1 | //===- llvm/Target/TargetSchedule.cpp - Sched Machine Model ---------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements a wrapper around MCSchedModel that allows the interface |
10 | // to benefit from information currently only available in TargetInstrInfo. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/CodeGen/TargetSchedule.h" |
15 | #include "llvm/CodeGen/MachineFunction.h" |
16 | #include "llvm/CodeGen/MachineInstr.h" |
17 | #include "llvm/CodeGen/MachineOperand.h" |
18 | #include "llvm/CodeGen/TargetInstrInfo.h" |
19 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
20 | #include "llvm/MC/MCInstrDesc.h" |
21 | #include "llvm/MC/MCInstrItineraries.h" |
22 | #include "llvm/MC/MCSchedule.h" |
23 | #include "llvm/Support/CommandLine.h" |
24 | #include "llvm/Support/ErrorHandling.h" |
25 | #include "llvm/Support/raw_ostream.h" |
26 | #include <algorithm> |
27 | #include <cassert> |
28 | #include <cstdint> |
29 | #include <numeric> |
30 | |
31 | using namespace llvm; |
32 | |
33 | static cl::opt<bool> EnableSchedModel("schedmodel" , cl::Hidden, cl::init(Val: true), |
34 | cl::desc("Use TargetSchedModel for latency lookup" )); |
35 | |
36 | static cl::opt<bool> EnableSchedItins("scheditins" , cl::Hidden, cl::init(Val: true), |
37 | cl::desc("Use InstrItineraryData for latency lookup" )); |
38 | |
39 | static cl::opt<bool> ForceEnableIntervals( |
40 | "sched-model-force-enable-intervals" , cl::Hidden, cl::init(Val: false), |
41 | cl::desc("Force the use of resource intervals in the schedule model" )); |
42 | |
43 | bool TargetSchedModel::hasInstrSchedModel() const { |
44 | return EnableSchedModel && SchedModel.hasInstrSchedModel(); |
45 | } |
46 | |
47 | bool TargetSchedModel::hasInstrItineraries() const { |
48 | return EnableSchedItins && !InstrItins.isEmpty(); |
49 | } |
50 | |
51 | void TargetSchedModel::init(const TargetSubtargetInfo *TSInfo) { |
52 | STI = TSInfo; |
53 | SchedModel = TSInfo->getSchedModel(); |
54 | TII = TSInfo->getInstrInfo(); |
55 | STI->initInstrItins(InstrItins); |
56 | |
57 | unsigned NumRes = SchedModel.getNumProcResourceKinds(); |
58 | ResourceFactors.resize(N: NumRes); |
59 | ResourceLCM = SchedModel.IssueWidth; |
60 | for (unsigned Idx = 0; Idx < NumRes; ++Idx) { |
61 | unsigned NumUnits = SchedModel.getProcResource(ProcResourceIdx: Idx)->NumUnits; |
62 | if (NumUnits > 0) |
63 | ResourceLCM = std::lcm(m: ResourceLCM, n: NumUnits); |
64 | } |
65 | MicroOpFactor = ResourceLCM / SchedModel.IssueWidth; |
66 | for (unsigned Idx = 0; Idx < NumRes; ++Idx) { |
67 | unsigned NumUnits = SchedModel.getProcResource(ProcResourceIdx: Idx)->NumUnits; |
68 | ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0; |
69 | } |
70 | } |
71 | |
72 | /// Returns true only if instruction is specified as single issue. |
73 | bool TargetSchedModel::mustBeginGroup(const MachineInstr *MI, |
74 | const MCSchedClassDesc *SC) const { |
75 | if (hasInstrSchedModel()) { |
76 | if (!SC) |
77 | SC = resolveSchedClass(MI); |
78 | if (SC->isValid()) |
79 | return SC->BeginGroup; |
80 | } |
81 | return false; |
82 | } |
83 | |
84 | bool TargetSchedModel::mustEndGroup(const MachineInstr *MI, |
85 | const MCSchedClassDesc *SC) const { |
86 | if (hasInstrSchedModel()) { |
87 | if (!SC) |
88 | SC = resolveSchedClass(MI); |
89 | if (SC->isValid()) |
90 | return SC->EndGroup; |
91 | } |
92 | return false; |
93 | } |
94 | |
95 | unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI, |
96 | const MCSchedClassDesc *SC) const { |
97 | if (hasInstrItineraries()) { |
98 | int UOps = InstrItins.getNumMicroOps(ItinClassIndx: MI->getDesc().getSchedClass()); |
99 | return (UOps >= 0) ? UOps : TII->getNumMicroOps(ItinData: &InstrItins, MI: *MI); |
