1 | //===- StackColoring.cpp --------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass implements the stack-coloring optimization that looks for |
10 | // lifetime markers machine instructions (LIFETIME_START and LIFETIME_END), |
11 | // which represent the possible lifetime of stack slots. It attempts to |
12 | // merge disjoint stack slots and reduce the used stack space. |
13 | // NOTE: This pass is not StackSlotColoring, which optimizes spill slots. |
14 | // |
15 | // TODO: In the future we plan to improve stack coloring in the following ways: |
16 | // 1. Allow merging multiple small slots into a single larger slot at different |
17 | // offsets. |
18 | // 2. Merge this pass with StackSlotColoring and allow merging of allocas with |
19 | // spill slots. |
20 | // |
21 | //===----------------------------------------------------------------------===// |
22 | |
23 | #include "llvm/ADT/BitVector.h" |
24 | #include "llvm/ADT/DenseMap.h" |
25 | #include "llvm/ADT/DepthFirstIterator.h" |
26 | #include "llvm/ADT/SmallPtrSet.h" |
27 | #include "llvm/ADT/SmallVector.h" |
28 | #include "llvm/ADT/Statistic.h" |
29 | #include "llvm/Analysis/ValueTracking.h" |
30 | #include "llvm/CodeGen/LiveInterval.h" |
31 | #include "llvm/CodeGen/MachineBasicBlock.h" |
32 | #include "llvm/CodeGen/MachineFrameInfo.h" |
33 | #include "llvm/CodeGen/MachineFunction.h" |
34 | #include "llvm/CodeGen/MachineFunctionPass.h" |
35 | #include "llvm/CodeGen/MachineInstr.h" |
36 | #include "llvm/CodeGen/MachineMemOperand.h" |
37 | #include "llvm/CodeGen/MachineOperand.h" |
38 | #include "llvm/CodeGen/Passes.h" |
39 | #include "llvm/CodeGen/PseudoSourceValueManager.h" |
40 | #include "llvm/CodeGen/SlotIndexes.h" |
41 | #include "llvm/CodeGen/TargetOpcodes.h" |
42 | #include "llvm/CodeGen/WinEHFuncInfo.h" |
43 | #include "llvm/Config/llvm-config.h" |
44 | #include "llvm/IR/Constants.h" |
45 | #include "llvm/IR/DebugInfoMetadata.h" |
46 | #include "llvm/IR/Instructions.h" |
47 | #include "llvm/IR/Metadata.h" |
48 | #include "llvm/IR/Use.h" |
49 | #include "llvm/IR/Value.h" |
50 | #include "llvm/InitializePasses.h" |
51 | #include "llvm/Pass.h" |
52 | #include "llvm/Support/Casting.h" |
53 | #include "llvm/Support/CommandLine.h" |
54 | #include "llvm/Support/Compiler.h" |
55 | #include "llvm/Support/Debug.h" |
56 | #include "llvm/Support/raw_ostream.h" |
57 | #include <algorithm> |
58 | #include <cassert> |
59 | #include <limits> |
60 | #include <memory> |
61 | #include <utility> |
62 | |
63 | using namespace llvm; |
64 | |
65 | #define DEBUG_TYPE "stack-coloring" |
66 | |
67 | static cl::opt<bool> |
68 | DisableColoring("no-stack-coloring" , |
69 | cl::init(Val: false), cl::Hidden, |
70 | cl::desc("Disable stack coloring" )); |
71 | |
72 | /// The user may write code that uses allocas outside of the declared lifetime |
73 | /// zone. This can happen when the user returns a reference to a local |
74 | /// data-structure. We can detect these cases and decide not to optimize the |
75 | /// code. If this flag is enabled, we try to save the user. This option |
76 | /// is treated as overriding LifetimeStartOnFirstUse below. |
77 | static cl::opt<bool> |
78 | ProtectFromEscapedAllocas("protect-from-escaped-allocas" , |
79 | cl::init(Val: false), cl::Hidden, |
80 | cl::desc("Do not optimize lifetime zones that " |
81 | "are broken" )); |
82 | |
83 | /// Enable enhanced dataflow scheme for lifetime analysis (treat first |
84 | /// use of stack slot as start of slot lifetime, as opposed to looking |
85 | /// for LIFETIME_START marker). See "Implementation notes" below for |
86 | /// more info. |
87 | static cl::opt<bool> |
88 | LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use" , |
89 | cl::init(Val: true), cl::Hidden, |
90 | cl::desc("Treat stack lifetimes as starting on first use, not on START marker." )); |
91 | |
92 | |
93 | STATISTIC(NumMarkerSeen, "Number of lifetime markers found." ); |
94 | STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots." ); |
95 | STATISTIC(StackSlotMerged, "Number of stack slot merged." ); |
96 | STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region" ); |
97 | |
98 | //===----------------------------------------------------------------------===// |
99 | // StackColoring Pass |
100 | //===----------------------------------------------------------------------===// |
101 | // |
102 | // Stack Coloring reduces stack usage by merging stack slots when they |
103 | // can't be used together. For example, consider the following C program: |
104 | // |
105 | // void bar(char *, int); |
106 | // void foo(bool var) { |
107 | // A: { |
108 | // char z[4096]; |
109 | // bar(z, 0); |
110 | // } |
111 | // |
112 | // char *p; |
113 | // char x[4096]; |
114 | // char y[4096]; |
115 | // if (var) { |
116 | // p = x; |
117 | // } else { |
118 | // bar(y, 1); |
119 | // p = y + 1024; |
120 | // } |
121 | // B: |
122 | // bar(p, 2); |
123 | // } |
124 | // |
125 | // Naively-compiled, this program would use 12k of stack space. However, the |
126 | // stack slot corresponding to `z` is always destroyed before either of the |
127 | // stack slots for `x` or `y` are used, and then `x` is only used if `var` |
128 | // is true, while `y` is only used if `var` is false. So in no time are 2 |
129 | // of the stack slots used together, and therefore we can merge them, |
130 | // compiling the function using only a single 4k alloca: |
131 | // |
132 | // void foo(bool var) { // equivalent |
133 | // char x[4096]; |
134 | // char *p; |
135 | // bar(x, 0); |
136 | // if (var) { |
137 | // p = x; |
138 | // } else { |
139 | // bar(x, 1); |
140 | // p = x + 1024; |
141 | // } |
142 | // bar(p, 2); |
143 | // } |
144 | // |
145 | // This is an important optimization if we want stack space to be under |
146 | // control in large functions, both open-coded ones and ones created by |
147 | // inlining. |
148 | // |
149 | // Implementation Notes: |
150 | // --------------------- |
151 | // |
152 | // An important part of the above reasoning is that `z` can't be accessed |
153 | // while the latter 2 calls to `bar` are running. This is justified because |
154 | // `z`'s lifetime is over after we exit from block `A:`, so any further |
155 | // accesses to it would be UB. The way we represent this information |
156 | // in LLVM is by having frontends delimit blocks with `lifetime.start` |
157 | // and `lifetime.end` intrinsics. |
158 | // |
159 | // The effect of these intrinsics seems to be as follows (maybe I should |
160 | // specify this in the reference?): |
161 | // |
162 | // L1) at start, each stack-slot is marked as *out-of-scope*, unless no |
163 | // lifetime intrinsic refers to that stack slot, in which case |
164 | // it is marked as *in-scope*. |
165 | // L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and |
166 | // the stack slot is overwritten with `undef`. |
167 | // L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*. |
