2394 | Known.Zero &= Mask; |
2395 | } else { // Input sign bit unknown |
2396 | Known.Zero &= Mask; |
2397 | Known.One &= Mask; |
2398 | } |
2399 | break; |
2400 | } |
2401 | case ISD::BUILD_PAIR: { |
2402 | EVT HalfVT = Op.getOperand(i: 0).getValueType(); |
2403 | unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); |
2404 | |
2405 | APInt MaskLo = DemandedBits.getLoBits(numBits: HalfBitWidth).trunc(width: HalfBitWidth); |
2406 | APInt MaskHi = DemandedBits.getHiBits(numBits: HalfBitWidth).trunc(width: HalfBitWidth); |
2407 | |
2408 | KnownBits KnownLo, KnownHi; |
2409 | |
2410 | if (SimplifyDemandedBits(Op: Op.getOperand(i: 0), DemandedBits: MaskLo, Known&: KnownLo, TLO, Depth: Depth + 1)) |
2411 | return true; |
2412 | |
2413 | if (SimplifyDemandedBits(Op: Op.getOperand(i: 1), DemandedBits: MaskHi, Known&: KnownHi, TLO, Depth: Depth + 1)) |
2414 | return true; |
2415 | |
2416 | Known = KnownHi.concat(Lo: KnownLo); |
2417 | break; |
2418 | } |
2419 | case ISD::ZERO_EXTEND_VECTOR_INREG: |
2420 | if (VT.isScalableVector()) |
2421 | return false; |
2422 | [[fallthrough]]; |
2423 | case ISD::ZERO_EXTEND: { |
2424 | SDValue Src = Op.getOperand(i: 0); |
2425 | EVT SrcVT = Src.getValueType(); |
2426 | unsigned InBits = SrcVT.getScalarSizeInBits(); |
2427 | unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; |
2428 | bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; |
2429 | |
2430 | // If none of the top bits are demanded, convert this into an any_extend. |
2431 | if (DemandedBits.getActiveBits() <= InBits) { |
2432 | // If we only need the non-extended bits of the bottom element |
2433 | // then we can just bitcast to the result. |
2434 | if (IsLE && IsVecInReg && DemandedElts == 1 && |
2435 | VT.getSizeInBits() == SrcVT.getSizeInBits()) |
2436 | return TLO.CombineTo(O: Op, N: TLO.DAG.getBitcast(VT, V: Src)); |
2437 | |
2438 | unsigned Opc = |
2439 | IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; |
2440 | if (!TLO.LegalOperations() || isOperationLegal(Op: Opc, VT)) |
2441 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: Opc, DL: dl, VT, Operand: Src)); |
2442 | } |
2443 | |
2444 | SDNodeFlags Flags = Op->getFlags(); |
2445 | APInt InDemandedBits = DemandedBits.trunc(width: InBits); |
2446 | APInt InDemandedElts = DemandedElts.zext(width: InElts); |
2447 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: InDemandedBits, OriginalDemandedElts: InDemandedElts, Known, TLO, |
2448 | Depth: Depth + 1)) { |
2449 | if (Flags.hasNonNeg()) { |
2450 | Flags.setNonNeg(false); |
2451 | Op->setFlags(Flags); |
2452 | } |
2453 | return true; |
2454 | } |
2455 | assert(Known.getBitWidth() == InBits && "Src width has changed?" ); |
2456 | Known = Known.zext(BitWidth); |
2457 | |
2458 | // Attempt to avoid multi-use ops if we don't need anything from them. |
2459 | if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( |
2460 | Op: Src, DemandedBits: InDemandedBits, DemandedElts: InDemandedElts, DAG&: TLO.DAG, Depth: Depth + 1)) |
2461 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, Operand: NewSrc)); |
2462 | break; |
2463 | } |
2464 | case ISD::SIGN_EXTEND_VECTOR_INREG: |
2465 | if (VT.isScalableVector()) |
2466 | return false; |
2467 | [[fallthrough]]; |
2468 | case ISD::SIGN_EXTEND: { |
2469 | SDValue Src = Op.getOperand(i: 0); |
2470 | EVT SrcVT = Src.getValueType(); |
2471 | unsigned InBits = SrcVT.getScalarSizeInBits(); |
2472 | unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; |
2473 | bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; |
2474 | |
2475 | APInt InDemandedElts = DemandedElts.zext(width: InElts); |
2476 | APInt InDemandedBits = DemandedBits.trunc(width: InBits); |
2477 | |
2478 | // Since some of the sign extended bits are demanded, we know that the sign |
2479 | // bit is demanded. |
2480 | InDemandedBits.setBit(InBits - 1); |
2481 | |
2482 | // If none of the top bits are demanded, convert this into an any_extend. |
2483 | if (DemandedBits.getActiveBits() <= InBits) { |
2484 | // If we only need the non-extended bits of the bottom element |
2485 | // then we can just bitcast to the result. |
2486 | if (IsLE && IsVecInReg && DemandedElts == 1 && |
2487 | VT.getSizeInBits() == SrcVT.getSizeInBits()) |
2488 | return TLO.CombineTo(O: Op, N: TLO.DAG.getBitcast(VT, V: Src)); |
2489 | |
2490 | // Don't lose an all signbits 0/-1 splat on targets with 0/-1 booleans. |
2491 | if (getBooleanContents(Type: VT) != ZeroOrNegativeOneBooleanContent || |
2492 | TLO.DAG.ComputeNumSignBits(Op: Src, DemandedElts: InDemandedElts, Depth: Depth + 1) != |
2493 | InBits) { |
2494 | unsigned Opc = |
2495 | IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; |
2496 | if (!TLO.LegalOperations() || isOperationLegal(Op: Opc, VT)) |
2497 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: Opc, DL: dl, VT, Operand: Src)); |
2498 | } |
2499 | } |
2500 | |
2501 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: InDemandedBits, OriginalDemandedElts: InDemandedElts, Known, TLO, |
2502 | Depth: Depth + 1)) |
2503 | return true; |
2504 | assert(Known.getBitWidth() == InBits && "Src width has changed?" ); |
2505 | |
2506 | // If the sign bit is known one, the top bits match. |
2507 | Known = Known.sext(BitWidth); |
2508 | |
2509 | // If the sign bit is known zero, convert this to a zero extend. |
2510 | if (Known.isNonNegative()) { |
2511 | unsigned Opc = |
2512 | IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; |
2513 | if (!TLO.LegalOperations() || isOperationLegal(Op: Opc, VT)) { |
2514 | SDNodeFlags Flags; |
2515 | if (!IsVecInReg) |
2516 | Flags.setNonNeg(true); |
2517 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: Opc, DL: dl, VT, Operand: Src, Flags)); |
2518 | } |
2519 | } |
2520 | |
2521 | // Attempt to avoid multi-use ops if we don't need anything from them. |
2522 | if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( |
2523 | Op: Src, DemandedBits: InDemandedBits, DemandedElts: InDemandedElts, DAG&: TLO.DAG, Depth: Depth + 1)) |
2524 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, Operand: NewSrc)); |
2525 | break; |
2526 | } |
2527 | case ISD::ANY_EXTEND_VECTOR_INREG: |
2528 | if (VT.isScalableVector()) |
2529 | return false; |
2530 | [[fallthrough]]; |
2531 | case ISD::ANY_EXTEND: { |
2532 | SDValue Src = Op.getOperand(i: 0); |
2533 | EVT SrcVT = Src.getValueType(); |
2534 | unsigned InBits = SrcVT.getScalarSizeInBits(); |
2535 | unsigned InElts = SrcVT.isFixedLengthVector() ? SrcVT.getVectorNumElements() : 1; |
2536 | bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; |
2537 | |
2538 | // If we only need the bottom element then we can just bitcast. |
2539 | // TODO: Handle ANY_EXTEND? |
2540 | if (IsLE && IsVecInReg && DemandedElts == 1 && |
2541 | VT.getSizeInBits() == SrcVT.getSizeInBits()) |
2542 | return TLO.CombineTo(O: Op, N: TLO.DAG.getBitcast(VT, V: Src)); |
2543 | |
2544 | APInt InDemandedBits = DemandedBits.trunc(width: InBits); |
2545 | APInt InDemandedElts = DemandedElts.zext(width: InElts); |
2546 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: InDemandedBits, OriginalDemandedElts: InDemandedElts, Known, TLO, |
2547 | Depth: Depth + 1)) |
2548 | return true; |
2549 | assert(Known.getBitWidth() == InBits && "Src width has changed?" ); |
2550 | Known = Known.anyext(BitWidth); |
2551 | |
2552 | // Attempt to avoid multi-use ops if we don't need anything from them. |
2553 | if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( |
2554 | Op: Src, DemandedBits: InDemandedBits, DemandedElts: InDemandedElts, DAG&: TLO.DAG, Depth: Depth + 1)) |
2555 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, Operand: NewSrc)); |
2556 | break; |
2557 | } |
2558 | case ISD::TRUNCATE: { |
2559 | SDValue Src = Op.getOperand(i: 0); |
2560 | |
2561 | // Simplify the input, using demanded bit information, and compute the known |
2562 | // zero/one bits live out. |
2563 | unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); |
2564 | APInt TruncMask = DemandedBits.zext(width: OperandBitWidth); |
2565 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: TruncMask, OriginalDemandedElts: DemandedElts, Known, TLO, |
2566 | Depth: Depth + 1)) |
2567 | return true; |
2568 | Known = Known.trunc(BitWidth); |
2569 | |
2570 | // Attempt to avoid multi-use ops if we don't need anything from them. |
2571 | if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( |
2572 | Op: Src, DemandedBits: TruncMask, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1)) |
2573 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: NewSrc)); |
2574 | |
2575 | // If the input is only used by this truncate, see if we can shrink it based |
2576 | // on the known demanded bits. |
2577 | switch (Src.getOpcode()) { |
2578 | default: |
2579 | break; |
2580 | case ISD::SRL: |
2581 | // Shrink SRL by a constant if none of the high bits shifted in are |
2582 | // demanded. |
2583 | if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) |
2584 | // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is |
2585 | // undesirable. |
2586 | break; |
2587 | |
2588 | if (Src.getNode()->hasOneUse()) { |
2589 | if (isTruncateFree(Val: Src, VT2: VT) && |
2590 | !isTruncateFree(FromVT: Src.getValueType(), ToVT: VT)) { |
2591 | // If truncate is only free at trunc(srl), do not turn it into |
2592 | // srl(trunc). The check is done by first check the truncate is free |
2593 | // at Src's opcode(srl), then check the truncate is not done by |
2594 | // referencing sub-register. In test, if both trunc(srl) and |
2595 | // srl(trunc)'s trunc are free, srl(trunc) performs better. If only |
2596 | // trunc(srl)'s trunc is free, trunc(srl) is better. |
2597 | break; |
2598 | } |
2599 | |
2600 | std::optional<uint64_t> ShAmtC = |
2601 | TLO.DAG.getValidShiftAmount(V: Src, DemandedElts, Depth: Depth + 2); |
2602 | if (!ShAmtC || *ShAmtC >= BitWidth) |
2603 | break; |
2604 | uint64_t ShVal = *ShAmtC; |
2605 | |
2606 | APInt HighBits = |
2607 | APInt::getHighBitsSet(numBits: OperandBitWidth, hiBitsSet: OperandBitWidth - BitWidth); |
2608 | HighBits.lshrInPlace(ShiftAmt: ShVal); |
2609 | HighBits = HighBits.trunc(width: BitWidth); |
2610 | if (!(HighBits & DemandedBits)) { |
2611 | // None of the shifted in bits are needed. Add a truncate of the |
2612 | // shift input, then shift it. |
2613 | SDValue NewShAmt = TLO.DAG.getShiftAmountConstant(Val: ShVal, VT, DL: dl); |
2614 | SDValue NewTrunc = |
2615 | TLO.DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Src.getOperand(i: 0)); |
2616 | return TLO.CombineTo( |
2617 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: NewTrunc, N2: NewShAmt)); |
2618 | } |
2619 | } |
2620 | break; |
2621 | } |
2622 | |
2623 | break; |
2624 | } |
2625 | case ISD::AssertZext: { |
2626 | // AssertZext demands all of the high bits, plus any of the low bits |
2627 | // demanded by its users. |
2628 | EVT ZVT = cast<VTSDNode>(Val: Op.getOperand(i: 1))->getVT(); |
2629 | APInt InMask = APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: ZVT.getSizeInBits()); |
2630 | if (SimplifyDemandedBits(Op: Op.getOperand(i: 0), DemandedBits: ~InMask | DemandedBits, Known, |
2631 | TLO, Depth: Depth + 1)) |
2632 | return true; |
2633 | |
2634 | Known.Zero |= ~InMask; |
2635 | Known.One &= (~Known.Zero); |
2636 | break; |
2637 | } |
2638 | case ISD::EXTRACT_VECTOR_ELT: { |
2639 | SDValue Src = Op.getOperand(i: 0); |
2640 | SDValue Idx = Op.getOperand(i: 1); |
2641 | ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); |
2642 | unsigned EltBitWidth = Src.getScalarValueSizeInBits(); |
2643 | |
2644 | if (SrcEltCnt.isScalable()) |
2645 | return false; |
2646 | |
2647 | // Demand the bits from every vector element without a constant index. |
2648 | unsigned NumSrcElts = SrcEltCnt.getFixedValue(); |
2649 | APInt DemandedSrcElts = APInt::getAllOnes(numBits: NumSrcElts); |
2650 | if (auto *CIdx = dyn_cast<ConstantSDNode>(Val&: Idx)) |
2651 | if (CIdx->getAPIntValue().ult(RHS: NumSrcElts)) |
2652 | DemandedSrcElts = APInt::getOneBitSet(numBits: NumSrcElts, BitNo: CIdx->getZExtValue()); |
2653 | |
2654 | // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know |
2655 | // anything about the extended bits. |
2656 | APInt DemandedSrcBits = DemandedBits; |
2657 | if (BitWidth > EltBitWidth) |
2658 | DemandedSrcBits = DemandedSrcBits.trunc(width: EltBitWidth); |
2659 | |
2660 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: DemandedSrcBits, OriginalDemandedElts: DemandedSrcElts, Known&: Known2, TLO, |
2661 | Depth: Depth + 1)) |
2662 | return true; |
2663 | |
2664 | // Attempt to avoid multi-use ops if we don't need anything from them. |
2665 | if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { |
2666 | if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( |
2667 | Op: Src, DemandedBits: DemandedSrcBits, DemandedElts: DemandedSrcElts, DAG&: TLO.DAG, Depth: Depth + 1)) { |
2668 | SDValue NewOp = |
2669 | TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, N1: DemandedSrc, N2: Idx); |
2670 | return TLO.CombineTo(O: Op, N: NewOp); |
2671 | } |
2672 | } |
2673 | |
2674 | Known = Known2; |
2675 | if (BitWidth > EltBitWidth) |
2676 | Known = Known.anyext(BitWidth); |
2677 | break; |
2678 | } |
2679 | case ISD::BITCAST: { |
2680 | if (VT.isScalableVector()) |
2681 | return false; |
2682 | SDValue Src = Op.getOperand(i: 0); |
2683 | EVT SrcVT = Src.getValueType(); |
2684 | unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); |
2685 | |
2686 | // If this is an FP->Int bitcast and if the sign bit is the only |
2687 | // thing demanded, turn this into a FGETSIGN. |
2688 | if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && |
2689 | DemandedBits == APInt::getSignMask(BitWidth: Op.getValueSizeInBits()) && |
2690 | SrcVT.isFloatingPoint()) { |
2691 | bool OpVTLegal = isOperationLegalOrCustom(Op: ISD::FGETSIGN, VT); |
2692 | bool i32Legal = isOperationLegalOrCustom(Op: ISD::FGETSIGN, VT: MVT::i32); |
2693 | if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && |
2694 | SrcVT != MVT::f128) { |
2695 | // Cannot eliminate/lower SHL for f128 yet. |
2696 | EVT Ty = OpVTLegal ? VT : MVT::i32; |
2697 | // Make a FGETSIGN + SHL to move the sign bit into the appropriate |
2698 | // place. We expect the SHL to be eliminated by other optimizations. |
2699 | SDValue Sign = TLO.DAG.getNode(Opcode: ISD::FGETSIGN, DL: dl, VT: Ty, Operand: Src); |
2700 | unsigned OpVTSizeInBits = Op.getValueSizeInBits(); |
2701 | if (!OpVTLegal && OpVTSizeInBits > 32) |
2702 | Sign = TLO.DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: Sign); |
2703 | unsigned ShVal = Op.getValueSizeInBits() - 1; |
2704 | SDValue ShAmt = TLO.DAG.getConstant(Val: ShVal, DL: dl, VT); |
2705 | return TLO.CombineTo(O: Op, |
2706 | N: TLO.DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Sign, N2: ShAmt)); |
2707 | } |
2708 | } |
2709 | |
2710 | // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. |
2711 | // Demand the elt/bit if any of the original elts/bits are demanded. |
2712 | if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { |
2713 | unsigned Scale = BitWidth / NumSrcEltBits; |
2714 | unsigned NumSrcElts = SrcVT.getVectorNumElements(); |
2715 | APInt DemandedSrcBits = APInt::getZero(numBits: NumSrcEltBits); |
2716 | APInt DemandedSrcElts = APInt::getZero(numBits: NumSrcElts); |
2717 | for (unsigned i = 0; i != Scale; ++i) { |
2718 | unsigned EltOffset = IsLE ? i : (Scale - 1 - i); |
2719 | unsigned BitOffset = EltOffset * NumSrcEltBits; |
2720 | APInt Sub = DemandedBits.extractBits(numBits: NumSrcEltBits, bitPosition: BitOffset); |
2721 | if (!Sub.isZero()) { |
2722 | DemandedSrcBits |= Sub; |
2723 | for (unsigned j = 0; j != NumElts; ++j) |
2724 | if (DemandedElts[j]) |
2725 | DemandedSrcElts.setBit((j * Scale) + i); |
2726 | } |
2727 | } |
2728 | |
2729 | APInt KnownSrcUndef, KnownSrcZero; |
2730 | if (SimplifyDemandedVectorElts(Op: Src, DemandedEltMask: DemandedSrcElts, KnownUndef&: KnownSrcUndef, |
2731 | KnownZero&: KnownSrcZero, TLO, Depth: Depth + 1)) |
2732 | return true; |
2733 | |
2734 | KnownBits KnownSrcBits; |
2735 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: DemandedSrcBits, OriginalDemandedElts: DemandedSrcElts, |
2736 | Known&: KnownSrcBits, TLO, Depth: Depth + 1)) |
2737 | return true; |
2738 | } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { |
2739 | // TODO - bigendian once we have test coverage. |
2740 | unsigned Scale = NumSrcEltBits / BitWidth; |
2741 | unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; |
2742 | APInt DemandedSrcBits = APInt::getZero(numBits: NumSrcEltBits); |
2743 | APInt DemandedSrcElts = APInt::getZero(numBits: NumSrcElts); |
2744 | for (unsigned i = 0; i != NumElts; ++i) |
2745 | if (DemandedElts[i]) { |
2746 | unsigned Offset = (i % Scale) * BitWidth; |
2747 | DemandedSrcBits.insertBits(SubBits: DemandedBits, bitPosition: Offset); |
2748 | DemandedSrcElts.setBit(i / Scale); |
2749 | } |
2750 | |
2751 | if (SrcVT.isVector()) { |
2752 | APInt KnownSrcUndef, KnownSrcZero; |
2753 | if (SimplifyDemandedVectorElts(Op: Src, DemandedEltMask: DemandedSrcElts, KnownUndef&: KnownSrcUndef, |
2754 | KnownZero&: KnownSrcZero, TLO, Depth: Depth + 1)) |
2755 | return true; |
2756 | } |
2757 | |
2758 | KnownBits KnownSrcBits; |
2759 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: DemandedSrcBits, OriginalDemandedElts: DemandedSrcElts, |
2760 | Known&: KnownSrcBits, TLO, Depth: Depth + 1)) |
2761 | return true; |
2762 | |
2763 | // Attempt to avoid multi-use ops if we don't need anything from them. |
2764 | if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { |
2765 | if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( |
2766 | Op: Src, DemandedBits: DemandedSrcBits, DemandedElts: DemandedSrcElts, DAG&: TLO.DAG, Depth: Depth + 1)) { |
2767 | SDValue NewOp = TLO.DAG.getBitcast(VT, V: DemandedSrc); |
2768 | return TLO.CombineTo(O: Op, N: NewOp); |
2769 | } |
2770 | } |
2771 | } |
2772 | |
2773 | // If this is a bitcast, let computeKnownBits handle it. Only do this on a |
2774 | // recursive call where Known may be useful to the caller. |
2775 | if (Depth > 0) { |
2776 | Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); |
2777 | return false; |
2778 | } |
2779 | break; |
2780 | } |
2781 | case ISD::MUL: |
2782 | if (DemandedBits.isPowerOf2()) { |
2783 | // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. |
2784 | // If we demand exactly one bit N and we have "X * (C' << N)" where C' is |
2785 | // odd (has LSB set), then the left-shifted low bit of X is the answer. |
2786 | unsigned CTZ = DemandedBits.countr_zero(); |
2787 | ConstantSDNode *C = isConstOrConstSplat(N: Op.getOperand(i: 1), DemandedElts); |
2788 | if (C && C->getAPIntValue().countr_zero() == CTZ) { |
2789 | SDValue AmtC = TLO.DAG.getShiftAmountConstant(Val: CTZ, VT, DL: dl); |
2790 | SDValue Shl = TLO.DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Op.getOperand(i: 0), N2: AmtC); |
2791 | return TLO.CombineTo(O: Op, N: Shl); |
2792 | } |
2793 | } |
2794 | // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: |
2795 | // X * X is odd iff X is odd. |
2796 | // 'Quadratic Reciprocity': X * X -> 0 for bit[1] |
2797 | if (Op.getOperand(i: 0) == Op.getOperand(i: 1) && DemandedBits.ult(RHS: 4)) { |
2798 | SDValue One = TLO.DAG.getConstant(Val: 1, DL: dl, VT); |
2799 | SDValue And1 = TLO.DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Op.getOperand(i: 0), N2: One); |
2800 | return TLO.CombineTo(O: Op, N: And1); |
2801 | } |
2802 | [[fallthrough]]; |
2803 | case ISD::ADD: |
2804 | case ISD::SUB: { |
2805 | // Add, Sub, and Mul don't demand any bits in positions beyond that |
2806 | // of the highest bit demanded of them. |
2807 | SDValue Op0 = Op.getOperand(i: 0), Op1 = Op.getOperand(i: 1); |
2808 | SDNodeFlags Flags = Op.getNode()->getFlags(); |
2809 | unsigned DemandedBitsLZ = DemandedBits.countl_zero(); |
2810 | APInt LoMask = APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: BitWidth - DemandedBitsLZ); |
2811 | KnownBits KnownOp0, KnownOp1; |
2812 | auto GetDemandedBitsLHSMask = [&](APInt Demanded, |
2813 | const KnownBits &KnownRHS) { |
2814 | if (Op.getOpcode() == ISD::MUL) |
2815 | Demanded.clearHighBits(hiBits: KnownRHS.countMinTrailingZeros()); |
2816 | return Demanded; |
2817 | }; |
2818 | if (SimplifyDemandedBits(Op: Op1, OriginalDemandedBits: LoMask, OriginalDemandedElts: DemandedElts, Known&: KnownOp1, TLO, |
2819 | Depth: Depth + 1) || |
2820 | SimplifyDemandedBits(Op: Op0, OriginalDemandedBits: GetDemandedBitsLHSMask(LoMask, KnownOp1), |
2821 | OriginalDemandedElts: DemandedElts, Known&: KnownOp0, TLO, Depth: Depth + 1) || |
2822 | // See if the operation should be performed at a smaller bit width. |
2823 | ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { |
2824 | if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { |
2825 | // Disable the nsw and nuw flags. We can no longer guarantee that we |
2826 | // won't wrap after simplification. |
2827 | Flags.setNoSignedWrap(false); |
2828 | Flags.setNoUnsignedWrap(false); |
2829 | Op->setFlags(Flags); |
2830 | } |
2831 | return true; |
2832 | } |
2833 | |
2834 | // neg x with only low bit demanded is simply x. |
2835 | if (Op.getOpcode() == ISD::SUB && DemandedBits.isOne() && |
2836 | isNullConstant(V: Op0)) |
2837 | return TLO.CombineTo(O: Op, N: Op1); |
2838 | |
2839 | // Attempt to avoid multi-use ops if we don't need anything from them. |
2840 | if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { |
2841 | SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( |
2842 | Op: Op0, DemandedBits: LoMask, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
2843 | SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( |
2844 | Op: Op1, DemandedBits: LoMask, DemandedElts, DAG&: TLO.DAG, Depth: Depth + 1); |
2845 | if (DemandedOp0 || DemandedOp1) { |
2846 | Flags.setNoSignedWrap(false); |
2847 | Flags.setNoUnsignedWrap(false); |
2848 | Op0 = DemandedOp0 ? DemandedOp0 : Op0; |
2849 | Op1 = DemandedOp1 ? DemandedOp1 : Op1; |
2850 | SDValue NewOp = |
2851 | TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, N1: Op0, N2: Op1, Flags); |
2852 | return TLO.CombineTo(O: Op, N: NewOp); |
2853 | } |
2854 | } |
2855 | |
2856 | // If we have a constant operand, we may be able to turn it into -1 if we |
2857 | // do not demand the high bits. This can make the constant smaller to |
2858 | // encode, allow more general folding, or match specialized instruction |
2859 | // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that |
2860 | // is probably not useful (and could be detrimental). |
2861 | ConstantSDNode *C = isConstOrConstSplat(N: Op1); |
2862 | APInt HighMask = APInt::getHighBitsSet(numBits: BitWidth, hiBitsSet: DemandedBitsLZ); |
2863 | if (C && !C->isAllOnes() && !C->isOne() && |
2864 | (C->getAPIntValue() | HighMask).isAllOnes()) { |
2865 | SDValue Neg1 = TLO.DAG.getAllOnesConstant(DL: dl, VT); |
2866 | // Disable the nsw and nuw flags. We can no longer guarantee that we |
2867 | // won't wrap after simplification. |
2868 | Flags.setNoSignedWrap(false); |
2869 | Flags.setNoUnsignedWrap(false); |
2870 | SDValue NewOp = TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT, N1: Op0, N2: Neg1, Flags); |
2871 | return TLO.CombineTo(O: Op, N: NewOp); |
2872 | } |
2873 | |
2874 | // Match a multiply with a disguised negated-power-of-2 and convert to a |
2875 | // an equivalent shift-left amount. |
2876 | // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) |
2877 | auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { |
2878 | if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) |
2879 | return 0; |
2880 | |
2881 | // Don't touch opaque constants. Also, ignore zero and power-of-2 |
2882 | // multiplies. Those will get folded later. |
2883 | ConstantSDNode *MulC = isConstOrConstSplat(N: Mul.getOperand(i: 1)); |
2884 | if (MulC && !MulC->isOpaque() && !MulC->isZero() && |
2885 | !MulC->getAPIntValue().isPowerOf2()) { |
2886 | APInt UnmaskedC = MulC->getAPIntValue() | HighMask; |
2887 | if (UnmaskedC.isNegatedPowerOf2()) |
2888 | return (-UnmaskedC).logBase2(); |
2889 | } |
2890 | return 0; |
2891 | }; |
2892 | |
2893 | auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, |
2894 | unsigned ShlAmt) { |
2895 | SDValue ShlAmtC = TLO.DAG.getShiftAmountConstant(Val: ShlAmt, VT, DL: dl); |
2896 | SDValue Shl = TLO.DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: X, N2: ShlAmtC); |
2897 | SDValue Res = TLO.DAG.getNode(Opcode: NT, DL: dl, VT, N1: Y, N2: Shl); |
2898 | return TLO.CombineTo(O: Op, N: Res); |
2899 | }; |
2900 | |
2901 | if (isOperationLegalOrCustom(Op: ISD::SHL, VT)) { |
2902 | if (Op.getOpcode() == ISD::ADD) { |
2903 | // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) |
2904 | if (unsigned ShAmt = getShiftLeftAmt(Op0)) |
2905 | return foldMul(ISD::SUB, Op0.getOperand(i: 0), Op1, ShAmt); |
2906 | // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) |
2907 | if (unsigned ShAmt = getShiftLeftAmt(Op1)) |
2908 | return foldMul(ISD::SUB, Op1.getOperand(i: 0), Op0, ShAmt); |
2909 | } |
2910 | if (Op.getOpcode() == ISD::SUB) { |
2911 | // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) |
2912 | if (unsigned ShAmt = getShiftLeftAmt(Op1)) |
2913 | return foldMul(ISD::ADD, Op1.getOperand(i: 0), Op0, ShAmt); |
2914 | } |
2915 | } |
2916 | |
2917 | if (Op.getOpcode() == ISD::MUL) { |
2918 | Known = KnownBits::mul(LHS: KnownOp0, RHS: KnownOp1); |
2919 | } else { // Op.getOpcode() is either ISD::ADD or ISD::SUB. |
2920 | Known = KnownBits::computeForAddSub( |
2921 | Add: Op.getOpcode() == ISD::ADD, NSW: Flags.hasNoSignedWrap(), |
2922 | NUW: Flags.hasNoUnsignedWrap(), LHS: KnownOp0, RHS: KnownOp1); |
2923 | } |
2924 | break; |
2925 | } |
2926 | default: |
2927 | // We also ask the target about intrinsics (which could be specific to it). |
2928 | if (Op.getOpcode() >= ISD::BUILTIN_OP_END || |
2929 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN) { |
2930 | // TODO: Probably okay to remove after audit; here to reduce change size |
2931 | // in initial enablement patch for scalable vectors |
2932 | if (Op.getValueType().isScalableVector()) |
2933 | break; |
2934 | if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, |
2935 | Known, TLO, Depth)) |
2936 | return true; |
2937 | break; |
2938 | } |
2939 | |
2940 | // Just use computeKnownBits to compute output bits. |
2941 | Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); |
2942 | break; |
2943 | } |
2944 | |
2945 | // If we know the value of all of the demanded bits, return this as a |
2946 | // constant. |
2947 | if (!isTargetCanonicalConstantNode(Op) && |
2948 | DemandedBits.isSubsetOf(RHS: Known.Zero | Known.One)) { |
2949 | // Avoid folding to a constant if any OpaqueConstant is involved. |
2950 | const SDNode *N = Op.getNode(); |
2951 | for (SDNode *Op : |
2952 | llvm::make_range(x: SDNodeIterator::begin(N), y: SDNodeIterator::end(N))) { |
2953 | if (auto *C = dyn_cast<ConstantSDNode>(Val: Op)) |
2954 | if (C->isOpaque()) |
2955 | return false; |
2956 | } |
2957 | if (VT.isInteger()) |
2958 | return TLO.CombineTo(O: Op, N: TLO.DAG.getConstant(Val: Known.One, DL: dl, VT)); |
2959 | if (VT.isFloatingPoint()) |
2960 | return TLO.CombineTo( |
2961 | O: Op, |
2962 | N: TLO.DAG.getConstantFP( |
2963 | Val: APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), DL: dl, VT)); |
2964 | } |
2965 | |
2966 | // A multi use 'all demanded elts' simplify failed to find any knownbits. |
2967 | // Try again just for the original demanded elts. |
2968 | // Ensure we do this AFTER constant folding above. |
2969 | if (HasMultiUse && Known.isUnknown() && !OriginalDemandedElts.isAllOnes()) |
2970 | Known = TLO.DAG.computeKnownBits(Op, DemandedElts: OriginalDemandedElts, Depth); |
2971 | |
2972 | return false; |
2973 | } |
2974 | |
2975 | bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, |
2976 | const APInt &DemandedElts, |
2977 | DAGCombinerInfo &DCI) const { |
2978 | SelectionDAG &DAG = DCI.DAG; |
2979 | TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), |
2980 | !DCI.isBeforeLegalizeOps()); |
2981 | |
2982 | APInt KnownUndef, KnownZero; |
2983 | bool Simplified = |
2984 | SimplifyDemandedVectorElts(Op, DemandedEltMask: DemandedElts, KnownUndef, KnownZero, TLO); |
2985 | if (Simplified) { |
2986 | DCI.AddToWorklist(N: Op.getNode()); |
2987 | DCI.CommitTargetLoweringOpt(TLO); |
2988 | } |
2989 | |
2990 | return Simplified; |
2991 | } |
2992 | |
2993 | /// Given a vector binary operation and known undefined elements for each input |
2994 | /// operand, compute whether each element of the output is undefined. |
2995 | static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, |
2996 | const APInt &UndefOp0, |
2997 | const APInt &UndefOp1) { |
2998 | EVT VT = BO.getValueType(); |
2999 | assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && |
3000 | "Vector binop only" ); |
3001 | |
3002 | EVT EltVT = VT.getVectorElementType(); |
3003 | unsigned NumElts = VT.isFixedLengthVector() ? VT.getVectorNumElements() : 1; |
3004 | assert(UndefOp0.getBitWidth() == NumElts && |
3005 | UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis" ); |
3006 | |
3007 | auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, |
3008 | const APInt &UndefVals) { |
3009 | if (UndefVals[Index]) |
3010 | return DAG.getUNDEF(VT: EltVT); |
3011 | |
3012 | if (auto *BV = dyn_cast<BuildVectorSDNode>(Val&: V)) { |
3013 | // Try hard to make sure that the getNode() call is not creating temporary |
3014 | // nodes. Ignore opaque integers because they do not constant fold. |
3015 | SDValue Elt = BV->getOperand(Num: Index); |
3016 | auto *C = dyn_cast<ConstantSDNode>(Val&: Elt); |
3017 | if (isa<ConstantFPSDNode>(Val: Elt) || Elt.isUndef() || (C && !C->isOpaque())) |
3018 | return Elt; |
3019 | } |
3020 | |
3021 | return SDValue(); |
3022 | }; |
3023 | |
3024 | APInt KnownUndef = APInt::getZero(numBits: NumElts); |
3025 | for (unsigned i = 0; i != NumElts; ++i) { |
3026 | // If both inputs for this element are either constant or undef and match |
3027 | // the element type, compute the constant/undef result for this element of |
3028 | // the vector. |
3029 | // TODO: Ideally we would use FoldConstantArithmetic() here, but that does |
3030 | // not handle FP constants. The code within getNode() should be refactored |
3031 | // to avoid the danger of creating a bogus temporary node here. |
3032 | SDValue C0 = getUndefOrConstantElt(BO.getOperand(i: 0), i, UndefOp0); |
3033 | SDValue C1 = getUndefOrConstantElt(BO.getOperand(i: 1), i, UndefOp1); |
3034 | if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) |
3035 | if (DAG.getNode(Opcode: BO.getOpcode(), DL: SDLoc(BO), VT: EltVT, N1: C0, N2: C1).isUndef()) |
3036 | KnownUndef.setBit(i); |
3037 | } |
3038 | return KnownUndef; |
3039 | } |
3040 | |
3041 | bool TargetLowering::SimplifyDemandedVectorElts( |
3042 | SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, |
3043 | APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, |
3044 | bool AssumeSingleUse) const { |
3045 | EVT VT = Op.getValueType(); |
3046 | unsigned Opcode = Op.getOpcode(); |
3047 | APInt DemandedElts = OriginalDemandedElts; |
3048 | unsigned NumElts = DemandedElts.getBitWidth(); |
3049 | assert(VT.isVector() && "Expected vector op" ); |
3050 | |
3051 | KnownUndef = KnownZero = APInt::getZero(numBits: NumElts); |
3052 | |
3053 | const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); |
3054 | if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO)) |
3055 | return false; |
3056 | |
3057 | // TODO: For now we assume we know nothing about scalable vectors. |
3058 | if (VT.isScalableVector()) |
3059 | return false; |
3060 | |
3061 | assert(VT.getVectorNumElements() == NumElts && |
3062 | "Mask size mismatches value type element count!" ); |
3063 | |
3064 | // Undef operand. |
3065 | if (Op.isUndef()) { |
3066 | KnownUndef.setAllBits(); |
3067 | return false; |
3068 | } |
3069 | |
3070 | // If Op has other users, assume that all elements are needed. |
3071 | if (!AssumeSingleUse && !Op.getNode()->hasOneUse()) |
3072 | DemandedElts.setAllBits(); |
3073 | |
3074 | // Not demanding any elements from Op. |
3075 | if (DemandedElts == 0) { |
3076 | KnownUndef.setAllBits(); |
3077 | return TLO.CombineTo(O: Op, N: TLO.DAG.getUNDEF(VT)); |
3078 | } |
3079 | |
3080 | // Limit search depth. |
3081 | if (Depth >= SelectionDAG::MaxRecursionDepth) |
3082 | return false; |
3083 | |
3084 | SDLoc DL(Op); |
3085 | unsigned EltSizeInBits = VT.getScalarSizeInBits(); |
3086 | bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); |
3087 | |
3088 | // Helper for demanding the specified elements and all the bits of both binary |
3089 | // operands. |
3090 | auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { |
3091 | SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op: Op0, DemandedElts, |
3092 | DAG&: TLO.DAG, Depth: Depth + 1); |
3093 | SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op: Op1, DemandedElts, |
3094 | DAG&: TLO.DAG, Depth: Depth + 1); |
3095 | if (NewOp0 || NewOp1) { |
3096 | SDValue NewOp = |
3097 | TLO.DAG.getNode(Opcode, DL: SDLoc(Op), VT, N1: NewOp0 ? NewOp0 : Op0, |
3098 | N2: NewOp1 ? NewOp1 : Op1, Flags: Op->getFlags()); |
3099 | return TLO.CombineTo(O: Op, N: NewOp); |
3100 | } |
3101 | return false; |
3102 | }; |
3103 | |
3104 | switch (Opcode) { |
3105 | case ISD::SCALAR_TO_VECTOR: { |
3106 | if (!DemandedElts[0]) { |
3107 | KnownUndef.setAllBits(); |
3108 | return TLO.CombineTo(O: Op, N: TLO.DAG.getUNDEF(VT)); |
3109 | } |
3110 | SDValue ScalarSrc = Op.getOperand(i: 0); |
3111 | if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
3112 | SDValue Src = ScalarSrc.getOperand(i: 0); |
3113 | SDValue Idx = ScalarSrc.getOperand(i: 1); |
3114 | EVT SrcVT = Src.getValueType(); |
3115 | |
3116 | ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); |
3117 | |
3118 | if (SrcEltCnt.isScalable()) |
3119 | return false; |
3120 | |
3121 | unsigned NumSrcElts = SrcEltCnt.getFixedValue(); |
3122 | if (isNullConstant(V: Idx)) { |
3123 | APInt SrcDemandedElts = APInt::getOneBitSet(numBits: NumSrcElts, BitNo: 0); |
3124 | APInt SrcUndef = KnownUndef.zextOrTrunc(width: NumSrcElts); |
3125 | APInt SrcZero = KnownZero.zextOrTrunc(width: NumSrcElts); |
3126 | if (SimplifyDemandedVectorElts(Op: Src, OriginalDemandedElts: SrcDemandedElts, KnownUndef&: SrcUndef, KnownZero&: SrcZero, |
3127 | TLO, Depth: Depth + 1)) |
3128 | return true; |
3129 | } |
3130 | } |
3131 | KnownUndef.setHighBits(NumElts - 1); |
3132 | break; |
3133 | } |
3134 | case ISD::BITCAST: { |
3135 | SDValue Src = Op.getOperand(i: 0); |
3136 | EVT SrcVT = Src.getValueType(); |
3137 | |
3138 | // We only handle vectors here. |
3139 | // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? |
3140 | if (!SrcVT.isVector()) |
3141 | break; |
3142 | |
3143 | // Fast handling of 'identity' bitcasts. |
3144 | unsigned NumSrcElts = SrcVT.getVectorNumElements(); |
3145 | if (NumSrcElts == NumElts) |
3146 | return SimplifyDemandedVectorElts(Op: Src, OriginalDemandedElts: DemandedElts, KnownUndef, |
3147 | KnownZero, TLO, Depth: Depth + 1); |
3148 | |
3149 | APInt SrcDemandedElts, SrcZero, SrcUndef; |
3150 | |
3151 | // Bitcast from 'large element' src vector to 'small element' vector, we |
3152 | // must demand a source element if any DemandedElt maps to it. |
3153 | if ((NumElts % NumSrcElts) == 0) { |
3154 | unsigned Scale = NumElts / NumSrcElts; |
3155 | SrcDemandedElts = APIntOps::ScaleBitMask(A: DemandedElts, NewBitWidth: NumSrcElts); |
3156 | if (SimplifyDemandedVectorElts(Op: Src, OriginalDemandedElts: SrcDemandedElts, KnownUndef&: SrcUndef, KnownZero&: SrcZero, |
3157 | TLO, Depth: Depth + 1)) |
3158 | return true; |
3159 | |
3160 | // Try calling SimplifyDemandedBits, converting demanded elts to the bits |
3161 | // of the large element. |
3162 | // TODO - bigendian once we have test coverage. |
3163 | if (IsLE) { |
3164 | unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); |
3165 | APInt SrcDemandedBits = APInt::getZero(numBits: SrcEltSizeInBits); |
3166 | for (unsigned i = 0; i != NumElts; ++i) |
3167 | if (DemandedElts[i]) { |
3168 | unsigned Ofs = (i % Scale) * EltSizeInBits; |
3169 | SrcDemandedBits.setBits(loBit: Ofs, hiBit: Ofs + EltSizeInBits); |
3170 | } |
3171 | |
3172 | KnownBits Known; |
3173 | if (SimplifyDemandedBits(Op: Src, OriginalDemandedBits: SrcDemandedBits, OriginalDemandedElts: SrcDemandedElts, Known, |
3174 | TLO, Depth: Depth + 1)) |
3175 | return true; |
3176 | |
3177 | // The bitcast has split each wide element into a number of |
3178 | // narrow subelements. We have just computed the Known bits |
3179 | // for wide elements. See if element splitting results in |
3180 | // some subelements being zero. Only for demanded elements! |
3181 | for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { |
3182 | if (!Known.Zero.extractBits(numBits: EltSizeInBits, bitPosition: SubElt * EltSizeInBits) |
3183 | .isAllOnes()) |
3184 | continue; |
3185 | for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { |
3186 | unsigned Elt = Scale * SrcElt + SubElt; |
3187 | if (DemandedElts[Elt]) |
3188 | KnownZero.setBit(Elt); |
3189 | } |
3190 | } |
3191 | } |
3192 | |
3193 | // If the src element is zero/undef then all the output elements will be - |
3194 | // only demanded elements are guaranteed to be correct. |
3195 | for (unsigned i = 0; i != NumSrcElts; ++i) { |
3196 | if (SrcDemandedElts[i]) { |
3197 | if (SrcZero[i]) |
3198 | KnownZero.setBits(loBit: i * Scale, hiBit: (i + 1) * Scale); |
3199 | if (SrcUndef[i]) |
3200 | KnownUndef.setBits(loBit: i * Scale, hiBit: (i + 1) * Scale); |
3201 | } |
3202 | } |
3203 | } |
3204 | |
3205 | // Bitcast from 'small element' src vector to 'large element' vector, we |
3206 | // demand all smaller source elements covered by the larger demanded element |
3207 | // of this vector. |
3208 | if ((NumSrcElts % NumElts) == 0) { |
3209 | unsigned Scale = NumSrcElts / NumElts; |
3210 | SrcDemandedElts = APIntOps::ScaleBitMask(A: DemandedElts, NewBitWidth: NumSrcElts); |
3211 | if (SimplifyDemandedVectorElts(Op: Src, OriginalDemandedElts: SrcDemandedElts, KnownUndef&: SrcUndef, KnownZero&: SrcZero, |
3212 | TLO, Depth: Depth + 1)) |
3213 | return true; |
3214 | |
3215 | // If all the src elements covering an output element are zero/undef, then |
3216 | // the output element will be as well, assuming it was demanded. |
3217 | for (unsigned i = 0; i != NumElts; ++i) { |
3218 | if (DemandedElts[i]) { |
3219 | if (SrcZero.extractBits(numBits: Scale, bitPosition: i * Scale).isAllOnes()) |
3220 | KnownZero.setBit(i); |
3221 | if (SrcUndef.extractBits(numBits: Scale, bitPosition: i * Scale).isAllOnes()) |
3222 | KnownUndef.setBit(i); |
3223 | } |
3224 | } |
3225 | } |
3226 | break; |
3227 | } |
3228 | case ISD::FREEZE: { |
3229 | SDValue N0 = Op.getOperand(i: 0); |
3230 | if (TLO.DAG.isGuaranteedNotToBeUndefOrPoison(Op: N0, DemandedElts, |
3231 | /*PoisonOnly=*/false)) |
3232 | return TLO.CombineTo(O: Op, N: N0); |
3233 | |
3234 | // TODO: Replace this with the general fold from DAGCombiner::visitFREEZE |
3235 | // freeze(op(x, ...)) -> op(freeze(x), ...). |
3236 | if (N0.getOpcode() == ISD::SCALAR_TO_VECTOR && DemandedElts == 1) |
3237 | return TLO.CombineTo( |
3238 | O: Op, N: TLO.DAG.getNode(Opcode: ISD::SCALAR_TO_VECTOR, DL, VT, |
3239 | Operand: TLO.DAG.getFreeze(V: N0.getOperand(i: 0)))); |
3240 | break; |
3241 | } |
3242 | case ISD::BUILD_VECTOR: { |
3243 | // Check all elements and simplify any unused elements with UNDEF. |
3244 | if (!DemandedElts.isAllOnes()) { |
3245 | // Don't simplify BROADCASTS. |
3246 | if (llvm::any_of(Range: Op->op_values(), |
3247 | P: [&](SDValue Elt) { return Op.getOperand(i: 0) != Elt; })) { |
3248 | SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); |
3249 | bool Updated = false; |
3250 | for (unsigned i = 0; i != NumElts; ++i) { |
3251 | if (!DemandedElts[i] && !Ops[i].isUndef()) { |
3252 | Ops[i] = TLO.DAG.getUNDEF(VT: Ops[0].getValueType()); |
3253 | KnownUndef.setBit(i); |
3254 | Updated = true; |
3255 | } |
3256 | } |
3257 | if (Updated) |
3258 | return TLO.CombineTo(O: Op, N: TLO.DAG.getBuildVector(VT, DL, Ops)); |
3259 | } |
3260 | } |
3261 | for (unsigned i = 0; i != NumElts; ++i) { |
3262 | SDValue SrcOp = Op.getOperand(i); |
3263 | if (SrcOp.isUndef()) { |
3264 | KnownUndef.setBit(i); |
3265 | } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && |
3266 | (isNullConstant(V: SrcOp) || isNullFPConstant(V: SrcOp))) { |
3267 | KnownZero.setBit(i); |
3268 | } |
3269 | } |
3270 | break; |
3271 | } |
3272 | case ISD::CONCAT_VECTORS: { |
3273 | EVT SubVT = Op.getOperand(i: 0).getValueType(); |
3274 | unsigned NumSubVecs = Op.getNumOperands(); |
3275 | unsigned NumSubElts = SubVT.getVectorNumElements(); |
3276 | for (unsigned i = 0; i != NumSubVecs; ++i) { |
3277 | SDValue SubOp = Op.getOperand(i); |
3278 | APInt SubElts = DemandedElts.extractBits(numBits: NumSubElts, bitPosition: i * NumSubElts); |
3279 | APInt SubUndef, SubZero; |
3280 | if (SimplifyDemandedVectorElts(Op: SubOp, OriginalDemandedElts: SubElts, KnownUndef&: SubUndef, KnownZero&: SubZero, TLO, |
3281 | Depth: Depth + 1)) |
3282 | return true; |
3283 | KnownUndef.insertBits(SubBits: SubUndef, bitPosition: i * NumSubElts); |
3284 | KnownZero.insertBits(SubBits: SubZero, bitPosition: i * NumSubElts); |
3285 | } |
3286 | |
3287 | // Attempt to avoid multi-use ops if we don't need anything from them. |
3288 | if (!DemandedElts.isAllOnes()) { |
3289 | bool FoundNewSub = false; |
3290 | SmallVector<SDValue, 2> DemandedSubOps; |
3291 | for (unsigned i = 0; i != NumSubVecs; ++i) { |
3292 | SDValue SubOp = Op.getOperand(i); |
3293 | APInt SubElts = DemandedElts.extractBits(numBits: NumSubElts, bitPosition: i * NumSubElts); |
3294 | SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( |
3295 | Op: SubOp, DemandedElts: SubElts, DAG&: TLO.DAG, Depth: Depth + 1); |
3296 | DemandedSubOps.push_back(Elt: NewSubOp ? NewSubOp : SubOp); |
3297 | FoundNewSub = NewSubOp ? true : FoundNewSub; |
3298 | } |
3299 | if (FoundNewSub) { |
3300 | SDValue NewOp = |
3301 | TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: SDLoc(Op), VT, Ops: DemandedSubOps); |
3302 | return TLO.CombineTo(O: Op, N: NewOp); |
3303 | } |
3304 | } |
3305 | break; |
3306 | } |
3307 | case ISD::INSERT_SUBVECTOR: { |
3308 | // Demand any elements from the subvector and the remainder from the src its |
3309 | // inserted into. |
3310 | SDValue Src = Op.getOperand(i: 0); |
3311 | SDValue Sub = Op.getOperand(i: 1); |
3312 | uint64_t Idx = Op.getConstantOperandVal(i: 2); |
3313 | unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); |
3314 | APInt DemandedSubElts = DemandedElts.extractBits(numBits: NumSubElts, bitPosition: Idx); |
3315 | APInt DemandedSrcElts = DemandedElts; |
3316 | DemandedSrcElts.insertBits(SubBits: APInt::getZero(numBits: NumSubElts), bitPosition: Idx); |
3317 | |
3318 | APInt SubUndef, SubZero; |
3319 | if (SimplifyDemandedVectorElts(Op: Sub, OriginalDemandedElts: DemandedSubElts, KnownUndef&: SubUndef, KnownZero&: SubZero, TLO, |
3320 | Depth: Depth + 1)) |
3321 | return true; |
3322 | |
3323 | // If none of the src operand elements are demanded, replace it with undef. |
3324 | if (!DemandedSrcElts && !Src.isUndef()) |
3325 | return TLO.CombineTo(O: Op, N: TLO.DAG.getNode(Opcode: ISD::INSERT_SUBVECTOR, DL, VT, |
3326 | N1: TLO.DAG.getUNDEF(VT), N2: Sub, |
3327 | N3: Op.getOperand(i: 2))); |
3328 | |
3329 | if (SimplifyDemandedVectorElts(Op: Src, OriginalDemandedElts: DemandedSrcElts, KnownUndef, KnownZero, |
3330 | TLO, Depth: Depth + 1)) |
3331 | return true; |
3332 | KnownUndef.insertBits(SubBits: SubUndef, bitPosition: Idx); |
3333 | KnownZero.insertBits(SubBits: SubZero, bitPosition: Idx); |
3334 | |
3335 | // Attempt to avoid multi-use ops if we don't need anything from them. |
3336 | if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { |
3337 | SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( |
3338 | Op: Src, DemandedElts: DemandedSrcElts, DAG&: TLO.DAG, Depth: Depth + 1); |
3339 | SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( |
3340 | Op: Sub, DemandedElts: DemandedSubElts, DAG&: TLO.DAG, Depth: Depth + 1); |
3341 | if (NewSrc || NewSub) { |
3342 | NewSrc = NewSrc ? NewSrc : Src; |
3343 | NewSub = NewSub ? NewSub : Sub; |
3344 | SDValue NewOp = TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: SDLoc(Op), VT, N1: NewSrc, |
3345 | N2: NewSub, N3: Op.getOperand(i: 2)); |
3346 | return TLO.CombineTo(O: Op, N: NewOp); |
3347 | } |
3348 | } |
3349 | break; |
3350 | } |
3351 | case ISD::EXTRACT_SUBVECTOR: { |
3352 | // Offset the demanded elts by the subvector index. |
3353 | SDValue Src = Op.getOperand(i: 0); |
3354 | if (Src.getValueType().isScalableVector()) |
3355 | break; |
3356 | uint64_t Idx = Op.getConstantOperandVal(i: 1); |
3357 | unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); |
3358 | APInt DemandedSrcElts = DemandedElts.zext(width: NumSrcElts).shl(shiftAmt: Idx); |
3359 | |
3360 | APInt SrcUndef, SrcZero; |
3361 | if (SimplifyDemandedVectorElts(Op: Src, OriginalDemandedElts: DemandedSrcElts, KnownUndef&: SrcUndef, KnownZero&: SrcZero, TLO, |
3362 | Depth: Depth + 1)) |
3363 | return true; |
3364 | KnownUndef = SrcUndef.extractBits(numBits: NumElts, bitPosition: Idx); |
3365 | KnownZero = SrcZero.extractBits(numBits: NumElts, bitPosition: Idx); |
3366 | |
3367 | // Attempt to avoid multi-use ops if we don't need anything from them. |
3368 | if (!DemandedElts.isAllOnes()) { |
3369 | SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( |
3370 | Op: Src, DemandedElts: DemandedSrcElts, DAG&: TLO.DAG, Depth: Depth + 1); |
3371 | if (NewSrc) { |
3372 | SDValue NewOp = TLO.DAG.getNode(Opcode: Op.getOpcode(), DL: SDLoc(Op), VT, N1: NewSrc, |
3373 | N2: Op.getOperand(i: 1)); |
3374 | return TLO.CombineTo(O: Op, N: NewOp); |
3375 | } |
3376 | } |
3377 | break; |
3378 | } |
3379 | case ISD::INSERT_VECTOR_ELT: { |
3380 | SDValue Vec = Op.getOperand(i: 0); |
3381 | SDValue Scl = Op.getOperand(i: 1); |
3382 | auto *CIdx = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 2)); |
3383 | |
3384 | // For a legal, constant insertion index, if we don't need this insertion |
3385 | // then strip it, else remove it from the demanded elts. |
3386 | if (CIdx && CIdx->getAPIntValue().ult(RHS: NumElts)) { |
3387 | unsigned Idx = CIdx->getZExtValue(); |
3388 | if (!DemandedElts[Idx]) |
3389 | return TLO.CombineTo(O: Op, N: Vec); |
3390 | |
3391 | APInt DemandedVecElts(DemandedElts); |
3392 | DemandedVecElts.clearBit(BitPosition: Idx); |
3393 | if (SimplifyDemandedVectorElts(Op: Vec, OriginalDemandedElts: DemandedVecElts, KnownUndef, |
3394 | KnownZero, TLO, Depth: Depth + 1)) |
3395 | return true; |
3396 | |
3397 | KnownUndef.setBitVal(BitPosition: Idx, BitValue: Scl.isUndef()); |
3398 | |
3399 | KnownZero.setBitVal(BitPosition: Idx, BitValue: isNullConstant(V: Scl) || isNullFPConstant(V: Scl)); |
3400 | break; |
3401 | } |
3402 | |
3403 | APInt VecUndef, VecZero; |
3404 | if (SimplifyDemandedVectorElts(Op: Vec, OriginalDemandedElts: DemandedElts, KnownUndef&: VecUndef, KnownZero&: VecZero, TLO, |
3405 | Depth: Depth + 1)) |
3406 | return true; |
3407 | // Without knowing the insertion index we can't set KnownUndef/KnownZero. |
3408 | break; |
3409 | } |
3410 | case ISD::VSELECT: { |
3411 | SDValue Sel = Op.getOperand(i: 0); |
3412 | SDValue LHS = Op.getOperand(i: 1); |
3413 | SDValue RHS = Op.getOperand(i: 2); |
3414 | |
3415 | // Try to transform the select condition based on the current demanded |
3416 | // elements. |
3417 | APInt UndefSel, ZeroSel; |
3418 | if (SimplifyDemandedVectorElts(Op: Sel, OriginalDemandedElts: DemandedElts, KnownUndef&: UndefSel, KnownZero&: ZeroSel, TLO, |
3419 | Depth: Depth + 1)) |
3420 | return true; |
3421 | |
3422 | // See if we can simplify either vselect operand. |
3423 | APInt DemandedLHS(DemandedElts); |
3424 | APInt DemandedRHS(DemandedElts); |
3425 | APInt UndefLHS, ZeroLHS; |
3426 | APInt UndefRHS, ZeroRHS; |
3427 | if (SimplifyDemandedVectorElts(Op: LHS, OriginalDemandedElts: DemandedLHS, KnownUndef&: UndefLHS, KnownZero&: ZeroLHS, TLO, |
3428 | Depth: Depth + 1)) |
3429 | return true; |
3430 | if (SimplifyDemandedVectorElts(Op: RHS, OriginalDemandedElts: DemandedRHS, KnownUndef&: UndefRHS, KnownZero&: ZeroRHS, TLO, |
3431 | Depth: Depth + 1)) |
3432 | return true; |
3433 | |
3434 | KnownUndef = UndefLHS & UndefRHS; |
3435 | KnownZero = ZeroLHS & ZeroRHS; |
3436 | |
3437 | // If we know that the selected element is always zero, we don't need the |
3438 | // select value element. |
3439 | APInt DemandedSel = DemandedElts & ~KnownZero; |
3440 | if (DemandedSel != DemandedElts) |
3441 | if (SimplifyDemandedVectorElts(Op: Sel, OriginalDemandedElts: DemandedSel, KnownUndef&: UndefSel, KnownZero&: ZeroSel, TLO, |
3442 | Depth: Depth + 1)) |
3443 | return true; |
3444 | |
3445 | break; |
3446 | } |
3447 | case ISD::VECTOR_SHUFFLE: { |
3448 | SDValue LHS = Op.getOperand(i: 0); |
3449 | SDValue RHS = Op.getOperand(i: 1); |
3450 | ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Val&: Op)->getMask(); |
3451 | |
3452 | // Collect demanded elements from shuffle operands.. |
3453 | APInt DemandedLHS(NumElts, 0); |
3454 | APInt DemandedRHS(NumElts, 0); |
3455 | for (unsigned i = 0; i != NumElts; ++i) { |
3456 | int M = ShuffleMask[i]; |
3457 | if (M < 0 || !DemandedElts[i]) |
3458 | continue; |
3459 | assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range" ); |
3460 | if (M < (int)NumElts) |
3461 | DemandedLHS.setBit(M); |
3462 | else |
3463 | DemandedRHS.setBit(M - NumElts); |
3464 | } |
3465 | |
3466 | // See if we can simplify either shuffle operand. |
3467 | APInt UndefLHS, ZeroLHS; |
3468 | APInt UndefRHS, ZeroRHS; |
3469 | if (SimplifyDemandedVectorElts(Op: LHS, OriginalDemandedElts: DemandedLHS, KnownUndef&: UndefLHS, KnownZero&: ZeroLHS, TLO, |
3470 | Depth: Depth + 1)) |
3471 | return true; |
3472 | if (SimplifyDemandedVectorElts(Op: RHS, OriginalDemandedElts: DemandedRHS, KnownUndef&: UndefRHS, KnownZero&: ZeroRHS, TLO, |
3473 | Depth: Depth + 1)) |
3474 | return true; |
3475 | |
3476 | // Simplify mask using undef elements from LHS/RHS. |
3477 | bool Updated = false; |
3478 | bool IdentityLHS = true, IdentityRHS = true; |
3479 | SmallVector<int, 32> NewMask(ShuffleMask); |
3480 | for (unsigned i = 0; i != NumElts; ++i) { |
3481 | int &M = NewMask[i]; |
3482 | if (M < 0) |
3483 | continue; |
3484 | if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || |
3485 | (M >= (int)NumElts && UndefRHS[M - NumElts])) { |
3486 | Updated = true; |
3487 | M = -1; |
3488 | } |
3489 | IdentityLHS &= (M < 0) || (M == (int)i); |
3490 | IdentityRHS &= (M < 0) || ((M - NumElts) == i); |
3491 | } |
3492 | |
3493 | // Update legal shuffle masks based on demanded elements if it won't reduce |
3494 | // to Identity which can cause premature removal of the shuffle mask. |
3495 | if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { |
3496 | SDValue LegalShuffle = |
3497 | buildLegalVectorShuffle(VT, DL, N0: LHS, N1: RHS, Mask: NewMask, DAG&: TLO.DAG); |
3498 | if (LegalShuffle) |
3499 | return TLO.CombineTo(O: Op, N: LegalShuffle); |
3500 | } |
3501 | |
3502 | // Propagate undef/zero elements from LHS/RHS. |
3503 | for (unsigned i = 0; i != NumElts; ++i) { |
3504 | int M = ShuffleMask[i]; |
3505 | if (M < 0) { |
3506 | KnownUndef.setBit(i); |
3507 | } else if (M < (int)NumElts) { |
3508 | if (UndefLHS[M]) |
3509 | KnownUndef.setBit(i); |
3510 | if (ZeroLHS[M]) |
3511 | KnownZero.setBit(i); |
3512 | } else { |
3513 | if (UndefRHS[M - NumElts]) |
3514 | KnownUndef.setBit(i); |
3515 | if (ZeroRHS[M - NumElts]) |
3516 | KnownZero.setBit(i); |
3517 | } |
3518 | } |
3519 | break; |
3520 | } |
3521 | case ISD::ANY_EXTEND_VECTOR_INREG: |
3522 | case ISD::SIGN_EXTEND_VECTOR_INREG: |
3523 | case ISD::ZERO_EXTEND_VECTOR_INREG: { |
3524 | APInt SrcUndef, SrcZero; |
3525 | SDValue Src = Op.getOperand(i: 0); |
3526 | unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); |
3527 | APInt DemandedSrcElts = DemandedElts.zext(width: NumSrcElts); |
3528 | if (SimplifyDemandedVectorElts(Op: Src, OriginalDemandedElts: DemandedSrcElts, KnownUndef&: SrcUndef, KnownZero&: SrcZero, TLO, |
3529 | Depth: Depth + 1)) |
3530 | return true; |
3531 | KnownZero = SrcZero.zextOrTrunc(width: NumElts); |
3532 | KnownUndef = SrcUndef.zextOrTrunc(width: NumElts); |
3533 | |
3534 | if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && |
3535 | Op.getValueSizeInBits() == Src.getValueSizeInBits() && |
3536 | DemandedSrcElts == 1) { |
3537 | // aext - if we just need the bottom element then we can bitcast. |
3538 | return TLO.CombineTo(O: Op, N: TLO.DAG.getBitcast(VT, V: Src)); |
3539 | } |
3540 | |
3541 | if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { |
3542 | // zext(undef) upper bits are guaranteed to be zero. |
3543 | if (DemandedElts.isSubsetOf(RHS: KnownUndef)) |
3544 | return TLO.CombineTo(O: Op, N: TLO.DAG.getConstant(Val: 0, DL: SDLoc(Op), VT)); |
3545 | KnownUndef.clearAllBits(); |
3546 | |
3547 | // zext - if we just need the bottom element then we can mask: |
3548 | // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. |
3549 | if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && |
3550 | Op->isOnlyUserOf(N: Src.getNode()) && |
3551 | Op.getValueSizeInBits() == Src.getValueSizeInBits()) { |
3552 | SDLoc DL(Op); |
3553 | EVT SrcVT = Src.getValueType(); |
3554 | EVT SrcSVT = SrcVT.getScalarType(); |
3555 | SmallVector<SDValue> MaskElts; |
3556 | MaskElts.push_back(Elt: TLO.DAG.getAllOnesConstant(DL, VT: SrcSVT)); |
3557 | MaskElts.append(NumInputs: NumSrcElts - 1, Elt: TLO.DAG.getConstant(Val: 0, DL, VT: SrcSVT)); |
3558 | SDValue Mask = TLO.DAG.getBuildVector(VT: SrcVT, DL, Ops: MaskElts); |
3559 | if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( |
3560 | Opcode: ISD::AND, DL, VT: SrcVT, Ops: {Src.getOperand(i: 1), Mask})) { |
3561 | Fold = TLO.DAG.getNode(Opcode: ISD::AND, DL, VT: SrcVT, N1: Src.getOperand(i: 0), N2: Fold); |
3562 | return TLO.CombineTo(O: Op, N: TLO.DAG.getBitcast(VT, V: Fold)); |
3563 | } |
3564 | } |
3565 | } |
3566 | break; |
3567 | } |
3568 | |
3569 | // TODO: There are more binop opcodes that could be handled here - MIN, |
3570 | // MAX, saturated math, etc. |
3571 | case ISD::ADD: { |
3572 | SDValue Op0 = Op.getOperand(i: 0); |
3573 | SDValue Op1 = Op.getOperand(i: 1); |
3574 | if (Op0 == Op1 && Op->isOnlyUserOf(N: Op0.getNode())) { |
3575 | APInt UndefLHS, ZeroLHS; |
3576 | if (SimplifyDemandedVectorElts(Op: Op0, OriginalDemandedElts: DemandedElts, KnownUndef&: UndefLHS, KnownZero&: ZeroLHS, TLO, |
3577 | Depth: Depth + 1, /*AssumeSingleUse*/ true)) |
3578 | return true; |
3579 | } |
3580 | [[fallthrough]]; |
3581 | } |
3582 | case ISD::AVGCEILS: |
3583 | case ISD::AVGCEILU: |
3584 | case ISD::AVGFLOORS: |
3585 | case ISD::AVGFLOORU: |
3586 | case ISD::OR: |
3587 | case ISD::XOR: |
3588 | case ISD::SUB: |
3589 | case ISD::FADD: |
3590 | case ISD::FSUB: |
3591 | case ISD::FMUL: |
3592 | case ISD::FDIV: |
3593 | case ISD::FREM: { |
3594 | SDValue Op0 = Op.getOperand(i: 0); |
3595 | SDValue Op1 = Op.getOperand(i: 1); |
3596 | |
3597 | APInt UndefRHS, ZeroRHS; |
3598 | if (SimplifyDemandedVectorElts(Op: Op1, OriginalDemandedElts: DemandedElts, KnownUndef&: UndefRHS, KnownZero&: ZeroRHS, TLO, |
3599 | Depth: Depth + 1)) |
3600 | return true; |
3601 | APInt UndefLHS, ZeroLHS; |
3602 | if (SimplifyDemandedVectorElts(Op: Op0, OriginalDemandedElts: DemandedElts, KnownUndef&: UndefLHS, KnownZero&: ZeroLHS, TLO, |
3603 | Depth: Depth + 1)) |
3604 | return true; |
3605 | |
3606 | KnownZero = ZeroLHS & ZeroRHS; |
3607 | KnownUndef = getKnownUndefForVectorBinop(BO: Op, DAG&: TLO.DAG, UndefOp0: UndefLHS, UndefOp1: UndefRHS); |
3608 | |
3609 | // Attempt to avoid multi-use ops if we don't need anything from them. |
