1//===-- MCJIT.cpp - MC-based Just-in-Time Compiler ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "MCJIT.h"
10#include "llvm/ADT/STLExtras.h"
11#include "llvm/ExecutionEngine/GenericValue.h"
12#include "llvm/ExecutionEngine/JITEventListener.h"
13#include "llvm/ExecutionEngine/MCJIT.h"
14#include "llvm/ExecutionEngine/ObjectCache.h"
15#include "llvm/ExecutionEngine/SectionMemoryManager.h"
16#include "llvm/IR/DataLayout.h"
17#include "llvm/IR/DerivedTypes.h"
18#include "llvm/IR/Function.h"
19#include "llvm/IR/LegacyPassManager.h"
20#include "llvm/IR/Mangler.h"
21#include "llvm/IR/Module.h"
22#include "llvm/MC/MCContext.h"
23#include "llvm/Object/Archive.h"
24#include "llvm/Object/ObjectFile.h"
25#include "llvm/Support/DynamicLibrary.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/MemoryBuffer.h"
28#include "llvm/Support/SmallVectorMemoryBuffer.h"
29#include <mutex>
30
31using namespace llvm;
32
33namespace {
34
35static struct RegisterJIT {
36 RegisterJIT() { MCJIT::Register(); }
37} JITRegistrator;
38
39}
40
41extern "C" void LLVMLinkInMCJIT() {
42}
43
44ExecutionEngine *
45MCJIT::createJIT(std::unique_ptr<Module> M, std::string *ErrorStr,
46 std::shared_ptr<MCJITMemoryManager> MemMgr,
47 std::shared_ptr<LegacyJITSymbolResolver> Resolver,
48 std::unique_ptr<TargetMachine> TM) {
49 // Try to register the program as a source of symbols to resolve against.
50 //
51 // FIXME: Don't do this here.
52 sys::DynamicLibrary::LoadLibraryPermanently(Filename: nullptr, ErrMsg: nullptr);
53
54 if (!MemMgr || !Resolver) {
55 auto RTDyldMM = std::make_shared<SectionMemoryManager>();
56 if (!MemMgr)
57 MemMgr = RTDyldMM;
58 if (!Resolver)
59 Resolver = RTDyldMM;
60 }
61
62 return new MCJIT(std::move(M), std::move(TM), std::move(MemMgr),
63 std::move(Resolver));
64}
65
66MCJIT::MCJIT(std::unique_ptr<Module> M, std::unique_ptr<TargetMachine> TM,
67 std::shared_ptr<MCJITMemoryManager> MemMgr,
68 std::shared_ptr<LegacyJITSymbolResolver> Resolver)
69 : ExecutionEngine(TM->createDataLayout(), std::move(M)), TM(std::move(TM)),
70 Ctx(nullptr), MemMgr(std::move(MemMgr)),
71 Resolver(*this, std::move(Resolver)), Dyld(*this->MemMgr, this->Resolver),
72 ObjCache(nullptr) {
73 // FIXME: We are managing our modules, so we do not want the base class
74 // ExecutionEngine to manage them as well. To avoid double destruction
75 // of the first (and only) module added in ExecutionEngine constructor
76 // we remove it from EE and will destruct it ourselves.
77 //
78 // It may make sense to move our module manager (based on SmallStPtr) back
79 // into EE if the JIT and Interpreter can live with it.
80 // If so, additional functions: addModule, removeModule, FindFunctionNamed,
81 // runStaticConstructorsDestructors could be moved back to EE as well.