168 | // L4) on function exit, all stack slots are marked as *out-of-scope*. |
169 | // L5) `lifetime.end` is a no-op when called on a slot that is already |
170 | // *out-of-scope*. |
171 | // L6) memory accesses to *out-of-scope* stack slots are UB. |
172 | // L7) when a stack-slot is marked as *out-of-scope*, all pointers to it |
173 | // are invalidated, unless the slot is "degenerate". This is used to |
174 | // justify not marking slots as in-use until the pointer to them is |
175 | // used, but feels a bit hacky in the presence of things like LICM. See |
176 | // the "Degenerate Slots" section for more details. |
177 | // |
178 | // Now, let's ground stack coloring on these rules. We'll define a slot |
179 | // as *in-use* at a (dynamic) point in execution if it either can be |
180 | // written to at that point, or if it has a live and non-undef content |
181 | // at that point. |
182 | // |
183 | // Obviously, slots that are never *in-use* together can be merged, and |
184 | // in our example `foo`, the slots for `x`, `y` and `z` are never |
185 | // in-use together (of course, sometimes slots that *are* in-use together |
186 | // might still be mergable, but we don't care about that here). |
187 | // |
188 | // In this implementation, we successively merge pairs of slots that are |
189 | // not *in-use* together. We could be smarter - for example, we could merge |
190 | // a single large slot with 2 small slots, or we could construct the |
191 | // interference graph and run a "smart" graph coloring algorithm, but with |
192 | // that aside, how do we find out whether a pair of slots might be *in-use* |
193 | // together? |
194 | // |
195 | // From our rules, we see that *out-of-scope* slots are never *in-use*, |
196 | // and from (L7) we see that "non-degenerate" slots remain non-*in-use* |
197 | // until their address is taken. Therefore, we can approximate slot activity |
198 | // using dataflow. |
199 | // |
200 | // A subtle point: naively, we might try to figure out which pairs of |
201 | // stack-slots interfere by propagating `S in-use` through the CFG for every |
202 | // stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in |
203 | // which they are both *in-use*. |
204 | // |
205 | // That is sound, but overly conservative in some cases: in our (artificial) |
206 | // example `foo`, either `x` or `y` might be in use at the label `B:`, but |
207 | // as `x` is only in use if we came in from the `var` edge and `y` only |
208 | // if we came from the `!var` edge, they still can't be in use together. |
209 | // See PR32488 for an important real-life case. |
210 | // |
211 | // If we wanted to find all points of interference precisely, we could |
212 | // propagate `S in-use` and `S&T in-use` predicates through the CFG. That |
213 | // would be precise, but requires propagating `O(n^2)` dataflow facts. |
214 | // |
215 | // However, we aren't interested in the *set* of points of interference |
216 | // between 2 stack slots, only *whether* there *is* such a point. So we |
217 | // can rely on a little trick: for `S` and `T` to be in-use together, |
218 | // one of them needs to become in-use while the other is in-use (or |
219 | // they might both become in use simultaneously). We can check this |
220 | // by also keeping track of the points at which a stack slot might *start* |
221 | // being in-use. |
222 | // |
223 | // Exact first use: |
224 | // ---------------- |
225 | // |
226 | // Consider the following motivating example: |
227 | // |
228 | // int foo() { |
229 | // char b1[1024], b2[1024]; |
230 | // if (...) { |
231 | // char b3[1024]; |
232 | // <uses of b1, b3>; |
233 | // return x; |
234 | // } else { |
235 | // char b4[1024], b5[1024]; |
236 | // <uses of b2, b4, b5>; |
237 | // return y; |
238 | // } |
239 | // } |
240 | // |
241 | // In the code above, "b3" and "b4" are declared in distinct lexical |
242 | // scopes, meaning that it is easy to prove that they can share the |
243 | // same stack slot. Variables "b1" and "b2" are declared in the same |
244 | // scope, meaning that from a lexical point of view, their lifetimes |
245 | // overlap. From a control flow pointer of view, however, the two |
246 | // variables are accessed in disjoint regions of the CFG, thus it |
247 | // should be possible for them to share the same stack slot. An ideal |
248 | // stack allocation for the function above would look like: |
249 | // |
250 | // slot 0: b1, b2 |
251 | // slot 1: b3, b4 |
252 | // slot 2: b5 |
253 | // |
254 | // Achieving this allocation is tricky, however, due to the way |
255 | // lifetime markers are inserted. Here is a simplified view of the |
256 | // control flow graph for the code above: |
257 | // |
258 | // +------ block 0 -------+ |
259 | // 0| LIFETIME_START b1, b2 | |
260 | // 1| <test 'if' condition> | |
261 | // +-----------------------+ |
262 | // ./ \. |
263 | // +------ block 1 -------+ +------ block 2 -------+ |
264 | // 2| LIFETIME_START b3 | 5| LIFETIME_START b4, b5 | |
265 | // 3| <uses of b1, b3> | 6| <uses of b2, b4, b5> | |
266 | // 4| LIFETIME_END b3 | 7| LIFETIME_END b4, b5 | |
267 | // +-----------------------+ +-----------------------+ |
268 | // \. /. |
269 | // +------ block 3 -------+ |
270 | // 8| <cleanupcode> | |
271 | // 9| LIFETIME_END b1, b2 | |
272 | // 10| return | |
273 | // +-----------------------+ |
274 | // |
275 | // If we create live intervals for the variables above strictly based |
276 | // on the lifetime markers, we'll get the set of intervals on the |
277 | // left. If we ignore the lifetime start markers and instead treat a |
278 | // variable's lifetime as beginning with the first reference to the |
279 | // var, then we get the intervals on the right. |
280 | // |
281 | // LIFETIME_START First Use |
282 | // b1: [0,9] [3,4] [8,9] |
283 | // b2: [0,9] [6,9] |
284 | // b3: [2,4] [3,4] |
285 | // b4: [5,7] [6,7] |
286 | // b5: [5,7] [6,7] |
287 | // |
288 | // For the intervals on the left, the best we can do is overlap two |
289 | // variables (b3 and b4, for example); this gives us a stack size of |
290 | // 4*1024 bytes, not ideal. When treating first-use as the start of a |
291 | // lifetime, we can additionally overlap b1 and b5, giving us a 3*1024 |
292 | // byte stack (better). |
293 | // |
294 | // Degenerate Slots: |
295 | // ----------------- |
296 | // |
297 | // Relying entirely on first-use of stack slots is problematic, |
298 | // however, due to the fact that optimizations can sometimes migrate |
299 | // uses of a variable outside of its lifetime start/end region. Here |
300 | // is an example: |
301 | // |
302 | // int bar() { |
303 | // char b1[1024], b2[1024]; |
304 | // if (...) { |
305 | // <uses of b2> |
306 | // return y; |
307 | // } else { |
308 | // <uses of b1> |
309 | // while (...) { |
310 | // char b3[1024]; |
311 | // <uses of b3> |
312 | // } |
313 | // } |
314 | // } |
315 | // |
316 | // Before optimization, the control flow graph for the code above |