3610 | // TODO - use KnownUndef to relax the demandedelts? |
3611 | if (!DemandedElts.isAllOnes()) |
3612 | if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) |
3613 | return true; |
3614 | break; |
3615 | } |
3616 | case ISD::SHL: |
3617 | case ISD::SRL: |
3618 | case ISD::SRA: |
3619 | case ISD::ROTL: |
3620 | case ISD::ROTR: { |
3621 | SDValue Op0 = Op.getOperand(i: 0); |
3622 | SDValue Op1 = Op.getOperand(i: 1); |
3623 | |
3624 | APInt UndefRHS, ZeroRHS; |
3625 | if (SimplifyDemandedVectorElts(Op: Op1, OriginalDemandedElts: DemandedElts, KnownUndef&: UndefRHS, KnownZero&: ZeroRHS, TLO, |
3626 | Depth: Depth + 1)) |
3627 | return true; |
3628 | APInt UndefLHS, ZeroLHS; |
3629 | if (SimplifyDemandedVectorElts(Op: Op0, OriginalDemandedElts: DemandedElts, KnownUndef&: UndefLHS, KnownZero&: ZeroLHS, TLO, |
3630 | Depth: Depth + 1)) |
3631 | return true; |
3632 | |
3633 | KnownZero = ZeroLHS; |
3634 | KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? |
3635 | |
3636 | // Attempt to avoid multi-use ops if we don't need anything from them. |
3637 | // TODO - use KnownUndef to relax the demandedelts? |
3638 | if (!DemandedElts.isAllOnes()) |
3639 | if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) |
3640 | return true; |
3641 | break; |
3642 | } |
3643 | case ISD::MUL: |
3644 | case ISD::MULHU: |
3645 | case ISD::MULHS: |
3646 | case ISD::AND: { |
3647 | SDValue Op0 = Op.getOperand(i: 0); |
3648 | SDValue Op1 = Op.getOperand(i: 1); |
3649 | |
3650 | APInt SrcUndef, SrcZero; |
3651 | if (SimplifyDemandedVectorElts(Op: Op1, OriginalDemandedElts: DemandedElts, KnownUndef&: SrcUndef, KnownZero&: SrcZero, TLO, |
3652 | Depth: Depth + 1)) |
3653 | return true; |
3654 | // If we know that a demanded element was zero in Op1 we don't need to |
3655 | // demand it in Op0 - its guaranteed to be zero. |
3656 | APInt DemandedElts0 = DemandedElts & ~SrcZero; |
3657 | if (SimplifyDemandedVectorElts(Op: Op0, OriginalDemandedElts: DemandedElts0, KnownUndef, KnownZero, |
3658 | TLO, Depth: Depth + 1)) |
3659 | return true; |
3660 | |
3661 | KnownUndef &= DemandedElts0; |
3662 | KnownZero &= DemandedElts0; |
3663 | |
3664 | // If every element pair has a zero/undef then just fold to zero. |
3665 | // fold (and x, undef) -> 0 / (and x, 0) -> 0 |
3666 | // fold (mul x, undef) -> 0 / (mul x, 0) -> 0 |
3667 | if (DemandedElts.isSubsetOf(RHS: SrcZero | KnownZero | SrcUndef | KnownUndef)) |
3668 | return TLO.CombineTo(O: Op, N: TLO.DAG.getConstant(Val: 0, DL: SDLoc(Op), VT)); |
3669 | |
3670 | // If either side has a zero element, then the result element is zero, even |
3671 | // if the other is an UNDEF. |
3672 | // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros |
3673 | // and then handle 'and' nodes with the rest of the binop opcodes. |
3674 | KnownZero |= SrcZero; |
3675 | KnownUndef &= SrcUndef; |
3676 | KnownUndef &= ~KnownZero; |
3677 | |
3678 | // Attempt to avoid multi-use ops if we don't need anything from them. |
3679 | if (!DemandedElts.isAllOnes()) |
3680 | if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) |
3681 | return true; |
3682 | break; |
3683 | } |
3684 | case ISD::TRUNCATE: |
3685 | case ISD::SIGN_EXTEND: |
3686 | case ISD::ZERO_EXTEND: |
3687 | if (SimplifyDemandedVectorElts(Op: Op.getOperand(i: 0), OriginalDemandedElts: DemandedElts, KnownUndef, |
3688 | KnownZero, TLO, Depth: Depth + 1)) |
3689 | return true; |
3690 | |
3691 | if (Op.getOpcode() == ISD::ZERO_EXTEND) { |
3692 | // zext(undef) upper bits are guaranteed to be zero. |
3693 | if (DemandedElts.isSubsetOf(RHS: KnownUndef)) |
3694 | return TLO.CombineTo(O: Op, N: TLO.DAG.getConstant(Val: 0, DL: SDLoc(Op), VT)); |
3695 | KnownUndef.clearAllBits(); |
3696 | } |
3697 | break; |
3698 | default: { |
3699 | if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { |
3700 | if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, |
3701 | KnownZero, TLO, Depth)) |
3702 | return true; |
3703 | } else { |
3704 | KnownBits Known; |
3705 | APInt DemandedBits = APInt::getAllOnes(numBits: EltSizeInBits); |
3706 | if (SimplifyDemandedBits(Op, OriginalDemandedBits: DemandedBits, OriginalDemandedElts, Known, |
3707 | TLO, Depth, AssumeSingleUse)) |
3708 | return true; |
3709 | } |
3710 | break; |
3711 | } |
3712 | } |
3713 | assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero" ); |
3714 | |
3715 | // Constant fold all undef cases. |
3716 | // TODO: Handle zero cases as well. |
3717 | if (DemandedElts.isSubsetOf(RHS: KnownUndef)) |
3718 | return TLO.CombineTo(O: Op, N: TLO.DAG.getUNDEF(VT)); |
3719 | |
3720 | return false; |
3721 | } |
3722 | |
3723 | /// Determine which of the bits specified in Mask are known to be either zero or |
3724 | /// one and return them in the Known. |
3725 | void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, |
3726 | KnownBits &Known, |
3727 | const APInt &DemandedElts, |
3728 | const SelectionDAG &DAG, |
3729 | unsigned Depth) const { |
3730 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
3731 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
3732 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
3733 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
3734 | "Should use MaskedValueIsZero if you don't know whether Op" |
3735 | " is a target node!" ); |
3736 | Known.resetAll(); |
3737 | } |
3738 | |
3739 | void TargetLowering::computeKnownBitsForTargetInstr( |
3740 | GISelKnownBits &Analysis, Register R, KnownBits &Known, |
3741 | const APInt &DemandedElts, const MachineRegisterInfo &MRI, |
3742 | unsigned Depth) const { |
3743 | Known.resetAll(); |
3744 | } |
3745 | |
3746 | void TargetLowering::computeKnownBitsForFrameIndex( |
3747 | const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { |
3748 | // The low bits are known zero if the pointer is aligned. |
3749 | Known.Zero.setLowBits(Log2(A: MF.getFrameInfo().getObjectAlign(ObjectIdx: FrameIdx))); |
3750 | } |
3751 | |
3752 | Align TargetLowering::computeKnownAlignForTargetInstr( |
3753 | GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, |
3754 | unsigned Depth) const { |
3755 | return Align(1); |
3756 | } |
3757 | |
3758 | /// This method can be implemented by targets that want to expose additional |
3759 | /// information about sign bits to the DAG Combiner. |
3760 | unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, |
3761 | const APInt &, |
3762 | const SelectionDAG &, |
3763 | unsigned Depth) const { |
3764 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
3765 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
3766 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
3767 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
3768 | "Should use ComputeNumSignBits if you don't know whether Op" |
3769 | " is a target node!" ); |
3770 | return 1; |
3771 | } |
3772 | |
3773 | unsigned TargetLowering::computeNumSignBitsForTargetInstr( |
3774 | GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, |
3775 | const MachineRegisterInfo &MRI, unsigned Depth) const { |
3776 | return 1; |
3777 | } |
3778 | |
3779 | bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( |
3780 | SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, |
3781 | TargetLoweringOpt &TLO, unsigned Depth) const { |
3782 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
3783 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
3784 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
3785 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
3786 | "Should use SimplifyDemandedVectorElts if you don't know whether Op" |
3787 | " is a target node!" ); |
3788 | return false; |
3789 | } |
3790 | |
3791 | bool TargetLowering::SimplifyDemandedBitsForTargetNode( |
3792 | SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, |
3793 | KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { |
3794 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
3795 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
3796 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
3797 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
3798 | "Should use SimplifyDemandedBits if you don't know whether Op" |
3799 | " is a target node!" ); |
3800 | computeKnownBitsForTargetNode(Op, Known, DemandedElts, DAG: TLO.DAG, Depth); |
3801 | return false; |
3802 | } |
3803 | |
3804 | SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( |
3805 | SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, |
3806 | SelectionDAG &DAG, unsigned Depth) const { |
3807 | assert( |
3808 | (Op.getOpcode() >= ISD::BUILTIN_OP_END || |
3809 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
3810 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
3811 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
3812 | "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" |
3813 | " is a target node!" ); |
3814 | return SDValue(); |
3815 | } |
3816 | |
3817 | SDValue |
3818 | TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, |
3819 | SDValue N1, MutableArrayRef<int> Mask, |
3820 | SelectionDAG &DAG) const { |
3821 | bool LegalMask = isShuffleMaskLegal(Mask, VT); |
3822 | if (!LegalMask) { |
3823 | std::swap(a&: N0, b&: N1); |
3824 | ShuffleVectorSDNode::commuteMask(Mask); |
3825 | LegalMask = isShuffleMaskLegal(Mask, VT); |
3826 | } |
3827 | |
3828 | if (!LegalMask) |
3829 | return SDValue(); |
3830 | |
3831 | return DAG.getVectorShuffle(VT, dl: DL, N1: N0, N2: N1, Mask); |
3832 | } |
3833 | |
3834 | const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { |
3835 | return nullptr; |
3836 | } |
3837 | |
3838 | bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( |
3839 | SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, |
3840 | bool PoisonOnly, unsigned Depth) const { |
3841 | assert( |
3842 | (Op.getOpcode() >= ISD::BUILTIN_OP_END || |
3843 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
3844 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
3845 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
3846 | "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" |
3847 | " is a target node!" ); |
3848 | |
3849 | // If Op can't create undef/poison and none of its operands are undef/poison |
3850 | // then Op is never undef/poison. |
3851 | return !canCreateUndefOrPoisonForTargetNode(Op, DemandedElts, DAG, PoisonOnly, |
3852 | /*ConsiderFlags*/ true, Depth) && |
3853 | all_of(Range: Op->ops(), P: [&](SDValue V) { |
3854 | return DAG.isGuaranteedNotToBeUndefOrPoison(Op: V, PoisonOnly, |
3855 | Depth: Depth + 1); |
3856 | }); |
3857 | } |
3858 | |
3859 | bool TargetLowering::canCreateUndefOrPoisonForTargetNode( |
3860 | SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, |
3861 | bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const { |
3862 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
3863 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
3864 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
3865 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
3866 | "Should use canCreateUndefOrPoison if you don't know whether Op" |
3867 | " is a target node!" ); |
3868 | // Be conservative and return true. |
3869 | return true; |
3870 | } |
3871 | |
3872 | bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, |
3873 | const SelectionDAG &DAG, |
3874 | bool SNaN, |
3875 | unsigned Depth) const { |
3876 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
3877 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
3878 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
3879 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
3880 | "Should use isKnownNeverNaN if you don't know whether Op" |
3881 | " is a target node!" ); |
3882 | return false; |
3883 | } |
3884 | |
3885 | bool TargetLowering::isSplatValueForTargetNode(SDValue Op, |
3886 | const APInt &DemandedElts, |
3887 | APInt &UndefElts, |
3888 | const SelectionDAG &DAG, |
3889 | unsigned Depth) const { |
3890 | assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || |
3891 | Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || |
3892 | Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || |
3893 | Op.getOpcode() == ISD::INTRINSIC_VOID) && |
3894 | "Should use isSplatValue if you don't know whether Op" |
3895 | " is a target node!" ); |
3896 | return false; |
3897 | } |
3898 | |
3899 | // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must |
3900 | // work with truncating build vectors and vectors with elements of less than |
3901 | // 8 bits. |
3902 | bool TargetLowering::isConstTrueVal(SDValue N) const { |
3903 | if (!N) |
3904 | return false; |
3905 | |
3906 | unsigned EltWidth; |
3907 | APInt CVal; |
3908 | if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, |
3909 | /*AllowTruncation=*/true)) { |
3910 | CVal = CN->getAPIntValue(); |
3911 | EltWidth = N.getValueType().getScalarSizeInBits(); |
3912 | } else |
3913 | return false; |
3914 | |
3915 | // If this is a truncating splat, truncate the splat value. |
3916 | // Otherwise, we may fail to match the expected values below. |
3917 | if (EltWidth < CVal.getBitWidth()) |
3918 | CVal = CVal.trunc(width: EltWidth); |
3919 | |
3920 | switch (getBooleanContents(Type: N.getValueType())) { |
3921 | case UndefinedBooleanContent: |
3922 | return CVal[0]; |
3923 | case ZeroOrOneBooleanContent: |
3924 | return CVal.isOne(); |
3925 | case ZeroOrNegativeOneBooleanContent: |
3926 | return CVal.isAllOnes(); |
3927 | } |
3928 | |
3929 | llvm_unreachable("Invalid boolean contents" ); |
3930 | } |
3931 | |
3932 | bool TargetLowering::isConstFalseVal(SDValue N) const { |
3933 | if (!N) |
3934 | return false; |
3935 | |
3936 | const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val&: N); |
3937 | if (!CN) { |
3938 | const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Val&: N); |
3939 | if (!BV) |
3940 | return false; |
3941 | |
3942 | // Only interested in constant splats, we don't care about undef |
3943 | // elements in identifying boolean constants and getConstantSplatNode |
3944 | // returns NULL if all ops are undef; |
3945 | CN = BV->getConstantSplatNode(); |
3946 | if (!CN) |
3947 | return false; |
3948 | } |
3949 | |
3950 | if (getBooleanContents(Type: N->getValueType(ResNo: 0)) == UndefinedBooleanContent) |
3951 | return !CN->getAPIntValue()[0]; |
3952 | |
3953 | return CN->isZero(); |
3954 | } |
3955 | |
3956 | bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, |
3957 | bool SExt) const { |
3958 | if (VT == MVT::i1) |
3959 | return N->isOne(); |
3960 | |
3961 | TargetLowering::BooleanContent Cnt = getBooleanContents(Type: VT); |
3962 | switch (Cnt) { |
3963 | case TargetLowering::ZeroOrOneBooleanContent: |
3964 | // An extended value of 1 is always true, unless its original type is i1, |
3965 | // in which case it will be sign extended to -1. |
3966 | return (N->isOne() && !SExt) || (SExt && (N->getValueType(ResNo: 0) != MVT::i1)); |
3967 | case TargetLowering::UndefinedBooleanContent: |
3968 | case TargetLowering::ZeroOrNegativeOneBooleanContent: |
3969 | return N->isAllOnes() && SExt; |
3970 | } |
3971 | llvm_unreachable("Unexpected enumeration." ); |
3972 | } |
3973 | |
3974 | /// This helper function of SimplifySetCC tries to optimize the comparison when |
3975 | /// either operand of the SetCC node is a bitwise-and instruction. |
3976 | SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, |
3977 | ISD::CondCode Cond, const SDLoc &DL, |
3978 | DAGCombinerInfo &DCI) const { |
3979 | if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) |
3980 | std::swap(a&: N0, b&: N1); |
3981 | |
3982 | SelectionDAG &DAG = DCI.DAG; |
3983 | EVT OpVT = N0.getValueType(); |
3984 | if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || |
3985 | (Cond != ISD::SETEQ && Cond != ISD::SETNE)) |
3986 | return SDValue(); |
3987 | |
3988 | // (X & Y) != 0 --> zextOrTrunc(X & Y) |
3989 | // iff everything but LSB is known zero: |
3990 | if (Cond == ISD::SETNE && isNullConstant(V: N1) && |
3991 | (getBooleanContents(Type: OpVT) == TargetLowering::UndefinedBooleanContent || |
3992 | getBooleanContents(Type: OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { |
3993 | unsigned NumEltBits = OpVT.getScalarSizeInBits(); |
3994 | APInt UpperBits = APInt::getHighBitsSet(numBits: NumEltBits, hiBitsSet: NumEltBits - 1); |
3995 | if (DAG.MaskedValueIsZero(Op: N0, Mask: UpperBits)) |
3996 | return DAG.getBoolExtOrTrunc(Op: N0, SL: DL, VT, OpVT); |
3997 | } |
3998 | |
3999 | // Try to eliminate a power-of-2 mask constant by converting to a signbit |
4000 | // test in a narrow type that we can truncate to with no cost. Examples: |
4001 | // (i32 X & 32768) == 0 --> (trunc X to i16) >= 0 |
4002 | // (i32 X & 32768) != 0 --> (trunc X to i16) < 0 |
4003 | // TODO: This conservatively checks for type legality on the source and |
4004 | // destination types. That may inhibit optimizations, but it also |
4005 | // allows setcc->shift transforms that may be more beneficial. |
4006 | auto *AndC = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 1)); |
4007 | if (AndC && isNullConstant(V: N1) && AndC->getAPIntValue().isPowerOf2() && |
4008 | isTypeLegal(VT: OpVT) && N0.hasOneUse()) { |
4009 | EVT NarrowVT = EVT::getIntegerVT(Context&: *DAG.getContext(), |
4010 | BitWidth: AndC->getAPIntValue().getActiveBits()); |
4011 | if (isTruncateFree(FromVT: OpVT, ToVT: NarrowVT) && isTypeLegal(VT: NarrowVT)) { |
4012 | SDValue Trunc = DAG.getZExtOrTrunc(Op: N0.getOperand(i: 0), DL, VT: NarrowVT); |
4013 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT: NarrowVT); |
4014 | return DAG.getSetCC(DL, VT, LHS: Trunc, RHS: Zero, |
4015 | Cond: Cond == ISD::SETEQ ? ISD::SETGE : ISD::SETLT); |
4016 | } |
4017 | } |
4018 | |
4019 | // Match these patterns in any of their permutations: |
4020 | // (X & Y) == Y |
4021 | // (X & Y) != Y |
4022 | SDValue X, Y; |
4023 | if (N0.getOperand(i: 0) == N1) { |
4024 | X = N0.getOperand(i: 1); |
4025 | Y = N0.getOperand(i: 0); |
4026 | } else if (N0.getOperand(i: 1) == N1) { |
4027 | X = N0.getOperand(i: 0); |
4028 | Y = N0.getOperand(i: 1); |
4029 | } else { |
4030 | return SDValue(); |
4031 | } |
4032 | |
4033 | // TODO: We should invert (X & Y) eq/ne 0 -> (X & Y) ne/eq Y if |
4034 | // `isXAndYEqZeroPreferableToXAndYEqY` is false. This is a bit difficult as |
4035 | // its liable to create and infinite loop. |
4036 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT: OpVT); |
4037 | if (isXAndYEqZeroPreferableToXAndYEqY(Cond, OpVT) && |
4038 | DAG.isKnownToBeAPowerOfTwo(Val: Y)) { |
4039 | // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. |
4040 | // Note that where Y is variable and is known to have at most one bit set |
4041 | // (for example, if it is Z & 1) we cannot do this; the expressions are not |
4042 | // equivalent when Y == 0. |
4043 | assert(OpVT.isInteger()); |
4044 | Cond = ISD::getSetCCInverse(Operation: Cond, Type: OpVT); |
4045 | if (DCI.isBeforeLegalizeOps() || |
4046 | isCondCodeLegal(CC: Cond, VT: N0.getSimpleValueType())) |
4047 | return DAG.getSetCC(DL, VT, LHS: N0, RHS: Zero, Cond); |
4048 | } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { |
4049 | // If the target supports an 'and-not' or 'and-complement' logic operation, |
4050 | // try to use that to make a comparison operation more efficient. |
4051 | // But don't do this transform if the mask is a single bit because there are |
4052 | // more efficient ways to deal with that case (for example, 'bt' on x86 or |
4053 | // 'rlwinm' on PPC). |
4054 | |
4055 | // Bail out if the compare operand that we want to turn into a zero is |
4056 | // already a zero (otherwise, infinite loop). |
4057 | if (isNullConstant(V: Y)) |
4058 | return SDValue(); |
4059 | |
4060 | // Transform this into: ~X & Y == 0. |
4061 | SDValue NotX = DAG.getNOT(DL: SDLoc(X), Val: X, VT: OpVT); |
4062 | SDValue NewAnd = DAG.getNode(Opcode: ISD::AND, DL: SDLoc(N0), VT: OpVT, N1: NotX, N2: Y); |
4063 | return DAG.getSetCC(DL, VT, LHS: NewAnd, RHS: Zero, Cond); |
4064 | } |
4065 | |
4066 | return SDValue(); |
4067 | } |
4068 | |
4069 | /// There are multiple IR patterns that could be checking whether certain |
4070 | /// truncation of a signed number would be lossy or not. The pattern which is |
4071 | /// best at IR level, may not lower optimally. Thus, we want to unfold it. |
4072 | /// We are looking for the following pattern: (KeptBits is a constant) |
4073 | /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) |
4074 | /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. |
4075 | /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 |
4076 | /// We will unfold it into the natural trunc+sext pattern: |
4077 | /// ((%x << C) a>> C) dstcond %x |
4078 | /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) |
4079 | SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( |
4080 | EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, |
4081 | const SDLoc &DL) const { |
4082 | // We must be comparing with a constant. |
4083 | ConstantSDNode *C1; |
4084 | if (!(C1 = dyn_cast<ConstantSDNode>(Val&: N1))) |
4085 | return SDValue(); |
4086 | |
4087 | // N0 should be: add %x, (1 << (KeptBits-1)) |
4088 | if (N0->getOpcode() != ISD::ADD) |
4089 | return SDValue(); |
4090 | |
4091 | // And we must be 'add'ing a constant. |
4092 | ConstantSDNode *C01; |
4093 | if (!(C01 = dyn_cast<ConstantSDNode>(Val: N0->getOperand(Num: 1)))) |
4094 | return SDValue(); |
4095 | |
4096 | SDValue X = N0->getOperand(Num: 0); |
4097 | EVT XVT = X.getValueType(); |
4098 | |
4099 | // Validate constants ... |
4100 | |
4101 | APInt I1 = C1->getAPIntValue(); |
4102 | |
4103 | ISD::CondCode NewCond; |
4104 | if (Cond == ISD::CondCode::SETULT) { |
4105 | NewCond = ISD::CondCode::SETEQ; |
4106 | } else if (Cond == ISD::CondCode::SETULE) { |
4107 | NewCond = ISD::CondCode::SETEQ; |
4108 | // But need to 'canonicalize' the constant. |
4109 | I1 += 1; |
4110 | } else if (Cond == ISD::CondCode::SETUGT) { |
4111 | NewCond = ISD::CondCode::SETNE; |
4112 | // But need to 'canonicalize' the constant. |
4113 | I1 += 1; |
4114 | } else if (Cond == ISD::CondCode::SETUGE) { |
4115 | NewCond = ISD::CondCode::SETNE; |
4116 | } else |
4117 | return SDValue(); |
4118 | |
4119 | APInt I01 = C01->getAPIntValue(); |
4120 | |
4121 | auto checkConstants = [&I1, &I01]() -> bool { |
4122 | // Both of them must be power-of-two, and the constant from setcc is bigger. |
4123 | return I1.ugt(RHS: I01) && I1.isPowerOf2() && I01.isPowerOf2(); |
4124 | }; |
4125 | |
4126 | if (checkConstants()) { |
4127 | // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 |
4128 | } else { |
4129 | // What if we invert constants? (and the target predicate) |
4130 | I1.negate(); |
4131 | I01.negate(); |
4132 | assert(XVT.isInteger()); |
4133 | NewCond = getSetCCInverse(Operation: NewCond, Type: XVT); |
4134 | if (!checkConstants()) |
4135 | return SDValue(); |
4136 | // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 |
4137 | } |
4138 | |
4139 | // They are power-of-two, so which bit is set? |
4140 | const unsigned KeptBits = I1.logBase2(); |
4141 | const unsigned KeptBitsMinusOne = I01.logBase2(); |
4142 | |
4143 | // Magic! |
4144 | if (KeptBits != (KeptBitsMinusOne + 1)) |
4145 | return SDValue(); |
4146 | assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable" ); |
4147 | |
4148 | // We don't want to do this in every single case. |
4149 | SelectionDAG &DAG = DCI.DAG; |
4150 | if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( |
4151 | XVT, KeptBits)) |
4152 | return SDValue(); |
4153 | |
4154 | // Unfold into: sext_inreg(%x) cond %x |
4155 | // Where 'cond' will be either 'eq' or 'ne'. |
4156 | SDValue SExtInReg = DAG.getNode( |
4157 | Opcode: ISD::SIGN_EXTEND_INREG, DL, VT: XVT, N1: X, |
4158 | N2: DAG.getValueType(EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: KeptBits))); |
4159 | return DAG.getSetCC(DL, VT: SCCVT, LHS: SExtInReg, RHS: X, Cond: NewCond); |
4160 | } |
4161 | |
4162 | // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 |
4163 | SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( |
4164 | EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, |
4165 | DAGCombinerInfo &DCI, const SDLoc &DL) const { |
4166 | assert(isConstOrConstSplat(N1C) && isConstOrConstSplat(N1C)->isZero() && |
4167 | "Should be a comparison with 0." ); |
4168 | assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
4169 | "Valid only for [in]equality comparisons." ); |
4170 | |
4171 | unsigned NewShiftOpcode; |
4172 | SDValue X, C, Y; |
4173 | |
4174 | SelectionDAG &DAG = DCI.DAG; |
4175 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
4176 | |
4177 | // Look for '(C l>>/<< Y)'. |
4178 | auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { |
4179 | // The shift should be one-use. |
4180 | if (!V.hasOneUse()) |
4181 | return false; |
4182 | unsigned OldShiftOpcode = V.getOpcode(); |
4183 | switch (OldShiftOpcode) { |
4184 | case ISD::SHL: |
4185 | NewShiftOpcode = ISD::SRL; |
4186 | break; |
4187 | case ISD::SRL: |
4188 | NewShiftOpcode = ISD::SHL; |
4189 | break; |
4190 | default: |
4191 | return false; // must be a logical shift. |
4192 | } |
4193 | // We should be shifting a constant. |
4194 | // FIXME: best to use isConstantOrConstantVector(). |
4195 | C = V.getOperand(i: 0); |
4196 | ConstantSDNode *CC = |
4197 | isConstOrConstSplat(N: C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); |
4198 | if (!CC) |
4199 | return false; |
4200 | Y = V.getOperand(i: 1); |
4201 | |
4202 | ConstantSDNode *XC = |
4203 | isConstOrConstSplat(N: X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); |
4204 | return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( |
4205 | X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); |
4206 | }; |
4207 | |
4208 | // LHS of comparison should be an one-use 'and'. |
4209 | if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) |
4210 | return SDValue(); |
4211 | |
4212 | X = N0.getOperand(i: 0); |
4213 | SDValue Mask = N0.getOperand(i: 1); |
4214 | |
4215 | // 'and' is commutative! |
4216 | if (!Match(Mask)) { |
4217 | std::swap(a&: X, b&: Mask); |
4218 | if (!Match(Mask)) |
4219 | return SDValue(); |
4220 | } |
4221 | |
4222 | EVT VT = X.getValueType(); |
4223 | |
4224 | // Produce: |
4225 | // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 |
4226 | SDValue T0 = DAG.getNode(Opcode: NewShiftOpcode, DL, VT, N1: X, N2: Y); |
4227 | SDValue T1 = DAG.getNode(Opcode: ISD::AND, DL, VT, N1: T0, N2: C); |
4228 | SDValue T2 = DAG.getSetCC(DL, VT: SCCVT, LHS: T1, RHS: N1C, Cond); |
4229 | return T2; |
4230 | } |
4231 | |
4232 | /// Try to fold an equality comparison with a {add/sub/xor} binary operation as |
4233 | /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to |
4234 | /// handle the commuted versions of these patterns. |
4235 | SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, |
4236 | ISD::CondCode Cond, const SDLoc &DL, |
4237 | DAGCombinerInfo &DCI) const { |
4238 | unsigned BOpcode = N0.getOpcode(); |
4239 | assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && |
4240 | "Unexpected binop" ); |
4241 | assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode" ); |
4242 | |
4243 | // (X + Y) == X --> Y == 0 |
4244 | // (X - Y) == X --> Y == 0 |
4245 | // (X ^ Y) == X --> Y == 0 |
4246 | SelectionDAG &DAG = DCI.DAG; |
4247 | EVT OpVT = N0.getValueType(); |
4248 | SDValue X = N0.getOperand(i: 0); |
4249 | SDValue Y = N0.getOperand(i: 1); |
4250 | if (X == N1) |
4251 | return DAG.getSetCC(DL, VT, LHS: Y, RHS: DAG.getConstant(Val: 0, DL, VT: OpVT), Cond); |
4252 | |
4253 | if (Y != N1) |
4254 | return SDValue(); |
4255 | |
4256 | // (X + Y) == Y --> X == 0 |
4257 | // (X ^ Y) == Y --> X == 0 |
4258 | if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) |
4259 | return DAG.getSetCC(DL, VT, LHS: X, RHS: DAG.getConstant(Val: 0, DL, VT: OpVT), Cond); |
4260 | |
4261 | // The shift would not be valid if the operands are boolean (i1). |
4262 | if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) |
4263 | return SDValue(); |
4264 | |
4265 | // (X - Y) == Y --> X == Y << 1 |
4266 | SDValue One = DAG.getShiftAmountConstant(Val: 1, VT: OpVT, DL); |
4267 | SDValue YShl1 = DAG.getNode(Opcode: ISD::SHL, DL, VT: N1.getValueType(), N1: Y, N2: One); |
4268 | if (!DCI.isCalledByLegalizer()) |
4269 | DCI.AddToWorklist(N: YShl1.getNode()); |
4270 | return DAG.getSetCC(DL, VT, LHS: X, RHS: YShl1, Cond); |
4271 | } |
4272 | |
4273 | static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, |
4274 | SDValue N0, const APInt &C1, |
4275 | ISD::CondCode Cond, const SDLoc &dl, |
4276 | SelectionDAG &DAG) { |
4277 | // Look through truncs that don't change the value of a ctpop. |
4278 | // FIXME: Add vector support? Need to be careful with setcc result type below. |
4279 | SDValue CTPOP = N0; |
4280 | if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && |
4281 | N0.getScalarValueSizeInBits() > Log2_32(Value: N0.getOperand(i: 0).getScalarValueSizeInBits())) |
4282 | CTPOP = N0.getOperand(i: 0); |
4283 | |
4284 | if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) |
4285 | return SDValue(); |
4286 | |
4287 | EVT CTVT = CTPOP.getValueType(); |
4288 | SDValue CTOp = CTPOP.getOperand(i: 0); |
4289 | |
4290 | // Expand a power-of-2-or-zero comparison based on ctpop: |
4291 | // (ctpop x) u< 2 -> (x & x-1) == 0 |
4292 | // (ctpop x) u> 1 -> (x & x-1) != 0 |
4293 | if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { |
4294 | // Keep the CTPOP if it is a cheap vector op. |
4295 | if (CTVT.isVector() && TLI.isCtpopFast(VT: CTVT)) |
4296 | return SDValue(); |
4297 | |
4298 | unsigned CostLimit = TLI.getCustomCtpopCost(VT: CTVT, Cond); |
4299 | if (C1.ugt(RHS: CostLimit + (Cond == ISD::SETULT))) |
4300 | return SDValue(); |
4301 | if (C1 == 0 && (Cond == ISD::SETULT)) |
4302 | return SDValue(); // This is handled elsewhere. |
4303 | |
4304 | unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); |
4305 | |
4306 | SDValue NegOne = DAG.getAllOnesConstant(DL: dl, VT: CTVT); |
4307 | SDValue Result = CTOp; |
4308 | for (unsigned i = 0; i < Passes; i++) { |
4309 | SDValue Add = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: CTVT, N1: Result, N2: NegOne); |
4310 | Result = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: CTVT, N1: Result, N2: Add); |
4311 | } |
4312 | ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; |
4313 | return DAG.getSetCC(DL: dl, VT, LHS: Result, RHS: DAG.getConstant(Val: 0, DL: dl, VT: CTVT), Cond: CC); |
4314 | } |
4315 | |
4316 | // Expand a power-of-2 comparison based on ctpop |
4317 | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { |
4318 | // Keep the CTPOP if it is cheap. |
4319 | if (TLI.isCtpopFast(VT: CTVT)) |
4320 | return SDValue(); |
4321 | |
4322 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT: CTVT); |
4323 | SDValue NegOne = DAG.getAllOnesConstant(DL: dl, VT: CTVT); |
4324 | assert(CTVT.isInteger()); |
4325 | SDValue Add = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: CTVT, N1: CTOp, N2: NegOne); |
4326 | |
4327 | // Its not uncommon for known-never-zero X to exist in (ctpop X) eq/ne 1, so |
4328 | // check before emitting a potentially unnecessary op. |
4329 | if (DAG.isKnownNeverZero(Op: CTOp)) { |
4330 | // (ctpop x) == 1 --> (x & x-1) == 0 |
4331 | // (ctpop x) != 1 --> (x & x-1) != 0 |
4332 | SDValue And = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: CTVT, N1: CTOp, N2: Add); |
4333 | SDValue RHS = DAG.getSetCC(DL: dl, VT, LHS: And, RHS: Zero, Cond); |
4334 | return RHS; |
4335 | } |
4336 | |
4337 | // (ctpop x) == 1 --> (x ^ x-1) > x-1 |
4338 | // (ctpop x) != 1 --> (x ^ x-1) <= x-1 |
4339 | SDValue Xor = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: CTVT, N1: CTOp, N2: Add); |
4340 | ISD::CondCode CmpCond = Cond == ISD::SETEQ ? ISD::SETUGT : ISD::SETULE; |
4341 | return DAG.getSetCC(DL: dl, VT, LHS: Xor, RHS: Add, Cond: CmpCond); |
4342 | } |
4343 | |
4344 | return SDValue(); |
4345 | } |
4346 | |
4347 | static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, |
4348 | ISD::CondCode Cond, const SDLoc &dl, |
4349 | SelectionDAG &DAG) { |
4350 | if (Cond != ISD::SETEQ && Cond != ISD::SETNE) |
4351 | return SDValue(); |
4352 | |
4353 | auto *C1 = isConstOrConstSplat(N: N1, /* AllowUndefs */ true); |
4354 | if (!C1 || !(C1->isZero() || C1->isAllOnes())) |
4355 | return SDValue(); |
4356 | |
4357 | auto getRotateSource = [](SDValue X) { |
4358 | if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) |
4359 | return X.getOperand(i: 0); |
4360 | return SDValue(); |
4361 | }; |
4362 | |
4363 | // Peek through a rotated value compared against 0 or -1: |
4364 | // (rot X, Y) == 0/-1 --> X == 0/-1 |
4365 | // (rot X, Y) != 0/-1 --> X != 0/-1 |
4366 | if (SDValue R = getRotateSource(N0)) |
4367 | return DAG.getSetCC(DL: dl, VT, LHS: R, RHS: N1, Cond); |
4368 | |
4369 | // Peek through an 'or' of a rotated value compared against 0: |
4370 | // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 |
4371 | // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 |
4372 | // |
4373 | // TODO: Add the 'and' with -1 sibling. |
4374 | // TODO: Recurse through a series of 'or' ops to find the rotate. |
4375 | EVT OpVT = N0.getValueType(); |
4376 | if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { |
4377 | if (SDValue R = getRotateSource(N0.getOperand(i: 0))) { |
4378 | SDValue NewOr = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: OpVT, N1: R, N2: N0.getOperand(i: 1)); |
4379 | return DAG.getSetCC(DL: dl, VT, LHS: NewOr, RHS: N1, Cond); |
4380 | } |
4381 | if (SDValue R = getRotateSource(N0.getOperand(i: 1))) { |
4382 | SDValue NewOr = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: OpVT, N1: R, N2: N0.getOperand(i: 0)); |
4383 | return DAG.getSetCC(DL: dl, VT, LHS: NewOr, RHS: N1, Cond); |
4384 | } |
4385 | } |
4386 | |
4387 | return SDValue(); |
4388 | } |
4389 | |
4390 | static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, |
4391 | ISD::CondCode Cond, const SDLoc &dl, |
4392 | SelectionDAG &DAG) { |
4393 | // If we are testing for all-bits-clear, we might be able to do that with |
4394 | // less shifting since bit-order does not matter. |
4395 | if (Cond != ISD::SETEQ && Cond != ISD::SETNE) |
4396 | return SDValue(); |
4397 | |
4398 | auto *C1 = isConstOrConstSplat(N: N1, /* AllowUndefs */ true); |
4399 | if (!C1 || !C1->isZero()) |
4400 | return SDValue(); |
4401 | |
4402 | if (!N0.hasOneUse() || |
4403 | (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) |
4404 | return SDValue(); |
4405 | |
4406 | unsigned BitWidth = N0.getScalarValueSizeInBits(); |
4407 | auto *ShAmtC = isConstOrConstSplat(N: N0.getOperand(i: 2)); |
4408 | if (!ShAmtC || ShAmtC->getAPIntValue().uge(RHS: BitWidth)) |
4409 | return SDValue(); |
4410 | |
4411 | // Canonicalize fshr as fshl to reduce pattern-matching. |
4412 | unsigned ShAmt = ShAmtC->getZExtValue(); |
4413 | if (N0.getOpcode() == ISD::FSHR) |
4414 | ShAmt = BitWidth - ShAmt; |
4415 | |
4416 | // Match an 'or' with a specific operand 'Other' in either commuted variant. |
4417 | SDValue X, Y; |
4418 | auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { |
4419 | if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) |
4420 | return false; |
4421 | if (Or.getOperand(i: 0) == Other) { |
4422 | X = Or.getOperand(i: 0); |
4423 | Y = Or.getOperand(i: 1); |
4424 | return true; |
4425 | } |
4426 | if (Or.getOperand(i: 1) == Other) { |
4427 | X = Or.getOperand(i: 1); |
4428 | Y = Or.getOperand(i: 0); |
4429 | return true; |
4430 | } |
4431 | return false; |
4432 | }; |
4433 | |
4434 | EVT OpVT = N0.getValueType(); |
4435 | EVT ShAmtVT = N0.getOperand(i: 2).getValueType(); |
4436 | SDValue F0 = N0.getOperand(i: 0); |
4437 | SDValue F1 = N0.getOperand(i: 1); |
4438 | if (matchOr(F0, F1)) { |
4439 | // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 |
4440 | SDValue NewShAmt = DAG.getConstant(Val: ShAmt, DL: dl, VT: ShAmtVT); |
4441 | SDValue Shift = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: OpVT, N1: Y, N2: NewShAmt); |
4442 | SDValue NewOr = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: OpVT, N1: Shift, N2: X); |
4443 | return DAG.getSetCC(DL: dl, VT, LHS: NewOr, RHS: N1, Cond); |
4444 | } |
4445 | if (matchOr(F1, F0)) { |
4446 | // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 |
4447 | SDValue NewShAmt = DAG.getConstant(Val: BitWidth - ShAmt, DL: dl, VT: ShAmtVT); |
4448 | SDValue Shift = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: OpVT, N1: Y, N2: NewShAmt); |
4449 | SDValue NewOr = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: OpVT, N1: Shift, N2: X); |
4450 | return DAG.getSetCC(DL: dl, VT, LHS: NewOr, RHS: N1, Cond); |
4451 | } |
4452 | |
4453 | return SDValue(); |
4454 | } |
4455 | |
4456 | /// Try to simplify a setcc built with the specified operands and cc. If it is |
4457 | /// unable to simplify it, return a null SDValue. |
4458 | SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, |
4459 | ISD::CondCode Cond, bool foldBooleans, |
4460 | DAGCombinerInfo &DCI, |
4461 | const SDLoc &dl) const { |
4462 | SelectionDAG &DAG = DCI.DAG; |
4463 | const DataLayout &Layout = DAG.getDataLayout(); |
4464 | EVT OpVT = N0.getValueType(); |
4465 | AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
4466 | |
4467 | // Constant fold or commute setcc. |
4468 | if (SDValue Fold = DAG.FoldSetCC(VT, N1: N0, N2: N1, Cond, dl)) |
4469 | return Fold; |
4470 | |
4471 | bool N0ConstOrSplat = |
4472 | isConstOrConstSplat(N: N0, /*AllowUndefs*/ false, /*AllowTruncate*/ AllowTruncation: true); |
4473 | bool N1ConstOrSplat = |
4474 | isConstOrConstSplat(N: N1, /*AllowUndefs*/ false, /*AllowTruncate*/ AllowTruncation: true); |
4475 | |
4476 | // Canonicalize toward having the constant on the RHS. |
4477 | // TODO: Handle non-splat vector constants. All undef causes trouble. |
4478 | // FIXME: We can't yet fold constant scalable vector splats, so avoid an |
4479 | // infinite loop here when we encounter one. |
4480 | ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Operation: Cond); |
4481 | if (N0ConstOrSplat && !N1ConstOrSplat && |
4482 | (DCI.isBeforeLegalizeOps() || |
4483 | isCondCodeLegal(CC: SwappedCC, VT: N0.getSimpleValueType()))) |
4484 | return DAG.getSetCC(DL: dl, VT, LHS: N1, RHS: N0, Cond: SwappedCC); |
4485 | |
4486 | // If we have a subtract with the same 2 non-constant operands as this setcc |
4487 | // -- but in reverse order -- then try to commute the operands of this setcc |
4488 | // to match. A matching pair of setcc (cmp) and sub may be combined into 1 |
4489 | // instruction on some targets. |
4490 | if (!N0ConstOrSplat && !N1ConstOrSplat && |
4491 | (DCI.isBeforeLegalizeOps() || |
4492 | isCondCodeLegal(CC: SwappedCC, VT: N0.getSimpleValueType())) && |
4493 | DAG.doesNodeExist(Opcode: ISD::SUB, VTList: DAG.getVTList(VT: OpVT), Ops: {N1, N0}) && |
4494 | !DAG.doesNodeExist(Opcode: ISD::SUB, VTList: DAG.getVTList(VT: OpVT), Ops: {N0, N1})) |
4495 | return DAG.getSetCC(DL: dl, VT, LHS: N1, RHS: N0, Cond: SwappedCC); |
4496 | |
4497 | if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) |
4498 | return V; |
4499 | |
4500 | if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) |
4501 | return V; |
4502 | |
4503 | if (auto *N1C = isConstOrConstSplat(N: N1)) { |
4504 | const APInt &C1 = N1C->getAPIntValue(); |
4505 | |
4506 | // Optimize some CTPOP cases. |
4507 | if (SDValue V = simplifySetCCWithCTPOP(TLI: *this, VT, N0, C1, Cond, dl, DAG)) |
4508 | return V; |
4509 | |
4510 | // For equality to 0 of a no-wrap multiply, decompose and test each op: |
4511 | // X * Y == 0 --> (X == 0) || (Y == 0) |
4512 | // X * Y != 0 --> (X != 0) && (Y != 0) |
4513 | // TODO: This bails out if minsize is set, but if the target doesn't have a |
4514 | // single instruction multiply for this type, it would likely be |
4515 | // smaller to decompose. |
4516 | if (C1.isZero() && (Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
4517 | N0.getOpcode() == ISD::MUL && N0.hasOneUse() && |
4518 | (N0->getFlags().hasNoUnsignedWrap() || |
4519 | N0->getFlags().hasNoSignedWrap()) && |
4520 | !Attr.hasFnAttr(Kind: Attribute::MinSize)) { |
4521 | SDValue IsXZero = DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 0), RHS: N1, Cond); |
4522 | SDValue IsYZero = DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 1), RHS: N1, Cond); |
4523 | unsigned LogicOp = Cond == ISD::SETEQ ? ISD::OR : ISD::AND; |
4524 | return DAG.getNode(Opcode: LogicOp, DL: dl, VT, N1: IsXZero, N2: IsYZero); |
4525 | } |
4526 | |
4527 | // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an |
4528 | // equality comparison, then we're just comparing whether X itself is |
4529 | // zero. |
4530 | if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && |
4531 | N0.getOperand(i: 0).getOpcode() == ISD::CTLZ && |
4532 | llvm::has_single_bit<uint32_t>(Value: N0.getScalarValueSizeInBits())) { |
4533 | if (ConstantSDNode *ShAmt = isConstOrConstSplat(N: N0.getOperand(i: 1))) { |
4534 | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
4535 | ShAmt->getAPIntValue() == Log2_32(Value: N0.getScalarValueSizeInBits())) { |
4536 | if ((C1 == 0) == (Cond == ISD::SETEQ)) { |
4537 | // (srl (ctlz x), 5) == 0 -> X != 0 |
4538 | // (srl (ctlz x), 5) != 1 -> X != 0 |
4539 | Cond = ISD::SETNE; |
4540 | } else { |
4541 | // (srl (ctlz x), 5) != 0 -> X == 0 |
4542 | // (srl (ctlz x), 5) == 1 -> X == 0 |
4543 | Cond = ISD::SETEQ; |
4544 | } |
4545 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT: N0.getValueType()); |
4546 | return DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 0).getOperand(i: 0), RHS: Zero, |
4547 | Cond); |
4548 | } |
4549 | } |
4550 | } |
4551 | } |
4552 | |
4553 | // FIXME: Support vectors. |
4554 | if (auto *N1C = dyn_cast<ConstantSDNode>(Val: N1.getNode())) { |
4555 | const APInt &C1 = N1C->getAPIntValue(); |
4556 | |
4557 | // (zext x) == C --> x == (trunc C) |
4558 | // (sext x) == C --> x == (trunc C) |
4559 | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
4560 | DCI.isBeforeLegalize() && N0->hasOneUse()) { |
4561 | unsigned MinBits = N0.getValueSizeInBits(); |
4562 | SDValue PreExt; |
4563 | bool Signed = false; |
4564 | if (N0->getOpcode() == ISD::ZERO_EXTEND) { |
4565 | // ZExt |
4566 | MinBits = N0->getOperand(Num: 0).getValueSizeInBits(); |
4567 | PreExt = N0->getOperand(Num: 0); |
4568 | } else if (N0->getOpcode() == ISD::AND) { |
4569 | // DAGCombine turns costly ZExts into ANDs |
4570 | if (auto *C = dyn_cast<ConstantSDNode>(Val: N0->getOperand(Num: 1))) |
4571 | if ((C->getAPIntValue()+1).isPowerOf2()) { |
4572 | MinBits = C->getAPIntValue().countr_one(); |
4573 | PreExt = N0->getOperand(Num: 0); |
4574 | } |
4575 | } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { |
4576 | // SExt |
4577 | MinBits = N0->getOperand(Num: 0).getValueSizeInBits(); |
4578 | PreExt = N0->getOperand(Num: 0); |
4579 | Signed = true; |
4580 | } else if (auto *LN0 = dyn_cast<LoadSDNode>(Val&: N0)) { |
4581 | // ZEXTLOAD / SEXTLOAD |
4582 | if (LN0->getExtensionType() == ISD::ZEXTLOAD) { |
4583 | MinBits = LN0->getMemoryVT().getSizeInBits(); |
4584 | PreExt = N0; |
4585 | } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { |
4586 | Signed = true; |
4587 | MinBits = LN0->getMemoryVT().getSizeInBits(); |
4588 | PreExt = N0; |
4589 | } |
4590 | } |
4591 | |
4592 | // Figure out how many bits we need to preserve this constant. |
4593 | unsigned ReqdBits = Signed ? C1.getSignificantBits() : C1.getActiveBits(); |
4594 | |
4595 | // Make sure we're not losing bits from the constant. |
4596 | if (MinBits > 0 && |
4597 | MinBits < C1.getBitWidth() && |
4598 | MinBits >= ReqdBits) { |
4599 | EVT MinVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: MinBits); |
4600 | if (isTypeDesirableForOp(ISD::SETCC, VT: MinVT)) { |
4601 | // Will get folded away. |
4602 | SDValue Trunc = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: MinVT, Operand: PreExt); |
4603 | if (MinBits == 1 && C1 == 1) |
4604 | // Invert the condition. |
4605 | return DAG.getSetCC(DL: dl, VT, LHS: Trunc, RHS: DAG.getConstant(Val: 0, DL: dl, VT: MVT::i1), |
4606 | Cond: Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); |
4607 | SDValue C = DAG.getConstant(Val: C1.trunc(width: MinBits), DL: dl, VT: MinVT); |
4608 | return DAG.getSetCC(DL: dl, VT, LHS: Trunc, RHS: C, Cond); |
4609 | } |
4610 | |
4611 | // If truncating the setcc operands is not desirable, we can still |
4612 | // simplify the expression in some cases: |
4613 | // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) |
4614 | // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) |
4615 | // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) |
4616 | // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) |
4617 | // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) |
4618 | // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) |
4619 | SDValue TopSetCC = N0->getOperand(Num: 0); |
4620 | unsigned N0Opc = N0->getOpcode(); |
4621 | bool SExt = (N0Opc == ISD::SIGN_EXTEND); |
4622 | if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && |
4623 | TopSetCC.getOpcode() == ISD::SETCC && |
4624 | (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && |
4625 | (isConstFalseVal(N: N1) || |
4626 | isExtendedTrueVal(N: N1C, VT: N0->getValueType(ResNo: 0), SExt))) { |
4627 | |
4628 | bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || |
4629 | (!N1C->isZero() && Cond == ISD::SETNE); |
4630 | |
4631 | if (!Inverse) |
4632 | return TopSetCC; |
4633 | |
4634 | ISD::CondCode InvCond = ISD::getSetCCInverse( |
4635 | Operation: cast<CondCodeSDNode>(Val: TopSetCC.getOperand(i: 2))->get(), |
4636 | Type: TopSetCC.getOperand(i: 0).getValueType()); |
4637 | return DAG.getSetCC(DL: dl, VT, LHS: TopSetCC.getOperand(i: 0), |
4638 | RHS: TopSetCC.getOperand(i: 1), |
4639 | Cond: InvCond); |
4640 | } |
4641 | } |
4642 | } |
4643 | |
4644 | // If the LHS is '(and load, const)', the RHS is 0, the test is for |
4645 | // equality or unsigned, and all 1 bits of the const are in the same |
4646 | // partial word, see if we can shorten the load. |
4647 | if (DCI.isBeforeLegalize() && |
4648 | !ISD::isSignedIntSetCC(Code: Cond) && |
4649 | N0.getOpcode() == ISD::AND && C1 == 0 && |
4650 | N0.getNode()->hasOneUse() && |
4651 | isa<LoadSDNode>(Val: N0.getOperand(i: 0)) && |
4652 | N0.getOperand(i: 0).getNode()->hasOneUse() && |
4653 | isa<ConstantSDNode>(Val: N0.getOperand(i: 1))) { |
4654 | auto *Lod = cast<LoadSDNode>(Val: N0.getOperand(i: 0)); |
4655 | APInt bestMask; |
4656 | unsigned bestWidth = 0, bestOffset = 0; |
4657 | if (Lod->isSimple() && Lod->isUnindexed() && |
4658 | (Lod->getMemoryVT().isByteSized() || |
4659 | isPaddedAtMostSignificantBitsWhenStored(VT: Lod->getMemoryVT()))) { |
4660 | unsigned memWidth = Lod->getMemoryVT().getStoreSizeInBits(); |
4661 | unsigned origWidth = N0.getValueSizeInBits(); |
4662 | unsigned maskWidth = origWidth; |
4663 | // We can narrow (e.g.) 16-bit extending loads on 32-bit target to |
4664 | // 8 bits, but have to be careful... |
4665 | if (Lod->getExtensionType() != ISD::NON_EXTLOAD) |
4666 | origWidth = Lod->getMemoryVT().getSizeInBits(); |
4667 | const APInt &Mask = N0.getConstantOperandAPInt(i: 1); |
4668 | // Only consider power-of-2 widths (and at least one byte) as candiates |
4669 | // for the narrowed load. |
4670 | for (unsigned width = 8; width < origWidth; width *= 2) { |
4671 | EVT newVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: width); |
4672 | if (!shouldReduceLoadWidth(Load: Lod, ExtTy: ISD::NON_EXTLOAD, NewVT: newVT)) |
4673 | continue; |
4674 | APInt newMask = APInt::getLowBitsSet(numBits: maskWidth, loBitsSet: width); |
4675 | // Avoid accessing any padding here for now (we could use memWidth |
4676 | // instead of origWidth here otherwise). |
4677 | unsigned maxOffset = origWidth - width; |
4678 | for (unsigned offset = 0; offset <= maxOffset; offset += 8) { |
4679 | if (Mask.isSubsetOf(RHS: newMask)) { |
4680 | unsigned ptrOffset = |
4681 | Layout.isLittleEndian() ? offset : memWidth - width - offset; |
4682 | unsigned IsFast = 0; |
4683 | Align NewAlign = commonAlignment(A: Lod->getAlign(), Offset: ptrOffset / 8); |
4684 | if (allowsMemoryAccess( |
4685 | Context&: *DAG.getContext(), DL: Layout, VT: newVT, AddrSpace: Lod->getAddressSpace(), |
4686 | Alignment: NewAlign, Flags: Lod->getMemOperand()->getFlags(), Fast: &IsFast) && |
4687 | IsFast) { |
4688 | bestOffset = ptrOffset / 8; |
4689 | bestMask = Mask.lshr(shiftAmt: offset); |
4690 | bestWidth = width; |
4691 | break; |
4692 | } |
4693 | } |
4694 | newMask <<= 8; |
4695 | } |
4696 | if (bestWidth) |
4697 | break; |
4698 | } |
4699 | } |
4700 | if (bestWidth) { |
4701 | EVT newVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: bestWidth); |
4702 | SDValue Ptr = Lod->getBasePtr(); |
4703 | if (bestOffset != 0) |
4704 | Ptr = DAG.getObjectPtrOffset(SL: dl, Ptr, Offset: TypeSize::getFixed(ExactSize: bestOffset)); |
4705 | SDValue NewLoad = |
4706 | DAG.getLoad(VT: newVT, dl, Chain: Lod->getChain(), Ptr, |
4707 | PtrInfo: Lod->getPointerInfo().getWithOffset(O: bestOffset), |
4708 | Alignment: Lod->getOriginalAlign()); |
4709 | SDValue And = |
4710 | DAG.getNode(Opcode: ISD::AND, DL: dl, VT: newVT, N1: NewLoad, |
4711 | N2: DAG.getConstant(Val: bestMask.trunc(width: bestWidth), DL: dl, VT: newVT)); |
4712 | return DAG.getSetCC(DL: dl, VT, LHS: And, RHS: DAG.getConstant(Val: 0LL, DL: dl, VT: newVT), Cond); |
4713 | } |
4714 | } |
4715 | |
4716 | // If the LHS is a ZERO_EXTEND, perform the comparison on the input. |
4717 | if (N0.getOpcode() == ISD::ZERO_EXTEND) { |
4718 | unsigned InSize = N0.getOperand(i: 0).getValueSizeInBits(); |
4719 | |
4720 | // If the comparison constant has bits in the upper part, the |
4721 | // zero-extended value could never match. |
4722 | if (C1.intersects(RHS: APInt::getHighBitsSet(numBits: C1.getBitWidth(), |
4723 | hiBitsSet: C1.getBitWidth() - InSize))) { |
4724 | switch (Cond) { |
4725 | case ISD::SETUGT: |
4726 | case ISD::SETUGE: |
4727 | case ISD::SETEQ: |
4728 | return DAG.getConstant(Val: 0, DL: dl, VT); |
4729 | case ISD::SETULT: |
4730 | case ISD::SETULE: |
4731 | case ISD::SETNE: |
4732 | return DAG.getConstant(Val: 1, DL: dl, VT); |
4733 | case ISD::SETGT: |
4734 | case ISD::SETGE: |
4735 | // True if the sign bit of C1 is set. |
4736 | return DAG.getConstant(Val: C1.isNegative(), DL: dl, VT); |
4737 | case ISD::SETLT: |
4738 | case ISD::SETLE: |
4739 | // True if the sign bit of C1 isn't set. |
4740 | return DAG.getConstant(Val: C1.isNonNegative(), DL: dl, VT); |
4741 | default: |
4742 | break; |
4743 | } |
4744 | } |
4745 | |
4746 | // Otherwise, we can perform the comparison with the low bits. |
4747 | switch (Cond) { |
4748 | case ISD::SETEQ: |
4749 | case ISD::SETNE: |
4750 | case ISD::SETUGT: |
4751 | case ISD::SETUGE: |
4752 | case ISD::SETULT: |
4753 | case ISD::SETULE: { |
4754 | EVT newVT = N0.getOperand(i: 0).getValueType(); |
4755 | if (DCI.isBeforeLegalizeOps() || |
4756 | (isOperationLegal(Op: ISD::SETCC, VT: newVT) && |
4757 | isCondCodeLegal(CC: Cond, VT: newVT.getSimpleVT()))) { |
4758 | EVT NewSetCCVT = getSetCCResultType(DL: Layout, Context&: *DAG.getContext(), VT: newVT); |
4759 | SDValue NewConst = DAG.getConstant(Val: C1.trunc(width: InSize), DL: dl, VT: newVT); |
4760 | |
4761 | SDValue NewSetCC = DAG.getSetCC(DL: dl, VT: NewSetCCVT, LHS: N0.getOperand(i: 0), |
4762 | RHS: NewConst, Cond); |
4763 | return DAG.getBoolExtOrTrunc(Op: NewSetCC, SL: dl, VT, OpVT: N0.getValueType()); |
4764 | } |
4765 | break; |
4766 | } |
4767 | default: |
4768 | break; // todo, be more careful with signed comparisons |
4769 | } |
4770 | } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && |
4771 | (Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
4772 | !isSExtCheaperThanZExt(FromTy: cast<VTSDNode>(Val: N0.getOperand(i: 1))->getVT(), |
4773 | ToTy: OpVT)) { |
4774 | EVT ExtSrcTy = cast<VTSDNode>(Val: N0.getOperand(i: 1))->getVT(); |
4775 | unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); |
4776 | EVT ExtDstTy = N0.getValueType(); |
4777 | unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); |
4778 | |
4779 | // If the constant doesn't fit into the number of bits for the source of |
4780 | // the sign extension, it is impossible for both sides to be equal. |
4781 | if (C1.getSignificantBits() > ExtSrcTyBits) |
4782 | return DAG.getBoolConstant(V: Cond == ISD::SETNE, DL: dl, VT, OpVT); |
4783 | |
4784 | assert(ExtDstTy == N0.getOperand(0).getValueType() && |
4785 | ExtDstTy != ExtSrcTy && "Unexpected types!" ); |
4786 | APInt Imm = APInt::getLowBitsSet(numBits: ExtDstTyBits, loBitsSet: ExtSrcTyBits); |
4787 | SDValue ZextOp = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: ExtDstTy, N1: N0.getOperand(i: 0), |
4788 | N2: DAG.getConstant(Val: Imm, DL: dl, VT: ExtDstTy)); |
4789 | if (!DCI.isCalledByLegalizer()) |
4790 | DCI.AddToWorklist(N: ZextOp.getNode()); |
4791 | // Otherwise, make this a use of a zext. |
4792 | return DAG.getSetCC(DL: dl, VT, LHS: ZextOp, |
4793 | RHS: DAG.getConstant(Val: C1 & Imm, DL: dl, VT: ExtDstTy), Cond); |
4794 | } else if ((N1C->isZero() || N1C->isOne()) && |
4795 | (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { |
4796 | // SETCC (X), [0|1], [EQ|NE] -> X if X is known 0/1. i1 types are |
4797 | // excluded as they are handled below whilst checking for foldBooleans. |
4798 | if ((N0.getOpcode() == ISD::SETCC || VT.getScalarType() != MVT::i1) && |
4799 | isTypeLegal(VT) && VT.bitsLE(VT: N0.getValueType()) && |
4800 | (N0.getValueType() == MVT::i1 || |
4801 | getBooleanContents(Type: N0.getValueType()) == ZeroOrOneBooleanContent) && |
4802 | DAG.MaskedValueIsZero( |
4803 | Op: N0, Mask: APInt::getBitsSetFrom(numBits: N0.getValueSizeInBits(), loBit: 1))) { |
4804 | bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); |
4805 | if (TrueWhenTrue) |
4806 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: N0); |
4807 | // Invert the condition. |
4808 | if (N0.getOpcode() == ISD::SETCC) { |
4809 | ISD::CondCode CC = cast<CondCodeSDNode>(Val: N0.getOperand(i: 2))->get(); |
4810 | CC = ISD::getSetCCInverse(Operation: CC, Type: N0.getOperand(i: 0).getValueType()); |
4811 | if (DCI.isBeforeLegalizeOps() || |
4812 | isCondCodeLegal(CC, VT: N0.getOperand(i: 0).getSimpleValueType())) |
4813 | return DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 0), RHS: N0.getOperand(i: 1), Cond: CC); |
4814 | } |
4815 | } |
4816 | |
4817 | if ((N0.getOpcode() == ISD::XOR || |
4818 | (N0.getOpcode() == ISD::AND && |
4819 | N0.getOperand(i: 0).getOpcode() == ISD::XOR && |
4820 | N0.getOperand(i: 1) == N0.getOperand(i: 0).getOperand(i: 1))) && |
4821 | isOneConstant(V: N0.getOperand(i: 1))) { |
4822 | // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We |
4823 | // can only do this if the top bits are known zero. |
4824 | unsigned BitWidth = N0.getValueSizeInBits(); |
4825 | if (DAG.MaskedValueIsZero(Op: N0, |
4826 | Mask: APInt::getHighBitsSet(numBits: BitWidth, |
4827 | hiBitsSet: BitWidth-1))) { |
4828 | // Okay, get the un-inverted input value. |
4829 | SDValue Val; |
4830 | if (N0.getOpcode() == ISD::XOR) { |
4831 | Val = N0.getOperand(i: 0); |
4832 | } else { |
4833 | assert(N0.getOpcode() == ISD::AND && |
4834 | N0.getOperand(0).getOpcode() == ISD::XOR); |
4835 | // ((X^1)&1)^1 -> X & 1 |
4836 | Val = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: N0.getValueType(), |
4837 | N1: N0.getOperand(i: 0).getOperand(i: 0), |
4838 | N2: N0.getOperand(i: 1)); |
4839 | } |
4840 | |
4841 | return DAG.getSetCC(DL: dl, VT, LHS: Val, RHS: N1, |
4842 | Cond: Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); |
4843 | } |
4844 | } else if (N1C->isOne()) { |
4845 | SDValue Op0 = N0; |
4846 | if (Op0.getOpcode() == ISD::TRUNCATE) |
4847 | Op0 = Op0.getOperand(i: 0); |
4848 | |
4849 | if ((Op0.getOpcode() == ISD::XOR) && |