82 //
83 std::unique_ptr<Module> First = std::move(Modules[0]);
84 Modules.clear();
85
86 if (First->getDataLayout().isDefault())
87 First->setDataLayout(getDataLayout());
88
89 OwnedModules.addModule(M: std::move(First));
90 RegisterJITEventListener(L: JITEventListener::createGDBRegistrationListener());
91}
92
93MCJIT::~MCJIT() {
94 std::lock_guard<sys::Mutex> locked(lock);
95
96 Dyld.deregisterEHFrames();
97
98 for (auto &Obj : LoadedObjects)
99 if (Obj)
100 notifyFreeingObject(Obj: *Obj);
101
102 Archives.clear();
103}
104
105void MCJIT::addModule(std::unique_ptr<Module> M) {
106 std::lock_guard<sys::Mutex> locked(lock);
107
108 if (M->getDataLayout().isDefault())
109 M->setDataLayout(getDataLayout());
110
111 OwnedModules.addModule(M: std::move(M));
112}
113
114bool MCJIT::removeModule(Module *M) {
115 std::lock_guard<sys::Mutex> locked(lock);
116 return OwnedModules.removeModule(M);
117}
118
119void MCJIT::addObjectFile(std::unique_ptr<object::ObjectFile> Obj) {
120 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L = Dyld.loadObject(O: *Obj);
121 if (Dyld.hasError())
122 report_fatal_error(reason: Dyld.getErrorString());
123
124 notifyObjectLoaded(Obj: *Obj, L: *L);
125
126 LoadedObjects.push_back(Elt: std::move(Obj));
127}
128
129void MCJIT::addObjectFile(object::OwningBinary<object::ObjectFile> Obj) {
130 std::unique_ptr<object::ObjectFile> ObjFile;
131 std::unique_ptr<MemoryBuffer> MemBuf;
132 std::tie(args&: ObjFile, args&: MemBuf) = Obj.takeBinary();
133 addObjectFile(Obj: std::move(ObjFile));
134 Buffers.push_back(Elt: std::move(MemBuf));
135}
136
137void MCJIT::addArchive(object::OwningBinary<object::Archive> A) {
138 Archives.push_back(Elt: std::move(A));
139}
140
141void MCJIT::setObjectCache(ObjectCache* NewCache) {
142 std::lock_guard<sys::Mutex> locked(lock);
143 ObjCache = NewCache;
144}
145
146std::unique_ptr<MemoryBuffer> MCJIT::emitObject(Module *M) {
147 assert(M && "Can not emit a null module");
148
149 std::lock_guard<sys::Mutex> locked(lock);
150
151 // Materialize all globals in the module if they have not been
152 // materialized already.
153 cantFail(Err: M->materializeAll());
154
155 // This must be a module which has already been added but not loaded to this
156 // MCJIT instance, since these conditions are tested by our caller,
157 // generateCodeForModule.
158
159 legacy::PassManager PM;
160
161 // The RuntimeDyld will take ownership of this shortly
162 SmallVector<char, 4096> ObjBufferSV;
163 raw_svector_ostream ObjStream(ObjBufferSV);
164
165 // Turn the machine code intermediate representation into bytes in memory
166 // that may be executed.
167 if (TM->addPassesToEmitMC(PM, Ctx, ObjStream, !getVerifyModules()))
168 report_fatal_error(reason: "Target does not support MC emission!");
169
170 // Initialize passes.
171 PM.run(M&: *M);
172 // Flush the output buffer to get the generated code into memory
173
174 auto CompiledObjBuffer = std::make_unique<SmallVectorMemoryBuffer>(
175 args: std::move(ObjBufferSV), /*RequiresNullTerminator=*/args: false);
176
177 // If we have an object cache, tell it about the new object.
178 // Note that we're using the compiled image, not the loaded image (as below).
179 if (ObjCache) {
180 // MemoryBuffer is a thin wrapper around the actual memory, so it's OK
181 // to create a temporary object here and delete it after the call.
182 MemoryBufferRef MB = CompiledObjBuffer->getMemBufferRef();
183 ObjCache->notifyObjectCompiled(M, Obj: MB);
184 }
185
186 return CompiledObjBuffer;
187}
188
189void MCJIT::generateCodeForModule(Module *M) {
190 // Get a thread lock to make sure we aren't trying to load multiple times
191 std::lock_guard<sys::Mutex> locked(lock);
192
193 // This must be a module which has already been added to this MCJIT instance.