317 | // might look like the following: |
318 | // |
319 | // +------ block 0 -------+ |
320 | // 0| LIFETIME_START b1, b2 | |
321 | // 1| <test 'if' condition> | |
322 | // +-----------------------+ |
323 | // ./ \. |
324 | // +------ block 1 -------+ +------- block 2 -------+ |
325 | // 2| <uses of b2> | 3| <uses of b1> | |
326 | // +-----------------------+ +-----------------------+ |
327 | // | | |
328 | // | +------- block 3 -------+ <-\. |
329 | // | 4| <while condition> | | |
330 | // | +-----------------------+ | |
331 | // | / | | |
332 | // | / +------- block 4 -------+ |
333 | // \ / 5| LIFETIME_START b3 | | |
334 | // \ / 6| <uses of b3> | | |
335 | // \ / 7| LIFETIME_END b3 | | |
336 | // \ | +------------------------+ | |
337 | // \ | \ / |
338 | // +------ block 5 -----+ \--------------- |
339 | // 8| <cleanupcode> | |
340 | // 9| LIFETIME_END b1, b2 | |
341 | // 10| return | |
342 | // +---------------------+ |
343 | // |
344 | // During optimization, however, it can happen that an instruction |
345 | // computing an address in "b3" (for example, a loop-invariant GEP) is |
346 | // hoisted up out of the loop from block 4 to block 2. [Note that |
347 | // this is not an actual load from the stack, only an instruction that |
348 | // computes the address to be loaded]. If this happens, there is now a |
349 | // path leading from the first use of b3 to the return instruction |
350 | // that does not encounter the b3 LIFETIME_END, hence b3's lifetime is |
351 | // now larger than if we were computing live intervals strictly based |
352 | // on lifetime markers. In the example above, this lengthened lifetime |
353 | // would mean that it would appear illegal to overlap b3 with b2. |
354 | // |
355 | // To deal with this such cases, the code in ::collectMarkers() below |
356 | // tries to identify "degenerate" slots -- those slots where on a single |
357 | // forward pass through the CFG we encounter a first reference to slot |
358 | // K before we hit the slot K lifetime start marker. For such slots, |
359 | // we fall back on using the lifetime start marker as the beginning of |
360 | // the variable's lifetime. NB: with this implementation, slots can |
361 | // appear degenerate in cases where there is unstructured control flow: |
362 | // |
363 | // if (q) goto mid; |
364 | // if (x > 9) { |
365 | // int b[100]; |
366 | // memcpy(&b[0], ...); |
367 | // mid: b[k] = ...; |
368 | // abc(&b); |
369 | // } |
370 | // |
371 | // If in RPO ordering chosen to walk the CFG we happen to visit the b[k] |
372 | // before visiting the memcpy block (which will contain the lifetime start |
373 | // for "b" then it will appear that 'b' has a degenerate lifetime. |
374 | |
375 | namespace { |
376 | |
377 | /// StackColoring - A machine pass for merging disjoint stack allocations, |
378 | /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions. |
379 | class StackColoring : public MachineFunctionPass { |
380 | MachineFrameInfo *MFI = nullptr; |
381 | MachineFunction *MF = nullptr; |
382 | |
383 | /// A class representing liveness information for a single basic block. |
384 | /// Each bit in the BitVector represents the liveness property |
385 | /// for a different stack slot. |
386 | struct BlockLifetimeInfo { |
387 | /// Which slots BEGINs in each basic block. |
388 | BitVector Begin; |
389 | |
390 | /// Which slots ENDs in each basic block. |
391 | BitVector End; |
392 | |
393 | /// Which slots are marked as LIVE_IN, coming into each basic block. |
394 | BitVector LiveIn; |
395 | |
396 | /// Which slots are marked as LIVE_OUT, coming out of each basic block. |
397 | BitVector LiveOut; |
398 | }; |
399 | |
400 | /// Maps active slots (per bit) for each basic block. |
401 | using LivenessMap = DenseMap<const MachineBasicBlock *, BlockLifetimeInfo>; |
402 | LivenessMap BlockLiveness; |
403 | |
404 | /// Maps serial numbers to basic blocks. |
405 | DenseMap<const MachineBasicBlock *, int> BasicBlocks; |
406 | |
407 | /// Maps basic blocks to a serial number. |
408 | SmallVector<const MachineBasicBlock *, 8> BasicBlockNumbering; |
409 | |
410 | /// Maps slots to their use interval. Outside of this interval, slots |
411 | /// values are either dead or `undef` and they will not be written to. |
412 | SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals; |
413 | |
414 | /// Maps slots to the points where they can become in-use. |
415 | SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts; |
416 | |
417 | /// VNInfo is used for the construction of LiveIntervals. |
418 | VNInfo::Allocator VNInfoAllocator; |
419 | |
420 | /// SlotIndex analysis object. |
421 | SlotIndexes *Indexes = nullptr; |
422 | |
423 | /// The list of lifetime markers found. These markers are to be removed |
424 | /// once the coloring is done. |
425 | SmallVector<MachineInstr*, 8> Markers; |
426 | |
427 | /// Record the FI slots for which we have seen some sort of |
428 | /// lifetime marker (either start or end). |
429 | BitVector InterestingSlots; |
430 | |
431 | /// FI slots that need to be handled conservatively (for these |
432 | /// slots lifetime-start-on-first-use is disabled). |
433 | BitVector ConservativeSlots; |
434 | |
435 | /// Number of iterations taken during data flow analysis. |
436 | unsigned NumIterations; |
437 | |
438 | public: |
439 | static char ID; |
440 | |
441 | StackColoring() : MachineFunctionPass(ID) { |
442 | initializeStackColoringPass(*PassRegistry::getPassRegistry()); |
443 | } |
444 | |
445 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
446 | bool runOnMachineFunction(MachineFunction &Func) override; |
447 | |
448 | private: |
449 | /// Used in collectMarkers |
450 | using BlockBitVecMap = DenseMap<const MachineBasicBlock *, BitVector>; |
451 | |
452 | /// Debug. |
453 | void dump() const; |
454 | void dumpIntervals() const; |
455 | void dumpBB(MachineBasicBlock *MBB) const; |
456 | void dumpBV(const char *tag, const BitVector &BV) const; |
457 | |
458 | /// Removes all of the lifetime marker instructions from the function. |
459 | /// \returns true if any markers were removed. |
460 | bool removeAllMarkers(); |
461 | |
462 | /// Scan the machine function and find all of the lifetime markers. |
463 | /// Record the findings in the BEGIN and END vectors. |
464 | /// \returns the number of markers found. |
465 | unsigned collectMarkers(unsigned NumSlot); |
466 | |
467 | /// Perform the dataflow calculation and calculate the lifetime for each of |
468 | /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and |
469 | /// LifetimeLIVE_OUT maps that represent which stack slots are live coming |
470 | /// in and out blocks. |
471 | void calculateLocalLiveness(); |
472 | |
473 | /// Returns TRUE if we're using the first-use-begins-lifetime method for |
474 | /// this slot (if FALSE, then the start marker is treated as start of lifetime). |
475 | bool applyFirstUse(int Slot) { |
476 | if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas) |