4850 | Op0.getOperand(i: 0).getOpcode() == ISD::SETCC && |
4851 | Op0.getOperand(i: 1).getOpcode() == ISD::SETCC) { |
4852 | SDValue XorLHS = Op0.getOperand(i: 0); |
4853 | SDValue XorRHS = Op0.getOperand(i: 1); |
4854 | // Ensure that the input setccs return an i1 type or 0/1 value. |
4855 | if (Op0.getValueType() == MVT::i1 || |
4856 | (getBooleanContents(Type: XorLHS.getOperand(i: 0).getValueType()) == |
4857 | ZeroOrOneBooleanContent && |
4858 | getBooleanContents(Type: XorRHS.getOperand(i: 0).getValueType()) == |
4859 | ZeroOrOneBooleanContent)) { |
4860 | // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) |
4861 | Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; |
4862 | return DAG.getSetCC(DL: dl, VT, LHS: XorLHS, RHS: XorRHS, Cond); |
4863 | } |
4864 | } |
4865 | if (Op0.getOpcode() == ISD::AND && isOneConstant(V: Op0.getOperand(i: 1))) { |
4866 | // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. |
4867 | if (Op0.getValueType().bitsGT(VT)) |
4868 | Op0 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, |
4869 | N1: DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Op0.getOperand(i: 0)), |
4870 | N2: DAG.getConstant(Val: 1, DL: dl, VT)); |
4871 | else if (Op0.getValueType().bitsLT(VT)) |
4872 | Op0 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, |
4873 | N1: DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT, Operand: Op0.getOperand(i: 0)), |
4874 | N2: DAG.getConstant(Val: 1, DL: dl, VT)); |
4875 | |
4876 | return DAG.getSetCC(DL: dl, VT, LHS: Op0, |
4877 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: Op0.getValueType()), |
4878 | Cond: Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); |
4879 | } |
4880 | if (Op0.getOpcode() == ISD::AssertZext && |
4881 | cast<VTSDNode>(Val: Op0.getOperand(i: 1))->getVT() == MVT::i1) |
4882 | return DAG.getSetCC(DL: dl, VT, LHS: Op0, |
4883 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: Op0.getValueType()), |
4884 | Cond: Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); |
4885 | } |
4886 | } |
4887 | |
4888 | // Given: |
4889 | // icmp eq/ne (urem %x, %y), 0 |
4890 | // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': |
4891 | // icmp eq/ne %x, 0 |
4892 | if (N0.getOpcode() == ISD::UREM && N1C->isZero() && |
4893 | (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { |
4894 | KnownBits XKnown = DAG.computeKnownBits(Op: N0.getOperand(i: 0)); |
4895 | KnownBits YKnown = DAG.computeKnownBits(Op: N0.getOperand(i: 1)); |
4896 | if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) |
4897 | return DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 0), RHS: N1, Cond); |
4898 | } |
4899 | |
4900 | // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 |
4901 | // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 |
4902 | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
4903 | N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(Val: N0.getOperand(i: 1)) && |
4904 | N0.getConstantOperandAPInt(i: 1) == OpVT.getScalarSizeInBits() - 1 && |
4905 | N1C && N1C->isAllOnes()) { |
4906 | return DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 0), |
4907 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: OpVT), |
4908 | Cond: Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); |
4909 | } |
4910 | |
4911 | if (SDValue V = |
4912 | optimizeSetCCOfSignedTruncationCheck(SCCVT: VT, N0, N1, Cond, DCI, DL: dl)) |
4913 | return V; |
4914 | } |
4915 | |
4916 | // These simplifications apply to splat vectors as well. |
4917 | // TODO: Handle more splat vector cases. |
4918 | if (auto *N1C = isConstOrConstSplat(N: N1)) { |
4919 | const APInt &C1 = N1C->getAPIntValue(); |
4920 | |
4921 | APInt MinVal, MaxVal; |
4922 | unsigned OperandBitSize = N1C->getValueType(ResNo: 0).getScalarSizeInBits(); |
4923 | if (ISD::isSignedIntSetCC(Code: Cond)) { |
4924 | MinVal = APInt::getSignedMinValue(numBits: OperandBitSize); |
4925 | MaxVal = APInt::getSignedMaxValue(numBits: OperandBitSize); |
4926 | } else { |
4927 | MinVal = APInt::getMinValue(numBits: OperandBitSize); |
4928 | MaxVal = APInt::getMaxValue(numBits: OperandBitSize); |
4929 | } |
4930 | |
4931 | // Canonicalize GE/LE comparisons to use GT/LT comparisons. |
4932 | if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { |
4933 | // X >= MIN --> true |
4934 | if (C1 == MinVal) |
4935 | return DAG.getBoolConstant(V: true, DL: dl, VT, OpVT); |
4936 | |
4937 | if (!VT.isVector()) { // TODO: Support this for vectors. |
4938 | // X >= C0 --> X > (C0 - 1) |
4939 | APInt C = C1 - 1; |
4940 | ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; |
4941 | if ((DCI.isBeforeLegalizeOps() || |
4942 | isCondCodeLegal(CC: NewCC, VT: VT.getSimpleVT())) && |
4943 | (!N1C->isOpaque() || (C.getBitWidth() <= 64 && |
4944 | isLegalICmpImmediate(C.getSExtValue())))) { |
4945 | return DAG.getSetCC(DL: dl, VT, LHS: N0, |
4946 | RHS: DAG.getConstant(Val: C, DL: dl, VT: N1.getValueType()), |
4947 | Cond: NewCC); |
4948 | } |
4949 | } |
4950 | } |
4951 | |
4952 | if (Cond == ISD::SETLE || Cond == ISD::SETULE) { |
4953 | // X <= MAX --> true |
4954 | if (C1 == MaxVal) |
4955 | return DAG.getBoolConstant(V: true, DL: dl, VT, OpVT); |
4956 | |
4957 | // X <= C0 --> X < (C0 + 1) |
4958 | if (!VT.isVector()) { // TODO: Support this for vectors. |
4959 | APInt C = C1 + 1; |
4960 | ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; |
4961 | if ((DCI.isBeforeLegalizeOps() || |
4962 | isCondCodeLegal(CC: NewCC, VT: VT.getSimpleVT())) && |
4963 | (!N1C->isOpaque() || (C.getBitWidth() <= 64 && |
4964 | isLegalICmpImmediate(C.getSExtValue())))) { |
4965 | return DAG.getSetCC(DL: dl, VT, LHS: N0, |
4966 | RHS: DAG.getConstant(Val: C, DL: dl, VT: N1.getValueType()), |
4967 | Cond: NewCC); |
4968 | } |
4969 | } |
4970 | } |
4971 | |
4972 | if (Cond == ISD::SETLT || Cond == ISD::SETULT) { |
4973 | if (C1 == MinVal) |
4974 | return DAG.getBoolConstant(V: false, DL: dl, VT, OpVT); // X < MIN --> false |
4975 | |
4976 | // TODO: Support this for vectors after legalize ops. |
4977 | if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { |
4978 | // Canonicalize setlt X, Max --> setne X, Max |
4979 | if (C1 == MaxVal) |
4980 | return DAG.getSetCC(DL: dl, VT, LHS: N0, RHS: N1, Cond: ISD::SETNE); |
4981 | |
4982 | // If we have setult X, 1, turn it into seteq X, 0 |
4983 | if (C1 == MinVal+1) |
4984 | return DAG.getSetCC(DL: dl, VT, LHS: N0, |
4985 | RHS: DAG.getConstant(Val: MinVal, DL: dl, VT: N0.getValueType()), |
4986 | Cond: ISD::SETEQ); |
4987 | } |
4988 | } |
4989 | |
4990 | if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { |
4991 | if (C1 == MaxVal) |
4992 | return DAG.getBoolConstant(V: false, DL: dl, VT, OpVT); // X > MAX --> false |
4993 | |
4994 | // TODO: Support this for vectors after legalize ops. |
4995 | if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { |
4996 | // Canonicalize setgt X, Min --> setne X, Min |
4997 | if (C1 == MinVal) |
4998 | return DAG.getSetCC(DL: dl, VT, LHS: N0, RHS: N1, Cond: ISD::SETNE); |
4999 | |
5000 | // If we have setugt X, Max-1, turn it into seteq X, Max |
5001 | if (C1 == MaxVal-1) |
5002 | return DAG.getSetCC(DL: dl, VT, LHS: N0, |
5003 | RHS: DAG.getConstant(Val: MaxVal, DL: dl, VT: N0.getValueType()), |
5004 | Cond: ISD::SETEQ); |
5005 | } |
5006 | } |
5007 | |
5008 | if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { |
5009 | // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 |
5010 | if (C1.isZero()) |
5011 | if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( |
5012 | SCCVT: VT, N0, N1C: N1, Cond, DCI, DL: dl)) |
5013 | return CC; |
5014 | |
5015 | // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). |
5016 | // For example, when high 32-bits of i64 X are known clear: |
5017 | // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 |
5018 | // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 |
5019 | bool CmpZero = N1C->isZero(); |
5020 | bool CmpNegOne = N1C->isAllOnes(); |
5021 | if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { |
5022 | // Match or(lo,shl(hi,bw/2)) pattern. |
5023 | auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { |
5024 | unsigned EltBits = V.getScalarValueSizeInBits(); |
5025 | if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) |
5026 | return false; |
5027 | SDValue LHS = V.getOperand(i: 0); |
5028 | SDValue RHS = V.getOperand(i: 1); |
5029 | APInt HiBits = APInt::getHighBitsSet(numBits: EltBits, hiBitsSet: EltBits / 2); |
5030 | // Unshifted element must have zero upperbits. |
5031 | if (RHS.getOpcode() == ISD::SHL && |
5032 | isa<ConstantSDNode>(Val: RHS.getOperand(i: 1)) && |
5033 | RHS.getConstantOperandAPInt(i: 1) == (EltBits / 2) && |
5034 | DAG.MaskedValueIsZero(Op: LHS, Mask: HiBits)) { |
5035 | Lo = LHS; |
5036 | Hi = RHS.getOperand(i: 0); |
5037 | return true; |
5038 | } |
5039 | if (LHS.getOpcode() == ISD::SHL && |
5040 | isa<ConstantSDNode>(Val: LHS.getOperand(i: 1)) && |
5041 | LHS.getConstantOperandAPInt(i: 1) == (EltBits / 2) && |
5042 | DAG.MaskedValueIsZero(Op: RHS, Mask: HiBits)) { |
5043 | Lo = RHS; |
5044 | Hi = LHS.getOperand(i: 0); |
5045 | return true; |
5046 | } |
5047 | return false; |
5048 | }; |
5049 | |
5050 | auto MergeConcat = [&](SDValue Lo, SDValue Hi) { |
5051 | unsigned EltBits = N0.getScalarValueSizeInBits(); |
5052 | unsigned HalfBits = EltBits / 2; |
5053 | APInt HiBits = APInt::getHighBitsSet(numBits: EltBits, hiBitsSet: HalfBits); |
5054 | SDValue LoBits = DAG.getConstant(Val: ~HiBits, DL: dl, VT: OpVT); |
5055 | SDValue HiMask = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: OpVT, N1: Hi, N2: LoBits); |
5056 | SDValue NewN0 = |
5057 | DAG.getNode(Opcode: CmpZero ? ISD::OR : ISD::AND, DL: dl, VT: OpVT, N1: Lo, N2: HiMask); |
5058 | SDValue NewN1 = CmpZero ? DAG.getConstant(Val: 0, DL: dl, VT: OpVT) : LoBits; |
5059 | return DAG.getSetCC(DL: dl, VT, LHS: NewN0, RHS: NewN1, Cond); |
5060 | }; |
5061 | |
5062 | SDValue Lo, Hi; |
5063 | if (IsConcat(N0, Lo, Hi)) |
5064 | return MergeConcat(Lo, Hi); |
5065 | |
5066 | if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { |
5067 | SDValue Lo0, Lo1, Hi0, Hi1; |
5068 | if (IsConcat(N0.getOperand(i: 0), Lo0, Hi0) && |
5069 | IsConcat(N0.getOperand(i: 1), Lo1, Hi1)) { |
5070 | return MergeConcat(DAG.getNode(Opcode: N0.getOpcode(), DL: dl, VT: OpVT, N1: Lo0, N2: Lo1), |
5071 | DAG.getNode(Opcode: N0.getOpcode(), DL: dl, VT: OpVT, N1: Hi0, N2: Hi1)); |
5072 | } |
5073 | } |
5074 | } |
5075 | } |
5076 | |
5077 | // If we have "setcc X, C0", check to see if we can shrink the immediate |
5078 | // by changing cc. |
5079 | // TODO: Support this for vectors after legalize ops. |
5080 | if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { |
5081 | // SETUGT X, SINTMAX -> SETLT X, 0 |
5082 | // SETUGE X, SINTMIN -> SETLT X, 0 |
5083 | if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || |
5084 | (Cond == ISD::SETUGE && C1.isMinSignedValue())) |
5085 | return DAG.getSetCC(DL: dl, VT, LHS: N0, |
5086 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: N1.getValueType()), |
5087 | Cond: ISD::SETLT); |
5088 | |
5089 | // SETULT X, SINTMIN -> SETGT X, -1 |
5090 | // SETULE X, SINTMAX -> SETGT X, -1 |
5091 | if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || |
5092 | (Cond == ISD::SETULE && C1.isMaxSignedValue())) |
5093 | return DAG.getSetCC(DL: dl, VT, LHS: N0, |
5094 | RHS: DAG.getAllOnesConstant(DL: dl, VT: N1.getValueType()), |
5095 | Cond: ISD::SETGT); |
5096 | } |
5097 | } |
5098 | |
5099 | // Back to non-vector simplifications. |
5100 | // TODO: Can we do these for vector splats? |
5101 | if (auto *N1C = dyn_cast<ConstantSDNode>(Val: N1.getNode())) { |
5102 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
5103 | const APInt &C1 = N1C->getAPIntValue(); |
5104 | EVT ShValTy = N0.getValueType(); |
5105 | |
5106 | // Fold bit comparisons when we can. This will result in an |
5107 | // incorrect value when boolean false is negative one, unless |
5108 | // the bitsize is 1 in which case the false value is the same |
5109 | // in practice regardless of the representation. |
5110 | if ((VT.getSizeInBits() == 1 || |
5111 | getBooleanContents(Type: N0.getValueType()) == ZeroOrOneBooleanContent) && |
5112 | (Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
5113 | (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(VT: ShValTy))) && |
5114 | N0.getOpcode() == ISD::AND) { |
5115 | if (auto *AndRHS = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 1))) { |
5116 | if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 |
5117 | // Perform the xform if the AND RHS is a single bit. |
5118 | unsigned ShCt = AndRHS->getAPIntValue().logBase2(); |
5119 | if (AndRHS->getAPIntValue().isPowerOf2() && |
5120 | !TLI.shouldAvoidTransformToShift(VT: ShValTy, Amount: ShCt)) { |
5121 | return DAG.getNode( |
5122 | Opcode: ISD::TRUNCATE, DL: dl, VT, |
5123 | Operand: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: ShValTy, N1: N0, |
5124 | N2: DAG.getShiftAmountConstant(Val: ShCt, VT: ShValTy, DL: dl))); |
5125 | } |
5126 | } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { |
5127 | // (X & 8) == 8 --> (X & 8) >> 3 |
5128 | // Perform the xform if C1 is a single bit. |
5129 | unsigned ShCt = C1.logBase2(); |
5130 | if (C1.isPowerOf2() && |
5131 | !TLI.shouldAvoidTransformToShift(VT: ShValTy, Amount: ShCt)) { |
5132 | return DAG.getNode( |
5133 | Opcode: ISD::TRUNCATE, DL: dl, VT, |
5134 | Operand: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: ShValTy, N1: N0, |
5135 | N2: DAG.getShiftAmountConstant(Val: ShCt, VT: ShValTy, DL: dl))); |
5136 | } |
5137 | } |
5138 | } |
5139 | } |
5140 | |
5141 | if (C1.getSignificantBits() <= 64 && |
5142 | !isLegalICmpImmediate(C1.getSExtValue())) { |
5143 | // (X & -256) == 256 -> (X >> 8) == 1 |
5144 | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
5145 | N0.getOpcode() == ISD::AND && N0.hasOneUse()) { |
5146 | if (auto *AndRHS = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 1))) { |
5147 | const APInt &AndRHSC = AndRHS->getAPIntValue(); |
5148 | if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { |
5149 | unsigned ShiftBits = AndRHSC.countr_zero(); |
5150 | if (!TLI.shouldAvoidTransformToShift(VT: ShValTy, Amount: ShiftBits)) { |
5151 | SDValue Shift = DAG.getNode( |
5152 | Opcode: ISD::SRL, DL: dl, VT: ShValTy, N1: N0.getOperand(i: 0), |
5153 | N2: DAG.getShiftAmountConstant(Val: ShiftBits, VT: ShValTy, DL: dl)); |
5154 | SDValue CmpRHS = DAG.getConstant(Val: C1.lshr(shiftAmt: ShiftBits), DL: dl, VT: ShValTy); |
5155 | return DAG.getSetCC(DL: dl, VT, LHS: Shift, RHS: CmpRHS, Cond); |
5156 | } |
5157 | } |
5158 | } |
5159 | } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || |
5160 | Cond == ISD::SETULE || Cond == ISD::SETUGT) { |
5161 | bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); |
5162 | // X < 0x100000000 -> (X >> 32) < 1 |
5163 | // X >= 0x100000000 -> (X >> 32) >= 1 |
5164 | // X <= 0x0ffffffff -> (X >> 32) < 1 |
5165 | // X > 0x0ffffffff -> (X >> 32) >= 1 |
5166 | unsigned ShiftBits; |
5167 | APInt NewC = C1; |
5168 | ISD::CondCode NewCond = Cond; |
5169 | if (AdjOne) { |
5170 | ShiftBits = C1.countr_one(); |
5171 | NewC = NewC + 1; |
5172 | NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; |
5173 | } else { |
5174 | ShiftBits = C1.countr_zero(); |
5175 | } |
5176 | NewC.lshrInPlace(ShiftAmt: ShiftBits); |
5177 | if (ShiftBits && NewC.getSignificantBits() <= 64 && |
5178 | isLegalICmpImmediate(NewC.getSExtValue()) && |
5179 | !TLI.shouldAvoidTransformToShift(VT: ShValTy, Amount: ShiftBits)) { |
5180 | SDValue Shift = |
5181 | DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: ShValTy, N1: N0, |
5182 | N2: DAG.getShiftAmountConstant(Val: ShiftBits, VT: ShValTy, DL: dl)); |
5183 | SDValue CmpRHS = DAG.getConstant(Val: NewC, DL: dl, VT: ShValTy); |
5184 | return DAG.getSetCC(DL: dl, VT, LHS: Shift, RHS: CmpRHS, Cond: NewCond); |
5185 | } |
5186 | } |
5187 | } |
5188 | } |
5189 | |
5190 | if (!isa<ConstantFPSDNode>(Val: N0) && isa<ConstantFPSDNode>(Val: N1)) { |
5191 | auto *CFP = cast<ConstantFPSDNode>(Val&: N1); |
5192 | assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value" ); |
5193 | |
5194 | // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the |
5195 | // constant if knowing that the operand is non-nan is enough. We prefer to |
5196 | // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to |
5197 | // materialize 0.0. |
5198 | if (Cond == ISD::SETO || Cond == ISD::SETUO) |
5199 | return DAG.getSetCC(DL: dl, VT, LHS: N0, RHS: N0, Cond); |
5200 | |
5201 | // setcc (fneg x), C -> setcc swap(pred) x, -C |
5202 | if (N0.getOpcode() == ISD::FNEG) { |
5203 | ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Operation: Cond); |
5204 | if (DCI.isBeforeLegalizeOps() || |
5205 | isCondCodeLegal(CC: SwapCond, VT: N0.getSimpleValueType())) { |
5206 | SDValue NegN1 = DAG.getNode(Opcode: ISD::FNEG, DL: dl, VT: N0.getValueType(), Operand: N1); |
5207 | return DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 0), RHS: NegN1, Cond: SwapCond); |
5208 | } |
5209 | } |
5210 | |
5211 | // setueq/setoeq X, (fabs Inf) -> is_fpclass X, fcInf |
5212 | if (isOperationLegalOrCustom(Op: ISD::IS_FPCLASS, VT: N0.getValueType()) && |
5213 | !isFPImmLegal(CFP->getValueAPF(), CFP->getValueType(ResNo: 0))) { |
5214 | bool IsFabs = N0.getOpcode() == ISD::FABS; |
5215 | SDValue Op = IsFabs ? N0.getOperand(i: 0) : N0; |
5216 | if ((Cond == ISD::SETOEQ || Cond == ISD::SETUEQ) && CFP->isInfinity()) { |
5217 | FPClassTest Flag = CFP->isNegative() ? (IsFabs ? fcNone : fcNegInf) |
5218 | : (IsFabs ? fcInf : fcPosInf); |
5219 | if (Cond == ISD::SETUEQ) |
5220 | Flag |= fcNan; |
5221 | return DAG.getNode(Opcode: ISD::IS_FPCLASS, DL: dl, VT, N1: Op, |
5222 | N2: DAG.getTargetConstant(Val: Flag, DL: dl, VT: MVT::i32)); |
5223 | } |
5224 | } |
5225 | |
5226 | // If the condition is not legal, see if we can find an equivalent one |
5227 | // which is legal. |
5228 | if (!isCondCodeLegal(CC: Cond, VT: N0.getSimpleValueType())) { |
5229 | // If the comparison was an awkward floating-point == or != and one of |
5230 | // the comparison operands is infinity or negative infinity, convert the |
5231 | // condition to a less-awkward <= or >=. |
5232 | if (CFP->getValueAPF().isInfinity()) { |
5233 | bool IsNegInf = CFP->getValueAPF().isNegative(); |
5234 | ISD::CondCode NewCond = ISD::SETCC_INVALID; |
5235 | switch (Cond) { |
5236 | case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; |
5237 | case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; |
5238 | case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; |
5239 | case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; |
5240 | default: break; |
5241 | } |
5242 | if (NewCond != ISD::SETCC_INVALID && |
5243 | isCondCodeLegal(CC: NewCond, VT: N0.getSimpleValueType())) |
5244 | return DAG.getSetCC(DL: dl, VT, LHS: N0, RHS: N1, Cond: NewCond); |
5245 | } |
5246 | } |
5247 | } |
5248 | |
5249 | if (N0 == N1) { |
5250 | // The sext(setcc()) => setcc() optimization relies on the appropriate |
5251 | // constant being emitted. |
5252 | assert(!N0.getValueType().isInteger() && |
5253 | "Integer types should be handled by FoldSetCC" ); |
5254 | |
5255 | bool EqTrue = ISD::isTrueWhenEqual(Cond); |
5256 | unsigned UOF = ISD::getUnorderedFlavor(Cond); |
5257 | if (UOF == 2) // FP operators that are undefined on NaNs. |
5258 | return DAG.getBoolConstant(V: EqTrue, DL: dl, VT, OpVT); |
5259 | if (UOF == unsigned(EqTrue)) |
5260 | return DAG.getBoolConstant(V: EqTrue, DL: dl, VT, OpVT); |
5261 | // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO |
5262 | // if it is not already. |
5263 | ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; |
5264 | if (NewCond != Cond && |
5265 | (DCI.isBeforeLegalizeOps() || |
5266 | isCondCodeLegal(CC: NewCond, VT: N0.getSimpleValueType()))) |
5267 | return DAG.getSetCC(DL: dl, VT, LHS: N0, RHS: N1, Cond: NewCond); |
5268 | } |
5269 | |
5270 | // ~X > ~Y --> Y > X |
5271 | // ~X < ~Y --> Y < X |
5272 | // ~X < C --> X > ~C |
5273 | // ~X > C --> X < ~C |
5274 | if ((isSignedIntSetCC(Code: Cond) || isUnsignedIntSetCC(Code: Cond)) && |
5275 | N0.getValueType().isInteger()) { |
5276 | if (isBitwiseNot(V: N0)) { |
5277 | if (isBitwiseNot(V: N1)) |
5278 | return DAG.getSetCC(DL: dl, VT, LHS: N1.getOperand(i: 0), RHS: N0.getOperand(i: 0), Cond); |
5279 | |
5280 | if (DAG.isConstantIntBuildVectorOrConstantInt(N: N1) && |
5281 | !DAG.isConstantIntBuildVectorOrConstantInt(N: N0.getOperand(i: 0))) { |
5282 | SDValue Not = DAG.getNOT(DL: dl, Val: N1, VT: OpVT); |
5283 | return DAG.getSetCC(DL: dl, VT, LHS: Not, RHS: N0.getOperand(i: 0), Cond); |
5284 | } |
5285 | } |
5286 | } |
5287 | |
5288 | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
5289 | N0.getValueType().isInteger()) { |
5290 | if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || |
5291 | N0.getOpcode() == ISD::XOR) { |
5292 | // Simplify (X+Y) == (X+Z) --> Y == Z |
5293 | if (N0.getOpcode() == N1.getOpcode()) { |
5294 | if (N0.getOperand(i: 0) == N1.getOperand(i: 0)) |
5295 | return DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 1), RHS: N1.getOperand(i: 1), Cond); |
5296 | if (N0.getOperand(i: 1) == N1.getOperand(i: 1)) |
5297 | return DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 0), RHS: N1.getOperand(i: 0), Cond); |
5298 | if (isCommutativeBinOp(Opcode: N0.getOpcode())) { |
5299 | // If X op Y == Y op X, try other combinations. |
5300 | if (N0.getOperand(i: 0) == N1.getOperand(i: 1)) |
5301 | return DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 1), RHS: N1.getOperand(i: 0), |
5302 | Cond); |
5303 | if (N0.getOperand(i: 1) == N1.getOperand(i: 0)) |
5304 | return DAG.getSetCC(DL: dl, VT, LHS: N0.getOperand(i: 0), RHS: N1.getOperand(i: 1), |
5305 | Cond); |
5306 | } |
5307 | } |
5308 | |
5309 | // If RHS is a legal immediate value for a compare instruction, we need |
5310 | // to be careful about increasing register pressure needlessly. |
5311 | bool LegalRHSImm = false; |
5312 | |
5313 | if (auto *RHSC = dyn_cast<ConstantSDNode>(Val&: N1)) { |
5314 | if (auto *LHSR = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 1))) { |
5315 | // Turn (X+C1) == C2 --> X == C2-C1 |
5316 | if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) |
5317 | return DAG.getSetCC( |
5318 | DL: dl, VT, LHS: N0.getOperand(i: 0), |
5319 | RHS: DAG.getConstant(Val: RHSC->getAPIntValue() - LHSR->getAPIntValue(), |
5320 | DL: dl, VT: N0.getValueType()), |
5321 | Cond); |
5322 | |
5323 | // Turn (X^C1) == C2 --> X == C1^C2 |
5324 | if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) |
5325 | return DAG.getSetCC( |
5326 | DL: dl, VT, LHS: N0.getOperand(i: 0), |
5327 | RHS: DAG.getConstant(Val: LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), |
5328 | DL: dl, VT: N0.getValueType()), |
5329 | Cond); |
5330 | } |
5331 | |
5332 | // Turn (C1-X) == C2 --> X == C1-C2 |
5333 | if (auto *SUBC = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 0))) |
5334 | if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) |
5335 | return DAG.getSetCC( |
5336 | DL: dl, VT, LHS: N0.getOperand(i: 1), |
5337 | RHS: DAG.getConstant(Val: SUBC->getAPIntValue() - RHSC->getAPIntValue(), |
5338 | DL: dl, VT: N0.getValueType()), |
5339 | Cond); |
5340 | |
5341 | // Could RHSC fold directly into a compare? |
5342 | if (RHSC->getValueType(ResNo: 0).getSizeInBits() <= 64) |
5343 | LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); |
5344 | } |
5345 | |
5346 | // (X+Y) == X --> Y == 0 and similar folds. |
5347 | // Don't do this if X is an immediate that can fold into a cmp |
5348 | // instruction and X+Y has other uses. It could be an induction variable |
5349 | // chain, and the transform would increase register pressure. |
5350 | if (!LegalRHSImm || N0.hasOneUse()) |
5351 | if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, DL: dl, DCI)) |
5352 | return V; |
5353 | } |
5354 | |
5355 | if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || |
5356 | N1.getOpcode() == ISD::XOR) |
5357 | if (SDValue V = foldSetCCWithBinOp(VT, N0: N1, N1: N0, Cond, DL: dl, DCI)) |
5358 | return V; |
5359 | |
5360 | if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, DL: dl, DCI)) |
5361 | return V; |
5362 | } |
5363 | |
5364 | // Fold remainder of division by a constant. |
5365 | if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && |
5366 | N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { |
5367 | // When division is cheap or optimizing for minimum size, |
5368 | // fall through to DIVREM creation by skipping this fold. |
5369 | if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Kind: Attribute::MinSize)) { |
5370 | if (N0.getOpcode() == ISD::UREM) { |
5371 | if (SDValue Folded = buildUREMEqFold(SETCCVT: VT, REMNode: N0, CompTargetNode: N1, Cond, DCI, DL: dl)) |
5372 | return Folded; |
5373 | } else if (N0.getOpcode() == ISD::SREM) { |
5374 | if (SDValue Folded = buildSREMEqFold(SETCCVT: VT, REMNode: N0, CompTargetNode: N1, Cond, DCI, DL: dl)) |
5375 | return Folded; |
5376 | } |
5377 | } |
5378 | } |
5379 | |
5380 | // Fold away ALL boolean setcc's. |
5381 | if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { |
5382 | SDValue Temp; |
5383 | switch (Cond) { |
5384 | default: llvm_unreachable("Unknown integer setcc!" ); |
5385 | case ISD::SETEQ: // X == Y -> ~(X^Y) |
5386 | Temp = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: OpVT, N1: N0, N2: N1); |
5387 | N0 = DAG.getNOT(DL: dl, Val: Temp, VT: OpVT); |
5388 | if (!DCI.isCalledByLegalizer()) |
5389 | DCI.AddToWorklist(N: Temp.getNode()); |
5390 | break; |
5391 | case ISD::SETNE: // X != Y --> (X^Y) |
5392 | N0 = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: OpVT, N1: N0, N2: N1); |
5393 | break; |
5394 | case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y |
5395 | case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y |
5396 | Temp = DAG.getNOT(DL: dl, Val: N0, VT: OpVT); |
5397 | N0 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: OpVT, N1, N2: Temp); |
5398 | if (!DCI.isCalledByLegalizer()) |
5399 | DCI.AddToWorklist(N: Temp.getNode()); |
5400 | break; |
5401 | case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X |
5402 | case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X |
5403 | Temp = DAG.getNOT(DL: dl, Val: N1, VT: OpVT); |
5404 | N0 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: OpVT, N1: N0, N2: Temp); |
5405 | if (!DCI.isCalledByLegalizer()) |
5406 | DCI.AddToWorklist(N: Temp.getNode()); |
5407 | break; |
5408 | case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y |
5409 | case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y |
5410 | Temp = DAG.getNOT(DL: dl, Val: N0, VT: OpVT); |
5411 | N0 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: OpVT, N1, N2: Temp); |
5412 | if (!DCI.isCalledByLegalizer()) |
5413 | DCI.AddToWorklist(N: Temp.getNode()); |
5414 | break; |
5415 | case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X |
5416 | case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X |
5417 | Temp = DAG.getNOT(DL: dl, Val: N1, VT: OpVT); |
5418 | N0 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: OpVT, N1: N0, N2: Temp); |
5419 | break; |
5420 | } |
5421 | if (VT.getScalarType() != MVT::i1) { |
5422 | if (!DCI.isCalledByLegalizer()) |
5423 | DCI.AddToWorklist(N: N0.getNode()); |
5424 | // FIXME: If running after legalize, we probably can't do this. |
5425 | ISD::NodeType ExtendCode = getExtendForContent(Content: getBooleanContents(Type: OpVT)); |
5426 | N0 = DAG.getNode(Opcode: ExtendCode, DL: dl, VT, Operand: N0); |
5427 | } |
5428 | return N0; |
5429 | } |
5430 | |
5431 | // Could not fold it. |
5432 | return SDValue(); |
5433 | } |
5434 | |
5435 | /// Returns true (and the GlobalValue and the offset) if the node is a |
5436 | /// GlobalAddress + offset. |
5437 | bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, |
5438 | int64_t &Offset) const { |
5439 | |
5440 | SDNode *N = unwrapAddress(N: SDValue(WN, 0)).getNode(); |
5441 | |
5442 | if (auto *GASD = dyn_cast<GlobalAddressSDNode>(Val: N)) { |
5443 | GA = GASD->getGlobal(); |
5444 | Offset += GASD->getOffset(); |
5445 | return true; |
5446 | } |
5447 | |
5448 | if (N->getOpcode() == ISD::ADD) { |
5449 | SDValue N1 = N->getOperand(Num: 0); |
5450 | SDValue N2 = N->getOperand(Num: 1); |
5451 | if (isGAPlusOffset(WN: N1.getNode(), GA, Offset)) { |
5452 | if (auto *V = dyn_cast<ConstantSDNode>(Val&: N2)) { |
5453 | Offset += V->getSExtValue(); |
5454 | return true; |
5455 | } |
5456 | } else if (isGAPlusOffset(WN: N2.getNode(), GA, Offset)) { |
5457 | if (auto *V = dyn_cast<ConstantSDNode>(Val&: N1)) { |
5458 | Offset += V->getSExtValue(); |
5459 | return true; |
5460 | } |
5461 | } |
5462 | } |
5463 | |
5464 | return false; |
5465 | } |
5466 | |
5467 | SDValue TargetLowering::PerformDAGCombine(SDNode *N, |
5468 | DAGCombinerInfo &DCI) const { |
5469 | // Default implementation: no optimization. |
5470 | return SDValue(); |
5471 | } |
5472 | |
5473 | //===----------------------------------------------------------------------===// |
5474 | // Inline Assembler Implementation Methods |
5475 | //===----------------------------------------------------------------------===// |
5476 | |
5477 | TargetLowering::ConstraintType |
5478 | TargetLowering::getConstraintType(StringRef Constraint) const { |
5479 | unsigned S = Constraint.size(); |
5480 | |
5481 | if (S == 1) { |
5482 | switch (Constraint[0]) { |
5483 | default: break; |
5484 | case 'r': |
5485 | return C_RegisterClass; |
5486 | case 'm': // memory |
5487 | case 'o': // offsetable |
5488 | case 'V': // not offsetable |
5489 | return C_Memory; |
5490 | case 'p': // Address. |
5491 | return C_Address; |
5492 | case 'n': // Simple Integer |
5493 | case 'E': // Floating Point Constant |
5494 | case 'F': // Floating Point Constant |
5495 | return C_Immediate; |
5496 | case 'i': // Simple Integer or Relocatable Constant |
5497 | case 's': // Relocatable Constant |
5498 | case 'X': // Allow ANY value. |
5499 | case 'I': // Target registers. |
5500 | case 'J': |
5501 | case 'K': |
5502 | case 'L': |
5503 | case 'M': |
5504 | case 'N': |
5505 | case 'O': |
5506 | case 'P': |
5507 | case '<': |
5508 | case '>': |
5509 | return C_Other; |
5510 | } |
5511 | } |
5512 | |
5513 | if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { |
5514 | if (S == 8 && Constraint.substr(Start: 1, N: 6) == "memory" ) // "{memory}" |
5515 | return C_Memory; |
5516 | return C_Register; |
5517 | } |
5518 | return C_Unknown; |
5519 | } |
5520 | |
5521 | /// Try to replace an X constraint, which matches anything, with another that |
5522 | /// has more specific requirements based on the type of the corresponding |
5523 | /// operand. |
5524 | const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { |
5525 | if (ConstraintVT.isInteger()) |
5526 | return "r" ; |
5527 | if (ConstraintVT.isFloatingPoint()) |
5528 | return "f" ; // works for many targets |
5529 | return nullptr; |
5530 | } |
5531 | |
5532 | SDValue TargetLowering::LowerAsmOutputForConstraint( |
5533 | SDValue &Chain, SDValue &Glue, const SDLoc &DL, |
5534 | const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { |
5535 | return SDValue(); |
5536 | } |
5537 | |
5538 | /// Lower the specified operand into the Ops vector. |
5539 | /// If it is invalid, don't add anything to Ops. |
5540 | void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
5541 | StringRef Constraint, |
5542 | std::vector<SDValue> &Ops, |
5543 | SelectionDAG &DAG) const { |
5544 | |
5545 | if (Constraint.size() > 1) |
5546 | return; |
5547 | |
5548 | char ConstraintLetter = Constraint[0]; |
5549 | switch (ConstraintLetter) { |
5550 | default: break; |
5551 | case 'X': // Allows any operand |
5552 | case 'i': // Simple Integer or Relocatable Constant |
5553 | case 'n': // Simple Integer |
5554 | case 's': { // Relocatable Constant |
5555 | |
5556 | ConstantSDNode *C; |
5557 | uint64_t Offset = 0; |
5558 | |
5559 | // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), |
5560 | // etc., since getelementpointer is variadic. We can't use |
5561 | // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible |
5562 | // while in this case the GA may be furthest from the root node which is |
5563 | // likely an ISD::ADD. |
5564 | while (true) { |
5565 | if ((C = dyn_cast<ConstantSDNode>(Val&: Op)) && ConstraintLetter != 's') { |
5566 | // gcc prints these as sign extended. Sign extend value to 64 bits |
5567 | // now; without this it would get ZExt'd later in |
5568 | // ScheduleDAGSDNodes::EmitNode, which is very generic. |
5569 | bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; |
5570 | BooleanContent BCont = getBooleanContents(Type: MVT::i64); |
5571 | ISD::NodeType ExtOpc = |
5572 | IsBool ? getExtendForContent(Content: BCont) : ISD::SIGN_EXTEND; |
5573 | int64_t ExtVal = |
5574 | ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); |
5575 | Ops.push_back( |
5576 | x: DAG.getTargetConstant(Val: Offset + ExtVal, DL: SDLoc(C), VT: MVT::i64)); |
5577 | return; |
5578 | } |
5579 | if (ConstraintLetter != 'n') { |
5580 | if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Val&: Op)) { |
5581 | Ops.push_back(x: DAG.getTargetGlobalAddress(GV: GA->getGlobal(), DL: SDLoc(Op), |
5582 | VT: GA->getValueType(ResNo: 0), |
5583 | offset: Offset + GA->getOffset())); |
5584 | return; |
5585 | } |
5586 | if (const auto *BA = dyn_cast<BlockAddressSDNode>(Val&: Op)) { |
5587 | Ops.push_back(x: DAG.getTargetBlockAddress( |
5588 | BA: BA->getBlockAddress(), VT: BA->getValueType(ResNo: 0), |
5589 | Offset: Offset + BA->getOffset(), TargetFlags: BA->getTargetFlags())); |
5590 | return; |
5591 | } |
5592 | if (isa<BasicBlockSDNode>(Val: Op)) { |
5593 | Ops.push_back(x: Op); |
5594 | return; |
5595 | } |
5596 | } |
5597 | const unsigned OpCode = Op.getOpcode(); |
5598 | if (OpCode == ISD::ADD || OpCode == ISD::SUB) { |
5599 | if ((C = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 0)))) |
5600 | Op = Op.getOperand(i: 1); |
5601 | // Subtraction is not commutative. |
5602 | else if (OpCode == ISD::ADD && |
5603 | (C = dyn_cast<ConstantSDNode>(Val: Op.getOperand(i: 1)))) |
5604 | Op = Op.getOperand(i: 0); |
5605 | else |
5606 | return; |
5607 | Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); |
5608 | continue; |
5609 | } |
5610 | return; |
5611 | } |
5612 | break; |
5613 | } |
5614 | } |
5615 | } |
5616 | |
5617 | void TargetLowering::CollectTargetIntrinsicOperands( |
5618 | const CallInst &I, SmallVectorImpl<SDValue> &Ops, SelectionDAG &DAG) const { |
5619 | } |
5620 | |
5621 | std::pair<unsigned, const TargetRegisterClass *> |
5622 | TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, |
5623 | StringRef Constraint, |
5624 | MVT VT) const { |
5625 | if (!Constraint.starts_with(Prefix: "{" )) |
5626 | return std::make_pair(x: 0u, y: static_cast<TargetRegisterClass *>(nullptr)); |
5627 | assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?" ); |
5628 | |
5629 | // Remove the braces from around the name. |
5630 | StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); |
5631 | |
5632 | std::pair<unsigned, const TargetRegisterClass *> R = |
5633 | std::make_pair(x: 0u, y: static_cast<const TargetRegisterClass *>(nullptr)); |
5634 | |
5635 | // Figure out which register class contains this reg. |
5636 | for (const TargetRegisterClass *RC : RI->regclasses()) { |
5637 | // If none of the value types for this register class are valid, we |
5638 | // can't use it. For example, 64-bit reg classes on 32-bit targets. |
5639 | if (!isLegalRC(TRI: *RI, RC: *RC)) |
5640 | continue; |
5641 | |
5642 | for (const MCPhysReg &PR : *RC) { |
5643 | if (RegName.equals_insensitive(RHS: RI->getRegAsmName(Reg: PR))) { |
5644 | std::pair<unsigned, const TargetRegisterClass *> S = |
5645 | std::make_pair(x: PR, y&: RC); |
5646 | |
5647 | // If this register class has the requested value type, return it, |
5648 | // otherwise keep searching and return the first class found |
5649 | // if no other is found which explicitly has the requested type. |
5650 | if (RI->isTypeLegalForClass(RC: *RC, T: VT)) |
5651 | return S; |
5652 | if (!R.second) |
5653 | R = S; |
5654 | } |
5655 | } |
5656 | } |
5657 | |
5658 | return R; |
5659 | } |
5660 | |
5661 | //===----------------------------------------------------------------------===// |
5662 | // Constraint Selection. |
5663 | |
5664 | /// Return true of this is an input operand that is a matching constraint like |
5665 | /// "4". |
5666 | bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { |
5667 | assert(!ConstraintCode.empty() && "No known constraint!" ); |
5668 | return isdigit(static_cast<unsigned char>(ConstraintCode[0])); |
5669 | } |
5670 | |
5671 | /// If this is an input matching constraint, this method returns the output |
5672 | /// operand it matches. |
5673 | unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { |
5674 | assert(!ConstraintCode.empty() && "No known constraint!" ); |
5675 | return atoi(nptr: ConstraintCode.c_str()); |
5676 | } |
5677 | |
5678 | /// Split up the constraint string from the inline assembly value into the |
5679 | /// specific constraints and their prefixes, and also tie in the associated |
5680 | /// operand values. |
5681 | /// If this returns an empty vector, and if the constraint string itself |
5682 | /// isn't empty, there was an error parsing. |
5683 | TargetLowering::AsmOperandInfoVector |
5684 | TargetLowering::ParseConstraints(const DataLayout &DL, |
5685 | const TargetRegisterInfo *TRI, |
5686 | const CallBase &Call) const { |
5687 | /// Information about all of the constraints. |
5688 | AsmOperandInfoVector ConstraintOperands; |
5689 | const InlineAsm *IA = cast<InlineAsm>(Val: Call.getCalledOperand()); |
5690 | unsigned maCount = 0; // Largest number of multiple alternative constraints. |
5691 | |
5692 | // Do a prepass over the constraints, canonicalizing them, and building up the |
5693 | // ConstraintOperands list. |
5694 | unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. |
5695 | unsigned ResNo = 0; // ResNo - The result number of the next output. |
5696 | unsigned LabelNo = 0; // LabelNo - CallBr indirect dest number. |
5697 | |
5698 | for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { |
5699 | ConstraintOperands.emplace_back(args: std::move(CI)); |
5700 | AsmOperandInfo &OpInfo = ConstraintOperands.back(); |
5701 | |
5702 | // Update multiple alternative constraint count. |
5703 | if (OpInfo.multipleAlternatives.size() > maCount) |
5704 | maCount = OpInfo.multipleAlternatives.size(); |
5705 | |
5706 | OpInfo.ConstraintVT = MVT::Other; |
5707 | |
5708 | // Compute the value type for each operand. |
5709 | switch (OpInfo.Type) { |
5710 | case InlineAsm::isOutput: |
5711 | // Indirect outputs just consume an argument. |
5712 | if (OpInfo.isIndirect) { |
5713 | OpInfo.CallOperandVal = Call.getArgOperand(i: ArgNo); |
5714 | break; |
5715 | } |
5716 | |
5717 | // The return value of the call is this value. As such, there is no |
5718 | // corresponding argument. |
5719 | assert(!Call.getType()->isVoidTy() && "Bad inline asm!" ); |
5720 | if (auto *STy = dyn_cast<StructType>(Val: Call.getType())) { |
5721 | OpInfo.ConstraintVT = |
5722 | getSimpleValueType(DL, Ty: STy->getElementType(N: ResNo)); |
5723 | } else { |
5724 | assert(ResNo == 0 && "Asm only has one result!" ); |
5725 | OpInfo.ConstraintVT = |
5726 | getAsmOperandValueType(DL, Ty: Call.getType()).getSimpleVT(); |
5727 | } |
5728 | ++ResNo; |
5729 | break; |
5730 | case InlineAsm::isInput: |
5731 | OpInfo.CallOperandVal = Call.getArgOperand(i: ArgNo); |
5732 | break; |
5733 | case InlineAsm::isLabel: |
5734 | OpInfo.CallOperandVal = cast<CallBrInst>(Val: &Call)->getIndirectDest(i: LabelNo); |
5735 | ++LabelNo; |
5736 | continue; |
5737 | case InlineAsm::isClobber: |
5738 | // Nothing to do. |
5739 | break; |
5740 | } |
5741 | |
5742 | if (OpInfo.CallOperandVal) { |
5743 | llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); |
5744 | if (OpInfo.isIndirect) { |
5745 | OpTy = Call.getParamElementType(ArgNo); |
5746 | assert(OpTy && "Indirect operand must have elementtype attribute" ); |
5747 | } |
5748 | |
5749 | // Look for vector wrapped in a struct. e.g. { <16 x i8> }. |
5750 | if (StructType *STy = dyn_cast<StructType>(Val: OpTy)) |
5751 | if (STy->getNumElements() == 1) |
5752 | OpTy = STy->getElementType(N: 0); |
5753 | |
5754 | // If OpTy is not a single value, it may be a struct/union that we |
5755 | // can tile with integers. |
5756 | if (!OpTy->isSingleValueType() && OpTy->isSized()) { |
5757 | unsigned BitSize = DL.getTypeSizeInBits(Ty: OpTy); |
5758 | switch (BitSize) { |
5759 | default: break; |
5760 | case 1: |
5761 | case 8: |
5762 | case 16: |
5763 | case 32: |
5764 | case 64: |
5765 | case 128: |
5766 | OpTy = IntegerType::get(C&: OpTy->getContext(), NumBits: BitSize); |
5767 | break; |
5768 | } |
5769 | } |
5770 | |
5771 | EVT VT = getAsmOperandValueType(DL, Ty: OpTy, AllowUnknown: true); |
5772 | OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; |
5773 | ArgNo++; |
5774 | } |
5775 | } |
5776 | |
5777 | // If we have multiple alternative constraints, select the best alternative. |
5778 | if (!ConstraintOperands.empty()) { |
5779 | if (maCount) { |
5780 | unsigned bestMAIndex = 0; |
5781 | int bestWeight = -1; |
5782 | // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. |
5783 | int weight = -1; |
5784 | unsigned maIndex; |
5785 | // Compute the sums of the weights for each alternative, keeping track |
5786 | // of the best (highest weight) one so far. |
5787 | for (maIndex = 0; maIndex < maCount; ++maIndex) { |
5788 | int weightSum = 0; |
5789 | for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); |
5790 | cIndex != eIndex; ++cIndex) { |
5791 | AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; |
5792 | if (OpInfo.Type == InlineAsm::isClobber) |
5793 | continue; |
5794 | |
5795 | // If this is an output operand with a matching input operand, |
5796 | // look up the matching input. If their types mismatch, e.g. one |
5797 | // is an integer, the other is floating point, or their sizes are |
5798 | // different, flag it as an maCantMatch. |
5799 | if (OpInfo.hasMatchingInput()) { |
5800 | AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; |
5801 | if (OpInfo.ConstraintVT != Input.ConstraintVT) { |
5802 | if ((OpInfo.ConstraintVT.isInteger() != |
5803 | Input.ConstraintVT.isInteger()) || |
5804 | (OpInfo.ConstraintVT.getSizeInBits() != |
5805 | Input.ConstraintVT.getSizeInBits())) { |
5806 | weightSum = -1; // Can't match. |
5807 | break; |
5808 | } |
5809 | } |
5810 | } |
5811 | weight = getMultipleConstraintMatchWeight(info&: OpInfo, maIndex); |
5812 | if (weight == -1) { |
5813 | weightSum = -1; |
5814 | break; |
5815 | } |
5816 | weightSum += weight; |
5817 | } |
5818 | // Update best. |
5819 | if (weightSum > bestWeight) { |
5820 | bestWeight = weightSum; |
5821 | bestMAIndex = maIndex; |
5822 | } |
5823 | } |
5824 | |
5825 | // Now select chosen alternative in each constraint. |
5826 | for (AsmOperandInfo &cInfo : ConstraintOperands) |
5827 | if (cInfo.Type != InlineAsm::isClobber) |
5828 | cInfo.selectAlternative(index: bestMAIndex); |
5829 | } |
5830 | } |
5831 | |
5832 | // Check and hook up tied operands, choose constraint code to use. |
5833 | for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); |
5834 | cIndex != eIndex; ++cIndex) { |
5835 | AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; |
5836 | |
5837 | // If this is an output operand with a matching input operand, look up the |
5838 | // matching input. If their types mismatch, e.g. one is an integer, the |
5839 | // other is floating point, or their sizes are different, flag it as an |
5840 | // error. |
5841 | if (OpInfo.hasMatchingInput()) { |
5842 | AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; |
5843 | |
5844 | if (OpInfo.ConstraintVT != Input.ConstraintVT) { |
5845 | std::pair<unsigned, const TargetRegisterClass *> MatchRC = |
5846 | getRegForInlineAsmConstraint(RI: TRI, Constraint: OpInfo.ConstraintCode, |
5847 | VT: OpInfo.ConstraintVT); |
5848 | std::pair<unsigned, const TargetRegisterClass *> InputRC = |
5849 | getRegForInlineAsmConstraint(RI: TRI, Constraint: Input.ConstraintCode, |
5850 | VT: Input.ConstraintVT); |
5851 | if ((OpInfo.ConstraintVT.isInteger() != |
5852 | Input.ConstraintVT.isInteger()) || |
5853 | (MatchRC.second != InputRC.second)) { |
5854 | report_fatal_error(reason: "Unsupported asm: input constraint" |
5855 | " with a matching output constraint of" |
5856 | " incompatible type!" ); |
5857 | } |
5858 | } |
5859 | } |
5860 | } |
5861 | |
5862 | return ConstraintOperands; |
5863 | } |
5864 | |
5865 | /// Return a number indicating our preference for chosing a type of constraint |
5866 | /// over another, for the purpose of sorting them. Immediates are almost always |
5867 | /// preferrable (when they can be emitted). A higher return value means a |
5868 | /// stronger preference for one constraint type relative to another. |
5869 | /// FIXME: We should prefer registers over memory but doing so may lead to |
5870 | /// unrecoverable register exhaustion later. |
5871 | /// https://github.com/llvm/llvm-project/issues/20571 |
5872 | static unsigned getConstraintPiority(TargetLowering::ConstraintType CT) { |
5873 | switch (CT) { |
5874 | case TargetLowering::C_Immediate: |
5875 | case TargetLowering::C_Other: |
5876 | return 4; |
5877 | case TargetLowering::C_Memory: |
5878 | case TargetLowering::C_Address: |
5879 | return 3; |
5880 | case TargetLowering::C_RegisterClass: |
5881 | return 2; |
5882 | case TargetLowering::C_Register: |
5883 | return 1; |
5884 | case TargetLowering::C_Unknown: |
5885 | return 0; |
5886 | } |
5887 | llvm_unreachable("Invalid constraint type" ); |
5888 | } |
5889 | |
5890 | /// Examine constraint type and operand type and determine a weight value. |
5891 | /// This object must already have been set up with the operand type |
5892 | /// and the current alternative constraint selected. |
5893 | TargetLowering::ConstraintWeight |
5894 | TargetLowering::getMultipleConstraintMatchWeight( |
5895 | AsmOperandInfo &info, int maIndex) const { |
5896 | InlineAsm::ConstraintCodeVector *rCodes; |
5897 | if (maIndex >= (int)info.multipleAlternatives.size()) |
5898 | rCodes = &info.Codes; |
5899 | else |
5900 | rCodes = &info.multipleAlternatives[maIndex].Codes; |
5901 | ConstraintWeight BestWeight = CW_Invalid; |
5902 | |
5903 | // Loop over the options, keeping track of the most general one. |
5904 | for (const std::string &rCode : *rCodes) { |
5905 | ConstraintWeight weight = |
5906 | getSingleConstraintMatchWeight(info, constraint: rCode.c_str()); |
5907 | if (weight > BestWeight) |
5908 | BestWeight = weight; |
5909 | } |
5910 | |
5911 | return BestWeight; |
5912 | } |
5913 | |
5914 | /// Examine constraint type and operand type and determine a weight value. |
5915 | /// This object must already have been set up with the operand type |
5916 | /// and the current alternative constraint selected. |
5917 | TargetLowering::ConstraintWeight |
5918 | TargetLowering::getSingleConstraintMatchWeight( |
5919 | AsmOperandInfo &info, const char *constraint) const { |
5920 | ConstraintWeight weight = CW_Invalid; |
5921 | Value *CallOperandVal = info.CallOperandVal; |
5922 | // If we don't have a value, we can't do a match, |
5923 | // but allow it at the lowest weight. |
5924 | if (!CallOperandVal) |
5925 | return CW_Default; |
5926 | // Look at the constraint type. |
5927 | switch (*constraint) { |
5928 | case 'i': // immediate integer. |
5929 | case 'n': // immediate integer with a known value. |
5930 | if (isa<ConstantInt>(Val: CallOperandVal)) |
5931 | weight = CW_Constant; |
5932 | break; |
5933 | case 's': // non-explicit intregal immediate. |
5934 | if (isa<GlobalValue>(Val: CallOperandVal)) |
5935 | weight = CW_Constant; |
5936 | break; |
5937 | case 'E': // immediate float if host format. |
5938 | case 'F': // immediate float. |
5939 | if (isa<ConstantFP>(Val: CallOperandVal)) |
5940 | weight = CW_Constant; |
5941 | break; |
5942 | case '<': // memory operand with autodecrement. |
5943 | case '>': // memory operand with autoincrement. |
5944 | case 'm': // memory operand. |
5945 | case 'o': // offsettable memory operand |
5946 | case 'V': // non-offsettable memory operand |
5947 | weight = CW_Memory; |
5948 | break; |
5949 | case 'r': // general register. |
5950 | case 'g': // general register, memory operand or immediate integer. |
5951 | // note: Clang converts "g" to "imr". |
5952 | if (CallOperandVal->getType()->isIntegerTy()) |
5953 | weight = CW_Register; |
5954 | break; |
5955 | case 'X': // any operand. |
5956 | default: |
5957 | weight = CW_Default; |
5958 | break; |
5959 | } |
5960 | return weight; |
5961 | } |
5962 | |
5963 | /// If there are multiple different constraints that we could pick for this |
5964 | /// operand (e.g. "imr") try to pick the 'best' one. |
5965 | /// This is somewhat tricky: constraints (TargetLowering::ConstraintType) fall |
5966 | /// into seven classes: |
5967 | /// Register -> one specific register |
5968 | /// RegisterClass -> a group of regs |
5969 | /// Memory -> memory |
5970 | /// Address -> a symbolic memory reference |
5971 | /// Immediate -> immediate values |
5972 | /// Other -> magic values (such as "Flag Output Operands") |
5973 | /// Unknown -> something we don't recognize yet and can't handle |
5974 | /// Ideally, we would pick the most specific constraint possible: if we have |
5975 | /// something that fits into a register, we would pick it. The problem here |
5976 | /// is that if we have something that could either be in a register or in |
5977 | /// memory that use of the register could cause selection of *other* |
5978 | /// operands to fail: they might only succeed if we pick memory. Because of |
5979 | /// this the heuristic we use is: |
5980 | /// |
5981 | /// 1) If there is an 'other' constraint, and if the operand is valid for |
5982 | /// that constraint, use it. This makes us take advantage of 'i' |
5983 | /// constraints when available. |
5984 | /// 2) Otherwise, pick the most general constraint present. This prefers |
5985 | /// 'm' over 'r', for example. |
5986 | /// |
5987 | TargetLowering::ConstraintGroup TargetLowering::getConstraintPreferences( |
5988 | TargetLowering::AsmOperandInfo &OpInfo) const { |
5989 | ConstraintGroup Ret; |
5990 | |
5991 | Ret.reserve(N: OpInfo.Codes.size()); |
5992 | for (StringRef Code : OpInfo.Codes) { |
5993 | TargetLowering::ConstraintType CType = getConstraintType(Constraint: Code); |
5994 | |
5995 | // Indirect 'other' or 'immediate' constraints are not allowed. |
5996 | if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || |
5997 | CType == TargetLowering::C_Register || |
5998 | CType == TargetLowering::C_RegisterClass)) |
5999 | continue; |
6000 | |
6001 | // Things with matching constraints can only be registers, per gcc |
6002 | // documentation. This mainly affects "g" constraints. |
6003 | if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) |
6004 | continue; |
6005 | |
6006 | Ret.emplace_back(Args&: Code, Args&: CType); |
6007 | } |
6008 | |
6009 | std::stable_sort( |
6010 | first: Ret.begin(), last: Ret.end(), comp: [](ConstraintPair a, ConstraintPair b) { |
6011 | return getConstraintPiority(CT: a.second) > getConstraintPiority(CT: b.second); |
6012 | }); |
6013 | |
6014 | return Ret; |
6015 | } |
6016 | |
6017 | /// If we have an immediate, see if we can lower it. Return true if we can, |
6018 | /// false otherwise. |
6019 | static bool lowerImmediateIfPossible(TargetLowering::ConstraintPair &P, |
6020 | SDValue Op, SelectionDAG *DAG, |
6021 | const TargetLowering &TLI) { |
6022 | |
6023 | assert((P.second == TargetLowering::C_Other || |
6024 | P.second == TargetLowering::C_Immediate) && |
6025 | "need immediate or other" ); |
6026 | |
6027 | if (!Op.getNode()) |
6028 | return false; |
6029 | |
6030 | std::vector<SDValue> ResultOps; |
6031 | TLI.LowerAsmOperandForConstraint(Op, Constraint: P.first, Ops&: ResultOps, DAG&: *DAG); |
6032 | return !ResultOps.empty(); |
6033 | } |
6034 | |
6035 | /// Determines the constraint code and constraint type to use for the specific |
6036 | /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. |
6037 | void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, |
6038 | SDValue Op, |
6039 | SelectionDAG *DAG) const { |
6040 | assert(!OpInfo.Codes.empty() && "Must have at least one constraint" ); |
6041 | |
6042 | // Single-letter constraints ('r') are very common. |
6043 | if (OpInfo.Codes.size() == 1) { |
6044 | OpInfo.ConstraintCode = OpInfo.Codes[0]; |
6045 | OpInfo.ConstraintType = getConstraintType(Constraint: OpInfo.ConstraintCode); |
6046 | } else { |
6047 | ConstraintGroup G = getConstraintPreferences(OpInfo); |
6048 | if (G.empty()) |
6049 | return; |
6050 | |
6051 | unsigned BestIdx = 0; |
6052 | for (const unsigned E = G.size(); |
6053 | BestIdx < E && (G[BestIdx].second == TargetLowering::C_Other || |
6054 | G[BestIdx].second == TargetLowering::C_Immediate); |
6055 | ++BestIdx) { |
6056 | if (lowerImmediateIfPossible(P&: G[BestIdx], Op, DAG, TLI: *this)) |
6057 | break; |
6058 | // If we're out of constraints, just pick the first one. |
6059 | if (BestIdx + 1 == E) { |
6060 | BestIdx = 0; |
6061 | break; |
6062 | } |
6063 | } |
6064 | |
6065 | OpInfo.ConstraintCode = G[BestIdx].first; |
6066 | OpInfo.ConstraintType = G[BestIdx].second; |
6067 | } |
6068 | |
6069 | // 'X' matches anything. |
6070 | if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { |
6071 | // Constants are handled elsewhere. For Functions, the type here is the |
6072 | // type of the result, which is not what we want to look at; leave them |
6073 | // alone. |
6074 | Value *v = OpInfo.CallOperandVal; |
6075 | if (isa<ConstantInt>(Val: v) || isa<Function>(Val: v)) { |
6076 | return; |
6077 | } |
6078 | |
6079 | if (isa<BasicBlock>(Val: v) || isa<BlockAddress>(Val: v)) { |
6080 | OpInfo.ConstraintCode = "i" ; |
6081 | return; |
6082 | } |
6083 | |
6084 | // Otherwise, try to resolve it to something we know about by looking at |
6085 | // the actual operand type. |
6086 | if (const char *Repl = LowerXConstraint(ConstraintVT: OpInfo.ConstraintVT)) { |
6087 | OpInfo.ConstraintCode = Repl; |
6088 | OpInfo.ConstraintType = getConstraintType(Constraint: OpInfo.ConstraintCode); |
6089 | } |
6090 | } |
6091 | } |
6092 | |
6093 | /// Given an exact SDIV by a constant, create a multiplication |
6094 | /// with the multiplicative inverse of the constant. |
6095 | /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242 |
6096 | static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, |
6097 | const SDLoc &dl, SelectionDAG &DAG, |
6098 | SmallVectorImpl<SDNode *> &Created) { |
6099 | SDValue Op0 = N->getOperand(Num: 0); |
6100 | SDValue Op1 = N->getOperand(Num: 1); |
6101 | EVT VT = N->getValueType(ResNo: 0); |
6102 | EVT SVT = VT.getScalarType(); |
6103 | EVT ShVT = TLI.getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
6104 | EVT ShSVT = ShVT.getScalarType(); |
6105 | |
6106 | bool UseSRA = false; |
6107 | SmallVector<SDValue, 16> Shifts, Factors; |
6108 | |
6109 | auto BuildSDIVPattern = [&](ConstantSDNode *C) { |
6110 | if (C->isZero()) |
6111 | return false; |
6112 | APInt Divisor = C->getAPIntValue(); |
6113 | unsigned Shift = Divisor.countr_zero(); |
6114 | if (Shift) { |
6115 | Divisor.ashrInPlace(ShiftAmt: Shift); |
6116 | UseSRA = true; |
6117 | } |
6118 | APInt Factor = Divisor.multiplicativeInverse(); |
6119 | Shifts.push_back(Elt: DAG.getConstant(Val: Shift, DL: dl, VT: ShSVT)); |
6120 | Factors.push_back(Elt: DAG.getConstant(Val: Factor, DL: dl, VT: SVT)); |
6121 | return true; |
6122 | }; |
6123 | |
6124 | // Collect all magic values from the build vector. |
