1 | //===-- WinEHPrepare - Prepare exception handling for code generation ---===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass lowers LLVM IR exception handling into something closer to what the |
10 | // backend wants for functions using a personality function from a runtime |
11 | // provided by MSVC. Functions with other personality functions are left alone |
12 | // and may be prepared by other passes. In particular, all supported MSVC |
13 | // personality functions require cleanup code to be outlined, and the C++ |
14 | // personality requires catch handler code to be outlined. |
15 | // |
16 | //===----------------------------------------------------------------------===// |
17 | |
18 | #include "llvm/CodeGen/WinEHPrepare.h" |
19 | #include "llvm/ADT/DenseMap.h" |
20 | #include "llvm/ADT/MapVector.h" |
21 | #include "llvm/ADT/STLExtras.h" |
22 | #include "llvm/CodeGen/MachineBasicBlock.h" |
23 | #include "llvm/CodeGen/Passes.h" |
24 | #include "llvm/CodeGen/WinEHFuncInfo.h" |
25 | #include "llvm/IR/Constants.h" |
26 | #include "llvm/IR/EHPersonalities.h" |
27 | #include "llvm/IR/Instructions.h" |
28 | #include "llvm/IR/Module.h" |
29 | #include "llvm/IR/Verifier.h" |
30 | #include "llvm/InitializePasses.h" |
31 | #include "llvm/Pass.h" |
32 | #include "llvm/Support/CommandLine.h" |
33 | #include "llvm/Support/Debug.h" |
34 | #include "llvm/Support/raw_ostream.h" |
35 | #include "llvm/TargetParser/Triple.h" |
36 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
37 | #include "llvm/Transforms/Utils/Cloning.h" |
38 | #include "llvm/Transforms/Utils/Local.h" |
39 | #include "llvm/Transforms/Utils/SSAUpdater.h" |
40 | |
41 | using namespace llvm; |
42 | |
43 | #define DEBUG_TYPE "win-eh-prepare" |
44 | |
45 | static cl::opt<bool> DisableDemotion( |
46 | "disable-demotion" , cl::Hidden, |
47 | cl::desc( |
48 | "Clone multicolor basic blocks but do not demote cross scopes" ), |
49 | cl::init(Val: false)); |
50 | |
51 | static cl::opt<bool> DisableCleanups( |
52 | "disable-cleanups" , cl::Hidden, |
53 | cl::desc("Do not remove implausible terminators or other similar cleanups" ), |
54 | cl::init(Val: false)); |
55 | |
56 | // TODO: Remove this option when we fully migrate to new pass manager |
57 | static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt( |
58 | "demote-catchswitch-only" , cl::Hidden, |
59 | cl::desc("Demote catchswitch BBs only (for wasm EH)" ), cl::init(Val: false)); |
60 | |
61 | namespace { |
62 | |
63 | class WinEHPrepareImpl { |
64 | public: |
65 | WinEHPrepareImpl(bool DemoteCatchSwitchPHIOnly) |
66 | : DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {} |
67 | |
68 | bool runOnFunction(Function &Fn); |
69 | |
70 | private: |
71 | void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot); |
72 | void |
73 | insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot, |
74 | SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist); |
75 | AllocaInst *insertPHILoads(PHINode *PN, Function &F); |
76 | void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot, |
77 | DenseMap<BasicBlock *, Value *> &Loads, Function &F); |
78 | bool prepareExplicitEH(Function &F); |
79 | void colorFunclets(Function &F); |
80 | |
81 | void demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly); |
82 | void cloneCommonBlocks(Function &F); |
83 | void removeImplausibleInstructions(Function &F); |
84 | void cleanupPreparedFunclets(Function &F); |
85 | void verifyPreparedFunclets(Function &F); |
86 | |
87 | bool DemoteCatchSwitchPHIOnly; |
88 | |
89 | // All fields are reset by runOnFunction. |
90 | EHPersonality Personality = EHPersonality::Unknown; |
91 | |
92 | const DataLayout *DL = nullptr; |
93 | DenseMap<BasicBlock *, ColorVector> BlockColors; |
94 | MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks; |
95 | }; |
96 | |
97 | class WinEHPrepare : public FunctionPass { |
98 | bool DemoteCatchSwitchPHIOnly; |
99 | |
100 | public: |
101 | static char ID; // Pass identification, replacement for typeid. |
102 | |
103 | WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false) |
104 | : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {} |
105 | |
106 | StringRef getPassName() const override { |
107 | return "Windows exception handling preparation" ; |
108 | } |
109 | |
110 | bool runOnFunction(Function &Fn) override { |
111 | return WinEHPrepareImpl(DemoteCatchSwitchPHIOnly).runOnFunction(Fn); |
112 | } |
113 | }; |
114 | |
115 | } // end anonymous namespace |
116 | |
117 | PreservedAnalyses WinEHPreparePass::run(Function &F, |
118 | FunctionAnalysisManager &) { |
119 | bool Changed = WinEHPrepareImpl(DemoteCatchSwitchPHIOnly).runOnFunction(Fn&: F); |
120 | return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); |
121 | } |
122 | |
123 | char WinEHPrepare::ID = 0; |
124 | INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions" , false, |
125 | false) |
126 | |
127 | FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) { |
128 | return new WinEHPrepare(DemoteCatchSwitchPHIOnly); |
129 | } |
130 | |
131 | bool WinEHPrepareImpl::runOnFunction(Function &Fn) { |
132 | if (!Fn.hasPersonalityFn()) |
133 | return false; |
134 | |
135 | // Classify the personality to see what kind of preparation we need. |
136 | Personality = classifyEHPersonality(Pers: Fn.getPersonalityFn()); |
137 | |
138 | // Do nothing if this is not a scope-based personality. |
139 | if (!isScopedEHPersonality(Pers: Personality)) |
140 | return false; |
141 | |
142 | DL = &Fn.getDataLayout(); |
143 | return prepareExplicitEH(F&: Fn); |
144 | } |
145 | |
146 | static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState, |
147 | const BasicBlock *BB) { |
148 | CxxUnwindMapEntry UME; |
149 | UME.ToState = ToState; |
150 | UME.Cleanup = BB; |
151 | FuncInfo.CxxUnwindMap.push_back(Elt: UME); |
152 | return FuncInfo.getLastStateNumber(); |
153 | } |
154 | |
155 | static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow, |
156 | int TryHigh, int CatchHigh, |
157 | ArrayRef<const CatchPadInst *> Handlers) { |
158 | WinEHTryBlockMapEntry TBME; |
159 | TBME.TryLow = TryLow; |
160 | TBME.TryHigh = TryHigh; |
161 | TBME.CatchHigh = CatchHigh; |
162 | assert(TBME.TryLow <= TBME.TryHigh); |
163 | for (const CatchPadInst *CPI : Handlers) { |
164 | WinEHHandlerType HT; |
165 | Constant *TypeInfo = cast<Constant>(Val: CPI->getArgOperand(i: 0)); |
166 | if (TypeInfo->isNullValue()) |
167 | HT.TypeDescriptor = nullptr; |
168 | else |
169 | HT.TypeDescriptor = cast<GlobalVariable>(Val: TypeInfo->stripPointerCasts()); |
170 | HT.Adjectives = cast<ConstantInt>(Val: CPI->getArgOperand(i: 1))->getZExtValue(); |
171 | HT.Handler = CPI->getParent(); |
172 | if (auto *AI = |
173 | dyn_cast<AllocaInst>(Val: CPI->getArgOperand(i: 2)->stripPointerCasts())) |
174 | HT.CatchObj.Alloca = AI; |
175 | else |
176 | HT.CatchObj.Alloca = nullptr; |
177 | TBME.HandlerArray.push_back(Elt: HT); |
178 | } |
179 | FuncInfo.TryBlockMap.push_back(Elt: TBME); |
180 | } |
181 | |
182 | static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) { |
183 | for (const User *U : CleanupPad->users()) |
184 | if (const auto *CRI = dyn_cast<CleanupReturnInst>(Val: U)) |
185 | return CRI->getUnwindDest(); |
186 | return nullptr; |
187 | } |
188 | |
189 | static void calculateStateNumbersForInvokes(const Function *Fn, |
190 | WinEHFuncInfo &FuncInfo) { |
191 | auto *F = const_cast<Function *>(Fn); |
192 | DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(F&: *F); |
193 | for (BasicBlock &BB : *F) { |
194 | auto *II = dyn_cast<InvokeInst>(Val: BB.getTerminator()); |
195 | if (!II) |
196 | continue; |
197 | |
198 | auto &BBColors = BlockColors[&BB]; |
199 | assert(BBColors.size() == 1 && "multi-color BB not removed by preparation" ); |
200 | BasicBlock *FuncletEntryBB = BBColors.front(); |
201 | |
202 | BasicBlock *FuncletUnwindDest; |