477 | return false; |
478 | if (ConservativeSlots.test(Idx: Slot)) |
479 | return false; |
480 | return true; |
481 | } |
482 | |
483 | /// Examines the specified instruction and returns TRUE if the instruction |
484 | /// represents the start or end of an interesting lifetime. The slot or slots |
485 | /// starting or ending are added to the vector "slots" and "isStart" is set |
486 | /// accordingly. |
487 | /// \returns True if inst contains a lifetime start or end |
488 | bool isLifetimeStartOrEnd(const MachineInstr &MI, |
489 | SmallVector<int, 4> &slots, |
490 | bool &isStart); |
491 | |
492 | /// Construct the LiveIntervals for the slots. |
493 | void calculateLiveIntervals(unsigned NumSlots); |
494 | |
495 | /// Go over the machine function and change instructions which use stack |
496 | /// slots to use the joint slots. |
497 | void remapInstructions(DenseMap<int, int> &SlotRemap); |
498 | |
499 | /// The input program may contain instructions which are not inside lifetime |
500 | /// markers. This can happen due to a bug in the compiler or due to a bug in |
501 | /// user code (for example, returning a reference to a local variable). |
502 | /// This procedure checks all of the instructions in the function and |
503 | /// invalidates lifetime ranges which do not contain all of the instructions |
504 | /// which access that frame slot. |
505 | void removeInvalidSlotRanges(); |
506 | |
507 | /// Map entries which point to other entries to their destination. |
508 | /// A->B->C becomes A->C. |
509 | void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots); |
510 | }; |
511 | |
512 | } // end anonymous namespace |
513 | |
514 | char StackColoring::ID = 0; |
515 | |
516 | char &llvm::StackColoringID = StackColoring::ID; |
517 | |
518 | INITIALIZE_PASS_BEGIN(StackColoring, DEBUG_TYPE, |
519 | "Merge disjoint stack slots" , false, false) |
520 | INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) |
521 | INITIALIZE_PASS_END(StackColoring, DEBUG_TYPE, |
522 | "Merge disjoint stack slots" , false, false) |
523 | |
524 | void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const { |
525 | AU.addRequired<SlotIndexesWrapperPass>(); |
526 | MachineFunctionPass::getAnalysisUsage(AU); |
527 | } |
528 | |
529 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
530 | LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag, |
531 | const BitVector &BV) const { |
532 | dbgs() << tag << " : { " ; |
533 | for (unsigned I = 0, E = BV.size(); I != E; ++I) |
534 | dbgs() << BV.test(I) << " " ; |
535 | dbgs() << "}\n" ; |
536 | } |
537 | |
538 | LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const { |
539 | LivenessMap::const_iterator BI = BlockLiveness.find(MBB); |
540 | assert(BI != BlockLiveness.end() && "Block not found" ); |
541 | const BlockLifetimeInfo &BlockInfo = BI->second; |
542 | |
543 | dumpBV("BEGIN" , BlockInfo.Begin); |
544 | dumpBV("END" , BlockInfo.End); |
545 | dumpBV("LIVE_IN" , BlockInfo.LiveIn); |
546 | dumpBV("LIVE_OUT" , BlockInfo.LiveOut); |
547 | } |
548 | |
549 | LLVM_DUMP_METHOD void StackColoring::dump() const { |
550 | for (MachineBasicBlock *MBB : depth_first(MF)) { |
551 | dbgs() << "Inspecting block #" << MBB->getNumber() << " [" |
552 | << MBB->getName() << "]\n" ; |
553 | dumpBB(MBB); |
554 | } |
555 | } |
556 | |
557 | LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const { |
558 | for (unsigned I = 0, E = Intervals.size(); I != E; ++I) { |
559 | dbgs() << "Interval[" << I << "]:\n" ; |
560 | Intervals[I]->dump(); |
561 | } |
562 | } |
563 | #endif |
564 | |
565 | static inline int getStartOrEndSlot(const MachineInstr &MI) |
566 | { |
567 | assert((MI.getOpcode() == TargetOpcode::LIFETIME_START || |
568 | MI.getOpcode() == TargetOpcode::LIFETIME_END) && |
569 | "Expected LIFETIME_START or LIFETIME_END op" ); |
570 | const MachineOperand &MO = MI.getOperand(i: 0); |
571 | int Slot = MO.getIndex(); |
572 | if (Slot >= 0) |
573 | return Slot; |
574 | return -1; |
575 | } |
576 | |
577 | // At the moment the only way to end a variable lifetime is with |
578 | // a VARIABLE_LIFETIME op (which can't contain a start). If things |
579 | // change and the IR allows for a single inst that both begins |
580 | // and ends lifetime(s), this interface will need to be reworked. |
581 | bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI, |
582 | SmallVector<int, 4> &slots, |
583 | bool &isStart) { |
584 | if (MI.getOpcode() == TargetOpcode::LIFETIME_START || |
585 | MI.getOpcode() == TargetOpcode::LIFETIME_END) { |
586 | int Slot = getStartOrEndSlot(MI); |
587 | if (Slot < 0) |
588 | return false; |
589 | if (!InterestingSlots.test(Idx: Slot)) |
590 | return false; |
591 | slots.push_back(Elt: Slot); |
592 | if (MI.getOpcode() == TargetOpcode::LIFETIME_END) { |
593 | isStart = false; |
594 | return true; |
595 | } |
596 | if (!applyFirstUse(Slot)) { |
597 | isStart = true; |
598 | return true; |
599 | } |
600 | } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) { |
601 | if (!MI.isDebugInstr()) { |
602 | bool found = false; |
603 | for (const MachineOperand &MO : MI.operands()) { |
604 | if (!MO.isFI()) |
605 | continue; |
606 | int Slot = MO.getIndex(); |
607 | if (Slot<0) |
608 | continue; |
609 | if (InterestingSlots.test(Idx: Slot) && applyFirstUse(Slot)) { |
610 | slots.push_back(Elt: Slot); |
611 | found = true; |
612 | } |
613 | } |
614 | if (found) { |
615 | isStart = true; |
616 | return true; |
617 | } |
618 | } |
619 | } |
620 | return false; |
621 | } |
622 | |
623 | unsigned StackColoring::collectMarkers(unsigned NumSlot) { |
624 | unsigned MarkersFound = 0; |
625 | BlockBitVecMap SeenStartMap; |
626 | InterestingSlots.clear(); |
627 | InterestingSlots.resize(N: NumSlot); |
628 | ConservativeSlots.clear(); |
629 | ConservativeSlots.resize(N: NumSlot); |
630 | |
631 | // number of start and end lifetime ops for each slot |
632 | SmallVector<int, 8> NumStartLifetimes(NumSlot, 0); |
633 | SmallVector<int, 8> NumEndLifetimes(NumSlot, 0); |
634 | |
635 | // Step 1: collect markers and populate the "InterestingSlots" |
636 | // and "ConservativeSlots" sets. |
637 | for (MachineBasicBlock *MBB : depth_first(G: MF)) { |
638 | // Compute the set of slots for which we've seen a START marker but have |
639 | // not yet seen an END marker at this point in the walk (e.g. on entry |
640 | // to this bb). |
641 | BitVector BetweenStartEnd; |
642 | BetweenStartEnd.resize(N: NumSlot); |
643 | for (const MachineBasicBlock *Pred : MBB->predecessors()) { |
644 | BlockBitVecMap::const_iterator I = SeenStartMap.find(Val: Pred); |
645 | if (I != SeenStartMap.end()) { |
646 | BetweenStartEnd |= I->second; |
647 | } |
648 | } |
649 | |
650 | // Walk the instructions in the block to look for start/end ops. |
651 | for (MachineInstr &MI : *MBB) { |
652 | if (MI.isDebugInstr()) |
653 | continue; |
654 | if (MI.getOpcode() == TargetOpcode::LIFETIME_START || |
655 | MI.getOpcode() == TargetOpcode::LIFETIME_END) { |