100 | } |
101 | if (hasInstrSchedModel()) { |
102 | if (!SC) |
103 | SC = resolveSchedClass(MI); |
104 | if (SC->isValid()) |
105 | return SC->NumMicroOps; |
106 | } |
107 | return MI->isTransient() ? 0 : 1; |
108 | } |
109 | |
110 | // The machine model may explicitly specify an invalid latency, which |
111 | // effectively means infinite latency. Since users of the TargetSchedule API |
112 | // don't know how to handle this, we convert it to a very large latency that is |
113 | // easy to distinguish when debugging the DAG but won't induce overflow. |
114 | static unsigned capLatency(int Cycles) { |
115 | return Cycles >= 0 ? Cycles : 1000; |
116 | } |
117 | |
118 | /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require |
119 | /// evaluation of predicates that depend on instruction operands or flags. |
120 | const MCSchedClassDesc *TargetSchedModel:: |
121 | resolveSchedClass(const MachineInstr *MI) const { |
122 | // Get the definition's scheduling class descriptor from this machine model. |
123 | unsigned SchedClass = MI->getDesc().getSchedClass(); |
124 | const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClassIdx: SchedClass); |
125 | if (!SCDesc->isValid()) |
126 | return SCDesc; |
127 | |
128 | #ifndef NDEBUG |
129 | unsigned NIter = 0; |
130 | #endif |
131 | while (SCDesc->isVariant()) { |
132 | assert(++NIter < 6 && "Variants are nested deeper than the magic number" ); |
133 | |
134 | SchedClass = STI->resolveSchedClass(SchedClass, MI, SchedModel: this); |
135 | SCDesc = SchedModel.getSchedClassDesc(SchedClassIdx: SchedClass); |
136 | } |
137 | return SCDesc; |
138 | } |
139 | |
140 | /// Find the def index of this operand. This index maps to the machine model and |
141 | /// is independent of use operands. Def operands may be reordered with uses or |
142 | /// merged with uses without affecting the def index (e.g. before/after |
143 | /// regalloc). However, an instruction's def operands must never be reordered |
144 | /// with respect to each other. |
145 | static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) { |
146 | unsigned DefIdx = 0; |
147 | for (unsigned i = 0; i != DefOperIdx; ++i) { |
148 | const MachineOperand &MO = MI->getOperand(i); |
149 | if (MO.isReg() && MO.isDef()) |
150 | ++DefIdx; |
151 | } |
152 | return DefIdx; |
153 | } |
154 | |
155 | /// Find the use index of this operand. This is independent of the instruction's |
156 | /// def operands. |
157 | /// |
158 | /// Note that uses are not determined by the operand's isUse property, which |
159 | /// is simply the inverse of isDef. Here we consider any readsReg operand to be |
160 | /// a "use". The machine model allows an operand to be both a Def and Use. |
161 | static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) { |
162 | unsigned UseIdx = 0; |
163 | for (unsigned i = 0; i != UseOperIdx; ++i) { |
164 | const MachineOperand &MO = MI->getOperand(i); |
165 | if (MO.isReg() && MO.readsReg() && !MO.isDef()) |
166 | ++UseIdx; |
167 | } |
168 | return UseIdx; |
169 | } |
170 | |
171 | // Top-level API for clients that know the operand indices. This doesn't need to |
172 | // return std::optional<unsigned>, as it always returns a valid latency. |
173 | unsigned TargetSchedModel::computeOperandLatency( |
174 | const MachineInstr *DefMI, unsigned DefOperIdx, |
175 | const MachineInstr *UseMI, unsigned UseOperIdx) const { |
176 | |
177 | const unsigned InstrLatency = computeInstrLatency(MI: DefMI); |
178 | const unsigned DefaultDefLatency = TII->defaultDefLatency(SchedModel, DefMI: *DefMI); |
179 | |
180 | if (!hasInstrSchedModel() && !hasInstrItineraries()) |
181 | return DefaultDefLatency; |
182 | |