6125 | if (!ISD::matchUnaryPredicate(Op: Op1, Match: BuildSDIVPattern)) |
6126 | return SDValue(); |
6127 | |
6128 | SDValue Shift, Factor; |
6129 | if (Op1.getOpcode() == ISD::BUILD_VECTOR) { |
6130 | Shift = DAG.getBuildVector(VT: ShVT, DL: dl, Ops: Shifts); |
6131 | Factor = DAG.getBuildVector(VT, DL: dl, Ops: Factors); |
6132 | } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { |
6133 | assert(Shifts.size() == 1 && Factors.size() == 1 && |
6134 | "Expected matchUnaryPredicate to return one element for scalable " |
6135 | "vectors" ); |
6136 | Shift = DAG.getSplatVector(VT: ShVT, DL: dl, Op: Shifts[0]); |
6137 | Factor = DAG.getSplatVector(VT, DL: dl, Op: Factors[0]); |
6138 | } else { |
6139 | assert(isa<ConstantSDNode>(Op1) && "Expected a constant" ); |
6140 | Shift = Shifts[0]; |
6141 | Factor = Factors[0]; |
6142 | } |
6143 | |
6144 | SDValue Res = Op0; |
6145 | if (UseSRA) { |
6146 | SDNodeFlags Flags; |
6147 | Flags.setExact(true); |
6148 | Res = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT, N1: Res, N2: Shift, Flags); |
6149 | Created.push_back(Elt: Res.getNode()); |
6150 | } |
6151 | |
6152 | return DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: Res, N2: Factor); |
6153 | } |
6154 | |
6155 | /// Given an exact UDIV by a constant, create a multiplication |
6156 | /// with the multiplicative inverse of the constant. |
6157 | /// Ref: "Hacker's Delight" by Henry Warren, 2nd Edition, p. 242 |
6158 | static SDValue BuildExactUDIV(const TargetLowering &TLI, SDNode *N, |
6159 | const SDLoc &dl, SelectionDAG &DAG, |
6160 | SmallVectorImpl<SDNode *> &Created) { |
6161 | EVT VT = N->getValueType(ResNo: 0); |
6162 | EVT SVT = VT.getScalarType(); |
6163 | EVT ShVT = TLI.getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
6164 | EVT ShSVT = ShVT.getScalarType(); |
6165 | |
6166 | bool UseSRL = false; |
6167 | SmallVector<SDValue, 16> Shifts, Factors; |
6168 | |
6169 | auto BuildUDIVPattern = [&](ConstantSDNode *C) { |
6170 | if (C->isZero()) |
6171 | return false; |
6172 | APInt Divisor = C->getAPIntValue(); |
6173 | unsigned Shift = Divisor.countr_zero(); |
6174 | if (Shift) { |
6175 | Divisor.lshrInPlace(ShiftAmt: Shift); |
6176 | UseSRL = true; |
6177 | } |
6178 | // Calculate the multiplicative inverse modulo BW. |
6179 | APInt Factor = Divisor.multiplicativeInverse(); |
6180 | Shifts.push_back(Elt: DAG.getConstant(Val: Shift, DL: dl, VT: ShSVT)); |
6181 | Factors.push_back(Elt: DAG.getConstant(Val: Factor, DL: dl, VT: SVT)); |
6182 | return true; |
6183 | }; |
6184 | |
6185 | SDValue Op1 = N->getOperand(Num: 1); |
6186 | |
6187 | // Collect all magic values from the build vector. |
6188 | if (!ISD::matchUnaryPredicate(Op: Op1, Match: BuildUDIVPattern)) |
6189 | return SDValue(); |
6190 | |
6191 | SDValue Shift, Factor; |
6192 | if (Op1.getOpcode() == ISD::BUILD_VECTOR) { |
6193 | Shift = DAG.getBuildVector(VT: ShVT, DL: dl, Ops: Shifts); |
6194 | Factor = DAG.getBuildVector(VT, DL: dl, Ops: Factors); |
6195 | } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { |
6196 | assert(Shifts.size() == 1 && Factors.size() == 1 && |
6197 | "Expected matchUnaryPredicate to return one element for scalable " |
6198 | "vectors" ); |
6199 | Shift = DAG.getSplatVector(VT: ShVT, DL: dl, Op: Shifts[0]); |
6200 | Factor = DAG.getSplatVector(VT, DL: dl, Op: Factors[0]); |
6201 | } else { |
6202 | assert(isa<ConstantSDNode>(Op1) && "Expected a constant" ); |
6203 | Shift = Shifts[0]; |
6204 | Factor = Factors[0]; |
6205 | } |
6206 | |
6207 | SDValue Res = N->getOperand(Num: 0); |
6208 | if (UseSRL) { |
6209 | SDNodeFlags Flags; |
6210 | Flags.setExact(true); |
6211 | Res = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Res, N2: Shift, Flags); |
6212 | Created.push_back(Elt: Res.getNode()); |
6213 | } |
6214 | |
6215 | return DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: Res, N2: Factor); |
6216 | } |
6217 | |
6218 | SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, |
6219 | SelectionDAG &DAG, |
6220 | SmallVectorImpl<SDNode *> &Created) const { |
6221 | AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
6222 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
6223 | if (TLI.isIntDivCheap(VT: N->getValueType(ResNo: 0), Attr)) |
6224 | return SDValue(N, 0); // Lower SDIV as SDIV |
6225 | return SDValue(); |
6226 | } |
6227 | |
6228 | SDValue |
6229 | TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, |
6230 | SelectionDAG &DAG, |
6231 | SmallVectorImpl<SDNode *> &Created) const { |
6232 | AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); |
6233 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
6234 | if (TLI.isIntDivCheap(VT: N->getValueType(ResNo: 0), Attr)) |
6235 | return SDValue(N, 0); // Lower SREM as SREM |
6236 | return SDValue(); |
6237 | } |
6238 | |
6239 | /// Build sdiv by power-of-2 with conditional move instructions |
6240 | /// Ref: "Hacker's Delight" by Henry Warren 10-1 |
6241 | /// If conditional move/branch is preferred, we lower sdiv x, +/-2**k into: |
6242 | /// bgez x, label |
6243 | /// add x, x, 2**k-1 |
6244 | /// label: |
6245 | /// sra res, x, k |
6246 | /// neg res, res (when the divisor is negative) |
6247 | SDValue TargetLowering::buildSDIVPow2WithCMov( |
6248 | SDNode *N, const APInt &Divisor, SelectionDAG &DAG, |
6249 | SmallVectorImpl<SDNode *> &Created) const { |
6250 | unsigned Lg2 = Divisor.countr_zero(); |
6251 | EVT VT = N->getValueType(ResNo: 0); |
6252 | |
6253 | SDLoc DL(N); |
6254 | SDValue N0 = N->getOperand(Num: 0); |
6255 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT); |
6256 | APInt Lg2Mask = APInt::getLowBitsSet(numBits: VT.getSizeInBits(), loBitsSet: Lg2); |
6257 | SDValue Pow2MinusOne = DAG.getConstant(Val: Lg2Mask, DL, VT); |
6258 | |
6259 | // If N0 is negative, we need to add (Pow2 - 1) to it before shifting right. |
6260 | EVT CCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
6261 | SDValue Cmp = DAG.getSetCC(DL, VT: CCVT, LHS: N0, RHS: Zero, Cond: ISD::SETLT); |
6262 | SDValue Add = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: N0, N2: Pow2MinusOne); |
6263 | SDValue CMov = DAG.getNode(Opcode: ISD::SELECT, DL, VT, N1: Cmp, N2: Add, N3: N0); |
6264 | |
6265 | Created.push_back(Elt: Cmp.getNode()); |
6266 | Created.push_back(Elt: Add.getNode()); |
6267 | Created.push_back(Elt: CMov.getNode()); |
6268 | |
6269 | // Divide by pow2. |
6270 | SDValue SRA = |
6271 | DAG.getNode(Opcode: ISD::SRA, DL, VT, N1: CMov, N2: DAG.getConstant(Val: Lg2, DL, VT)); |
6272 | |
6273 | // If we're dividing by a positive value, we're done. Otherwise, we must |
6274 | // negate the result. |
6275 | if (Divisor.isNonNegative()) |
6276 | return SRA; |
6277 | |
6278 | Created.push_back(Elt: SRA.getNode()); |
6279 | return DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: Zero, N2: SRA); |
6280 | } |
6281 | |
6282 | /// Given an ISD::SDIV node expressing a divide by constant, |
6283 | /// return a DAG expression to select that will generate the same value by |
6284 | /// multiplying by a magic number. |
6285 | /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". |
6286 | SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, |
6287 | bool IsAfterLegalization, |
6288 | SmallVectorImpl<SDNode *> &Created) const { |
6289 | SDLoc dl(N); |
6290 | EVT VT = N->getValueType(ResNo: 0); |
6291 | EVT SVT = VT.getScalarType(); |
6292 | EVT ShVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
6293 | EVT ShSVT = ShVT.getScalarType(); |
6294 | unsigned EltBits = VT.getScalarSizeInBits(); |
6295 | EVT MulVT; |
6296 | |
6297 | // Check to see if we can do this. |
6298 | // FIXME: We should be more aggressive here. |
6299 | if (!isTypeLegal(VT)) { |
6300 | // Limit this to simple scalars for now. |
6301 | if (VT.isVector() || !VT.isSimple()) |
6302 | return SDValue(); |
6303 | |
6304 | // If this type will be promoted to a large enough type with a legal |
6305 | // multiply operation, we can go ahead and do this transform. |
6306 | if (getTypeAction(VT: VT.getSimpleVT()) != TypePromoteInteger) |
6307 | return SDValue(); |
6308 | |
6309 | MulVT = getTypeToTransformTo(Context&: *DAG.getContext(), VT); |
6310 | if (MulVT.getSizeInBits() < (2 * EltBits) || |
6311 | !isOperationLegal(Op: ISD::MUL, VT: MulVT)) |
6312 | return SDValue(); |
6313 | } |
6314 | |
6315 | // If the sdiv has an 'exact' bit we can use a simpler lowering. |
6316 | if (N->getFlags().hasExact()) |
6317 | return BuildExactSDIV(TLI: *this, N, dl, DAG, Created); |
6318 | |
6319 | SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; |
6320 | |
6321 | auto BuildSDIVPattern = [&](ConstantSDNode *C) { |
6322 | if (C->isZero()) |
6323 | return false; |
6324 | |
6325 | const APInt &Divisor = C->getAPIntValue(); |
6326 | SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(D: Divisor); |
6327 | int NumeratorFactor = 0; |
6328 | int ShiftMask = -1; |
6329 | |
6330 | if (Divisor.isOne() || Divisor.isAllOnes()) { |
6331 | // If d is +1/-1, we just multiply the numerator by +1/-1. |
6332 | NumeratorFactor = Divisor.getSExtValue(); |
6333 | magics.Magic = 0; |
6334 | magics.ShiftAmount = 0; |
6335 | ShiftMask = 0; |
6336 | } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { |
6337 | // If d > 0 and m < 0, add the numerator. |
6338 | NumeratorFactor = 1; |
6339 | } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { |
6340 | // If d < 0 and m > 0, subtract the numerator. |
6341 | NumeratorFactor = -1; |
6342 | } |
6343 | |
6344 | MagicFactors.push_back(Elt: DAG.getConstant(Val: magics.Magic, DL: dl, VT: SVT)); |
6345 | Factors.push_back(Elt: DAG.getConstant(Val: NumeratorFactor, DL: dl, VT: SVT)); |
6346 | Shifts.push_back(Elt: DAG.getConstant(Val: magics.ShiftAmount, DL: dl, VT: ShSVT)); |
6347 | ShiftMasks.push_back(Elt: DAG.getConstant(Val: ShiftMask, DL: dl, VT: SVT)); |
6348 | return true; |
6349 | }; |
6350 | |
6351 | SDValue N0 = N->getOperand(Num: 0); |
6352 | SDValue N1 = N->getOperand(Num: 1); |
6353 | |
6354 | // Collect the shifts / magic values from each element. |
6355 | if (!ISD::matchUnaryPredicate(Op: N1, Match: BuildSDIVPattern)) |
6356 | return SDValue(); |
6357 | |
6358 | SDValue MagicFactor, Factor, Shift, ShiftMask; |
6359 | if (N1.getOpcode() == ISD::BUILD_VECTOR) { |
6360 | MagicFactor = DAG.getBuildVector(VT, DL: dl, Ops: MagicFactors); |
6361 | Factor = DAG.getBuildVector(VT, DL: dl, Ops: Factors); |
6362 | Shift = DAG.getBuildVector(VT: ShVT, DL: dl, Ops: Shifts); |
6363 | ShiftMask = DAG.getBuildVector(VT, DL: dl, Ops: ShiftMasks); |
6364 | } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { |
6365 | assert(MagicFactors.size() == 1 && Factors.size() == 1 && |
6366 | Shifts.size() == 1 && ShiftMasks.size() == 1 && |
6367 | "Expected matchUnaryPredicate to return one element for scalable " |
6368 | "vectors" ); |
6369 | MagicFactor = DAG.getSplatVector(VT, DL: dl, Op: MagicFactors[0]); |
6370 | Factor = DAG.getSplatVector(VT, DL: dl, Op: Factors[0]); |
6371 | Shift = DAG.getSplatVector(VT: ShVT, DL: dl, Op: Shifts[0]); |
6372 | ShiftMask = DAG.getSplatVector(VT, DL: dl, Op: ShiftMasks[0]); |
6373 | } else { |
6374 | assert(isa<ConstantSDNode>(N1) && "Expected a constant" ); |
6375 | MagicFactor = MagicFactors[0]; |
6376 | Factor = Factors[0]; |
6377 | Shift = Shifts[0]; |
6378 | ShiftMask = ShiftMasks[0]; |
6379 | } |
6380 | |
6381 | // Multiply the numerator (operand 0) by the magic value. |
6382 | // FIXME: We should support doing a MUL in a wider type. |
6383 | auto GetMULHS = [&](SDValue X, SDValue Y) { |
6384 | // If the type isn't legal, use a wider mul of the type calculated |
6385 | // earlier. |
6386 | if (!isTypeLegal(VT)) { |
6387 | X = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL: dl, VT: MulVT, Operand: X); |
6388 | Y = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL: dl, VT: MulVT, Operand: Y); |
6389 | Y = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: MulVT, N1: X, N2: Y); |
6390 | Y = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: MulVT, N1: Y, |
6391 | N2: DAG.getShiftAmountConstant(Val: EltBits, VT: MulVT, DL: dl)); |
6392 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Y); |
6393 | } |
6394 | |
6395 | if (isOperationLegalOrCustom(Op: ISD::MULHS, VT, LegalOnly: IsAfterLegalization)) |
6396 | return DAG.getNode(Opcode: ISD::MULHS, DL: dl, VT, N1: X, N2: Y); |
6397 | if (isOperationLegalOrCustom(Op: ISD::SMUL_LOHI, VT, LegalOnly: IsAfterLegalization)) { |
6398 | SDValue LoHi = |
6399 | DAG.getNode(Opcode: ISD::SMUL_LOHI, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: VT), N1: X, N2: Y); |
6400 | return SDValue(LoHi.getNode(), 1); |
6401 | } |
6402 | // If type twice as wide legal, widen and use a mul plus a shift. |
6403 | unsigned Size = VT.getScalarSizeInBits(); |
6404 | EVT WideVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: Size * 2); |
6405 | if (VT.isVector()) |
6406 | WideVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: WideVT, |
6407 | EC: VT.getVectorElementCount()); |
6408 | if (isOperationLegalOrCustom(Op: ISD::MUL, VT: WideVT)) { |
6409 | X = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL: dl, VT: WideVT, Operand: X); |
6410 | Y = DAG.getNode(Opcode: ISD::SIGN_EXTEND, DL: dl, VT: WideVT, Operand: Y); |
6411 | Y = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: WideVT, N1: X, N2: Y); |
6412 | Y = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: WideVT, N1: Y, |
6413 | N2: DAG.getShiftAmountConstant(Val: EltBits, VT: WideVT, DL: dl)); |
6414 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Y); |
6415 | } |
6416 | return SDValue(); |
6417 | }; |
6418 | |
6419 | SDValue Q = GetMULHS(N0, MagicFactor); |
6420 | if (!Q) |
6421 | return SDValue(); |
6422 | |
6423 | Created.push_back(Elt: Q.getNode()); |
6424 | |
6425 | // (Optionally) Add/subtract the numerator using Factor. |
6426 | Factor = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: N0, N2: Factor); |
6427 | Created.push_back(Elt: Factor.getNode()); |
6428 | Q = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: Q, N2: Factor); |
6429 | Created.push_back(Elt: Q.getNode()); |
6430 | |
6431 | // Shift right algebraic by shift value. |
6432 | Q = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT, N1: Q, N2: Shift); |
6433 | Created.push_back(Elt: Q.getNode()); |
6434 | |
6435 | // Extract the sign bit, mask it and add it to the quotient. |
6436 | SDValue SignShift = DAG.getConstant(Val: EltBits - 1, DL: dl, VT: ShVT); |
6437 | SDValue T = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Q, N2: SignShift); |
6438 | Created.push_back(Elt: T.getNode()); |
6439 | T = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: T, N2: ShiftMask); |
6440 | Created.push_back(Elt: T.getNode()); |
6441 | return DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: Q, N2: T); |
6442 | } |
6443 | |
6444 | /// Given an ISD::UDIV node expressing a divide by constant, |
6445 | /// return a DAG expression to select that will generate the same value by |
6446 | /// multiplying by a magic number. |
6447 | /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". |
6448 | SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, |
6449 | bool IsAfterLegalization, |
6450 | SmallVectorImpl<SDNode *> &Created) const { |
6451 | SDLoc dl(N); |
6452 | EVT VT = N->getValueType(ResNo: 0); |
6453 | EVT SVT = VT.getScalarType(); |
6454 | EVT ShVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
6455 | EVT ShSVT = ShVT.getScalarType(); |
6456 | unsigned EltBits = VT.getScalarSizeInBits(); |
6457 | EVT MulVT; |
6458 | |
6459 | // Check to see if we can do this. |
6460 | // FIXME: We should be more aggressive here. |
6461 | if (!isTypeLegal(VT)) { |
6462 | // Limit this to simple scalars for now. |
6463 | if (VT.isVector() || !VT.isSimple()) |
6464 | return SDValue(); |
6465 | |
6466 | // If this type will be promoted to a large enough type with a legal |
6467 | // multiply operation, we can go ahead and do this transform. |
6468 | if (getTypeAction(VT: VT.getSimpleVT()) != TypePromoteInteger) |
6469 | return SDValue(); |
6470 | |
6471 | MulVT = getTypeToTransformTo(Context&: *DAG.getContext(), VT); |
6472 | if (MulVT.getSizeInBits() < (2 * EltBits) || |
6473 | !isOperationLegal(Op: ISD::MUL, VT: MulVT)) |
6474 | return SDValue(); |
6475 | } |
6476 | |
6477 | // If the udiv has an 'exact' bit we can use a simpler lowering. |
6478 | if (N->getFlags().hasExact()) |
6479 | return BuildExactUDIV(TLI: *this, N, dl, DAG, Created); |
6480 | |
6481 | SDValue N0 = N->getOperand(Num: 0); |
6482 | SDValue N1 = N->getOperand(Num: 1); |
6483 | |
6484 | // Try to use leading zeros of the dividend to reduce the multiplier and |
6485 | // avoid expensive fixups. |
6486 | unsigned KnownLeadingZeros = DAG.computeKnownBits(Op: N0).countMinLeadingZeros(); |
6487 | |
6488 | bool UseNPQ = false, UsePreShift = false, UsePostShift = false; |
6489 | SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; |
6490 | |
6491 | auto BuildUDIVPattern = [&](ConstantSDNode *C) { |
6492 | if (C->isZero()) |
6493 | return false; |
6494 | const APInt& Divisor = C->getAPIntValue(); |
6495 | |
6496 | SDValue PreShift, MagicFactor, NPQFactor, PostShift; |
6497 | |
6498 | // Magic algorithm doesn't work for division by 1. We need to emit a select |
6499 | // at the end. |
6500 | if (Divisor.isOne()) { |
6501 | PreShift = PostShift = DAG.getUNDEF(VT: ShSVT); |
6502 | MagicFactor = NPQFactor = DAG.getUNDEF(VT: SVT); |
6503 | } else { |
6504 | UnsignedDivisionByConstantInfo magics = |
6505 | UnsignedDivisionByConstantInfo::get( |
6506 | D: Divisor, LeadingZeros: std::min(a: KnownLeadingZeros, b: Divisor.countl_zero())); |
6507 | |
6508 | MagicFactor = DAG.getConstant(Val: magics.Magic, DL: dl, VT: SVT); |
6509 | |
6510 | assert(magics.PreShift < Divisor.getBitWidth() && |
6511 | "We shouldn't generate an undefined shift!" ); |
6512 | assert(magics.PostShift < Divisor.getBitWidth() && |
6513 | "We shouldn't generate an undefined shift!" ); |
6514 | assert((!magics.IsAdd || magics.PreShift == 0) && |
6515 | "Unexpected pre-shift" ); |
6516 | PreShift = DAG.getConstant(Val: magics.PreShift, DL: dl, VT: ShSVT); |
6517 | PostShift = DAG.getConstant(Val: magics.PostShift, DL: dl, VT: ShSVT); |
6518 | NPQFactor = DAG.getConstant( |
6519 | Val: magics.IsAdd ? APInt::getOneBitSet(numBits: EltBits, BitNo: EltBits - 1) |
6520 | : APInt::getZero(numBits: EltBits), |
6521 | DL: dl, VT: SVT); |
6522 | UseNPQ |= magics.IsAdd; |
6523 | UsePreShift |= magics.PreShift != 0; |
6524 | UsePostShift |= magics.PostShift != 0; |
6525 | } |
6526 | |
6527 | PreShifts.push_back(Elt: PreShift); |
6528 | MagicFactors.push_back(Elt: MagicFactor); |
6529 | NPQFactors.push_back(Elt: NPQFactor); |
6530 | PostShifts.push_back(Elt: PostShift); |
6531 | return true; |
6532 | }; |
6533 | |
6534 | // Collect the shifts/magic values from each element. |
6535 | if (!ISD::matchUnaryPredicate(Op: N1, Match: BuildUDIVPattern)) |
6536 | return SDValue(); |
6537 | |
6538 | SDValue PreShift, PostShift, MagicFactor, NPQFactor; |
6539 | if (N1.getOpcode() == ISD::BUILD_VECTOR) { |
6540 | PreShift = DAG.getBuildVector(VT: ShVT, DL: dl, Ops: PreShifts); |
6541 | MagicFactor = DAG.getBuildVector(VT, DL: dl, Ops: MagicFactors); |
6542 | NPQFactor = DAG.getBuildVector(VT, DL: dl, Ops: NPQFactors); |
6543 | PostShift = DAG.getBuildVector(VT: ShVT, DL: dl, Ops: PostShifts); |
6544 | } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { |
6545 | assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && |
6546 | NPQFactors.size() == 1 && PostShifts.size() == 1 && |
6547 | "Expected matchUnaryPredicate to return one for scalable vectors" ); |
6548 | PreShift = DAG.getSplatVector(VT: ShVT, DL: dl, Op: PreShifts[0]); |
6549 | MagicFactor = DAG.getSplatVector(VT, DL: dl, Op: MagicFactors[0]); |
6550 | NPQFactor = DAG.getSplatVector(VT, DL: dl, Op: NPQFactors[0]); |
6551 | PostShift = DAG.getSplatVector(VT: ShVT, DL: dl, Op: PostShifts[0]); |
6552 | } else { |
6553 | assert(isa<ConstantSDNode>(N1) && "Expected a constant" ); |
6554 | PreShift = PreShifts[0]; |
6555 | MagicFactor = MagicFactors[0]; |
6556 | PostShift = PostShifts[0]; |
6557 | } |
6558 | |
6559 | SDValue Q = N0; |
6560 | if (UsePreShift) { |
6561 | Q = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Q, N2: PreShift); |
6562 | Created.push_back(Elt: Q.getNode()); |
6563 | } |
6564 | |
6565 | // FIXME: We should support doing a MUL in a wider type. |
6566 | auto GetMULHU = [&](SDValue X, SDValue Y) { |
6567 | // If the type isn't legal, use a wider mul of the type calculated |
6568 | // earlier. |
6569 | if (!isTypeLegal(VT)) { |
6570 | X = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT: MulVT, Operand: X); |
6571 | Y = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT: MulVT, Operand: Y); |
6572 | Y = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: MulVT, N1: X, N2: Y); |
6573 | Y = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: MulVT, N1: Y, |
6574 | N2: DAG.getShiftAmountConstant(Val: EltBits, VT: MulVT, DL: dl)); |
6575 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Y); |
6576 | } |
6577 | |
6578 | if (isOperationLegalOrCustom(Op: ISD::MULHU, VT, LegalOnly: IsAfterLegalization)) |
6579 | return DAG.getNode(Opcode: ISD::MULHU, DL: dl, VT, N1: X, N2: Y); |
6580 | if (isOperationLegalOrCustom(Op: ISD::UMUL_LOHI, VT, LegalOnly: IsAfterLegalization)) { |
6581 | SDValue LoHi = |
6582 | DAG.getNode(Opcode: ISD::UMUL_LOHI, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: VT), N1: X, N2: Y); |
6583 | return SDValue(LoHi.getNode(), 1); |
6584 | } |
6585 | // If type twice as wide legal, widen and use a mul plus a shift. |
6586 | unsigned Size = VT.getScalarSizeInBits(); |
6587 | EVT WideVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: Size * 2); |
6588 | if (VT.isVector()) |
6589 | WideVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: WideVT, |
6590 | EC: VT.getVectorElementCount()); |
6591 | if (isOperationLegalOrCustom(Op: ISD::MUL, VT: WideVT)) { |
6592 | X = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT: WideVT, Operand: X); |
6593 | Y = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT: WideVT, Operand: Y); |
6594 | Y = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: WideVT, N1: X, N2: Y); |
6595 | Y = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: WideVT, N1: Y, |
6596 | N2: DAG.getShiftAmountConstant(Val: EltBits, VT: WideVT, DL: dl)); |
6597 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Y); |
6598 | } |
6599 | return SDValue(); // No mulhu or equivalent |
6600 | }; |
6601 | |
6602 | // Multiply the numerator (operand 0) by the magic value. |
6603 | Q = GetMULHU(Q, MagicFactor); |
6604 | if (!Q) |
6605 | return SDValue(); |
6606 | |
6607 | Created.push_back(Elt: Q.getNode()); |
6608 | |
6609 | if (UseNPQ) { |
6610 | SDValue NPQ = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: N0, N2: Q); |
6611 | Created.push_back(Elt: NPQ.getNode()); |
6612 | |
6613 | // For vectors we might have a mix of non-NPQ/NPQ paths, so use |
6614 | // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. |
6615 | if (VT.isVector()) |
6616 | NPQ = GetMULHU(NPQ, NPQFactor); |
6617 | else |
6618 | NPQ = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: NPQ, N2: DAG.getConstant(Val: 1, DL: dl, VT: ShVT)); |
6619 | |
6620 | Created.push_back(Elt: NPQ.getNode()); |
6621 | |
6622 | Q = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: NPQ, N2: Q); |
6623 | Created.push_back(Elt: Q.getNode()); |
6624 | } |
6625 | |
6626 | if (UsePostShift) { |
6627 | Q = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Q, N2: PostShift); |
6628 | Created.push_back(Elt: Q.getNode()); |
6629 | } |
6630 | |
6631 | EVT SetCCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
6632 | |
6633 | SDValue One = DAG.getConstant(Val: 1, DL: dl, VT); |
6634 | SDValue IsOne = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: N1, RHS: One, Cond: ISD::SETEQ); |
6635 | return DAG.getSelect(DL: dl, VT, Cond: IsOne, LHS: N0, RHS: Q); |
6636 | } |
6637 | |
6638 | /// If all values in Values that *don't* match the predicate are same 'splat' |
6639 | /// value, then replace all values with that splat value. |
6640 | /// Else, if AlternativeReplacement was provided, then replace all values that |
6641 | /// do match predicate with AlternativeReplacement value. |
6642 | static void |
6643 | turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, |
6644 | std::function<bool(SDValue)> Predicate, |
6645 | SDValue AlternativeReplacement = SDValue()) { |
6646 | SDValue Replacement; |
6647 | // Is there a value for which the Predicate does *NOT* match? What is it? |
6648 | auto SplatValue = llvm::find_if_not(Range&: Values, P: Predicate); |
6649 | if (SplatValue != Values.end()) { |
6650 | // Does Values consist only of SplatValue's and values matching Predicate? |
6651 | if (llvm::all_of(Range&: Values, P: [Predicate, SplatValue](SDValue Value) { |
6652 | return Value == *SplatValue || Predicate(Value); |
6653 | })) // Then we shall replace values matching predicate with SplatValue. |
6654 | Replacement = *SplatValue; |
6655 | } |
6656 | if (!Replacement) { |
6657 | // Oops, we did not find the "baseline" splat value. |
6658 | if (!AlternativeReplacement) |
6659 | return; // Nothing to do. |
6660 | // Let's replace with provided value then. |
6661 | Replacement = AlternativeReplacement; |
6662 | } |
6663 | std::replace_if(first: Values.begin(), last: Values.end(), pred: Predicate, new_value: Replacement); |
6664 | } |
6665 | |
6666 | /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE |
6667 | /// where the divisor is constant and the comparison target is zero, |
6668 | /// return a DAG expression that will generate the same comparison result |
6669 | /// using only multiplications, additions and shifts/rotations. |
6670 | /// Ref: "Hacker's Delight" 10-17. |
6671 | SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, |
6672 | SDValue CompTargetNode, |
6673 | ISD::CondCode Cond, |
6674 | DAGCombinerInfo &DCI, |
6675 | const SDLoc &DL) const { |
6676 | SmallVector<SDNode *, 5> Built; |
6677 | if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, |
6678 | DCI, DL, Created&: Built)) { |
6679 | for (SDNode *N : Built) |
6680 | DCI.AddToWorklist(N); |
6681 | return Folded; |
6682 | } |
6683 | |
6684 | return SDValue(); |
6685 | } |
6686 | |
6687 | SDValue |
6688 | TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, |
6689 | SDValue CompTargetNode, ISD::CondCode Cond, |
6690 | DAGCombinerInfo &DCI, const SDLoc &DL, |
6691 | SmallVectorImpl<SDNode *> &Created) const { |
6692 | // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) |
6693 | // - D must be constant, with D = D0 * 2^K where D0 is odd |
6694 | // - P is the multiplicative inverse of D0 modulo 2^W |
6695 | // - Q = floor(((2^W) - 1) / D) |
6696 | // where W is the width of the common type of N and D. |
6697 | assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
6698 | "Only applicable for (in)equality comparisons." ); |
6699 | |
6700 | SelectionDAG &DAG = DCI.DAG; |
6701 | |
6702 | EVT VT = REMNode.getValueType(); |
6703 | EVT SVT = VT.getScalarType(); |
6704 | EVT ShVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
6705 | EVT ShSVT = ShVT.getScalarType(); |
6706 | |
6707 | // If MUL is unavailable, we cannot proceed in any case. |
6708 | if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(Op: ISD::MUL, VT)) |
6709 | return SDValue(); |
6710 | |
6711 | bool ComparingWithAllZeros = true; |
6712 | bool AllComparisonsWithNonZerosAreTautological = true; |
6713 | bool HadTautologicalLanes = false; |
6714 | bool AllLanesAreTautological = true; |
6715 | bool HadEvenDivisor = false; |
6716 | bool AllDivisorsArePowerOfTwo = true; |
6717 | bool HadTautologicalInvertedLanes = false; |
6718 | SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; |
6719 | |
6720 | auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { |
6721 | // Division by 0 is UB. Leave it to be constant-folded elsewhere. |
6722 | if (CDiv->isZero()) |
6723 | return false; |
6724 | |
6725 | const APInt &D = CDiv->getAPIntValue(); |
6726 | const APInt &Cmp = CCmp->getAPIntValue(); |
6727 | |
6728 | ComparingWithAllZeros &= Cmp.isZero(); |
6729 | |
6730 | // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, |
6731 | // if C2 is not less than C1, the comparison is always false. |
6732 | // But we will only be able to produce the comparison that will give the |
6733 | // opposive tautological answer. So this lane would need to be fixed up. |
6734 | bool TautologicalInvertedLane = D.ule(RHS: Cmp); |
6735 | HadTautologicalInvertedLanes |= TautologicalInvertedLane; |
6736 | |
6737 | // If all lanes are tautological (either all divisors are ones, or divisor |
6738 | // is not greater than the constant we are comparing with), |
6739 | // we will prefer to avoid the fold. |
6740 | bool TautologicalLane = D.isOne() || TautologicalInvertedLane; |
6741 | HadTautologicalLanes |= TautologicalLane; |
6742 | AllLanesAreTautological &= TautologicalLane; |
6743 | |
6744 | // If we are comparing with non-zero, we need'll need to subtract said |
6745 | // comparison value from the LHS. But there is no point in doing that if |
6746 | // every lane where we are comparing with non-zero is tautological.. |
6747 | if (!Cmp.isZero()) |
6748 | AllComparisonsWithNonZerosAreTautological &= TautologicalLane; |
6749 | |
6750 | // Decompose D into D0 * 2^K |
6751 | unsigned K = D.countr_zero(); |
6752 | assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate." ); |
6753 | APInt D0 = D.lshr(shiftAmt: K); |
6754 | |
6755 | // D is even if it has trailing zeros. |
6756 | HadEvenDivisor |= (K != 0); |
6757 | // D is a power-of-two if D0 is one. |
6758 | // If all divisors are power-of-two, we will prefer to avoid the fold. |
6759 | AllDivisorsArePowerOfTwo &= D0.isOne(); |
6760 | |
6761 | // P = inv(D0, 2^W) |
6762 | // 2^W requires W + 1 bits, so we have to extend and then truncate. |
6763 | unsigned W = D.getBitWidth(); |
6764 | APInt P = D0.multiplicativeInverse(); |
6765 | assert((D0 * P).isOne() && "Multiplicative inverse basic check failed." ); |
6766 | |
6767 | // Q = floor((2^W - 1) u/ D) |
6768 | // R = ((2^W - 1) u% D) |
6769 | APInt Q, R; |
6770 | APInt::udivrem(LHS: APInt::getAllOnes(numBits: W), RHS: D, Quotient&: Q, Remainder&: R); |
6771 | |
6772 | // If we are comparing with zero, then that comparison constant is okay, |
6773 | // else it may need to be one less than that. |
6774 | if (Cmp.ugt(RHS: R)) |
6775 | Q -= 1; |
6776 | |
6777 | assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && |
6778 | "We are expecting that K is always less than all-ones for ShSVT" ); |
6779 | |
6780 | // If the lane is tautological the result can be constant-folded. |
6781 | if (TautologicalLane) { |
6782 | // Set P and K amount to a bogus values so we can try to splat them. |
6783 | P = 0; |
6784 | K = -1; |
6785 | // And ensure that comparison constant is tautological, |
6786 | // it will always compare true/false. |
6787 | Q = -1; |
6788 | } |
6789 | |
6790 | PAmts.push_back(Elt: DAG.getConstant(Val: P, DL, VT: SVT)); |
6791 | KAmts.push_back( |
6792 | Elt: DAG.getConstant(Val: APInt(ShSVT.getSizeInBits(), K), DL, VT: ShSVT)); |
6793 | QAmts.push_back(Elt: DAG.getConstant(Val: Q, DL, VT: SVT)); |
6794 | return true; |
6795 | }; |
6796 | |
6797 | SDValue N = REMNode.getOperand(i: 0); |
6798 | SDValue D = REMNode.getOperand(i: 1); |
6799 | |
6800 | // Collect the values from each element. |
6801 | if (!ISD::matchBinaryPredicate(LHS: D, RHS: CompTargetNode, Match: BuildUREMPattern)) |
6802 | return SDValue(); |
6803 | |
6804 | // If all lanes are tautological, the result can be constant-folded. |
6805 | if (AllLanesAreTautological) |
6806 | return SDValue(); |
6807 | |
6808 | // If this is a urem by a powers-of-two, avoid the fold since it can be |
6809 | // best implemented as a bit test. |
6810 | if (AllDivisorsArePowerOfTwo) |
6811 | return SDValue(); |
6812 | |
6813 | SDValue PVal, KVal, QVal; |
6814 | if (D.getOpcode() == ISD::BUILD_VECTOR) { |
6815 | if (HadTautologicalLanes) { |
6816 | // Try to turn PAmts into a splat, since we don't care about the values |
6817 | // that are currently '0'. If we can't, just keep '0'`s. |
6818 | turnVectorIntoSplatVector(Values: PAmts, Predicate: isNullConstant); |
6819 | // Try to turn KAmts into a splat, since we don't care about the values |
6820 | // that are currently '-1'. If we can't, change them to '0'`s. |
6821 | turnVectorIntoSplatVector(Values: KAmts, Predicate: isAllOnesConstant, |
6822 | AlternativeReplacement: DAG.getConstant(Val: 0, DL, VT: ShSVT)); |
6823 | } |
6824 | |
6825 | PVal = DAG.getBuildVector(VT, DL, Ops: PAmts); |
6826 | KVal = DAG.getBuildVector(VT: ShVT, DL, Ops: KAmts); |
6827 | QVal = DAG.getBuildVector(VT, DL, Ops: QAmts); |
6828 | } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { |
6829 | assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && |
6830 | "Expected matchBinaryPredicate to return one element for " |
6831 | "SPLAT_VECTORs" ); |
6832 | PVal = DAG.getSplatVector(VT, DL, Op: PAmts[0]); |
6833 | KVal = DAG.getSplatVector(VT: ShVT, DL, Op: KAmts[0]); |
6834 | QVal = DAG.getSplatVector(VT, DL, Op: QAmts[0]); |
6835 | } else { |
6836 | PVal = PAmts[0]; |
6837 | KVal = KAmts[0]; |
6838 | QVal = QAmts[0]; |
6839 | } |
6840 | |
6841 | if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { |
6842 | if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(Op: ISD::SUB, VT)) |
6843 | return SDValue(); // FIXME: Could/should use `ISD::ADD`? |
6844 | assert(CompTargetNode.getValueType() == N.getValueType() && |
6845 | "Expecting that the types on LHS and RHS of comparisons match." ); |
6846 | N = DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: N, N2: CompTargetNode); |
6847 | } |
6848 | |
6849 | // (mul N, P) |
6850 | SDValue Op0 = DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: N, N2: PVal); |
6851 | Created.push_back(Elt: Op0.getNode()); |
6852 | |
6853 | // Rotate right only if any divisor was even. We avoid rotates for all-odd |
6854 | // divisors as a performance improvement, since rotating by 0 is a no-op. |
6855 | if (HadEvenDivisor) { |
6856 | // We need ROTR to do this. |
6857 | if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(Op: ISD::ROTR, VT)) |
6858 | return SDValue(); |
6859 | // UREM: (rotr (mul N, P), K) |
6860 | Op0 = DAG.getNode(Opcode: ISD::ROTR, DL, VT, N1: Op0, N2: KVal); |
6861 | Created.push_back(Elt: Op0.getNode()); |
6862 | } |
6863 | |
6864 | // UREM: (setule/setugt (rotr (mul N, P), K), Q) |
6865 | SDValue NewCC = |
6866 | DAG.getSetCC(DL, VT: SETCCVT, LHS: Op0, RHS: QVal, |
6867 | Cond: ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); |
6868 | if (!HadTautologicalInvertedLanes) |
6869 | return NewCC; |
6870 | |
6871 | // If any lanes previously compared always-false, the NewCC will give |
6872 | // always-true result for them, so we need to fixup those lanes. |
6873 | // Or the other way around for inequality predicate. |
6874 | assert(VT.isVector() && "Can/should only get here for vectors." ); |
6875 | Created.push_back(Elt: NewCC.getNode()); |
6876 | |
6877 | // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, |
6878 | // if C2 is not less than C1, the comparison is always false. |
6879 | // But we have produced the comparison that will give the |
6880 | // opposive tautological answer. So these lanes would need to be fixed up. |
6881 | SDValue TautologicalInvertedChannels = |
6882 | DAG.getSetCC(DL, VT: SETCCVT, LHS: D, RHS: CompTargetNode, Cond: ISD::SETULE); |
6883 | Created.push_back(Elt: TautologicalInvertedChannels.getNode()); |
6884 | |
6885 | // NOTE: we avoid letting illegal types through even if we're before legalize |
6886 | // ops – legalization has a hard time producing good code for this. |
6887 | if (isOperationLegalOrCustom(Op: ISD::VSELECT, VT: SETCCVT)) { |
6888 | // If we have a vector select, let's replace the comparison results in the |
6889 | // affected lanes with the correct tautological result. |
6890 | SDValue Replacement = DAG.getBoolConstant(V: Cond == ISD::SETEQ ? false : true, |
6891 | DL, VT: SETCCVT, OpVT: SETCCVT); |
6892 | return DAG.getNode(Opcode: ISD::VSELECT, DL, VT: SETCCVT, N1: TautologicalInvertedChannels, |
6893 | N2: Replacement, N3: NewCC); |
6894 | } |
6895 | |
6896 | // Else, we can just invert the comparison result in the appropriate lanes. |
6897 | // |
6898 | // NOTE: see the note above VSELECT above. |
6899 | if (isOperationLegalOrCustom(Op: ISD::XOR, VT: SETCCVT)) |
6900 | return DAG.getNode(Opcode: ISD::XOR, DL, VT: SETCCVT, N1: NewCC, |
6901 | N2: TautologicalInvertedChannels); |
6902 | |
6903 | return SDValue(); // Don't know how to lower. |
6904 | } |
6905 | |
6906 | /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE |
6907 | /// where the divisor is constant and the comparison target is zero, |
6908 | /// return a DAG expression that will generate the same comparison result |
6909 | /// using only multiplications, additions and shifts/rotations. |
6910 | /// Ref: "Hacker's Delight" 10-17. |
6911 | SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, |
6912 | SDValue CompTargetNode, |
6913 | ISD::CondCode Cond, |
6914 | DAGCombinerInfo &DCI, |
6915 | const SDLoc &DL) const { |
6916 | SmallVector<SDNode *, 7> Built; |
6917 | if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, |
6918 | DCI, DL, Created&: Built)) { |
6919 | assert(Built.size() <= 7 && "Max size prediction failed." ); |
6920 | for (SDNode *N : Built) |
6921 | DCI.AddToWorklist(N); |
6922 | return Folded; |
6923 | } |
6924 | |
6925 | return SDValue(); |
6926 | } |
6927 | |
6928 | SDValue |
6929 | TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, |
6930 | SDValue CompTargetNode, ISD::CondCode Cond, |
6931 | DAGCombinerInfo &DCI, const SDLoc &DL, |
6932 | SmallVectorImpl<SDNode *> &Created) const { |
6933 | // Derived from Hacker's Delight, 2nd Edition, by Hank Warren. Section 10-17. |
6934 | // Fold: |
6935 | // (seteq/ne (srem N, D), 0) |
6936 | // To: |
6937 | // (setule/ugt (rotr (add (mul N, P), A), K), Q) |
6938 | // |
6939 | // - D must be constant, with D = D0 * 2^K where D0 is odd |
6940 | // - P is the multiplicative inverse of D0 modulo 2^W |
6941 | // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) |
6942 | // - Q = floor((2 * A) / (2^K)) |
6943 | // where W is the width of the common type of N and D. |
6944 | // |
6945 | // When D is a power of two (and thus D0 is 1), the normal |
6946 | // formula for A and Q don't apply, because the derivation |
6947 | // depends on D not dividing 2^(W-1), and thus theorem ZRS |
6948 | // does not apply. This specifically fails when N = INT_MIN. |
6949 | // |
6950 | // Instead, for power-of-two D, we use: |
6951 | // - A = 2^(W-1) |
6952 | // |-> Order-preserving map from [-2^(W-1), 2^(W-1) - 1] to [0,2^W - 1]) |
6953 | // - Q = 2^(W-K) - 1 |
6954 | // |-> Test that the top K bits are zero after rotation |
6955 | assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
6956 | "Only applicable for (in)equality comparisons." ); |
6957 | |
6958 | SelectionDAG &DAG = DCI.DAG; |
6959 | |
6960 | EVT VT = REMNode.getValueType(); |
6961 | EVT SVT = VT.getScalarType(); |
6962 | EVT ShVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
6963 | EVT ShSVT = ShVT.getScalarType(); |
6964 | |
6965 | // If we are after ops legalization, and MUL is unavailable, we can not |
6966 | // proceed. |
6967 | if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(Op: ISD::MUL, VT)) |
6968 | return SDValue(); |
6969 | |
6970 | // TODO: Could support comparing with non-zero too. |
6971 | ConstantSDNode *CompTarget = isConstOrConstSplat(N: CompTargetNode); |
6972 | if (!CompTarget || !CompTarget->isZero()) |
6973 | return SDValue(); |
6974 | |
6975 | bool HadIntMinDivisor = false; |
6976 | bool HadOneDivisor = false; |
6977 | bool AllDivisorsAreOnes = true; |
6978 | bool HadEvenDivisor = false; |
6979 | bool NeedToApplyOffset = false; |
6980 | bool AllDivisorsArePowerOfTwo = true; |
6981 | SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; |
6982 | |
6983 | auto BuildSREMPattern = [&](ConstantSDNode *C) { |
6984 | // Division by 0 is UB. Leave it to be constant-folded elsewhere. |
6985 | if (C->isZero()) |
6986 | return false; |
6987 | |
6988 | // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. |
6989 | |
6990 | // WARNING: this fold is only valid for positive divisors! |
6991 | APInt D = C->getAPIntValue(); |
6992 | if (D.isNegative()) |
6993 | D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` |
6994 | |
6995 | HadIntMinDivisor |= D.isMinSignedValue(); |
6996 | |
6997 | // If all divisors are ones, we will prefer to avoid the fold. |
6998 | HadOneDivisor |= D.isOne(); |
6999 | AllDivisorsAreOnes &= D.isOne(); |
7000 | |
7001 | // Decompose D into D0 * 2^K |
7002 | unsigned K = D.countr_zero(); |
7003 | assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate." ); |
7004 | APInt D0 = D.lshr(shiftAmt: K); |
7005 | |
7006 | if (!D.isMinSignedValue()) { |
7007 | // D is even if it has trailing zeros; unless it's INT_MIN, in which case |
7008 | // we don't care about this lane in this fold, we'll special-handle it. |
7009 | HadEvenDivisor |= (K != 0); |
7010 | } |
7011 | |
7012 | // D is a power-of-two if D0 is one. This includes INT_MIN. |
7013 | // If all divisors are power-of-two, we will prefer to avoid the fold. |
7014 | AllDivisorsArePowerOfTwo &= D0.isOne(); |
7015 | |
7016 | // P = inv(D0, 2^W) |
7017 | // 2^W requires W + 1 bits, so we have to extend and then truncate. |
7018 | unsigned W = D.getBitWidth(); |
7019 | APInt P = D0.multiplicativeInverse(); |
7020 | assert((D0 * P).isOne() && "Multiplicative inverse basic check failed." ); |
7021 | |
7022 | // A = floor((2^(W - 1) - 1) / D0) & -2^K |
7023 | APInt A = APInt::getSignedMaxValue(numBits: W).udiv(RHS: D0); |
7024 | A.clearLowBits(loBits: K); |
7025 | |
7026 | if (!D.isMinSignedValue()) { |
7027 | // If divisor INT_MIN, then we don't care about this lane in this fold, |
7028 | // we'll special-handle it. |
7029 | NeedToApplyOffset |= A != 0; |
7030 | } |
7031 | |
7032 | // Q = floor((2 * A) / (2^K)) |
7033 | APInt Q = (2 * A).udiv(RHS: APInt::getOneBitSet(numBits: W, BitNo: K)); |
7034 | |
7035 | assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && |
7036 | "We are expecting that A is always less than all-ones for SVT" ); |
7037 | assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && |
7038 | "We are expecting that K is always less than all-ones for ShSVT" ); |
7039 | |
7040 | // If D was a power of two, apply the alternate constant derivation. |
7041 | if (D0.isOne()) { |
7042 | // A = 2^(W-1) |
7043 | A = APInt::getSignedMinValue(numBits: W); |
7044 | // - Q = 2^(W-K) - 1 |
7045 | Q = APInt::getAllOnes(numBits: W - K).zext(width: W); |
7046 | } |
7047 | |
7048 | // If the divisor is 1 the result can be constant-folded. Likewise, we |
7049 | // don't care about INT_MIN lanes, those can be set to undef if appropriate. |
7050 | if (D.isOne()) { |
7051 | // Set P, A and K to a bogus values so we can try to splat them. |
7052 | P = 0; |
7053 | A = -1; |
7054 | K = -1; |
7055 | |
7056 | // x ?% 1 == 0 <--> true <--> x u<= -1 |
7057 | Q = -1; |
7058 | } |
7059 | |
7060 | PAmts.push_back(Elt: DAG.getConstant(Val: P, DL, VT: SVT)); |
7061 | AAmts.push_back(Elt: DAG.getConstant(Val: A, DL, VT: SVT)); |
7062 | KAmts.push_back( |
7063 | Elt: DAG.getConstant(Val: APInt(ShSVT.getSizeInBits(), K), DL, VT: ShSVT)); |
7064 | QAmts.push_back(Elt: DAG.getConstant(Val: Q, DL, VT: SVT)); |
7065 | return true; |
7066 | }; |
7067 | |
7068 | SDValue N = REMNode.getOperand(i: 0); |
7069 | SDValue D = REMNode.getOperand(i: 1); |
7070 | |
7071 | // Collect the values from each element. |
7072 | if (!ISD::matchUnaryPredicate(Op: D, Match: BuildSREMPattern)) |
7073 | return SDValue(); |
7074 | |
7075 | // If this is a srem by a one, avoid the fold since it can be constant-folded. |
7076 | if (AllDivisorsAreOnes) |
7077 | return SDValue(); |
7078 | |
7079 | // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold |
7080 | // since it can be best implemented as a bit test. |
7081 | if (AllDivisorsArePowerOfTwo) |
7082 | return SDValue(); |
7083 | |
7084 | SDValue PVal, AVal, KVal, QVal; |
7085 | if (D.getOpcode() == ISD::BUILD_VECTOR) { |
7086 | if (HadOneDivisor) { |
7087 | // Try to turn PAmts into a splat, since we don't care about the values |
7088 | // that are currently '0'. If we can't, just keep '0'`s. |
7089 | turnVectorIntoSplatVector(Values: PAmts, Predicate: isNullConstant); |
7090 | // Try to turn AAmts into a splat, since we don't care about the |
7091 | // values that are currently '-1'. If we can't, change them to '0'`s. |
7092 | turnVectorIntoSplatVector(Values: AAmts, Predicate: isAllOnesConstant, |
7093 | AlternativeReplacement: DAG.getConstant(Val: 0, DL, VT: SVT)); |
7094 | // Try to turn KAmts into a splat, since we don't care about the values |
7095 | // that are currently '-1'. If we can't, change them to '0'`s. |
7096 | turnVectorIntoSplatVector(Values: KAmts, Predicate: isAllOnesConstant, |
7097 | AlternativeReplacement: DAG.getConstant(Val: 0, DL, VT: ShSVT)); |
7098 | } |
7099 | |
7100 | PVal = DAG.getBuildVector(VT, DL, Ops: PAmts); |
7101 | AVal = DAG.getBuildVector(VT, DL, Ops: AAmts); |
7102 | KVal = DAG.getBuildVector(VT: ShVT, DL, Ops: KAmts); |
7103 | QVal = DAG.getBuildVector(VT, DL, Ops: QAmts); |
7104 | } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { |
7105 | assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && |
7106 | QAmts.size() == 1 && |
7107 | "Expected matchUnaryPredicate to return one element for scalable " |
7108 | "vectors" ); |
7109 | PVal = DAG.getSplatVector(VT, DL, Op: PAmts[0]); |
7110 | AVal = DAG.getSplatVector(VT, DL, Op: AAmts[0]); |
7111 | KVal = DAG.getSplatVector(VT: ShVT, DL, Op: KAmts[0]); |
7112 | QVal = DAG.getSplatVector(VT, DL, Op: QAmts[0]); |
7113 | } else { |
7114 | assert(isa<ConstantSDNode>(D) && "Expected a constant" ); |
7115 | PVal = PAmts[0]; |
7116 | AVal = AAmts[0]; |
7117 | KVal = KAmts[0]; |
7118 | QVal = QAmts[0]; |
7119 | } |
7120 | |
7121 | // (mul N, P) |
7122 | SDValue Op0 = DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: N, N2: PVal); |
7123 | Created.push_back(Elt: Op0.getNode()); |
7124 | |
7125 | if (NeedToApplyOffset) { |
7126 | // We need ADD to do this. |
7127 | if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(Op: ISD::ADD, VT)) |
7128 | return SDValue(); |
7129 | |
7130 | // (add (mul N, P), A) |
7131 | Op0 = DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Op0, N2: AVal); |
7132 | Created.push_back(Elt: Op0.getNode()); |
7133 | } |
7134 | |
7135 | // Rotate right only if any divisor was even. We avoid rotates for all-odd |
7136 | // divisors as a performance improvement, since rotating by 0 is a no-op. |
7137 | if (HadEvenDivisor) { |
7138 | // We need ROTR to do this. |
7139 | if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(Op: ISD::ROTR, VT)) |
7140 | return SDValue(); |
7141 | // SREM: (rotr (add (mul N, P), A), K) |
7142 | Op0 = DAG.getNode(Opcode: ISD::ROTR, DL, VT, N1: Op0, N2: KVal); |
7143 | Created.push_back(Elt: Op0.getNode()); |
7144 | } |
7145 | |
7146 | // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) |
7147 | SDValue Fold = |
7148 | DAG.getSetCC(DL, VT: SETCCVT, LHS: Op0, RHS: QVal, |
7149 | Cond: ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); |
7150 | |
7151 | // If we didn't have lanes with INT_MIN divisor, then we're done. |
7152 | if (!HadIntMinDivisor) |
7153 | return Fold; |
7154 | |
7155 | // That fold is only valid for positive divisors. Which effectively means, |
7156 | // it is invalid for INT_MIN divisors. So if we have such a lane, |
7157 | // we must fix-up results for said lanes. |
7158 | assert(VT.isVector() && "Can/should only get here for vectors." ); |
7159 | |
7160 | // NOTE: we avoid letting illegal types through even if we're before legalize |
7161 | // ops – legalization has a hard time producing good code for the code that |
7162 | // follows. |
7163 | if (!isOperationLegalOrCustom(Op: ISD::SETCC, VT: SETCCVT) || |
7164 | !isOperationLegalOrCustom(Op: ISD::AND, VT) || |
7165 | !isCondCodeLegalOrCustom(CC: Cond, VT: VT.getSimpleVT()) || |
7166 | !isOperationLegalOrCustom(Op: ISD::VSELECT, VT: SETCCVT)) |
7167 | return SDValue(); |
7168 | |
7169 | Created.push_back(Elt: Fold.getNode()); |
7170 | |
7171 | SDValue IntMin = DAG.getConstant( |
7172 | Val: APInt::getSignedMinValue(numBits: SVT.getScalarSizeInBits()), DL, VT); |
7173 | SDValue IntMax = DAG.getConstant( |
7174 | Val: APInt::getSignedMaxValue(numBits: SVT.getScalarSizeInBits()), DL, VT); |
7175 | SDValue Zero = |
7176 | DAG.getConstant(Val: APInt::getZero(numBits: SVT.getScalarSizeInBits()), DL, VT); |
7177 | |
7178 | // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. |
7179 | SDValue DivisorIsIntMin = DAG.getSetCC(DL, VT: SETCCVT, LHS: D, RHS: IntMin, Cond: ISD::SETEQ); |
7180 | Created.push_back(Elt: DivisorIsIntMin.getNode()); |
7181 | |
7182 | // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 |
7183 | SDValue Masked = DAG.getNode(Opcode: ISD::AND, DL, VT, N1: N, N2: IntMax); |
7184 | Created.push_back(Elt: Masked.getNode()); |
7185 | SDValue MaskedIsZero = DAG.getSetCC(DL, VT: SETCCVT, LHS: Masked, RHS: Zero, Cond); |
7186 | Created.push_back(Elt: MaskedIsZero.getNode()); |
7187 | |
7188 | // To produce final result we need to blend 2 vectors: 'SetCC' and |
7189 | // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick |
7190 | // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is |
7191 | // constant-folded, select can get lowered to a shuffle with constant mask. |
7192 | SDValue Blended = DAG.getNode(Opcode: ISD::VSELECT, DL, VT: SETCCVT, N1: DivisorIsIntMin, |
7193 | N2: MaskedIsZero, N3: Fold); |
7194 | |
7195 | return Blended; |
7196 | } |
7197 | |
7198 | bool TargetLowering:: |
7199 | verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { |
7200 | if (!isa<ConstantSDNode>(Val: Op.getOperand(i: 0))) { |
7201 | DAG.getContext()->emitError(ErrorStr: "argument to '__builtin_return_address' must " |
7202 | "be a constant integer" ); |
7203 | return true; |
7204 | } |
7205 | |
7206 | return false; |
7207 | } |
7208 | |
7209 | SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, |
7210 | const DenormalMode &Mode) const { |
7211 | SDLoc DL(Op); |
7212 | EVT VT = Op.getValueType(); |
7213 | EVT CCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
7214 | SDValue FPZero = DAG.getConstantFP(Val: 0.0, DL, VT); |
7215 | |
7216 | // This is specifically a check for the handling of denormal inputs, not the |
7217 | // result. |
7218 | if (Mode.Input == DenormalMode::PreserveSign || |
7219 | Mode.Input == DenormalMode::PositiveZero) { |
7220 | // Test = X == 0.0 |
7221 | return DAG.getSetCC(DL, VT: CCVT, LHS: Op, RHS: FPZero, Cond: ISD::SETEQ); |
7222 | } |
7223 | |
7224 | // Testing it with denormal inputs to avoid wrong estimate. |
7225 | // |
7226 | // Test = fabs(X) < SmallestNormal |
7227 | const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); |
7228 | APFloat SmallestNorm = APFloat::getSmallestNormalized(Sem: FltSem); |
7229 | SDValue NormC = DAG.getConstantFP(Val: SmallestNorm, DL, VT); |
7230 | SDValue Fabs = DAG.getNode(Opcode: ISD::FABS, DL, VT, Operand: Op); |
7231 | return DAG.getSetCC(DL, VT: CCVT, LHS: Fabs, RHS: NormC, Cond: ISD::SETLT); |
7232 | } |
7233 | |
7234 | SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, |
7235 | bool LegalOps, bool OptForSize, |
7236 | NegatibleCost &Cost, |
7237 | unsigned Depth) const { |
7238 | // fneg is removable even if it has multiple uses. |
7239 | if (Op.getOpcode() == ISD::FNEG || Op.getOpcode() == ISD::VP_FNEG) { |
7240 | Cost = NegatibleCost::Cheaper; |
7241 | return Op.getOperand(i: 0); |
7242 | } |
7243 | |
7244 | // Don't recurse exponentially. |
7245 | if (Depth > SelectionDAG::MaxRecursionDepth) |
7246 | return SDValue(); |
7247 | |
7248 | // Pre-increment recursion depth for use in recursive calls. |
7249 | ++Depth; |
7250 | const SDNodeFlags Flags = Op->getFlags(); |
7251 | const TargetOptions &Options = DAG.getTarget().Options; |
7252 | EVT VT = Op.getValueType(); |
7253 | unsigned Opcode = Op.getOpcode(); |
7254 | |
7255 | // Don't allow anything with multiple uses unless we know it is free. |
7256 | if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { |
7257 | bool IsFreeExtend = Opcode == ISD::FP_EXTEND && |
7258 | isFPExtFree(DestVT: VT, SrcVT: Op.getOperand(i: 0).getValueType()); |
7259 | if (!IsFreeExtend) |
7260 | return SDValue(); |
7261 | } |
7262 | |
7263 | auto RemoveDeadNode = [&](SDValue N) { |
7264 | if (N && N.getNode()->use_empty()) |
7265 | DAG.RemoveDeadNode(N: N.getNode()); |
7266 | }; |
7267 | |
7268 | SDLoc DL(Op); |
7269 | |
7270 | // Because getNegatedExpression can delete nodes we need a handle to keep |
7271 | // temporary nodes alive in case the recursion manages to create an identical |
7272 | // node. |
7273 | std::list<HandleSDNode> Handles; |
7274 | |
7275 | switch (Opcode) { |
7276 | case ISD::ConstantFP: { |
7277 | // Don't invert constant FP values after legalization unless the target says |
7278 | // the negated constant is legal. |
7279 | bool IsOpLegal = |
7280 | isOperationLegal(Op: ISD::ConstantFP, VT) || |
7281 | isFPImmLegal(neg(X: cast<ConstantFPSDNode>(Val&: Op)->getValueAPF()), VT, |
7282 | ForCodeSize: OptForSize); |
7283 | |
7284 | if (LegalOps && !IsOpLegal) |
7285 | break; |
7286 | |
7287 | APFloat V = cast<ConstantFPSDNode>(Val&: Op)->getValueAPF(); |
7288 | V.changeSign(); |
7289 | SDValue CFP = DAG.getConstantFP(Val: V, DL, VT); |
7290 | |
7291 | // If we already have the use of the negated floating constant, it is free |
7292 | // to negate it even it has multiple uses. |
7293 | if (!Op.hasOneUse() && CFP.use_empty()) |
7294 | break; |
7295 | Cost = NegatibleCost::Neutral; |
7296 | return CFP; |
7297 | } |
7298 | case ISD::BUILD_VECTOR: { |
7299 | // Only permit BUILD_VECTOR of constants. |
7300 | if (llvm::any_of(Range: Op->op_values(), P: [&](SDValue N) { |
7301 | return !N.isUndef() && !isa<ConstantFPSDNode>(Val: N); |
7302 | })) |
7303 | break; |
7304 | |
7305 | bool IsOpLegal = |
7306 | (isOperationLegal(Op: ISD::ConstantFP, VT) && |
7307 | isOperationLegal(Op: ISD::BUILD_VECTOR, VT)) || |
7308 | llvm::all_of(Range: Op->op_values(), P: [&](SDValue N) { |
7309 | return N.isUndef() || |
7310 | isFPImmLegal(neg(X: cast<ConstantFPSDNode>(Val&: N)->getValueAPF()), VT, |
7311 | ForCodeSize: OptForSize); |
7312 | }); |
7313 | |
7314 | if (LegalOps && !IsOpLegal) |
7315 | break; |
7316 | |
7317 | SmallVector<SDValue, 4> Ops; |
7318 | for (SDValue C : Op->op_values()) { |
7319 | if (C.isUndef()) { |
7320 | Ops.push_back(Elt: C); |
7321 | continue; |
7322 | } |
7323 | APFloat V = cast<ConstantFPSDNode>(Val&: C)->getValueAPF(); |
7324 | V.changeSign(); |
7325 | Ops.push_back(Elt: DAG.getConstantFP(Val: V, DL, VT: C.getValueType())); |
7326 | } |
7327 | Cost = NegatibleCost::Neutral; |
7328 | return DAG.getBuildVector(VT, DL, Ops); |
7329 | } |
7330 | case ISD::FADD: { |
7331 | if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) |
7332 | break; |
7333 | |
7334 | // After operation legalization, it might not be legal to create new FSUBs. |
7335 | if (LegalOps && !isOperationLegalOrCustom(Op: ISD::FSUB, VT)) |
7336 | break; |
7337 | SDValue X = Op.getOperand(i: 0), Y = Op.getOperand(i: 1); |
7338 | |
7339 | // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) |
7340 | NegatibleCost CostX = NegatibleCost::Expensive; |
7341 | SDValue NegX = |
7342 | getNegatedExpression(Op: X, DAG, LegalOps, OptForSize, Cost&: CostX, Depth); |
7343 | // Prevent this node from being deleted by the next call. |
7344 | if (NegX) |