656 | int Slot = getStartOrEndSlot(MI); |
657 | if (Slot < 0) |
658 | continue; |
659 | InterestingSlots.set(Slot); |
660 | if (MI.getOpcode() == TargetOpcode::LIFETIME_START) { |
661 | BetweenStartEnd.set(Slot); |
662 | NumStartLifetimes[Slot] += 1; |
663 | } else { |
664 | BetweenStartEnd.reset(Idx: Slot); |
665 | NumEndLifetimes[Slot] += 1; |
666 | } |
667 | const AllocaInst *Allocation = MFI->getObjectAllocation(ObjectIdx: Slot); |
668 | if (Allocation) { |
669 | LLVM_DEBUG(dbgs() << "Found a lifetime " ); |
670 | LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START |
671 | ? "start" |
672 | : "end" )); |
673 | LLVM_DEBUG(dbgs() << " marker for slot #" << Slot); |
674 | LLVM_DEBUG(dbgs() |
675 | << " with allocation: " << Allocation->getName() << "\n" ); |
676 | } |
677 | Markers.push_back(Elt: &MI); |
678 | MarkersFound += 1; |
679 | } else { |
680 | for (const MachineOperand &MO : MI.operands()) { |
681 | if (!MO.isFI()) |
682 | continue; |
683 | int Slot = MO.getIndex(); |
684 | if (Slot < 0) |
685 | continue; |
686 | if (! BetweenStartEnd.test(Idx: Slot)) { |
687 | ConservativeSlots.set(Slot); |
688 | } |
689 | } |
690 | } |
691 | } |
692 | BitVector &SeenStart = SeenStartMap[MBB]; |
693 | SeenStart |= BetweenStartEnd; |
694 | } |
695 | if (!MarkersFound) { |
696 | return 0; |
697 | } |
698 | |
699 | // PR27903: slots with multiple start or end lifetime ops are not |
700 | // safe to enable for "lifetime-start-on-first-use". |
701 | for (unsigned slot = 0; slot < NumSlot; ++slot) { |
702 | if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1) |
703 | ConservativeSlots.set(slot); |
704 | } |
705 | |
706 | // The write to the catch object by the personality function is not propely |
707 | // modeled in IR: It happens before any cleanuppads are executed, even if the |
708 | // first mention of the catch object is in a catchpad. As such, mark catch |
709 | // object slots as conservative, so they are excluded from first-use analysis. |
710 | if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo()) |
711 | for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap) |
712 | for (WinEHHandlerType &H : TBME.HandlerArray) |
713 | if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() && |
714 | H.CatchObj.FrameIndex >= 0) |
715 | ConservativeSlots.set(H.CatchObj.FrameIndex); |
716 | |
717 | LLVM_DEBUG(dumpBV("Conservative slots" , ConservativeSlots)); |
718 | |
719 | // Step 2: compute begin/end sets for each block |
720 | |
721 | // NOTE: We use a depth-first iteration to ensure that we obtain a |
722 | // deterministic numbering. |
723 | for (MachineBasicBlock *MBB : depth_first(G: MF)) { |
724 | // Assign a serial number to this basic block. |
725 | BasicBlocks[MBB] = BasicBlockNumbering.size(); |
726 | BasicBlockNumbering.push_back(Elt: MBB); |
727 | |
728 | // Keep a reference to avoid repeated lookups. |
729 | BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB]; |
730 | |
731 | BlockInfo.Begin.resize(N: NumSlot); |
732 | BlockInfo.End.resize(N: NumSlot); |
733 | |
734 | SmallVector<int, 4> slots; |
735 | for (MachineInstr &MI : *MBB) { |
736 | bool isStart = false; |
737 | slots.clear(); |
738 | if (isLifetimeStartOrEnd(MI, slots, isStart)) { |
739 | if (!isStart) { |
740 | assert(slots.size() == 1 && "unexpected: MI ends multiple slots" ); |
741 | int Slot = slots[0]; |
742 | if (BlockInfo.Begin.test(Idx: Slot)) { |
743 | BlockInfo.Begin.reset(Idx: Slot); |
744 | } |
745 | BlockInfo.End.set(Slot); |
746 | } else { |
747 | for (auto Slot : slots) { |
748 | LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot); |
749 | LLVM_DEBUG(dbgs() |
750 | << " at " << printMBBReference(*MBB) << " index " ); |
751 | LLVM_DEBUG(Indexes->getInstructionIndex(MI).print(dbgs())); |
752 | const AllocaInst *Allocation = MFI->getObjectAllocation(ObjectIdx: Slot); |
753 | if (Allocation) { |
754 | LLVM_DEBUG(dbgs() |
755 | << " with allocation: " << Allocation->getName()); |
756 | } |
757 | LLVM_DEBUG(dbgs() << "\n" ); |
758 | if (BlockInfo.End.test(Idx: Slot)) { |
759 | BlockInfo.End.reset(Idx: Slot); |
760 | } |
761 | BlockInfo.Begin.set(Slot); |
762 | } |
763 | } |
764 | } |
765 | } |
766 | } |
767 | |
768 | // Update statistics. |
769 | NumMarkerSeen += MarkersFound; |
770 | return MarkersFound; |
771 | } |
772 | |
773 | void StackColoring::calculateLocalLiveness() { |
774 | unsigned NumIters = 0; |
775 | bool changed = true; |
776 | // Create BitVector outside the loop and reuse them to avoid repeated heap |
777 | // allocations. |
778 | BitVector LocalLiveIn; |
779 | BitVector LocalLiveOut; |
780 | while (changed) { |
781 | changed = false; |
782 | ++NumIters; |
783 | |
784 | for (const MachineBasicBlock *BB : BasicBlockNumbering) { |
785 | // Use an iterator to avoid repeated lookups. |
786 | LivenessMap::iterator BI = BlockLiveness.find(Val: BB); |
787 | assert(BI != BlockLiveness.end() && "Block not found" ); |
788 | BlockLifetimeInfo &BlockInfo = BI->second; |
789 | |
790 | // Compute LiveIn by unioning together the LiveOut sets of all preds. |
791 | LocalLiveIn.clear(); |
792 | for (MachineBasicBlock *Pred : BB->predecessors()) { |
793 | LivenessMap::const_iterator I = BlockLiveness.find(Val: Pred); |
794 | // PR37130: transformations prior to stack coloring can |
795 | // sometimes leave behind statically unreachable blocks; these |
796 | // can be safely skipped here. |
797 | if (I != BlockLiveness.end()) |
798 | LocalLiveIn |= I->second.LiveOut; |
799 | } |
800 | |
801 | // Compute LiveOut by subtracting out lifetimes that end in this |
802 | // block, then adding in lifetimes that begin in this block. If |
803 | // we have both BEGIN and END markers in the same basic block |
804 | // then we know that the BEGIN marker comes after the END, |
805 | // because we already handle the case where the BEGIN comes |
806 | // before the END when collecting the markers (and building the |
807 | // BEGIN/END vectors). |
808 | LocalLiveOut = LocalLiveIn; |
809 | LocalLiveOut.reset(RHS: BlockInfo.End); |
810 | LocalLiveOut |= BlockInfo.Begin; |
811 | |
812 | // Update block LiveIn set, noting whether it has changed. |
813 | if (LocalLiveIn.test(RHS: BlockInfo.LiveIn)) { |
814 | changed = true; |
815 | BlockInfo.LiveIn |= LocalLiveIn; |
816 | } |
817 | |
818 | // Update block LiveOut set, noting whether it has changed. |
819 | if (LocalLiveOut.test(RHS: BlockInfo.LiveOut)) { |
820 | changed = true; |
821 | BlockInfo.LiveOut |= LocalLiveOut; |
822 | } |
823 | } |
824 | } // while changed. |
825 | |
826 | NumIterations = NumIters; |
827 | } |
828 | |
829 | void StackColoring::calculateLiveIntervals(unsigned NumSlots) { |
830 | SmallVector<SlotIndex, 16> Starts; |
831 | SmallVector<bool, 16> DefinitelyInUse; |
832 | |
833 | // For each block, find which slots are active within this block |
834 | // and update the live intervals. |
835 | for (const MachineBasicBlock &MBB : *MF) { |
836 | Starts.clear(); |
837 | Starts.resize(N: NumSlots); |
838 | DefinitelyInUse.clear(); |