183 | if (hasInstrItineraries()) { |
184 | std::optional<unsigned> OperLatency; |
185 | if (UseMI) { |
186 | OperLatency = TII->getOperandLatency(ItinData: &InstrItins, DefMI: *DefMI, DefIdx: DefOperIdx, |
187 | UseMI: *UseMI, UseIdx: UseOperIdx); |
188 | } |
189 | else { |
190 | unsigned DefClass = DefMI->getDesc().getSchedClass(); |
191 | OperLatency = InstrItins.getOperandCycle(ItinClassIndx: DefClass, OperandIdx: DefOperIdx); |
192 | } |
193 | |
194 | // Expected latency is the max of InstrLatency and DefaultDefLatency, if we |
195 | // didn't find an operand latency. |
196 | return OperLatency ? *OperLatency |
197 | : std::max(a: InstrLatency, b: DefaultDefLatency); |
198 | } |
199 | |
200 | // hasInstrSchedModel() |
201 | const MCSchedClassDesc *SCDesc = resolveSchedClass(MI: DefMI); |
202 | unsigned DefIdx = findDefIdx(MI: DefMI, DefOperIdx); |
203 | if (DefIdx < SCDesc->NumWriteLatencyEntries) { |
204 | // Lookup the definition's write latency in SubtargetInfo. |
205 | const MCWriteLatencyEntry *WLEntry = |
206 | STI->getWriteLatencyEntry(SC: SCDesc, DefIdx); |
207 | unsigned WriteID = WLEntry->WriteResourceID; |
208 | unsigned Latency = capLatency(Cycles: WLEntry->Cycles); |
209 | if (!UseMI) |
210 | return Latency; |
211 | |
212 | // Lookup the use's latency adjustment in SubtargetInfo. |
213 | const MCSchedClassDesc *UseDesc = resolveSchedClass(MI: UseMI); |
214 | if (UseDesc->NumReadAdvanceEntries == 0) |
215 | return Latency; |
216 | unsigned UseIdx = findUseIdx(MI: UseMI, UseOperIdx); |
217 | int Advance = STI->getReadAdvanceCycles(SC: UseDesc, UseIdx, WriteResID: WriteID); |
218 | if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap |
219 | return 0; |
220 | return Latency - Advance; |
221 | } |
222 | // If DefIdx does not exist in the model (e.g. implicit defs), then return |
223 | // unit latency (defaultDefLatency may be too conservative). |
224 | #ifndef NDEBUG |
225 | if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit() && |
226 | !DefMI->getDesc().operands()[DefOperIdx].isOptionalDef() && |
227 | SchedModel.isComplete()) { |
228 | errs() << "DefIdx " << DefIdx << " exceeds machine model writes for " |
229 | << *DefMI << " (Try with MCSchedModel.CompleteModel set to false)" ; |
230 | llvm_unreachable("incomplete machine model" ); |
231 | } |
232 | #endif |
233 | // FIXME: Automatically giving all implicit defs defaultDefLatency is |
234 | // undesirable. We should only do it for defs that are known to the MC |
235 | // desc like flags. Truly implicit defs should get 1 cycle latency. |
236 | return DefMI->isTransient() ? 0 : DefaultDefLatency; |
237 | } |
238 | |
239 | unsigned |
240 | TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const { |
241 | return capLatency(Cycles: MCSchedModel::computeInstrLatency(STI: *STI, SCDesc)); |
242 | } |
243 | |
244 | unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const { |
245 | assert(hasInstrSchedModel() && "Only call this function with a SchedModel" ); |
246 | unsigned SCIdx = TII->get(Opcode).getSchedClass(); |
247 | return capLatency(Cycles: SchedModel.computeInstrLatency(STI: *STI, SClass: SCIdx)); |
248 | } |
249 | |
250 | unsigned TargetSchedModel::computeInstrLatency(const MCInst &Inst) const { |
251 | if (hasInstrSchedModel()) |
252 | return capLatency(Cycles: SchedModel.computeInstrLatency(STI: *STI, MCII: *TII, Inst)); |
253 | return computeInstrLatency(Opcode: Inst.getOpcode()); |
254 | } |
255 | |
256 | unsigned |
257 | TargetSchedModel::computeInstrLatency(const MachineInstr *MI, |
258 | bool UseDefaultDefLatency) const { |
259 | // For the itinerary model, fall back to the old subtarget hook. |
