1 | //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Implementation of the MC-JIT runtime dynamic linker. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/ExecutionEngine/RuntimeDyld.h" |
14 | #include "RuntimeDyldCOFF.h" |
15 | #include "RuntimeDyldELF.h" |
16 | #include "RuntimeDyldImpl.h" |
17 | #include "RuntimeDyldMachO.h" |
18 | #include "llvm/Object/COFF.h" |
19 | #include "llvm/Object/ELFObjectFile.h" |
20 | #include "llvm/Support/Alignment.h" |
21 | #include "llvm/Support/MSVCErrorWorkarounds.h" |
22 | #include "llvm/Support/MathExtras.h" |
23 | #include <mutex> |
24 | |
25 | #include <future> |
26 | |
27 | using namespace llvm; |
28 | using namespace llvm::object; |
29 | |
30 | #define DEBUG_TYPE "dyld" |
31 | |
32 | namespace { |
33 | |
34 | enum RuntimeDyldErrorCode { |
35 | GenericRTDyldError = 1 |
36 | }; |
37 | |
38 | // FIXME: This class is only here to support the transition to llvm::Error. It |
39 | // will be removed once this transition is complete. Clients should prefer to |
40 | // deal with the Error value directly, rather than converting to error_code. |
41 | class RuntimeDyldErrorCategory : public std::error_category { |
42 | public: |
43 | const char *name() const noexcept override { return "runtimedyld" ; } |
44 | |
45 | std::string message(int Condition) const override { |
46 | switch (static_cast<RuntimeDyldErrorCode>(Condition)) { |
47 | case GenericRTDyldError: return "Generic RuntimeDyld error" ; |
48 | } |
49 | llvm_unreachable("Unrecognized RuntimeDyldErrorCode" ); |
50 | } |
51 | }; |
52 | |
53 | } |
54 | |
55 | char RuntimeDyldError::ID = 0; |
56 | |
57 | void RuntimeDyldError::log(raw_ostream &OS) const { |
58 | OS << ErrMsg << "\n" ; |
59 | } |
60 | |
61 | std::error_code RuntimeDyldError::convertToErrorCode() const { |
62 | static RuntimeDyldErrorCategory RTDyldErrorCategory; |
63 | return std::error_code(GenericRTDyldError, RTDyldErrorCategory); |
64 | } |
65 | |
66 | // Empty out-of-line virtual destructor as the key function. |
67 | RuntimeDyldImpl::~RuntimeDyldImpl() = default; |
68 | |
69 | // Pin LoadedObjectInfo's vtables to this file. |
70 | void RuntimeDyld::LoadedObjectInfo::anchor() {} |
71 | |
72 | namespace llvm { |
73 | |
74 | void RuntimeDyldImpl::registerEHFrames() {} |
75 | |
76 | void RuntimeDyldImpl::deregisterEHFrames() { |
77 | MemMgr.deregisterEHFrames(); |
78 | } |
79 | |
80 | #ifndef NDEBUG |
81 | static void dumpSectionMemory(const SectionEntry &S, StringRef State) { |
82 | dbgs() << "----- Contents of section " << S.getName() << " " << State |
83 | << " -----" ; |
84 | |
85 | if (S.getAddress() == nullptr) { |
86 | dbgs() << "\n <section not emitted>\n" ; |
87 | return; |
88 | } |
89 | |
90 | const unsigned ColsPerRow = 16; |
91 | |
92 | uint8_t *DataAddr = S.getAddress(); |
93 | uint64_t LoadAddr = S.getLoadAddress(); |
94 | |
95 | unsigned StartPadding = LoadAddr & (ColsPerRow - 1); |
96 | unsigned BytesRemaining = S.getSize(); |
97 | |
98 | if (StartPadding) { |
99 | dbgs() << "\n" << format("0x%016" PRIx64, |
100 | LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":" ; |
101 | while (StartPadding--) |
102 | dbgs() << " " ; |
103 | } |
104 | |
105 | while (BytesRemaining > 0) { |
106 | if ((LoadAddr & (ColsPerRow - 1)) == 0) |
107 | dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":" ; |
108 | |
109 | dbgs() << " " << format("%02x" , *DataAddr); |
110 | |
111 | ++DataAddr; |
112 | ++LoadAddr; |
113 | --BytesRemaining; |
114 | } |
115 | |
116 | dbgs() << "\n" ; |
117 | } |
118 | #endif |
119 | |
120 | // Resolve the relocations for all symbols we currently know about. |
121 | void RuntimeDyldImpl::resolveRelocations() { |
122 | std::lock_guard<sys::Mutex> locked(lock); |
123 | |
124 | // Print out the sections prior to relocation. |
125 | LLVM_DEBUG({ |
126 | for (SectionEntry &S : Sections) |
127 | dumpSectionMemory(S, "before relocations" ); |
128 | }); |
129 | |
130 | // First, resolve relocations associated with external symbols. |
131 | if (auto Err = resolveExternalSymbols()) { |
132 | HasError = true; |
133 | ErrorStr = toString(E: std::move(Err)); |
134 | } |
135 | |
136 | resolveLocalRelocations(); |
137 | |
138 | // Print out sections after relocation. |
139 | LLVM_DEBUG({ |
140 | for (SectionEntry &S : Sections) |
141 | dumpSectionMemory(S, "after relocations" ); |
142 | }); |
143 | } |
144 | |
145 | void RuntimeDyldImpl::resolveLocalRelocations() { |
146 | // Iterate over all outstanding relocations |
147 | for (const auto &Rel : Relocations) { |
148 | // The Section here (Sections[i]) refers to the section in which the |
149 | // symbol for the relocation is located. The SectionID in the relocation |
150 | // entry provides the section to which the relocation will be applied. |
151 | unsigned Idx = Rel.first; |
152 | uint64_t Addr = getSectionLoadAddress(SectionID: Idx); |
153 | LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t" |
154 | << format("%p" , (uintptr_t)Addr) << "\n" ); |
155 | resolveRelocationList(Relocs: Rel.second, Value: Addr); |
156 | } |
157 | Relocations.clear(); |
158 | } |
159 | |
160 | void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress, |
161 | uint64_t TargetAddress) { |
162 | std::lock_guard<sys::Mutex> locked(lock); |
163 | for (unsigned i = 0, e = Sections.size(); i != e; ++i) { |
164 | if (Sections[i].getAddress() == LocalAddress) { |
165 | reassignSectionAddress(SectionID: i, Addr: TargetAddress); |
166 | return; |
167 | } |
168 | } |
169 | llvm_unreachable("Attempting to remap address of unknown section!" ); |
170 | } |
171 | |
172 | static Error getOffset(const SymbolRef &Sym, SectionRef Sec, |
173 | uint64_t &Result) { |
174 | Expected<uint64_t> AddressOrErr = Sym.getAddress(); |
175 | if (!AddressOrErr) |
176 | return AddressOrErr.takeError(); |
177 | Result = *AddressOrErr - Sec.getAddress(); |
178 | return Error::success(); |
179 | } |
180 | |
181 | Expected<RuntimeDyldImpl::ObjSectionToIDMap> |
182 | RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) { |
183 | std::lock_guard<sys::Mutex> locked(lock); |
184 | |
185 | // Save information about our target |
186 | Arch = (Triple::ArchType)Obj.getArch(); |
187 | IsTargetLittleEndian = Obj.isLittleEndian(); |
188 | setMipsABI(Obj); |
189 | |
190 | // Compute the memory size required to load all sections to be loaded |
191 | // and pass this information to the memory manager |
192 | if (MemMgr.needsToReserveAllocationSpace()) { |
193 | uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0; |
194 | Align CodeAlign, RODataAlign, RWDataAlign; |
195 | if (auto Err = computeTotalAllocSize(Obj, CodeSize, CodeAlign, RODataSize, |
196 | RODataAlign, RWDataSize, RWDataAlign)) |
197 | return std::move(Err); |
198 | MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign, |
199 | RWDataSize, RWDataAlign); |