839 | DefinitelyInUse.resize(N: NumSlots); |
840 | |
841 | // Start the interval of the slots that we previously found to be 'in-use'. |
842 | BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB]; |
843 | for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1; |
844 | pos = MBBLiveness.LiveIn.find_next(Prev: pos)) { |
845 | Starts[pos] = Indexes->getMBBStartIdx(mbb: &MBB); |
846 | } |
847 | |
848 | // Create the interval for the basic blocks containing lifetime begin/end. |
849 | for (const MachineInstr &MI : MBB) { |
850 | SmallVector<int, 4> slots; |
851 | bool IsStart = false; |
852 | if (!isLifetimeStartOrEnd(MI, slots, isStart&: IsStart)) |
853 | continue; |
854 | SlotIndex ThisIndex = Indexes->getInstructionIndex(MI); |
855 | for (auto Slot : slots) { |
856 | if (IsStart) { |
857 | // If a slot is already definitely in use, we don't have to emit |
858 | // a new start marker because there is already a pre-existing |
859 | // one. |
860 | if (!DefinitelyInUse[Slot]) { |
861 | LiveStarts[Slot].push_back(Elt: ThisIndex); |
862 | DefinitelyInUse[Slot] = true; |
863 | } |
864 | if (!Starts[Slot].isValid()) |
865 | Starts[Slot] = ThisIndex; |
866 | } else { |
867 | if (Starts[Slot].isValid()) { |
868 | VNInfo *VNI = Intervals[Slot]->getValNumInfo(ValNo: 0); |
869 | Intervals[Slot]->addSegment( |
870 | S: LiveInterval::Segment(Starts[Slot], ThisIndex, VNI)); |
871 | Starts[Slot] = SlotIndex(); // Invalidate the start index |
872 | DefinitelyInUse[Slot] = false; |
873 | } |
874 | } |
875 | } |
876 | } |
877 | |
878 | // Finish up started segments |
879 | for (unsigned i = 0; i < NumSlots; ++i) { |
880 | if (!Starts[i].isValid()) |
881 | continue; |
882 | |
883 | SlotIndex EndIdx = Indexes->getMBBEndIdx(mbb: &MBB); |
884 | VNInfo *VNI = Intervals[i]->getValNumInfo(ValNo: 0); |
885 | Intervals[i]->addSegment(S: LiveInterval::Segment(Starts[i], EndIdx, VNI)); |
886 | } |
887 | } |
888 | } |
889 | |
890 | bool StackColoring::removeAllMarkers() { |
891 | unsigned Count = 0; |
892 | for (MachineInstr *MI : Markers) { |
893 | MI->eraseFromParent(); |
894 | Count++; |
895 | } |
896 | Markers.clear(); |
897 | |
898 | LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n" ); |
899 | return Count; |
900 | } |
901 | |
902 | void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) { |
903 | unsigned FixedInstr = 0; |
904 | unsigned FixedMemOp = 0; |
905 | unsigned FixedDbg = 0; |
906 | |
907 | // Remap debug information that refers to stack slots. |
908 | for (auto &VI : MF->getVariableDbgInfo()) { |
909 | if (!VI.Var || !VI.inStackSlot()) |
910 | continue; |
911 | int Slot = VI.getStackSlot(); |
912 | if (SlotRemap.count(Val: Slot)) { |
913 | LLVM_DEBUG(dbgs() << "Remapping debug info for [" |
914 | << cast<DILocalVariable>(VI.Var)->getName() << "].\n" ); |
915 | VI.updateStackSlot(NewSlot: SlotRemap[Slot]); |
916 | FixedDbg++; |
917 | } |
918 | } |
919 | |
920 | // Keep a list of *allocas* which need to be remapped. |
921 | DenseMap<const AllocaInst*, const AllocaInst*> Allocas; |
922 | |
923 | // Keep a list of allocas which has been affected by the remap. |
924 | SmallPtrSet<const AllocaInst*, 32> MergedAllocas; |
925 | |
926 | for (const std::pair<int, int> &SI : SlotRemap) { |
927 | const AllocaInst *From = MFI->getObjectAllocation(ObjectIdx: SI.first); |
928 | const AllocaInst *To = MFI->getObjectAllocation(ObjectIdx: SI.second); |
929 | assert(To && From && "Invalid allocation object" ); |
930 | Allocas[From] = To; |
931 | |
932 | // If From is before wo, its possible that there is a use of From between |
933 | // them. |
934 | if (From->comesBefore(Other: To)) |
935 | const_cast<AllocaInst*>(To)->moveBefore(MovePos: const_cast<AllocaInst*>(From)); |
936 | |
937 | // AA might be used later for instruction scheduling, and we need it to be |
938 | // able to deduce the correct aliasing releationships between pointers |
939 | // derived from the alloca being remapped and the target of that remapping. |
940 | // The only safe way, without directly informing AA about the remapping |
941 | // somehow, is to directly update the IR to reflect the change being made |
942 | // here. |
943 | Instruction *Inst = const_cast<AllocaInst *>(To); |
944 | if (From->getType() != To->getType()) { |
945 | BitCastInst *Cast = new BitCastInst(Inst, From->getType()); |
946 | Cast->insertAfter(InsertPos: Inst); |
947 | Inst = Cast; |
948 | } |
949 | |
950 | // We keep both slots to maintain AliasAnalysis metadata later. |
951 | MergedAllocas.insert(Ptr: From); |
952 | MergedAllocas.insert(Ptr: To); |
953 | |
954 | // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf |
955 | // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure |
956 | // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray. |
957 | MachineFrameInfo::SSPLayoutKind FromKind |
958 | = MFI->getObjectSSPLayout(ObjectIdx: SI.first); |
959 | MachineFrameInfo::SSPLayoutKind ToKind = MFI->getObjectSSPLayout(ObjectIdx: SI.second); |
960 | if (FromKind != MachineFrameInfo::SSPLK_None && |
961 | (ToKind == MachineFrameInfo::SSPLK_None || |
962 | (ToKind != MachineFrameInfo::SSPLK_LargeArray && |
963 | FromKind != MachineFrameInfo::SSPLK_AddrOf))) |
964 | MFI->setObjectSSPLayout(ObjectIdx: SI.second, Kind: FromKind); |
965 | |
966 | // The new alloca might not be valid in a llvm.dbg.declare for this |
967 | // variable, so poison out the use to make the verifier happy. |
968 | AllocaInst *FromAI = const_cast<AllocaInst *>(From); |
969 | if (FromAI->isUsedByMetadata()) |
970 | ValueAsMetadata::handleRAUW(From: FromAI, To: PoisonValue::get(T: FromAI->getType())); |
971 | for (auto &Use : FromAI->uses()) { |
972 | if (BitCastInst *BCI = dyn_cast<BitCastInst>(Val: Use.get())) |
973 | if (BCI->isUsedByMetadata()) |
974 | ValueAsMetadata::handleRAUW(From: BCI, To: PoisonValue::get(T: BCI->getType())); |
975 | } |
976 | |
977 | // Note that this will not replace uses in MMOs (which we'll update below), |
978 | // or anywhere else (which is why we won't delete the original |
979 | // instruction). |
980 | FromAI->replaceAllUsesWith(V: Inst); |
981 | } |
982 | |
983 | // Remap all instructions to the new stack slots. |
984 | std::vector<std::vector<MachineMemOperand *>> SSRefs( |
985 | MFI->getObjectIndexEnd()); |
986 | for (MachineBasicBlock &BB : *MF) |
987 | for (MachineInstr &I : BB) { |
988 | // Skip lifetime markers. We'll remove them soon. |
989 | if (I.getOpcode() == TargetOpcode::LIFETIME_START || |
990 | I.getOpcode() == TargetOpcode::LIFETIME_END) |
991 | continue; |
992 | |
993 | // Update the MachineMemOperand to use the new alloca. |
994 | for (MachineMemOperand *MMO : I.memoperands()) { |
995 | // We've replaced IR-level uses of the remapped allocas, so we only |
996 | // need to replace direct uses here. |
997 | const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(Val: MMO->getValue()); |
998 | if (!AI) |
999 | continue; |
1000 | |
1001 | if (!Allocas.count(Val: AI)) |
1002 | continue; |