194 assert(OwnedModules.ownsModule(M) &&
195 "MCJIT::generateCodeForModule: Unknown module.");
196
197 // Re-compilation is not supported
198 if (OwnedModules.hasModuleBeenLoaded(M))
199 return;
200
201 std::unique_ptr<MemoryBuffer> ObjectToLoad;
202 // Try to load the pre-compiled object from cache if possible
203 if (ObjCache)
204 ObjectToLoad = ObjCache->getObject(M);
205
206 assert(M->getDataLayout() == getDataLayout() && "DataLayout Mismatch");
207
208 // If the cache did not contain a suitable object, compile the object
209 if (!ObjectToLoad) {
210 ObjectToLoad = emitObject(M);
211 assert(ObjectToLoad && "Compilation did not produce an object.");
212 }
213
214 // Load the object into the dynamic linker.
215 // MCJIT now owns the ObjectImage pointer (via its LoadedObjects list).
216 Expected<std::unique_ptr<object::ObjectFile>> LoadedObject =
217 object::ObjectFile::createObjectFile(Object: ObjectToLoad->getMemBufferRef());
218 if (!LoadedObject) {
219 std::string Buf;
220 raw_string_ostream OS(Buf);
221 logAllUnhandledErrors(E: LoadedObject.takeError(), OS);
222 report_fatal_error(reason: Twine(OS.str()));
223 }
224 std::unique_ptr<RuntimeDyld::LoadedObjectInfo> L =
225 Dyld.loadObject(O: *LoadedObject.get());
226
227 if (Dyld.hasError())
228 report_fatal_error(reason: Dyld.getErrorString());
229
230 notifyObjectLoaded(Obj: *LoadedObject.get(), L: *L);
231
232 Buffers.push_back(Elt: std::move(ObjectToLoad));
233 LoadedObjects.push_back(Elt: std::move(*LoadedObject));
234
235 OwnedModules.markModuleAsLoaded(M);
236}
237
238void MCJIT::finalizeLoadedModules() {
239 std::lock_guard<sys::Mutex> locked(lock);
240
241 // Resolve any outstanding relocations.
242 Dyld.resolveRelocations();
243
244 // Check for Dyld error.
245 if (Dyld.hasError())
246 ErrMsg = Dyld.getErrorString().str();
247
248 OwnedModules.markAllLoadedModulesAsFinalized();
249
250 // Register EH frame data for any module we own which has been loaded
251 Dyld.registerEHFrames();
252
253 // Set page permissions.
254 MemMgr->finalizeMemory();
255}
256
257// FIXME: Rename this.
258void MCJIT::finalizeObject() {
259 std::lock_guard<sys::Mutex> locked(lock);
260
261 // Generate code for module is going to move objects out of the 'added' list,
262 // so we need to copy that out before using it:
263 SmallVector<Module*, 16> ModsToAdd;
264 for (auto *M : OwnedModules.added())
265 ModsToAdd.push_back(Elt: M);
266
267 for (auto *M : ModsToAdd)
268 generateCodeForModule(M);
269
270 finalizeLoadedModules();
271}
272
273void MCJIT::finalizeModule(Module *M) {
274 std::lock_guard<sys::Mutex> locked(lock);
275
276 // This must be a module which has already been added to this MCJIT instance.
277 assert(OwnedModules.ownsModule(M) && "MCJIT::finalizeModule: Unknown module.");
278
279 // If the module hasn't been compiled, just do that.
280 if (!OwnedModules.hasModuleBeenLoaded(M))
281 generateCodeForModule(M);
282
283 finalizeLoadedModules();
284}
285
286JITSymbol MCJIT::findExistingSymbol(const std::string &Name) {
287 if (void *Addr = getPointerToGlobalIfAvailable(S: Name))
288 return JITSymbol(static_cast<uint64_t>(
289 reinterpret_cast<uintptr_t>(Addr)),
290 JITSymbolFlags::Exported);
291
292 return Dyld.getSymbol(Name);
293}
294
295Module *MCJIT::findModuleForSymbol(const std::string &Name,
296 bool CheckFunctionsOnly) {
297 StringRef DemangledName = Name;
298 if (DemangledName[0] == getDataLayout().getGlobalPrefix())
299 DemangledName = DemangledName.substr(Start: 1);
300
301 std::lock_guard<sys::Mutex> locked(lock);
302
303 // If it hasn't already been generated, see if it's in one of our modules.