260 | // Allow subtargets to compute Bundle latencies outside the machine model. |
261 | if (hasInstrItineraries() || MI->isBundle() || |
262 | (!hasInstrSchedModel() && !UseDefaultDefLatency)) |
263 | return TII->getInstrLatency(ItinData: &InstrItins, MI: *MI); |
264 | |
265 | if (hasInstrSchedModel()) { |
266 | const MCSchedClassDesc *SCDesc = resolveSchedClass(MI); |
267 | if (SCDesc->isValid()) |
268 | return computeInstrLatency(SCDesc: *SCDesc); |
269 | } |
270 | return TII->defaultDefLatency(SchedModel, DefMI: *MI); |
271 | } |
272 | |
273 | unsigned TargetSchedModel:: |
274 | computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx, |
275 | const MachineInstr *DepMI) const { |
276 | if (!SchedModel.isOutOfOrder()) |
277 | return 1; |
278 | |
279 | // Out-of-order processor can dispatch WAW dependencies in the same cycle. |
280 | |
281 | // Treat predication as a data dependency for out-of-order cpus. In-order |
282 | // cpus do not need to treat predicated writes specially. |
283 | // |
284 | // TODO: The following hack exists because predication passes do not |
285 | // correctly append imp-use operands, and readsReg() strangely returns false |
286 | // for predicated defs. |
287 | Register Reg = DefMI->getOperand(i: DefOperIdx).getReg(); |
288 | const MachineFunction &MF = *DefMI->getMF(); |
289 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
290 | if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(MI: *DepMI)) |
291 | return computeInstrLatency(MI: DefMI); |
292 | |
293 | // If we have a per operand scheduling model, check if this def is writing |
294 | // an unbuffered resource. If so, it treated like an in-order cpu. |
295 | if (hasInstrSchedModel()) { |
296 | const MCSchedClassDesc *SCDesc = resolveSchedClass(MI: DefMI); |
297 | if (SCDesc->isValid()) { |
298 | for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SC: SCDesc), |
299 | *PRE = STI->getWriteProcResEnd(SC: SCDesc); PRI != PRE; ++PRI) { |
300 | if (!SchedModel.getProcResource(ProcResourceIdx: PRI->ProcResourceIdx)->BufferSize) |
301 | return 1; |
302 | } |
303 | } |
304 | } |
305 | return 0; |
306 | } |
307 | |
308 | double |
309 | TargetSchedModel::computeReciprocalThroughput(const MachineInstr *MI) const { |
310 | if (hasInstrItineraries()) { |
311 | unsigned SchedClass = MI->getDesc().getSchedClass(); |
312 | return MCSchedModel::getReciprocalThroughput(SchedClass, |
313 | IID: *getInstrItineraries()); |
314 | } |
315 | |
316 | if (hasInstrSchedModel()) |
317 | return MCSchedModel::getReciprocalThroughput(STI: *STI, SCDesc: *resolveSchedClass(MI)); |
318 | |
319 | return 0.0; |
320 | } |
321 | |
322 | double |
323 | TargetSchedModel::computeReciprocalThroughput(unsigned Opcode) const { |
324 | unsigned SchedClass = TII->get(Opcode).getSchedClass(); |
325 | if (hasInstrItineraries()) |
326 | return MCSchedModel::getReciprocalThroughput(SchedClass, |
327 | IID: *getInstrItineraries()); |
328 | if (hasInstrSchedModel()) { |
329 | const MCSchedClassDesc &SCDesc = *SchedModel.getSchedClassDesc(SchedClassIdx: SchedClass); |
330 | if (SCDesc.isValid() && !SCDesc.isVariant()) |
331 | return MCSchedModel::getReciprocalThroughput(STI: *STI, SCDesc); |
332 | } |
333 | |
334 | return 0.0; |
335 | } |
336 | |
337 | double |
338 | TargetSchedModel::computeReciprocalThroughput(const MCInst &MI) const { |
339 | if (hasInstrSchedModel()) |
340 | return SchedModel.getReciprocalThroughput(STI: *STI, MCII: *TII, Inst: MI); |
341 | return computeReciprocalThroughput(Opcode: MI.getOpcode()); |
342 | } |
343 | |
344 | bool TargetSchedModel::enableIntervals() const { |
345 | if (ForceEnableIntervals) |
346 | return true; |
347 | |
348 | return SchedModel.EnableIntervals; |
349 | } |
350 | |