1003 | |
1004 | MMO->setValue(Allocas[AI]); |
1005 | FixedMemOp++; |
1006 | } |
1007 | |
1008 | // Update all of the machine instruction operands. |
1009 | for (MachineOperand &MO : I.operands()) { |
1010 | if (!MO.isFI()) |
1011 | continue; |
1012 | int FromSlot = MO.getIndex(); |
1013 | |
1014 | // Don't touch arguments. |
1015 | if (FromSlot<0) |
1016 | continue; |
1017 | |
1018 | // Only look at mapped slots. |
1019 | if (!SlotRemap.count(Val: FromSlot)) |
1020 | continue; |
1021 | |
1022 | // In a debug build, check that the instruction that we are modifying is |
1023 | // inside the expected live range. If the instruction is not inside |
1024 | // the calculated range then it means that the alloca usage moved |
1025 | // outside of the lifetime markers, or that the user has a bug. |
1026 | // NOTE: Alloca address calculations which happen outside the lifetime |
1027 | // zone are okay, despite the fact that we don't have a good way |
1028 | // for validating all of the usages of the calculation. |
1029 | #ifndef NDEBUG |
1030 | bool TouchesMemory = I.mayLoadOrStore(); |
1031 | // If we *don't* protect the user from escaped allocas, don't bother |
1032 | // validating the instructions. |
1033 | if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) { |
1034 | SlotIndex Index = Indexes->getInstructionIndex(I); |
1035 | const LiveInterval *Interval = &*Intervals[FromSlot]; |
1036 | assert(Interval->find(Index) != Interval->end() && |
1037 | "Found instruction usage outside of live range." ); |
1038 | } |
1039 | #endif |
1040 | |
1041 | // Fix the machine instructions. |
1042 | int ToSlot = SlotRemap[FromSlot]; |
1043 | MO.setIndex(ToSlot); |
1044 | FixedInstr++; |
1045 | } |
1046 | |
1047 | // We adjust AliasAnalysis information for merged stack slots. |
1048 | SmallVector<MachineMemOperand *, 2> NewMMOs; |
1049 | bool ReplaceMemOps = false; |
1050 | for (MachineMemOperand *MMO : I.memoperands()) { |
1051 | // Collect MachineMemOperands which reference |
1052 | // FixedStackPseudoSourceValues with old frame indices. |
1053 | if (const auto *FSV = dyn_cast_or_null<FixedStackPseudoSourceValue>( |
1054 | Val: MMO->getPseudoValue())) { |
1055 | int FI = FSV->getFrameIndex(); |
1056 | auto To = SlotRemap.find(Val: FI); |
1057 | if (To != SlotRemap.end()) |
1058 | SSRefs[FI].push_back(x: MMO); |
1059 | } |
1060 | |
1061 | // If this memory location can be a slot remapped here, |
1062 | // we remove AA information. |
1063 | bool MayHaveConflictingAAMD = false; |
1064 | if (MMO->getAAInfo()) { |
1065 | if (const Value *MMOV = MMO->getValue()) { |
1066 | SmallVector<Value *, 4> Objs; |
1067 | getUnderlyingObjectsForCodeGen(V: MMOV, Objects&: Objs); |
1068 | |
1069 | if (Objs.empty()) |
1070 | MayHaveConflictingAAMD = true; |
1071 | else |
1072 | for (Value *V : Objs) { |
1073 | // If this memory location comes from a known stack slot |
1074 | // that is not remapped, we continue checking. |
1075 | // Otherwise, we need to invalidate AA infomation. |
1076 | const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(Val: V); |
1077 | if (AI && MergedAllocas.count(Ptr: AI)) { |
1078 | MayHaveConflictingAAMD = true; |
1079 | break; |
1080 | } |
1081 | } |
1082 | } |
1083 | } |
1084 | if (MayHaveConflictingAAMD) { |
1085 | NewMMOs.push_back(Elt: MF->getMachineMemOperand(MMO, AAInfo: AAMDNodes())); |
1086 | ReplaceMemOps = true; |
1087 | } else { |
1088 | NewMMOs.push_back(Elt: MMO); |
1089 | } |
1090 | } |
1091 | |
1092 | // If any memory operand is updated, set memory references of |
1093 | // this instruction. |
1094 | if (ReplaceMemOps) |
1095 | I.setMemRefs(MF&: *MF, MemRefs: NewMMOs); |
1096 | } |
1097 | |
1098 | // Rewrite MachineMemOperands that reference old frame indices. |
1099 | for (auto E : enumerate(First&: SSRefs)) |
1100 | if (!E.value().empty()) { |
1101 | const PseudoSourceValue *NewSV = |
1102 | MF->getPSVManager().getFixedStack(FI: SlotRemap.find(Val: E.index())->second); |
1103 | for (MachineMemOperand *Ref : E.value()) |
1104 | Ref->setValue(NewSV); |
1105 | } |
1106 | |
1107 | // Update the location of C++ catch objects for the MSVC personality routine. |
1108 | if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo()) |
1109 | for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap) |
1110 | for (WinEHHandlerType &H : TBME.HandlerArray) |
1111 | if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() && |
1112 | SlotRemap.count(Val: H.CatchObj.FrameIndex)) |
1113 | H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex]; |
1114 | |
1115 | LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n" ); |
1116 | LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n" ); |
1117 | LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n" ); |
1118 | (void) FixedMemOp; |
1119 | (void) FixedDbg; |
1120 | (void) FixedInstr; |
1121 | } |
1122 | |
1123 | void StackColoring::removeInvalidSlotRanges() { |
1124 | for (MachineBasicBlock &BB : *MF) |
1125 | for (MachineInstr &I : BB) { |
1126 | if (I.getOpcode() == TargetOpcode::LIFETIME_START || |
1127 | I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr()) |
1128 | continue; |
1129 | |
1130 | // Some intervals are suspicious! In some cases we find address |
1131 | // calculations outside of the lifetime zone, but not actual memory |
1132 | // read or write. Memory accesses outside of the lifetime zone are a clear |
1133 | // violation, but address calculations are okay. This can happen when |
1134 | // GEPs are hoisted outside of the lifetime zone. |
1135 | // So, in here we only check instructions which can read or write memory. |
1136 | if (!I.mayLoad() && !I.mayStore()) |
1137 | continue; |
1138 | |
1139 | // Check all of the machine operands. |
1140 | for (const MachineOperand &MO : I.operands()) { |
1141 | if (!MO.isFI()) |
1142 | continue; |
1143 | |
1144 | int Slot = MO.getIndex(); |
1145 | |
1146 | if (Slot<0) |
1147 | continue; |
1148 | |
1149 | if (Intervals[Slot]->empty()) |
1150 | continue; |
1151 | |
1152 | // Check that the used slot is inside the calculated lifetime range. |
1153 | // If it is not, warn about it and invalidate the range. |
1154 | LiveInterval *Interval = &*Intervals[Slot]; |
1155 | SlotIndex Index = Indexes->getInstructionIndex(MI: I); |
1156 | if (Interval->find(Pos: Index) == Interval->end()) { |
1157 | Interval->clear(); |
1158 | LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n" ); |
1159 | EscapedAllocas++; |
1160 | } |
1161 | } |
1162 | } |
1163 | } |
1164 | |
1165 | void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap, |
1166 | unsigned NumSlots) { |
1167 | // Expunge slot remap map. |
1168 | for (unsigned i=0; i < NumSlots; ++i) { |
1169 | // If we are remapping i |
1170 | if (SlotRemap.count(Val: i)) { |
1171 | int Target = SlotRemap[i]; |
1172 | // As long as our target is mapped to something else, follow it. |
1173 | while (SlotRemap.count(Val: Target)) { |
1174 | Target = SlotRemap[Target]; |
1175 | SlotRemap[i] = Target; |
1176 | } |