304 for (ModulePtrSet::iterator I = OwnedModules.begin_added(),
305 E = OwnedModules.end_added();
306 I != E; ++I) {
307 Module *M = *I;
308 Function *F = M->getFunction(Name: DemangledName);
309 if (F && !F->isDeclaration())
310 return M;
311 if (!CheckFunctionsOnly) {
312 GlobalVariable *G = M->getGlobalVariable(Name: DemangledName);
313 if (G && !G->isDeclaration())
314 return M;
315 // FIXME: Do we need to worry about global aliases?
316 }
317 }
318 // We didn't find the symbol in any of our modules.
319 return nullptr;
320}
321
322uint64_t MCJIT::getSymbolAddress(const std::string &Name,
323 bool CheckFunctionsOnly) {
324 std::string MangledName;
325 {
326 raw_string_ostream MangledNameStream(MangledName);
327 Mangler::getNameWithPrefix(OS&: MangledNameStream, GVName: Name, DL: getDataLayout());
328 }
329 if (auto Sym = findSymbol(Name: MangledName, CheckFunctionsOnly)) {
330 if (auto AddrOrErr = Sym.getAddress())
331 return *AddrOrErr;
332 else
333 report_fatal_error(Err: AddrOrErr.takeError());
334 } else if (auto Err = Sym.takeError())
335 report_fatal_error(Err: Sym.takeError());
336 return 0;
337}
338
339JITSymbol MCJIT::findSymbol(const std::string &Name,
340 bool CheckFunctionsOnly) {
341 std::lock_guard<sys::Mutex> locked(lock);
342
343 // First, check to see if we already have this symbol.
344 if (auto Sym = findExistingSymbol(Name))
345 return Sym;
346
347 for (object::OwningBinary<object::Archive> &OB : Archives) {
348 object::Archive *A = OB.getBinary();
349 // Look for our symbols in each Archive
350 auto OptionalChildOrErr = A->findSym(name: Name);
351 if (!OptionalChildOrErr)
352 report_fatal_error(Err: OptionalChildOrErr.takeError());
353 auto &OptionalChild = *OptionalChildOrErr;
354 if (OptionalChild) {
355 // FIXME: Support nested archives?
356 Expected<std::unique_ptr<object::Binary>> ChildBinOrErr =
357 OptionalChild->getAsBinary();
358 if (!ChildBinOrErr) {
359 // TODO: Actually report errors helpfully.
360 consumeError(Err: ChildBinOrErr.takeError());
361 continue;
362 }
363 std::unique_ptr<object::Binary> &ChildBin = ChildBinOrErr.get();
364 if (ChildBin->isObject()) {
365 std::unique_ptr<object::ObjectFile> OF(
366 static_cast<object::ObjectFile *>(ChildBin.release()));
367 // This causes the object file to be loaded.
368 addObjectFile(Obj: std::move(OF));
369 // The address should be here now.
370 if (auto Sym = findExistingSymbol(Name))
371 return Sym;
372 }
373 }
374 }
375
376 // If it hasn't already been generated, see if it's in one of our modules.
377 Module *M = findModuleForSymbol(Name, CheckFunctionsOnly);
378 if (M) {
379 generateCodeForModule(M);
380
381 // Check the RuntimeDyld table again, it should be there now.
382 return findExistingSymbol(Name);
383 }
384
385 // If a LazyFunctionCreator is installed, use it to get/create the function.
386 // FIXME: Should we instead have a LazySymbolCreator callback?