7345 | Handles.emplace_back(args&: NegX); |
7346 | |
7347 | // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) |
7348 | NegatibleCost CostY = NegatibleCost::Expensive; |
7349 | SDValue NegY = |
7350 | getNegatedExpression(Op: Y, DAG, LegalOps, OptForSize, Cost&: CostY, Depth); |
7351 | |
7352 | // We're done with the handles. |
7353 | Handles.clear(); |
7354 | |
7355 | // Negate the X if its cost is less or equal than Y. |
7356 | if (NegX && (CostX <= CostY)) { |
7357 | Cost = CostX; |
7358 | SDValue N = DAG.getNode(Opcode: ISD::FSUB, DL, VT, N1: NegX, N2: Y, Flags); |
7359 | if (NegY != N) |
7360 | RemoveDeadNode(NegY); |
7361 | return N; |
7362 | } |
7363 | |
7364 | // Negate the Y if it is not expensive. |
7365 | if (NegY) { |
7366 | Cost = CostY; |
7367 | SDValue N = DAG.getNode(Opcode: ISD::FSUB, DL, VT, N1: NegY, N2: X, Flags); |
7368 | if (NegX != N) |
7369 | RemoveDeadNode(NegX); |
7370 | return N; |
7371 | } |
7372 | break; |
7373 | } |
7374 | case ISD::FSUB: { |
7375 | // We can't turn -(A-B) into B-A when we honor signed zeros. |
7376 | if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) |
7377 | break; |
7378 | |
7379 | SDValue X = Op.getOperand(i: 0), Y = Op.getOperand(i: 1); |
7380 | // fold (fneg (fsub 0, Y)) -> Y |
7381 | if (ConstantFPSDNode *C = isConstOrConstSplatFP(N: X, /*AllowUndefs*/ true)) |
7382 | if (C->isZero()) { |
7383 | Cost = NegatibleCost::Cheaper; |
7384 | return Y; |
7385 | } |
7386 | |
7387 | // fold (fneg (fsub X, Y)) -> (fsub Y, X) |
7388 | Cost = NegatibleCost::Neutral; |
7389 | return DAG.getNode(Opcode: ISD::FSUB, DL, VT, N1: Y, N2: X, Flags); |
7390 | } |
7391 | case ISD::FMUL: |
7392 | case ISD::FDIV: { |
7393 | SDValue X = Op.getOperand(i: 0), Y = Op.getOperand(i: 1); |
7394 | |
7395 | // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) |
7396 | NegatibleCost CostX = NegatibleCost::Expensive; |
7397 | SDValue NegX = |
7398 | getNegatedExpression(Op: X, DAG, LegalOps, OptForSize, Cost&: CostX, Depth); |
7399 | // Prevent this node from being deleted by the next call. |
7400 | if (NegX) |
7401 | Handles.emplace_back(args&: NegX); |
7402 | |
7403 | // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) |
7404 | NegatibleCost CostY = NegatibleCost::Expensive; |
7405 | SDValue NegY = |
7406 | getNegatedExpression(Op: Y, DAG, LegalOps, OptForSize, Cost&: CostY, Depth); |
7407 | |
7408 | // We're done with the handles. |
7409 | Handles.clear(); |
7410 | |
7411 | // Negate the X if its cost is less or equal than Y. |
7412 | if (NegX && (CostX <= CostY)) { |
7413 | Cost = CostX; |
7414 | SDValue N = DAG.getNode(Opcode, DL, VT, N1: NegX, N2: Y, Flags); |
7415 | if (NegY != N) |
7416 | RemoveDeadNode(NegY); |
7417 | return N; |
7418 | } |
7419 | |
7420 | // Ignore X * 2.0 because that is expected to be canonicalized to X + X. |
7421 | if (auto *C = isConstOrConstSplatFP(N: Op.getOperand(i: 1))) |
7422 | if (C->isExactlyValue(V: 2.0) && Op.getOpcode() == ISD::FMUL) |
7423 | break; |
7424 | |
7425 | // Negate the Y if it is not expensive. |
7426 | if (NegY) { |
7427 | Cost = CostY; |
7428 | SDValue N = DAG.getNode(Opcode, DL, VT, N1: X, N2: NegY, Flags); |
7429 | if (NegX != N) |
7430 | RemoveDeadNode(NegX); |
7431 | return N; |
7432 | } |
7433 | break; |
7434 | } |
7435 | case ISD::FMA: |
7436 | case ISD::FMAD: { |
7437 | if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) |
7438 | break; |
7439 | |
7440 | SDValue X = Op.getOperand(i: 0), Y = Op.getOperand(i: 1), Z = Op.getOperand(i: 2); |
7441 | NegatibleCost CostZ = NegatibleCost::Expensive; |
7442 | SDValue NegZ = |
7443 | getNegatedExpression(Op: Z, DAG, LegalOps, OptForSize, Cost&: CostZ, Depth); |
7444 | // Give up if fail to negate the Z. |
7445 | if (!NegZ) |
7446 | break; |
7447 | |
7448 | // Prevent this node from being deleted by the next two calls. |
7449 | Handles.emplace_back(args&: NegZ); |
7450 | |
7451 | // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) |
7452 | NegatibleCost CostX = NegatibleCost::Expensive; |
7453 | SDValue NegX = |
7454 | getNegatedExpression(Op: X, DAG, LegalOps, OptForSize, Cost&: CostX, Depth); |
7455 | // Prevent this node from being deleted by the next call. |
7456 | if (NegX) |
7457 | Handles.emplace_back(args&: NegX); |
7458 | |
7459 | // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) |
7460 | NegatibleCost CostY = NegatibleCost::Expensive; |
7461 | SDValue NegY = |
7462 | getNegatedExpression(Op: Y, DAG, LegalOps, OptForSize, Cost&: CostY, Depth); |
7463 | |
7464 | // We're done with the handles. |
7465 | Handles.clear(); |
7466 | |
7467 | // Negate the X if its cost is less or equal than Y. |
7468 | if (NegX && (CostX <= CostY)) { |
7469 | Cost = std::min(a: CostX, b: CostZ); |
7470 | SDValue N = DAG.getNode(Opcode, DL, VT, N1: NegX, N2: Y, N3: NegZ, Flags); |
7471 | if (NegY != N) |
7472 | RemoveDeadNode(NegY); |
7473 | return N; |
7474 | } |
7475 | |
7476 | // Negate the Y if it is not expensive. |
7477 | if (NegY) { |
7478 | Cost = std::min(a: CostY, b: CostZ); |
7479 | SDValue N = DAG.getNode(Opcode, DL, VT, N1: X, N2: NegY, N3: NegZ, Flags); |
7480 | if (NegX != N) |
7481 | RemoveDeadNode(NegX); |
7482 | return N; |
7483 | } |
7484 | break; |
7485 | } |
7486 | |
7487 | case ISD::FP_EXTEND: |
7488 | case ISD::FSIN: |
7489 | if (SDValue NegV = getNegatedExpression(Op: Op.getOperand(i: 0), DAG, LegalOps, |
7490 | OptForSize, Cost, Depth)) |
7491 | return DAG.getNode(Opcode, DL, VT, Operand: NegV); |
7492 | break; |
7493 | case ISD::FP_ROUND: |
7494 | if (SDValue NegV = getNegatedExpression(Op: Op.getOperand(i: 0), DAG, LegalOps, |
7495 | OptForSize, Cost, Depth)) |
7496 | return DAG.getNode(Opcode: ISD::FP_ROUND, DL, VT, N1: NegV, N2: Op.getOperand(i: 1)); |
7497 | break; |
7498 | case ISD::SELECT: |
7499 | case ISD::VSELECT: { |
7500 | // fold (fneg (select C, LHS, RHS)) -> (select C, (fneg LHS), (fneg RHS)) |
7501 | // iff at least one cost is cheaper and the other is neutral/cheaper |
7502 | SDValue LHS = Op.getOperand(i: 1); |
7503 | NegatibleCost CostLHS = NegatibleCost::Expensive; |
7504 | SDValue NegLHS = |
7505 | getNegatedExpression(Op: LHS, DAG, LegalOps, OptForSize, Cost&: CostLHS, Depth); |
7506 | if (!NegLHS || CostLHS > NegatibleCost::Neutral) { |
7507 | RemoveDeadNode(NegLHS); |
7508 | break; |
7509 | } |
7510 | |
7511 | // Prevent this node from being deleted by the next call. |
7512 | Handles.emplace_back(args&: NegLHS); |
7513 | |
7514 | SDValue RHS = Op.getOperand(i: 2); |
7515 | NegatibleCost CostRHS = NegatibleCost::Expensive; |
7516 | SDValue NegRHS = |
7517 | getNegatedExpression(Op: RHS, DAG, LegalOps, OptForSize, Cost&: CostRHS, Depth); |
7518 | |
7519 | // We're done with the handles. |
7520 | Handles.clear(); |
7521 | |
7522 | if (!NegRHS || CostRHS > NegatibleCost::Neutral || |
7523 | (CostLHS != NegatibleCost::Cheaper && |
7524 | CostRHS != NegatibleCost::Cheaper)) { |
7525 | RemoveDeadNode(NegLHS); |
7526 | RemoveDeadNode(NegRHS); |
7527 | break; |
7528 | } |
7529 | |
7530 | Cost = std::min(a: CostLHS, b: CostRHS); |
7531 | return DAG.getSelect(DL, VT, Cond: Op.getOperand(i: 0), LHS: NegLHS, RHS: NegRHS); |
7532 | } |
7533 | } |
7534 | |
7535 | return SDValue(); |
7536 | } |
7537 | |
7538 | //===----------------------------------------------------------------------===// |
7539 | // Legalization Utilities |
7540 | //===----------------------------------------------------------------------===// |
7541 | |
7542 | bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, |
7543 | SDValue LHS, SDValue RHS, |
7544 | SmallVectorImpl<SDValue> &Result, |
7545 | EVT HiLoVT, SelectionDAG &DAG, |
7546 | MulExpansionKind Kind, SDValue LL, |
7547 | SDValue LH, SDValue RL, SDValue RH) const { |
7548 | assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || |
7549 | Opcode == ISD::SMUL_LOHI); |
7550 | |
7551 | bool HasMULHS = (Kind == MulExpansionKind::Always) || |
7552 | isOperationLegalOrCustom(Op: ISD::MULHS, VT: HiLoVT); |
7553 | bool HasMULHU = (Kind == MulExpansionKind::Always) || |
7554 | isOperationLegalOrCustom(Op: ISD::MULHU, VT: HiLoVT); |
7555 | bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || |
7556 | isOperationLegalOrCustom(Op: ISD::SMUL_LOHI, VT: HiLoVT); |
7557 | bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || |
7558 | isOperationLegalOrCustom(Op: ISD::UMUL_LOHI, VT: HiLoVT); |
7559 | |
7560 | if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) |
7561 | return false; |
7562 | |
7563 | unsigned OuterBitSize = VT.getScalarSizeInBits(); |
7564 | unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); |
7565 | |
7566 | // LL, LH, RL, and RH must be either all NULL or all set to a value. |
7567 | assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || |
7568 | (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); |
7569 | |
7570 | SDVTList VTs = DAG.getVTList(VT1: HiLoVT, VT2: HiLoVT); |
7571 | auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, |
7572 | bool Signed) -> bool { |
7573 | if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { |
7574 | Lo = DAG.getNode(Opcode: Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, DL: dl, VTList: VTs, N1: L, N2: R); |
7575 | Hi = SDValue(Lo.getNode(), 1); |
7576 | return true; |
7577 | } |
7578 | if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { |
7579 | Lo = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: HiLoVT, N1: L, N2: R); |
7580 | Hi = DAG.getNode(Opcode: Signed ? ISD::MULHS : ISD::MULHU, DL: dl, VT: HiLoVT, N1: L, N2: R); |
7581 | return true; |
7582 | } |
7583 | return false; |
7584 | }; |
7585 | |
7586 | SDValue Lo, Hi; |
7587 | |
7588 | if (!LL.getNode() && !RL.getNode() && |
7589 | isOperationLegalOrCustom(Op: ISD::TRUNCATE, VT: HiLoVT)) { |
7590 | LL = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: HiLoVT, Operand: LHS); |
7591 | RL = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: HiLoVT, Operand: RHS); |
7592 | } |
7593 | |
7594 | if (!LL.getNode()) |
7595 | return false; |
7596 | |
7597 | APInt HighMask = APInt::getHighBitsSet(numBits: OuterBitSize, hiBitsSet: InnerBitSize); |
7598 | if (DAG.MaskedValueIsZero(Op: LHS, Mask: HighMask) && |
7599 | DAG.MaskedValueIsZero(Op: RHS, Mask: HighMask)) { |
7600 | // The inputs are both zero-extended. |
7601 | if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { |
7602 | Result.push_back(Elt: Lo); |
7603 | Result.push_back(Elt: Hi); |
7604 | if (Opcode != ISD::MUL) { |
7605 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT: HiLoVT); |
7606 | Result.push_back(Elt: Zero); |
7607 | Result.push_back(Elt: Zero); |
7608 | } |
7609 | return true; |
7610 | } |
7611 | } |
7612 | |
7613 | if (!VT.isVector() && Opcode == ISD::MUL && |
7614 | DAG.ComputeMaxSignificantBits(Op: LHS) <= InnerBitSize && |
7615 | DAG.ComputeMaxSignificantBits(Op: RHS) <= InnerBitSize) { |
7616 | // The input values are both sign-extended. |
7617 | // TODO non-MUL case? |
7618 | if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { |
7619 | Result.push_back(Elt: Lo); |
7620 | Result.push_back(Elt: Hi); |
7621 | return true; |
7622 | } |
7623 | } |
7624 | |
7625 | unsigned ShiftAmount = OuterBitSize - InnerBitSize; |
7626 | SDValue Shift = DAG.getShiftAmountConstant(Val: ShiftAmount, VT, DL: dl); |
7627 | |
7628 | if (!LH.getNode() && !RH.getNode() && |
7629 | isOperationLegalOrCustom(Op: ISD::SRL, VT) && |
7630 | isOperationLegalOrCustom(Op: ISD::TRUNCATE, VT: HiLoVT)) { |
7631 | LH = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: LHS, N2: Shift); |
7632 | LH = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: HiLoVT, Operand: LH); |
7633 | RH = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: RHS, N2: Shift); |
7634 | RH = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: HiLoVT, Operand: RH); |
7635 | } |
7636 | |
7637 | if (!LH.getNode()) |
7638 | return false; |
7639 | |
7640 | if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) |
7641 | return false; |
7642 | |
7643 | Result.push_back(Elt: Lo); |
7644 | |
7645 | if (Opcode == ISD::MUL) { |
7646 | RH = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: HiLoVT, N1: LL, N2: RH); |
7647 | LH = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: HiLoVT, N1: LH, N2: RL); |
7648 | Hi = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: HiLoVT, N1: Hi, N2: RH); |
7649 | Hi = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: HiLoVT, N1: Hi, N2: LH); |
7650 | Result.push_back(Elt: Hi); |
7651 | return true; |
7652 | } |
7653 | |
7654 | // Compute the full width result. |
7655 | auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { |
7656 | Lo = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: Lo); |
7657 | Hi = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: Hi); |
7658 | Hi = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Hi, N2: Shift); |
7659 | return DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Lo, N2: Hi); |
7660 | }; |
7661 | |
7662 | SDValue Next = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: Hi); |
7663 | if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) |
7664 | return false; |
7665 | |
7666 | // This is effectively the add part of a multiply-add of half-sized operands, |
7667 | // so it cannot overflow. |
7668 | Next = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: Next, N2: Merge(Lo, Hi)); |
7669 | |
7670 | if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) |
7671 | return false; |
7672 | |
7673 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT: HiLoVT); |
7674 | EVT BoolType = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
7675 | |
7676 | bool UseGlue = (isOperationLegalOrCustom(Op: ISD::ADDC, VT) && |
7677 | isOperationLegalOrCustom(Op: ISD::ADDE, VT)); |
7678 | if (UseGlue) |
7679 | Next = DAG.getNode(Opcode: ISD::ADDC, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: MVT::Glue), N1: Next, |
7680 | N2: Merge(Lo, Hi)); |
7681 | else |
7682 | Next = DAG.getNode(Opcode: ISD::UADDO_CARRY, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: BoolType), N1: Next, |
7683 | N2: Merge(Lo, Hi), N3: DAG.getConstant(Val: 0, DL: dl, VT: BoolType)); |
7684 | |
7685 | SDValue Carry = Next.getValue(R: 1); |
7686 | Result.push_back(Elt: DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: HiLoVT, Operand: Next)); |
7687 | Next = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Next, N2: Shift); |
7688 | |
7689 | if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) |
7690 | return false; |
7691 | |
7692 | if (UseGlue) |
7693 | Hi = DAG.getNode(Opcode: ISD::ADDE, DL: dl, VTList: DAG.getVTList(VT1: HiLoVT, VT2: MVT::Glue), N1: Hi, N2: Zero, |
7694 | N3: Carry); |
7695 | else |
7696 | Hi = DAG.getNode(Opcode: ISD::UADDO_CARRY, DL: dl, VTList: DAG.getVTList(VT1: HiLoVT, VT2: BoolType), N1: Hi, |
7697 | N2: Zero, N3: Carry); |
7698 | |
7699 | Next = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: Next, N2: Merge(Lo, Hi)); |
7700 | |
7701 | if (Opcode == ISD::SMUL_LOHI) { |
7702 | SDValue NextSub = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Next, |
7703 | N2: DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: RL)); |
7704 | Next = DAG.getSelectCC(DL: dl, LHS: LH, RHS: Zero, True: NextSub, False: Next, Cond: ISD::SETLT); |
7705 | |
7706 | NextSub = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Next, |
7707 | N2: DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: LL)); |
7708 | Next = DAG.getSelectCC(DL: dl, LHS: RH, RHS: Zero, True: NextSub, False: Next, Cond: ISD::SETLT); |
7709 | } |
7710 | |
7711 | Result.push_back(Elt: DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: HiLoVT, Operand: Next)); |
7712 | Next = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Next, N2: Shift); |
7713 | Result.push_back(Elt: DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: HiLoVT, Operand: Next)); |
7714 | return true; |
7715 | } |
7716 | |
7717 | bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, |
7718 | SelectionDAG &DAG, MulExpansionKind Kind, |
7719 | SDValue LL, SDValue LH, SDValue RL, |
7720 | SDValue RH) const { |
7721 | SmallVector<SDValue, 2> Result; |
7722 | bool Ok = expandMUL_LOHI(Opcode: N->getOpcode(), VT: N->getValueType(ResNo: 0), dl: SDLoc(N), |
7723 | LHS: N->getOperand(Num: 0), RHS: N->getOperand(Num: 1), Result, HiLoVT, |
7724 | DAG, Kind, LL, LH, RL, RH); |
7725 | if (Ok) { |
7726 | assert(Result.size() == 2); |
7727 | Lo = Result[0]; |
7728 | Hi = Result[1]; |
7729 | } |
7730 | return Ok; |
7731 | } |
7732 | |
7733 | // Optimize unsigned division or remainder by constants for types twice as large |
7734 | // as a legal VT. |
7735 | // |
7736 | // If (1 << (BitWidth / 2)) % Constant == 1, then the remainder |
7737 | // can be computed |
7738 | // as: |
7739 | // Sum += __builtin_uadd_overflow(Lo, High, &Sum); |
7740 | // Remainder = Sum % Constant |
7741 | // This is based on "Remainder by Summing Digits" from Hacker's Delight. |
7742 | // |
7743 | // For division, we can compute the remainder using the algorithm described |
7744 | // above, subtract it from the dividend to get an exact multiple of Constant. |
7745 | // Then multiply that exact multiply by the multiplicative inverse modulo |
7746 | // (1 << (BitWidth / 2)) to get the quotient. |
7747 | |
7748 | // If Constant is even, we can shift right the dividend and the divisor by the |
7749 | // number of trailing zeros in Constant before applying the remainder algorithm. |
7750 | // If we're after the quotient, we can subtract this value from the shifted |
7751 | // dividend and multiply by the multiplicative inverse of the shifted divisor. |
7752 | // If we want the remainder, we shift the value left by the number of trailing |
7753 | // zeros and add the bits that were shifted out of the dividend. |
7754 | bool TargetLowering::expandDIVREMByConstant(SDNode *N, |
7755 | SmallVectorImpl<SDValue> &Result, |
7756 | EVT HiLoVT, SelectionDAG &DAG, |
7757 | SDValue LL, SDValue LH) const { |
7758 | unsigned Opcode = N->getOpcode(); |
7759 | EVT VT = N->getValueType(ResNo: 0); |
7760 | |
7761 | // TODO: Support signed division/remainder. |
7762 | if (Opcode == ISD::SREM || Opcode == ISD::SDIV || Opcode == ISD::SDIVREM) |
7763 | return false; |
7764 | assert( |
7765 | (Opcode == ISD::UREM || Opcode == ISD::UDIV || Opcode == ISD::UDIVREM) && |
7766 | "Unexpected opcode" ); |
7767 | |
7768 | auto *CN = dyn_cast<ConstantSDNode>(Val: N->getOperand(Num: 1)); |
7769 | if (!CN) |
7770 | return false; |
7771 | |
7772 | APInt Divisor = CN->getAPIntValue(); |
7773 | unsigned BitWidth = Divisor.getBitWidth(); |
7774 | unsigned HBitWidth = BitWidth / 2; |
7775 | assert(VT.getScalarSizeInBits() == BitWidth && |
7776 | HiLoVT.getScalarSizeInBits() == HBitWidth && "Unexpected VTs" ); |
7777 | |
7778 | // Divisor needs to less than (1 << HBitWidth). |
7779 | APInt HalfMaxPlus1 = APInt::getOneBitSet(numBits: BitWidth, BitNo: HBitWidth); |
7780 | if (Divisor.uge(RHS: HalfMaxPlus1)) |
7781 | return false; |
7782 | |
7783 | // We depend on the UREM by constant optimization in DAGCombiner that requires |
7784 | // high multiply. |
7785 | if (!isOperationLegalOrCustom(Op: ISD::MULHU, VT: HiLoVT) && |
7786 | !isOperationLegalOrCustom(Op: ISD::UMUL_LOHI, VT: HiLoVT)) |
7787 | return false; |
7788 | |
7789 | // Don't expand if optimizing for size. |
7790 | if (DAG.shouldOptForSize()) |
7791 | return false; |
7792 | |
7793 | // Early out for 0 or 1 divisors. |
7794 | if (Divisor.ule(RHS: 1)) |
7795 | return false; |
7796 | |
7797 | // If the divisor is even, shift it until it becomes odd. |
7798 | unsigned TrailingZeros = 0; |
7799 | if (!Divisor[0]) { |
7800 | TrailingZeros = Divisor.countr_zero(); |
7801 | Divisor.lshrInPlace(ShiftAmt: TrailingZeros); |
7802 | } |
7803 | |
7804 | SDLoc dl(N); |
7805 | SDValue Sum; |
7806 | SDValue PartialRem; |
7807 | |
7808 | // If (1 << HBitWidth) % divisor == 1, we can add the two halves together and |
7809 | // then add in the carry. |
7810 | // TODO: If we can't split it in half, we might be able to split into 3 or |
7811 | // more pieces using a smaller bit width. |
7812 | if (HalfMaxPlus1.urem(RHS: Divisor).isOne()) { |
7813 | assert(!LL == !LH && "Expected both input halves or no input halves!" ); |
7814 | if (!LL) |
7815 | std::tie(args&: LL, args&: LH) = DAG.SplitScalar(N: N->getOperand(Num: 0), DL: dl, LoVT: HiLoVT, HiVT: HiLoVT); |
7816 | |
7817 | // Shift the input by the number of TrailingZeros in the divisor. The |
7818 | // shifted out bits will be added to the remainder later. |
7819 | if (TrailingZeros) { |
7820 | // Save the shifted off bits if we need the remainder. |
7821 | if (Opcode != ISD::UDIV) { |
7822 | APInt Mask = APInt::getLowBitsSet(numBits: HBitWidth, loBitsSet: TrailingZeros); |
7823 | PartialRem = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: HiLoVT, N1: LL, |
7824 | N2: DAG.getConstant(Val: Mask, DL: dl, VT: HiLoVT)); |
7825 | } |
7826 | |
7827 | LL = DAG.getNode( |
7828 | Opcode: ISD::OR, DL: dl, VT: HiLoVT, |
7829 | N1: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: HiLoVT, N1: LL, |
7830 | N2: DAG.getShiftAmountConstant(Val: TrailingZeros, VT: HiLoVT, DL: dl)), |
7831 | N2: DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: HiLoVT, N1: LH, |
7832 | N2: DAG.getShiftAmountConstant(Val: HBitWidth - TrailingZeros, |
7833 | VT: HiLoVT, DL: dl))); |
7834 | LH = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: HiLoVT, N1: LH, |
7835 | N2: DAG.getShiftAmountConstant(Val: TrailingZeros, VT: HiLoVT, DL: dl)); |
7836 | } |
7837 | |
7838 | // Use uaddo_carry if we can, otherwise use a compare to detect overflow. |
7839 | EVT SetCCType = |
7840 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: HiLoVT); |
7841 | if (isOperationLegalOrCustom(Op: ISD::UADDO_CARRY, VT: HiLoVT)) { |
7842 | SDVTList VTList = DAG.getVTList(VT1: HiLoVT, VT2: SetCCType); |
7843 | Sum = DAG.getNode(Opcode: ISD::UADDO, DL: dl, VTList, N1: LL, N2: LH); |
7844 | Sum = DAG.getNode(Opcode: ISD::UADDO_CARRY, DL: dl, VTList, N1: Sum, |
7845 | N2: DAG.getConstant(Val: 0, DL: dl, VT: HiLoVT), N3: Sum.getValue(R: 1)); |
7846 | } else { |
7847 | Sum = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: HiLoVT, N1: LL, N2: LH); |
7848 | SDValue Carry = DAG.getSetCC(DL: dl, VT: SetCCType, LHS: Sum, RHS: LL, Cond: ISD::SETULT); |
7849 | // If the boolean for the target is 0 or 1, we can add the setcc result |
7850 | // directly. |
7851 | if (getBooleanContents(Type: HiLoVT) == |
7852 | TargetLoweringBase::ZeroOrOneBooleanContent) |
7853 | Carry = DAG.getZExtOrTrunc(Op: Carry, DL: dl, VT: HiLoVT); |
7854 | else |
7855 | Carry = DAG.getSelect(DL: dl, VT: HiLoVT, Cond: Carry, LHS: DAG.getConstant(Val: 1, DL: dl, VT: HiLoVT), |
7856 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: HiLoVT)); |
7857 | Sum = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: HiLoVT, N1: Sum, N2: Carry); |
7858 | } |
7859 | } |
7860 | |
7861 | // If we didn't find a sum, we can't do the expansion. |
7862 | if (!Sum) |
7863 | return false; |
7864 | |
7865 | // Perform a HiLoVT urem on the Sum using truncated divisor. |
7866 | SDValue RemL = |
7867 | DAG.getNode(Opcode: ISD::UREM, DL: dl, VT: HiLoVT, N1: Sum, |
7868 | N2: DAG.getConstant(Val: Divisor.trunc(width: HBitWidth), DL: dl, VT: HiLoVT)); |
7869 | SDValue RemH = DAG.getConstant(Val: 0, DL: dl, VT: HiLoVT); |
7870 | |
7871 | if (Opcode != ISD::UREM) { |
7872 | // Subtract the remainder from the shifted dividend. |
7873 | SDValue Dividend = DAG.getNode(Opcode: ISD::BUILD_PAIR, DL: dl, VT, N1: LL, N2: LH); |
7874 | SDValue Rem = DAG.getNode(Opcode: ISD::BUILD_PAIR, DL: dl, VT, N1: RemL, N2: RemH); |
7875 | |
7876 | Dividend = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Dividend, N2: Rem); |
7877 | |
7878 | // Multiply by the multiplicative inverse of the divisor modulo |
7879 | // (1 << BitWidth). |
7880 | APInt MulFactor = Divisor.multiplicativeInverse(); |
7881 | |
7882 | SDValue Quotient = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: Dividend, |
7883 | N2: DAG.getConstant(Val: MulFactor, DL: dl, VT)); |
7884 | |
7885 | // Split the quotient into low and high parts. |
7886 | SDValue QuotL, QuotH; |
7887 | std::tie(args&: QuotL, args&: QuotH) = DAG.SplitScalar(N: Quotient, DL: dl, LoVT: HiLoVT, HiVT: HiLoVT); |
7888 | Result.push_back(Elt: QuotL); |
7889 | Result.push_back(Elt: QuotH); |
7890 | } |
7891 | |
7892 | if (Opcode != ISD::UDIV) { |
7893 | // If we shifted the input, shift the remainder left and add the bits we |
7894 | // shifted off the input. |
7895 | if (TrailingZeros) { |
7896 | APInt Mask = APInt::getLowBitsSet(numBits: HBitWidth, loBitsSet: TrailingZeros); |
7897 | RemL = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: HiLoVT, N1: RemL, |
7898 | N2: DAG.getShiftAmountConstant(Val: TrailingZeros, VT: HiLoVT, DL: dl)); |
7899 | RemL = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: HiLoVT, N1: RemL, N2: PartialRem); |
7900 | } |
7901 | Result.push_back(Elt: RemL); |
7902 | Result.push_back(Elt: DAG.getConstant(Val: 0, DL: dl, VT: HiLoVT)); |
7903 | } |
7904 | |
7905 | return true; |
7906 | } |
7907 | |
7908 | // Check that (every element of) Z is undef or not an exact multiple of BW. |
7909 | static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { |
7910 | return ISD::matchUnaryPredicate( |
7911 | Op: Z, |
7912 | Match: [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(RHS: BW) != 0; }, |
7913 | AllowUndefs: true); |
7914 | } |
7915 | |
7916 | static SDValue expandVPFunnelShift(SDNode *Node, SelectionDAG &DAG) { |
7917 | EVT VT = Node->getValueType(ResNo: 0); |
7918 | SDValue ShX, ShY; |
7919 | SDValue ShAmt, InvShAmt; |
7920 | SDValue X = Node->getOperand(Num: 0); |
7921 | SDValue Y = Node->getOperand(Num: 1); |
7922 | SDValue Z = Node->getOperand(Num: 2); |
7923 | SDValue Mask = Node->getOperand(Num: 3); |
7924 | SDValue VL = Node->getOperand(Num: 4); |
7925 | |
7926 | unsigned BW = VT.getScalarSizeInBits(); |
7927 | bool IsFSHL = Node->getOpcode() == ISD::VP_FSHL; |
7928 | SDLoc DL(SDValue(Node, 0)); |
7929 | |
7930 | EVT ShVT = Z.getValueType(); |
7931 | if (isNonZeroModBitWidthOrUndef(Z, BW)) { |
7932 | // fshl: X << C | Y >> (BW - C) |
7933 | // fshr: X << (BW - C) | Y >> C |
7934 | // where C = Z % BW is not zero |
7935 | SDValue BitWidthC = DAG.getConstant(Val: BW, DL, VT: ShVT); |
7936 | ShAmt = DAG.getNode(Opcode: ISD::VP_UREM, DL, VT: ShVT, N1: Z, N2: BitWidthC, N3: Mask, N4: VL); |
7937 | InvShAmt = DAG.getNode(Opcode: ISD::VP_SUB, DL, VT: ShVT, N1: BitWidthC, N2: ShAmt, N3: Mask, N4: VL); |
7938 | ShX = DAG.getNode(Opcode: ISD::VP_SHL, DL, VT, N1: X, N2: IsFSHL ? ShAmt : InvShAmt, N3: Mask, |
7939 | N4: VL); |
7940 | ShY = DAG.getNode(Opcode: ISD::VP_SRL, DL, VT, N1: Y, N2: IsFSHL ? InvShAmt : ShAmt, N3: Mask, |
7941 | N4: VL); |
7942 | } else { |
7943 | // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) |
7944 | // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) |
7945 | SDValue BitMask = DAG.getConstant(Val: BW - 1, DL, VT: ShVT); |
7946 | if (isPowerOf2_32(Value: BW)) { |
7947 | // Z % BW -> Z & (BW - 1) |
7948 | ShAmt = DAG.getNode(Opcode: ISD::VP_AND, DL, VT: ShVT, N1: Z, N2: BitMask, N3: Mask, N4: VL); |
7949 | // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) |
7950 | SDValue NotZ = DAG.getNode(Opcode: ISD::VP_XOR, DL, VT: ShVT, N1: Z, |
7951 | N2: DAG.getAllOnesConstant(DL, VT: ShVT), N3: Mask, N4: VL); |
7952 | InvShAmt = DAG.getNode(Opcode: ISD::VP_AND, DL, VT: ShVT, N1: NotZ, N2: BitMask, N3: Mask, N4: VL); |
7953 | } else { |
7954 | SDValue BitWidthC = DAG.getConstant(Val: BW, DL, VT: ShVT); |
7955 | ShAmt = DAG.getNode(Opcode: ISD::VP_UREM, DL, VT: ShVT, N1: Z, N2: BitWidthC, N3: Mask, N4: VL); |
7956 | InvShAmt = DAG.getNode(Opcode: ISD::VP_SUB, DL, VT: ShVT, N1: BitMask, N2: ShAmt, N3: Mask, N4: VL); |
7957 | } |
7958 | |
7959 | SDValue One = DAG.getConstant(Val: 1, DL, VT: ShVT); |
7960 | if (IsFSHL) { |
7961 | ShX = DAG.getNode(Opcode: ISD::VP_SHL, DL, VT, N1: X, N2: ShAmt, N3: Mask, N4: VL); |
7962 | SDValue ShY1 = DAG.getNode(Opcode: ISD::VP_SRL, DL, VT, N1: Y, N2: One, N3: Mask, N4: VL); |
7963 | ShY = DAG.getNode(Opcode: ISD::VP_SRL, DL, VT, N1: ShY1, N2: InvShAmt, N3: Mask, N4: VL); |
7964 | } else { |
7965 | SDValue ShX1 = DAG.getNode(Opcode: ISD::VP_SHL, DL, VT, N1: X, N2: One, N3: Mask, N4: VL); |
7966 | ShX = DAG.getNode(Opcode: ISD::VP_SHL, DL, VT, N1: ShX1, N2: InvShAmt, N3: Mask, N4: VL); |
7967 | ShY = DAG.getNode(Opcode: ISD::VP_SRL, DL, VT, N1: Y, N2: ShAmt, N3: Mask, N4: VL); |
7968 | } |
7969 | } |
7970 | return DAG.getNode(Opcode: ISD::VP_OR, DL, VT, N1: ShX, N2: ShY, N3: Mask, N4: VL); |
7971 | } |
7972 | |
7973 | SDValue TargetLowering::expandFunnelShift(SDNode *Node, |
7974 | SelectionDAG &DAG) const { |
7975 | if (Node->isVPOpcode()) |
7976 | return expandVPFunnelShift(Node, DAG); |
7977 | |
7978 | EVT VT = Node->getValueType(ResNo: 0); |
7979 | |
7980 | if (VT.isVector() && (!isOperationLegalOrCustom(Op: ISD::SHL, VT) || |
7981 | !isOperationLegalOrCustom(Op: ISD::SRL, VT) || |
7982 | !isOperationLegalOrCustom(Op: ISD::SUB, VT) || |
7983 | !isOperationLegalOrCustomOrPromote(Op: ISD::OR, VT))) |
7984 | return SDValue(); |
7985 | |
7986 | SDValue X = Node->getOperand(Num: 0); |
7987 | SDValue Y = Node->getOperand(Num: 1); |
7988 | SDValue Z = Node->getOperand(Num: 2); |
7989 | |
7990 | unsigned BW = VT.getScalarSizeInBits(); |
7991 | bool IsFSHL = Node->getOpcode() == ISD::FSHL; |
7992 | SDLoc DL(SDValue(Node, 0)); |
7993 | |
7994 | EVT ShVT = Z.getValueType(); |
7995 | |
7996 | // If a funnel shift in the other direction is more supported, use it. |
7997 | unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; |
7998 | if (!isOperationLegalOrCustom(Op: Node->getOpcode(), VT) && |
7999 | isOperationLegalOrCustom(Op: RevOpcode, VT) && isPowerOf2_32(Value: BW)) { |
8000 | if (isNonZeroModBitWidthOrUndef(Z, BW)) { |
8001 | // fshl X, Y, Z -> fshr X, Y, -Z |
8002 | // fshr X, Y, Z -> fshl X, Y, -Z |
8003 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT: ShVT); |
8004 | Z = DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: Zero, N2: Z); |
8005 | } else { |
8006 | // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z |
8007 | // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z |
8008 | SDValue One = DAG.getConstant(Val: 1, DL, VT: ShVT); |
8009 | if (IsFSHL) { |
8010 | Y = DAG.getNode(Opcode: RevOpcode, DL, VT, N1: X, N2: Y, N3: One); |
8011 | X = DAG.getNode(Opcode: ISD::SRL, DL, VT, N1: X, N2: One); |
8012 | } else { |
8013 | X = DAG.getNode(Opcode: RevOpcode, DL, VT, N1: X, N2: Y, N3: One); |
8014 | Y = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: Y, N2: One); |
8015 | } |
8016 | Z = DAG.getNOT(DL, Val: Z, VT: ShVT); |
8017 | } |
8018 | return DAG.getNode(Opcode: RevOpcode, DL, VT, N1: X, N2: Y, N3: Z); |
8019 | } |
8020 | |
8021 | SDValue ShX, ShY; |
8022 | SDValue ShAmt, InvShAmt; |
8023 | if (isNonZeroModBitWidthOrUndef(Z, BW)) { |
8024 | // fshl: X << C | Y >> (BW - C) |
8025 | // fshr: X << (BW - C) | Y >> C |
8026 | // where C = Z % BW is not zero |
8027 | SDValue BitWidthC = DAG.getConstant(Val: BW, DL, VT: ShVT); |
8028 | ShAmt = DAG.getNode(Opcode: ISD::UREM, DL, VT: ShVT, N1: Z, N2: BitWidthC); |
8029 | InvShAmt = DAG.getNode(Opcode: ISD::SUB, DL, VT: ShVT, N1: BitWidthC, N2: ShAmt); |
8030 | ShX = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: X, N2: IsFSHL ? ShAmt : InvShAmt); |
8031 | ShY = DAG.getNode(Opcode: ISD::SRL, DL, VT, N1: Y, N2: IsFSHL ? InvShAmt : ShAmt); |
8032 | } else { |
8033 | // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) |
8034 | // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) |
8035 | SDValue Mask = DAG.getConstant(Val: BW - 1, DL, VT: ShVT); |
8036 | if (isPowerOf2_32(Value: BW)) { |
8037 | // Z % BW -> Z & (BW - 1) |
8038 | ShAmt = DAG.getNode(Opcode: ISD::AND, DL, VT: ShVT, N1: Z, N2: Mask); |
8039 | // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) |
8040 | InvShAmt = DAG.getNode(Opcode: ISD::AND, DL, VT: ShVT, N1: DAG.getNOT(DL, Val: Z, VT: ShVT), N2: Mask); |
8041 | } else { |
8042 | SDValue BitWidthC = DAG.getConstant(Val: BW, DL, VT: ShVT); |
8043 | ShAmt = DAG.getNode(Opcode: ISD::UREM, DL, VT: ShVT, N1: Z, N2: BitWidthC); |
8044 | InvShAmt = DAG.getNode(Opcode: ISD::SUB, DL, VT: ShVT, N1: Mask, N2: ShAmt); |
8045 | } |
8046 | |
8047 | SDValue One = DAG.getConstant(Val: 1, DL, VT: ShVT); |
8048 | if (IsFSHL) { |
8049 | ShX = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: X, N2: ShAmt); |
8050 | SDValue ShY1 = DAG.getNode(Opcode: ISD::SRL, DL, VT, N1: Y, N2: One); |
8051 | ShY = DAG.getNode(Opcode: ISD::SRL, DL, VT, N1: ShY1, N2: InvShAmt); |
8052 | } else { |
8053 | SDValue ShX1 = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: X, N2: One); |
8054 | ShX = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: ShX1, N2: InvShAmt); |
8055 | ShY = DAG.getNode(Opcode: ISD::SRL, DL, VT, N1: Y, N2: ShAmt); |
8056 | } |
8057 | } |
8058 | return DAG.getNode(Opcode: ISD::OR, DL, VT, N1: ShX, N2: ShY); |
8059 | } |
8060 | |
8061 | // TODO: Merge with expandFunnelShift. |
8062 | SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, |
8063 | SelectionDAG &DAG) const { |
8064 | EVT VT = Node->getValueType(ResNo: 0); |
8065 | unsigned EltSizeInBits = VT.getScalarSizeInBits(); |
8066 | bool IsLeft = Node->getOpcode() == ISD::ROTL; |
8067 | SDValue Op0 = Node->getOperand(Num: 0); |
8068 | SDValue Op1 = Node->getOperand(Num: 1); |
8069 | SDLoc DL(SDValue(Node, 0)); |
8070 | |
8071 | EVT ShVT = Op1.getValueType(); |
8072 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT: ShVT); |
8073 | |
8074 | // If a rotate in the other direction is more supported, use it. |
8075 | unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; |
8076 | if (!isOperationLegalOrCustom(Op: Node->getOpcode(), VT) && |
8077 | isOperationLegalOrCustom(Op: RevRot, VT) && isPowerOf2_32(Value: EltSizeInBits)) { |
8078 | SDValue Sub = DAG.getNode(Opcode: ISD::SUB, DL, VT: ShVT, N1: Zero, N2: Op1); |
8079 | return DAG.getNode(Opcode: RevRot, DL, VT, N1: Op0, N2: Sub); |
8080 | } |
8081 | |
8082 | if (!AllowVectorOps && VT.isVector() && |
8083 | (!isOperationLegalOrCustom(Op: ISD::SHL, VT) || |
8084 | !isOperationLegalOrCustom(Op: ISD::SRL, VT) || |
8085 | !isOperationLegalOrCustom(Op: ISD::SUB, VT) || |
8086 | !isOperationLegalOrCustomOrPromote(Op: ISD::OR, VT) || |
8087 | !isOperationLegalOrCustomOrPromote(Op: ISD::AND, VT))) |
8088 | return SDValue(); |
8089 | |
8090 | unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; |
8091 | unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; |
8092 | SDValue BitWidthMinusOneC = DAG.getConstant(Val: EltSizeInBits - 1, DL, VT: ShVT); |
8093 | SDValue ShVal; |
8094 | SDValue HsVal; |
8095 | if (isPowerOf2_32(Value: EltSizeInBits)) { |
8096 | // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) |
8097 | // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) |
8098 | SDValue NegOp1 = DAG.getNode(Opcode: ISD::SUB, DL, VT: ShVT, N1: Zero, N2: Op1); |
8099 | SDValue ShAmt = DAG.getNode(Opcode: ISD::AND, DL, VT: ShVT, N1: Op1, N2: BitWidthMinusOneC); |
8100 | ShVal = DAG.getNode(Opcode: ShOpc, DL, VT, N1: Op0, N2: ShAmt); |
8101 | SDValue HsAmt = DAG.getNode(Opcode: ISD::AND, DL, VT: ShVT, N1: NegOp1, N2: BitWidthMinusOneC); |
8102 | HsVal = DAG.getNode(Opcode: HsOpc, DL, VT, N1: Op0, N2: HsAmt); |
8103 | } else { |
8104 | // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) |
8105 | // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) |
8106 | SDValue BitWidthC = DAG.getConstant(Val: EltSizeInBits, DL, VT: ShVT); |
8107 | SDValue ShAmt = DAG.getNode(Opcode: ISD::UREM, DL, VT: ShVT, N1: Op1, N2: BitWidthC); |
8108 | ShVal = DAG.getNode(Opcode: ShOpc, DL, VT, N1: Op0, N2: ShAmt); |
8109 | SDValue HsAmt = DAG.getNode(Opcode: ISD::SUB, DL, VT: ShVT, N1: BitWidthMinusOneC, N2: ShAmt); |
8110 | SDValue One = DAG.getConstant(Val: 1, DL, VT: ShVT); |
8111 | HsVal = |
8112 | DAG.getNode(Opcode: HsOpc, DL, VT, N1: DAG.getNode(Opcode: HsOpc, DL, VT, N1: Op0, N2: One), N2: HsAmt); |
8113 | } |
8114 | return DAG.getNode(Opcode: ISD::OR, DL, VT, N1: ShVal, N2: HsVal); |
8115 | } |
8116 | |
8117 | void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, |
8118 | SelectionDAG &DAG) const { |
8119 | assert(Node->getNumOperands() == 3 && "Not a double-shift!" ); |
8120 | EVT VT = Node->getValueType(ResNo: 0); |
8121 | unsigned VTBits = VT.getScalarSizeInBits(); |
8122 | assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected" ); |
8123 | |
8124 | bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; |
8125 | bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; |
8126 | SDValue ShOpLo = Node->getOperand(Num: 0); |
8127 | SDValue ShOpHi = Node->getOperand(Num: 1); |
8128 | SDValue ShAmt = Node->getOperand(Num: 2); |
8129 | EVT ShAmtVT = ShAmt.getValueType(); |
8130 | EVT ShAmtCCVT = |
8131 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: ShAmtVT); |
8132 | SDLoc dl(Node); |
8133 | |
8134 | // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and |
8135 | // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized |
8136 | // away during isel. |
8137 | SDValue SafeShAmt = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: ShAmtVT, N1: ShAmt, |
8138 | N2: DAG.getConstant(Val: VTBits - 1, DL: dl, VT: ShAmtVT)); |
8139 | SDValue Tmp1 = IsSRA ? DAG.getNode(Opcode: ISD::SRA, DL: dl, VT, N1: ShOpHi, |
8140 | N2: DAG.getConstant(Val: VTBits - 1, DL: dl, VT: ShAmtVT)) |
8141 | : DAG.getConstant(Val: 0, DL: dl, VT); |
8142 | |
8143 | SDValue Tmp2, Tmp3; |
8144 | if (IsSHL) { |
8145 | Tmp2 = DAG.getNode(Opcode: ISD::FSHL, DL: dl, VT, N1: ShOpHi, N2: ShOpLo, N3: ShAmt); |
8146 | Tmp3 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: ShOpLo, N2: SafeShAmt); |
8147 | } else { |
8148 | Tmp2 = DAG.getNode(Opcode: ISD::FSHR, DL: dl, VT, N1: ShOpHi, N2: ShOpLo, N3: ShAmt); |
8149 | Tmp3 = DAG.getNode(Opcode: IsSRA ? ISD::SRA : ISD::SRL, DL: dl, VT, N1: ShOpHi, N2: SafeShAmt); |
8150 | } |
8151 | |
8152 | // If the shift amount is larger or equal than the width of a part we don't |
8153 | // use the result from the FSHL/FSHR. Insert a test and select the appropriate |
8154 | // values for large shift amounts. |
8155 | SDValue AndNode = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: ShAmtVT, N1: ShAmt, |
8156 | N2: DAG.getConstant(Val: VTBits, DL: dl, VT: ShAmtVT)); |
8157 | SDValue Cond = DAG.getSetCC(DL: dl, VT: ShAmtCCVT, LHS: AndNode, |
8158 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: ShAmtVT), Cond: ISD::SETNE); |
8159 | |
8160 | if (IsSHL) { |
8161 | Hi = DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT, N1: Cond, N2: Tmp3, N3: Tmp2); |
8162 | Lo = DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT, N1: Cond, N2: Tmp1, N3: Tmp3); |
8163 | } else { |
8164 | Lo = DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT, N1: Cond, N2: Tmp3, N3: Tmp2); |
8165 | Hi = DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT, N1: Cond, N2: Tmp1, N3: Tmp3); |
8166 | } |
8167 | } |
8168 | |
8169 | bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, |
8170 | SelectionDAG &DAG) const { |
8171 | unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; |
8172 | SDValue Src = Node->getOperand(Num: OpNo); |
8173 | EVT SrcVT = Src.getValueType(); |
8174 | EVT DstVT = Node->getValueType(ResNo: 0); |
8175 | SDLoc dl(SDValue(Node, 0)); |
8176 | |
8177 | // FIXME: Only f32 to i64 conversions are supported. |
8178 | if (SrcVT != MVT::f32 || DstVT != MVT::i64) |
8179 | return false; |
8180 | |
8181 | if (Node->isStrictFPOpcode()) |
8182 | // When a NaN is converted to an integer a trap is allowed. We can't |
8183 | // use this expansion here because it would eliminate that trap. Other |
8184 | // traps are also allowed and cannot be eliminated. See |
8185 | // IEEE 754-2008 sec 5.8. |
8186 | return false; |
8187 | |
8188 | // Expand f32 -> i64 conversion |
8189 | // This algorithm comes from compiler-rt's implementation of fixsfdi: |
8190 | // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c |
8191 | unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); |
8192 | EVT IntVT = SrcVT.changeTypeToInteger(); |
8193 | EVT IntShVT = getShiftAmountTy(LHSTy: IntVT, DL: DAG.getDataLayout()); |
8194 | |
8195 | SDValue ExponentMask = DAG.getConstant(Val: 0x7F800000, DL: dl, VT: IntVT); |
8196 | SDValue ExponentLoBit = DAG.getConstant(Val: 23, DL: dl, VT: IntVT); |
8197 | SDValue Bias = DAG.getConstant(Val: 127, DL: dl, VT: IntVT); |
8198 | SDValue SignMask = DAG.getConstant(Val: APInt::getSignMask(BitWidth: SrcEltBits), DL: dl, VT: IntVT); |
8199 | SDValue SignLowBit = DAG.getConstant(Val: SrcEltBits - 1, DL: dl, VT: IntVT); |
8200 | SDValue MantissaMask = DAG.getConstant(Val: 0x007FFFFF, DL: dl, VT: IntVT); |
8201 | |
8202 | SDValue Bits = DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: IntVT, Operand: Src); |
8203 | |
8204 | SDValue ExponentBits = DAG.getNode( |
8205 | Opcode: ISD::SRL, DL: dl, VT: IntVT, N1: DAG.getNode(Opcode: ISD::AND, DL: dl, VT: IntVT, N1: Bits, N2: ExponentMask), |
8206 | N2: DAG.getZExtOrTrunc(Op: ExponentLoBit, DL: dl, VT: IntShVT)); |
8207 | SDValue Exponent = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: IntVT, N1: ExponentBits, N2: Bias); |
8208 | |
8209 | SDValue Sign = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT: IntVT, |
8210 | N1: DAG.getNode(Opcode: ISD::AND, DL: dl, VT: IntVT, N1: Bits, N2: SignMask), |
8211 | N2: DAG.getZExtOrTrunc(Op: SignLowBit, DL: dl, VT: IntShVT)); |
8212 | Sign = DAG.getSExtOrTrunc(Op: Sign, DL: dl, VT: DstVT); |
8213 | |
8214 | SDValue R = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: IntVT, |
8215 | N1: DAG.getNode(Opcode: ISD::AND, DL: dl, VT: IntVT, N1: Bits, N2: MantissaMask), |
8216 | N2: DAG.getConstant(Val: 0x00800000, DL: dl, VT: IntVT)); |
8217 | |
8218 | R = DAG.getZExtOrTrunc(Op: R, DL: dl, VT: DstVT); |
8219 | |
8220 | R = DAG.getSelectCC( |
8221 | DL: dl, LHS: Exponent, RHS: ExponentLoBit, |
8222 | True: DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: DstVT, N1: R, |
8223 | N2: DAG.getZExtOrTrunc( |
8224 | Op: DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: IntVT, N1: Exponent, N2: ExponentLoBit), |
8225 | DL: dl, VT: IntShVT)), |
8226 | False: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: DstVT, N1: R, |
8227 | N2: DAG.getZExtOrTrunc( |
8228 | Op: DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: IntVT, N1: ExponentLoBit, N2: Exponent), |
8229 | DL: dl, VT: IntShVT)), |
8230 | Cond: ISD::SETGT); |
8231 | |
8232 | SDValue Ret = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: DstVT, |
8233 | N1: DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: DstVT, N1: R, N2: Sign), N2: Sign); |
8234 | |
8235 | Result = DAG.getSelectCC(DL: dl, LHS: Exponent, RHS: DAG.getConstant(Val: 0, DL: dl, VT: IntVT), |
8236 | True: DAG.getConstant(Val: 0, DL: dl, VT: DstVT), False: Ret, Cond: ISD::SETLT); |
8237 | return true; |
8238 | } |
8239 | |
8240 | bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, |
8241 | SDValue &Chain, |
8242 | SelectionDAG &DAG) const { |
8243 | SDLoc dl(SDValue(Node, 0)); |
8244 | unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; |
8245 | SDValue Src = Node->getOperand(Num: OpNo); |
8246 | |
8247 | EVT SrcVT = Src.getValueType(); |
8248 | EVT DstVT = Node->getValueType(ResNo: 0); |
8249 | EVT SetCCVT = |
8250 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: SrcVT); |
8251 | EVT DstSetCCVT = |
8252 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: DstVT); |
8253 | |
8254 | // Only expand vector types if we have the appropriate vector bit operations. |
8255 | unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : |
8256 | ISD::FP_TO_SINT; |
8257 | if (DstVT.isVector() && (!isOperationLegalOrCustom(Op: SIntOpcode, VT: DstVT) || |
8258 | !isOperationLegalOrCustomOrPromote(Op: ISD::XOR, VT: SrcVT))) |
8259 | return false; |
8260 | |
8261 | // If the maximum float value is smaller then the signed integer range, |
8262 | // the destination signmask can't be represented by the float, so we can |
8263 | // just use FP_TO_SINT directly. |
8264 | const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(VT: SrcVT); |
8265 | APFloat APF(APFSem, APInt::getZero(numBits: SrcVT.getScalarSizeInBits())); |
8266 | APInt SignMask = APInt::getSignMask(BitWidth: DstVT.getScalarSizeInBits()); |
8267 | if (APFloat::opOverflow & |
8268 | APF.convertFromAPInt(Input: SignMask, IsSigned: false, RM: APFloat::rmNearestTiesToEven)) { |
8269 | if (Node->isStrictFPOpcode()) { |
8270 | Result = DAG.getNode(Opcode: ISD::STRICT_FP_TO_SINT, DL: dl, ResultTys: { DstVT, MVT::Other }, |
8271 | Ops: { Node->getOperand(Num: 0), Src }); |
8272 | Chain = Result.getValue(R: 1); |
8273 | } else |
8274 | Result = DAG.getNode(Opcode: ISD::FP_TO_SINT, DL: dl, VT: DstVT, Operand: Src); |
8275 | return true; |
8276 | } |
8277 | |
8278 | // Don't expand it if there isn't cheap fsub instruction. |
8279 | if (!isOperationLegalOrCustom( |
8280 | Op: Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, VT: SrcVT)) |
8281 | return false; |
8282 | |
8283 | SDValue Cst = DAG.getConstantFP(Val: APF, DL: dl, VT: SrcVT); |
8284 | SDValue Sel; |
8285 | |
8286 | if (Node->isStrictFPOpcode()) { |
8287 | Sel = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: Src, RHS: Cst, Cond: ISD::SETLT, |
8288 | Chain: Node->getOperand(Num: 0), /*IsSignaling*/ true); |
8289 | Chain = Sel.getValue(R: 1); |
8290 | } else { |
8291 | Sel = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: Src, RHS: Cst, Cond: ISD::SETLT); |
8292 | } |
8293 | |
8294 | bool Strict = Node->isStrictFPOpcode() || |
8295 | shouldUseStrictFP_TO_INT(FpVT: SrcVT, IntVT: DstVT, /*IsSigned*/ false); |
8296 | |
8297 | if (Strict) { |
8298 | // Expand based on maximum range of FP_TO_SINT, if the value exceeds the |
8299 | // signmask then offset (the result of which should be fully representable). |
8300 | // Sel = Src < 0x8000000000000000 |
8301 | // FltOfs = select Sel, 0, 0x8000000000000000 |
8302 | // IntOfs = select Sel, 0, 0x8000000000000000 |
8303 | // Result = fp_to_sint(Src - FltOfs) ^ IntOfs |
8304 | |
8305 | // TODO: Should any fast-math-flags be set for the FSUB? |
8306 | SDValue FltOfs = DAG.getSelect(DL: dl, VT: SrcVT, Cond: Sel, |
8307 | LHS: DAG.getConstantFP(Val: 0.0, DL: dl, VT: SrcVT), RHS: Cst); |
8308 | Sel = DAG.getBoolExtOrTrunc(Op: Sel, SL: dl, VT: DstSetCCVT, OpVT: DstVT); |
8309 | SDValue IntOfs = DAG.getSelect(DL: dl, VT: DstVT, Cond: Sel, |
8310 | LHS: DAG.getConstant(Val: 0, DL: dl, VT: DstVT), |
8311 | RHS: DAG.getConstant(Val: SignMask, DL: dl, VT: DstVT)); |
8312 | SDValue SInt; |
8313 | if (Node->isStrictFPOpcode()) { |
8314 | SDValue Val = DAG.getNode(Opcode: ISD::STRICT_FSUB, DL: dl, ResultTys: { SrcVT, MVT::Other }, |
8315 | Ops: { Chain, Src, FltOfs }); |
8316 | SInt = DAG.getNode(Opcode: ISD::STRICT_FP_TO_SINT, DL: dl, ResultTys: { DstVT, MVT::Other }, |
8317 | Ops: { Val.getValue(R: 1), Val }); |
8318 | Chain = SInt.getValue(R: 1); |
8319 | } else { |
8320 | SDValue Val = DAG.getNode(Opcode: ISD::FSUB, DL: dl, VT: SrcVT, N1: Src, N2: FltOfs); |
8321 | SInt = DAG.getNode(Opcode: ISD::FP_TO_SINT, DL: dl, VT: DstVT, Operand: Val); |
8322 | } |
8323 | Result = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: DstVT, N1: SInt, N2: IntOfs); |
8324 | } else { |
8325 | // Expand based on maximum range of FP_TO_SINT: |
8326 | // True = fp_to_sint(Src) |
8327 | // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) |
8328 | // Result = select (Src < 0x8000000000000000), True, False |
8329 | |
8330 | SDValue True = DAG.getNode(Opcode: ISD::FP_TO_SINT, DL: dl, VT: DstVT, Operand: Src); |
8331 | // TODO: Should any fast-math-flags be set for the FSUB? |
8332 | SDValue False = DAG.getNode(Opcode: ISD::FP_TO_SINT, DL: dl, VT: DstVT, |
8333 | Operand: DAG.getNode(Opcode: ISD::FSUB, DL: dl, VT: SrcVT, N1: Src, N2: Cst)); |
8334 | False = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: DstVT, N1: False, |
8335 | N2: DAG.getConstant(Val: SignMask, DL: dl, VT: DstVT)); |
8336 | Sel = DAG.getBoolExtOrTrunc(Op: Sel, SL: dl, VT: DstSetCCVT, OpVT: DstVT); |
8337 | Result = DAG.getSelect(DL: dl, VT: DstVT, Cond: Sel, LHS: True, RHS: False); |
8338 | } |
8339 | return true; |
8340 | } |
8341 | |
8342 | bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, |
8343 | SDValue &Chain, |
8344 | SelectionDAG &DAG) const { |
8345 | // This transform is not correct for converting 0 when rounding mode is set |
8346 | // to round toward negative infinity which will produce -0.0. So disable under |
8347 | // strictfp. |
8348 | if (Node->isStrictFPOpcode()) |
8349 | return false; |
8350 | |
8351 | SDValue Src = Node->getOperand(Num: 0); |
8352 | EVT SrcVT = Src.getValueType(); |
8353 | EVT DstVT = Node->getValueType(ResNo: 0); |
8354 | |
8355 | if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) |
8356 | return false; |
8357 | |
8358 | // Only expand vector types if we have the appropriate vector bit operations. |
8359 | if (SrcVT.isVector() && (!isOperationLegalOrCustom(Op: ISD::SRL, VT: SrcVT) || |
8360 | !isOperationLegalOrCustom(Op: ISD::FADD, VT: DstVT) || |
8361 | !isOperationLegalOrCustom(Op: ISD::FSUB, VT: DstVT) || |
8362 | !isOperationLegalOrCustomOrPromote(Op: ISD::OR, VT: SrcVT) || |
8363 | !isOperationLegalOrCustomOrPromote(Op: ISD::AND, VT: SrcVT))) |
8364 | return false; |
8365 | |
8366 | SDLoc dl(SDValue(Node, 0)); |
8367 | EVT ShiftVT = getShiftAmountTy(LHSTy: SrcVT, DL: DAG.getDataLayout()); |
8368 | |
8369 | // Implementation of unsigned i64 to f64 following the algorithm in |
8370 | // __floatundidf in compiler_rt. This implementation performs rounding |
8371 | // correctly in all rounding modes with the exception of converting 0 |
8372 | // when rounding toward negative infinity. In that case the fsub will produce |
8373 | // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. |
8374 | SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), DL: dl, VT: SrcVT); |
8375 | SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( |
8376 | Val: llvm::bit_cast<double>(UINT64_C(0x4530000000100000)), DL: dl, VT: DstVT); |
8377 | SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), DL: dl, VT: SrcVT); |
8378 | SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), DL: dl, VT: SrcVT); |
8379 | SDValue HiShift = DAG.getConstant(Val: 32, DL: dl, VT: ShiftVT); |
8380 | |
8381 | SDValue Lo = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: SrcVT, N1: Src, N2: LoMask); |
8382 | SDValue Hi = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: SrcVT, N1: Src, N2: HiShift); |
8383 | SDValue LoOr = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: SrcVT, N1: Lo, N2: TwoP52); |
8384 | SDValue HiOr = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: SrcVT, N1: Hi, N2: TwoP84); |
8385 | SDValue LoFlt = DAG.getBitcast(VT: DstVT, V: LoOr); |
8386 | SDValue HiFlt = DAG.getBitcast(VT: DstVT, V: HiOr); |
8387 | SDValue HiSub = |
8388 | DAG.getNode(Opcode: ISD::FSUB, DL: dl, VT: DstVT, N1: HiFlt, N2: TwoP84PlusTwoP52); |
8389 | Result = DAG.getNode(Opcode: ISD::FADD, DL: dl, VT: DstVT, N1: LoFlt, N2: HiSub); |
8390 | return true; |
8391 | } |
8392 | |
8393 | SDValue |
8394 | TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, |
8395 | SelectionDAG &DAG) const { |
8396 | unsigned Opcode = Node->getOpcode(); |
8397 | assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || |
8398 | Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && |
8399 | "Wrong opcode" ); |
8400 | |
8401 | if (Node->getFlags().hasNoNaNs()) { |
8402 | ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; |
8403 | SDValue Op1 = Node->getOperand(Num: 0); |
8404 | SDValue Op2 = Node->getOperand(Num: 1); |
8405 | SDValue SelCC = DAG.getSelectCC(DL: SDLoc(Node), LHS: Op1, RHS: Op2, True: Op1, False: Op2, Cond: Pred); |
8406 | // Copy FMF flags, but always set the no-signed-zeros flag |
8407 | // as this is implied by the FMINNUM/FMAXNUM semantics. |
8408 | SDNodeFlags Flags = Node->getFlags(); |
8409 | Flags.setNoSignedZeros(true); |
8410 | SelCC->setFlags(Flags); |
8411 | return SelCC; |
8412 | } |
8413 | |
8414 | return SDValue(); |
8415 | } |
8416 | |
8417 | SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, |
8418 | SelectionDAG &DAG) const { |
8419 | SDLoc dl(Node); |
8420 | unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? |
8421 | ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; |
8422 | EVT VT = Node->getValueType(ResNo: 0); |
8423 | |
8424 | if (VT.isScalableVector()) |
8425 | report_fatal_error( |
8426 | reason: "Expanding fminnum/fmaxnum for scalable vectors is undefined." ); |
8427 | |
8428 | if (isOperationLegalOrCustom(Op: NewOp, VT)) { |
8429 | SDValue Quiet0 = Node->getOperand(Num: 0); |
8430 | SDValue Quiet1 = Node->getOperand(Num: 1); |
8431 | |
8432 | if (!Node->getFlags().hasNoNaNs()) { |
8433 | // Insert canonicalizes if it's possible we need to quiet to get correct |
8434 | // sNaN behavior. |
8435 | if (!DAG.isKnownNeverSNaN(Op: Quiet0)) { |
8436 | Quiet0 = DAG.getNode(Opcode: ISD::FCANONICALIZE, DL: dl, VT, Operand: Quiet0, |
8437 | Flags: Node->getFlags()); |
8438 | } |
8439 | if (!DAG.isKnownNeverSNaN(Op: Quiet1)) { |
8440 | Quiet1 = DAG.getNode(Opcode: ISD::FCANONICALIZE, DL: dl, VT, Operand: Quiet1, |
8441 | Flags: Node->getFlags()); |
8442 | } |
8443 | } |
8444 | |
8445 | return DAG.getNode(Opcode: NewOp, DL: dl, VT, N1: Quiet0, N2: Quiet1, Flags: Node->getFlags()); |
8446 | } |
8447 | |
8448 | // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that |
8449 | // instead if there are no NaNs and there can't be an incompatible zero |
8450 | // compare: at least one operand isn't +/-0, or there are no signed-zeros. |
8451 | if ((Node->getFlags().hasNoNaNs() || |
8452 | (DAG.isKnownNeverNaN(Op: Node->getOperand(Num: 0)) && |
8453 | DAG.isKnownNeverNaN(Op: Node->getOperand(Num: 1)))) && |
8454 | (Node->getFlags().hasNoSignedZeros() || |
8455 | DAG.isKnownNeverZeroFloat(Op: Node->getOperand(Num: 0)) || |
8456 | DAG.isKnownNeverZeroFloat(Op: Node->getOperand(Num: 1)))) { |
8457 | unsigned IEEE2018Op = |
8458 | Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; |
8459 | if (isOperationLegalOrCustom(Op: IEEE2018Op, VT)) |
8460 | return DAG.getNode(Opcode: IEEE2018Op, DL: dl, VT, N1: Node->getOperand(Num: 0), |
8461 | N2: Node->getOperand(Num: 1), Flags: Node->getFlags()); |
8462 | } |
8463 | |
8464 | if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) |
8465 | return SelCC; |
8466 | |
8467 | return SDValue(); |
8468 | } |
8469 | |
8470 | SDValue TargetLowering::expandFMINIMUM_FMAXIMUM(SDNode *N, |
8471 | SelectionDAG &DAG) const { |
8472 | SDLoc DL(N); |
8473 | SDValue LHS = N->getOperand(Num: 0); |
8474 | SDValue RHS = N->getOperand(Num: 1); |
8475 | unsigned Opc = N->getOpcode(); |
8476 | EVT VT = N->getValueType(ResNo: 0); |
8477 | EVT CCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
8478 | bool IsMax = Opc == ISD::FMAXIMUM; |
8479 | SDNodeFlags Flags = N->getFlags(); |
8480 | |
8481 | // First, implement comparison not propagating NaN. If no native fmin or fmax |
8482 | // available, use plain select with setcc instead. |
8483 | SDValue MinMax; |
8484 | unsigned CompOpcIeee = IsMax ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE; |
8485 | unsigned CompOpc = IsMax ? ISD::FMAXNUM : ISD::FMINNUM; |
8486 | |
8487 | // FIXME: We should probably define fminnum/fmaxnum variants with correct |
8488 | // signed zero behavior. |
8489 | bool MinMaxMustRespectOrderedZero = false; |
8490 | |
8491 | if (isOperationLegalOrCustom(Op: CompOpcIeee, VT)) { |
8492 | MinMax = DAG.getNode(Opcode: CompOpcIeee, DL, VT, N1: LHS, N2: RHS, Flags); |
8493 | MinMaxMustRespectOrderedZero = true; |
8494 | } else if (isOperationLegalOrCustom(Op: CompOpc, VT)) { |