203 | auto *FuncletPad = |
204 | dyn_cast<FuncletPadInst>(Val: FuncletEntryBB->getFirstNonPHI()); |
205 | assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock()); |
206 | if (!FuncletPad) |
207 | FuncletUnwindDest = nullptr; |
208 | else if (auto *CatchPad = dyn_cast<CatchPadInst>(Val: FuncletPad)) |
209 | FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest(); |
210 | else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(Val: FuncletPad)) |
211 | FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad); |
212 | else |
213 | llvm_unreachable("unexpected funclet pad!" ); |
214 | |
215 | BasicBlock *InvokeUnwindDest = II->getUnwindDest(); |
216 | int BaseState = -1; |
217 | if (FuncletUnwindDest == InvokeUnwindDest) { |
218 | auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(Val: FuncletPad); |
219 | if (BaseStateI != FuncInfo.FuncletBaseStateMap.end()) |
220 | BaseState = BaseStateI->second; |
221 | } |
222 | |
223 | if (BaseState != -1) { |
224 | FuncInfo.InvokeStateMap[II] = BaseState; |
225 | } else { |
226 | Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI(); |
227 | assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!" ); |
228 | FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst]; |
229 | } |
230 | } |
231 | } |
232 | |
233 | // See comments below for calculateSEHStateForAsynchEH(). |
234 | // State - incoming State of normal paths |
235 | struct WorkItem { |
236 | const BasicBlock *Block; |
237 | int State; |
238 | WorkItem(const BasicBlock *BB, int St) { |
239 | Block = BB; |
240 | State = St; |
241 | } |
242 | }; |
243 | void llvm::calculateCXXStateForAsynchEH(const BasicBlock *BB, int State, |
244 | WinEHFuncInfo &EHInfo) { |
245 | SmallVector<struct WorkItem *, 8> WorkList; |
246 | struct WorkItem *WI = new WorkItem(BB, State); |
247 | WorkList.push_back(Elt: WI); |
248 | |
249 | while (!WorkList.empty()) { |
250 | WI = WorkList.pop_back_val(); |
251 | const BasicBlock *BB = WI->Block; |
252 | int State = WI->State; |
253 | delete WI; |
254 | if (EHInfo.BlockToStateMap.count(Val: BB) && EHInfo.BlockToStateMap[BB] <= State) |
255 | continue; // skip blocks already visited by lower State |
256 | |
257 | const llvm::Instruction *I = BB->getFirstNonPHI(); |
258 | const llvm::Instruction *TI = BB->getTerminator(); |
259 | if (I->isEHPad()) |
260 | State = EHInfo.EHPadStateMap[I]; |
261 | EHInfo.BlockToStateMap[BB] = State; // Record state, also flag visiting |
262 | |
263 | if ((isa<CleanupReturnInst>(Val: TI) || isa<CatchReturnInst>(Val: TI)) && State > 0) { |
264 | // Retrive the new State |
265 | State = EHInfo.CxxUnwindMap[State].ToState; // Retrive next State |
266 | } else if (isa<InvokeInst>(Val: TI)) { |
267 | auto *Call = cast<CallBase>(Val: TI); |
268 | const Function *Fn = Call->getCalledFunction(); |
269 | if (Fn && Fn->isIntrinsic() && |
270 | (Fn->getIntrinsicID() == Intrinsic::seh_scope_begin || |
271 | Fn->getIntrinsicID() == Intrinsic::seh_try_begin)) |
272 | // Retrive the new State from seh_scope_begin |
273 | State = EHInfo.InvokeStateMap[cast<InvokeInst>(Val: TI)]; |
274 | else if (Fn && Fn->isIntrinsic() && |
275 | (Fn->getIntrinsicID() == Intrinsic::seh_scope_end || |
276 | Fn->getIntrinsicID() == Intrinsic::seh_try_end)) { |
277 | // In case of conditional ctor, let's retrieve State from Invoke |
278 | State = EHInfo.InvokeStateMap[cast<InvokeInst>(Val: TI)]; |
279 | // end of current state, retrive new state from UnwindMap |
280 | State = EHInfo.CxxUnwindMap[State].ToState; |
281 | } |
282 | } |
283 | // Continue push successors into worklist |
284 | for (auto *SuccBB : successors(BB)) { |
285 | WI = new WorkItem(SuccBB, State); |
286 | WorkList.push_back(Elt: WI); |
287 | } |
288 | } |
289 | } |
290 | |
291 | // The central theory of this routine is based on the following: |
292 | // A _try scope is always a SEME (Single Entry Multiple Exits) region |
293 | // as jumping into a _try is not allowed |
294 | // The single entry must start with a seh_try_begin() invoke with a |
295 | // correct State number that is the initial state of the SEME. |
296 | // Through control-flow, state number is propagated into all blocks. |
297 | // Side exits marked by seh_try_end() will unwind to parent state via |
298 | // existing SEHUnwindMap[]. |
299 | // Side exits can ONLY jump into parent scopes (lower state number). |
300 | // Thus, when a block succeeds various states from its predecessors, |
301 | // the lowest State trumphs others. |
302 | // If some exits flow to unreachable, propagation on those paths terminate, |
303 | // not affecting remaining blocks. |
304 | void llvm::calculateSEHStateForAsynchEH(const BasicBlock *BB, int State, |
305 | WinEHFuncInfo &EHInfo) { |
306 | SmallVector<struct WorkItem *, 8> WorkList; |
307 | struct WorkItem *WI = new WorkItem(BB, State); |
308 | WorkList.push_back(Elt: WI); |
309 | |
310 | while (!WorkList.empty()) { |
311 | WI = WorkList.pop_back_val(); |
312 | const BasicBlock *BB = WI->Block; |
313 | int State = WI->State; |
314 | delete WI; |
315 | if (EHInfo.BlockToStateMap.count(Val: BB) && EHInfo.BlockToStateMap[BB] <= State) |
316 | continue; // skip blocks already visited by lower State |
317 | |
318 | const llvm::Instruction *I = BB->getFirstNonPHI(); |
319 | const llvm::Instruction *TI = BB->getTerminator(); |
320 | if (I->isEHPad()) |
321 | State = EHInfo.EHPadStateMap[I]; |
322 | EHInfo.BlockToStateMap[BB] = State; // Record state |
323 | |
324 | if (isa<CatchPadInst>(Val: I) && isa<CatchReturnInst>(Val: TI)) { |
325 | const Constant *FilterOrNull = cast<Constant>( |
326 | Val: cast<CatchPadInst>(Val: I)->getArgOperand(i: 0)->stripPointerCasts()); |
327 | const Function *Filter = dyn_cast<Function>(Val: FilterOrNull); |
328 | if (!Filter || !Filter->getName().starts_with(Prefix: "__IsLocalUnwind" )) |
329 | State = EHInfo.SEHUnwindMap[State].ToState; // Retrive next State |
330 | } else if ((isa<CleanupReturnInst>(Val: TI) || isa<CatchReturnInst>(Val: TI)) && |
331 | State > 0) { |
332 | // Retrive the new State. |
333 | State = EHInfo.SEHUnwindMap[State].ToState; // Retrive next State |
334 | } else if (isa<InvokeInst>(Val: TI)) { |
335 | auto *Call = cast<CallBase>(Val: TI); |
336 | const Function *Fn = Call->getCalledFunction(); |
337 | if (Fn && Fn->isIntrinsic() && |
338 | Fn->getIntrinsicID() == Intrinsic::seh_try_begin) |
339 | // Retrive the new State from seh_try_begin |
340 | State = EHInfo.InvokeStateMap[cast<InvokeInst>(Val: TI)]; |
341 | else if (Fn && Fn->isIntrinsic() && |
342 | Fn->getIntrinsicID() == Intrinsic::seh_try_end) |
343 | // end of current state, retrive new state from UnwindMap |
344 | State = EHInfo.SEHUnwindMap[State].ToState; |
345 | } |
346 | // Continue push successors into worklist |
347 | for (auto *SuccBB : successors(BB)) { |
348 | WI = new WorkItem(SuccBB, State); |
349 | WorkList.push_back(Elt: WI); |
350 | } |
351 | } |
352 | } |
353 | |
354 | // Given BB which ends in an unwind edge, return the EHPad that this BB belongs |
355 | // to. If the unwind edge came from an invoke, return null. |
356 | static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB, |
357 | Value *ParentPad) { |
358 | const Instruction *TI = BB->getTerminator(); |
359 | if (isa<InvokeInst>(Val: TI)) |
360 | return nullptr; |
361 | if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: TI)) { |
362 | if (CatchSwitch->getParentPad() != ParentPad) |
363 | return nullptr; |
364 | return BB; |
365 | } |
366 | assert(!TI->isEHPad() && "unexpected EHPad!" ); |
367 | auto *CleanupPad = cast<CleanupReturnInst>(Val: TI)->getCleanupPad(); |
368 | if (CleanupPad->getParentPad() != ParentPad) |
369 | return nullptr; |
370 | return CleanupPad->getParent(); |
371 | } |
372 | |
373 | // Starting from a EHPad, Backward walk through control-flow graph |
374 | // to produce two primary outputs: |