387 if (LazyFunctionCreator) {
388 auto Addr = static_cast<uint64_t>(
389 reinterpret_cast<uintptr_t>(LazyFunctionCreator(Name)));
390 return JITSymbol(Addr, JITSymbolFlags::Exported);
391 }
392
393 return nullptr;
394}
395
396uint64_t MCJIT::getGlobalValueAddress(const std::string &Name) {
397 std::lock_guard<sys::Mutex> locked(lock);
398 uint64_t Result = getSymbolAddress(Name, CheckFunctionsOnly: false);
399 if (Result != 0)
400 finalizeLoadedModules();
401 return Result;
402}
403
404uint64_t MCJIT::getFunctionAddress(const std::string &Name) {
405 std::lock_guard<sys::Mutex> locked(lock);
406 uint64_t Result = getSymbolAddress(Name, CheckFunctionsOnly: true);
407 if (Result != 0)
408 finalizeLoadedModules();
409 return Result;
410}
411
412// Deprecated. Use getFunctionAddress instead.
413void *MCJIT::getPointerToFunction(Function *F) {
414 std::lock_guard<sys::Mutex> locked(lock);
415
416 Mangler Mang;
417 SmallString<128> Name;
418 TM->getNameWithPrefix(Name, GV: F, Mang);
419
420 if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
421 bool AbortOnFailure = !F->hasExternalWeakLinkage();
422 void *Addr = getPointerToNamedFunction(Name, AbortOnFailure);
423 updateGlobalMapping(GV: F, Addr);
424 return Addr;
425 }
426
427 Module *M = F->getParent();
428 bool HasBeenAddedButNotLoaded = OwnedModules.hasModuleBeenAddedButNotLoaded(M);
429
430 // Make sure the relevant module has been compiled and loaded.
431 if (HasBeenAddedButNotLoaded)
432 generateCodeForModule(M);
433 else if (!OwnedModules.hasModuleBeenLoaded(M)) {
434 // If this function doesn't belong to one of our modules, we're done.
435 // FIXME: Asking for the pointer to a function that hasn't been registered,
436 // and isn't a declaration (which is handled above) should probably
437 // be an assertion.
438 return nullptr;
439 }
440
441 // FIXME: Should the Dyld be retaining module information? Probably not.
442 //
443 // This is the accessor for the target address, so make sure to check the
444 // load address of the symbol, not the local address.
445 return (void*)Dyld.getSymbol(Name).getAddress();
446}
447
448void MCJIT::runStaticConstructorsDestructorsInModulePtrSet(
449 bool isDtors, ModulePtrSet::iterator I, ModulePtrSet::iterator E) {
450 for (; I != E; ++I) {
451 ExecutionEngine::runStaticConstructorsDestructors(module&: **I, isDtors);
452 }
453}
454
455void MCJIT::runStaticConstructorsDestructors(bool isDtors) {
456 // Execute global ctors/dtors for each module in the program.
457 runStaticConstructorsDestructorsInModulePtrSet(
458 isDtors, I: OwnedModules.begin_added(), E: OwnedModules.end_added());
459 runStaticConstructorsDestructorsInModulePtrSet(
460 isDtors, I: OwnedModules.begin_loaded(), E: OwnedModules.end_loaded());
461 runStaticConstructorsDestructorsInModulePtrSet(
462 isDtors, I: OwnedModules.begin_finalized(), E: OwnedModules.end_finalized());
463}
464
465Function *MCJIT::FindFunctionNamedInModulePtrSet(StringRef FnName,
466 ModulePtrSet::iterator I,
467 ModulePtrSet::iterator E) {
468 for (; I != E; ++I) {
469 Function *F = (*I)->getFunction(Name: FnName);
470 if (F && !F->isDeclaration())
471 return F;
472 }
473 return nullptr;
474}
475
476GlobalVariable *MCJIT::FindGlobalVariableNamedInModulePtrSet(StringRef Name,
477 bool AllowInternal,
478 ModulePtrSet::iterator I,