200 | } |
201 | |
202 | // Used sections from the object file |
203 | ObjSectionToIDMap LocalSections; |
204 | |
205 | // Common symbols requiring allocation, with their sizes and alignments |
206 | CommonSymbolList CommonSymbolsToAllocate; |
207 | |
208 | uint64_t CommonSize = 0; |
209 | uint32_t CommonAlign = 0; |
210 | |
211 | // First, collect all weak and common symbols. We need to know if stronger |
212 | // definitions occur elsewhere. |
213 | JITSymbolResolver::LookupSet ResponsibilitySet; |
214 | { |
215 | JITSymbolResolver::LookupSet Symbols; |
216 | for (auto &Sym : Obj.symbols()) { |
217 | Expected<uint32_t> FlagsOrErr = Sym.getFlags(); |
218 | if (!FlagsOrErr) |
219 | // TODO: Test this error. |
220 | return FlagsOrErr.takeError(); |
221 | if ((*FlagsOrErr & SymbolRef::SF_Common) || |
222 | (*FlagsOrErr & SymbolRef::SF_Weak)) { |
223 | // Get symbol name. |
224 | if (auto NameOrErr = Sym.getName()) |
225 | Symbols.insert(x: *NameOrErr); |
226 | else |
227 | return NameOrErr.takeError(); |
228 | } |
229 | } |
230 | |
231 | if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols)) |
232 | ResponsibilitySet = std::move(*ResultOrErr); |
233 | else |
234 | return ResultOrErr.takeError(); |
235 | } |
236 | |
237 | // Parse symbols |
238 | LLVM_DEBUG(dbgs() << "Parse symbols:\n" ); |
239 | for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; |
240 | ++I) { |
241 | Expected<uint32_t> FlagsOrErr = I->getFlags(); |
242 | if (!FlagsOrErr) |
243 | // TODO: Test this error. |
244 | return FlagsOrErr.takeError(); |
245 | |
246 | // Skip undefined symbols. |
247 | if (*FlagsOrErr & SymbolRef::SF_Undefined) |
248 | continue; |
249 | |
250 | // Get the symbol type. |
251 | object::SymbolRef::Type SymType; |
252 | if (auto SymTypeOrErr = I->getType()) |
253 | SymType = *SymTypeOrErr; |
254 | else |
255 | return SymTypeOrErr.takeError(); |
256 | |
257 | // Get symbol name. |
258 | StringRef Name; |
259 | if (auto NameOrErr = I->getName()) |
260 | Name = *NameOrErr; |
261 | else |
262 | return NameOrErr.takeError(); |
263 | |
264 | // Compute JIT symbol flags. |
265 | auto JITSymFlags = getJITSymbolFlags(Sym: *I); |
266 | if (!JITSymFlags) |
267 | return JITSymFlags.takeError(); |
268 | |
269 | // If this is a weak definition, check to see if there's a strong one. |
270 | // If there is, skip this symbol (we won't be providing it: the strong |
271 | // definition will). If there's no strong definition, make this definition |
272 | // strong. |
273 | if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) { |
274 | // First check whether there's already a definition in this instance. |
275 | if (GlobalSymbolTable.count(Key: Name)) |
276 | continue; |
277 | |
278 | // If we're not responsible for this symbol, skip it. |
279 | if (!ResponsibilitySet.count(x: Name)) |
280 | continue; |
281 | |
282 | // Otherwise update the flags on the symbol to make this definition |
283 | // strong. |
284 | if (JITSymFlags->isWeak()) |
285 | *JITSymFlags &= ~JITSymbolFlags::Weak; |
286 | if (JITSymFlags->isCommon()) { |
287 | *JITSymFlags &= ~JITSymbolFlags::Common; |
288 | uint32_t Align = I->getAlignment(); |
289 | uint64_t Size = I->getCommonSize(); |
290 | if (!CommonAlign) |
291 | CommonAlign = Align; |
292 | CommonSize = alignTo(Value: CommonSize, Align) + Size; |
293 | CommonSymbolsToAllocate.push_back(x: *I); |
294 | } |
295 | } |
296 | |
297 | if (*FlagsOrErr & SymbolRef::SF_Absolute && |
298 | SymType != object::SymbolRef::ST_File) { |
299 | uint64_t Addr = 0; |
300 | if (auto AddrOrErr = I->getAddress()) |
301 | Addr = *AddrOrErr; |
302 | else |
303 | return AddrOrErr.takeError(); |
304 | |
305 | unsigned SectionID = AbsoluteSymbolSection; |
306 | |
307 | LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name |
308 | << " SID: " << SectionID |
309 | << " Offset: " << format("%p" , (uintptr_t)Addr) |
310 | << " flags: " << *FlagsOrErr << "\n" ); |
311 | // Skip absolute symbol relocations. |
312 | if (!Name.empty()) { |
313 | auto Result = GlobalSymbolTable.insert_or_assign( |
314 | Key: Name, Val: SymbolTableEntry(SectionID, Addr, *JITSymFlags)); |
315 | processNewSymbol(ObjSymbol: *I, Entry&: Result.first->getValue()); |
316 | } |
317 | } else if (SymType == object::SymbolRef::ST_Function || |
318 | SymType == object::SymbolRef::ST_Data || |
319 | SymType == object::SymbolRef::ST_Unknown || |
320 | SymType == object::SymbolRef::ST_Other) { |
321 | |
322 | section_iterator SI = Obj.section_end(); |
323 | if (auto SIOrErr = I->getSection()) |
324 | SI = *SIOrErr; |
325 | else |
326 | return SIOrErr.takeError(); |
327 | |
328 | if (SI == Obj.section_end()) |
329 | continue; |
330 | |
331 | // Get symbol offset. |
332 | uint64_t SectOffset; |
333 | if (auto Err = getOffset(Sym: *I, Sec: *SI, Result&: SectOffset)) |
334 | return std::move(Err); |
335 | |
336 | bool IsCode = SI->isText(); |
337 | unsigned SectionID; |
338 | if (auto SectionIDOrErr = |
339 | findOrEmitSection(Obj, Section: *SI, IsCode, LocalSections)) |
340 | SectionID = *SectionIDOrErr; |
341 | else |
342 | return SectionIDOrErr.takeError(); |
343 | |
344 | LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name |
345 | << " SID: " << SectionID |
346 | << " Offset: " << format("%p" , (uintptr_t)SectOffset) |
347 | << " flags: " << *FlagsOrErr << "\n" ); |
348 | // Skip absolute symbol relocations. |
349 | if (!Name.empty()) { |
350 | auto Result = GlobalSymbolTable.insert_or_assign( |
351 | Key: Name, Val: SymbolTableEntry(SectionID, SectOffset, *JITSymFlags)); |
352 | processNewSymbol(ObjSymbol: *I, Entry&: Result.first->getValue()); |
353 | } |
354 | } |
355 | } |
356 | |
357 | // Allocate common symbols |
358 | if (auto Err = emitCommonSymbols(Obj, CommonSymbols&: CommonSymbolsToAllocate, CommonSize, |
359 | CommonAlign)) |
360 | return std::move(Err); |
361 | |
362 | // Parse and process relocations |
363 | LLVM_DEBUG(dbgs() << "Parse relocations:\n" ); |
364 | for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); |
365 | SI != SE; ++SI) { |
366 | StubMap Stubs; |
367 | |
368 | Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection(); |
369 | if (!RelSecOrErr) |
370 | return RelSecOrErr.takeError(); |
371 | |
372 | section_iterator RelocatedSection = *RelSecOrErr; |
373 | if (RelocatedSection == SE) |
374 | continue; |
375 | |
376 | relocation_iterator I = SI->relocation_begin(); |
377 | relocation_iterator E = SI->relocation_end(); |
378 | |
379 | if (I == E && !ProcessAllSections) |
380 | continue; |
381 | |
382 | bool IsCode = RelocatedSection->isText(); |
383 | unsigned SectionID = 0; |
384 | if (auto SectionIDOrErr = findOrEmitSection(Obj, Section: *RelocatedSection, IsCode, |
385 | LocalSections)) |
386 | SectionID = *SectionIDOrErr; |
387 | else |
388 | return SectionIDOrErr.takeError(); |
389 | |