375 | // FuncInfo.EHPadStateMap[] and FuncInfo.CxxUnwindMap[] |
376 | static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo, |
377 | const Instruction *FirstNonPHI, |
378 | int ParentState) { |
379 | const BasicBlock *BB = FirstNonPHI->getParent(); |
380 | assert(BB->isEHPad() && "not a funclet!" ); |
381 | |
382 | if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: FirstNonPHI)) { |
383 | assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && |
384 | "shouldn't revist catch funclets!" ); |
385 | |
386 | SmallVector<const CatchPadInst *, 2> Handlers; |
387 | for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { |
388 | auto *CatchPad = cast<CatchPadInst>(Val: CatchPadBB->getFirstNonPHI()); |
389 | Handlers.push_back(Elt: CatchPad); |
390 | } |
391 | int TryLow = addUnwindMapEntry(FuncInfo, ToState: ParentState, BB: nullptr); |
392 | FuncInfo.EHPadStateMap[CatchSwitch] = TryLow; |
393 | for (const BasicBlock *PredBlock : predecessors(BB)) |
394 | if ((PredBlock = getEHPadFromPredecessor(BB: PredBlock, |
395 | ParentPad: CatchSwitch->getParentPad()))) |
396 | calculateCXXStateNumbers(FuncInfo, FirstNonPHI: PredBlock->getFirstNonPHI(), |
397 | ParentState: TryLow); |
398 | int CatchLow = addUnwindMapEntry(FuncInfo, ToState: ParentState, BB: nullptr); |
399 | |
400 | // catchpads are separate funclets in C++ EH due to the way rethrow works. |
401 | int TryHigh = CatchLow - 1; |
402 | |
403 | // MSVC FrameHandler3/4 on x64&Arm64 expect Catch Handlers in $tryMap$ |
404 | // stored in pre-order (outer first, inner next), not post-order |
405 | // Add to map here. Fix the CatchHigh after children are processed |
406 | const Module *Mod = BB->getParent()->getParent(); |
407 | bool IsPreOrder = Triple(Mod->getTargetTriple()).isArch64Bit(); |
408 | if (IsPreOrder) |
409 | addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh: CatchLow, Handlers); |
410 | unsigned TBMEIdx = FuncInfo.TryBlockMap.size() - 1; |
411 | |
412 | for (const auto *CatchPad : Handlers) { |
413 | FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow; |
414 | FuncInfo.EHPadStateMap[CatchPad] = CatchLow; |
415 | for (const User *U : CatchPad->users()) { |
416 | const auto *UserI = cast<Instruction>(Val: U); |
417 | if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(Val: UserI)) { |
418 | BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest(); |
419 | if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) |
420 | calculateCXXStateNumbers(FuncInfo, FirstNonPHI: UserI, ParentState: CatchLow); |
421 | } |
422 | if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(Val: UserI)) { |
423 | BasicBlock *UnwindDest = getCleanupRetUnwindDest(CleanupPad: InnerCleanupPad); |
424 | // If a nested cleanup pad reports a null unwind destination and the |
425 | // enclosing catch pad doesn't it must be post-dominated by an |
426 | // unreachable instruction. |
427 | if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) |
428 | calculateCXXStateNumbers(FuncInfo, FirstNonPHI: UserI, ParentState: CatchLow); |
429 | } |
430 | } |
431 | } |
432 | int CatchHigh = FuncInfo.getLastStateNumber(); |
433 | // Now child Catches are processed, update CatchHigh |
434 | if (IsPreOrder) |
435 | FuncInfo.TryBlockMap[TBMEIdx].CatchHigh = CatchHigh; |
436 | else // PostOrder |
437 | addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers); |
438 | |
439 | LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n'); |
440 | LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh |
441 | << '\n'); |
442 | LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh |
443 | << '\n'); |
444 | } else { |
445 | auto *CleanupPad = cast<CleanupPadInst>(Val: FirstNonPHI); |
446 | |
447 | // It's possible for a cleanup to be visited twice: it might have multiple |
448 | // cleanupret instructions. |
449 | if (FuncInfo.EHPadStateMap.count(Val: CleanupPad)) |
450 | return; |
451 | |
452 | int CleanupState = addUnwindMapEntry(FuncInfo, ToState: ParentState, BB); |
453 | FuncInfo.EHPadStateMap[CleanupPad] = CleanupState; |
454 | LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB " |
455 | << BB->getName() << '\n'); |
456 | for (const BasicBlock *PredBlock : predecessors(BB)) { |
457 | if ((PredBlock = getEHPadFromPredecessor(BB: PredBlock, |
458 | ParentPad: CleanupPad->getParentPad()))) { |
459 | calculateCXXStateNumbers(FuncInfo, FirstNonPHI: PredBlock->getFirstNonPHI(), |
460 | ParentState: CleanupState); |
461 | } |
462 | } |
463 | for (const User *U : CleanupPad->users()) { |
464 | const auto *UserI = cast<Instruction>(Val: U); |
465 | if (UserI->isEHPad()) |
466 | report_fatal_error(reason: "Cleanup funclets for the MSVC++ personality cannot " |
467 | "contain exceptional actions" ); |
468 | } |
469 | } |
470 | } |
471 | |
472 | static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState, |
473 | const Function *Filter, const BasicBlock *Handler) { |
474 | SEHUnwindMapEntry Entry; |
475 | Entry.ToState = ParentState; |
476 | Entry.IsFinally = false; |
477 | Entry.Filter = Filter; |
478 | Entry.Handler = Handler; |
479 | FuncInfo.SEHUnwindMap.push_back(Elt: Entry); |
480 | return FuncInfo.SEHUnwindMap.size() - 1; |
481 | } |
482 | |
483 | static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState, |
484 | const BasicBlock *Handler) { |
485 | SEHUnwindMapEntry Entry; |
486 | Entry.ToState = ParentState; |
487 | Entry.IsFinally = true; |
488 | Entry.Filter = nullptr; |
489 | Entry.Handler = Handler; |
490 | FuncInfo.SEHUnwindMap.push_back(Elt: Entry); |
491 | return FuncInfo.SEHUnwindMap.size() - 1; |
492 | } |
493 | |
494 | // Starting from a EHPad, Backward walk through control-flow graph |
495 | // to produce two primary outputs: |
496 | // FuncInfo.EHPadStateMap[] and FuncInfo.SEHUnwindMap[] |
497 | static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo, |
498 | const Instruction *FirstNonPHI, |
499 | int ParentState) { |
500 | const BasicBlock *BB = FirstNonPHI->getParent(); |
501 | assert(BB->isEHPad() && "no a funclet!" ); |
502 | |
503 | if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: FirstNonPHI)) { |
504 | assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 && |
505 | "shouldn't revist catch funclets!" ); |
506 | |
507 | // Extract the filter function and the __except basic block and create a |
508 | // state for them. |
509 | assert(CatchSwitch->getNumHandlers() == 1 && |
510 | "SEH doesn't have multiple handlers per __try" ); |
511 | const auto *CatchPad = |
512 | cast<CatchPadInst>(Val: (*CatchSwitch->handler_begin())->getFirstNonPHI()); |
513 | const BasicBlock *CatchPadBB = CatchPad->getParent(); |
514 | const Constant *FilterOrNull = |
515 | cast<Constant>(Val: CatchPad->getArgOperand(i: 0)->stripPointerCasts()); |
516 | const Function *Filter = dyn_cast<Function>(Val: FilterOrNull); |
517 | assert((Filter || FilterOrNull->isNullValue()) && |
518 | "unexpected filter value" ); |
519 | int TryState = addSEHExcept(FuncInfo, ParentState, Filter, Handler: CatchPadBB); |
520 | |
521 | // Everything in the __try block uses TryState as its parent state. |
522 | FuncInfo.EHPadStateMap[CatchSwitch] = TryState; |
523 | FuncInfo.EHPadStateMap[CatchPad] = TryState; |
524 | LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB " |
525 | << CatchPadBB->getName() << '\n'); |
526 | for (const BasicBlock *PredBlock : predecessors(BB)) |
527 | if ((PredBlock = getEHPadFromPredecessor(BB: PredBlock, |
528 | ParentPad: CatchSwitch->getParentPad()))) |
529 | calculateSEHStateNumbers(FuncInfo, FirstNonPHI: PredBlock->getFirstNonPHI(), |
530 | ParentState: TryState); |
531 | |
532 | // Everything in the __except block unwinds to ParentState, just like code |
533 | // outside the __try. |
534 | for (const User *U : CatchPad->users()) { |
535 | const auto *UserI = cast<Instruction>(Val: U); |