8495 | MinMax = DAG.getNode(Opcode: CompOpc, DL, VT, N1: LHS, N2: RHS, Flags); |
8496 | } else { |
8497 | if (VT.isVector() && !isOperationLegalOrCustom(Op: ISD::VSELECT, VT)) |
8498 | return DAG.UnrollVectorOp(N); |
8499 | |
8500 | // NaN (if exists) will be propagated later, so orderness doesn't matter. |
8501 | SDValue Compare = |
8502 | DAG.getSetCC(DL, VT: CCVT, LHS, RHS, Cond: IsMax ? ISD::SETGT : ISD::SETLT); |
8503 | MinMax = DAG.getSelect(DL, VT, Cond: Compare, LHS, RHS, Flags); |
8504 | } |
8505 | |
8506 | // Propagate any NaN of both operands |
8507 | if (!N->getFlags().hasNoNaNs() && |
8508 | (!DAG.isKnownNeverNaN(Op: RHS) || !DAG.isKnownNeverNaN(Op: LHS))) { |
8509 | ConstantFP *FPNaN = ConstantFP::get( |
8510 | Context&: *DAG.getContext(), V: APFloat::getNaN(Sem: DAG.EVTToAPFloatSemantics(VT))); |
8511 | MinMax = DAG.getSelect(DL, VT, Cond: DAG.getSetCC(DL, VT: CCVT, LHS, RHS, Cond: ISD::SETUO), |
8512 | LHS: DAG.getConstantFP(V: *FPNaN, DL, VT), RHS: MinMax, Flags); |
8513 | } |
8514 | |
8515 | // fminimum/fmaximum requires -0.0 less than +0.0 |
8516 | if (!MinMaxMustRespectOrderedZero && !N->getFlags().hasNoSignedZeros() && |
8517 | !DAG.isKnownNeverZeroFloat(Op: RHS) && !DAG.isKnownNeverZeroFloat(Op: LHS)) { |
8518 | SDValue IsZero = DAG.getSetCC(DL, VT: CCVT, LHS: MinMax, |
8519 | RHS: DAG.getConstantFP(Val: 0.0, DL, VT), Cond: ISD::SETEQ); |
8520 | SDValue TestZero = |
8521 | DAG.getTargetConstant(Val: IsMax ? fcPosZero : fcNegZero, DL, VT: MVT::i32); |
8522 | SDValue LCmp = DAG.getSelect( |
8523 | DL, VT, Cond: DAG.getNode(Opcode: ISD::IS_FPCLASS, DL, VT: CCVT, N1: LHS, N2: TestZero), LHS, |
8524 | RHS: MinMax, Flags); |
8525 | SDValue RCmp = DAG.getSelect( |
8526 | DL, VT, Cond: DAG.getNode(Opcode: ISD::IS_FPCLASS, DL, VT: CCVT, N1: RHS, N2: TestZero), LHS: RHS, |
8527 | RHS: LCmp, Flags); |
8528 | MinMax = DAG.getSelect(DL, VT, Cond: IsZero, LHS: RCmp, RHS: MinMax, Flags); |
8529 | } |
8530 | |
8531 | return MinMax; |
8532 | } |
8533 | |
8534 | /// Returns a true value if if this FPClassTest can be performed with an ordered |
8535 | /// fcmp to 0, and a false value if it's an unordered fcmp to 0. Returns |
8536 | /// std::nullopt if it cannot be performed as a compare with 0. |
8537 | static std::optional<bool> isFCmpEqualZero(FPClassTest Test, |
8538 | const fltSemantics &Semantics, |
8539 | const MachineFunction &MF) { |
8540 | FPClassTest OrderedMask = Test & ~fcNan; |
8541 | FPClassTest NanTest = Test & fcNan; |
8542 | bool IsOrdered = NanTest == fcNone; |
8543 | bool IsUnordered = NanTest == fcNan; |
8544 | |
8545 | // Skip cases that are testing for only a qnan or snan. |
8546 | if (!IsOrdered && !IsUnordered) |
8547 | return std::nullopt; |
8548 | |
8549 | if (OrderedMask == fcZero && |
8550 | MF.getDenormalMode(FPType: Semantics).Input == DenormalMode::IEEE) |
8551 | return IsOrdered; |
8552 | if (OrderedMask == (fcZero | fcSubnormal) && |
8553 | MF.getDenormalMode(FPType: Semantics).inputsAreZero()) |
8554 | return IsOrdered; |
8555 | return std::nullopt; |
8556 | } |
8557 | |
8558 | SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, |
8559 | FPClassTest Test, SDNodeFlags Flags, |
8560 | const SDLoc &DL, |
8561 | SelectionDAG &DAG) const { |
8562 | EVT OperandVT = Op.getValueType(); |
8563 | assert(OperandVT.isFloatingPoint()); |
8564 | |
8565 | // Degenerated cases. |
8566 | if (Test == fcNone) |
8567 | return DAG.getBoolConstant(V: false, DL, VT: ResultVT, OpVT: OperandVT); |
8568 | if ((Test & fcAllFlags) == fcAllFlags) |
8569 | return DAG.getBoolConstant(V: true, DL, VT: ResultVT, OpVT: OperandVT); |
8570 | |
8571 | // PPC double double is a pair of doubles, of which the higher part determines |
8572 | // the value class. |
8573 | if (OperandVT == MVT::ppcf128) { |
8574 | Op = DAG.getNode(Opcode: ISD::EXTRACT_ELEMENT, DL, VT: MVT::f64, N1: Op, |
8575 | N2: DAG.getConstant(Val: 1, DL, VT: MVT::i32)); |
8576 | OperandVT = MVT::f64; |
8577 | } |
8578 | |
8579 | // Some checks may be represented as inversion of simpler check, for example |
8580 | // "inf|normal|subnormal|zero" => !"nan". |
8581 | bool IsInverted = false; |
8582 | if (FPClassTest InvertedCheck = invertFPClassTestIfSimpler(Test)) { |
8583 | IsInverted = true; |
8584 | Test = InvertedCheck; |
8585 | } |
8586 | |
8587 | // Floating-point type properties. |
8588 | EVT ScalarFloatVT = OperandVT.getScalarType(); |
8589 | const Type *FloatTy = ScalarFloatVT.getTypeForEVT(Context&: *DAG.getContext()); |
8590 | const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); |
8591 | bool IsF80 = (ScalarFloatVT == MVT::f80); |
8592 | |
8593 | // Some checks can be implemented using float comparisons, if floating point |
8594 | // exceptions are ignored. |
8595 | if (Flags.hasNoFPExcept() && |
8596 | isOperationLegalOrCustom(Op: ISD::SETCC, VT: OperandVT.getScalarType())) { |
8597 | ISD::CondCode OrderedCmpOpcode = IsInverted ? ISD::SETUNE : ISD::SETOEQ; |
8598 | ISD::CondCode UnorderedCmpOpcode = IsInverted ? ISD::SETONE : ISD::SETUEQ; |
8599 | |
8600 | if (std::optional<bool> IsCmp0 = |
8601 | isFCmpEqualZero(Test, Semantics, MF: DAG.getMachineFunction()); |
8602 | IsCmp0 && (isCondCodeLegalOrCustom( |
8603 | CC: *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode, |
8604 | VT: OperandVT.getScalarType().getSimpleVT()))) { |
8605 | |
8606 | // If denormals could be implicitly treated as 0, this is not equivalent |
8607 | // to a compare with 0 since it will also be true for denormals. |
8608 | return DAG.getSetCC(DL, VT: ResultVT, LHS: Op, |
8609 | RHS: DAG.getConstantFP(Val: 0.0, DL, VT: OperandVT), |
8610 | Cond: *IsCmp0 ? OrderedCmpOpcode : UnorderedCmpOpcode); |
8611 | } |
8612 | |
8613 | if (Test == fcNan && |
8614 | isCondCodeLegalOrCustom(CC: IsInverted ? ISD::SETO : ISD::SETUO, |
8615 | VT: OperandVT.getScalarType().getSimpleVT())) { |
8616 | return DAG.getSetCC(DL, VT: ResultVT, LHS: Op, RHS: Op, |
8617 | Cond: IsInverted ? ISD::SETO : ISD::SETUO); |
8618 | } |
8619 | |
8620 | if (Test == fcInf && |
8621 | isCondCodeLegalOrCustom(CC: IsInverted ? ISD::SETUNE : ISD::SETOEQ, |
8622 | VT: OperandVT.getScalarType().getSimpleVT()) && |
8623 | isOperationLegalOrCustom(Op: ISD::FABS, VT: OperandVT.getScalarType())) { |
8624 | // isinf(x) --> fabs(x) == inf |
8625 | SDValue Abs = DAG.getNode(Opcode: ISD::FABS, DL, VT: OperandVT, Operand: Op); |
8626 | SDValue Inf = |
8627 | DAG.getConstantFP(Val: APFloat::getInf(Sem: Semantics), DL, VT: OperandVT); |
8628 | return DAG.getSetCC(DL, VT: ResultVT, LHS: Abs, RHS: Inf, |
8629 | Cond: IsInverted ? ISD::SETUNE : ISD::SETOEQ); |
8630 | } |
8631 | } |
8632 | |
8633 | // In the general case use integer operations. |
8634 | unsigned BitSize = OperandVT.getScalarSizeInBits(); |
8635 | EVT IntVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: BitSize); |
8636 | if (OperandVT.isVector()) |
8637 | IntVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: IntVT, |
8638 | EC: OperandVT.getVectorElementCount()); |
8639 | SDValue OpAsInt = DAG.getBitcast(VT: IntVT, V: Op); |
8640 | |
8641 | // Various masks. |
8642 | APInt SignBit = APInt::getSignMask(BitWidth: BitSize); |
8643 | APInt ValueMask = APInt::getSignedMaxValue(numBits: BitSize); // All bits but sign. |
8644 | APInt Inf = APFloat::getInf(Sem: Semantics).bitcastToAPInt(); // Exp and int bit. |
8645 | const unsigned ExplicitIntBitInF80 = 63; |
8646 | APInt ExpMask = Inf; |
8647 | if (IsF80) |
8648 | ExpMask.clearBit(BitPosition: ExplicitIntBitInF80); |
8649 | APInt AllOneMantissa = APFloat::getLargest(Sem: Semantics).bitcastToAPInt() & ~Inf; |
8650 | APInt QNaNBitMask = |
8651 | APInt::getOneBitSet(numBits: BitSize, BitNo: AllOneMantissa.getActiveBits() - 1); |
8652 | APInt InvertionMask = APInt::getAllOnes(numBits: ResultVT.getScalarSizeInBits()); |
8653 | |
8654 | SDValue ValueMaskV = DAG.getConstant(Val: ValueMask, DL, VT: IntVT); |
8655 | SDValue SignBitV = DAG.getConstant(Val: SignBit, DL, VT: IntVT); |
8656 | SDValue ExpMaskV = DAG.getConstant(Val: ExpMask, DL, VT: IntVT); |
8657 | SDValue ZeroV = DAG.getConstant(Val: 0, DL, VT: IntVT); |
8658 | SDValue InfV = DAG.getConstant(Val: Inf, DL, VT: IntVT); |
8659 | SDValue ResultInvertionMask = DAG.getConstant(Val: InvertionMask, DL, VT: ResultVT); |
8660 | |
8661 | SDValue Res; |
8662 | const auto appendResult = [&](SDValue PartialRes) { |
8663 | if (PartialRes) { |
8664 | if (Res) |
8665 | Res = DAG.getNode(Opcode: ISD::OR, DL, VT: ResultVT, N1: Res, N2: PartialRes); |
8666 | else |
8667 | Res = PartialRes; |
8668 | } |
8669 | }; |
8670 | |
8671 | SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. |
8672 | const auto getIntBitIsSet = [&]() -> SDValue { |
8673 | if (!IntBitIsSetV) { |
8674 | APInt IntBitMask(BitSize, 0); |
8675 | IntBitMask.setBit(ExplicitIntBitInF80); |
8676 | SDValue IntBitMaskV = DAG.getConstant(Val: IntBitMask, DL, VT: IntVT); |
8677 | SDValue IntBitV = DAG.getNode(Opcode: ISD::AND, DL, VT: IntVT, N1: OpAsInt, N2: IntBitMaskV); |
8678 | IntBitIsSetV = DAG.getSetCC(DL, VT: ResultVT, LHS: IntBitV, RHS: ZeroV, Cond: ISD::SETNE); |
8679 | } |
8680 | return IntBitIsSetV; |
8681 | }; |
8682 | |
8683 | // Split the value into sign bit and absolute value. |
8684 | SDValue AbsV = DAG.getNode(Opcode: ISD::AND, DL, VT: IntVT, N1: OpAsInt, N2: ValueMaskV); |
8685 | SDValue SignV = DAG.getSetCC(DL, VT: ResultVT, LHS: OpAsInt, |
8686 | RHS: DAG.getConstant(Val: 0.0, DL, VT: IntVT), Cond: ISD::SETLT); |
8687 | |
8688 | // Tests that involve more than one class should be processed first. |
8689 | SDValue PartialRes; |
8690 | |
8691 | if (IsF80) |
8692 | ; // Detect finite numbers of f80 by checking individual classes because |
8693 | // they have different settings of the explicit integer bit. |
8694 | else if ((Test & fcFinite) == fcFinite) { |
8695 | // finite(V) ==> abs(V) < exp_mask |
8696 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: AbsV, RHS: ExpMaskV, Cond: ISD::SETLT); |
8697 | Test &= ~fcFinite; |
8698 | } else if ((Test & fcFinite) == fcPosFinite) { |
8699 | // finite(V) && V > 0 ==> V < exp_mask |
8700 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: OpAsInt, RHS: ExpMaskV, Cond: ISD::SETULT); |
8701 | Test &= ~fcPosFinite; |
8702 | } else if ((Test & fcFinite) == fcNegFinite) { |
8703 | // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 |
8704 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: AbsV, RHS: ExpMaskV, Cond: ISD::SETLT); |
8705 | PartialRes = DAG.getNode(Opcode: ISD::AND, DL, VT: ResultVT, N1: PartialRes, N2: SignV); |
8706 | Test &= ~fcNegFinite; |
8707 | } |
8708 | appendResult(PartialRes); |
8709 | |
8710 | if (FPClassTest PartialCheck = Test & (fcZero | fcSubnormal)) { |
8711 | // fcZero | fcSubnormal => test all exponent bits are 0 |
8712 | // TODO: Handle sign bit specific cases |
8713 | if (PartialCheck == (fcZero | fcSubnormal)) { |
8714 | SDValue ExpBits = DAG.getNode(Opcode: ISD::AND, DL, VT: IntVT, N1: OpAsInt, N2: ExpMaskV); |
8715 | SDValue ExpIsZero = |
8716 | DAG.getSetCC(DL, VT: ResultVT, LHS: ExpBits, RHS: ZeroV, Cond: ISD::SETEQ); |
8717 | appendResult(ExpIsZero); |
8718 | Test &= ~PartialCheck & fcAllFlags; |
8719 | } |
8720 | } |
8721 | |
8722 | // Check for individual classes. |
8723 | |
8724 | if (unsigned PartialCheck = Test & fcZero) { |
8725 | if (PartialCheck == fcPosZero) |
8726 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: OpAsInt, RHS: ZeroV, Cond: ISD::SETEQ); |
8727 | else if (PartialCheck == fcZero) |
8728 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: AbsV, RHS: ZeroV, Cond: ISD::SETEQ); |
8729 | else // ISD::fcNegZero |
8730 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: OpAsInt, RHS: SignBitV, Cond: ISD::SETEQ); |
8731 | appendResult(PartialRes); |
8732 | } |
8733 | |
8734 | if (unsigned PartialCheck = Test & fcSubnormal) { |
8735 | // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) |
8736 | // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) |
8737 | SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; |
8738 | SDValue MantissaV = DAG.getConstant(Val: AllOneMantissa, DL, VT: IntVT); |
8739 | SDValue VMinusOneV = |
8740 | DAG.getNode(Opcode: ISD::SUB, DL, VT: IntVT, N1: V, N2: DAG.getConstant(Val: 1, DL, VT: IntVT)); |
8741 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: VMinusOneV, RHS: MantissaV, Cond: ISD::SETULT); |
8742 | if (PartialCheck == fcNegSubnormal) |
8743 | PartialRes = DAG.getNode(Opcode: ISD::AND, DL, VT: ResultVT, N1: PartialRes, N2: SignV); |
8744 | appendResult(PartialRes); |
8745 | } |
8746 | |
8747 | if (unsigned PartialCheck = Test & fcInf) { |
8748 | if (PartialCheck == fcPosInf) |
8749 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: OpAsInt, RHS: InfV, Cond: ISD::SETEQ); |
8750 | else if (PartialCheck == fcInf) |
8751 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: AbsV, RHS: InfV, Cond: ISD::SETEQ); |
8752 | else { // ISD::fcNegInf |
8753 | APInt NegInf = APFloat::getInf(Sem: Semantics, Negative: true).bitcastToAPInt(); |
8754 | SDValue NegInfV = DAG.getConstant(Val: NegInf, DL, VT: IntVT); |
8755 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: OpAsInt, RHS: NegInfV, Cond: ISD::SETEQ); |
8756 | } |
8757 | appendResult(PartialRes); |
8758 | } |
8759 | |
8760 | if (unsigned PartialCheck = Test & fcNan) { |
8761 | APInt InfWithQnanBit = Inf | QNaNBitMask; |
8762 | SDValue InfWithQnanBitV = DAG.getConstant(Val: InfWithQnanBit, DL, VT: IntVT); |
8763 | if (PartialCheck == fcNan) { |
8764 | // isnan(V) ==> abs(V) > int(inf) |
8765 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: AbsV, RHS: InfV, Cond: ISD::SETGT); |
8766 | if (IsF80) { |
8767 | // Recognize unsupported values as NaNs for compatibility with glibc. |
8768 | // In them (exp(V)==0) == int_bit. |
8769 | SDValue ExpBits = DAG.getNode(Opcode: ISD::AND, DL, VT: IntVT, N1: AbsV, N2: ExpMaskV); |
8770 | SDValue ExpIsZero = |
8771 | DAG.getSetCC(DL, VT: ResultVT, LHS: ExpBits, RHS: ZeroV, Cond: ISD::SETEQ); |
8772 | SDValue IsPseudo = |
8773 | DAG.getSetCC(DL, VT: ResultVT, LHS: getIntBitIsSet(), RHS: ExpIsZero, Cond: ISD::SETEQ); |
8774 | PartialRes = DAG.getNode(Opcode: ISD::OR, DL, VT: ResultVT, N1: PartialRes, N2: IsPseudo); |
8775 | } |
8776 | } else if (PartialCheck == fcQNan) { |
8777 | // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) |
8778 | PartialRes = |
8779 | DAG.getSetCC(DL, VT: ResultVT, LHS: AbsV, RHS: InfWithQnanBitV, Cond: ISD::SETGE); |
8780 | } else { // ISD::fcSNan |
8781 | // issignaling(V) ==> abs(V) > unsigned(Inf) && |
8782 | // abs(V) < (unsigned(Inf) | quiet_bit) |
8783 | SDValue IsNan = DAG.getSetCC(DL, VT: ResultVT, LHS: AbsV, RHS: InfV, Cond: ISD::SETGT); |
8784 | SDValue IsNotQnan = |
8785 | DAG.getSetCC(DL, VT: ResultVT, LHS: AbsV, RHS: InfWithQnanBitV, Cond: ISD::SETLT); |
8786 | PartialRes = DAG.getNode(Opcode: ISD::AND, DL, VT: ResultVT, N1: IsNan, N2: IsNotQnan); |
8787 | } |
8788 | appendResult(PartialRes); |
8789 | } |
8790 | |
8791 | if (unsigned PartialCheck = Test & fcNormal) { |
8792 | // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) |
8793 | APInt ExpLSB = ExpMask & ~(ExpMask.shl(shiftAmt: 1)); |
8794 | SDValue ExpLSBV = DAG.getConstant(Val: ExpLSB, DL, VT: IntVT); |
8795 | SDValue ExpMinus1 = DAG.getNode(Opcode: ISD::SUB, DL, VT: IntVT, N1: AbsV, N2: ExpLSBV); |
8796 | APInt ExpLimit = ExpMask - ExpLSB; |
8797 | SDValue ExpLimitV = DAG.getConstant(Val: ExpLimit, DL, VT: IntVT); |
8798 | PartialRes = DAG.getSetCC(DL, VT: ResultVT, LHS: ExpMinus1, RHS: ExpLimitV, Cond: ISD::SETULT); |
8799 | if (PartialCheck == fcNegNormal) |
8800 | PartialRes = DAG.getNode(Opcode: ISD::AND, DL, VT: ResultVT, N1: PartialRes, N2: SignV); |
8801 | else if (PartialCheck == fcPosNormal) { |
8802 | SDValue PosSignV = |
8803 | DAG.getNode(Opcode: ISD::XOR, DL, VT: ResultVT, N1: SignV, N2: ResultInvertionMask); |
8804 | PartialRes = DAG.getNode(Opcode: ISD::AND, DL, VT: ResultVT, N1: PartialRes, N2: PosSignV); |
8805 | } |
8806 | if (IsF80) |
8807 | PartialRes = |
8808 | DAG.getNode(Opcode: ISD::AND, DL, VT: ResultVT, N1: PartialRes, N2: getIntBitIsSet()); |
8809 | appendResult(PartialRes); |
8810 | } |
8811 | |
8812 | if (!Res) |
8813 | return DAG.getConstant(Val: IsInverted, DL, VT: ResultVT); |
8814 | if (IsInverted) |
8815 | Res = DAG.getNode(Opcode: ISD::XOR, DL, VT: ResultVT, N1: Res, N2: ResultInvertionMask); |
8816 | return Res; |
8817 | } |
8818 | |
8819 | // Only expand vector types if we have the appropriate vector bit operations. |
8820 | static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { |
8821 | assert(VT.isVector() && "Expected vector type" ); |
8822 | unsigned Len = VT.getScalarSizeInBits(); |
8823 | return TLI.isOperationLegalOrCustom(Op: ISD::ADD, VT) && |
8824 | TLI.isOperationLegalOrCustom(Op: ISD::SUB, VT) && |
8825 | TLI.isOperationLegalOrCustom(Op: ISD::SRL, VT) && |
8826 | (Len == 8 || TLI.isOperationLegalOrCustom(Op: ISD::MUL, VT)) && |
8827 | TLI.isOperationLegalOrCustomOrPromote(Op: ISD::AND, VT); |
8828 | } |
8829 | |
8830 | SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { |
8831 | SDLoc dl(Node); |
8832 | EVT VT = Node->getValueType(ResNo: 0); |
8833 | EVT ShVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
8834 | SDValue Op = Node->getOperand(Num: 0); |
8835 | unsigned Len = VT.getScalarSizeInBits(); |
8836 | assert(VT.isInteger() && "CTPOP not implemented for this type." ); |
8837 | |
8838 | // TODO: Add support for irregular type lengths. |
8839 | if (!(Len <= 128 && Len % 8 == 0)) |
8840 | return SDValue(); |
8841 | |
8842 | // Only expand vector types if we have the appropriate vector bit operations. |
8843 | if (VT.isVector() && !canExpandVectorCTPOP(TLI: *this, VT)) |
8844 | return SDValue(); |
8845 | |
8846 | // This is the "best" algorithm from |
8847 | // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel |
8848 | SDValue Mask55 = |
8849 | DAG.getConstant(Val: APInt::getSplat(NewLen: Len, V: APInt(8, 0x55)), DL: dl, VT); |
8850 | SDValue Mask33 = |
8851 | DAG.getConstant(Val: APInt::getSplat(NewLen: Len, V: APInt(8, 0x33)), DL: dl, VT); |
8852 | SDValue Mask0F = |
8853 | DAG.getConstant(Val: APInt::getSplat(NewLen: Len, V: APInt(8, 0x0F)), DL: dl, VT); |
8854 | |
8855 | // v = v - ((v >> 1) & 0x55555555...) |
8856 | Op = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Op, |
8857 | N2: DAG.getNode(Opcode: ISD::AND, DL: dl, VT, |
8858 | N1: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, |
8859 | N2: DAG.getConstant(Val: 1, DL: dl, VT: ShVT)), |
8860 | N2: Mask55)); |
8861 | // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) |
8862 | Op = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Op, N2: Mask33), |
8863 | N2: DAG.getNode(Opcode: ISD::AND, DL: dl, VT, |
8864 | N1: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, |
8865 | N2: DAG.getConstant(Val: 2, DL: dl, VT: ShVT)), |
8866 | N2: Mask33)); |
8867 | // v = (v + (v >> 4)) & 0x0F0F0F0F... |
8868 | Op = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, |
8869 | N1: DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: Op, |
8870 | N2: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, |
8871 | N2: DAG.getConstant(Val: 4, DL: dl, VT: ShVT))), |
8872 | N2: Mask0F); |
8873 | |
8874 | if (Len <= 8) |
8875 | return Op; |
8876 | |
8877 | // Avoid the multiply if we only have 2 bytes to add. |
8878 | // TODO: Only doing this for scalars because vectors weren't as obviously |
8879 | // improved. |
8880 | if (Len == 16 && !VT.isVector()) { |
8881 | // v = (v + (v >> 8)) & 0x00FF; |
8882 | return DAG.getNode(Opcode: ISD::AND, DL: dl, VT, |
8883 | N1: DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: Op, |
8884 | N2: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, |
8885 | N2: DAG.getConstant(Val: 8, DL: dl, VT: ShVT))), |
8886 | N2: DAG.getConstant(Val: 0xFF, DL: dl, VT)); |
8887 | } |
8888 | |
8889 | // v = (v * 0x01010101...) >> (Len - 8) |
8890 | SDValue V; |
8891 | if (isOperationLegalOrCustomOrPromote( |
8892 | Op: ISD::MUL, VT: getTypeToTransformTo(Context&: *DAG.getContext(), VT))) { |
8893 | SDValue Mask01 = |
8894 | DAG.getConstant(Val: APInt::getSplat(NewLen: Len, V: APInt(8, 0x01)), DL: dl, VT); |
8895 | V = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: Op, N2: Mask01); |
8896 | } else { |
8897 | V = Op; |
8898 | for (unsigned Shift = 8; Shift < Len; Shift *= 2) { |
8899 | SDValue ShiftC = DAG.getShiftAmountConstant(Val: Shift, VT, DL: dl); |
8900 | V = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: V, |
8901 | N2: DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: V, N2: ShiftC)); |
8902 | } |
8903 | } |
8904 | return DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: V, N2: DAG.getConstant(Val: Len - 8, DL: dl, VT: ShVT)); |
8905 | } |
8906 | |
8907 | SDValue TargetLowering::expandVPCTPOP(SDNode *Node, SelectionDAG &DAG) const { |
8908 | SDLoc dl(Node); |
8909 | EVT VT = Node->getValueType(ResNo: 0); |
8910 | EVT ShVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
8911 | SDValue Op = Node->getOperand(Num: 0); |
8912 | SDValue Mask = Node->getOperand(Num: 1); |
8913 | SDValue VL = Node->getOperand(Num: 2); |
8914 | unsigned Len = VT.getScalarSizeInBits(); |
8915 | assert(VT.isInteger() && "VP_CTPOP not implemented for this type." ); |
8916 | |
8917 | // TODO: Add support for irregular type lengths. |
8918 | if (!(Len <= 128 && Len % 8 == 0)) |
8919 | return SDValue(); |
8920 | |
8921 | // This is same algorithm of expandCTPOP from |
8922 | // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel |
8923 | SDValue Mask55 = |
8924 | DAG.getConstant(Val: APInt::getSplat(NewLen: Len, V: APInt(8, 0x55)), DL: dl, VT); |
8925 | SDValue Mask33 = |
8926 | DAG.getConstant(Val: APInt::getSplat(NewLen: Len, V: APInt(8, 0x33)), DL: dl, VT); |
8927 | SDValue Mask0F = |
8928 | DAG.getConstant(Val: APInt::getSplat(NewLen: Len, V: APInt(8, 0x0F)), DL: dl, VT); |
8929 | |
8930 | SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5; |
8931 | |
8932 | // v = v - ((v >> 1) & 0x55555555...) |
8933 | Tmp1 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, |
8934 | N1: DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, |
8935 | N2: DAG.getConstant(Val: 1, DL: dl, VT: ShVT), N3: Mask, N4: VL), |
8936 | N2: Mask55, N3: Mask, N4: VL); |
8937 | Op = DAG.getNode(Opcode: ISD::VP_SUB, DL: dl, VT, N1: Op, N2: Tmp1, N3: Mask, N4: VL); |
8938 | |
8939 | // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) |
8940 | Tmp2 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Op, N2: Mask33, N3: Mask, N4: VL); |
8941 | Tmp3 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, |
8942 | N1: DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, |
8943 | N2: DAG.getConstant(Val: 2, DL: dl, VT: ShVT), N3: Mask, N4: VL), |
8944 | N2: Mask33, N3: Mask, N4: VL); |
8945 | Op = DAG.getNode(Opcode: ISD::VP_ADD, DL: dl, VT, N1: Tmp2, N2: Tmp3, N3: Mask, N4: VL); |
8946 | |
8947 | // v = (v + (v >> 4)) & 0x0F0F0F0F... |
8948 | Tmp4 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 4, DL: dl, VT: ShVT), |
8949 | N3: Mask, N4: VL), |
8950 | Tmp5 = DAG.getNode(Opcode: ISD::VP_ADD, DL: dl, VT, N1: Op, N2: Tmp4, N3: Mask, N4: VL); |
8951 | Op = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp5, N2: Mask0F, N3: Mask, N4: VL); |
8952 | |
8953 | if (Len <= 8) |
8954 | return Op; |
8955 | |
8956 | // v = (v * 0x01010101...) >> (Len - 8) |
8957 | SDValue V; |
8958 | if (isOperationLegalOrCustomOrPromote( |
8959 | Op: ISD::VP_MUL, VT: getTypeToTransformTo(Context&: *DAG.getContext(), VT))) { |
8960 | SDValue Mask01 = |
8961 | DAG.getConstant(Val: APInt::getSplat(NewLen: Len, V: APInt(8, 0x01)), DL: dl, VT); |
8962 | V = DAG.getNode(Opcode: ISD::VP_MUL, DL: dl, VT, N1: Op, N2: Mask01, N3: Mask, N4: VL); |
8963 | } else { |
8964 | V = Op; |
8965 | for (unsigned Shift = 8; Shift < Len; Shift *= 2) { |
8966 | SDValue ShiftC = DAG.getShiftAmountConstant(Val: Shift, VT, DL: dl); |
8967 | V = DAG.getNode(Opcode: ISD::VP_ADD, DL: dl, VT, N1: V, |
8968 | N2: DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: V, N2: ShiftC, N3: Mask, N4: VL), |
8969 | N3: Mask, N4: VL); |
8970 | } |
8971 | } |
8972 | return DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: V, N2: DAG.getConstant(Val: Len - 8, DL: dl, VT: ShVT), |
8973 | N3: Mask, N4: VL); |
8974 | } |
8975 | |
8976 | SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { |
8977 | SDLoc dl(Node); |
8978 | EVT VT = Node->getValueType(ResNo: 0); |
8979 | EVT ShVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
8980 | SDValue Op = Node->getOperand(Num: 0); |
8981 | unsigned NumBitsPerElt = VT.getScalarSizeInBits(); |
8982 | |
8983 | // If the non-ZERO_UNDEF version is supported we can use that instead. |
8984 | if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && |
8985 | isOperationLegalOrCustom(Op: ISD::CTLZ, VT)) |
8986 | return DAG.getNode(Opcode: ISD::CTLZ, DL: dl, VT, Operand: Op); |
8987 | |
8988 | // If the ZERO_UNDEF version is supported use that and handle the zero case. |
8989 | if (isOperationLegalOrCustom(Op: ISD::CTLZ_ZERO_UNDEF, VT)) { |
8990 | EVT SetCCVT = |
8991 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
8992 | SDValue CTLZ = DAG.getNode(Opcode: ISD::CTLZ_ZERO_UNDEF, DL: dl, VT, Operand: Op); |
8993 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT); |
8994 | SDValue SrcIsZero = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: Op, RHS: Zero, Cond: ISD::SETEQ); |
8995 | return DAG.getSelect(DL: dl, VT, Cond: SrcIsZero, |
8996 | LHS: DAG.getConstant(Val: NumBitsPerElt, DL: dl, VT), RHS: CTLZ); |
8997 | } |
8998 | |
8999 | // Only expand vector types if we have the appropriate vector bit operations. |
9000 | // This includes the operations needed to expand CTPOP if it isn't supported. |
9001 | if (VT.isVector() && (!isPowerOf2_32(Value: NumBitsPerElt) || |
9002 | (!isOperationLegalOrCustom(Op: ISD::CTPOP, VT) && |
9003 | !canExpandVectorCTPOP(TLI: *this, VT)) || |
9004 | !isOperationLegalOrCustom(Op: ISD::SRL, VT) || |
9005 | !isOperationLegalOrCustomOrPromote(Op: ISD::OR, VT))) |
9006 | return SDValue(); |
9007 | |
9008 | // for now, we do this: |
9009 | // x = x | (x >> 1); |
9010 | // x = x | (x >> 2); |
9011 | // ... |
9012 | // x = x | (x >>16); |
9013 | // x = x | (x >>32); // for 64-bit input |
9014 | // return popcount(~x); |
9015 | // |
9016 | // Ref: "Hacker's Delight" by Henry Warren |
9017 | for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { |
9018 | SDValue Tmp = DAG.getConstant(Val: 1ULL << i, DL: dl, VT: ShVT); |
9019 | Op = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Op, |
9020 | N2: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, N2: Tmp)); |
9021 | } |
9022 | Op = DAG.getNOT(DL: dl, Val: Op, VT); |
9023 | return DAG.getNode(Opcode: ISD::CTPOP, DL: dl, VT, Operand: Op); |
9024 | } |
9025 | |
9026 | SDValue TargetLowering::expandVPCTLZ(SDNode *Node, SelectionDAG &DAG) const { |
9027 | SDLoc dl(Node); |
9028 | EVT VT = Node->getValueType(ResNo: 0); |
9029 | EVT ShVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
9030 | SDValue Op = Node->getOperand(Num: 0); |
9031 | SDValue Mask = Node->getOperand(Num: 1); |
9032 | SDValue VL = Node->getOperand(Num: 2); |
9033 | unsigned NumBitsPerElt = VT.getScalarSizeInBits(); |
9034 | |
9035 | // do this: |
9036 | // x = x | (x >> 1); |
9037 | // x = x | (x >> 2); |
9038 | // ... |
9039 | // x = x | (x >>16); |
9040 | // x = x | (x >>32); // for 64-bit input |
9041 | // return popcount(~x); |
9042 | for (unsigned i = 0; (1U << i) < NumBitsPerElt; ++i) { |
9043 | SDValue Tmp = DAG.getConstant(Val: 1ULL << i, DL: dl, VT: ShVT); |
9044 | Op = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Op, |
9045 | N2: DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, N2: Tmp, N3: Mask, N4: VL), N3: Mask, |
9046 | N4: VL); |
9047 | } |
9048 | Op = DAG.getNode(Opcode: ISD::VP_XOR, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: -1, DL: dl, VT), N3: Mask, |
9049 | N4: VL); |
9050 | return DAG.getNode(Opcode: ISD::VP_CTPOP, DL: dl, VT, N1: Op, N2: Mask, N3: VL); |
9051 | } |
9052 | |
9053 | SDValue TargetLowering::CTTZTableLookup(SDNode *Node, SelectionDAG &DAG, |
9054 | const SDLoc &DL, EVT VT, SDValue Op, |
9055 | unsigned BitWidth) const { |
9056 | if (BitWidth != 32 && BitWidth != 64) |
9057 | return SDValue(); |
9058 | APInt DeBruijn = BitWidth == 32 ? APInt(32, 0x077CB531U) |
9059 | : APInt(64, 0x0218A392CD3D5DBFULL); |
9060 | const DataLayout &TD = DAG.getDataLayout(); |
9061 | MachinePointerInfo PtrInfo = |
9062 | MachinePointerInfo::getConstantPool(MF&: DAG.getMachineFunction()); |
9063 | unsigned ShiftAmt = BitWidth - Log2_32(Value: BitWidth); |
9064 | SDValue Neg = DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: DAG.getConstant(Val: 0, DL, VT), N2: Op); |
9065 | SDValue Lookup = DAG.getNode( |
9066 | Opcode: ISD::SRL, DL, VT, |
9067 | N1: DAG.getNode(Opcode: ISD::MUL, DL, VT, N1: DAG.getNode(Opcode: ISD::AND, DL, VT, N1: Op, N2: Neg), |
9068 | N2: DAG.getConstant(Val: DeBruijn, DL, VT)), |
9069 | N2: DAG.getConstant(Val: ShiftAmt, DL, VT)); |
9070 | Lookup = DAG.getSExtOrTrunc(Op: Lookup, DL, VT: getPointerTy(DL: TD)); |
9071 | |
9072 | SmallVector<uint8_t> Table(BitWidth, 0); |
9073 | for (unsigned i = 0; i < BitWidth; i++) { |
9074 | APInt Shl = DeBruijn.shl(shiftAmt: i); |
9075 | APInt Lshr = Shl.lshr(shiftAmt: ShiftAmt); |
9076 | Table[Lshr.getZExtValue()] = i; |
9077 | } |
9078 | |
9079 | // Create a ConstantArray in Constant Pool |
9080 | auto *CA = ConstantDataArray::get(Context&: *DAG.getContext(), Elts&: Table); |
9081 | SDValue CPIdx = DAG.getConstantPool(C: CA, VT: getPointerTy(DL: TD), |
9082 | Align: TD.getPrefTypeAlign(Ty: CA->getType())); |
9083 | SDValue ExtLoad = DAG.getExtLoad(ExtType: ISD::ZEXTLOAD, dl: DL, VT, Chain: DAG.getEntryNode(), |
9084 | Ptr: DAG.getMemBasePlusOffset(Base: CPIdx, Offset: Lookup, DL), |
9085 | PtrInfo, MemVT: MVT::i8); |
9086 | if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF) |
9087 | return ExtLoad; |
9088 | |
9089 | EVT SetCCVT = |
9090 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
9091 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT); |
9092 | SDValue SrcIsZero = DAG.getSetCC(DL, VT: SetCCVT, LHS: Op, RHS: Zero, Cond: ISD::SETEQ); |
9093 | return DAG.getSelect(DL, VT, Cond: SrcIsZero, |
9094 | LHS: DAG.getConstant(Val: BitWidth, DL, VT), RHS: ExtLoad); |
9095 | } |
9096 | |
9097 | SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { |
9098 | SDLoc dl(Node); |
9099 | EVT VT = Node->getValueType(ResNo: 0); |
9100 | SDValue Op = Node->getOperand(Num: 0); |
9101 | unsigned NumBitsPerElt = VT.getScalarSizeInBits(); |
9102 | |
9103 | // If the non-ZERO_UNDEF version is supported we can use that instead. |
9104 | if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && |
9105 | isOperationLegalOrCustom(Op: ISD::CTTZ, VT)) |
9106 | return DAG.getNode(Opcode: ISD::CTTZ, DL: dl, VT, Operand: Op); |
9107 | |
9108 | // If the ZERO_UNDEF version is supported use that and handle the zero case. |
9109 | if (isOperationLegalOrCustom(Op: ISD::CTTZ_ZERO_UNDEF, VT)) { |
9110 | EVT SetCCVT = |
9111 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
9112 | SDValue CTTZ = DAG.getNode(Opcode: ISD::CTTZ_ZERO_UNDEF, DL: dl, VT, Operand: Op); |
9113 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT); |
9114 | SDValue SrcIsZero = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: Op, RHS: Zero, Cond: ISD::SETEQ); |
9115 | return DAG.getSelect(DL: dl, VT, Cond: SrcIsZero, |
9116 | LHS: DAG.getConstant(Val: NumBitsPerElt, DL: dl, VT), RHS: CTTZ); |
9117 | } |
9118 | |
9119 | // Only expand vector types if we have the appropriate vector bit operations. |
9120 | // This includes the operations needed to expand CTPOP if it isn't supported. |
9121 | if (VT.isVector() && (!isPowerOf2_32(Value: NumBitsPerElt) || |
9122 | (!isOperationLegalOrCustom(Op: ISD::CTPOP, VT) && |
9123 | !isOperationLegalOrCustom(Op: ISD::CTLZ, VT) && |
9124 | !canExpandVectorCTPOP(TLI: *this, VT)) || |
9125 | !isOperationLegalOrCustom(Op: ISD::SUB, VT) || |
9126 | !isOperationLegalOrCustomOrPromote(Op: ISD::AND, VT) || |
9127 | !isOperationLegalOrCustomOrPromote(Op: ISD::XOR, VT))) |
9128 | return SDValue(); |
9129 | |
9130 | // Emit Table Lookup if ISD::CTLZ and ISD::CTPOP are not legal. |
9131 | if (!VT.isVector() && isOperationExpand(Op: ISD::CTPOP, VT) && |
9132 | !isOperationLegal(Op: ISD::CTLZ, VT)) |
9133 | if (SDValue V = CTTZTableLookup(Node, DAG, DL: dl, VT, Op, BitWidth: NumBitsPerElt)) |
9134 | return V; |
9135 | |
9136 | // for now, we use: { return popcount(~x & (x - 1)); } |
9137 | // unless the target has ctlz but not ctpop, in which case we use: |
9138 | // { return 32 - nlz(~x & (x-1)); } |
9139 | // Ref: "Hacker's Delight" by Henry Warren |
9140 | SDValue Tmp = DAG.getNode( |
9141 | Opcode: ISD::AND, DL: dl, VT, N1: DAG.getNOT(DL: dl, Val: Op, VT), |
9142 | N2: DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 1, DL: dl, VT))); |
9143 | |
9144 | // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. |
9145 | if (isOperationLegal(Op: ISD::CTLZ, VT) && !isOperationLegal(Op: ISD::CTPOP, VT)) { |
9146 | return DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: DAG.getConstant(Val: NumBitsPerElt, DL: dl, VT), |
9147 | N2: DAG.getNode(Opcode: ISD::CTLZ, DL: dl, VT, Operand: Tmp)); |
9148 | } |
9149 | |
9150 | return DAG.getNode(Opcode: ISD::CTPOP, DL: dl, VT, Operand: Tmp); |
9151 | } |
9152 | |
9153 | SDValue TargetLowering::expandVPCTTZ(SDNode *Node, SelectionDAG &DAG) const { |
9154 | SDValue Op = Node->getOperand(Num: 0); |
9155 | SDValue Mask = Node->getOperand(Num: 1); |
9156 | SDValue VL = Node->getOperand(Num: 2); |
9157 | SDLoc dl(Node); |
9158 | EVT VT = Node->getValueType(ResNo: 0); |
9159 | |
9160 | // Same as the vector part of expandCTTZ, use: popcount(~x & (x - 1)) |
9161 | SDValue Not = DAG.getNode(Opcode: ISD::VP_XOR, DL: dl, VT, N1: Op, |
9162 | N2: DAG.getConstant(Val: -1, DL: dl, VT), N3: Mask, N4: VL); |
9163 | SDValue MinusOne = DAG.getNode(Opcode: ISD::VP_SUB, DL: dl, VT, N1: Op, |
9164 | N2: DAG.getConstant(Val: 1, DL: dl, VT), N3: Mask, N4: VL); |
9165 | SDValue Tmp = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Not, N2: MinusOne, N3: Mask, N4: VL); |
9166 | return DAG.getNode(Opcode: ISD::VP_CTPOP, DL: dl, VT, N1: Tmp, N2: Mask, N3: VL); |
9167 | } |
9168 | |
9169 | SDValue TargetLowering::expandVPCTTZElements(SDNode *N, |
9170 | SelectionDAG &DAG) const { |
9171 | // %cond = to_bool_vec %source |
9172 | // %splat = splat /*val=*/VL |
9173 | // %tz = step_vector |
9174 | // %v = vp.select %cond, /*true=*/tz, /*false=*/%splat |
9175 | // %r = vp.reduce.umin %v |
9176 | SDLoc DL(N); |
9177 | SDValue Source = N->getOperand(Num: 0); |
9178 | SDValue Mask = N->getOperand(Num: 1); |
9179 | SDValue EVL = N->getOperand(Num: 2); |
9180 | EVT SrcVT = Source.getValueType(); |
9181 | EVT ResVT = N->getValueType(ResNo: 0); |
9182 | EVT ResVecVT = |
9183 | EVT::getVectorVT(Context&: *DAG.getContext(), VT: ResVT, EC: SrcVT.getVectorElementCount()); |
9184 | |
9185 | // Convert to boolean vector. |
9186 | if (SrcVT.getScalarType() != MVT::i1) { |
9187 | SDValue AllZero = DAG.getConstant(Val: 0, DL, VT: SrcVT); |
9188 | SrcVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: MVT::i1, |
9189 | EC: SrcVT.getVectorElementCount()); |
9190 | Source = DAG.getNode(Opcode: ISD::VP_SETCC, DL, VT: SrcVT, N1: Source, N2: AllZero, |
9191 | N3: DAG.getCondCode(Cond: ISD::SETNE), N4: Mask, N5: EVL); |
9192 | } |
9193 | |
9194 | SDValue ExtEVL = DAG.getZExtOrTrunc(Op: EVL, DL, VT: ResVT); |
9195 | SDValue Splat = DAG.getSplat(VT: ResVecVT, DL, Op: ExtEVL); |
9196 | SDValue StepVec = DAG.getStepVector(DL, ResVT: ResVecVT); |
9197 | SDValue Select = |
9198 | DAG.getNode(Opcode: ISD::VP_SELECT, DL, VT: ResVecVT, N1: Source, N2: StepVec, N3: Splat, N4: EVL); |
9199 | return DAG.getNode(Opcode: ISD::VP_REDUCE_UMIN, DL, VT: ResVT, N1: ExtEVL, N2: Select, N3: Mask, N4: EVL); |
9200 | } |
9201 | |
9202 | SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, |
9203 | bool IsNegative) const { |
9204 | SDLoc dl(N); |
9205 | EVT VT = N->getValueType(ResNo: 0); |
9206 | SDValue Op = N->getOperand(Num: 0); |
9207 | |
9208 | // abs(x) -> smax(x,sub(0,x)) |
9209 | if (!IsNegative && isOperationLegal(Op: ISD::SUB, VT) && |
9210 | isOperationLegal(Op: ISD::SMAX, VT)) { |
9211 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT); |
9212 | Op = DAG.getFreeze(V: Op); |
9213 | return DAG.getNode(Opcode: ISD::SMAX, DL: dl, VT, N1: Op, |
9214 | N2: DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Zero, N2: Op)); |
9215 | } |
9216 | |
9217 | // abs(x) -> umin(x,sub(0,x)) |
9218 | if (!IsNegative && isOperationLegal(Op: ISD::SUB, VT) && |
9219 | isOperationLegal(Op: ISD::UMIN, VT)) { |
9220 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT); |
9221 | Op = DAG.getFreeze(V: Op); |
9222 | return DAG.getNode(Opcode: ISD::UMIN, DL: dl, VT, N1: Op, |
9223 | N2: DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Zero, N2: Op)); |
9224 | } |
9225 | |
9226 | // 0 - abs(x) -> smin(x, sub(0,x)) |
9227 | if (IsNegative && isOperationLegal(Op: ISD::SUB, VT) && |
9228 | isOperationLegal(Op: ISD::SMIN, VT)) { |
9229 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT); |
9230 | Op = DAG.getFreeze(V: Op); |
9231 | return DAG.getNode(Opcode: ISD::SMIN, DL: dl, VT, N1: Op, |
9232 | N2: DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Zero, N2: Op)); |
9233 | } |
9234 | |
9235 | // Only expand vector types if we have the appropriate vector operations. |
9236 | if (VT.isVector() && |
9237 | (!isOperationLegalOrCustom(Op: ISD::SRA, VT) || |
9238 | (!IsNegative && !isOperationLegalOrCustom(Op: ISD::ADD, VT)) || |
9239 | (IsNegative && !isOperationLegalOrCustom(Op: ISD::SUB, VT)) || |
9240 | !isOperationLegalOrCustomOrPromote(Op: ISD::XOR, VT))) |
9241 | return SDValue(); |
9242 | |
9243 | Op = DAG.getFreeze(V: Op); |
9244 | SDValue Shift = DAG.getNode( |
9245 | Opcode: ISD::SRA, DL: dl, VT, N1: Op, |
9246 | N2: DAG.getShiftAmountConstant(Val: VT.getScalarSizeInBits() - 1, VT, DL: dl)); |
9247 | SDValue Xor = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT, N1: Op, N2: Shift); |
9248 | |
9249 | // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) |
9250 | if (!IsNegative) |
9251 | return DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Xor, N2: Shift); |
9252 | |
9253 | // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) |
9254 | return DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Shift, N2: Xor); |
9255 | } |
9256 | |
9257 | SDValue TargetLowering::expandABD(SDNode *N, SelectionDAG &DAG) const { |
9258 | SDLoc dl(N); |
9259 | EVT VT = N->getValueType(ResNo: 0); |
9260 | SDValue LHS = DAG.getFreeze(V: N->getOperand(Num: 0)); |
9261 | SDValue RHS = DAG.getFreeze(V: N->getOperand(Num: 1)); |
9262 | bool IsSigned = N->getOpcode() == ISD::ABDS; |
9263 | |
9264 | // abds(lhs, rhs) -> sub(smax(lhs,rhs), smin(lhs,rhs)) |
9265 | // abdu(lhs, rhs) -> sub(umax(lhs,rhs), umin(lhs,rhs)) |
9266 | unsigned MaxOpc = IsSigned ? ISD::SMAX : ISD::UMAX; |
9267 | unsigned MinOpc = IsSigned ? ISD::SMIN : ISD::UMIN; |
9268 | if (isOperationLegal(Op: MaxOpc, VT) && isOperationLegal(Op: MinOpc, VT)) { |
9269 | SDValue Max = DAG.getNode(Opcode: MaxOpc, DL: dl, VT, N1: LHS, N2: RHS); |
9270 | SDValue Min = DAG.getNode(Opcode: MinOpc, DL: dl, VT, N1: LHS, N2: RHS); |
9271 | return DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Max, N2: Min); |
9272 | } |
9273 | |
9274 | // abdu(lhs, rhs) -> or(usubsat(lhs,rhs), usubsat(rhs,lhs)) |
9275 | if (!IsSigned && isOperationLegal(Op: ISD::USUBSAT, VT)) |
9276 | return DAG.getNode(Opcode: ISD::OR, DL: dl, VT, |
9277 | N1: DAG.getNode(Opcode: ISD::USUBSAT, DL: dl, VT, N1: LHS, N2: RHS), |
9278 | N2: DAG.getNode(Opcode: ISD::USUBSAT, DL: dl, VT, N1: RHS, N2: LHS)); |
9279 | |
9280 | EVT CCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
9281 | ISD::CondCode CC = IsSigned ? ISD::CondCode::SETGT : ISD::CondCode::SETUGT; |
9282 | SDValue Cmp = DAG.getSetCC(DL: dl, VT: CCVT, LHS, RHS, Cond: CC); |
9283 | |
9284 | // Branchless expansion iff cmp result is allbits: |
9285 | // abds(lhs, rhs) -> sub(sgt(lhs, rhs), xor(sgt(lhs, rhs), sub(lhs, rhs))) |
9286 | // abdu(lhs, rhs) -> sub(ugt(lhs, rhs), xor(ugt(lhs, rhs), sub(lhs, rhs))) |
9287 | if (CCVT == VT && getBooleanContents(Type: VT) == ZeroOrNegativeOneBooleanContent) { |
9288 | SDValue Diff = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: LHS, N2: RHS); |
9289 | SDValue Xor = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT, N1: Diff, N2: Cmp); |
9290 | return DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Cmp, N2: Xor); |
9291 | } |
9292 | |
9293 | // abds(lhs, rhs) -> select(sgt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) |
9294 | // abdu(lhs, rhs) -> select(ugt(lhs,rhs), sub(lhs,rhs), sub(rhs,lhs)) |
9295 | return DAG.getSelect(DL: dl, VT, Cond: Cmp, LHS: DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: LHS, N2: RHS), |
9296 | RHS: DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: RHS, N2: LHS)); |
9297 | } |
9298 | |
9299 | SDValue TargetLowering::expandAVG(SDNode *N, SelectionDAG &DAG) const { |
9300 | SDLoc dl(N); |
9301 | EVT VT = N->getValueType(ResNo: 0); |
9302 | SDValue LHS = N->getOperand(Num: 0); |
9303 | SDValue RHS = N->getOperand(Num: 1); |
9304 | |
9305 | unsigned Opc = N->getOpcode(); |
9306 | bool IsFloor = Opc == ISD::AVGFLOORS || Opc == ISD::AVGFLOORU; |
9307 | bool IsSigned = Opc == ISD::AVGCEILS || Opc == ISD::AVGFLOORS; |
9308 | unsigned SumOpc = IsFloor ? ISD::ADD : ISD::SUB; |
9309 | unsigned SignOpc = IsFloor ? ISD::AND : ISD::OR; |
9310 | unsigned ShiftOpc = IsSigned ? ISD::SRA : ISD::SRL; |
9311 | unsigned ExtOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
9312 | assert((Opc == ISD::AVGFLOORS || Opc == ISD::AVGCEILS || |
9313 | Opc == ISD::AVGFLOORU || Opc == ISD::AVGCEILU) && |
9314 | "Unknown AVG node" ); |
9315 | |
9316 | // If the operands are already extended, we can add+shift. |
9317 | bool IsExt = |
9318 | (IsSigned && DAG.ComputeNumSignBits(Op: LHS) >= 2 && |
9319 | DAG.ComputeNumSignBits(Op: RHS) >= 2) || |
9320 | (!IsSigned && DAG.computeKnownBits(Op: LHS).countMinLeadingZeros() >= 1 && |
9321 | DAG.computeKnownBits(Op: RHS).countMinLeadingZeros() >= 1); |
9322 | if (IsExt) { |
9323 | SDValue Sum = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: LHS, N2: RHS); |
9324 | if (!IsFloor) |
9325 | Sum = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: Sum, N2: DAG.getConstant(Val: 1, DL: dl, VT)); |
9326 | return DAG.getNode(Opcode: ShiftOpc, DL: dl, VT, N1: Sum, |
9327 | N2: DAG.getShiftAmountConstant(Val: 1, VT, DL: dl)); |
9328 | } |
9329 | |
9330 | // For scalars, see if we can efficiently extend/truncate to use add+shift. |
9331 | if (VT.isScalarInteger()) { |
9332 | unsigned BW = VT.getScalarSizeInBits(); |
9333 | EVT ExtVT = VT.getIntegerVT(Context&: *DAG.getContext(), BitWidth: 2 * BW); |
9334 | if (isTypeLegal(VT: ExtVT) && isTruncateFree(FromVT: ExtVT, ToVT: VT)) { |
9335 | LHS = DAG.getNode(Opcode: ExtOpc, DL: dl, VT: ExtVT, Operand: LHS); |
9336 | RHS = DAG.getNode(Opcode: ExtOpc, DL: dl, VT: ExtVT, Operand: RHS); |
9337 | SDValue Avg = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: ExtVT, N1: LHS, N2: RHS); |
9338 | if (!IsFloor) |
9339 | Avg = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: ExtVT, N1: Avg, |
9340 | N2: DAG.getConstant(Val: 1, DL: dl, VT: ExtVT)); |
9341 | // Just use SRL as we will be truncating away the extended sign bits. |
9342 | Avg = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: ExtVT, N1: Avg, |
9343 | N2: DAG.getShiftAmountConstant(Val: 1, VT: ExtVT, DL: dl)); |
9344 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Avg); |
9345 | } |
9346 | } |
9347 | |
9348 | // avgceils(lhs, rhs) -> sub(or(lhs,rhs),ashr(xor(lhs,rhs),1)) |
9349 | // avgceilu(lhs, rhs) -> sub(or(lhs,rhs),lshr(xor(lhs,rhs),1)) |
9350 | // avgfloors(lhs, rhs) -> add(and(lhs,rhs),ashr(xor(lhs,rhs),1)) |
9351 | // avgflooru(lhs, rhs) -> add(and(lhs,rhs),lshr(xor(lhs,rhs),1)) |
9352 | LHS = DAG.getFreeze(V: LHS); |
9353 | RHS = DAG.getFreeze(V: RHS); |
9354 | SDValue Sign = DAG.getNode(Opcode: SignOpc, DL: dl, VT, N1: LHS, N2: RHS); |
9355 | SDValue Xor = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT, N1: LHS, N2: RHS); |
9356 | SDValue Shift = |
9357 | DAG.getNode(Opcode: ShiftOpc, DL: dl, VT, N1: Xor, N2: DAG.getShiftAmountConstant(Val: 1, VT, DL: dl)); |
9358 | return DAG.getNode(Opcode: SumOpc, DL: dl, VT, N1: Sign, N2: Shift); |
9359 | } |
9360 | |
9361 | SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { |
9362 | SDLoc dl(N); |
9363 | EVT VT = N->getValueType(ResNo: 0); |
9364 | SDValue Op = N->getOperand(Num: 0); |
9365 | |
9366 | if (!VT.isSimple()) |
9367 | return SDValue(); |
9368 | |
9369 | EVT SHVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
9370 | SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; |
9371 | switch (VT.getSimpleVT().getScalarType().SimpleTy) { |
9372 | default: |
9373 | return SDValue(); |
9374 | case MVT::i16: |
9375 | // Use a rotate by 8. This can be further expanded if necessary. |
9376 | return DAG.getNode(Opcode: ISD::ROTL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT)); |
9377 | case MVT::i32: |
9378 | Tmp4 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 24, DL: dl, VT: SHVT)); |
9379 | Tmp3 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Op, |
9380 | N2: DAG.getConstant(Val: 0xFF00, DL: dl, VT)); |
9381 | Tmp3 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Tmp3, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT)); |
9382 | Tmp2 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT)); |
9383 | Tmp2 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp2, N2: DAG.getConstant(Val: 0xFF00, DL: dl, VT)); |
9384 | Tmp1 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 24, DL: dl, VT: SHVT)); |
9385 | Tmp4 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp4, N2: Tmp3); |
9386 | Tmp2 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp2, N2: Tmp1); |
9387 | return DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp4, N2: Tmp2); |
9388 | case MVT::i64: |
9389 | Tmp8 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 56, DL: dl, VT: SHVT)); |
9390 | Tmp7 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Op, |
9391 | N2: DAG.getConstant(Val: 255ULL<<8, DL: dl, VT)); |
9392 | Tmp7 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Tmp7, N2: DAG.getConstant(Val: 40, DL: dl, VT: SHVT)); |
9393 | Tmp6 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Op, |
9394 | N2: DAG.getConstant(Val: 255ULL<<16, DL: dl, VT)); |
9395 | Tmp6 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Tmp6, N2: DAG.getConstant(Val: 24, DL: dl, VT: SHVT)); |
9396 | Tmp5 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Op, |
9397 | N2: DAG.getConstant(Val: 255ULL<<24, DL: dl, VT)); |
9398 | Tmp5 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Tmp5, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT)); |
9399 | Tmp4 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT)); |
9400 | Tmp4 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp4, |
9401 | N2: DAG.getConstant(Val: 255ULL<<24, DL: dl, VT)); |
9402 | Tmp3 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 24, DL: dl, VT: SHVT)); |
9403 | Tmp3 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp3, |
9404 | N2: DAG.getConstant(Val: 255ULL<<16, DL: dl, VT)); |
9405 | Tmp2 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 40, DL: dl, VT: SHVT)); |
9406 | Tmp2 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp2, |
9407 | N2: DAG.getConstant(Val: 255ULL<<8, DL: dl, VT)); |
9408 | Tmp1 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 56, DL: dl, VT: SHVT)); |
9409 | Tmp8 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp8, N2: Tmp7); |
9410 | Tmp6 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp6, N2: Tmp5); |
9411 | Tmp4 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp4, N2: Tmp3); |
9412 | Tmp2 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp2, N2: Tmp1); |
9413 | Tmp8 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp8, N2: Tmp6); |
9414 | Tmp4 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp4, N2: Tmp2); |
9415 | return DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp8, N2: Tmp4); |
9416 | } |
9417 | } |
9418 | |
9419 | SDValue TargetLowering::expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const { |
9420 | SDLoc dl(N); |
9421 | EVT VT = N->getValueType(ResNo: 0); |
9422 | SDValue Op = N->getOperand(Num: 0); |
9423 | SDValue Mask = N->getOperand(Num: 1); |
9424 | SDValue EVL = N->getOperand(Num: 2); |
9425 | |
9426 | if (!VT.isSimple()) |
9427 | return SDValue(); |
9428 | |
9429 | EVT SHVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
9430 | SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; |
9431 | switch (VT.getSimpleVT().getScalarType().SimpleTy) { |
9432 | default: |
9433 | return SDValue(); |
9434 | case MVT::i16: |
9435 | Tmp1 = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT), |
9436 | N3: Mask, N4: EVL); |
9437 | Tmp2 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT), |
9438 | N3: Mask, N4: EVL); |
9439 | return DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp1, N2: Tmp2, N3: Mask, N4: EVL); |
9440 | case MVT::i32: |
9441 | Tmp4 = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 24, DL: dl, VT: SHVT), |
9442 | N3: Mask, N4: EVL); |
9443 | Tmp3 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 0xFF00, DL: dl, VT), |
9444 | N3: Mask, N4: EVL); |
9445 | Tmp3 = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Tmp3, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT), |
9446 | N3: Mask, N4: EVL); |
9447 | Tmp2 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT), |
9448 | N3: Mask, N4: EVL); |
9449 | Tmp2 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp2, |
9450 | N2: DAG.getConstant(Val: 0xFF00, DL: dl, VT), N3: Mask, N4: EVL); |
9451 | Tmp1 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 24, DL: dl, VT: SHVT), |
9452 | N3: Mask, N4: EVL); |
9453 | Tmp4 = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp4, N2: Tmp3, N3: Mask, N4: EVL); |
9454 | Tmp2 = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp2, N2: Tmp1, N3: Mask, N4: EVL); |
9455 | return DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp4, N2: Tmp2, N3: Mask, N4: EVL); |
9456 | case MVT::i64: |
9457 | Tmp8 = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 56, DL: dl, VT: SHVT), |
9458 | N3: Mask, N4: EVL); |
9459 | Tmp7 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Op, |
9460 | N2: DAG.getConstant(Val: 255ULL << 8, DL: dl, VT), N3: Mask, N4: EVL); |
9461 | Tmp7 = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Tmp7, N2: DAG.getConstant(Val: 40, DL: dl, VT: SHVT), |
9462 | N3: Mask, N4: EVL); |
9463 | Tmp6 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Op, |
9464 | N2: DAG.getConstant(Val: 255ULL << 16, DL: dl, VT), N3: Mask, N4: EVL); |
9465 | Tmp6 = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Tmp6, N2: DAG.getConstant(Val: 24, DL: dl, VT: SHVT), |
9466 | N3: Mask, N4: EVL); |
9467 | Tmp5 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Op, |
9468 | N2: DAG.getConstant(Val: 255ULL << 24, DL: dl, VT), N3: Mask, N4: EVL); |
9469 | Tmp5 = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Tmp5, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT), |
9470 | N3: Mask, N4: EVL); |
9471 | Tmp4 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 8, DL: dl, VT: SHVT), |
9472 | N3: Mask, N4: EVL); |
9473 | Tmp4 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp4, |
9474 | N2: DAG.getConstant(Val: 255ULL << 24, DL: dl, VT), N3: Mask, N4: EVL); |
9475 | Tmp3 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 24, DL: dl, VT: SHVT), |
9476 | N3: Mask, N4: EVL); |
9477 | Tmp3 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp3, |
9478 | N2: DAG.getConstant(Val: 255ULL << 16, DL: dl, VT), N3: Mask, N4: EVL); |
9479 | Tmp2 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 40, DL: dl, VT: SHVT), |
9480 | N3: Mask, N4: EVL); |
9481 | Tmp2 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp2, |
9482 | N2: DAG.getConstant(Val: 255ULL << 8, DL: dl, VT), N3: Mask, N4: EVL); |
9483 | Tmp1 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: 56, DL: dl, VT: SHVT), |
9484 | N3: Mask, N4: EVL); |
9485 | Tmp8 = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp8, N2: Tmp7, N3: Mask, N4: EVL); |
9486 | Tmp6 = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp6, N2: Tmp5, N3: Mask, N4: EVL); |
9487 | Tmp4 = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp4, N2: Tmp3, N3: Mask, N4: EVL); |
9488 | Tmp2 = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp2, N2: Tmp1, N3: Mask, N4: EVL); |
9489 | Tmp8 = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp8, N2: Tmp6, N3: Mask, N4: EVL); |
9490 | Tmp4 = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp4, N2: Tmp2, N3: Mask, N4: EVL); |
9491 | return DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp8, N2: Tmp4, N3: Mask, N4: EVL); |
9492 | } |
9493 | } |
9494 | |
9495 | SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { |
9496 | SDLoc dl(N); |
9497 | EVT VT = N->getValueType(ResNo: 0); |
9498 | SDValue Op = N->getOperand(Num: 0); |
9499 | EVT SHVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
9500 | unsigned Sz = VT.getScalarSizeInBits(); |
9501 | |
9502 | SDValue Tmp, Tmp2, Tmp3; |
9503 | |
9504 | // If we can, perform BSWAP first and then the mask+swap the i4, then i2 |
9505 | // and finally the i1 pairs. |
9506 | // TODO: We can easily support i4/i2 legal types if any target ever does. |
9507 | if (Sz >= 8 && isPowerOf2_32(Value: Sz)) { |
9508 | // Create the masks - repeating the pattern every byte. |
9509 | APInt Mask4 = APInt::getSplat(NewLen: Sz, V: APInt(8, 0x0F)); |
9510 | APInt Mask2 = APInt::getSplat(NewLen: Sz, V: APInt(8, 0x33)); |
9511 | APInt Mask1 = APInt::getSplat(NewLen: Sz, V: APInt(8, 0x55)); |
9512 | |
9513 | // BSWAP if the type is wider than a single byte. |
9514 | Tmp = (Sz > 8 ? DAG.getNode(Opcode: ISD::BSWAP, DL: dl, VT, Operand: Op) : Op); |
9515 | |
9516 | // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) |
9517 | Tmp2 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: 4, DL: dl, VT: SHVT)); |
9518 | Tmp2 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp2, N2: DAG.getConstant(Val: Mask4, DL: dl, VT)); |
9519 | Tmp3 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: Mask4, DL: dl, VT)); |
9520 | Tmp3 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Tmp3, N2: DAG.getConstant(Val: 4, DL: dl, VT: SHVT)); |
9521 | Tmp = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp2, N2: Tmp3); |
9522 | |
9523 | // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) |
9524 | Tmp2 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: 2, DL: dl, VT: SHVT)); |
9525 | Tmp2 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp2, N2: DAG.getConstant(Val: Mask2, DL: dl, VT)); |
9526 | Tmp3 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: Mask2, DL: dl, VT)); |
9527 | Tmp3 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Tmp3, N2: DAG.getConstant(Val: 2, DL: dl, VT: SHVT)); |
9528 | Tmp = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp2, N2: Tmp3); |
9529 | |
9530 | // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) |
9531 | Tmp2 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: 1, DL: dl, VT: SHVT)); |
9532 | Tmp2 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp2, N2: DAG.getConstant(Val: Mask1, DL: dl, VT)); |
9533 | Tmp3 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: Mask1, DL: dl, VT)); |
9534 | Tmp3 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Tmp3, N2: DAG.getConstant(Val: 1, DL: dl, VT: SHVT)); |