390 | LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n" ); |
391 | |
392 | for (; I != E;) |
393 | if (auto IOrErr = processRelocationRef(SectionID, RelI: I, Obj, ObjSectionToID&: LocalSections, Stubs)) |
394 | I = *IOrErr; |
395 | else |
396 | return IOrErr.takeError(); |
397 | |
398 | // If there is a NotifyStubEmitted callback set, call it to register any |
399 | // stubs created for this section. |
400 | if (NotifyStubEmitted) { |
401 | StringRef FileName = Obj.getFileName(); |
402 | StringRef SectionName = Sections[SectionID].getName(); |
403 | for (auto &KV : Stubs) { |
404 | |
405 | auto &VR = KV.first; |
406 | uint64_t StubAddr = KV.second; |
407 | |
408 | // If this is a named stub, just call NotifyStubEmitted. |
409 | if (VR.SymbolName) { |
410 | NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID, |
411 | StubAddr); |
412 | continue; |
413 | } |
414 | |
415 | // Otherwise we will have to try a reverse lookup on the globla symbol table. |
416 | for (auto &GSTMapEntry : GlobalSymbolTable) { |
417 | StringRef SymbolName = GSTMapEntry.first(); |
418 | auto &GSTEntry = GSTMapEntry.second; |
419 | if (GSTEntry.getSectionID() == VR.SectionID && |
420 | GSTEntry.getOffset() == VR.Offset) { |
421 | NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID, |
422 | StubAddr); |
423 | break; |
424 | } |
425 | } |
426 | } |
427 | } |
428 | } |
429 | |
430 | // Process remaining sections |
431 | if (ProcessAllSections) { |
432 | LLVM_DEBUG(dbgs() << "Process remaining sections:\n" ); |
433 | for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); |
434 | SI != SE; ++SI) { |
435 | |
436 | /* Ignore already loaded sections */ |
437 | if (LocalSections.find(x: *SI) != LocalSections.end()) |
438 | continue; |
439 | |
440 | bool IsCode = SI->isText(); |
441 | if (auto SectionIDOrErr = |
442 | findOrEmitSection(Obj, Section: *SI, IsCode, LocalSections)) |
443 | LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n" ); |
444 | else |
445 | return SectionIDOrErr.takeError(); |
446 | } |
447 | } |
448 | |
449 | // Give the subclasses a chance to tie-up any loose ends. |
450 | if (auto Err = finalizeLoad(ObjImg: Obj, SectionMap&: LocalSections)) |
451 | return std::move(Err); |
452 | |
453 | // for (auto E : LocalSections) |
454 | // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n"; |
455 | |
456 | return LocalSections; |
457 | } |
458 | |
459 | // A helper method for computeTotalAllocSize. |
460 | // Computes the memory size required to allocate sections with the given sizes, |
461 | // assuming that all sections are allocated with the given alignment |
462 | static uint64_t |
463 | computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes, |
464 | Align Alignment) { |
465 | uint64_t TotalSize = 0; |
466 | for (uint64_t SectionSize : SectionSizes) |
467 | TotalSize += alignTo(Size: SectionSize, A: Alignment); |
468 | return TotalSize; |
469 | } |
470 | |
471 | static bool isRequiredForExecution(const SectionRef Section) { |
472 | const ObjectFile *Obj = Section.getObject(); |
473 | if (isa<object::ELFObjectFileBase>(Val: Obj)) |
474 | return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; |
475 | if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Val: Obj)) { |
476 | const coff_section *CoffSection = COFFObj->getCOFFSection(Section); |
477 | // Avoid loading zero-sized COFF sections. |
478 | // In PE files, VirtualSize gives the section size, and SizeOfRawData |
479 | // may be zero for sections with content. In Obj files, SizeOfRawData |
480 | // gives the section size, and VirtualSize is always zero. Hence |
481 | // the need to check for both cases below. |
482 | bool HasContent = |
483 | (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0); |
484 | bool IsDiscardable = |
485 | CoffSection->Characteristics & |
486 | (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO); |
487 | return HasContent && !IsDiscardable; |
488 | } |
489 | |
490 | assert(isa<MachOObjectFile>(Obj)); |
491 | return true; |
492 | } |
493 | |
494 | static bool isReadOnlyData(const SectionRef Section) { |
495 | const ObjectFile *Obj = Section.getObject(); |
496 | if (isa<object::ELFObjectFileBase>(Val: Obj)) |
497 | return !(ELFSectionRef(Section).getFlags() & |
498 | (ELF::SHF_WRITE | ELF::SHF_EXECINSTR)); |
499 | if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Val: Obj)) |
500 | return ((COFFObj->getCOFFSection(Section)->Characteristics & |
501 | (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
502 | | COFF::IMAGE_SCN_MEM_READ |
503 | | COFF::IMAGE_SCN_MEM_WRITE)) |
504 | == |
505 | (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
506 | | COFF::IMAGE_SCN_MEM_READ)); |
507 | |
508 | assert(isa<MachOObjectFile>(Obj)); |
509 | return false; |
510 | } |
511 | |
512 | static bool isZeroInit(const SectionRef Section) { |
513 | const ObjectFile *Obj = Section.getObject(); |
514 | if (isa<object::ELFObjectFileBase>(Val: Obj)) |
515 | return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS; |
516 | if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Val: Obj)) |
517 | return COFFObj->getCOFFSection(Section)->Characteristics & |
518 | COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA; |
519 | |
520 | auto *MachO = cast<MachOObjectFile>(Val: Obj); |
521 | unsigned SectionType = MachO->getSectionType(Sec: Section); |
522 | return SectionType == MachO::S_ZEROFILL || |
523 | SectionType == MachO::S_GB_ZEROFILL; |
524 | } |
525 | |
526 | static bool isTLS(const SectionRef Section) { |
527 | const ObjectFile *Obj = Section.getObject(); |
528 | if (isa<object::ELFObjectFileBase>(Val: Obj)) |
529 | return ELFSectionRef(Section).getFlags() & ELF::SHF_TLS; |
530 | return false; |
531 | } |
532 | |
533 | // Compute an upper bound of the memory size that is required to load all |
534 | // sections |
535 | Error RuntimeDyldImpl::computeTotalAllocSize( |
536 | const ObjectFile &Obj, uint64_t &CodeSize, Align &CodeAlign, |
537 | uint64_t &RODataSize, Align &RODataAlign, uint64_t &RWDataSize, |
538 | Align &RWDataAlign) { |
539 | // Compute the size of all sections required for execution |
540 | std::vector<uint64_t> CodeSectionSizes; |
541 | std::vector<uint64_t> ROSectionSizes; |
542 | std::vector<uint64_t> RWSectionSizes; |
543 | |
544 | // Collect sizes of all sections to be loaded; |
545 | // also determine the max alignment of all sections |
546 | for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); |
547 | SI != SE; ++SI) { |
548 | const SectionRef &Section = *SI; |
549 | |
550 | bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections; |
551 | |
552 | // Consider only the sections that are required to be loaded for execution |
553 | if (IsRequired) { |
554 | uint64_t DataSize = Section.getSize(); |
555 | Align Alignment = Section.getAlignment(); |
556 | bool IsCode = Section.isText(); |