479 ModulePtrSet::iterator E) {
480 for (; I != E; ++I) {
481 GlobalVariable *GV = (*I)->getGlobalVariable(Name, AllowInternal);
482 if (GV && !GV->isDeclaration())
483 return GV;
484 }
485 return nullptr;
486}
487
488
489Function *MCJIT::FindFunctionNamed(StringRef FnName) {
490 Function *F = FindFunctionNamedInModulePtrSet(
491 FnName, I: OwnedModules.begin_added(), E: OwnedModules.end_added());
492 if (!F)
493 F = FindFunctionNamedInModulePtrSet(FnName, I: OwnedModules.begin_loaded(),
494 E: OwnedModules.end_loaded());
495 if (!F)
496 F = FindFunctionNamedInModulePtrSet(FnName, I: OwnedModules.begin_finalized(),
497 E: OwnedModules.end_finalized());
498 return F;
499}
500
501GlobalVariable *MCJIT::FindGlobalVariableNamed(StringRef Name, bool AllowInternal) {
502 GlobalVariable *GV = FindGlobalVariableNamedInModulePtrSet(
503 Name, AllowInternal, I: OwnedModules.begin_added(), E: OwnedModules.end_added());
504 if (!GV)
505 GV = FindGlobalVariableNamedInModulePtrSet(Name, AllowInternal, I: OwnedModules.begin_loaded(),
506 E: OwnedModules.end_loaded());
507 if (!GV)
508 GV = FindGlobalVariableNamedInModulePtrSet(Name, AllowInternal, I: OwnedModules.begin_finalized(),
509 E: OwnedModules.end_finalized());
510 return GV;
511}
512
513GenericValue MCJIT::runFunction(Function *F, ArrayRef<GenericValue> ArgValues) {
514 assert(F && "Function *F was null at entry to run()");
515
516 void *FPtr = getPointerToFunction(F);
517 finalizeModule(M: F->getParent());
518 assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
519 FunctionType *FTy = F->getFunctionType();
520 Type *RetTy = FTy->getReturnType();
521
522 assert((FTy->getNumParams() == ArgValues.size() ||
523 (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
524 "Wrong number of arguments passed into function!");
525 assert(FTy->getNumParams() == ArgValues.size() &&
526 "This doesn't support passing arguments through varargs (yet)!");
527
528 // Handle some common cases first. These cases correspond to common `main'
529 // prototypes.
530 if (RetTy->isIntegerTy(Bitwidth: 32) || RetTy->isVoidTy()) {
531 switch (ArgValues.size()) {
532 case 3:
533 if (FTy->getParamType(i: 0)->isIntegerTy(Bitwidth: 32) &&
534 FTy->getParamType(i: 1)->isPointerTy() &&
535 FTy->getParamType(i: 2)->isPointerTy()) {
536 int (*PF)(int, char **, const char **) =
537 (int(*)(int, char **, const char **))(intptr_t)FPtr;
538
539 // Call the function.
540 GenericValue rv;
541 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
542 (char **)GVTOP(GV: ArgValues[1]),
543 (const char **)GVTOP(GV: ArgValues[2])));
544 return rv;
545 }
546 break;
547 case 2:
548 if (FTy->getParamType(i: 0)->isIntegerTy(Bitwidth: 32) &&
549 FTy->getParamType(i: 1)->isPointerTy()) {
550 int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
551
552 // Call the function.
553 GenericValue rv;
554 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
555 (char **)GVTOP(GV: ArgValues[1])));
556 return rv;
557 }
558 break;
559 case 1:
560 if (FTy->getNumParams() == 1 &&
561 FTy->getParamType(i: 0)->isIntegerTy(Bitwidth: 32)) {
562 GenericValue rv;
563 int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
564 rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
565 return rv;
566 }
567 break;
568 }
569 }
570
571 // Handle cases where no arguments are passed first.