536 | if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(Val: UserI)) { |
537 | BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest(); |
538 | if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) |
539 | calculateSEHStateNumbers(FuncInfo, FirstNonPHI: UserI, ParentState); |
540 | } |
541 | if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(Val: UserI)) { |
542 | BasicBlock *UnwindDest = getCleanupRetUnwindDest(CleanupPad: InnerCleanupPad); |
543 | // If a nested cleanup pad reports a null unwind destination and the |
544 | // enclosing catch pad doesn't it must be post-dominated by an |
545 | // unreachable instruction. |
546 | if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest()) |
547 | calculateSEHStateNumbers(FuncInfo, FirstNonPHI: UserI, ParentState); |
548 | } |
549 | } |
550 | } else { |
551 | auto *CleanupPad = cast<CleanupPadInst>(Val: FirstNonPHI); |
552 | |
553 | // It's possible for a cleanup to be visited twice: it might have multiple |
554 | // cleanupret instructions. |
555 | if (FuncInfo.EHPadStateMap.count(Val: CleanupPad)) |
556 | return; |
557 | |
558 | int CleanupState = addSEHFinally(FuncInfo, ParentState, Handler: BB); |
559 | FuncInfo.EHPadStateMap[CleanupPad] = CleanupState; |
560 | LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB " |
561 | << BB->getName() << '\n'); |
562 | for (const BasicBlock *PredBlock : predecessors(BB)) |
563 | if ((PredBlock = |
564 | getEHPadFromPredecessor(BB: PredBlock, ParentPad: CleanupPad->getParentPad()))) |
565 | calculateSEHStateNumbers(FuncInfo, FirstNonPHI: PredBlock->getFirstNonPHI(), |
566 | ParentState: CleanupState); |
567 | for (const User *U : CleanupPad->users()) { |
568 | const auto *UserI = cast<Instruction>(Val: U); |
569 | if (UserI->isEHPad()) |
570 | report_fatal_error(reason: "Cleanup funclets for the SEH personality cannot " |
571 | "contain exceptional actions" ); |
572 | } |
573 | } |
574 | } |
575 | |
576 | static bool isTopLevelPadForMSVC(const Instruction *EHPad) { |
577 | if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: EHPad)) |
578 | return isa<ConstantTokenNone>(Val: CatchSwitch->getParentPad()) && |
579 | CatchSwitch->unwindsToCaller(); |
580 | if (auto *CleanupPad = dyn_cast<CleanupPadInst>(Val: EHPad)) |
581 | return isa<ConstantTokenNone>(Val: CleanupPad->getParentPad()) && |
582 | getCleanupRetUnwindDest(CleanupPad) == nullptr; |
583 | if (isa<CatchPadInst>(Val: EHPad)) |
584 | return false; |
585 | llvm_unreachable("unexpected EHPad!" ); |
586 | } |
587 | |
588 | void llvm::calculateSEHStateNumbers(const Function *Fn, |
589 | WinEHFuncInfo &FuncInfo) { |
590 | // Don't compute state numbers twice. |
591 | if (!FuncInfo.SEHUnwindMap.empty()) |
592 | return; |
593 | |
594 | for (const BasicBlock &BB : *Fn) { |
595 | if (!BB.isEHPad()) |
596 | continue; |
597 | const Instruction *FirstNonPHI = BB.getFirstNonPHI(); |
598 | if (!isTopLevelPadForMSVC(EHPad: FirstNonPHI)) |
599 | continue; |
600 | ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, ParentState: -1); |
601 | } |
602 | |
603 | calculateStateNumbersForInvokes(Fn, FuncInfo); |
604 | |
605 | bool IsEHa = Fn->getParent()->getModuleFlag(Key: "eh-asynch" ); |
606 | if (IsEHa) { |
607 | const BasicBlock *EntryBB = &(Fn->getEntryBlock()); |
608 | calculateSEHStateForAsynchEH(BB: EntryBB, State: -1, EHInfo&: FuncInfo); |
609 | } |
610 | } |
611 | |
612 | void llvm::calculateWinCXXEHStateNumbers(const Function *Fn, |
613 | WinEHFuncInfo &FuncInfo) { |
614 | // Return if it's already been done. |
615 | if (!FuncInfo.EHPadStateMap.empty()) |
616 | return; |
617 | |
618 | for (const BasicBlock &BB : *Fn) { |
619 | if (!BB.isEHPad()) |
620 | continue; |
621 | const Instruction *FirstNonPHI = BB.getFirstNonPHI(); |
622 | if (!isTopLevelPadForMSVC(EHPad: FirstNonPHI)) |
623 | continue; |
624 | calculateCXXStateNumbers(FuncInfo, FirstNonPHI, ParentState: -1); |
625 | } |
626 | |
627 | calculateStateNumbersForInvokes(Fn, FuncInfo); |
628 | |
629 | bool IsEHa = Fn->getParent()->getModuleFlag(Key: "eh-asynch" ); |
630 | if (IsEHa) { |
631 | const BasicBlock *EntryBB = &(Fn->getEntryBlock()); |
632 | calculateCXXStateForAsynchEH(BB: EntryBB, State: -1, EHInfo&: FuncInfo); |
633 | } |
634 | } |
635 | |
636 | static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState, |
637 | int TryParentState, ClrHandlerType HandlerType, |
638 | uint32_t TypeToken, const BasicBlock *Handler) { |
639 | ClrEHUnwindMapEntry Entry; |
640 | Entry.HandlerParentState = HandlerParentState; |
641 | Entry.TryParentState = TryParentState; |
642 | Entry.Handler = Handler; |
643 | Entry.HandlerType = HandlerType; |
644 | Entry.TypeToken = TypeToken; |
645 | FuncInfo.ClrEHUnwindMap.push_back(Elt: Entry); |
646 | return FuncInfo.ClrEHUnwindMap.size() - 1; |
647 | } |
648 | |
649 | void llvm::calculateClrEHStateNumbers(const Function *Fn, |
650 | WinEHFuncInfo &FuncInfo) { |
651 | // Return if it's already been done. |
652 | if (!FuncInfo.EHPadStateMap.empty()) |
653 | return; |
654 | |
655 | // This numbering assigns one state number to each catchpad and cleanuppad. |
656 | // It also computes two tree-like relations over states: |
657 | // 1) Each state has a "HandlerParentState", which is the state of the next |
658 | // outer handler enclosing this state's handler (same as nearest ancestor |
659 | // per the ParentPad linkage on EH pads, but skipping over catchswitches). |
660 | // 2) Each state has a "TryParentState", which: |
661 | // a) for a catchpad that's not the last handler on its catchswitch, is |
662 | // the state of the next catchpad on that catchswitch |
663 | // b) for all other pads, is the state of the pad whose try region is the |
664 | // next outer try region enclosing this state's try region. The "try |
665 | // regions are not present as such in the IR, but will be inferred |
666 | // based on the placement of invokes and pads which reach each other |
667 | // by exceptional exits |
668 | // Catchswitches do not get their own states, but each gets mapped to the |
669 | // state of its first catchpad. |
670 | |
671 | // Step one: walk down from outermost to innermost funclets, assigning each |
672 | // catchpad and cleanuppad a state number. Add an entry to the |
673 | // ClrEHUnwindMap for each state, recording its HandlerParentState and |
674 | // handler attributes. Record the TryParentState as well for each catchpad |
675 | // that's not the last on its catchswitch, but initialize all other entries' |
676 | // TryParentStates to a sentinel -1 value that the next pass will update. |
677 | |
678 | // Seed a worklist with pads that have no parent. |
679 | SmallVector<std::pair<const Instruction *, int>, 8> Worklist; |
680 | for (const BasicBlock &BB : *Fn) { |
681 | const Instruction *FirstNonPHI = BB.getFirstNonPHI(); |
682 | const Value *ParentPad; |
683 | if (const auto *CPI = dyn_cast<CleanupPadInst>(Val: FirstNonPHI)) |
684 | ParentPad = CPI->getParentPad(); |
685 | else if (const auto *CSI = dyn_cast<CatchSwitchInst>(Val: FirstNonPHI)) |
686 | ParentPad = CSI->getParentPad(); |
687 | else |
688 | continue; |
689 | if (isa<ConstantTokenNone>(Val: ParentPad)) |
690 | Worklist.emplace_back(Args&: FirstNonPHI, Args: -1); |
691 | } |
692 | |
693 | // Use the worklist to visit all pads, from outer to inner. Record |
694 | // HandlerParentState for all pads. Record TryParentState only for catchpads |
695 | // that aren't the last on their catchswitch (setting all other entries' |
696 | // TryParentStates to an initial value of -1). This loop is also responsible |
697 | // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and |
698 | // catchswitches. |
699 | while (!Worklist.empty()) { |
700 | const Instruction *Pad; |
701 | int HandlerParentState; |
702 | std::tie(args&: Pad, args&: HandlerParentState) = Worklist.pop_back_val(); |
703 | |