557 | bool IsReadOnly = isReadOnlyData(Section); |
558 | bool IsTLS = isTLS(Section); |
559 | |
560 | Expected<StringRef> NameOrErr = Section.getName(); |
561 | if (!NameOrErr) |
562 | return NameOrErr.takeError(); |
563 | StringRef Name = *NameOrErr; |
564 | |
565 | uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section); |
566 | |
567 | uint64_t PaddingSize = 0; |
568 | if (Name == ".eh_frame" ) |
569 | PaddingSize += 4; |
570 | if (StubBufSize != 0) |
571 | PaddingSize += getStubAlignment().value() - 1; |
572 | |
573 | uint64_t SectionSize = DataSize + PaddingSize + StubBufSize; |
574 | |
575 | // The .eh_frame section (at least on Linux) needs an extra four bytes |
576 | // padded |
577 | // with zeroes added at the end. For MachO objects, this section has a |
578 | // slightly different name, so this won't have any effect for MachO |
579 | // objects. |
580 | if (Name == ".eh_frame" ) |
581 | SectionSize += 4; |
582 | |
583 | if (!SectionSize) |
584 | SectionSize = 1; |
585 | |
586 | if (IsCode) { |
587 | CodeAlign = std::max(a: CodeAlign, b: Alignment); |
588 | CodeSectionSizes.push_back(x: SectionSize); |
589 | } else if (IsReadOnly) { |
590 | RODataAlign = std::max(a: RODataAlign, b: Alignment); |
591 | ROSectionSizes.push_back(x: SectionSize); |
592 | } else if (!IsTLS) { |
593 | RWDataAlign = std::max(a: RWDataAlign, b: Alignment); |
594 | RWSectionSizes.push_back(x: SectionSize); |
595 | } |
596 | } |
597 | } |
598 | |
599 | // Compute Global Offset Table size. If it is not zero we |
600 | // also update alignment, which is equal to a size of a |
601 | // single GOT entry. |
602 | if (unsigned GotSize = computeGOTSize(Obj)) { |
603 | RWSectionSizes.push_back(x: GotSize); |
604 | RWDataAlign = std::max(a: RWDataAlign, b: Align(getGOTEntrySize())); |
605 | } |
606 | |
607 | // Compute the size of all common symbols |
608 | uint64_t CommonSize = 0; |
609 | Align CommonAlign; |
610 | for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E; |
611 | ++I) { |
612 | Expected<uint32_t> FlagsOrErr = I->getFlags(); |
613 | if (!FlagsOrErr) |
614 | // TODO: Test this error. |
615 | return FlagsOrErr.takeError(); |
616 | if (*FlagsOrErr & SymbolRef::SF_Common) { |
617 | // Add the common symbols to a list. We'll allocate them all below. |
618 | uint64_t Size = I->getCommonSize(); |
619 | Align Alignment = Align(I->getAlignment()); |
620 | // If this is the first common symbol, use its alignment as the alignment |
621 | // for the common symbols section. |
622 | if (CommonSize == 0) |
623 | CommonAlign = Alignment; |
624 | CommonSize = alignTo(Size: CommonSize, A: Alignment) + Size; |
625 | } |
626 | } |
627 | if (CommonSize != 0) { |
628 | RWSectionSizes.push_back(x: CommonSize); |
629 | RWDataAlign = std::max(a: RWDataAlign, b: CommonAlign); |
630 | } |
631 | |
632 | if (!CodeSectionSizes.empty()) { |
633 | // Add 64 bytes for a potential IFunc resolver stub |
634 | CodeSectionSizes.push_back(x: 64); |
635 | } |
636 | |
637 | // Compute the required allocation space for each different type of sections |
638 | // (code, read-only data, read-write data) assuming that all sections are |
639 | // allocated with the max alignment. Note that we cannot compute with the |
640 | // individual alignments of the sections, because then the required size |
641 | // depends on the order, in which the sections are allocated. |
642 | CodeSize = computeAllocationSizeForSections(SectionSizes&: CodeSectionSizes, Alignment: CodeAlign); |
643 | RODataSize = computeAllocationSizeForSections(SectionSizes&: ROSectionSizes, Alignment: RODataAlign); |
644 | RWDataSize = computeAllocationSizeForSections(SectionSizes&: RWSectionSizes, Alignment: RWDataAlign); |
645 | |
646 | return Error::success(); |
647 | } |
648 | |
649 | // compute GOT size |
650 | unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) { |
651 | size_t GotEntrySize = getGOTEntrySize(); |
652 | if (!GotEntrySize) |
653 | return 0; |
654 | |
655 | size_t GotSize = 0; |
656 | for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); |
657 | SI != SE; ++SI) { |
658 | |
659 | for (const RelocationRef &Reloc : SI->relocations()) |
660 | if (relocationNeedsGot(R: Reloc)) |
661 | GotSize += GotEntrySize; |
662 | } |
663 | |
664 | return GotSize; |
665 | } |
666 | |
667 | // compute stub buffer size for the given section |
668 | unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj, |
669 | const SectionRef &Section) { |
670 | if (!MemMgr.allowStubAllocation()) { |
671 | return 0; |
672 | } |
673 | |
674 | unsigned StubSize = getMaxStubSize(); |
675 | if (StubSize == 0) { |
676 | return 0; |
677 | } |
678 | // FIXME: this is an inefficient way to handle this. We should computed the |
679 | // necessary section allocation size in loadObject by walking all the sections |
680 | // once. |
681 | unsigned StubBufSize = 0; |
682 | for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end(); |
683 | SI != SE; ++SI) { |
684 | |
685 | Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection(); |
686 | if (!RelSecOrErr) |
687 | report_fatal_error(reason: Twine(toString(E: RelSecOrErr.takeError()))); |
688 | |
689 | section_iterator RelSecI = *RelSecOrErr; |
690 | if (!(RelSecI == Section)) |
691 | continue; |
692 | |
693 | for (const RelocationRef &Reloc : SI->relocations()) |
694 | if (relocationNeedsStub(R: Reloc)) |
695 | StubBufSize += StubSize; |
696 | } |
697 | |
698 | // Get section data size and alignment |
699 | uint64_t DataSize = Section.getSize(); |
700 | Align Alignment = Section.getAlignment(); |
701 | |
702 | // Add stubbuf size alignment |
703 | Align StubAlignment = getStubAlignment(); |
704 | Align EndAlignment = commonAlignment(A: Alignment, Offset: DataSize); |
705 | if (StubAlignment > EndAlignment) |
706 | StubBufSize += StubAlignment.value() - EndAlignment.value(); |
707 | return StubBufSize; |
708 | } |
709 | |
710 | uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src, |
711 | unsigned Size) const { |
712 | uint64_t Result = 0; |
713 | if (IsTargetLittleEndian) { |
714 | Src += Size - 1; |
715 | while (Size--) |
716 | Result = (Result << 8) | *Src--; |
717 | } else |
718 | while (Size--) |
719 | Result = (Result << 8) | *Src++; |
720 | |
721 | return Result; |
722 | } |
723 | |
724 | void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst, |
725 | unsigned Size) const { |
726 | if (IsTargetLittleEndian) { |
727 | while (Size--) { |
728 | *Dst++ = Value & 0xFF; |
729 | Value >>= 8; |
730 | } |
731 | } else { |
732 | Dst += Size - 1; |
733 | while (Size--) { |
734 | *Dst-- = Value & 0xFF; |
735 | Value >>= 8; |
736 | } |
737 | } |
738 | } |
739 | |
740 | Expected<JITSymbolFlags> |
741 | RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) { |
742 | return JITSymbolFlags::fromObjectSymbol(Symbol: SR); |
743 | } |
744 | |