572 if (ArgValues.empty()) {
573 GenericValue rv;
574 switch (RetTy->getTypeID()) {
575 default: llvm_unreachable("Unknown return type for function call!");
576 case Type::IntegerTyID: {
577 unsigned BitWidth = cast<IntegerType>(Val: RetTy)->getBitWidth();
578 if (BitWidth == 1)
579 rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
580 else if (BitWidth <= 8)
581 rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
582 else if (BitWidth <= 16)
583 rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
584 else if (BitWidth <= 32)
585 rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
586 else if (BitWidth <= 64)
587 rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
588 else
589 llvm_unreachable("Integer types > 64 bits not supported");
590 return rv;
591 }
592 case Type::VoidTyID:
593 rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
594 return rv;
595 case Type::FloatTyID:
596 rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
597 return rv;
598 case Type::DoubleTyID:
599 rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
600 return rv;
601 case Type::X86_FP80TyID:
602 case Type::FP128TyID:
603 case Type::PPC_FP128TyID:
604 llvm_unreachable("long double not supported yet");
605 case Type::PointerTyID:
606 return PTOGV(P: ((void*(*)())(intptr_t)FPtr)());
607 }
608 }
609
610 report_fatal_error(reason: "MCJIT::runFunction does not support full-featured "
611 "argument passing. Please use "
612 "ExecutionEngine::getFunctionAddress and cast the result "
613 "to the desired function pointer type.");
614}
615
616void *MCJIT::getPointerToNamedFunction(StringRef Name, bool AbortOnFailure) {
617 if (!isSymbolSearchingDisabled()) {
618 if (auto Sym = Resolver.findSymbol(Name: std::string(Name))) {
619 if (auto AddrOrErr = Sym.getAddress())
620 return reinterpret_cast<void*>(
621 static_cast<uintptr_t>(*AddrOrErr));
622 } else if (auto Err = Sym.takeError())
623 report_fatal_error(Err: std::move(Err));
624 }
625
626 /// If a LazyFunctionCreator is installed, use it to get/create the function.
627 if (LazyFunctionCreator)
628 if (void *RP = LazyFunctionCreator(std::string(Name)))
629 return RP;
630
631 if (AbortOnFailure) {
632 report_fatal_error(reason: "Program used external function '"+Name+
633 "' which could not be resolved!");
634 }
635 return nullptr;
636}
637
638void MCJIT::RegisterJITEventListener(JITEventListener *L) {
639 if (!L)
640 return;
641 std::lock_guard<sys::Mutex> locked(lock);
642 EventListeners.push_back(x: L);
643}
644
645void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
646 if (!L)
647 return;
648 std::lock_guard<sys::Mutex> locked(lock);
649 auto I = find(Range: reverse(C&: EventListeners), Val: L);
650 if (I != EventListeners.rend()) {
651 std::swap(a&: *I, b&: EventListeners.back());
652 EventListeners.pop_back();
653 }
654}
655
656void MCJIT::notifyObjectLoaded(const object::ObjectFile &Obj,
657 const RuntimeDyld::LoadedObjectInfo &L) {
658 uint64_t Key =
659 static_cast<uint64_t>(reinterpret_cast<uintptr_t>(Obj.getData().data()));
660 std::lock_guard<sys::Mutex> locked(lock);
661 MemMgr->notifyObjectLoaded(EE: this, Obj);
662 for (JITEventListener *EL : EventListeners)
663 EL->notifyObjectLoaded(K: Key, Obj, L);
664}
665
666void MCJIT::notifyFreeingObject(const object::ObjectFile &Obj) {
667 uint64_t Key =
668 static_cast<uint64_t>(reinterpret_cast<uintptr_t>(Obj.getData().data()));
669 std::lock_guard<sys::Mutex> locked(lock);
670 for (JITEventListener *L : EventListeners)
671 L->notifyFreeingObject(K: Key);
672}
673
674JITSymbol
675LinkingSymbolResolver::findSymbol(const std::string &Name) {
676 auto Result = ParentEngine.findSymbol(Name, CheckFunctionsOnly: false);
677 if (Result)
678 return Result;
679 if (ParentEngine.isSymbolSearchingDisabled())
680 return nullptr;
681 return ClientResolver->findSymbol(Name);
682}
683
684void LinkingSymbolResolver::anchor() {}
685