9535 | Tmp = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp2, N2: Tmp3); |
9536 | return Tmp; |
9537 | } |
9538 | |
9539 | Tmp = DAG.getConstant(Val: 0, DL: dl, VT); |
9540 | for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { |
9541 | if (I < J) |
9542 | Tmp2 = |
9543 | DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: J - I, DL: dl, VT: SHVT)); |
9544 | else |
9545 | Tmp2 = |
9546 | DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Op, N2: DAG.getConstant(Val: I - J, DL: dl, VT: SHVT)); |
9547 | |
9548 | APInt Shift = APInt::getOneBitSet(numBits: Sz, BitNo: J); |
9549 | Tmp2 = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: Tmp2, N2: DAG.getConstant(Val: Shift, DL: dl, VT)); |
9550 | Tmp = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Tmp, N2: Tmp2); |
9551 | } |
9552 | |
9553 | return Tmp; |
9554 | } |
9555 | |
9556 | SDValue TargetLowering::expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const { |
9557 | assert(N->getOpcode() == ISD::VP_BITREVERSE); |
9558 | |
9559 | SDLoc dl(N); |
9560 | EVT VT = N->getValueType(ResNo: 0); |
9561 | SDValue Op = N->getOperand(Num: 0); |
9562 | SDValue Mask = N->getOperand(Num: 1); |
9563 | SDValue EVL = N->getOperand(Num: 2); |
9564 | EVT SHVT = getShiftAmountTy(LHSTy: VT, DL: DAG.getDataLayout()); |
9565 | unsigned Sz = VT.getScalarSizeInBits(); |
9566 | |
9567 | SDValue Tmp, Tmp2, Tmp3; |
9568 | |
9569 | // If we can, perform BSWAP first and then the mask+swap the i4, then i2 |
9570 | // and finally the i1 pairs. |
9571 | // TODO: We can easily support i4/i2 legal types if any target ever does. |
9572 | if (Sz >= 8 && isPowerOf2_32(Value: Sz)) { |
9573 | // Create the masks - repeating the pattern every byte. |
9574 | APInt Mask4 = APInt::getSplat(NewLen: Sz, V: APInt(8, 0x0F)); |
9575 | APInt Mask2 = APInt::getSplat(NewLen: Sz, V: APInt(8, 0x33)); |
9576 | APInt Mask1 = APInt::getSplat(NewLen: Sz, V: APInt(8, 0x55)); |
9577 | |
9578 | // BSWAP if the type is wider than a single byte. |
9579 | Tmp = (Sz > 8 ? DAG.getNode(Opcode: ISD::VP_BSWAP, DL: dl, VT, N1: Op, N2: Mask, N3: EVL) : Op); |
9580 | |
9581 | // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) |
9582 | Tmp2 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: 4, DL: dl, VT: SHVT), |
9583 | N3: Mask, N4: EVL); |
9584 | Tmp2 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp2, |
9585 | N2: DAG.getConstant(Val: Mask4, DL: dl, VT), N3: Mask, N4: EVL); |
9586 | Tmp3 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: Mask4, DL: dl, VT), |
9587 | N3: Mask, N4: EVL); |
9588 | Tmp3 = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Tmp3, N2: DAG.getConstant(Val: 4, DL: dl, VT: SHVT), |
9589 | N3: Mask, N4: EVL); |
9590 | Tmp = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp2, N2: Tmp3, N3: Mask, N4: EVL); |
9591 | |
9592 | // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) |
9593 | Tmp2 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: 2, DL: dl, VT: SHVT), |
9594 | N3: Mask, N4: EVL); |
9595 | Tmp2 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp2, |
9596 | N2: DAG.getConstant(Val: Mask2, DL: dl, VT), N3: Mask, N4: EVL); |
9597 | Tmp3 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: Mask2, DL: dl, VT), |
9598 | N3: Mask, N4: EVL); |
9599 | Tmp3 = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Tmp3, N2: DAG.getConstant(Val: 2, DL: dl, VT: SHVT), |
9600 | N3: Mask, N4: EVL); |
9601 | Tmp = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp2, N2: Tmp3, N3: Mask, N4: EVL); |
9602 | |
9603 | // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) |
9604 | Tmp2 = DAG.getNode(Opcode: ISD::VP_SRL, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: 1, DL: dl, VT: SHVT), |
9605 | N3: Mask, N4: EVL); |
9606 | Tmp2 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp2, |
9607 | N2: DAG.getConstant(Val: Mask1, DL: dl, VT), N3: Mask, N4: EVL); |
9608 | Tmp3 = DAG.getNode(Opcode: ISD::VP_AND, DL: dl, VT, N1: Tmp, N2: DAG.getConstant(Val: Mask1, DL: dl, VT), |
9609 | N3: Mask, N4: EVL); |
9610 | Tmp3 = DAG.getNode(Opcode: ISD::VP_SHL, DL: dl, VT, N1: Tmp3, N2: DAG.getConstant(Val: 1, DL: dl, VT: SHVT), |
9611 | N3: Mask, N4: EVL); |
9612 | Tmp = DAG.getNode(Opcode: ISD::VP_OR, DL: dl, VT, N1: Tmp2, N2: Tmp3, N3: Mask, N4: EVL); |
9613 | return Tmp; |
9614 | } |
9615 | return SDValue(); |
9616 | } |
9617 | |
9618 | std::pair<SDValue, SDValue> |
9619 | TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, |
9620 | SelectionDAG &DAG) const { |
9621 | SDLoc SL(LD); |
9622 | SDValue Chain = LD->getChain(); |
9623 | SDValue BasePTR = LD->getBasePtr(); |
9624 | EVT SrcVT = LD->getMemoryVT(); |
9625 | EVT DstVT = LD->getValueType(ResNo: 0); |
9626 | ISD::LoadExtType ExtType = LD->getExtensionType(); |
9627 | |
9628 | if (SrcVT.isScalableVector()) |
9629 | report_fatal_error(reason: "Cannot scalarize scalable vector loads" ); |
9630 | |
9631 | unsigned NumElem = SrcVT.getVectorNumElements(); |
9632 | |
9633 | EVT SrcEltVT = SrcVT.getScalarType(); |
9634 | EVT DstEltVT = DstVT.getScalarType(); |
9635 | |
9636 | // A vector must always be stored in memory as-is, i.e. without any padding |
9637 | // between the elements, since various code depend on it, e.g. in the |
9638 | // handling of a bitcast of a vector type to int, which may be done with a |
9639 | // vector store followed by an integer load. A vector that does not have |
9640 | // elements that are byte-sized must therefore be stored as an integer |
9641 | // built out of the extracted vector elements. |
9642 | if (!SrcEltVT.isByteSized()) { |
9643 | unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); |
9644 | EVT LoadVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: NumLoadBits); |
9645 | |
9646 | unsigned NumSrcBits = SrcVT.getSizeInBits(); |
9647 | EVT SrcIntVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: NumSrcBits); |
9648 | |
9649 | unsigned SrcEltBits = SrcEltVT.getSizeInBits(); |
9650 | SDValue SrcEltBitMask = DAG.getConstant( |
9651 | Val: APInt::getLowBitsSet(numBits: NumLoadBits, loBitsSet: SrcEltBits), DL: SL, VT: LoadVT); |
9652 | |
9653 | // Load the whole vector and avoid masking off the top bits as it makes |
9654 | // the codegen worse. |
9655 | SDValue Load = |
9656 | DAG.getExtLoad(ExtType: ISD::EXTLOAD, dl: SL, VT: LoadVT, Chain, Ptr: BasePTR, |
9657 | PtrInfo: LD->getPointerInfo(), MemVT: SrcIntVT, Alignment: LD->getOriginalAlign(), |
9658 | MMOFlags: LD->getMemOperand()->getFlags(), AAInfo: LD->getAAInfo()); |
9659 | |
9660 | SmallVector<SDValue, 8> Vals; |
9661 | for (unsigned Idx = 0; Idx < NumElem; ++Idx) { |
9662 | unsigned ShiftIntoIdx = |
9663 | (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); |
9664 | SDValue ShiftAmount = DAG.getShiftAmountConstant( |
9665 | Val: ShiftIntoIdx * SrcEltVT.getSizeInBits(), VT: LoadVT, DL: SL); |
9666 | SDValue ShiftedElt = DAG.getNode(Opcode: ISD::SRL, DL: SL, VT: LoadVT, N1: Load, N2: ShiftAmount); |
9667 | SDValue Elt = |
9668 | DAG.getNode(Opcode: ISD::AND, DL: SL, VT: LoadVT, N1: ShiftedElt, N2: SrcEltBitMask); |
9669 | SDValue Scalar = DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT: SrcEltVT, Operand: Elt); |
9670 | |
9671 | if (ExtType != ISD::NON_EXTLOAD) { |
9672 | unsigned ExtendOp = ISD::getExtForLoadExtType(IsFP: false, ExtType); |
9673 | Scalar = DAG.getNode(Opcode: ExtendOp, DL: SL, VT: DstEltVT, Operand: Scalar); |
9674 | } |
9675 | |
9676 | Vals.push_back(Elt: Scalar); |
9677 | } |
9678 | |
9679 | SDValue Value = DAG.getBuildVector(VT: DstVT, DL: SL, Ops: Vals); |
9680 | return std::make_pair(x&: Value, y: Load.getValue(R: 1)); |
9681 | } |
9682 | |
9683 | unsigned Stride = SrcEltVT.getSizeInBits() / 8; |
9684 | assert(SrcEltVT.isByteSized()); |
9685 | |
9686 | SmallVector<SDValue, 8> Vals; |
9687 | SmallVector<SDValue, 8> LoadChains; |
9688 | |
9689 | for (unsigned Idx = 0; Idx < NumElem; ++Idx) { |
9690 | SDValue ScalarLoad = |
9691 | DAG.getExtLoad(ExtType, dl: SL, VT: DstEltVT, Chain, Ptr: BasePTR, |
9692 | PtrInfo: LD->getPointerInfo().getWithOffset(O: Idx * Stride), |
9693 | MemVT: SrcEltVT, Alignment: LD->getOriginalAlign(), |
9694 | MMOFlags: LD->getMemOperand()->getFlags(), AAInfo: LD->getAAInfo()); |
9695 | |
9696 | BasePTR = DAG.getObjectPtrOffset(SL, Ptr: BasePTR, Offset: TypeSize::getFixed(ExactSize: Stride)); |
9697 | |
9698 | Vals.push_back(Elt: ScalarLoad.getValue(R: 0)); |
9699 | LoadChains.push_back(Elt: ScalarLoad.getValue(R: 1)); |
9700 | } |
9701 | |
9702 | SDValue NewChain = DAG.getNode(Opcode: ISD::TokenFactor, DL: SL, VT: MVT::Other, Ops: LoadChains); |
9703 | SDValue Value = DAG.getBuildVector(VT: DstVT, DL: SL, Ops: Vals); |
9704 | |
9705 | return std::make_pair(x&: Value, y&: NewChain); |
9706 | } |
9707 | |
9708 | SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, |
9709 | SelectionDAG &DAG) const { |
9710 | SDLoc SL(ST); |
9711 | |
9712 | SDValue Chain = ST->getChain(); |
9713 | SDValue BasePtr = ST->getBasePtr(); |
9714 | SDValue Value = ST->getValue(); |
9715 | EVT StVT = ST->getMemoryVT(); |
9716 | |
9717 | if (StVT.isScalableVector()) |
9718 | report_fatal_error(reason: "Cannot scalarize scalable vector stores" ); |
9719 | |
9720 | // The type of the data we want to save |
9721 | EVT RegVT = Value.getValueType(); |
9722 | EVT RegSclVT = RegVT.getScalarType(); |
9723 | |
9724 | // The type of data as saved in memory. |
9725 | EVT MemSclVT = StVT.getScalarType(); |
9726 | |
9727 | unsigned NumElem = StVT.getVectorNumElements(); |
9728 | |
9729 | // A vector must always be stored in memory as-is, i.e. without any padding |
9730 | // between the elements, since various code depend on it, e.g. in the |
9731 | // handling of a bitcast of a vector type to int, which may be done with a |
9732 | // vector store followed by an integer load. A vector that does not have |
9733 | // elements that are byte-sized must therefore be stored as an integer |
9734 | // built out of the extracted vector elements. |
9735 | if (!MemSclVT.isByteSized()) { |
9736 | unsigned NumBits = StVT.getSizeInBits(); |
9737 | EVT IntVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: NumBits); |
9738 | |
9739 | SDValue CurrVal = DAG.getConstant(Val: 0, DL: SL, VT: IntVT); |
9740 | |
9741 | for (unsigned Idx = 0; Idx < NumElem; ++Idx) { |
9742 | SDValue Elt = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: SL, VT: RegSclVT, N1: Value, |
9743 | N2: DAG.getVectorIdxConstant(Val: Idx, DL: SL)); |
9744 | SDValue Trunc = DAG.getNode(Opcode: ISD::TRUNCATE, DL: SL, VT: MemSclVT, Operand: Elt); |
9745 | SDValue ExtElt = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: SL, VT: IntVT, Operand: Trunc); |
9746 | unsigned ShiftIntoIdx = |
9747 | (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); |
9748 | SDValue ShiftAmount = |
9749 | DAG.getConstant(Val: ShiftIntoIdx * MemSclVT.getSizeInBits(), DL: SL, VT: IntVT); |
9750 | SDValue ShiftedElt = |
9751 | DAG.getNode(Opcode: ISD::SHL, DL: SL, VT: IntVT, N1: ExtElt, N2: ShiftAmount); |
9752 | CurrVal = DAG.getNode(Opcode: ISD::OR, DL: SL, VT: IntVT, N1: CurrVal, N2: ShiftedElt); |
9753 | } |
9754 | |
9755 | return DAG.getStore(Chain, dl: SL, Val: CurrVal, Ptr: BasePtr, PtrInfo: ST->getPointerInfo(), |
9756 | Alignment: ST->getOriginalAlign(), MMOFlags: ST->getMemOperand()->getFlags(), |
9757 | AAInfo: ST->getAAInfo()); |
9758 | } |
9759 | |
9760 | // Store Stride in bytes |
9761 | unsigned Stride = MemSclVT.getSizeInBits() / 8; |
9762 | assert(Stride && "Zero stride!" ); |
9763 | // Extract each of the elements from the original vector and save them into |
9764 | // memory individually. |
9765 | SmallVector<SDValue, 8> Stores; |
9766 | for (unsigned Idx = 0; Idx < NumElem; ++Idx) { |
9767 | SDValue Elt = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: SL, VT: RegSclVT, N1: Value, |
9768 | N2: DAG.getVectorIdxConstant(Val: Idx, DL: SL)); |
9769 | |
9770 | SDValue Ptr = |
9771 | DAG.getObjectPtrOffset(SL, Ptr: BasePtr, Offset: TypeSize::getFixed(ExactSize: Idx * Stride)); |
9772 | |
9773 | // This scalar TruncStore may be illegal, but we legalize it later. |
9774 | SDValue Store = DAG.getTruncStore( |
9775 | Chain, dl: SL, Val: Elt, Ptr, PtrInfo: ST->getPointerInfo().getWithOffset(O: Idx * Stride), |
9776 | SVT: MemSclVT, Alignment: ST->getOriginalAlign(), MMOFlags: ST->getMemOperand()->getFlags(), |
9777 | AAInfo: ST->getAAInfo()); |
9778 | |
9779 | Stores.push_back(Elt: Store); |
9780 | } |
9781 | |
9782 | return DAG.getNode(Opcode: ISD::TokenFactor, DL: SL, VT: MVT::Other, Ops: Stores); |
9783 | } |
9784 | |
9785 | std::pair<SDValue, SDValue> |
9786 | TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { |
9787 | assert(LD->getAddressingMode() == ISD::UNINDEXED && |
9788 | "unaligned indexed loads not implemented!" ); |
9789 | SDValue Chain = LD->getChain(); |
9790 | SDValue Ptr = LD->getBasePtr(); |
9791 | EVT VT = LD->getValueType(ResNo: 0); |
9792 | EVT LoadedVT = LD->getMemoryVT(); |
9793 | SDLoc dl(LD); |
9794 | auto &MF = DAG.getMachineFunction(); |
9795 | |
9796 | if (VT.isFloatingPoint() || VT.isVector()) { |
9797 | EVT intVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: LoadedVT.getSizeInBits()); |
9798 | if (isTypeLegal(VT: intVT) && isTypeLegal(VT: LoadedVT)) { |
9799 | if (!isOperationLegalOrCustom(Op: ISD::LOAD, VT: intVT) && |
9800 | LoadedVT.isVector()) { |
9801 | // Scalarize the load and let the individual components be handled. |
9802 | return scalarizeVectorLoad(LD, DAG); |
9803 | } |
9804 | |
9805 | // Expand to a (misaligned) integer load of the same size, |
9806 | // then bitconvert to floating point or vector. |
9807 | SDValue newLoad = DAG.getLoad(VT: intVT, dl, Chain, Ptr, |
9808 | MMO: LD->getMemOperand()); |
9809 | SDValue Result = DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: LoadedVT, Operand: newLoad); |
9810 | if (LoadedVT != VT) |
9811 | Result = DAG.getNode(Opcode: VT.isFloatingPoint() ? ISD::FP_EXTEND : |
9812 | ISD::ANY_EXTEND, DL: dl, VT, Operand: Result); |
9813 | |
9814 | return std::make_pair(x&: Result, y: newLoad.getValue(R: 1)); |
9815 | } |
9816 | |
9817 | // Copy the value to a (aligned) stack slot using (unaligned) integer |
9818 | // loads and stores, then do a (aligned) load from the stack slot. |
9819 | MVT RegVT = getRegisterType(Context&: *DAG.getContext(), VT: intVT); |
9820 | unsigned LoadedBytes = LoadedVT.getStoreSize(); |
9821 | unsigned RegBytes = RegVT.getSizeInBits() / 8; |
9822 | unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; |
9823 | |
9824 | // Make sure the stack slot is also aligned for the register type. |
9825 | SDValue StackBase = DAG.CreateStackTemporary(VT1: LoadedVT, VT2: RegVT); |
9826 | auto FrameIndex = cast<FrameIndexSDNode>(Val: StackBase.getNode())->getIndex(); |
9827 | SmallVector<SDValue, 8> Stores; |
9828 | SDValue StackPtr = StackBase; |
9829 | unsigned Offset = 0; |
9830 | |
9831 | EVT PtrVT = Ptr.getValueType(); |
9832 | EVT StackPtrVT = StackPtr.getValueType(); |
9833 | |
9834 | SDValue PtrIncrement = DAG.getConstant(Val: RegBytes, DL: dl, VT: PtrVT); |
9835 | SDValue StackPtrIncrement = DAG.getConstant(Val: RegBytes, DL: dl, VT: StackPtrVT); |
9836 | |
9837 | // Do all but one copies using the full register width. |
9838 | for (unsigned i = 1; i < NumRegs; i++) { |
9839 | // Load one integer register's worth from the original location. |
9840 | SDValue Load = DAG.getLoad( |
9841 | VT: RegVT, dl, Chain, Ptr, PtrInfo: LD->getPointerInfo().getWithOffset(O: Offset), |
9842 | Alignment: LD->getOriginalAlign(), MMOFlags: LD->getMemOperand()->getFlags(), |
9843 | AAInfo: LD->getAAInfo()); |
9844 | // Follow the load with a store to the stack slot. Remember the store. |
9845 | Stores.push_back(Elt: DAG.getStore( |
9846 | Chain: Load.getValue(R: 1), dl, Val: Load, Ptr: StackPtr, |
9847 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI: FrameIndex, Offset))); |
9848 | // Increment the pointers. |
9849 | Offset += RegBytes; |
9850 | |
9851 | Ptr = DAG.getObjectPtrOffset(SL: dl, Ptr, Offset: PtrIncrement); |
9852 | StackPtr = DAG.getObjectPtrOffset(SL: dl, Ptr: StackPtr, Offset: StackPtrIncrement); |
9853 | } |
9854 | |
9855 | // The last copy may be partial. Do an extending load. |
9856 | EVT MemVT = EVT::getIntegerVT(Context&: *DAG.getContext(), |
9857 | BitWidth: 8 * (LoadedBytes - Offset)); |
9858 | SDValue Load = |
9859 | DAG.getExtLoad(ExtType: ISD::EXTLOAD, dl, VT: RegVT, Chain, Ptr, |
9860 | PtrInfo: LD->getPointerInfo().getWithOffset(O: Offset), MemVT, |
9861 | Alignment: LD->getOriginalAlign(), MMOFlags: LD->getMemOperand()->getFlags(), |
9862 | AAInfo: LD->getAAInfo()); |
9863 | // Follow the load with a store to the stack slot. Remember the store. |
9864 | // On big-endian machines this requires a truncating store to ensure |
9865 | // that the bits end up in the right place. |
9866 | Stores.push_back(Elt: DAG.getTruncStore( |
9867 | Chain: Load.getValue(R: 1), dl, Val: Load, Ptr: StackPtr, |
9868 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI: FrameIndex, Offset), SVT: MemVT)); |
9869 | |
9870 | // The order of the stores doesn't matter - say it with a TokenFactor. |
9871 | SDValue TF = DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, Ops: Stores); |
9872 | |
9873 | // Finally, perform the original load only redirected to the stack slot. |
9874 | Load = DAG.getExtLoad(ExtType: LD->getExtensionType(), dl, VT, Chain: TF, Ptr: StackBase, |
9875 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI: FrameIndex, Offset: 0), |
9876 | MemVT: LoadedVT); |
9877 | |
9878 | // Callers expect a MERGE_VALUES node. |
9879 | return std::make_pair(x&: Load, y&: TF); |
9880 | } |
9881 | |
9882 | assert(LoadedVT.isInteger() && !LoadedVT.isVector() && |
9883 | "Unaligned load of unsupported type." ); |
9884 | |
9885 | // Compute the new VT that is half the size of the old one. This is an |
9886 | // integer MVT. |
9887 | unsigned NumBits = LoadedVT.getSizeInBits(); |
9888 | EVT NewLoadedVT; |
9889 | NewLoadedVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: NumBits/2); |
9890 | NumBits >>= 1; |
9891 | |
9892 | Align Alignment = LD->getOriginalAlign(); |
9893 | unsigned IncrementSize = NumBits / 8; |
9894 | ISD::LoadExtType HiExtType = LD->getExtensionType(); |
9895 | |
9896 | // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. |
9897 | if (HiExtType == ISD::NON_EXTLOAD) |
9898 | HiExtType = ISD::ZEXTLOAD; |
9899 | |
9900 | // Load the value in two parts |
9901 | SDValue Lo, Hi; |
9902 | if (DAG.getDataLayout().isLittleEndian()) { |
9903 | Lo = DAG.getExtLoad(ExtType: ISD::ZEXTLOAD, dl, VT, Chain, Ptr, PtrInfo: LD->getPointerInfo(), |
9904 | MemVT: NewLoadedVT, Alignment, MMOFlags: LD->getMemOperand()->getFlags(), |
9905 | AAInfo: LD->getAAInfo()); |
9906 | |
9907 | Ptr = DAG.getObjectPtrOffset(SL: dl, Ptr, Offset: TypeSize::getFixed(ExactSize: IncrementSize)); |
9908 | Hi = DAG.getExtLoad(ExtType: HiExtType, dl, VT, Chain, Ptr, |
9909 | PtrInfo: LD->getPointerInfo().getWithOffset(O: IncrementSize), |
9910 | MemVT: NewLoadedVT, Alignment, MMOFlags: LD->getMemOperand()->getFlags(), |
9911 | AAInfo: LD->getAAInfo()); |
9912 | } else { |
9913 | Hi = DAG.getExtLoad(ExtType: HiExtType, dl, VT, Chain, Ptr, PtrInfo: LD->getPointerInfo(), |
9914 | MemVT: NewLoadedVT, Alignment, MMOFlags: LD->getMemOperand()->getFlags(), |
9915 | AAInfo: LD->getAAInfo()); |
9916 | |
9917 | Ptr = DAG.getObjectPtrOffset(SL: dl, Ptr, Offset: TypeSize::getFixed(ExactSize: IncrementSize)); |
9918 | Lo = DAG.getExtLoad(ExtType: ISD::ZEXTLOAD, dl, VT, Chain, Ptr, |
9919 | PtrInfo: LD->getPointerInfo().getWithOffset(O: IncrementSize), |
9920 | MemVT: NewLoadedVT, Alignment, MMOFlags: LD->getMemOperand()->getFlags(), |
9921 | AAInfo: LD->getAAInfo()); |
9922 | } |
9923 | |
9924 | // aggregate the two parts |
9925 | SDValue ShiftAmount = DAG.getShiftAmountConstant(Val: NumBits, VT, DL: dl); |
9926 | SDValue Result = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: Hi, N2: ShiftAmount); |
9927 | Result = DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: Result, N2: Lo); |
9928 | |
9929 | SDValue TF = DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, N1: Lo.getValue(R: 1), |
9930 | N2: Hi.getValue(R: 1)); |
9931 | |
9932 | return std::make_pair(x&: Result, y&: TF); |
9933 | } |
9934 | |
9935 | SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, |
9936 | SelectionDAG &DAG) const { |
9937 | assert(ST->getAddressingMode() == ISD::UNINDEXED && |
9938 | "unaligned indexed stores not implemented!" ); |
9939 | SDValue Chain = ST->getChain(); |
9940 | SDValue Ptr = ST->getBasePtr(); |
9941 | SDValue Val = ST->getValue(); |
9942 | EVT VT = Val.getValueType(); |
9943 | Align Alignment = ST->getOriginalAlign(); |
9944 | auto &MF = DAG.getMachineFunction(); |
9945 | EVT StoreMemVT = ST->getMemoryVT(); |
9946 | |
9947 | SDLoc dl(ST); |
9948 | if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { |
9949 | EVT intVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: VT.getSizeInBits()); |
9950 | if (isTypeLegal(VT: intVT)) { |
9951 | if (!isOperationLegalOrCustom(Op: ISD::STORE, VT: intVT) && |
9952 | StoreMemVT.isVector()) { |
9953 | // Scalarize the store and let the individual components be handled. |
9954 | SDValue Result = scalarizeVectorStore(ST, DAG); |
9955 | return Result; |
9956 | } |
9957 | // Expand to a bitconvert of the value to the integer type of the |
9958 | // same size, then a (misaligned) int store. |
9959 | // FIXME: Does not handle truncating floating point stores! |
9960 | SDValue Result = DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: intVT, Operand: Val); |
9961 | Result = DAG.getStore(Chain, dl, Val: Result, Ptr, PtrInfo: ST->getPointerInfo(), |
9962 | Alignment, MMOFlags: ST->getMemOperand()->getFlags()); |
9963 | return Result; |
9964 | } |
9965 | // Do a (aligned) store to a stack slot, then copy from the stack slot |
9966 | // to the final destination using (unaligned) integer loads and stores. |
9967 | MVT RegVT = getRegisterType( |
9968 | Context&: *DAG.getContext(), |
9969 | VT: EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: StoreMemVT.getSizeInBits())); |
9970 | EVT PtrVT = Ptr.getValueType(); |
9971 | unsigned StoredBytes = StoreMemVT.getStoreSize(); |
9972 | unsigned RegBytes = RegVT.getSizeInBits() / 8; |
9973 | unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; |
9974 | |
9975 | // Make sure the stack slot is also aligned for the register type. |
9976 | SDValue StackPtr = DAG.CreateStackTemporary(VT1: StoreMemVT, VT2: RegVT); |
9977 | auto FrameIndex = cast<FrameIndexSDNode>(Val: StackPtr.getNode())->getIndex(); |
9978 | |
9979 | // Perform the original store, only redirected to the stack slot. |
9980 | SDValue Store = DAG.getTruncStore( |
9981 | Chain, dl, Val, Ptr: StackPtr, |
9982 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI: FrameIndex, Offset: 0), SVT: StoreMemVT); |
9983 | |
9984 | EVT StackPtrVT = StackPtr.getValueType(); |
9985 | |
9986 | SDValue PtrIncrement = DAG.getConstant(Val: RegBytes, DL: dl, VT: PtrVT); |
9987 | SDValue StackPtrIncrement = DAG.getConstant(Val: RegBytes, DL: dl, VT: StackPtrVT); |
9988 | SmallVector<SDValue, 8> Stores; |
9989 | unsigned Offset = 0; |
9990 | |
9991 | // Do all but one copies using the full register width. |
9992 | for (unsigned i = 1; i < NumRegs; i++) { |
9993 | // Load one integer register's worth from the stack slot. |
9994 | SDValue Load = DAG.getLoad( |
9995 | VT: RegVT, dl, Chain: Store, Ptr: StackPtr, |
9996 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI: FrameIndex, Offset)); |
9997 | // Store it to the final location. Remember the store. |
9998 | Stores.push_back(Elt: DAG.getStore(Chain: Load.getValue(R: 1), dl, Val: Load, Ptr, |
9999 | PtrInfo: ST->getPointerInfo().getWithOffset(O: Offset), |
10000 | Alignment: ST->getOriginalAlign(), |
10001 | MMOFlags: ST->getMemOperand()->getFlags())); |
10002 | // Increment the pointers. |
10003 | Offset += RegBytes; |
10004 | StackPtr = DAG.getObjectPtrOffset(SL: dl, Ptr: StackPtr, Offset: StackPtrIncrement); |
10005 | Ptr = DAG.getObjectPtrOffset(SL: dl, Ptr, Offset: PtrIncrement); |
10006 | } |
10007 | |
10008 | // The last store may be partial. Do a truncating store. On big-endian |
10009 | // machines this requires an extending load from the stack slot to ensure |
10010 | // that the bits are in the right place. |
10011 | EVT LoadMemVT = |
10012 | EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: 8 * (StoredBytes - Offset)); |
10013 | |
10014 | // Load from the stack slot. |
10015 | SDValue Load = DAG.getExtLoad( |
10016 | ExtType: ISD::EXTLOAD, dl, VT: RegVT, Chain: Store, Ptr: StackPtr, |
10017 | PtrInfo: MachinePointerInfo::getFixedStack(MF, FI: FrameIndex, Offset), MemVT: LoadMemVT); |
10018 | |
10019 | Stores.push_back( |
10020 | Elt: DAG.getTruncStore(Chain: Load.getValue(R: 1), dl, Val: Load, Ptr, |
10021 | PtrInfo: ST->getPointerInfo().getWithOffset(O: Offset), SVT: LoadMemVT, |
10022 | Alignment: ST->getOriginalAlign(), |
10023 | MMOFlags: ST->getMemOperand()->getFlags(), AAInfo: ST->getAAInfo())); |
10024 | // The order of the stores doesn't matter - say it with a TokenFactor. |
10025 | SDValue Result = DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, Ops: Stores); |
10026 | return Result; |
10027 | } |
10028 | |
10029 | assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && |
10030 | "Unaligned store of unknown type." ); |
10031 | // Get the half-size VT |
10032 | EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(Context&: *DAG.getContext()); |
10033 | unsigned NumBits = NewStoredVT.getFixedSizeInBits(); |
10034 | unsigned IncrementSize = NumBits / 8; |
10035 | |
10036 | // Divide the stored value in two parts. |
10037 | SDValue ShiftAmount = |
10038 | DAG.getShiftAmountConstant(Val: NumBits, VT: Val.getValueType(), DL: dl); |
10039 | SDValue Lo = Val; |
10040 | // If Val is a constant, replace the upper bits with 0. The SRL will constant |
10041 | // fold and not use the upper bits. A smaller constant may be easier to |
10042 | // materialize. |
10043 | if (auto *C = dyn_cast<ConstantSDNode>(Val&: Lo); C && !C->isOpaque()) |
10044 | Lo = DAG.getNode( |
10045 | Opcode: ISD::AND, DL: dl, VT, N1: Lo, |
10046 | N2: DAG.getConstant(Val: APInt::getLowBitsSet(numBits: VT.getSizeInBits(), loBitsSet: NumBits), DL: dl, |
10047 | VT)); |
10048 | SDValue Hi = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Val, N2: ShiftAmount); |
10049 | |
10050 | // Store the two parts |
10051 | SDValue Store1, Store2; |
10052 | Store1 = DAG.getTruncStore(Chain, dl, |
10053 | Val: DAG.getDataLayout().isLittleEndian() ? Lo : Hi, |
10054 | Ptr, PtrInfo: ST->getPointerInfo(), SVT: NewStoredVT, Alignment, |
10055 | MMOFlags: ST->getMemOperand()->getFlags()); |
10056 | |
10057 | Ptr = DAG.getObjectPtrOffset(SL: dl, Ptr, Offset: TypeSize::getFixed(ExactSize: IncrementSize)); |
10058 | Store2 = DAG.getTruncStore( |
10059 | Chain, dl, Val: DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, |
10060 | PtrInfo: ST->getPointerInfo().getWithOffset(O: IncrementSize), SVT: NewStoredVT, Alignment, |
10061 | MMOFlags: ST->getMemOperand()->getFlags(), AAInfo: ST->getAAInfo()); |
10062 | |
10063 | SDValue Result = |
10064 | DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, N1: Store1, N2: Store2); |
10065 | return Result; |
10066 | } |
10067 | |
10068 | SDValue |
10069 | TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, |
10070 | const SDLoc &DL, EVT DataVT, |
10071 | SelectionDAG &DAG, |
10072 | bool IsCompressedMemory) const { |
10073 | SDValue Increment; |
10074 | EVT AddrVT = Addr.getValueType(); |
10075 | EVT MaskVT = Mask.getValueType(); |
10076 | assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && |
10077 | "Incompatible types of Data and Mask" ); |
10078 | if (IsCompressedMemory) { |
10079 | if (DataVT.isScalableVector()) |
10080 | report_fatal_error( |
10081 | reason: "Cannot currently handle compressed memory with scalable vectors" ); |
10082 | // Incrementing the pointer according to number of '1's in the mask. |
10083 | EVT MaskIntVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: MaskVT.getSizeInBits()); |
10084 | SDValue MaskInIntReg = DAG.getBitcast(VT: MaskIntVT, V: Mask); |
10085 | if (MaskIntVT.getSizeInBits() < 32) { |
10086 | MaskInIntReg = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: MVT::i32, Operand: MaskInIntReg); |
10087 | MaskIntVT = MVT::i32; |
10088 | } |
10089 | |
10090 | // Count '1's with POPCNT. |
10091 | Increment = DAG.getNode(Opcode: ISD::CTPOP, DL, VT: MaskIntVT, Operand: MaskInIntReg); |
10092 | Increment = DAG.getZExtOrTrunc(Op: Increment, DL, VT: AddrVT); |
10093 | // Scale is an element size in bytes. |
10094 | SDValue Scale = DAG.getConstant(Val: DataVT.getScalarSizeInBits() / 8, DL, |
10095 | VT: AddrVT); |
10096 | Increment = DAG.getNode(Opcode: ISD::MUL, DL, VT: AddrVT, N1: Increment, N2: Scale); |
10097 | } else if (DataVT.isScalableVector()) { |
10098 | Increment = DAG.getVScale(DL, VT: AddrVT, |
10099 | MulImm: APInt(AddrVT.getFixedSizeInBits(), |
10100 | DataVT.getStoreSize().getKnownMinValue())); |
10101 | } else |
10102 | Increment = DAG.getConstant(Val: DataVT.getStoreSize(), DL, VT: AddrVT); |
10103 | |
10104 | return DAG.getNode(Opcode: ISD::ADD, DL, VT: AddrVT, N1: Addr, N2: Increment); |
10105 | } |
10106 | |
10107 | static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, |
10108 | EVT VecVT, const SDLoc &dl, |
10109 | ElementCount SubEC) { |
10110 | assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && |
10111 | "Cannot index a scalable vector within a fixed-width vector" ); |
10112 | |
10113 | unsigned NElts = VecVT.getVectorMinNumElements(); |
10114 | unsigned NumSubElts = SubEC.getKnownMinValue(); |
10115 | EVT IdxVT = Idx.getValueType(); |
10116 | |
10117 | if (VecVT.isScalableVector() && !SubEC.isScalable()) { |
10118 | // If this is a constant index and we know the value plus the number of the |
10119 | // elements in the subvector minus one is less than the minimum number of |
10120 | // elements then it's safe to return Idx. |
10121 | if (auto *IdxCst = dyn_cast<ConstantSDNode>(Val&: Idx)) |
10122 | if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) |
10123 | return Idx; |
10124 | SDValue VS = |
10125 | DAG.getVScale(DL: dl, VT: IdxVT, MulImm: APInt(IdxVT.getFixedSizeInBits(), NElts)); |
10126 | unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; |
10127 | SDValue Sub = DAG.getNode(Opcode: SubOpcode, DL: dl, VT: IdxVT, N1: VS, |
10128 | N2: DAG.getConstant(Val: NumSubElts, DL: dl, VT: IdxVT)); |
10129 | return DAG.getNode(Opcode: ISD::UMIN, DL: dl, VT: IdxVT, N1: Idx, N2: Sub); |
10130 | } |
10131 | if (isPowerOf2_32(Value: NElts) && NumSubElts == 1) { |
10132 | APInt Imm = APInt::getLowBitsSet(numBits: IdxVT.getSizeInBits(), loBitsSet: Log2_32(Value: NElts)); |
10133 | return DAG.getNode(Opcode: ISD::AND, DL: dl, VT: IdxVT, N1: Idx, |
10134 | N2: DAG.getConstant(Val: Imm, DL: dl, VT: IdxVT)); |
10135 | } |
10136 | unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; |
10137 | return DAG.getNode(Opcode: ISD::UMIN, DL: dl, VT: IdxVT, N1: Idx, |
10138 | N2: DAG.getConstant(Val: MaxIndex, DL: dl, VT: IdxVT)); |
10139 | } |
10140 | |
10141 | SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, |
10142 | SDValue VecPtr, EVT VecVT, |
10143 | SDValue Index) const { |
10144 | return getVectorSubVecPointer( |
10145 | DAG, VecPtr, VecVT, |
10146 | SubVecVT: EVT::getVectorVT(Context&: *DAG.getContext(), VT: VecVT.getVectorElementType(), NumElements: 1), |
10147 | Index); |
10148 | } |
10149 | |
10150 | SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, |
10151 | SDValue VecPtr, EVT VecVT, |
10152 | EVT SubVecVT, |
10153 | SDValue Index) const { |
10154 | SDLoc dl(Index); |
10155 | // Make sure the index type is big enough to compute in. |
10156 | Index = DAG.getZExtOrTrunc(Op: Index, DL: dl, VT: VecPtr.getValueType()); |
10157 | |
10158 | EVT EltVT = VecVT.getVectorElementType(); |
10159 | |
10160 | // Calculate the element offset and add it to the pointer. |
10161 | unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. |
10162 | assert(EltSize * 8 == EltVT.getFixedSizeInBits() && |
10163 | "Converting bits to bytes lost precision" ); |
10164 | assert(SubVecVT.getVectorElementType() == EltVT && |
10165 | "Sub-vector must be a vector with matching element type" ); |
10166 | Index = clampDynamicVectorIndex(DAG, Idx: Index, VecVT, dl, |
10167 | SubEC: SubVecVT.getVectorElementCount()); |
10168 | |
10169 | EVT IdxVT = Index.getValueType(); |
10170 | if (SubVecVT.isScalableVector()) |
10171 | Index = |
10172 | DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: IdxVT, N1: Index, |
10173 | N2: DAG.getVScale(DL: dl, VT: IdxVT, MulImm: APInt(IdxVT.getSizeInBits(), 1))); |
10174 | |
10175 | Index = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: IdxVT, N1: Index, |
10176 | N2: DAG.getConstant(Val: EltSize, DL: dl, VT: IdxVT)); |
10177 | return DAG.getMemBasePlusOffset(Base: VecPtr, Offset: Index, DL: dl); |
10178 | } |
10179 | |
10180 | //===----------------------------------------------------------------------===// |
10181 | // Implementation of Emulated TLS Model |
10182 | //===----------------------------------------------------------------------===// |
10183 | |
10184 | SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, |
10185 | SelectionDAG &DAG) const { |
10186 | // Access to address of TLS varialbe xyz is lowered to a function call: |
10187 | // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) |
10188 | EVT PtrVT = getPointerTy(DL: DAG.getDataLayout()); |
10189 | PointerType *VoidPtrType = PointerType::get(C&: *DAG.getContext(), AddressSpace: 0); |
10190 | SDLoc dl(GA); |
10191 | |
10192 | ArgListTy Args; |
10193 | ArgListEntry Entry; |
10194 | std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); |
10195 | Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); |
10196 | StringRef EmuTlsVarName(NameString); |
10197 | GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(Name: EmuTlsVarName); |
10198 | assert(EmuTlsVar && "Cannot find EmuTlsVar " ); |
10199 | Entry.Node = DAG.getGlobalAddress(GV: EmuTlsVar, DL: dl, VT: PtrVT); |
10200 | Entry.Ty = VoidPtrType; |
10201 | Args.push_back(x: Entry); |
10202 | |
10203 | SDValue EmuTlsGetAddr = DAG.getExternalSymbol(Sym: "__emutls_get_address" , VT: PtrVT); |
10204 | |
10205 | TargetLowering::CallLoweringInfo CLI(DAG); |
10206 | CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); |
10207 | CLI.setLibCallee(CC: CallingConv::C, ResultType: VoidPtrType, Target: EmuTlsGetAddr, ArgsList: std::move(Args)); |
10208 | std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); |
10209 | |
10210 | // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. |
10211 | // At last for X86 targets, maybe good for other targets too? |
10212 | MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); |
10213 | MFI.setAdjustsStack(true); // Is this only for X86 target? |
10214 | MFI.setHasCalls(true); |
10215 | |
10216 | assert((GA->getOffset() == 0) && |
10217 | "Emulated TLS must have zero offset in GlobalAddressSDNode" ); |
10218 | return CallResult.first; |
10219 | } |
10220 | |
10221 | SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, |
10222 | SelectionDAG &DAG) const { |
10223 | assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node." ); |
10224 | if (!isCtlzFast()) |
10225 | return SDValue(); |
10226 | ISD::CondCode CC = cast<CondCodeSDNode>(Val: Op.getOperand(i: 2))->get(); |
10227 | SDLoc dl(Op); |
10228 | if (isNullConstant(V: Op.getOperand(i: 1)) && CC == ISD::SETEQ) { |
10229 | EVT VT = Op.getOperand(i: 0).getValueType(); |
10230 | SDValue Zext = Op.getOperand(i: 0); |
10231 | if (VT.bitsLT(VT: MVT::i32)) { |
10232 | VT = MVT::i32; |
10233 | Zext = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: dl, VT, Operand: Op.getOperand(i: 0)); |
10234 | } |
10235 | unsigned Log2b = Log2_32(Value: VT.getSizeInBits()); |
10236 | SDValue Clz = DAG.getNode(Opcode: ISD::CTLZ, DL: dl, VT, Operand: Zext); |
10237 | SDValue Scc = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: Clz, |
10238 | N2: DAG.getConstant(Val: Log2b, DL: dl, VT: MVT::i32)); |
10239 | return DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: MVT::i32, Operand: Scc); |
10240 | } |
10241 | return SDValue(); |
10242 | } |
10243 | |
10244 | SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { |
10245 | SDValue Op0 = Node->getOperand(Num: 0); |
10246 | SDValue Op1 = Node->getOperand(Num: 1); |
10247 | EVT VT = Op0.getValueType(); |
10248 | EVT BoolVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
10249 | unsigned Opcode = Node->getOpcode(); |
10250 | SDLoc DL(Node); |
10251 | |
10252 | // umax(x,1) --> sub(x,cmpeq(x,0)) iff cmp result is allbits |
10253 | if (Opcode == ISD::UMAX && llvm::isOneOrOneSplat(V: Op1, AllowUndefs: true) && BoolVT == VT && |
10254 | getBooleanContents(Type: VT) == ZeroOrNegativeOneBooleanContent) { |
10255 | Op0 = DAG.getFreeze(V: Op0); |
10256 | SDValue Zero = DAG.getConstant(Val: 0, DL, VT); |
10257 | return DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: Op0, |
10258 | N2: DAG.getSetCC(DL, VT, LHS: Op0, RHS: Zero, Cond: ISD::SETEQ)); |
10259 | } |
10260 | |
10261 | // umin(x,y) -> sub(x,usubsat(x,y)) |
10262 | // TODO: Missing freeze(Op0)? |
10263 | if (Opcode == ISD::UMIN && isOperationLegal(Op: ISD::SUB, VT) && |
10264 | isOperationLegal(Op: ISD::USUBSAT, VT)) { |
10265 | return DAG.getNode(Opcode: ISD::SUB, DL, VT, N1: Op0, |
10266 | N2: DAG.getNode(Opcode: ISD::USUBSAT, DL, VT, N1: Op0, N2: Op1)); |
10267 | } |
10268 | |
10269 | // umax(x,y) -> add(x,usubsat(y,x)) |
10270 | // TODO: Missing freeze(Op0)? |
10271 | if (Opcode == ISD::UMAX && isOperationLegal(Op: ISD::ADD, VT) && |
10272 | isOperationLegal(Op: ISD::USUBSAT, VT)) { |
10273 | return DAG.getNode(Opcode: ISD::ADD, DL, VT, N1: Op0, |
10274 | N2: DAG.getNode(Opcode: ISD::USUBSAT, DL, VT, N1: Op1, N2: Op0)); |
10275 | } |
10276 | |
10277 | // FIXME: Should really try to split the vector in case it's legal on a |
10278 | // subvector. |
10279 | if (VT.isVector() && !isOperationLegalOrCustom(Op: ISD::VSELECT, VT)) |
10280 | return DAG.UnrollVectorOp(N: Node); |
10281 | |
10282 | // Attempt to find an existing SETCC node that we can reuse. |
10283 | // TODO: Do we need a generic doesSETCCNodeExist? |
10284 | // TODO: Missing freeze(Op0)/freeze(Op1)? |
10285 | auto buildMinMax = [&](ISD::CondCode PrefCC, ISD::CondCode AltCC, |
10286 | ISD::CondCode PrefCommuteCC, |
10287 | ISD::CondCode AltCommuteCC) { |
10288 | SDVTList BoolVTList = DAG.getVTList(VT: BoolVT); |
10289 | for (ISD::CondCode CC : {PrefCC, AltCC}) { |
10290 | if (DAG.doesNodeExist(Opcode: ISD::SETCC, VTList: BoolVTList, |
10291 | Ops: {Op0, Op1, DAG.getCondCode(Cond: CC)})) { |
10292 | SDValue Cond = DAG.getSetCC(DL, VT: BoolVT, LHS: Op0, RHS: Op1, Cond: CC); |
10293 | return DAG.getSelect(DL, VT, Cond, LHS: Op0, RHS: Op1); |
10294 | } |
10295 | } |
10296 | for (ISD::CondCode CC : {PrefCommuteCC, AltCommuteCC}) { |
10297 | if (DAG.doesNodeExist(Opcode: ISD::SETCC, VTList: BoolVTList, |
10298 | Ops: {Op0, Op1, DAG.getCondCode(Cond: CC)})) { |
10299 | SDValue Cond = DAG.getSetCC(DL, VT: BoolVT, LHS: Op0, RHS: Op1, Cond: CC); |
10300 | return DAG.getSelect(DL, VT, Cond, LHS: Op1, RHS: Op0); |
10301 | } |
10302 | } |
10303 | SDValue Cond = DAG.getSetCC(DL, VT: BoolVT, LHS: Op0, RHS: Op1, Cond: PrefCC); |
10304 | return DAG.getSelect(DL, VT, Cond, LHS: Op0, RHS: Op1); |
10305 | }; |
10306 | |
10307 | // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B |
10308 | // -> Y = (A < B) ? B : A |
10309 | // -> Y = (A >= B) ? A : B |
10310 | // -> Y = (A <= B) ? B : A |
10311 | switch (Opcode) { |
10312 | case ISD::SMAX: |
10313 | return buildMinMax(ISD::SETGT, ISD::SETGE, ISD::SETLT, ISD::SETLE); |
10314 | case ISD::SMIN: |
10315 | return buildMinMax(ISD::SETLT, ISD::SETLE, ISD::SETGT, ISD::SETGE); |
10316 | case ISD::UMAX: |
10317 | return buildMinMax(ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE); |
10318 | case ISD::UMIN: |
10319 | return buildMinMax(ISD::SETULT, ISD::SETULE, ISD::SETUGT, ISD::SETUGE); |
10320 | } |
10321 | |
10322 | llvm_unreachable("How did we get here?" ); |
10323 | } |
10324 | |
10325 | SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { |
10326 | unsigned Opcode = Node->getOpcode(); |
10327 | SDValue LHS = Node->getOperand(Num: 0); |
10328 | SDValue RHS = Node->getOperand(Num: 1); |
10329 | EVT VT = LHS.getValueType(); |
10330 | SDLoc dl(Node); |
10331 | |
10332 | assert(VT == RHS.getValueType() && "Expected operands to be the same type" ); |
10333 | assert(VT.isInteger() && "Expected operands to be integers" ); |
10334 | |
10335 | // usub.sat(a, b) -> umax(a, b) - b |
10336 | if (Opcode == ISD::USUBSAT && isOperationLegal(Op: ISD::UMAX, VT)) { |
10337 | SDValue Max = DAG.getNode(Opcode: ISD::UMAX, DL: dl, VT, N1: LHS, N2: RHS); |
10338 | return DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Max, N2: RHS); |
10339 | } |
10340 | |
10341 | // uadd.sat(a, b) -> umin(a, ~b) + b |
10342 | if (Opcode == ISD::UADDSAT && isOperationLegal(Op: ISD::UMIN, VT)) { |
10343 | SDValue InvRHS = DAG.getNOT(DL: dl, Val: RHS, VT); |
10344 | SDValue Min = DAG.getNode(Opcode: ISD::UMIN, DL: dl, VT, N1: LHS, N2: InvRHS); |
10345 | return DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: Min, N2: RHS); |
10346 | } |
10347 | |
10348 | unsigned OverflowOp; |
10349 | switch (Opcode) { |
10350 | case ISD::SADDSAT: |
10351 | OverflowOp = ISD::SADDO; |
10352 | break; |
10353 | case ISD::UADDSAT: |
10354 | OverflowOp = ISD::UADDO; |
10355 | break; |
10356 | case ISD::SSUBSAT: |
10357 | OverflowOp = ISD::SSUBO; |
10358 | break; |
10359 | case ISD::USUBSAT: |
10360 | OverflowOp = ISD::USUBO; |
10361 | break; |
10362 | default: |
10363 | llvm_unreachable("Expected method to receive signed or unsigned saturation " |
10364 | "addition or subtraction node." ); |
10365 | } |
10366 | |
10367 | // FIXME: Should really try to split the vector in case it's legal on a |
10368 | // subvector. |
10369 | if (VT.isVector() && !isOperationLegalOrCustom(Op: ISD::VSELECT, VT)) |
10370 | return DAG.UnrollVectorOp(N: Node); |
10371 | |
10372 | unsigned BitWidth = LHS.getScalarValueSizeInBits(); |
10373 | EVT BoolVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
10374 | SDValue Result = DAG.getNode(Opcode: OverflowOp, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: BoolVT), N1: LHS, N2: RHS); |
10375 | SDValue SumDiff = Result.getValue(R: 0); |
10376 | SDValue Overflow = Result.getValue(R: 1); |
10377 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT); |
10378 | SDValue AllOnes = DAG.getAllOnesConstant(DL: dl, VT); |
10379 | |
10380 | if (Opcode == ISD::UADDSAT) { |
10381 | if (getBooleanContents(Type: VT) == ZeroOrNegativeOneBooleanContent) { |
10382 | // (LHS + RHS) | OverflowMask |
10383 | SDValue OverflowMask = DAG.getSExtOrTrunc(Op: Overflow, DL: dl, VT); |
10384 | return DAG.getNode(Opcode: ISD::OR, DL: dl, VT, N1: SumDiff, N2: OverflowMask); |
10385 | } |
10386 | // Overflow ? 0xffff.... : (LHS + RHS) |
10387 | return DAG.getSelect(DL: dl, VT, Cond: Overflow, LHS: AllOnes, RHS: SumDiff); |
10388 | } |
10389 | |
10390 | if (Opcode == ISD::USUBSAT) { |
10391 | if (getBooleanContents(Type: VT) == ZeroOrNegativeOneBooleanContent) { |
10392 | // (LHS - RHS) & ~OverflowMask |
10393 | SDValue OverflowMask = DAG.getSExtOrTrunc(Op: Overflow, DL: dl, VT); |
10394 | SDValue Not = DAG.getNOT(DL: dl, Val: OverflowMask, VT); |
10395 | return DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: SumDiff, N2: Not); |
10396 | } |
10397 | // Overflow ? 0 : (LHS - RHS) |
10398 | return DAG.getSelect(DL: dl, VT, Cond: Overflow, LHS: Zero, RHS: SumDiff); |
10399 | } |
10400 | |
10401 | if (Opcode == ISD::SADDSAT || Opcode == ISD::SSUBSAT) { |
10402 | APInt MinVal = APInt::getSignedMinValue(numBits: BitWidth); |
10403 | APInt MaxVal = APInt::getSignedMaxValue(numBits: BitWidth); |
10404 | |
10405 | KnownBits KnownLHS = DAG.computeKnownBits(Op: LHS); |
10406 | KnownBits KnownRHS = DAG.computeKnownBits(Op: RHS); |
10407 | |
10408 | // If either of the operand signs are known, then they are guaranteed to |
10409 | // only saturate in one direction. If non-negative they will saturate |
10410 | // towards SIGNED_MAX, if negative they will saturate towards SIGNED_MIN. |
10411 | // |
10412 | // In the case of ISD::SSUBSAT, 'x - y' is equivalent to 'x + (-y)', so the |
10413 | // sign of 'y' has to be flipped. |
10414 | |
10415 | bool LHSIsNonNegative = KnownLHS.isNonNegative(); |
10416 | bool RHSIsNonNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNonNegative() |
10417 | : KnownRHS.isNegative(); |
10418 | if (LHSIsNonNegative || RHSIsNonNegative) { |
10419 | SDValue SatMax = DAG.getConstant(Val: MaxVal, DL: dl, VT); |
10420 | return DAG.getSelect(DL: dl, VT, Cond: Overflow, LHS: SatMax, RHS: SumDiff); |
10421 | } |
10422 | |
10423 | bool LHSIsNegative = KnownLHS.isNegative(); |
10424 | bool RHSIsNegative = Opcode == ISD::SADDSAT ? KnownRHS.isNegative() |
10425 | : KnownRHS.isNonNegative(); |
10426 | if (LHSIsNegative || RHSIsNegative) { |
10427 | SDValue SatMin = DAG.getConstant(Val: MinVal, DL: dl, VT); |
10428 | return DAG.getSelect(DL: dl, VT, Cond: Overflow, LHS: SatMin, RHS: SumDiff); |
10429 | } |
10430 | } |
10431 | |
10432 | // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff |
10433 | APInt MinVal = APInt::getSignedMinValue(numBits: BitWidth); |
10434 | SDValue SatMin = DAG.getConstant(Val: MinVal, DL: dl, VT); |
10435 | SDValue Shift = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT, N1: SumDiff, |
10436 | N2: DAG.getConstant(Val: BitWidth - 1, DL: dl, VT)); |
10437 | Result = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT, N1: Shift, N2: SatMin); |
10438 | return DAG.getSelect(DL: dl, VT, Cond: Overflow, LHS: Result, RHS: SumDiff); |
10439 | } |
10440 | |
10441 | SDValue TargetLowering::expandCMP(SDNode *Node, SelectionDAG &DAG) const { |
10442 | unsigned Opcode = Node->getOpcode(); |
10443 | SDValue LHS = Node->getOperand(Num: 0); |
10444 | SDValue RHS = Node->getOperand(Num: 1); |
10445 | EVT VT = LHS.getValueType(); |
10446 | EVT ResVT = Node->getValueType(ResNo: 0); |
10447 | EVT BoolVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
10448 | SDLoc dl(Node); |
10449 | |
10450 | auto LTPredicate = (Opcode == ISD::UCMP ? ISD::SETULT : ISD::SETLT); |
10451 | auto GTPredicate = (Opcode == ISD::UCMP ? ISD::SETUGT : ISD::SETGT); |
10452 | SDValue IsLT = DAG.getSetCC(DL: dl, VT: BoolVT, LHS, RHS, Cond: LTPredicate); |
10453 | SDValue IsGT = DAG.getSetCC(DL: dl, VT: BoolVT, LHS, RHS, Cond: GTPredicate); |
10454 | |
10455 | // We can't perform arithmetic on i1 values. Extending them would |
10456 | // probably result in worse codegen, so let's just use two selects instead. |
10457 | // Some targets are also just better off using selects rather than subtraction |
10458 | // because one of the conditions can be merged with one of the selects. |
10459 | // And finally, if we don't know the contents of high bits of a boolean value |
10460 | // we can't perform any arithmetic either. |
10461 | if (shouldExpandCmpUsingSelects() || BoolVT.getScalarSizeInBits() == 1 || |
10462 | getBooleanContents(Type: BoolVT) == UndefinedBooleanContent) { |
10463 | SDValue SelectZeroOrOne = |
10464 | DAG.getSelect(DL: dl, VT: ResVT, Cond: IsGT, LHS: DAG.getConstant(Val: 1, DL: dl, VT: ResVT), |
10465 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: ResVT)); |
10466 | return DAG.getSelect(DL: dl, VT: ResVT, Cond: IsLT, LHS: DAG.getConstant(Val: -1, DL: dl, VT: ResVT), |
10467 | RHS: SelectZeroOrOne); |
10468 | } |
10469 | |
10470 | if (getBooleanContents(Type: BoolVT) == ZeroOrNegativeOneBooleanContent) |
10471 | std::swap(a&: IsGT, b&: IsLT); |
10472 | return DAG.getSExtOrTrunc(Op: DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: BoolVT, N1: IsGT, N2: IsLT), DL: dl, |
10473 | VT: ResVT); |
10474 | } |
10475 | |
10476 | SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { |
10477 | unsigned Opcode = Node->getOpcode(); |
10478 | bool IsSigned = Opcode == ISD::SSHLSAT; |
10479 | SDValue LHS = Node->getOperand(Num: 0); |
10480 | SDValue RHS = Node->getOperand(Num: 1); |
10481 | EVT VT = LHS.getValueType(); |
10482 | SDLoc dl(Node); |
10483 | |
10484 | assert((Node->getOpcode() == ISD::SSHLSAT || |
10485 | Node->getOpcode() == ISD::USHLSAT) && |
10486 | "Expected a SHLSAT opcode" ); |
10487 | assert(VT == RHS.getValueType() && "Expected operands to be the same type" ); |
10488 | assert(VT.isInteger() && "Expected operands to be integers" ); |
10489 | |
10490 | if (VT.isVector() && !isOperationLegalOrCustom(Op: ISD::VSELECT, VT)) |
10491 | return DAG.UnrollVectorOp(N: Node); |
10492 | |
10493 | // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. |
10494 | |
10495 | unsigned BW = VT.getScalarSizeInBits(); |
10496 | EVT BoolVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
10497 | SDValue Result = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: LHS, N2: RHS); |
10498 | SDValue Orig = |
10499 | DAG.getNode(Opcode: IsSigned ? ISD::SRA : ISD::SRL, DL: dl, VT, N1: Result, N2: RHS); |
10500 | |
10501 | SDValue SatVal; |
10502 | if (IsSigned) { |
10503 | SDValue SatMin = DAG.getConstant(Val: APInt::getSignedMinValue(numBits: BW), DL: dl, VT); |
10504 | SDValue SatMax = DAG.getConstant(Val: APInt::getSignedMaxValue(numBits: BW), DL: dl, VT); |
10505 | SDValue Cond = |
10506 | DAG.getSetCC(DL: dl, VT: BoolVT, LHS, RHS: DAG.getConstant(Val: 0, DL: dl, VT), Cond: ISD::SETLT); |
10507 | SatVal = DAG.getSelect(DL: dl, VT, Cond, LHS: SatMin, RHS: SatMax); |
10508 | } else { |
10509 | SatVal = DAG.getConstant(Val: APInt::getMaxValue(numBits: BW), DL: dl, VT); |
10510 | } |
10511 | SDValue Cond = DAG.getSetCC(DL: dl, VT: BoolVT, LHS, RHS: Orig, Cond: ISD::SETNE); |
10512 | return DAG.getSelect(DL: dl, VT, Cond, LHS: SatVal, RHS: Result); |
10513 | } |
10514 | |
10515 | void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, |
10516 | bool Signed, EVT WideVT, |
10517 | const SDValue LL, const SDValue LH, |
10518 | const SDValue RL, const SDValue RH, |
10519 | SDValue &Lo, SDValue &Hi) const { |
10520 | // We can fall back to a libcall with an illegal type for the MUL if we |
10521 | // have a libcall big enough. |
10522 | // Also, we can fall back to a division in some cases, but that's a big |
10523 | // performance hit in the general case. |
10524 | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; |
10525 | if (WideVT == MVT::i16) |
10526 | LC = RTLIB::MUL_I16; |
10527 | else if (WideVT == MVT::i32) |
10528 | LC = RTLIB::MUL_I32; |
10529 | else if (WideVT == MVT::i64) |
10530 | LC = RTLIB::MUL_I64; |
10531 | else if (WideVT == MVT::i128) |
10532 | LC = RTLIB::MUL_I128; |
10533 | |
10534 | if (LC == RTLIB::UNKNOWN_LIBCALL || !getLibcallName(Call: LC)) { |
10535 | // We'll expand the multiplication by brute force because we have no other |
10536 | // options. This is a trivially-generalized version of the code from |
10537 | // Hacker's Delight (itself derived from Knuth's Algorithm M from section |
10538 | // 4.3.1). |
10539 | EVT VT = LL.getValueType(); |
10540 | unsigned Bits = VT.getSizeInBits(); |
10541 | unsigned HalfBits = Bits >> 1; |
10542 | SDValue Mask = |
10543 | DAG.getConstant(Val: APInt::getLowBitsSet(numBits: Bits, loBitsSet: HalfBits), DL: dl, VT); |
10544 | SDValue LLL = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: LL, N2: Mask); |
10545 | SDValue RLL = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: RL, N2: Mask); |
10546 | |
10547 | SDValue T = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: LLL, N2: RLL); |
10548 | SDValue TL = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: T, N2: Mask); |
10549 | |
10550 | SDValue Shift = DAG.getShiftAmountConstant(Val: HalfBits, VT, DL: dl); |
10551 | SDValue TH = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: T, N2: Shift); |
10552 | SDValue LLH = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: LL, N2: Shift); |
10553 | SDValue RLH = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: RL, N2: Shift); |
10554 | |
10555 | SDValue U = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, |
10556 | N1: DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: LLH, N2: RLL), N2: TH); |
10557 | SDValue UL = DAG.getNode(Opcode: ISD::AND, DL: dl, VT, N1: U, N2: Mask); |
10558 | SDValue UH = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: U, N2: Shift); |
10559 | |
10560 | SDValue V = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, |
10561 | N1: DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: LLL, N2: RLH), N2: UL); |
10562 | SDValue VH = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT, N1: V, N2: Shift); |
10563 | |
10564 | SDValue W = |
10565 | DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: LLH, N2: RLH), |
10566 | N2: DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: UH, N2: VH)); |
10567 | Lo = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: TL, |
10568 | N2: DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: V, N2: Shift)); |
10569 | |
10570 | Hi = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, N1: W, |
10571 | N2: DAG.getNode(Opcode: ISD::ADD, DL: dl, VT, |
10572 | N1: DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: RH, N2: LL), |
10573 | N2: DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: RL, N2: LH))); |
10574 | } else { |
10575 | // Attempt a libcall. |
10576 | SDValue Ret; |
10577 | TargetLowering::MakeLibCallOptions CallOptions; |
10578 | CallOptions.setSExt(Signed); |
10579 | CallOptions.setIsPostTypeLegalization(true); |
10580 | if (shouldSplitFunctionArgumentsAsLittleEndian(DL: DAG.getDataLayout())) { |
10581 | // Halves of WideVT are packed into registers in different order |
10582 | // depending on platform endianness. This is usually handled by |
10583 | // the C calling convention, but we can't defer to it in |
10584 | // the legalizer. |
10585 | SDValue Args[] = {LL, LH, RL, RH}; |
10586 | Ret = makeLibCall(DAG, LC, RetVT: WideVT, Ops: Args, CallOptions, dl).first; |
10587 | } else { |
10588 | SDValue Args[] = {LH, LL, RH, RL}; |
10589 | Ret = makeLibCall(DAG, LC, RetVT: WideVT, Ops: Args, CallOptions, dl).first; |
10590 | } |
10591 | assert(Ret.getOpcode() == ISD::MERGE_VALUES && |
10592 | "Ret value is a collection of constituent nodes holding result." ); |
10593 | if (DAG.getDataLayout().isLittleEndian()) { |
10594 | // Same as above. |
10595 | Lo = Ret.getOperand(i: 0); |
10596 | Hi = Ret.getOperand(i: 1); |
10597 | } else { |
10598 | Lo = Ret.getOperand(i: 1); |
10599 | Hi = Ret.getOperand(i: 0); |
10600 | } |
10601 | } |
10602 | } |
10603 | |
10604 | void TargetLowering::forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, |
10605 | bool Signed, const SDValue LHS, |
10606 | const SDValue RHS, SDValue &Lo, |
10607 | SDValue &Hi) const { |
10608 | EVT VT = LHS.getValueType(); |
10609 | assert(RHS.getValueType() == VT && "Mismatching operand types" ); |
10610 | |
10611 | SDValue HiLHS; |
10612 | SDValue HiRHS; |
10613 | if (Signed) { |
10614 | // The high part is obtained by SRA'ing all but one of the bits of low |
10615 | // part. |
10616 | unsigned LoSize = VT.getFixedSizeInBits(); |
10617 | HiLHS = DAG.getNode( |
10618 | Opcode: ISD::SRA, DL: dl, VT, N1: LHS, |
10619 | N2: DAG.getConstant(Val: LoSize - 1, DL: dl, VT: getPointerTy(DL: DAG.getDataLayout()))); |
10620 | HiRHS = DAG.getNode( |
10621 | Opcode: ISD::SRA, DL: dl, VT, N1: RHS, |
10622 | N2: DAG.getConstant(Val: LoSize - 1, DL: dl, VT: getPointerTy(DL: DAG.getDataLayout()))); |
10623 | } else { |
10624 | HiLHS = DAG.getConstant(Val: 0, DL: dl, VT); |
10625 | HiRHS = DAG.getConstant(Val: 0, DL: dl, VT); |
10626 | } |