745 | Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj, |
746 | CommonSymbolList &SymbolsToAllocate, |
747 | uint64_t CommonSize, |
748 | uint32_t CommonAlign) { |
749 | if (SymbolsToAllocate.empty()) |
750 | return Error::success(); |
751 | |
752 | // Allocate memory for the section |
753 | unsigned SectionID = Sections.size(); |
754 | uint8_t *Addr = MemMgr.allocateDataSection(Size: CommonSize, Alignment: CommonAlign, SectionID, |
755 | SectionName: "<common symbols>" , IsReadOnly: false); |
756 | if (!Addr) |
757 | report_fatal_error(reason: "Unable to allocate memory for common symbols!" ); |
758 | uint64_t Offset = 0; |
759 | Sections.push_back( |
760 | x: SectionEntry("<common symbols>" , Addr, CommonSize, CommonSize, 0)); |
761 | memset(s: Addr, c: 0, n: CommonSize); |
762 | |
763 | LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID |
764 | << " new addr: " << format("%p" , Addr) |
765 | << " DataSize: " << CommonSize << "\n" ); |
766 | |
767 | // Assign the address of each symbol |
768 | for (auto &Sym : SymbolsToAllocate) { |
769 | uint32_t Alignment = Sym.getAlignment(); |
770 | uint64_t Size = Sym.getCommonSize(); |
771 | StringRef Name; |
772 | if (auto NameOrErr = Sym.getName()) |
773 | Name = *NameOrErr; |
774 | else |
775 | return NameOrErr.takeError(); |
776 | if (Alignment) { |
777 | // This symbol has an alignment requirement. |
778 | uint64_t AlignOffset = |
779 | offsetToAlignment(Value: (uint64_t)Addr, Alignment: Align(Alignment)); |
780 | Addr += AlignOffset; |
781 | Offset += AlignOffset; |
782 | } |
783 | auto JITSymFlags = getJITSymbolFlags(SR: Sym); |
784 | |
785 | if (!JITSymFlags) |
786 | return JITSymFlags.takeError(); |
787 | |
788 | LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address " |
789 | << format("%p" , Addr) << "\n" ); |
790 | if (!Name.empty()) // Skip absolute symbol relocations. |
791 | GlobalSymbolTable[Name] = |
792 | SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags)); |
793 | Offset += Size; |
794 | Addr += Size; |
795 | } |
796 | |
797 | return Error::success(); |
798 | } |
799 | |
800 | Expected<unsigned> |
801 | RuntimeDyldImpl::emitSection(const ObjectFile &Obj, |
802 | const SectionRef &Section, |
803 | bool IsCode) { |
804 | StringRef data; |
805 | Align Alignment = Section.getAlignment(); |
806 | |
807 | unsigned PaddingSize = 0; |
808 | unsigned StubBufSize = 0; |
809 | bool IsRequired = isRequiredForExecution(Section); |
810 | bool IsVirtual = Section.isVirtual(); |
811 | bool IsZeroInit = isZeroInit(Section); |
812 | bool IsReadOnly = isReadOnlyData(Section); |
813 | bool IsTLS = isTLS(Section); |
814 | uint64_t DataSize = Section.getSize(); |
815 | |
816 | Expected<StringRef> NameOrErr = Section.getName(); |
817 | if (!NameOrErr) |
818 | return NameOrErr.takeError(); |
819 | StringRef Name = *NameOrErr; |
820 | |
821 | StubBufSize = computeSectionStubBufSize(Obj, Section); |
822 | |
823 | // The .eh_frame section (at least on Linux) needs an extra four bytes padded |
824 | // with zeroes added at the end. For MachO objects, this section has a |
825 | // slightly different name, so this won't have any effect for MachO objects. |
826 | if (Name == ".eh_frame" ) |
827 | PaddingSize = 4; |
828 | |
829 | uintptr_t Allocate; |
830 | unsigned SectionID = Sections.size(); |
831 | uint8_t *Addr; |
832 | uint64_t LoadAddress = 0; |
833 | const char *pData = nullptr; |
834 | |
835 | // If this section contains any bits (i.e. isn't a virtual or bss section), |
836 | // grab a reference to them. |
837 | if (!IsVirtual && !IsZeroInit) { |
838 | // In either case, set the location of the unrelocated section in memory, |
839 | // since we still process relocations for it even if we're not applying them. |
840 | if (Expected<StringRef> E = Section.getContents()) |
841 | data = *E; |
842 | else |
843 | return E.takeError(); |
844 | pData = data.data(); |
845 | } |
846 | |
847 | // If there are any stubs then the section alignment needs to be at least as |
848 | // high as stub alignment or padding calculations may by incorrect when the |
849 | // section is remapped. |
850 | if (StubBufSize != 0) { |
851 | Alignment = std::max(a: Alignment, b: getStubAlignment()); |
852 | PaddingSize += getStubAlignment().value() - 1; |
853 | } |
854 | |
855 | // Some sections, such as debug info, don't need to be loaded for execution. |
856 | // Process those only if explicitly requested. |
857 | if (IsRequired || ProcessAllSections) { |
858 | Allocate = DataSize + PaddingSize + StubBufSize; |
859 | if (!Allocate) |
860 | Allocate = 1; |
861 | if (IsTLS) { |
862 | auto TLSSection = MemMgr.allocateTLSSection(Size: Allocate, Alignment: Alignment.value(), |
863 | SectionID, SectionName: Name); |
864 | Addr = TLSSection.InitializationImage; |
865 | LoadAddress = TLSSection.Offset; |
866 | } else if (IsCode) { |
867 | Addr = MemMgr.allocateCodeSection(Size: Allocate, Alignment: Alignment.value(), SectionID, |
868 | SectionName: Name); |
869 | } else { |
870 | Addr = MemMgr.allocateDataSection(Size: Allocate, Alignment: Alignment.value(), SectionID, |
871 | SectionName: Name, IsReadOnly); |
872 | } |
873 | if (!Addr) |
874 | report_fatal_error(reason: "Unable to allocate section memory!" ); |
875 | |
876 | // Zero-initialize or copy the data from the image |
877 | if (IsZeroInit || IsVirtual) |
878 | memset(s: Addr, c: 0, n: DataSize); |
879 | else |
880 | memcpy(dest: Addr, src: pData, n: DataSize); |
881 | |
882 | // Fill in any extra bytes we allocated for padding |
883 | if (PaddingSize != 0) { |
884 | memset(s: Addr + DataSize, c: 0, n: PaddingSize); |
885 | // Update the DataSize variable to include padding. |
886 | DataSize += PaddingSize; |
887 | |
888 | // Align DataSize to stub alignment if we have any stubs (PaddingSize will |
889 | // have been increased above to account for this). |
890 | if (StubBufSize > 0) |
891 | DataSize &= -(uint64_t)getStubAlignment().value(); |
892 | } |
893 | |
894 | LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " |
895 | << Name << " obj addr: " << format("%p" , pData) |
896 | << " new addr: " << format("%p" , Addr) << " DataSize: " |
897 | << DataSize << " StubBufSize: " << StubBufSize |
898 | << " Allocate: " << Allocate << "\n" ); |
899 | } else { |
900 | // Even if we didn't load the section, we need to record an entry for it |
901 | // to handle later processing (and by 'handle' I mean don't do anything |
902 | // with these sections). |
903 | Allocate = 0; |
904 | Addr = nullptr; |
905 | LLVM_DEBUG( |
906 | dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name |
907 | << " obj addr: " << format("%p" , data.data()) << " new addr: 0" |
908 | << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize |
909 | << " Allocate: " << Allocate << "\n" ); |
910 | } |
911 | |
912 | Sections.push_back( |