1177 | } |
1178 | } |
1179 | } |
1180 | |
1181 | bool StackColoring::runOnMachineFunction(MachineFunction &Func) { |
1182 | LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n" |
1183 | << "********** Function: " << Func.getName() << '\n'); |
1184 | MF = &Func; |
1185 | MFI = &MF->getFrameInfo(); |
1186 | Indexes = &getAnalysis<SlotIndexesWrapperPass>().getSI(); |
1187 | BlockLiveness.clear(); |
1188 | BasicBlocks.clear(); |
1189 | BasicBlockNumbering.clear(); |
1190 | Markers.clear(); |
1191 | Intervals.clear(); |
1192 | LiveStarts.clear(); |
1193 | VNInfoAllocator.Reset(); |
1194 | |
1195 | unsigned NumSlots = MFI->getObjectIndexEnd(); |
1196 | |
1197 | // If there are no stack slots then there are no markers to remove. |
1198 | if (!NumSlots) |
1199 | return false; |
1200 | |
1201 | SmallVector<int, 8> SortedSlots; |
1202 | SortedSlots.reserve(N: NumSlots); |
1203 | Intervals.reserve(N: NumSlots); |
1204 | LiveStarts.resize(N: NumSlots); |
1205 | |
1206 | unsigned NumMarkers = collectMarkers(NumSlot: NumSlots); |
1207 | |
1208 | unsigned TotalSize = 0; |
1209 | LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots |
1210 | << " slots\n" ); |
1211 | LLVM_DEBUG(dbgs() << "Slot structure:\n" ); |
1212 | |
1213 | for (int i=0; i < MFI->getObjectIndexEnd(); ++i) { |
1214 | LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i) |
1215 | << " bytes.\n" ); |
1216 | TotalSize += MFI->getObjectSize(ObjectIdx: i); |
1217 | } |
1218 | |
1219 | LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n" ); |
1220 | |
1221 | // Don't continue because there are not enough lifetime markers, or the |
1222 | // stack is too small, or we are told not to optimize the slots. |
1223 | if (NumMarkers < 2 || TotalSize < 16 || DisableColoring || |
1224 | skipFunction(F: Func.getFunction())) { |
1225 | LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n" ); |
1226 | return removeAllMarkers(); |
1227 | } |
1228 | |
1229 | for (unsigned i=0; i < NumSlots; ++i) { |
1230 | std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0)); |
1231 | LI->getNextValue(Def: Indexes->getZeroIndex(), VNInfoAllocator); |
1232 | Intervals.push_back(Elt: std::move(LI)); |
1233 | SortedSlots.push_back(Elt: i); |
1234 | } |
1235 | |
1236 | // Calculate the liveness of each block. |
1237 | calculateLocalLiveness(); |
1238 | LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n" ); |
1239 | LLVM_DEBUG(dump()); |
1240 | |
1241 | // Propagate the liveness information. |
1242 | calculateLiveIntervals(NumSlots); |
1243 | LLVM_DEBUG(dumpIntervals()); |
1244 | |
1245 | // Search for allocas which are used outside of the declared lifetime |
1246 | // markers. |
1247 | if (ProtectFromEscapedAllocas) |
1248 | removeInvalidSlotRanges(); |
1249 | |
1250 | // Maps old slots to new slots. |
1251 | DenseMap<int, int> SlotRemap; |
1252 | unsigned RemovedSlots = 0; |
1253 | unsigned ReducedSize = 0; |
1254 | |
1255 | // Do not bother looking at empty intervals. |
1256 | for (unsigned I = 0; I < NumSlots; ++I) { |
1257 | if (Intervals[SortedSlots[I]]->empty()) |
1258 | SortedSlots[I] = -1; |
1259 | } |
1260 | |
1261 | // This is a simple greedy algorithm for merging allocas. First, sort the |
1262 | // slots, placing the largest slots first. Next, perform an n^2 scan and look |
1263 | // for disjoint slots. When you find disjoint slots, merge the smaller one |
1264 | // into the bigger one and update the live interval. Remove the small alloca |
1265 | // and continue. |
1266 | |
1267 | // Sort the slots according to their size. Place unused slots at the end. |
1268 | // Use stable sort to guarantee deterministic code generation. |
1269 | llvm::stable_sort(Range&: SortedSlots, C: [this](int LHS, int RHS) { |
1270 | // We use -1 to denote a uninteresting slot. Place these slots at the end. |
1271 | if (LHS == -1) |
1272 | return false; |
1273 | if (RHS == -1) |
1274 | return true; |
1275 | // Sort according to size. |
1276 | return MFI->getObjectSize(ObjectIdx: LHS) > MFI->getObjectSize(ObjectIdx: RHS); |
1277 | }); |
1278 | |
1279 | for (auto &s : LiveStarts) |
1280 | llvm::sort(C&: s); |
1281 | |
1282 | bool Changed = true; |
1283 | while (Changed) { |
1284 | Changed = false; |
1285 | for (unsigned I = 0; I < NumSlots; ++I) { |
1286 | if (SortedSlots[I] == -1) |
1287 | continue; |
1288 | |
1289 | for (unsigned J=I+1; J < NumSlots; ++J) { |
1290 | if (SortedSlots[J] == -1) |
1291 | continue; |
1292 | |
1293 | int FirstSlot = SortedSlots[I]; |
1294 | int SecondSlot = SortedSlots[J]; |
1295 | |
1296 | // Objects with different stack IDs cannot be merged. |
1297 | if (MFI->getStackID(ObjectIdx: FirstSlot) != MFI->getStackID(ObjectIdx: SecondSlot)) |
1298 | continue; |
1299 | |
1300 | LiveInterval *First = &*Intervals[FirstSlot]; |
1301 | LiveInterval *Second = &*Intervals[SecondSlot]; |
1302 | auto &FirstS = LiveStarts[FirstSlot]; |
1303 | auto &SecondS = LiveStarts[SecondSlot]; |
1304 | assert(!First->empty() && !Second->empty() && "Found an empty range" ); |
1305 | |
1306 | // Merge disjoint slots. This is a little bit tricky - see the |
1307 | // Implementation Notes section for an explanation. |
1308 | if (!First->isLiveAtIndexes(Slots: SecondS) && |
1309 | !Second->isLiveAtIndexes(Slots: FirstS)) { |
1310 | Changed = true; |
1311 | First->MergeSegmentsInAsValue(RHS: *Second, LHSValNo: First->getValNumInfo(ValNo: 0)); |
1312 | |
1313 | int OldSize = FirstS.size(); |
1314 | FirstS.append(in_start: SecondS.begin(), in_end: SecondS.end()); |
1315 | auto Mid = FirstS.begin() + OldSize; |
1316 | std::inplace_merge(first: FirstS.begin(), middle: Mid, last: FirstS.end()); |
1317 | |
1318 | SlotRemap[SecondSlot] = FirstSlot; |
1319 | SortedSlots[J] = -1; |
1320 | LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #" |
1321 | << SecondSlot << " together.\n" ); |
1322 | Align MaxAlignment = std::max(a: MFI->getObjectAlign(ObjectIdx: FirstSlot), |
1323 | b: MFI->getObjectAlign(ObjectIdx: SecondSlot)); |
1324 | |
1325 | assert(MFI->getObjectSize(FirstSlot) >= |
1326 | MFI->getObjectSize(SecondSlot) && |
1327 | "Merging a small object into a larger one" ); |
1328 | |
1329 | RemovedSlots+=1; |
1330 | ReducedSize += MFI->getObjectSize(ObjectIdx: SecondSlot); |
1331 | MFI->setObjectAlignment(ObjectIdx: FirstSlot, Alignment: MaxAlignment); |
1332 | MFI->RemoveStackObject(ObjectIdx: SecondSlot); |
1333 | } |
1334 | } |
1335 | } |
1336 | }// While changed. |
1337 | |
1338 | // Record statistics. |
1339 | StackSpaceSaved += ReducedSize; |
1340 | StackSlotMerged += RemovedSlots; |
1341 | LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved " |
1342 | << ReducedSize << " bytes\n" ); |
1343 | |
1344 | // Scan the entire function and update all machine operands that use frame |
1345 | // indices to use the remapped frame index. |
1346 | if (!SlotRemap.empty()) { |
1347 | expungeSlotMap(SlotRemap, NumSlots); |
1348 | remapInstructions(SlotRemap); |
1349 | } |
1350 | |
1351 | return removeAllMarkers(); |
1352 | } |
1353 | |