704 | if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Val: Pad)) { |
705 | // Create the entry for this cleanup with the appropriate handler |
706 | // properties. Finally and fault handlers are distinguished by arity. |
707 | ClrHandlerType HandlerType = |
708 | (Cleanup->arg_size() ? ClrHandlerType::Fault |
709 | : ClrHandlerType::Finally); |
710 | int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, TryParentState: -1, |
711 | HandlerType, TypeToken: 0, Handler: Pad->getParent()); |
712 | // Queue any child EH pads on the worklist. |
713 | for (const User *U : Cleanup->users()) |
714 | if (const auto *I = dyn_cast<Instruction>(Val: U)) |
715 | if (I->isEHPad()) |
716 | Worklist.emplace_back(Args&: I, Args&: CleanupState); |
717 | // Remember this pad's state. |
718 | FuncInfo.EHPadStateMap[Cleanup] = CleanupState; |
719 | } else { |
720 | // Walk the handlers of this catchswitch in reverse order since all but |
721 | // the last need to set the following one as its TryParentState. |
722 | const auto *CatchSwitch = cast<CatchSwitchInst>(Val: Pad); |
723 | int CatchState = -1, FollowerState = -1; |
724 | SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers()); |
725 | for (const BasicBlock *CatchBlock : llvm::reverse(C&: CatchBlocks)) { |
726 | // Create the entry for this catch with the appropriate handler |
727 | // properties. |
728 | const auto *Catch = cast<CatchPadInst>(Val: CatchBlock->getFirstNonPHI()); |
729 | uint32_t TypeToken = static_cast<uint32_t>( |
730 | cast<ConstantInt>(Val: Catch->getArgOperand(i: 0))->getZExtValue()); |
731 | CatchState = |
732 | addClrEHHandler(FuncInfo, HandlerParentState, TryParentState: FollowerState, |
733 | HandlerType: ClrHandlerType::Catch, TypeToken, Handler: CatchBlock); |
734 | // Queue any child EH pads on the worklist. |
735 | for (const User *U : Catch->users()) |
736 | if (const auto *I = dyn_cast<Instruction>(Val: U)) |
737 | if (I->isEHPad()) |
738 | Worklist.emplace_back(Args&: I, Args&: CatchState); |
739 | // Remember this catch's state. |
740 | FuncInfo.EHPadStateMap[Catch] = CatchState; |
741 | FollowerState = CatchState; |
742 | } |
743 | // Associate the catchswitch with the state of its first catch. |
744 | assert(CatchSwitch->getNumHandlers()); |
745 | FuncInfo.EHPadStateMap[CatchSwitch] = CatchState; |
746 | } |
747 | } |
748 | |
749 | // Step two: record the TryParentState of each state. For cleanuppads that |
750 | // don't have cleanuprets, we may need to infer this from their child pads, |
751 | // so visit pads in descendant-most to ancestor-most order. |
752 | for (ClrEHUnwindMapEntry &Entry : llvm::reverse(C&: FuncInfo.ClrEHUnwindMap)) { |
753 | const Instruction *Pad = |
754 | cast<const BasicBlock *>(Val&: Entry.Handler)->getFirstNonPHI(); |
755 | // For most pads, the TryParentState is the state associated with the |
756 | // unwind dest of exceptional exits from it. |
757 | const BasicBlock *UnwindDest; |
758 | if (const auto *Catch = dyn_cast<CatchPadInst>(Val: Pad)) { |
759 | // If a catch is not the last in its catchswitch, its TryParentState is |
760 | // the state associated with the next catch in the switch, even though |
761 | // that's not the unwind dest of exceptions escaping the catch. Those |
762 | // cases were already assigned a TryParentState in the first pass, so |
763 | // skip them. |
764 | if (Entry.TryParentState != -1) |
765 | continue; |
766 | // Otherwise, get the unwind dest from the catchswitch. |
767 | UnwindDest = Catch->getCatchSwitch()->getUnwindDest(); |
768 | } else { |
769 | const auto *Cleanup = cast<CleanupPadInst>(Val: Pad); |
770 | UnwindDest = nullptr; |
771 | for (const User *U : Cleanup->users()) { |
772 | if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(Val: U)) { |
773 | // Common and unambiguous case -- cleanupret indicates cleanup's |
774 | // unwind dest. |
775 | UnwindDest = CleanupRet->getUnwindDest(); |
776 | break; |
777 | } |
778 | |
779 | // Get an unwind dest for the user |
780 | const BasicBlock *UserUnwindDest = nullptr; |
781 | if (auto *Invoke = dyn_cast<InvokeInst>(Val: U)) { |
782 | UserUnwindDest = Invoke->getUnwindDest(); |
783 | } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: U)) { |
784 | UserUnwindDest = CatchSwitch->getUnwindDest(); |
785 | } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(Val: U)) { |
786 | int UserState = FuncInfo.EHPadStateMap[ChildCleanup]; |
787 | int UserUnwindState = |
788 | FuncInfo.ClrEHUnwindMap[UserState].TryParentState; |
789 | if (UserUnwindState != -1) |
790 | UserUnwindDest = cast<const BasicBlock *>( |
791 | Val&: FuncInfo.ClrEHUnwindMap[UserUnwindState].Handler); |
792 | } |
793 | |
794 | // Not having an unwind dest for this user might indicate that it |
795 | // doesn't unwind, so can't be taken as proof that the cleanup itself |
796 | // may unwind to caller (see e.g. SimplifyUnreachable and |
797 | // RemoveUnwindEdge). |
798 | if (!UserUnwindDest) |
799 | continue; |
800 | |
801 | // Now we have an unwind dest for the user, but we need to see if it |
802 | // unwinds all the way out of the cleanup or if it stays within it. |
803 | const Instruction *UserUnwindPad = UserUnwindDest->getFirstNonPHI(); |
804 | const Value *UserUnwindParent; |
805 | if (auto *CSI = dyn_cast<CatchSwitchInst>(Val: UserUnwindPad)) |
806 | UserUnwindParent = CSI->getParentPad(); |
807 | else |
808 | UserUnwindParent = |
809 | cast<CleanupPadInst>(Val: UserUnwindPad)->getParentPad(); |
810 | |
811 | // The unwind stays within the cleanup iff it targets a child of the |
812 | // cleanup. |
813 | if (UserUnwindParent == Cleanup) |
814 | continue; |
815 | |
816 | // This unwind exits the cleanup, so its dest is the cleanup's dest. |
817 | UnwindDest = UserUnwindDest; |
818 | break; |
819 | } |
820 | } |
821 | |
822 | // Record the state of the unwind dest as the TryParentState. |
823 | int UnwindDestState; |
824 | |
825 | // If UnwindDest is null at this point, either the pad in question can |
826 | // be exited by unwind to caller, or it cannot be exited by unwind. In |
827 | // either case, reporting such cases as unwinding to caller is correct. |
828 | // This can lead to EH tables that "look strange" -- if this pad's is in |
829 | // a parent funclet which has other children that do unwind to an enclosing |
830 | // pad, the try region for this pad will be missing the "duplicate" EH |
831 | // clause entries that you'd expect to see covering the whole parent. That |
832 | // should be benign, since the unwind never actually happens. If it were |
833 | // an issue, we could add a subsequent pass that pushes unwind dests down |
834 | // from parents that have them to children that appear to unwind to caller. |
835 | if (!UnwindDest) { |
836 | UnwindDestState = -1; |
837 | } else { |
838 | UnwindDestState = FuncInfo.EHPadStateMap[UnwindDest->getFirstNonPHI()]; |
839 | } |
840 | |
841 | Entry.TryParentState = UnwindDestState; |
842 | } |
843 | |
844 | // Step three: transfer information from pads to invokes. |
845 | calculateStateNumbersForInvokes(Fn, FuncInfo); |
846 | } |
847 | |
848 | void WinEHPrepareImpl::colorFunclets(Function &F) { |
849 | BlockColors = colorEHFunclets(F); |
850 | |
851 | // Invert the map from BB to colors to color to BBs. |
852 | for (BasicBlock &BB : F) { |
853 | ColorVector &Colors = BlockColors[&BB]; |
854 | for (BasicBlock *Color : Colors) |
855 | FuncletBlocks[Color].push_back(x: &BB); |
856 | } |
857 | } |
858 | |
859 | void WinEHPrepareImpl::demotePHIsOnFunclets(Function &F, |
860 | bool DemoteCatchSwitchPHIOnly) { |
861 | // Strip PHI nodes off of EH pads. |
862 | SmallVector<PHINode *, 16> PHINodes; |
863 | for (BasicBlock &BB : make_early_inc_range(Range&: F)) { |
864 | if (!BB.isEHPad()) |
865 | continue; |
866 | if (DemoteCatchSwitchPHIOnly && !isa<CatchSwitchInst>(Val: BB.getFirstNonPHI())) |