913 | x: SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData)); |
914 | |
915 | // The load address of a TLS section is not equal to the address of its |
916 | // initialization image |
917 | if (IsTLS) |
918 | Sections.back().setLoadAddress(LoadAddress); |
919 | // Debug info sections are linked as if their load address was zero |
920 | if (!IsRequired) |
921 | Sections.back().setLoadAddress(0); |
922 | |
923 | return SectionID; |
924 | } |
925 | |
926 | Expected<unsigned> |
927 | RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj, |
928 | const SectionRef &Section, |
929 | bool IsCode, |
930 | ObjSectionToIDMap &LocalSections) { |
931 | |
932 | unsigned SectionID = 0; |
933 | ObjSectionToIDMap::iterator i = LocalSections.find(x: Section); |
934 | if (i != LocalSections.end()) |
935 | SectionID = i->second; |
936 | else { |
937 | if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode)) |
938 | SectionID = *SectionIDOrErr; |
939 | else |
940 | return SectionIDOrErr.takeError(); |
941 | LocalSections[Section] = SectionID; |
942 | } |
943 | return SectionID; |
944 | } |
945 | |
946 | void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE, |
947 | unsigned SectionID) { |
948 | Relocations[SectionID].push_back(Elt: RE); |
949 | } |
950 | |
951 | void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE, |
952 | StringRef SymbolName) { |
953 | // Relocation by symbol. If the symbol is found in the global symbol table, |
954 | // create an appropriate section relocation. Otherwise, add it to |
955 | // ExternalSymbolRelocations. |
956 | RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Key: SymbolName); |
957 | if (Loc == GlobalSymbolTable.end()) { |
958 | ExternalSymbolRelocations[SymbolName].push_back(Elt: RE); |
959 | } else { |
960 | assert(!SymbolName.empty() && |
961 | "Empty symbol should not be in GlobalSymbolTable" ); |
962 | // Copy the RE since we want to modify its addend. |
963 | RelocationEntry RECopy = RE; |
964 | const auto &SymInfo = Loc->second; |
965 | RECopy.Addend += SymInfo.getOffset(); |
966 | Relocations[SymInfo.getSectionID()].push_back(Elt: RECopy); |
967 | } |
968 | } |
969 | |
970 | uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr, |
971 | unsigned AbiVariant) { |
972 | if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be || |
973 | Arch == Triple::aarch64_32) { |
974 | // This stub has to be able to access the full address space, |
975 | // since symbol lookup won't necessarily find a handy, in-range, |
976 | // PLT stub for functions which could be anywhere. |
977 | // Stub can use ip0 (== x16) to calculate address |
978 | writeBytesUnaligned(Value: 0xd2e00010, Dst: Addr, Size: 4); // movz ip0, #:abs_g3:<addr> |
979 | writeBytesUnaligned(Value: 0xf2c00010, Dst: Addr+4, Size: 4); // movk ip0, #:abs_g2_nc:<addr> |
980 | writeBytesUnaligned(Value: 0xf2a00010, Dst: Addr+8, Size: 4); // movk ip0, #:abs_g1_nc:<addr> |
981 | writeBytesUnaligned(Value: 0xf2800010, Dst: Addr+12, Size: 4); // movk ip0, #:abs_g0_nc:<addr> |
982 | writeBytesUnaligned(Value: 0xd61f0200, Dst: Addr+16, Size: 4); // br ip0 |
983 | |
984 | return Addr; |
985 | } else if (Arch == Triple::arm || Arch == Triple::armeb) { |
986 | // TODO: There is only ARM far stub now. We should add the Thumb stub, |
987 | // and stubs for branches Thumb - ARM and ARM - Thumb. |
988 | writeBytesUnaligned(Value: 0xe51ff004, Dst: Addr, Size: 4); // ldr pc, [pc, #-4] |
989 | return Addr + 4; |
990 | } else if (IsMipsO32ABI || IsMipsN32ABI) { |
991 | // 0: 3c190000 lui t9,%hi(addr). |
992 | // 4: 27390000 addiu t9,t9,%lo(addr). |
993 | // 8: 03200008 jr t9. |
994 | // c: 00000000 nop. |
995 | const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000; |
996 | const unsigned NopInstr = 0x0; |
997 | unsigned JrT9Instr = 0x03200008; |
998 | if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 || |
999 | (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) |
1000 | JrT9Instr = 0x03200009; |
1001 | |
1002 | writeBytesUnaligned(Value: LuiT9Instr, Dst: Addr, Size: 4); |
1003 | writeBytesUnaligned(Value: AdduiT9Instr, Dst: Addr + 4, Size: 4); |
1004 | writeBytesUnaligned(Value: JrT9Instr, Dst: Addr + 8, Size: 4); |
1005 | writeBytesUnaligned(Value: NopInstr, Dst: Addr + 12, Size: 4); |
1006 | return Addr; |
1007 | } else if (IsMipsN64ABI) { |
1008 | // 0: 3c190000 lui t9,%highest(addr). |
1009 | // 4: 67390000 daddiu t9,t9,%higher(addr). |
1010 | // 8: 0019CC38 dsll t9,t9,16. |
1011 | // c: 67390000 daddiu t9,t9,%hi(addr). |
1012 | // 10: 0019CC38 dsll t9,t9,16. |
1013 | // 14: 67390000 daddiu t9,t9,%lo(addr). |
1014 | // 18: 03200008 jr t9. |
1015 | // 1c: 00000000 nop. |
1016 | const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000, |
1017 | DsllT9Instr = 0x19CC38; |
1018 | const unsigned NopInstr = 0x0; |
1019 | unsigned JrT9Instr = 0x03200008; |
1020 | if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6) |
1021 | JrT9Instr = 0x03200009; |
1022 | |
1023 | writeBytesUnaligned(Value: LuiT9Instr, Dst: Addr, Size: 4); |
1024 | writeBytesUnaligned(Value: DaddiuT9Instr, Dst: Addr + 4, Size: 4); |
1025 | writeBytesUnaligned(Value: DsllT9Instr, Dst: Addr + 8, Size: 4); |
1026 | writeBytesUnaligned(Value: DaddiuT9Instr, Dst: Addr + 12, Size: 4); |
1027 | writeBytesUnaligned(Value: DsllT9Instr, Dst: Addr + 16, Size: 4); |
1028 | writeBytesUnaligned(Value: DaddiuT9Instr, Dst: Addr + 20, Size: 4); |
1029 | writeBytesUnaligned(Value: JrT9Instr, Dst: Addr + 24, Size: 4); |
1030 | writeBytesUnaligned(Value: NopInstr, Dst: Addr + 28, Size: 4); |
1031 | return Addr; |
1032 | } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) { |
1033 | // Depending on which version of the ELF ABI is in use, we need to |
1034 | // generate one of two variants of the stub. They both start with |
1035 | // the same sequence to load the target address into r12. |
1036 | writeInt32BE(Addr, Value: 0x3D800000); // lis r12, highest(addr) |
1037 | writeInt32BE(Addr: Addr+4, Value: 0x618C0000); // ori r12, higher(addr) |
1038 | writeInt32BE(Addr: Addr+8, Value: 0x798C07C6); // sldi r12, r12, 32 |
1039 | writeInt32BE(Addr: Addr+12, Value: 0x658C0000); // oris r12, r12, h(addr) |
1040 | writeInt32BE(Addr: Addr+16, Value: 0x618C0000); // ori r12, r12, l(addr) |
1041 | if (AbiVariant == 2) { |
1042 | // PowerPC64 stub ELFv2 ABI: The address points to the function itself. |
1043 | // The address is already in r12 as required by the ABI. Branch to it. |
1044 | writeInt32BE(Addr: Addr+20, Value: 0xF8410018); // std r2, 24(r1) |
1045 | writeInt32BE(Addr: Addr+24, Value: 0x7D8903A6); // mtctr r12 |
1046 | writeInt32BE(Addr: Addr+28, Value: 0x4E800420); // bctr |
1047 | } else { |
1048 | // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor. |
1049 | // Load the function address on r11 and sets it to control register. Also |