10627 | EVT WideVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: VT.getSizeInBits() * 2); |
10628 | forceExpandWideMUL(DAG, dl, Signed, WideVT, LL: LHS, LH: HiLHS, RL: RHS, RH: HiRHS, Lo, Hi); |
10629 | } |
10630 | |
10631 | SDValue |
10632 | TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { |
10633 | assert((Node->getOpcode() == ISD::SMULFIX || |
10634 | Node->getOpcode() == ISD::UMULFIX || |
10635 | Node->getOpcode() == ISD::SMULFIXSAT || |
10636 | Node->getOpcode() == ISD::UMULFIXSAT) && |
10637 | "Expected a fixed point multiplication opcode" ); |
10638 | |
10639 | SDLoc dl(Node); |
10640 | SDValue LHS = Node->getOperand(Num: 0); |
10641 | SDValue RHS = Node->getOperand(Num: 1); |
10642 | EVT VT = LHS.getValueType(); |
10643 | unsigned Scale = Node->getConstantOperandVal(Num: 2); |
10644 | bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || |
10645 | Node->getOpcode() == ISD::UMULFIXSAT); |
10646 | bool Signed = (Node->getOpcode() == ISD::SMULFIX || |
10647 | Node->getOpcode() == ISD::SMULFIXSAT); |
10648 | EVT BoolVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
10649 | unsigned VTSize = VT.getScalarSizeInBits(); |
10650 | |
10651 | if (!Scale) { |
10652 | // [us]mul.fix(a, b, 0) -> mul(a, b) |
10653 | if (!Saturating) { |
10654 | if (isOperationLegalOrCustom(Op: ISD::MUL, VT)) |
10655 | return DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: LHS, N2: RHS); |
10656 | } else if (Signed && isOperationLegalOrCustom(Op: ISD::SMULO, VT)) { |
10657 | SDValue Result = |
10658 | DAG.getNode(Opcode: ISD::SMULO, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: BoolVT), N1: LHS, N2: RHS); |
10659 | SDValue Product = Result.getValue(R: 0); |
10660 | SDValue Overflow = Result.getValue(R: 1); |
10661 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT); |
10662 | |
10663 | APInt MinVal = APInt::getSignedMinValue(numBits: VTSize); |
10664 | APInt MaxVal = APInt::getSignedMaxValue(numBits: VTSize); |
10665 | SDValue SatMin = DAG.getConstant(Val: MinVal, DL: dl, VT); |
10666 | SDValue SatMax = DAG.getConstant(Val: MaxVal, DL: dl, VT); |
10667 | // Xor the inputs, if resulting sign bit is 0 the product will be |
10668 | // positive, else negative. |
10669 | SDValue Xor = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT, N1: LHS, N2: RHS); |
10670 | SDValue ProdNeg = DAG.getSetCC(DL: dl, VT: BoolVT, LHS: Xor, RHS: Zero, Cond: ISD::SETLT); |
10671 | Result = DAG.getSelect(DL: dl, VT, Cond: ProdNeg, LHS: SatMin, RHS: SatMax); |
10672 | return DAG.getSelect(DL: dl, VT, Cond: Overflow, LHS: Result, RHS: Product); |
10673 | } else if (!Signed && isOperationLegalOrCustom(Op: ISD::UMULO, VT)) { |
10674 | SDValue Result = |
10675 | DAG.getNode(Opcode: ISD::UMULO, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: BoolVT), N1: LHS, N2: RHS); |
10676 | SDValue Product = Result.getValue(R: 0); |
10677 | SDValue Overflow = Result.getValue(R: 1); |
10678 | |
10679 | APInt MaxVal = APInt::getMaxValue(numBits: VTSize); |
10680 | SDValue SatMax = DAG.getConstant(Val: MaxVal, DL: dl, VT); |
10681 | return DAG.getSelect(DL: dl, VT, Cond: Overflow, LHS: SatMax, RHS: Product); |
10682 | } |
10683 | } |
10684 | |
10685 | assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && |
10686 | "Expected scale to be less than the number of bits if signed or at " |
10687 | "most the number of bits if unsigned." ); |
10688 | assert(LHS.getValueType() == RHS.getValueType() && |
10689 | "Expected both operands to be the same type" ); |
10690 | |
10691 | // Get the upper and lower bits of the result. |
10692 | SDValue Lo, Hi; |
10693 | unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; |
10694 | unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; |
10695 | EVT WideVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: VTSize * 2); |
10696 | if (isOperationLegalOrCustom(Op: LoHiOp, VT)) { |
10697 | SDValue Result = DAG.getNode(Opcode: LoHiOp, DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: VT), N1: LHS, N2: RHS); |
10698 | Lo = Result.getValue(R: 0); |
10699 | Hi = Result.getValue(R: 1); |
10700 | } else if (isOperationLegalOrCustom(Op: HiOp, VT)) { |
10701 | Lo = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: LHS, N2: RHS); |
10702 | Hi = DAG.getNode(Opcode: HiOp, DL: dl, VT, N1: LHS, N2: RHS); |
10703 | } else if (isOperationLegalOrCustom(Op: ISD::MUL, VT: WideVT)) { |
10704 | // Try for a multiplication using a wider type. |
10705 | unsigned Ext = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
10706 | SDValue LHSExt = DAG.getNode(Opcode: Ext, DL: dl, VT: WideVT, Operand: LHS); |
10707 | SDValue RHSExt = DAG.getNode(Opcode: Ext, DL: dl, VT: WideVT, Operand: RHS); |
10708 | SDValue Res = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: WideVT, N1: LHSExt, N2: RHSExt); |
10709 | Lo = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Res); |
10710 | SDValue Shifted = |
10711 | DAG.getNode(Opcode: ISD::SRA, DL: dl, VT: WideVT, N1: Res, |
10712 | N2: DAG.getShiftAmountConstant(Val: VTSize, VT: WideVT, DL: dl)); |
10713 | Hi = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Shifted); |
10714 | } else if (VT.isVector()) { |
10715 | return SDValue(); |
10716 | } else { |
10717 | forceExpandWideMUL(DAG, dl, Signed, LHS, RHS, Lo, Hi); |
10718 | } |
10719 | |
10720 | if (Scale == VTSize) |
10721 | // Result is just the top half since we'd be shifting by the width of the |
10722 | // operand. Overflow impossible so this works for both UMULFIX and |
10723 | // UMULFIXSAT. |
10724 | return Hi; |
10725 | |
10726 | // The result will need to be shifted right by the scale since both operands |
10727 | // are scaled. The result is given to us in 2 halves, so we only want part of |
10728 | // both in the result. |
10729 | SDValue Result = DAG.getNode(Opcode: ISD::FSHR, DL: dl, VT, N1: Hi, N2: Lo, |
10730 | N3: DAG.getShiftAmountConstant(Val: Scale, VT, DL: dl)); |
10731 | if (!Saturating) |
10732 | return Result; |
10733 | |
10734 | if (!Signed) { |
10735 | // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the |
10736 | // widened multiplication) aren't all zeroes. |
10737 | |
10738 | // Saturate to max if ((Hi >> Scale) != 0), |
10739 | // which is the same as if (Hi > ((1 << Scale) - 1)) |
10740 | APInt MaxVal = APInt::getMaxValue(numBits: VTSize); |
10741 | SDValue LowMask = DAG.getConstant(Val: APInt::getLowBitsSet(numBits: VTSize, loBitsSet: Scale), |
10742 | DL: dl, VT); |
10743 | Result = DAG.getSelectCC(DL: dl, LHS: Hi, RHS: LowMask, |
10744 | True: DAG.getConstant(Val: MaxVal, DL: dl, VT), False: Result, |
10745 | Cond: ISD::SETUGT); |
10746 | |
10747 | return Result; |
10748 | } |
10749 | |
10750 | // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the |
10751 | // widened multiplication) aren't all ones or all zeroes. |
10752 | |
10753 | SDValue SatMin = DAG.getConstant(Val: APInt::getSignedMinValue(numBits: VTSize), DL: dl, VT); |
10754 | SDValue SatMax = DAG.getConstant(Val: APInt::getSignedMaxValue(numBits: VTSize), DL: dl, VT); |
10755 | |
10756 | if (Scale == 0) { |
10757 | SDValue Sign = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT, N1: Lo, |
10758 | N2: DAG.getShiftAmountConstant(Val: VTSize - 1, VT, DL: dl)); |
10759 | SDValue Overflow = DAG.getSetCC(DL: dl, VT: BoolVT, LHS: Hi, RHS: Sign, Cond: ISD::SETNE); |
10760 | // Saturated to SatMin if wide product is negative, and SatMax if wide |
10761 | // product is positive ... |
10762 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT); |
10763 | SDValue ResultIfOverflow = DAG.getSelectCC(DL: dl, LHS: Hi, RHS: Zero, True: SatMin, False: SatMax, |
10764 | Cond: ISD::SETLT); |
10765 | // ... but only if we overflowed. |
10766 | return DAG.getSelect(DL: dl, VT, Cond: Overflow, LHS: ResultIfOverflow, RHS: Result); |
10767 | } |
10768 | |
10769 | // We handled Scale==0 above so all the bits to examine is in Hi. |
10770 | |
10771 | // Saturate to max if ((Hi >> (Scale - 1)) > 0), |
10772 | // which is the same as if (Hi > (1 << (Scale - 1)) - 1) |
10773 | SDValue LowMask = DAG.getConstant(Val: APInt::getLowBitsSet(numBits: VTSize, loBitsSet: Scale - 1), |
10774 | DL: dl, VT); |
10775 | Result = DAG.getSelectCC(DL: dl, LHS: Hi, RHS: LowMask, True: SatMax, False: Result, Cond: ISD::SETGT); |
10776 | // Saturate to min if (Hi >> (Scale - 1)) < -1), |
10777 | // which is the same as if (HI < (-1 << (Scale - 1)) |
10778 | SDValue HighMask = |
10779 | DAG.getConstant(Val: APInt::getHighBitsSet(numBits: VTSize, hiBitsSet: VTSize - Scale + 1), |
10780 | DL: dl, VT); |
10781 | Result = DAG.getSelectCC(DL: dl, LHS: Hi, RHS: HighMask, True: SatMin, False: Result, Cond: ISD::SETLT); |
10782 | return Result; |
10783 | } |
10784 | |
10785 | SDValue |
10786 | TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, |
10787 | SDValue LHS, SDValue RHS, |
10788 | unsigned Scale, SelectionDAG &DAG) const { |
10789 | assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || |
10790 | Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && |
10791 | "Expected a fixed point division opcode" ); |
10792 | |
10793 | EVT VT = LHS.getValueType(); |
10794 | bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; |
10795 | bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; |
10796 | EVT BoolVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
10797 | |
10798 | // If there is enough room in the type to upscale the LHS or downscale the |
10799 | // RHS before the division, we can perform it in this type without having to |
10800 | // resize. For signed operations, the LHS headroom is the number of |
10801 | // redundant sign bits, and for unsigned ones it is the number of zeroes. |
10802 | // The headroom for the RHS is the number of trailing zeroes. |
10803 | unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(Op: LHS) - 1 |
10804 | : DAG.computeKnownBits(Op: LHS).countMinLeadingZeros(); |
10805 | unsigned RHSTrail = DAG.computeKnownBits(Op: RHS).countMinTrailingZeros(); |
10806 | |
10807 | // For signed saturating operations, we need to be able to detect true integer |
10808 | // division overflow; that is, when you have MIN / -EPS. However, this |
10809 | // is undefined behavior and if we emit divisions that could take such |
10810 | // values it may cause undesired behavior (arithmetic exceptions on x86, for |
10811 | // example). |
10812 | // Avoid this by requiring an extra bit so that we never get this case. |
10813 | // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale |
10814 | // signed saturating division, we need to emit a whopping 32-bit division. |
10815 | if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) |
10816 | return SDValue(); |
10817 | |
10818 | unsigned LHSShift = std::min(a: LHSLead, b: Scale); |
10819 | unsigned RHSShift = Scale - LHSShift; |
10820 | |
10821 | // At this point, we know that if we shift the LHS up by LHSShift and the |
10822 | // RHS down by RHSShift, we can emit a regular division with a final scaling |
10823 | // factor of Scale. |
10824 | |
10825 | if (LHSShift) |
10826 | LHS = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: LHS, |
10827 | N2: DAG.getShiftAmountConstant(Val: LHSShift, VT, DL: dl)); |
10828 | if (RHSShift) |
10829 | RHS = DAG.getNode(Opcode: Signed ? ISD::SRA : ISD::SRL, DL: dl, VT, N1: RHS, |
10830 | N2: DAG.getShiftAmountConstant(Val: RHSShift, VT, DL: dl)); |
10831 | |
10832 | SDValue Quot; |
10833 | if (Signed) { |
10834 | // For signed operations, if the resulting quotient is negative and the |
10835 | // remainder is nonzero, subtract 1 from the quotient to round towards |
10836 | // negative infinity. |
10837 | SDValue Rem; |
10838 | // FIXME: Ideally we would always produce an SDIVREM here, but if the |
10839 | // type isn't legal, SDIVREM cannot be expanded. There is no reason why |
10840 | // we couldn't just form a libcall, but the type legalizer doesn't do it. |
10841 | if (isTypeLegal(VT) && |
10842 | isOperationLegalOrCustom(Op: ISD::SDIVREM, VT)) { |
10843 | Quot = DAG.getNode(Opcode: ISD::SDIVREM, DL: dl, |
10844 | VTList: DAG.getVTList(VT1: VT, VT2: VT), |
10845 | N1: LHS, N2: RHS); |
10846 | Rem = Quot.getValue(R: 1); |
10847 | Quot = Quot.getValue(R: 0); |
10848 | } else { |
10849 | Quot = DAG.getNode(Opcode: ISD::SDIV, DL: dl, VT, |
10850 | N1: LHS, N2: RHS); |
10851 | Rem = DAG.getNode(Opcode: ISD::SREM, DL: dl, VT, |
10852 | N1: LHS, N2: RHS); |
10853 | } |
10854 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT); |
10855 | SDValue RemNonZero = DAG.getSetCC(DL: dl, VT: BoolVT, LHS: Rem, RHS: Zero, Cond: ISD::SETNE); |
10856 | SDValue LHSNeg = DAG.getSetCC(DL: dl, VT: BoolVT, LHS, RHS: Zero, Cond: ISD::SETLT); |
10857 | SDValue RHSNeg = DAG.getSetCC(DL: dl, VT: BoolVT, LHS: RHS, RHS: Zero, Cond: ISD::SETLT); |
10858 | SDValue QuotNeg = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: BoolVT, N1: LHSNeg, N2: RHSNeg); |
10859 | SDValue Sub1 = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Quot, |
10860 | N2: DAG.getConstant(Val: 1, DL: dl, VT)); |
10861 | Quot = DAG.getSelect(DL: dl, VT, |
10862 | Cond: DAG.getNode(Opcode: ISD::AND, DL: dl, VT: BoolVT, N1: RemNonZero, N2: QuotNeg), |
10863 | LHS: Sub1, RHS: Quot); |
10864 | } else |
10865 | Quot = DAG.getNode(Opcode: ISD::UDIV, DL: dl, VT, |
10866 | N1: LHS, N2: RHS); |
10867 | |
10868 | return Quot; |
10869 | } |
10870 | |
10871 | void TargetLowering::expandUADDSUBO( |
10872 | SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { |
10873 | SDLoc dl(Node); |
10874 | SDValue LHS = Node->getOperand(Num: 0); |
10875 | SDValue RHS = Node->getOperand(Num: 1); |
10876 | bool IsAdd = Node->getOpcode() == ISD::UADDO; |
10877 | |
10878 | // If UADDO_CARRY/SUBO_CARRY is legal, use that instead. |
10879 | unsigned OpcCarry = IsAdd ? ISD::UADDO_CARRY : ISD::USUBO_CARRY; |
10880 | if (isOperationLegalOrCustom(Op: OpcCarry, VT: Node->getValueType(ResNo: 0))) { |
10881 | SDValue CarryIn = DAG.getConstant(Val: 0, DL: dl, VT: Node->getValueType(ResNo: 1)); |
10882 | SDValue NodeCarry = DAG.getNode(Opcode: OpcCarry, DL: dl, VTList: Node->getVTList(), |
10883 | Ops: { LHS, RHS, CarryIn }); |
10884 | Result = SDValue(NodeCarry.getNode(), 0); |
10885 | Overflow = SDValue(NodeCarry.getNode(), 1); |
10886 | return; |
10887 | } |
10888 | |
10889 | Result = DAG.getNode(Opcode: IsAdd ? ISD::ADD : ISD::SUB, DL: dl, |
10890 | VT: LHS.getValueType(), N1: LHS, N2: RHS); |
10891 | |
10892 | EVT ResultType = Node->getValueType(ResNo: 1); |
10893 | EVT SetCCType = getSetCCResultType( |
10894 | DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: Node->getValueType(ResNo: 0)); |
10895 | SDValue SetCC; |
10896 | if (IsAdd && isOneConstant(V: RHS)) { |
10897 | // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces |
10898 | // the live range of X. We assume comparing with 0 is cheap. |
10899 | // The general case (X + C) < C is not necessarily beneficial. Although we |
10900 | // reduce the live range of X, we may introduce the materialization of |
10901 | // constant C. |
10902 | SetCC = |
10903 | DAG.getSetCC(DL: dl, VT: SetCCType, LHS: Result, |
10904 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: Node->getValueType(ResNo: 0)), Cond: ISD::SETEQ); |
10905 | } else if (IsAdd && isAllOnesConstant(V: RHS)) { |
10906 | // Special case: uaddo X, -1 overflows if X != 0. |
10907 | SetCC = |
10908 | DAG.getSetCC(DL: dl, VT: SetCCType, LHS, |
10909 | RHS: DAG.getConstant(Val: 0, DL: dl, VT: Node->getValueType(ResNo: 0)), Cond: ISD::SETNE); |
10910 | } else { |
10911 | ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; |
10912 | SetCC = DAG.getSetCC(DL: dl, VT: SetCCType, LHS: Result, RHS: LHS, Cond: CC); |
10913 | } |
10914 | Overflow = DAG.getBoolExtOrTrunc(Op: SetCC, SL: dl, VT: ResultType, OpVT: ResultType); |
10915 | } |
10916 | |
10917 | void TargetLowering::expandSADDSUBO( |
10918 | SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { |
10919 | SDLoc dl(Node); |
10920 | SDValue LHS = Node->getOperand(Num: 0); |
10921 | SDValue RHS = Node->getOperand(Num: 1); |
10922 | bool IsAdd = Node->getOpcode() == ISD::SADDO; |
10923 | |
10924 | Result = DAG.getNode(Opcode: IsAdd ? ISD::ADD : ISD::SUB, DL: dl, |
10925 | VT: LHS.getValueType(), N1: LHS, N2: RHS); |
10926 | |
10927 | EVT ResultType = Node->getValueType(ResNo: 1); |
10928 | EVT OType = getSetCCResultType( |
10929 | DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: Node->getValueType(ResNo: 0)); |
10930 | |
10931 | // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. |
10932 | unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; |
10933 | if (isOperationLegal(Op: OpcSat, VT: LHS.getValueType())) { |
10934 | SDValue Sat = DAG.getNode(Opcode: OpcSat, DL: dl, VT: LHS.getValueType(), N1: LHS, N2: RHS); |
10935 | SDValue SetCC = DAG.getSetCC(DL: dl, VT: OType, LHS: Result, RHS: Sat, Cond: ISD::SETNE); |
10936 | Overflow = DAG.getBoolExtOrTrunc(Op: SetCC, SL: dl, VT: ResultType, OpVT: ResultType); |
10937 | return; |
10938 | } |
10939 | |
10940 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT: LHS.getValueType()); |
10941 | |
10942 | // For an addition, the result should be less than one of the operands (LHS) |
10943 | // if and only if the other operand (RHS) is negative, otherwise there will |
10944 | // be overflow. |
10945 | // For a subtraction, the result should be less than one of the operands |
10946 | // (LHS) if and only if the other operand (RHS) is (non-zero) positive, |
10947 | // otherwise there will be overflow. |
10948 | SDValue ResultLowerThanLHS = DAG.getSetCC(DL: dl, VT: OType, LHS: Result, RHS: LHS, Cond: ISD::SETLT); |
10949 | SDValue ConditionRHS = |
10950 | DAG.getSetCC(DL: dl, VT: OType, LHS: RHS, RHS: Zero, Cond: IsAdd ? ISD::SETLT : ISD::SETGT); |
10951 | |
10952 | Overflow = DAG.getBoolExtOrTrunc( |
10953 | Op: DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: OType, N1: ConditionRHS, N2: ResultLowerThanLHS), SL: dl, |
10954 | VT: ResultType, OpVT: ResultType); |
10955 | } |
10956 | |
10957 | bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, |
10958 | SDValue &Overflow, SelectionDAG &DAG) const { |
10959 | SDLoc dl(Node); |
10960 | EVT VT = Node->getValueType(ResNo: 0); |
10961 | EVT SetCCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT); |
10962 | SDValue LHS = Node->getOperand(Num: 0); |
10963 | SDValue RHS = Node->getOperand(Num: 1); |
10964 | bool isSigned = Node->getOpcode() == ISD::SMULO; |
10965 | |
10966 | // For power-of-two multiplications we can use a simpler shift expansion. |
10967 | if (ConstantSDNode *RHSC = isConstOrConstSplat(N: RHS)) { |
10968 | const APInt &C = RHSC->getAPIntValue(); |
10969 | // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } |
10970 | if (C.isPowerOf2()) { |
10971 | // smulo(x, signed_min) is same as umulo(x, signed_min). |
10972 | bool UseArithShift = isSigned && !C.isMinSignedValue(); |
10973 | SDValue ShiftAmt = DAG.getShiftAmountConstant(Val: C.logBase2(), VT, DL: dl); |
10974 | Result = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT, N1: LHS, N2: ShiftAmt); |
10975 | Overflow = DAG.getSetCC(DL: dl, VT: SetCCVT, |
10976 | LHS: DAG.getNode(Opcode: UseArithShift ? ISD::SRA : ISD::SRL, |
10977 | DL: dl, VT, N1: Result, N2: ShiftAmt), |
10978 | RHS: LHS, Cond: ISD::SETNE); |
10979 | return true; |
10980 | } |
10981 | } |
10982 | |
10983 | EVT WideVT = EVT::getIntegerVT(Context&: *DAG.getContext(), BitWidth: VT.getScalarSizeInBits() * 2); |
10984 | if (VT.isVector()) |
10985 | WideVT = |
10986 | EVT::getVectorVT(Context&: *DAG.getContext(), VT: WideVT, EC: VT.getVectorElementCount()); |
10987 | |
10988 | SDValue BottomHalf; |
10989 | SDValue TopHalf; |
10990 | static const unsigned Ops[2][3] = |
10991 | { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, |
10992 | { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; |
10993 | if (isOperationLegalOrCustom(Op: Ops[isSigned][0], VT)) { |
10994 | BottomHalf = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: LHS, N2: RHS); |
10995 | TopHalf = DAG.getNode(Opcode: Ops[isSigned][0], DL: dl, VT, N1: LHS, N2: RHS); |
10996 | } else if (isOperationLegalOrCustom(Op: Ops[isSigned][1], VT)) { |
10997 | BottomHalf = DAG.getNode(Opcode: Ops[isSigned][1], DL: dl, VTList: DAG.getVTList(VT1: VT, VT2: VT), N1: LHS, |
10998 | N2: RHS); |
10999 | TopHalf = BottomHalf.getValue(R: 1); |
11000 | } else if (isTypeLegal(VT: WideVT)) { |
11001 | LHS = DAG.getNode(Opcode: Ops[isSigned][2], DL: dl, VT: WideVT, Operand: LHS); |
11002 | RHS = DAG.getNode(Opcode: Ops[isSigned][2], DL: dl, VT: WideVT, Operand: RHS); |
11003 | SDValue Mul = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: WideVT, N1: LHS, N2: RHS); |
11004 | BottomHalf = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, Operand: Mul); |
11005 | SDValue ShiftAmt = |
11006 | DAG.getShiftAmountConstant(Val: VT.getScalarSizeInBits(), VT: WideVT, DL: dl); |
11007 | TopHalf = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT, |
11008 | Operand: DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: WideVT, N1: Mul, N2: ShiftAmt)); |
11009 | } else { |
11010 | if (VT.isVector()) |
11011 | return false; |
11012 | |
11013 | forceExpandWideMUL(DAG, dl, Signed: isSigned, LHS, RHS, Lo&: BottomHalf, Hi&: TopHalf); |
11014 | } |
11015 | |
11016 | Result = BottomHalf; |
11017 | if (isSigned) { |
11018 | SDValue ShiftAmt = DAG.getShiftAmountConstant( |
11019 | Val: VT.getScalarSizeInBits() - 1, VT: BottomHalf.getValueType(), DL: dl); |
11020 | SDValue Sign = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT, N1: BottomHalf, N2: ShiftAmt); |
11021 | Overflow = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: TopHalf, RHS: Sign, Cond: ISD::SETNE); |
11022 | } else { |
11023 | Overflow = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: TopHalf, |
11024 | RHS: DAG.getConstant(Val: 0, DL: dl, VT), Cond: ISD::SETNE); |
11025 | } |
11026 | |
11027 | // Truncate the result if SetCC returns a larger type than needed. |
11028 | EVT RType = Node->getValueType(ResNo: 1); |
11029 | if (RType.bitsLT(VT: Overflow.getValueType())) |
11030 | Overflow = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: RType, Operand: Overflow); |
11031 | |
11032 | assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && |
11033 | "Unexpected result type for S/UMULO legalization" ); |
11034 | return true; |
11035 | } |
11036 | |
11037 | SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { |
11038 | SDLoc dl(Node); |
11039 | unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(VecReduceOpcode: Node->getOpcode()); |
11040 | SDValue Op = Node->getOperand(Num: 0); |
11041 | EVT VT = Op.getValueType(); |
11042 | |
11043 | if (VT.isScalableVector()) |
11044 | report_fatal_error( |
11045 | reason: "Expanding reductions for scalable vectors is undefined." ); |
11046 | |
11047 | // Try to use a shuffle reduction for power of two vectors. |
11048 | if (VT.isPow2VectorType()) { |
11049 | while (VT.getVectorNumElements() > 1) { |
11050 | EVT HalfVT = VT.getHalfNumVectorElementsVT(Context&: *DAG.getContext()); |
11051 | if (!isOperationLegalOrCustom(Op: BaseOpcode, VT: HalfVT)) |
11052 | break; |
11053 | |
11054 | SDValue Lo, Hi; |
11055 | std::tie(args&: Lo, args&: Hi) = DAG.SplitVector(N: Op, DL: dl); |
11056 | Op = DAG.getNode(Opcode: BaseOpcode, DL: dl, VT: HalfVT, N1: Lo, N2: Hi, Flags: Node->getFlags()); |
11057 | VT = HalfVT; |
11058 | } |
11059 | } |
11060 | |
11061 | EVT EltVT = VT.getVectorElementType(); |
11062 | unsigned NumElts = VT.getVectorNumElements(); |
11063 | |
11064 | SmallVector<SDValue, 8> Ops; |
11065 | DAG.ExtractVectorElements(Op, Args&: Ops, Start: 0, Count: NumElts); |
11066 | |
11067 | SDValue Res = Ops[0]; |
11068 | for (unsigned i = 1; i < NumElts; i++) |
11069 | Res = DAG.getNode(Opcode: BaseOpcode, DL: dl, VT: EltVT, N1: Res, N2: Ops[i], Flags: Node->getFlags()); |
11070 | |
11071 | // Result type may be wider than element type. |
11072 | if (EltVT != Node->getValueType(ResNo: 0)) |
11073 | Res = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: Node->getValueType(ResNo: 0), Operand: Res); |
11074 | return Res; |
11075 | } |
11076 | |
11077 | SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { |
11078 | SDLoc dl(Node); |
11079 | SDValue AccOp = Node->getOperand(Num: 0); |
11080 | SDValue VecOp = Node->getOperand(Num: 1); |
11081 | SDNodeFlags Flags = Node->getFlags(); |
11082 | |
11083 | EVT VT = VecOp.getValueType(); |
11084 | EVT EltVT = VT.getVectorElementType(); |
11085 | |
11086 | if (VT.isScalableVector()) |
11087 | report_fatal_error( |
11088 | reason: "Expanding reductions for scalable vectors is undefined." ); |
11089 | |
11090 | unsigned NumElts = VT.getVectorNumElements(); |
11091 | |
11092 | SmallVector<SDValue, 8> Ops; |
11093 | DAG.ExtractVectorElements(Op: VecOp, Args&: Ops, Start: 0, Count: NumElts); |
11094 | |
11095 | unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(VecReduceOpcode: Node->getOpcode()); |
11096 | |
11097 | SDValue Res = AccOp; |
11098 | for (unsigned i = 0; i < NumElts; i++) |
11099 | Res = DAG.getNode(Opcode: BaseOpcode, DL: dl, VT: EltVT, N1: Res, N2: Ops[i], Flags); |
11100 | |
11101 | return Res; |
11102 | } |
11103 | |
11104 | bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, |
11105 | SelectionDAG &DAG) const { |
11106 | EVT VT = Node->getValueType(ResNo: 0); |
11107 | SDLoc dl(Node); |
11108 | bool isSigned = Node->getOpcode() == ISD::SREM; |
11109 | unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; |
11110 | unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; |
11111 | SDValue Dividend = Node->getOperand(Num: 0); |
11112 | SDValue Divisor = Node->getOperand(Num: 1); |
11113 | if (isOperationLegalOrCustom(Op: DivRemOpc, VT)) { |
11114 | SDVTList VTs = DAG.getVTList(VT1: VT, VT2: VT); |
11115 | Result = DAG.getNode(Opcode: DivRemOpc, DL: dl, VTList: VTs, N1: Dividend, N2: Divisor).getValue(R: 1); |
11116 | return true; |
11117 | } |
11118 | if (isOperationLegalOrCustom(Op: DivOpc, VT)) { |
11119 | // X % Y -> X-X/Y*Y |
11120 | SDValue Divide = DAG.getNode(Opcode: DivOpc, DL: dl, VT, N1: Dividend, N2: Divisor); |
11121 | SDValue Mul = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT, N1: Divide, N2: Divisor); |
11122 | Result = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT, N1: Dividend, N2: Mul); |
11123 | return true; |
11124 | } |
11125 | return false; |
11126 | } |
11127 | |
11128 | SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, |
11129 | SelectionDAG &DAG) const { |
11130 | bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; |
11131 | SDLoc dl(SDValue(Node, 0)); |
11132 | SDValue Src = Node->getOperand(Num: 0); |
11133 | |
11134 | // DstVT is the result type, while SatVT is the size to which we saturate |
11135 | EVT SrcVT = Src.getValueType(); |
11136 | EVT DstVT = Node->getValueType(ResNo: 0); |
11137 | |
11138 | EVT SatVT = cast<VTSDNode>(Val: Node->getOperand(Num: 1))->getVT(); |
11139 | unsigned SatWidth = SatVT.getScalarSizeInBits(); |
11140 | unsigned DstWidth = DstVT.getScalarSizeInBits(); |
11141 | assert(SatWidth <= DstWidth && |
11142 | "Expected saturation width smaller than result width" ); |
11143 | |
11144 | // Determine minimum and maximum integer values and their corresponding |
11145 | // floating-point values. |
11146 | APInt MinInt, MaxInt; |
11147 | if (IsSigned) { |
11148 | MinInt = APInt::getSignedMinValue(numBits: SatWidth).sext(width: DstWidth); |
11149 | MaxInt = APInt::getSignedMaxValue(numBits: SatWidth).sext(width: DstWidth); |
11150 | } else { |
11151 | MinInt = APInt::getMinValue(numBits: SatWidth).zext(width: DstWidth); |
11152 | MaxInt = APInt::getMaxValue(numBits: SatWidth).zext(width: DstWidth); |
11153 | } |
11154 | |
11155 | // We cannot risk emitting FP_TO_XINT nodes with a source VT of [b]f16, as |
11156 | // libcall emission cannot handle this. Large result types will fail. |
11157 | if (SrcVT == MVT::f16 || SrcVT == MVT::bf16) { |
11158 | Src = DAG.getNode(Opcode: ISD::FP_EXTEND, DL: dl, VT: MVT::f32, Operand: Src); |
11159 | SrcVT = Src.getValueType(); |
11160 | } |
11161 | |
11162 | APFloat MinFloat(DAG.EVTToAPFloatSemantics(VT: SrcVT)); |
11163 | APFloat MaxFloat(DAG.EVTToAPFloatSemantics(VT: SrcVT)); |
11164 | |
11165 | APFloat::opStatus MinStatus = |
11166 | MinFloat.convertFromAPInt(Input: MinInt, IsSigned, RM: APFloat::rmTowardZero); |
11167 | APFloat::opStatus MaxStatus = |
11168 | MaxFloat.convertFromAPInt(Input: MaxInt, IsSigned, RM: APFloat::rmTowardZero); |
11169 | bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && |
11170 | !(MaxStatus & APFloat::opStatus::opInexact); |
11171 | |
11172 | SDValue MinFloatNode = DAG.getConstantFP(Val: MinFloat, DL: dl, VT: SrcVT); |
11173 | SDValue MaxFloatNode = DAG.getConstantFP(Val: MaxFloat, DL: dl, VT: SrcVT); |
11174 | |
11175 | // If the integer bounds are exactly representable as floats and min/max are |
11176 | // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence |
11177 | // of comparisons and selects. |
11178 | bool MinMaxLegal = isOperationLegal(Op: ISD::FMINNUM, VT: SrcVT) && |
11179 | isOperationLegal(Op: ISD::FMAXNUM, VT: SrcVT); |
11180 | if (AreExactFloatBounds && MinMaxLegal) { |
11181 | SDValue Clamped = Src; |
11182 | |
11183 | // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. |
11184 | Clamped = DAG.getNode(Opcode: ISD::FMAXNUM, DL: dl, VT: SrcVT, N1: Clamped, N2: MinFloatNode); |
11185 | // Clamp by MaxFloat from above. NaN cannot occur. |
11186 | Clamped = DAG.getNode(Opcode: ISD::FMINNUM, DL: dl, VT: SrcVT, N1: Clamped, N2: MaxFloatNode); |
11187 | // Convert clamped value to integer. |
11188 | SDValue FpToInt = DAG.getNode(Opcode: IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, |
11189 | DL: dl, VT: DstVT, Operand: Clamped); |
11190 | |
11191 | // In the unsigned case we're done, because we mapped NaN to MinFloat, |
11192 | // which will cast to zero. |
11193 | if (!IsSigned) |
11194 | return FpToInt; |
11195 | |
11196 | // Otherwise, select 0 if Src is NaN. |
11197 | SDValue ZeroInt = DAG.getConstant(Val: 0, DL: dl, VT: DstVT); |
11198 | EVT SetCCVT = |
11199 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: SrcVT); |
11200 | SDValue IsNan = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: Src, RHS: Src, Cond: ISD::CondCode::SETUO); |
11201 | return DAG.getSelect(DL: dl, VT: DstVT, Cond: IsNan, LHS: ZeroInt, RHS: FpToInt); |
11202 | } |
11203 | |
11204 | SDValue MinIntNode = DAG.getConstant(Val: MinInt, DL: dl, VT: DstVT); |
11205 | SDValue MaxIntNode = DAG.getConstant(Val: MaxInt, DL: dl, VT: DstVT); |
11206 | |
11207 | // Result of direct conversion. The assumption here is that the operation is |
11208 | // non-trapping and it's fine to apply it to an out-of-range value if we |
11209 | // select it away later. |
11210 | SDValue FpToInt = |
11211 | DAG.getNode(Opcode: IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, DL: dl, VT: DstVT, Operand: Src); |
11212 | |
11213 | SDValue Select = FpToInt; |
11214 | |
11215 | EVT SetCCVT = |
11216 | getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: SrcVT); |
11217 | |
11218 | // If Src ULT MinFloat, select MinInt. In particular, this also selects |
11219 | // MinInt if Src is NaN. |
11220 | SDValue ULT = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: Src, RHS: MinFloatNode, Cond: ISD::SETULT); |
11221 | Select = DAG.getSelect(DL: dl, VT: DstVT, Cond: ULT, LHS: MinIntNode, RHS: Select); |
11222 | // If Src OGT MaxFloat, select MaxInt. |
11223 | SDValue OGT = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: Src, RHS: MaxFloatNode, Cond: ISD::SETOGT); |
11224 | Select = DAG.getSelect(DL: dl, VT: DstVT, Cond: OGT, LHS: MaxIntNode, RHS: Select); |
11225 | |
11226 | // In the unsigned case we are done, because we mapped NaN to MinInt, which |
11227 | // is already zero. |
11228 | if (!IsSigned) |
11229 | return Select; |
11230 | |
11231 | // Otherwise, select 0 if Src is NaN. |
11232 | SDValue ZeroInt = DAG.getConstant(Val: 0, DL: dl, VT: DstVT); |
11233 | SDValue IsNan = DAG.getSetCC(DL: dl, VT: SetCCVT, LHS: Src, RHS: Src, Cond: ISD::CondCode::SETUO); |
11234 | return DAG.getSelect(DL: dl, VT: DstVT, Cond: IsNan, LHS: ZeroInt, RHS: Select); |
11235 | } |
11236 | |
11237 | SDValue TargetLowering::expandRoundInexactToOdd(EVT ResultVT, SDValue Op, |
11238 | const SDLoc &dl, |
11239 | SelectionDAG &DAG) const { |
11240 | EVT OperandVT = Op.getValueType(); |
11241 | if (OperandVT.getScalarType() == ResultVT.getScalarType()) |
11242 | return Op; |
11243 | EVT ResultIntVT = ResultVT.changeTypeToInteger(); |
11244 | // We are rounding binary64/binary128 -> binary32 -> bfloat16. This |
11245 | // can induce double-rounding which may alter the results. We can |
11246 | // correct for this using a trick explained in: Boldo, Sylvie, and |
11247 | // Guillaume Melquiond. "When double rounding is odd." 17th IMACS |
11248 | // World Congress. 2005. |
11249 | unsigned BitSize = OperandVT.getScalarSizeInBits(); |
11250 | EVT WideIntVT = OperandVT.changeTypeToInteger(); |
11251 | SDValue OpAsInt = DAG.getBitcast(VT: WideIntVT, V: Op); |
11252 | SDValue SignBit = |
11253 | DAG.getNode(Opcode: ISD::AND, DL: dl, VT: WideIntVT, N1: OpAsInt, |
11254 | N2: DAG.getConstant(Val: APInt::getSignMask(BitWidth: BitSize), DL: dl, VT: WideIntVT)); |
11255 | SDValue AbsWide; |
11256 | if (isOperationLegalOrCustom(Op: ISD::FABS, VT: OperandVT)) { |
11257 | AbsWide = DAG.getNode(Opcode: ISD::FABS, DL: dl, VT: OperandVT, Operand: Op); |
11258 | } else { |
11259 | SDValue ClearedSign = DAG.getNode( |
11260 | Opcode: ISD::AND, DL: dl, VT: WideIntVT, N1: OpAsInt, |
11261 | N2: DAG.getConstant(Val: APInt::getSignedMaxValue(numBits: BitSize), DL: dl, VT: WideIntVT)); |
11262 | AbsWide = DAG.getBitcast(VT: OperandVT, V: ClearedSign); |
11263 | } |
11264 | SDValue AbsNarrow = DAG.getFPExtendOrRound(Op: AbsWide, DL: dl, VT: ResultVT); |
11265 | SDValue AbsNarrowAsWide = DAG.getFPExtendOrRound(Op: AbsNarrow, DL: dl, VT: OperandVT); |
11266 | |
11267 | // We can keep the narrow value as-is if narrowing was exact (no |
11268 | // rounding error), the wide value was NaN (the narrow value is also |
11269 | // NaN and should be preserved) or if we rounded to the odd value. |
11270 | SDValue NarrowBits = DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: ResultIntVT, Operand: AbsNarrow); |
11271 | SDValue One = DAG.getConstant(Val: 1, DL: dl, VT: ResultIntVT); |
11272 | SDValue NegativeOne = DAG.getAllOnesConstant(DL: dl, VT: ResultIntVT); |
11273 | SDValue And = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: ResultIntVT, N1: NarrowBits, N2: One); |
11274 | EVT ResultIntVTCCVT = getSetCCResultType( |
11275 | DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: And.getValueType()); |
11276 | SDValue Zero = DAG.getConstant(Val: 0, DL: dl, VT: ResultIntVT); |
11277 | // The result is already odd so we don't need to do anything. |
11278 | SDValue AlreadyOdd = DAG.getSetCC(DL: dl, VT: ResultIntVTCCVT, LHS: And, RHS: Zero, Cond: ISD::SETNE); |
11279 | |
11280 | EVT WideSetCCVT = getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), |
11281 | VT: AbsWide.getValueType()); |
11282 | // We keep results which are exact, odd or NaN. |
11283 | SDValue KeepNarrow = |
11284 | DAG.getSetCC(DL: dl, VT: WideSetCCVT, LHS: AbsWide, RHS: AbsNarrowAsWide, Cond: ISD::SETUEQ); |
11285 | KeepNarrow = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: WideSetCCVT, N1: KeepNarrow, N2: AlreadyOdd); |
11286 | // We morally performed a round-down if AbsNarrow is smaller than |
11287 | // AbsWide. |
11288 | SDValue NarrowIsRd = |
11289 | DAG.getSetCC(DL: dl, VT: WideSetCCVT, LHS: AbsWide, RHS: AbsNarrowAsWide, Cond: ISD::SETOGT); |
11290 | // If the narrow value is odd or exact, pick it. |
11291 | // Otherwise, narrow is even and corresponds to either the rounded-up |
11292 | // or rounded-down value. If narrow is the rounded-down value, we want |
11293 | // the rounded-up value as it will be odd. |
11294 | SDValue Adjust = DAG.getSelect(DL: dl, VT: ResultIntVT, Cond: NarrowIsRd, LHS: One, RHS: NegativeOne); |
11295 | SDValue Adjusted = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: ResultIntVT, N1: NarrowBits, N2: Adjust); |
11296 | Op = DAG.getSelect(DL: dl, VT: ResultIntVT, Cond: KeepNarrow, LHS: NarrowBits, RHS: Adjusted); |
11297 | int ShiftAmount = BitSize - ResultVT.getScalarSizeInBits(); |
11298 | SDValue ShiftCnst = DAG.getShiftAmountConstant(Val: ShiftAmount, VT: WideIntVT, DL: dl); |
11299 | SignBit = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: WideIntVT, N1: SignBit, N2: ShiftCnst); |
11300 | SignBit = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: ResultIntVT, Operand: SignBit); |
11301 | Op = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: ResultIntVT, N1: Op, N2: SignBit); |
11302 | return DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: ResultVT, Operand: Op); |
11303 | } |
11304 | |
11305 | SDValue TargetLowering::expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const { |
11306 | assert(Node->getOpcode() == ISD::FP_ROUND && "Unexpected opcode!" ); |
11307 | SDValue Op = Node->getOperand(Num: 0); |
11308 | EVT VT = Node->getValueType(ResNo: 0); |
11309 | SDLoc dl(Node); |
11310 | if (VT.getScalarType() == MVT::bf16) { |
11311 | if (Node->getConstantOperandVal(Num: 1) == 1) { |
11312 | return DAG.getNode(Opcode: ISD::FP_TO_BF16, DL: dl, VT, Operand: Node->getOperand(Num: 0)); |
11313 | } |
11314 | EVT OperandVT = Op.getValueType(); |
11315 | SDValue IsNaN = DAG.getSetCC( |
11316 | DL: dl, |
11317 | VT: getSetCCResultType(DL: DAG.getDataLayout(), Context&: *DAG.getContext(), VT: OperandVT), |
11318 | LHS: Op, RHS: Op, Cond: ISD::SETUO); |
11319 | |
11320 | // We are rounding binary64/binary128 -> binary32 -> bfloat16. This |
11321 | // can induce double-rounding which may alter the results. We can |
11322 | // correct for this using a trick explained in: Boldo, Sylvie, and |
11323 | // Guillaume Melquiond. "When double rounding is odd." 17th IMACS |
11324 | // World Congress. 2005. |
11325 | EVT F32 = VT.isVector() ? VT.changeVectorElementType(EltVT: MVT::f32) : MVT::f32; |
11326 | EVT I32 = F32.changeTypeToInteger(); |
11327 | Op = expandRoundInexactToOdd(ResultVT: F32, Op, dl, DAG); |
11328 | Op = DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: I32, Operand: Op); |
11329 | |
11330 | // Conversions should set NaN's quiet bit. This also prevents NaNs from |
11331 | // turning into infinities. |
11332 | SDValue NaN = |
11333 | DAG.getNode(Opcode: ISD::OR, DL: dl, VT: I32, N1: Op, N2: DAG.getConstant(Val: 0x400000, DL: dl, VT: I32)); |
11334 | |
11335 | // Factor in the contribution of the low 16 bits. |
11336 | SDValue One = DAG.getConstant(Val: 1, DL: dl, VT: I32); |
11337 | SDValue Lsb = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: I32, N1: Op, |
11338 | N2: DAG.getShiftAmountConstant(Val: 16, VT: I32, DL: dl)); |
11339 | Lsb = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: I32, N1: Lsb, N2: One); |
11340 | SDValue RoundingBias = |
11341 | DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: I32, N1: DAG.getConstant(Val: 0x7fff, DL: dl, VT: I32), N2: Lsb); |
11342 | SDValue Add = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: I32, N1: Op, N2: RoundingBias); |
11343 | |
11344 | // Don't round if we had a NaN, we don't want to turn 0x7fffffff into |
11345 | // 0x80000000. |
11346 | Op = DAG.getSelect(DL: dl, VT: I32, Cond: IsNaN, LHS: NaN, RHS: Add); |
11347 | |
11348 | // Now that we have rounded, shift the bits into position. |
11349 | Op = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: I32, N1: Op, |
11350 | N2: DAG.getShiftAmountConstant(Val: 16, VT: I32, DL: dl)); |
11351 | Op = DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT: I32, Operand: Op); |
11352 | EVT I16 = I32.isVector() ? I32.changeVectorElementType(EltVT: MVT::i16) : MVT::i16; |
11353 | Op = DAG.getNode(Opcode: ISD::TRUNCATE, DL: dl, VT: I16, Operand: Op); |
11354 | return DAG.getNode(Opcode: ISD::BITCAST, DL: dl, VT, Operand: Op); |
11355 | } |
11356 | return SDValue(); |
11357 | } |
11358 | |
11359 | SDValue TargetLowering::expandVectorSplice(SDNode *Node, |
11360 | SelectionDAG &DAG) const { |
11361 | assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!" ); |
11362 | assert(Node->getValueType(0).isScalableVector() && |
11363 | "Fixed length vector types expected to use SHUFFLE_VECTOR!" ); |
11364 | |
11365 | EVT VT = Node->getValueType(ResNo: 0); |
11366 | SDValue V1 = Node->getOperand(Num: 0); |
11367 | SDValue V2 = Node->getOperand(Num: 1); |
11368 | int64_t Imm = cast<ConstantSDNode>(Val: Node->getOperand(Num: 2))->getSExtValue(); |
11369 | SDLoc DL(Node); |
11370 | |
11371 | // Expand through memory thusly: |
11372 | // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr |
11373 | // Store V1, Ptr |
11374 | // Store V2, Ptr + sizeof(V1) |
11375 | // If (Imm < 0) |
11376 | // TrailingElts = -Imm |
11377 | // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) |
11378 | // else |
11379 | // Ptr = Ptr + (Imm * sizeof(VT.Elt)) |
11380 | // Res = Load Ptr |
11381 | |
11382 | Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); |
11383 | |
11384 | EVT MemVT = EVT::getVectorVT(Context&: *DAG.getContext(), VT: VT.getVectorElementType(), |
11385 | EC: VT.getVectorElementCount() * 2); |
11386 | SDValue StackPtr = DAG.CreateStackTemporary(Bytes: MemVT.getStoreSize(), Alignment); |
11387 | EVT PtrVT = StackPtr.getValueType(); |
11388 | auto &MF = DAG.getMachineFunction(); |
11389 | auto FrameIndex = cast<FrameIndexSDNode>(Val: StackPtr.getNode())->getIndex(); |
11390 | auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FI: FrameIndex); |
11391 | |
11392 | // Store the lo part of CONCAT_VECTORS(V1, V2) |
11393 | SDValue StoreV1 = DAG.getStore(Chain: DAG.getEntryNode(), dl: DL, Val: V1, Ptr: StackPtr, PtrInfo); |
11394 | // Store the hi part of CONCAT_VECTORS(V1, V2) |
11395 | SDValue OffsetToV2 = DAG.getVScale( |
11396 | DL, VT: PtrVT, |
11397 | MulImm: APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinValue())); |
11398 | SDValue StackPtr2 = DAG.getNode(Opcode: ISD::ADD, DL, VT: PtrVT, N1: StackPtr, N2: OffsetToV2); |
11399 | SDValue StoreV2 = DAG.getStore(Chain: StoreV1, dl: DL, Val: V2, Ptr: StackPtr2, PtrInfo); |
11400 | |
11401 | if (Imm >= 0) { |
11402 | // Load back the required element. getVectorElementPointer takes care of |
11403 | // clamping the index if it's out-of-bounds. |
11404 | StackPtr = getVectorElementPointer(DAG, VecPtr: StackPtr, VecVT: VT, Index: Node->getOperand(Num: 2)); |
11405 | // Load the spliced result |
11406 | return DAG.getLoad(VT, dl: DL, Chain: StoreV2, Ptr: StackPtr, |
11407 | PtrInfo: MachinePointerInfo::getUnknownStack(MF)); |
11408 | } |
11409 | |
11410 | uint64_t TrailingElts = -Imm; |
11411 | |
11412 | // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. |
11413 | TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); |
11414 | SDValue TrailingBytes = |
11415 | DAG.getConstant(Val: TrailingElts * EltByteSize, DL, VT: PtrVT); |
11416 | |
11417 | if (TrailingElts > VT.getVectorMinNumElements()) { |
11418 | SDValue VLBytes = |
11419 | DAG.getVScale(DL, VT: PtrVT, |
11420 | MulImm: APInt(PtrVT.getFixedSizeInBits(), |
11421 | VT.getStoreSize().getKnownMinValue())); |
11422 | TrailingBytes = DAG.getNode(Opcode: ISD::UMIN, DL, VT: PtrVT, N1: TrailingBytes, N2: VLBytes); |
11423 | } |
11424 | |
11425 | // Calculate the start address of the spliced result. |
11426 | StackPtr2 = DAG.getNode(Opcode: ISD::SUB, DL, VT: PtrVT, N1: StackPtr2, N2: TrailingBytes); |
11427 | |
11428 | // Load the spliced result |
11429 | return DAG.getLoad(VT, dl: DL, Chain: StoreV2, Ptr: StackPtr2, |
11430 | PtrInfo: MachinePointerInfo::getUnknownStack(MF)); |
11431 | } |
11432 | |
11433 | SDValue TargetLowering::expandVECTOR_COMPRESS(SDNode *Node, |
11434 | SelectionDAG &DAG) const { |
11435 | SDLoc DL(Node); |
11436 | SDValue Vec = Node->getOperand(Num: 0); |
11437 | SDValue Mask = Node->getOperand(Num: 1); |
11438 | SDValue Passthru = Node->getOperand(Num: 2); |
11439 | |
11440 | EVT VecVT = Vec.getValueType(); |
11441 | EVT ScalarVT = VecVT.getScalarType(); |
11442 | EVT MaskVT = Mask.getValueType(); |
11443 | EVT MaskScalarVT = MaskVT.getScalarType(); |
11444 | |
11445 | // Needs to be handled by targets that have scalable vector types. |
11446 | if (VecVT.isScalableVector()) |
11447 | report_fatal_error(reason: "Cannot expand masked_compress for scalable vectors." ); |
11448 | |
11449 | SDValue StackPtr = DAG.CreateStackTemporary( |
11450 | Bytes: VecVT.getStoreSize(), Alignment: DAG.getReducedAlign(VT: VecVT, /*UseABI=*/false)); |
11451 | int FI = cast<FrameIndexSDNode>(Val: StackPtr.getNode())->getIndex(); |
11452 | MachinePointerInfo PtrInfo = |
11453 | MachinePointerInfo::getFixedStack(MF&: DAG.getMachineFunction(), FI); |
11454 | |
11455 | MVT PositionVT = getVectorIdxTy(DL: DAG.getDataLayout()); |
11456 | SDValue Chain = DAG.getEntryNode(); |
11457 | SDValue OutPos = DAG.getConstant(Val: 0, DL, VT: PositionVT); |
11458 | |
11459 | bool HasPassthru = !Passthru.isUndef(); |
11460 | |
11461 | // If we have a passthru vector, store it on the stack, overwrite the matching |
11462 | // positions and then re-write the last element that was potentially |
11463 | // overwritten even though mask[i] = false. |
11464 | if (HasPassthru) |
11465 | Chain = DAG.getStore(Chain, dl: DL, Val: Passthru, Ptr: StackPtr, PtrInfo); |
11466 | |
11467 | SDValue LastWriteVal; |
11468 | APInt PassthruSplatVal; |
11469 | bool IsSplatPassthru = |
11470 | ISD::isConstantSplatVector(N: Passthru.getNode(), SplatValue&: PassthruSplatVal); |
11471 | |
11472 | if (IsSplatPassthru) { |
11473 | // As we do not know which position we wrote to last, we cannot simply |
11474 | // access that index from the passthru vector. So we first check if passthru |
11475 | // is a splat vector, to use any element ... |
11476 | LastWriteVal = DAG.getConstant(Val: PassthruSplatVal, DL, VT: ScalarVT); |
11477 | } else if (HasPassthru) { |
11478 | // ... if it is not a splat vector, we need to get the passthru value at |
11479 | // position = popcount(mask) and re-load it from the stack before it is |
11480 | // overwritten in the loop below. |
11481 | SDValue Popcount = DAG.getNode( |
11482 | Opcode: ISD::TRUNCATE, DL, VT: MaskVT.changeVectorElementType(EltVT: MVT::i1), Operand: Mask); |
11483 | Popcount = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, |
11484 | VT: MaskVT.changeVectorElementType(EltVT: ScalarVT), Operand: Popcount); |
11485 | Popcount = DAG.getNode(Opcode: ISD::VECREDUCE_ADD, DL, VT: ScalarVT, Operand: Popcount); |
11486 | SDValue LastElmtPtr = |
11487 | getVectorElementPointer(DAG, VecPtr: StackPtr, VecVT, Index: Popcount); |
11488 | LastWriteVal = DAG.getLoad( |
11489 | VT: ScalarVT, dl: DL, Chain, Ptr: LastElmtPtr, |
11490 | PtrInfo: MachinePointerInfo::getUnknownStack(MF&: DAG.getMachineFunction())); |
11491 | Chain = LastWriteVal.getValue(R: 1); |
11492 | } |
11493 | |
11494 | unsigned NumElms = VecVT.getVectorNumElements(); |
11495 | for (unsigned I = 0; I < NumElms; I++) { |
11496 | SDValue Idx = DAG.getVectorIdxConstant(Val: I, DL); |
11497 | |
11498 | SDValue ValI = DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: ScalarVT, N1: Vec, N2: Idx); |
11499 | SDValue OutPtr = getVectorElementPointer(DAG, VecPtr: StackPtr, VecVT, Index: OutPos); |
11500 | Chain = DAG.getStore( |
11501 | Chain, dl: DL, Val: ValI, Ptr: OutPtr, |
11502 | PtrInfo: MachinePointerInfo::getUnknownStack(MF&: DAG.getMachineFunction())); |
11503 | |
11504 | // Get the mask value and add it to the current output position. This |
11505 | // either increments by 1 if MaskI is true or adds 0 otherwise. |
11506 | // Freeze in case we have poison/undef mask entries. |
11507 | SDValue MaskI = DAG.getFreeze( |
11508 | V: DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL, VT: MaskScalarVT, N1: Mask, N2: Idx)); |
11509 | MaskI = DAG.getFreeze(V: MaskI); |
11510 | MaskI = DAG.getNode(Opcode: ISD::TRUNCATE, DL, VT: MVT::i1, Operand: MaskI); |
11511 | MaskI = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL, VT: PositionVT, Operand: MaskI); |
11512 | OutPos = DAG.getNode(Opcode: ISD::ADD, DL, VT: PositionVT, N1: OutPos, N2: MaskI); |
11513 | |
11514 | if (HasPassthru && I == NumElms - 1) { |
11515 | SDValue EndOfVector = |
11516 | DAG.getConstant(Val: VecVT.getVectorNumElements() - 1, DL, VT: PositionVT); |
11517 | SDValue AllLanesSelected = |
11518 | DAG.getSetCC(DL, VT: MVT::i1, LHS: OutPos, RHS: EndOfVector, Cond: ISD::CondCode::SETUGT); |
11519 | OutPos = DAG.getNode(Opcode: ISD::UMIN, DL, VT: PositionVT, N1: OutPos, N2: EndOfVector); |
11520 | OutPtr = getVectorElementPointer(DAG, VecPtr: StackPtr, VecVT, Index: OutPos); |
11521 | |
11522 | // Re-write the last ValI if all lanes were selected. Otherwise, |
11523 | // overwrite the last write it with the passthru value. |
11524 | LastWriteVal = |
11525 | DAG.getSelect(DL, VT: ScalarVT, Cond: AllLanesSelected, LHS: ValI, RHS: LastWriteVal); |
11526 | Chain = DAG.getStore( |
11527 | Chain, dl: DL, Val: LastWriteVal, Ptr: OutPtr, |
11528 | PtrInfo: MachinePointerInfo::getUnknownStack(MF&: DAG.getMachineFunction())); |
11529 | } |
11530 | } |
11531 | |
11532 | return DAG.getLoad(VT: VecVT, dl: DL, Chain, Ptr: StackPtr, PtrInfo); |
11533 | } |
11534 | |
11535 | bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, |
11536 | SDValue &LHS, SDValue &RHS, |
11537 | SDValue &CC, SDValue Mask, |
11538 | SDValue EVL, bool &NeedInvert, |
11539 | const SDLoc &dl, SDValue &Chain, |
11540 | bool IsSignaling) const { |
11541 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
11542 | MVT OpVT = LHS.getSimpleValueType(); |
11543 | ISD::CondCode CCCode = cast<CondCodeSDNode>(Val&: CC)->get(); |
11544 | NeedInvert = false; |
11545 | assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset" ); |
11546 | bool IsNonVP = !EVL; |
11547 | switch (TLI.getCondCodeAction(CC: CCCode, VT: OpVT)) { |
11548 | default: |
11549 | llvm_unreachable("Unknown condition code action!" ); |
11550 | case TargetLowering::Legal: |
11551 | // Nothing to do. |
11552 | break; |
11553 | case TargetLowering::Expand: { |
11554 | ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(Operation: CCCode); |
11555 | if (TLI.isCondCodeLegalOrCustom(CC: InvCC, VT: OpVT)) { |
11556 | std::swap(a&: LHS, b&: RHS); |
11557 | CC = DAG.getCondCode(Cond: InvCC); |
11558 | return true; |
11559 | } |
11560 | // Swapping operands didn't work. Try inverting the condition. |
11561 | bool NeedSwap = false; |
11562 | InvCC = getSetCCInverse(Operation: CCCode, Type: OpVT); |
11563 | if (!TLI.isCondCodeLegalOrCustom(CC: InvCC, VT: OpVT)) { |
11564 | // If inverting the condition is not enough, try swapping operands |
11565 | // on top of it. |
11566 | InvCC = ISD::getSetCCSwappedOperands(Operation: InvCC); |
11567 | NeedSwap = true; |
11568 | } |
11569 | if (TLI.isCondCodeLegalOrCustom(CC: InvCC, VT: OpVT)) { |
11570 | CC = DAG.getCondCode(Cond: InvCC); |
11571 | NeedInvert = true; |
11572 | if (NeedSwap) |
11573 | std::swap(a&: LHS, b&: RHS); |
11574 | return true; |
11575 | } |
11576 | |
11577 | ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; |
11578 | unsigned Opc = 0; |
11579 | switch (CCCode) { |
11580 | default: |
11581 | llvm_unreachable("Don't know how to expand this condition!" ); |
11582 | case ISD::SETUO: |
11583 | if (TLI.isCondCodeLegal(CC: ISD::SETUNE, VT: OpVT)) { |
11584 | CC1 = ISD::SETUNE; |
11585 | CC2 = ISD::SETUNE; |
11586 | Opc = ISD::OR; |
11587 | break; |
11588 | } |
11589 | assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && |
11590 | "If SETUE is expanded, SETOEQ or SETUNE must be legal!" ); |
11591 | NeedInvert = true; |
11592 | [[fallthrough]]; |
11593 | case ISD::SETO: |
11594 | assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && |
11595 | "If SETO is expanded, SETOEQ must be legal!" ); |
11596 | CC1 = ISD::SETOEQ; |
11597 | CC2 = ISD::SETOEQ; |
11598 | Opc = ISD::AND; |
11599 | break; |
11600 | case ISD::SETONE: |
11601 | case ISD::SETUEQ: |
11602 | // If the SETUO or SETO CC isn't legal, we might be able to use |
11603 | // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one |
11604 | // of SETOGT/SETOLT to be legal, the other can be emulated by swapping |
11605 | // the operands. |
11606 | CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; |
11607 | if (!TLI.isCondCodeLegal(CC: CC2, VT: OpVT) && |
11608 | (TLI.isCondCodeLegal(CC: ISD::SETOGT, VT: OpVT) || |
11609 | TLI.isCondCodeLegal(CC: ISD::SETOLT, VT: OpVT))) { |
11610 | CC1 = ISD::SETOGT; |
11611 | CC2 = ISD::SETOLT; |
11612 | Opc = ISD::OR; |
11613 | NeedInvert = ((unsigned)CCCode & 0x8U); |
11614 | break; |
11615 | } |
11616 | [[fallthrough]]; |
11617 | case ISD::SETOEQ: |
11618 | case ISD::SETOGT: |
11619 | case ISD::SETOGE: |
11620 | case ISD::SETOLT: |
11621 | case ISD::SETOLE: |
11622 | case ISD::SETUNE: |
11623 | case ISD::SETUGT: |
11624 | case ISD::SETUGE: |
11625 | case ISD::SETULT: |
11626 | case ISD::SETULE: |
11627 | // If we are floating point, assign and break, otherwise fall through. |
11628 | if (!OpVT.isInteger()) { |
11629 | // We can use the 4th bit to tell if we are the unordered |
11630 | // or ordered version of the opcode. |
11631 | CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; |
11632 | Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; |
11633 | CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); |
11634 | break; |
11635 | } |
11636 | // Fallthrough if we are unsigned integer. |
11637 | [[fallthrough]]; |
11638 | case ISD::SETLE: |
11639 | case ISD::SETGT: |
11640 | case ISD::SETGE: |
11641 | case ISD::SETLT: |
11642 | case ISD::SETNE: |
11643 | case ISD::SETEQ: |
11644 | // If all combinations of inverting the condition and swapping operands |
11645 | // didn't work then we have no means to expand the condition. |
11646 | llvm_unreachable("Don't know how to expand this condition!" ); |
11647 | } |
11648 | |
11649 | SDValue SetCC1, SetCC2; |
11650 | if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { |
11651 | // If we aren't the ordered or unorder operation, |
11652 | // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). |
11653 | if (IsNonVP) { |
11654 | SetCC1 = DAG.getSetCC(DL: dl, VT, LHS, RHS, Cond: CC1, Chain, IsSignaling); |
11655 | SetCC2 = DAG.getSetCC(DL: dl, VT, LHS, RHS, Cond: CC2, Chain, IsSignaling); |
11656 | } else { |
11657 | SetCC1 = DAG.getSetCCVP(DL: dl, VT, LHS, RHS, Cond: CC1, Mask, EVL); |
11658 | SetCC2 = DAG.getSetCCVP(DL: dl, VT, LHS, RHS, Cond: CC2, Mask, EVL); |
11659 | } |
11660 | } else { |
11661 | // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) |
11662 | if (IsNonVP) { |
11663 | SetCC1 = DAG.getSetCC(DL: dl, VT, LHS, RHS: LHS, Cond: CC1, Chain, IsSignaling); |
11664 | SetCC2 = DAG.getSetCC(DL: dl, VT, LHS: RHS, RHS, Cond: CC2, Chain, IsSignaling); |
11665 | } else { |
11666 | SetCC1 = DAG.getSetCCVP(DL: dl, VT, LHS, RHS: LHS, Cond: CC1, Mask, EVL); |
11667 | SetCC2 = DAG.getSetCCVP(DL: dl, VT, LHS: RHS, RHS, Cond: CC2, Mask, EVL); |
11668 | } |
11669 | } |
11670 | if (Chain) |
11671 | Chain = DAG.getNode(Opcode: ISD::TokenFactor, DL: dl, VT: MVT::Other, N1: SetCC1.getValue(R: 1), |
11672 | N2: SetCC2.getValue(R: 1)); |
11673 | if (IsNonVP) |
11674 | LHS = DAG.getNode(Opcode: Opc, DL: dl, VT, N1: SetCC1, N2: SetCC2); |
11675 | else { |
11676 | // Transform the binary opcode to the VP equivalent. |
11677 | assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode" ); |
11678 | Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; |
11679 | LHS = DAG.getNode(Opcode: Opc, DL: dl, VT, N1: SetCC1, N2: SetCC2, N3: Mask, N4: EVL); |
11680 | } |
11681 | RHS = SDValue(); |
11682 | CC = SDValue(); |
11683 | return true; |
11684 | } |
11685 | } |
11686 | return false; |
11687 | } |
11688 | |