867 | continue; |
868 | |
869 | for (Instruction &I : make_early_inc_range(Range&: BB)) { |
870 | auto *PN = dyn_cast<PHINode>(Val: &I); |
871 | // Stop at the first non-PHI. |
872 | if (!PN) |
873 | break; |
874 | |
875 | AllocaInst *SpillSlot = insertPHILoads(PN, F); |
876 | if (SpillSlot) |
877 | insertPHIStores(OriginalPHI: PN, SpillSlot); |
878 | |
879 | PHINodes.push_back(Elt: PN); |
880 | } |
881 | } |
882 | |
883 | for (auto *PN : PHINodes) { |
884 | // There may be lingering uses on other EH PHIs being removed |
885 | PN->replaceAllUsesWith(V: PoisonValue::get(T: PN->getType())); |
886 | PN->eraseFromParent(); |
887 | } |
888 | } |
889 | |
890 | void WinEHPrepareImpl::cloneCommonBlocks(Function &F) { |
891 | // We need to clone all blocks which belong to multiple funclets. Values are |
892 | // remapped throughout the funclet to propagate both the new instructions |
893 | // *and* the new basic blocks themselves. |
894 | for (auto &Funclets : FuncletBlocks) { |
895 | BasicBlock *FuncletPadBB = Funclets.first; |
896 | std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second; |
897 | Value *FuncletToken; |
898 | if (FuncletPadBB == &F.getEntryBlock()) |
899 | FuncletToken = ConstantTokenNone::get(Context&: F.getContext()); |
900 | else |
901 | FuncletToken = FuncletPadBB->getFirstNonPHI(); |
902 | |
903 | std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone; |
904 | ValueToValueMapTy VMap; |
905 | for (BasicBlock *BB : BlocksInFunclet) { |
906 | ColorVector &ColorsForBB = BlockColors[BB]; |
907 | // We don't need to do anything if the block is monochromatic. |
908 | size_t NumColorsForBB = ColorsForBB.size(); |
909 | if (NumColorsForBB == 1) |
910 | continue; |
911 | |
912 | DEBUG_WITH_TYPE("win-eh-prepare-coloring" , |
913 | dbgs() << " Cloning block \'" << BB->getName() |
914 | << "\' for funclet \'" << FuncletPadBB->getName() |
915 | << "\'.\n" ); |
916 | |
917 | // Create a new basic block and copy instructions into it! |
918 | BasicBlock *CBB = |
919 | CloneBasicBlock(BB, VMap, NameSuffix: Twine(".for." , FuncletPadBB->getName())); |
920 | // Insert the clone immediately after the original to ensure determinism |
921 | // and to keep the same relative ordering of any funclet's blocks. |
922 | CBB->insertInto(Parent: &F, InsertBefore: BB->getNextNode()); |
923 | |
924 | // Add basic block mapping. |
925 | VMap[BB] = CBB; |
926 | |
927 | // Record delta operations that we need to perform to our color mappings. |
928 | Orig2Clone.emplace_back(args&: BB, args&: CBB); |
929 | } |
930 | |
931 | // If nothing was cloned, we're done cloning in this funclet. |
932 | if (Orig2Clone.empty()) |
933 | continue; |
934 | |
935 | // Update our color mappings to reflect that one block has lost a color and |
936 | // another has gained a color. |
937 | for (auto &BBMapping : Orig2Clone) { |
938 | BasicBlock *OldBlock = BBMapping.first; |
939 | BasicBlock *NewBlock = BBMapping.second; |
940 | |
941 | BlocksInFunclet.push_back(x: NewBlock); |
942 | ColorVector &NewColors = BlockColors[NewBlock]; |
943 | assert(NewColors.empty() && "A new block should only have one color!" ); |
944 | NewColors.push_back(NewVal: FuncletPadBB); |
945 | |
946 | DEBUG_WITH_TYPE("win-eh-prepare-coloring" , |
947 | dbgs() << " Assigned color \'" << FuncletPadBB->getName() |
948 | << "\' to block \'" << NewBlock->getName() |
949 | << "\'.\n" ); |
950 | |
951 | llvm::erase(C&: BlocksInFunclet, V: OldBlock); |
952 | ColorVector &OldColors = BlockColors[OldBlock]; |
953 | llvm::erase(C&: OldColors, V: FuncletPadBB); |
954 | |
955 | DEBUG_WITH_TYPE("win-eh-prepare-coloring" , |
956 | dbgs() << " Removed color \'" << FuncletPadBB->getName() |
957 | << "\' from block \'" << OldBlock->getName() |
958 | << "\'.\n" ); |
959 | } |
960 | |
961 | // Loop over all of the instructions in this funclet, fixing up operand |
962 | // references as we go. This uses VMap to do all the hard work. |
963 | for (BasicBlock *BB : BlocksInFunclet) |
964 | // Loop over all instructions, fixing each one as we find it... |
965 | for (Instruction &I : *BB) |
966 | RemapInstruction(I: &I, VM&: VMap, |
967 | Flags: RF_IgnoreMissingLocals | RF_NoModuleLevelChanges); |
968 | |
969 | // Catchrets targeting cloned blocks need to be updated separately from |
970 | // the loop above because they are not in the current funclet. |
971 | SmallVector<CatchReturnInst *, 2> FixupCatchrets; |
972 | for (auto &BBMapping : Orig2Clone) { |
973 | BasicBlock *OldBlock = BBMapping.first; |
974 | BasicBlock *NewBlock = BBMapping.second; |
975 | |
976 | FixupCatchrets.clear(); |
977 | for (BasicBlock *Pred : predecessors(BB: OldBlock)) |
978 | if (auto *CatchRet = dyn_cast<CatchReturnInst>(Val: Pred->getTerminator())) |
979 | if (CatchRet->getCatchSwitchParentPad() == FuncletToken) |
980 | FixupCatchrets.push_back(Elt: CatchRet); |
981 | |
982 | for (CatchReturnInst *CatchRet : FixupCatchrets) |
983 | CatchRet->setSuccessor(NewBlock); |
984 | } |
985 | |
986 | auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) { |
987 | unsigned NumPreds = PN->getNumIncomingValues(); |
988 | for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd; |
989 | ++PredIdx) { |
990 | BasicBlock *IncomingBlock = PN->getIncomingBlock(i: PredIdx); |
991 | bool EdgeTargetsFunclet; |
992 | if (auto *CRI = |
993 | dyn_cast<CatchReturnInst>(Val: IncomingBlock->getTerminator())) { |
994 | EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken); |
995 | } else { |
996 | ColorVector &IncomingColors = BlockColors[IncomingBlock]; |
997 | assert(!IncomingColors.empty() && "Block not colored!" ); |
998 | assert((IncomingColors.size() == 1 || |
999 | !llvm::is_contained(IncomingColors, FuncletPadBB)) && |
1000 | "Cloning should leave this funclet's blocks monochromatic" ); |
1001 | EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB); |
1002 | } |
1003 | if (IsForOldBlock != EdgeTargetsFunclet) |
1004 | continue; |
1005 | PN->removeIncomingValue(BB: IncomingBlock, /*DeletePHIIfEmpty=*/false); |
1006 | // Revisit the next entry. |
1007 | --PredIdx; |
1008 | --PredEnd; |
1009 | } |
1010 | }; |
1011 | |
1012 | for (auto &BBMapping : Orig2Clone) { |
1013 | BasicBlock *OldBlock = BBMapping.first; |
1014 | BasicBlock *NewBlock = BBMapping.second; |
1015 | for (PHINode &OldPN : OldBlock->phis()) { |
1016 | UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true); |
1017 | } |
1018 | for (PHINode &NewPN : NewBlock->phis()) { |
1019 | UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false); |
1020 | } |
1021 | } |
1022 | |
1023 | // Check to see if SuccBB has PHI nodes. If so, we need to add entries to |
1024 | // the PHI nodes for NewBB now. |
1025 | for (auto &BBMapping : Orig2Clone) { |
1026 | BasicBlock *OldBlock = BBMapping.first; |
1027 | BasicBlock *NewBlock = BBMapping.second; |
1028 | for (BasicBlock *SuccBB : successors(BB: NewBlock)) { |
1029 | for (PHINode &SuccPN : SuccBB->phis()) { |
1030 | // Ok, we have a PHI node. Figure out what the incoming value was for |
1031 | // the OldBlock. |
1032 | int OldBlockIdx = SuccPN.getBasicBlockIndex(BB: OldBlock); |
1033 | if (OldBlockIdx == -1) |
1034 | break; |
1035 | Value *IV = SuccPN.getIncomingValue(i: OldBlockIdx); |
1036 | |
1037 | // Remap the value if necessary. |
1038 | if (auto *Inst = dyn_cast<Instruction>(Val: IV)) { |
1039 | ValueToValueMapTy::iterator I = VMap.find(Val: Inst); |
1040 | if (I != VMap.end()) |
1041 | IV = I->second; |
1042 | } |
1043 | |
1044 | SuccPN.addIncoming(V: IV, BB: NewBlock); |
1045 | } |
1046 | } |
1047 | } |
1048 | |
1049 | for (ValueToValueMapTy::value_type VT : VMap) { |
1050 | // If there were values defined in BB that are used outside the funclet, |
1051 | // then we now have to update all uses of the value to use either the |
1052 | // original value, the cloned value, or some PHI derived value. This can |