1050 | // loads the function TOC in r2 and environment pointer to r11. |
1051 | writeInt32BE(Addr: Addr+20, Value: 0xF8410028); // std r2, 40(r1) |
1052 | writeInt32BE(Addr: Addr+24, Value: 0xE96C0000); // ld r11, 0(r12) |
1053 | writeInt32BE(Addr: Addr+28, Value: 0xE84C0008); // ld r2, 0(r12) |
1054 | writeInt32BE(Addr: Addr+32, Value: 0x7D6903A6); // mtctr r11 |
1055 | writeInt32BE(Addr: Addr+36, Value: 0xE96C0010); // ld r11, 16(r2) |
1056 | writeInt32BE(Addr: Addr+40, Value: 0x4E800420); // bctr |
1057 | } |
1058 | return Addr; |
1059 | } else if (Arch == Triple::systemz) { |
1060 | writeInt16BE(Addr, Value: 0xC418); // lgrl %r1,.+8 |
1061 | writeInt16BE(Addr: Addr+2, Value: 0x0000); |
1062 | writeInt16BE(Addr: Addr+4, Value: 0x0004); |
1063 | writeInt16BE(Addr: Addr+6, Value: 0x07F1); // brc 15,%r1 |
1064 | // 8-byte address stored at Addr + 8 |
1065 | return Addr; |
1066 | } else if (Arch == Triple::x86_64) { |
1067 | *Addr = 0xFF; // jmp |
1068 | *(Addr+1) = 0x25; // rip |
1069 | // 32-bit PC-relative address of the GOT entry will be stored at Addr+2 |
1070 | } else if (Arch == Triple::x86) { |
1071 | *Addr = 0xE9; // 32-bit pc-relative jump. |
1072 | } |
1073 | return Addr; |
1074 | } |
1075 | |
1076 | // Assign an address to a symbol name and resolve all the relocations |
1077 | // associated with it. |
1078 | void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID, |
1079 | uint64_t Addr) { |
1080 | // The address to use for relocation resolution is not |
1081 | // the address of the local section buffer. We must be doing |
1082 | // a remote execution environment of some sort. Relocations can't |
1083 | // be applied until all the sections have been moved. The client must |
1084 | // trigger this with a call to MCJIT::finalize() or |
1085 | // RuntimeDyld::resolveRelocations(). |
1086 | // |
1087 | // Addr is a uint64_t because we can't assume the pointer width |
1088 | // of the target is the same as that of the host. Just use a generic |
1089 | // "big enough" type. |
1090 | LLVM_DEBUG( |
1091 | dbgs() << "Reassigning address for section " << SectionID << " (" |
1092 | << Sections[SectionID].getName() << "): " |
1093 | << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress()) |
1094 | << " -> " << format("0x%016" PRIx64, Addr) << "\n" ); |
1095 | Sections[SectionID].setLoadAddress(Addr); |
1096 | } |
1097 | |
1098 | void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs, |
1099 | uint64_t Value) { |
1100 | for (const RelocationEntry &RE : Relocs) { |
1101 | // Ignore relocations for sections that were not loaded |
1102 | if (RE.SectionID != AbsoluteSymbolSection && |
1103 | Sections[RE.SectionID].getAddress() == nullptr) |
1104 | continue; |
1105 | resolveRelocation(RE, Value); |
1106 | } |
1107 | } |
1108 | |
1109 | void RuntimeDyldImpl::applyExternalSymbolRelocations( |
1110 | const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) { |
1111 | for (auto &RelocKV : ExternalSymbolRelocations) { |
1112 | StringRef Name = RelocKV.first(); |
1113 | RelocationList &Relocs = RelocKV.second; |
1114 | if (Name.size() == 0) { |
1115 | // This is an absolute symbol, use an address of zero. |
1116 | LLVM_DEBUG(dbgs() << "Resolving absolute relocations." |
1117 | << "\n" ); |
1118 | resolveRelocationList(Relocs, Value: 0); |
1119 | } else { |
1120 | uint64_t Addr = 0; |
1121 | JITSymbolFlags Flags; |
1122 | RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Key: Name); |
1123 | if (Loc == GlobalSymbolTable.end()) { |
1124 | auto RRI = ExternalSymbolMap.find(Key: Name); |
1125 | assert(RRI != ExternalSymbolMap.end() && "No result for symbol" ); |
1126 | Addr = RRI->second.getAddress(); |
1127 | Flags = RRI->second.getFlags(); |
1128 | } else { |
1129 | // We found the symbol in our global table. It was probably in a |
1130 | // Module that we loaded previously. |
1131 | const auto &SymInfo = Loc->second; |
1132 | Addr = getSectionLoadAddress(SectionID: SymInfo.getSectionID()) + |
1133 | SymInfo.getOffset(); |
1134 | Flags = SymInfo.getFlags(); |
1135 | } |
1136 | |
1137 | // FIXME: Implement error handling that doesn't kill the host program! |
1138 | if (!Addr && !Resolver.allowsZeroSymbols()) |
1139 | report_fatal_error(reason: Twine("Program used external function '" ) + Name + |
1140 | "' which could not be resolved!" ); |
1141 | |
1142 | // If Resolver returned UINT64_MAX, the client wants to handle this symbol |
1143 | // manually and we shouldn't resolve its relocations. |
1144 | if (Addr != UINT64_MAX) { |
1145 | |
1146 | // Tweak the address based on the symbol flags if necessary. |
1147 | // For example, this is used by RuntimeDyldMachOARM to toggle the low bit |
1148 | // if the target symbol is Thumb. |
1149 | Addr = modifyAddressBasedOnFlags(Addr, Flags); |
1150 | |
1151 | LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t" |
1152 | << format("0x%lx" , Addr) << "\n" ); |
1153 | resolveRelocationList(Relocs, Value: Addr); |
1154 | } |
1155 | } |
1156 | } |
1157 | ExternalSymbolRelocations.clear(); |
1158 | } |
1159 | |
1160 | Error RuntimeDyldImpl::resolveExternalSymbols() { |
1161 | StringMap<JITEvaluatedSymbol> ExternalSymbolMap; |
1162 | |
1163 | // Resolution can trigger emission of more symbols, so iterate until |
1164 | // we've resolved *everything*. |
1165 | { |
1166 | JITSymbolResolver::LookupSet ResolvedSymbols; |
1167 | |
1168 | while (true) { |
1169 | JITSymbolResolver::LookupSet NewSymbols; |
1170 | |
1171 | for (auto &RelocKV : ExternalSymbolRelocations) { |
1172 | StringRef Name = RelocKV.first(); |
1173 | if (!Name.empty() && !GlobalSymbolTable.count(Key: Name) && |
1174 | !ResolvedSymbols.count(x: Name)) |
1175 | NewSymbols.insert(x: Name); |
1176 | } |
1177 | |
1178 | if (NewSymbols.empty()) |
1179 | break; |
1180 | |
1181 | #ifdef _MSC_VER |
1182 | using ExpectedLookupResult = |
1183 | MSVCPExpected<JITSymbolResolver::LookupResult>; |
1184 | #else |
1185 | using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>; |
1186 | #endif |
1187 | |
1188 | auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>(); |
1189 | auto NewSymbolsF = NewSymbolsP->get_future(); |
1190 | Resolver.lookup(Symbols: NewSymbols, |
1191 | OnResolved: [=](Expected<JITSymbolResolver::LookupResult> Result) { |
1192 | NewSymbolsP->set_value(std::move(Result)); |
1193 | }); |
1194 | |
1195 | auto NewResolverResults = NewSymbolsF.get(); |
1196 | |
1197 | if (!NewResolverResults) |
1198 | return NewResolverResults.takeError(); |
1199 | |
1200 | assert(NewResolverResults->size() == NewSymbols.size() && |
1201 | "Should have errored on unresolved symbols" ); |
1202 | |
1203 | for (auto &RRKV : *NewResolverResults) { |
1204 | assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?" ); |
1205 | ExternalSymbolMap.insert(KV: RRKV); |
1206 | ResolvedSymbols.insert(x: RRKV.first); |
1207 | } |
1208 | } |
1209 | } |