1053 | // require arbitrary PHI insertion, of which we are prepared to do, clean |
1054 | // these up now. |
1055 | SmallVector<Use *, 16> UsesToRename; |
1056 | |
1057 | auto *OldI = dyn_cast<Instruction>(Val: const_cast<Value *>(VT.first)); |
1058 | if (!OldI) |
1059 | continue; |
1060 | auto *NewI = cast<Instruction>(Val&: VT.second); |
1061 | // Scan all uses of this instruction to see if it is used outside of its |
1062 | // funclet, and if so, record them in UsesToRename. |
1063 | for (Use &U : OldI->uses()) { |
1064 | Instruction *UserI = cast<Instruction>(Val: U.getUser()); |
1065 | BasicBlock *UserBB = UserI->getParent(); |
1066 | ColorVector &ColorsForUserBB = BlockColors[UserBB]; |
1067 | assert(!ColorsForUserBB.empty()); |
1068 | if (ColorsForUserBB.size() > 1 || |
1069 | *ColorsForUserBB.begin() != FuncletPadBB) |
1070 | UsesToRename.push_back(Elt: &U); |
1071 | } |
1072 | |
1073 | // If there are no uses outside the block, we're done with this |
1074 | // instruction. |
1075 | if (UsesToRename.empty()) |
1076 | continue; |
1077 | |
1078 | // We found a use of OldI outside of the funclet. Rename all uses of OldI |
1079 | // that are outside its funclet to be uses of the appropriate PHI node |
1080 | // etc. |
1081 | SSAUpdater SSAUpdate; |
1082 | SSAUpdate.Initialize(Ty: OldI->getType(), Name: OldI->getName()); |
1083 | SSAUpdate.AddAvailableValue(BB: OldI->getParent(), V: OldI); |
1084 | SSAUpdate.AddAvailableValue(BB: NewI->getParent(), V: NewI); |
1085 | |
1086 | while (!UsesToRename.empty()) |
1087 | SSAUpdate.RewriteUseAfterInsertions(U&: *UsesToRename.pop_back_val()); |
1088 | } |
1089 | } |
1090 | } |
1091 | |
1092 | void WinEHPrepareImpl::removeImplausibleInstructions(Function &F) { |
1093 | // Remove implausible terminators and replace them with UnreachableInst. |
1094 | for (auto &Funclet : FuncletBlocks) { |
1095 | BasicBlock *FuncletPadBB = Funclet.first; |
1096 | std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second; |
1097 | Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI(); |
1098 | auto *FuncletPad = dyn_cast<FuncletPadInst>(Val: FirstNonPHI); |
1099 | auto *CatchPad = dyn_cast_or_null<CatchPadInst>(Val: FuncletPad); |
1100 | auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(Val: FuncletPad); |
1101 | |
1102 | for (BasicBlock *BB : BlocksInFunclet) { |
1103 | for (Instruction &I : *BB) { |
1104 | auto *CB = dyn_cast<CallBase>(Val: &I); |
1105 | if (!CB) |
1106 | continue; |
1107 | |
1108 | Value *FuncletBundleOperand = nullptr; |
1109 | if (auto BU = CB->getOperandBundle(ID: LLVMContext::OB_funclet)) |
1110 | FuncletBundleOperand = BU->Inputs.front(); |
1111 | |
1112 | if (FuncletBundleOperand == FuncletPad) |
1113 | continue; |
1114 | |
1115 | // Skip call sites which are nounwind intrinsics or inline asm. |
1116 | auto *CalledFn = |
1117 | dyn_cast<Function>(Val: CB->getCalledOperand()->stripPointerCasts()); |
1118 | if (CalledFn && ((CalledFn->isIntrinsic() && CB->doesNotThrow()) || |
1119 | CB->isInlineAsm())) |
1120 | continue; |
1121 | |
1122 | // This call site was not part of this funclet, remove it. |
1123 | if (isa<InvokeInst>(Val: CB)) { |
1124 | // Remove the unwind edge if it was an invoke. |
1125 | removeUnwindEdge(BB); |
1126 | // Get a pointer to the new call. |
1127 | BasicBlock::iterator CallI = |
1128 | std::prev(x: BB->getTerminator()->getIterator()); |
1129 | auto *CI = cast<CallInst>(Val: &*CallI); |
1130 | changeToUnreachable(I: CI); |
1131 | } else { |
1132 | changeToUnreachable(I: &I); |
1133 | } |
1134 | |
1135 | // There are no more instructions in the block (except for unreachable), |
1136 | // we are done. |
1137 | break; |
1138 | } |
1139 | |
1140 | Instruction *TI = BB->getTerminator(); |
1141 | // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst. |
1142 | bool IsUnreachableRet = isa<ReturnInst>(Val: TI) && FuncletPad; |
1143 | // The token consumed by a CatchReturnInst must match the funclet token. |
1144 | bool IsUnreachableCatchret = false; |
1145 | if (auto *CRI = dyn_cast<CatchReturnInst>(Val: TI)) |
1146 | IsUnreachableCatchret = CRI->getCatchPad() != CatchPad; |
1147 | // The token consumed by a CleanupReturnInst must match the funclet token. |
1148 | bool IsUnreachableCleanupret = false; |
1149 | if (auto *CRI = dyn_cast<CleanupReturnInst>(Val: TI)) |
1150 | IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad; |
1151 | if (IsUnreachableRet || IsUnreachableCatchret || |
1152 | IsUnreachableCleanupret) { |
1153 | changeToUnreachable(I: TI); |
1154 | } else if (isa<InvokeInst>(Val: TI)) { |
1155 | if (Personality == EHPersonality::MSVC_CXX && CleanupPad) { |
1156 | // Invokes within a cleanuppad for the MSVC++ personality never |
1157 | // transfer control to their unwind edge: the personality will |
1158 | // terminate the program. |
1159 | removeUnwindEdge(BB); |
1160 | } |
1161 | } |
1162 | } |
1163 | } |
1164 | } |
1165 | |
1166 | void WinEHPrepareImpl::cleanupPreparedFunclets(Function &F) { |
1167 | // Clean-up some of the mess we made by removing useles PHI nodes, trivial |
1168 | // branches, etc. |
1169 | for (BasicBlock &BB : llvm::make_early_inc_range(Range&: F)) { |
1170 | SimplifyInstructionsInBlock(BB: &BB); |
1171 | ConstantFoldTerminator(BB: &BB, /*DeleteDeadConditions=*/true); |
1172 | MergeBlockIntoPredecessor(BB: &BB); |
1173 | } |
1174 | |
1175 | // We might have some unreachable blocks after cleaning up some impossible |
1176 | // control flow. |
1177 | removeUnreachableBlocks(F); |
1178 | } |
1179 | |
1180 | #ifndef NDEBUG |
1181 | void WinEHPrepareImpl::verifyPreparedFunclets(Function &F) { |
1182 | for (BasicBlock &BB : F) { |
1183 | size_t NumColors = BlockColors[&BB].size(); |
1184 | assert(NumColors == 1 && "Expected monochromatic BB!" ); |
1185 | if (NumColors == 0) |
1186 | report_fatal_error("Uncolored BB!" ); |
1187 | if (NumColors > 1) |
1188 | report_fatal_error("Multicolor BB!" ); |
1189 | assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) && |
1190 | "EH Pad still has a PHI!" ); |
1191 | } |
1192 | } |
1193 | #endif |
1194 | |
1195 | bool WinEHPrepareImpl::prepareExplicitEH(Function &F) { |
1196 | // Remove unreachable blocks. It is not valuable to assign them a color and |
1197 | // their existence can trick us into thinking values are alive when they are |
1198 | // not. |
1199 | removeUnreachableBlocks(F); |
1200 | |
1201 | // Determine which blocks are reachable from which funclet entries. |
1202 | colorFunclets(F); |
1203 | |
1204 | cloneCommonBlocks(F); |
1205 | |
1206 | if (!DisableDemotion) |
1207 | demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly: DemoteCatchSwitchPHIOnly || |
1208 | DemoteCatchSwitchPHIOnlyOpt); |
1209 | |
1210 | if (!DisableCleanups) { |
1211 | assert(!verifyFunction(F, &dbgs())); |
1212 | removeImplausibleInstructions(F); |
1213 | |
1214 | assert(!verifyFunction(F, &dbgs())); |
1215 | cleanupPreparedFunclets(F); |
1216 | } |
1217 | |
1218 | LLVM_DEBUG(verifyPreparedFunclets(F)); |
1219 | // Recolor the CFG to verify that all is well. |
1220 | LLVM_DEBUG(colorFunclets(F)); |
1221 | LLVM_DEBUG(verifyPreparedFunclets(F)); |
1222 | |
1223 | return true; |
1224 | } |
1225 | |
1226 | // TODO: Share loads when one use dominates another, or when a catchpad exit |
1227 | // dominates uses (needs dominators). |
1228 | AllocaInst *WinEHPrepareImpl::insertPHILoads(PHINode *PN, Function &F) { |
1229 | BasicBlock *PHIBlock = PN->getParent(); |
1230 | AllocaInst *SpillSlot = nullptr; |
1231 | Instruction *EHPad = PHIBlock->getFirstNonPHI(); |
1232 | |
1233 | if (!EHPad->isTerminator()) { |
1234 | // If the EHPad isn't a terminator, then we can insert a load in this block |
1235 | // that will dominate all uses. |
1236 | SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr, |
1237 | Twine(PN->getName(), ".wineh.spillslot" ), |
1238 | F.getEntryBlock().begin()); |
1239 | Value *V = new LoadInst(PN->getType(), SpillSlot, |
1240 | Twine(PN->getName(), ".wineh.reload" ), |
1241 | PHIBlock->getFirstInsertionPt()); |
1242 | PN->replaceAllUsesWith(V); |
1243 | return SpillSlot; |
1244 | } |
1245 | |
1246 | // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert |
1247 | // loads of the slot before every use. |
1248 | DenseMap<BasicBlock *, Value *> Loads; |
1249 | for (Use &U : llvm::make_early_inc_range(Range: PN->uses())) { |
1250 | auto *UsingInst = cast<Instruction>(Val: U.getUser()); |
1251 | if (isa<PHINode>(Val: UsingInst) && UsingInst->getParent()->isEHPad()) { |
1252 | // Use is on an EH pad phi. Leave it alone; we'll insert loads and |
1253 | // stores for it separately. |
1254 | continue; |
1255 | } |
1256 | replaceUseWithLoad(V: PN, U, SpillSlot, Loads, F); |
1257 | } |
1258 | return SpillSlot; |
1259 | } |
1260 | |
1261 | // TODO: improve store placement. Inserting at def is probably good, but need |
1262 | // to be careful not to introduce interfering stores (needs liveness analysis). |
1263 | // TODO: identify related phi nodes that can share spill slots, and share them |
1264 | // (also needs liveness). |
1265 | void WinEHPrepareImpl::insertPHIStores(PHINode *OriginalPHI, |
1266 | AllocaInst *SpillSlot) { |
1267 | // Use a worklist of (Block, Value) pairs -- the given Value needs to be |
1268 | // stored to the spill slot by the end of the given Block. |
1269 | SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist; |
1270 | |
1271 | Worklist.push_back(Elt: {OriginalPHI->getParent(), OriginalPHI}); |
1272 | |
1273 | while (!Worklist.empty()) { |
1274 | BasicBlock *EHBlock; |
1275 | Value *InVal; |
1276 | std::tie(args&: EHBlock, args&: InVal) = Worklist.pop_back_val(); |
1277 | |
1278 | PHINode *PN = dyn_cast<PHINode>(Val: InVal); |
1279 | if (PN && PN->getParent() == EHBlock) { |
1280 | // The value is defined by another PHI we need to remove, with no room to |
1281 | // insert a store after the PHI, so each predecessor needs to store its |
1282 | // incoming value. |
1283 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) { |
1284 | Value *PredVal = PN->getIncomingValue(i); |
1285 | |
1286 | // Undef can safely be skipped. |
1287 | if (isa<UndefValue>(Val: PredVal)) |
1288 | continue; |
1289 | |
1290 | insertPHIStore(PredBlock: PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist); |
1291 | } |
1292 | } else { |
1293 | // We need to store InVal, which dominates EHBlock, but can't put a store |
1294 | // in EHBlock, so need to put stores in each predecessor. |
1295 | for (BasicBlock *PredBlock : predecessors(BB: EHBlock)) { |
1296 | insertPHIStore(PredBlock, PredVal: InVal, SpillSlot, Worklist); |
1297 | } |
1298 | } |
1299 | } |
1300 | } |
1301 | |
1302 | void WinEHPrepareImpl::insertPHIStore( |
1303 | BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot, |
1304 | SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) { |
1305 | |
1306 | if (PredBlock->isEHPad() && PredBlock->getFirstNonPHI()->isTerminator()) { |
1307 | // Pred is unsplittable, so we need to queue it on the worklist. |
1308 | Worklist.push_back(Elt: {PredBlock, PredVal}); |
1309 | return; |
1310 | } |
1311 | |
1312 | // Otherwise, insert the store at the end of the basic block. |
1313 | new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator()->getIterator()); |
1314 | } |
1315 | |
1316 | void WinEHPrepareImpl::replaceUseWithLoad( |
1317 | Value *V, Use &U, AllocaInst *&SpillSlot, |
1318 | DenseMap<BasicBlock *, Value *> &Loads, Function &F) { |
1319 | // Lazilly create the spill slot. |
1320 | if (!SpillSlot) |
1321 | SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr, |
1322 | Twine(V->getName(), ".wineh.spillslot" ), |
1323 | F.getEntryBlock().begin()); |
1324 | |
1325 | auto *UsingInst = cast<Instruction>(Val: U.getUser()); |
1326 | if (auto *UsingPHI = dyn_cast<PHINode>(Val: UsingInst)) { |
1327 | // If this is a PHI node, we can't insert a load of the value before |
1328 | // the use. Instead insert the load in the predecessor block |
1329 | // corresponding to the incoming value. |
1330 | // |
1331 | // Note that if there are multiple edges from a basic block to this |
1332 | // PHI node that we cannot have multiple loads. The problem is that |
1333 | // the resulting PHI node will have multiple values (from each load) |
1334 | // coming in from the same block, which is illegal SSA form. |
1335 | // For this reason, we keep track of and reuse loads we insert. |
1336 | BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U); |
1337 | if (auto *CatchRet = |
1338 | dyn_cast<CatchReturnInst>(Val: IncomingBlock->getTerminator())) { |
1339 | // Putting a load above a catchret and use on the phi would still leave |
1340 | // a cross-funclet def/use. We need to split the edge, change the |
1341 | // catchret to target the new block, and put the load there. |
1342 | BasicBlock *PHIBlock = UsingInst->getParent(); |
1343 | BasicBlock *NewBlock = SplitEdge(From: IncomingBlock, To: PHIBlock); |
1344 | // SplitEdge gives us: |
1345 | // IncomingBlock: |
1346 | // ... |
1347 | // br label %NewBlock |
1348 | // NewBlock: |
1349 | // catchret label %PHIBlock |
1350 | // But we need: |
1351 | // IncomingBlock: |
1352 | // ... |
1353 | // catchret label %NewBlock |
1354 | // NewBlock: |
1355 | // br label %PHIBlock |
1356 | // So move the terminators to each others' blocks and swap their |
1357 | // successors. |
1358 | BranchInst *Goto = cast<BranchInst>(Val: IncomingBlock->getTerminator()); |
1359 | Goto->removeFromParent(); |
1360 | CatchRet->removeFromParent(); |
1361 | CatchRet->insertInto(ParentBB: IncomingBlock, It: IncomingBlock->end()); |
1362 | Goto->insertInto(ParentBB: NewBlock, It: NewBlock->end()); |
1363 | Goto->setSuccessor(idx: 0, NewSucc: PHIBlock); |
1364 | CatchRet->setSuccessor(NewBlock); |
1365 | // Update the color mapping for the newly split edge. |
1366 | // Grab a reference to the ColorVector to be inserted before getting the |
1367 | // reference to the vector we are copying because inserting the new |
1368 | // element in BlockColors might cause the map to be reallocated. |
1369 | ColorVector &ColorsForNewBlock = BlockColors[NewBlock]; |
1370 | ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock]; |
1371 | ColorsForNewBlock = ColorsForPHIBlock; |
1372 | for (BasicBlock *FuncletPad : ColorsForPHIBlock) |
1373 | FuncletBlocks[FuncletPad].push_back(x: NewBlock); |
1374 | // Treat the new block as incoming for load insertion. |
1375 | IncomingBlock = NewBlock; |
1376 | } |
1377 | Value *&Load = Loads[IncomingBlock]; |
1378 | // Insert the load into the predecessor block |
1379 | if (!Load) |
1380 | Load = new LoadInst( |
1381 | V->getType(), SpillSlot, Twine(V->getName(), ".wineh.reload" ), |
1382 | /*isVolatile=*/false, IncomingBlock->getTerminator()->getIterator()); |
1383 | |
1384 | U.set(Load); |
1385 | } else { |
1386 | // Reload right before the old use. |
1387 | auto *Load = new LoadInst(V->getType(), SpillSlot, |
1388 | Twine(V->getName(), ".wineh.reload" ), |
1389 | /*isVolatile=*/false, UsingInst->getIterator()); |
1390 | U.set(Load); |
1391 | } |
1392 | } |
1393 | |
1394 | void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II, |
1395 | MCSymbol *InvokeBegin, |
1396 | MCSymbol *InvokeEnd) { |
1397 | assert(InvokeStateMap.count(II) && |
1398 | "should get invoke with precomputed state" ); |
1399 | LabelToStateMap[InvokeBegin] = std::make_pair(x&: InvokeStateMap[II], y&: InvokeEnd); |
1400 | } |
1401 | |
1402 | void WinEHFuncInfo::addIPToStateRange(int State, MCSymbol* InvokeBegin, |
1403 | MCSymbol* InvokeEnd) { |
1404 | LabelToStateMap[InvokeBegin] = std::make_pair(x&: State, y&: InvokeEnd); |
1405 | } |
1406 | |
1407 | WinEHFuncInfo::WinEHFuncInfo() = default; |
1408 | |