1210 | |
1211 | applyExternalSymbolRelocations(ExternalSymbolMap); |
1212 | |
1213 | return Error::success(); |
1214 | } |
1215 | |
1216 | void RuntimeDyldImpl::finalizeAsync( |
1217 | std::unique_ptr<RuntimeDyldImpl> This, |
1218 | unique_function<void(object::OwningBinary<object::ObjectFile>, |
1219 | std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)> |
1220 | OnEmitted, |
1221 | object::OwningBinary<object::ObjectFile> O, |
1222 | std::unique_ptr<RuntimeDyld::LoadedObjectInfo> Info) { |
1223 | |
1224 | auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This)); |
1225 | auto PostResolveContinuation = |
1226 | [SharedThis, OnEmitted = std::move(OnEmitted), O = std::move(O), |
1227 | Info = std::move(Info)]( |
1228 | Expected<JITSymbolResolver::LookupResult> Result) mutable { |
1229 | if (!Result) { |
1230 | OnEmitted(std::move(O), std::move(Info), Result.takeError()); |
1231 | return; |
1232 | } |
1233 | |
1234 | /// Copy the result into a StringMap, where the keys are held by value. |
1235 | StringMap<JITEvaluatedSymbol> Resolved; |
1236 | for (auto &KV : *Result) |
1237 | Resolved[KV.first] = KV.second; |
1238 | |
1239 | SharedThis->applyExternalSymbolRelocations(ExternalSymbolMap: Resolved); |
1240 | SharedThis->resolveLocalRelocations(); |
1241 | SharedThis->registerEHFrames(); |
1242 | std::string ErrMsg; |
1243 | if (SharedThis->MemMgr.finalizeMemory(ErrMsg: &ErrMsg)) |
1244 | OnEmitted(std::move(O), std::move(Info), |
1245 | make_error<StringError>(Args: std::move(ErrMsg), |
1246 | Args: inconvertibleErrorCode())); |
1247 | else |
1248 | OnEmitted(std::move(O), std::move(Info), Error::success()); |
1249 | }; |
1250 | |
1251 | JITSymbolResolver::LookupSet Symbols; |
1252 | |
1253 | for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) { |
1254 | StringRef Name = RelocKV.first(); |
1255 | if (Name.empty()) // Skip absolute symbol relocations. |
1256 | continue; |
1257 | assert(!SharedThis->GlobalSymbolTable.count(Name) && |
1258 | "Name already processed. RuntimeDyld instances can not be re-used " |
1259 | "when finalizing with finalizeAsync." ); |
1260 | Symbols.insert(x: Name); |
1261 | } |
1262 | |
1263 | if (!Symbols.empty()) { |
1264 | SharedThis->Resolver.lookup(Symbols, OnResolved: std::move(PostResolveContinuation)); |
1265 | } else |
1266 | PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>()); |
1267 | } |
1268 | |
1269 | //===----------------------------------------------------------------------===// |
1270 | // RuntimeDyld class implementation |
1271 | |
1272 | uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress( |
1273 | const object::SectionRef &Sec) const { |
1274 | |
1275 | auto I = ObjSecToIDMap.find(x: Sec); |
1276 | if (I != ObjSecToIDMap.end()) |
1277 | return RTDyld.Sections[I->second].getLoadAddress(); |
1278 | |
1279 | return 0; |
1280 | } |
1281 | |
1282 | RuntimeDyld::MemoryManager::TLSSection |
1283 | RuntimeDyld::MemoryManager::allocateTLSSection(uintptr_t Size, |
1284 | unsigned Alignment, |
1285 | unsigned SectionID, |
1286 | StringRef SectionName) { |
1287 | report_fatal_error(reason: "allocation of TLS not implemented" ); |
1288 | } |
1289 | |
1290 | void RuntimeDyld::MemoryManager::anchor() {} |
1291 | void JITSymbolResolver::anchor() {} |
1292 | void LegacyJITSymbolResolver::anchor() {} |
1293 | |
1294 | RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr, |
1295 | JITSymbolResolver &Resolver) |
1296 | : MemMgr(MemMgr), Resolver(Resolver) { |
1297 | // FIXME: There's a potential issue lurking here if a single instance of |
1298 | // RuntimeDyld is used to load multiple objects. The current implementation |
1299 | // associates a single memory manager with a RuntimeDyld instance. Even |
1300 | // though the public class spawns a new 'impl' instance for each load, |
1301 | // they share a single memory manager. This can become a problem when page |
1302 | // permissions are applied. |
1303 | Dyld = nullptr; |
1304 | ProcessAllSections = false; |
1305 | } |
1306 | |
1307 | RuntimeDyld::~RuntimeDyld() = default; |
1308 | |
1309 | static std::unique_ptr<RuntimeDyldCOFF> |
1310 | createRuntimeDyldCOFF( |
1311 | Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, |
1312 | JITSymbolResolver &Resolver, bool ProcessAllSections, |
1313 | RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { |
1314 | std::unique_ptr<RuntimeDyldCOFF> Dyld = |
1315 | RuntimeDyldCOFF::create(Arch, MemMgr&: MM, Resolver); |
1316 | Dyld->setProcessAllSections(ProcessAllSections); |
1317 | Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); |
1318 | return Dyld; |
1319 | } |
1320 | |
1321 | static std::unique_ptr<RuntimeDyldELF> |
1322 | createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, |
1323 | JITSymbolResolver &Resolver, bool ProcessAllSections, |
1324 | RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { |
1325 | std::unique_ptr<RuntimeDyldELF> Dyld = |
1326 | RuntimeDyldELF::create(Arch, MemMgr&: MM, Resolver); |
1327 | Dyld->setProcessAllSections(ProcessAllSections); |
1328 | Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); |
1329 | return Dyld; |
1330 | } |
1331 | |
1332 | static std::unique_ptr<RuntimeDyldMachO> |
1333 | createRuntimeDyldMachO( |
1334 | Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM, |
1335 | JITSymbolResolver &Resolver, |
1336 | bool ProcessAllSections, |
1337 | RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) { |
1338 | std::unique_ptr<RuntimeDyldMachO> Dyld = |
1339 | RuntimeDyldMachO::create(Arch, MemMgr&: MM, Resolver); |
1340 | Dyld->setProcessAllSections(ProcessAllSections); |
1341 | Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted)); |
1342 | return Dyld; |
1343 | } |
1344 | |
1345 | std::unique_ptr<RuntimeDyld::LoadedObjectInfo> |
1346 | RuntimeDyld::loadObject(const ObjectFile &Obj) { |
1347 | if (!Dyld) { |
1348 | if (Obj.isELF()) |
1349 | Dyld = |
1350 | createRuntimeDyldELF(Arch: static_cast<Triple::ArchType>(Obj.getArch()), |
1351 | MM&: MemMgr, Resolver, ProcessAllSections, |
1352 | NotifyStubEmitted: std::move(NotifyStubEmitted)); |
1353 | else if (Obj.isMachO()) |
1354 | Dyld = createRuntimeDyldMachO( |
1355 | Arch: static_cast<Triple::ArchType>(Obj.getArch()), MM&: MemMgr, Resolver, |
1356 | ProcessAllSections, NotifyStubEmitted: std::move(NotifyStubEmitted)); |
1357 | else if (Obj.isCOFF()) |
1358 | Dyld = createRuntimeDyldCOFF( |
1359 | Arch: static_cast<Triple::ArchType>(Obj.getArch()), MM&: MemMgr, Resolver, |
1360 | ProcessAllSections, NotifyStubEmitted: std::move(NotifyStubEmitted)); |
1361 | else |
1362 | report_fatal_error(reason: "Incompatible object format!" ); |
1363 | } |
1364 | |
1365 | if (!Dyld->isCompatibleFile(Obj)) |
1366 | report_fatal_error(reason: "Incompatible object format!" ); |
1367 | |
1368 | auto LoadedObjInfo = Dyld->loadObject(Obj); |
1369 | MemMgr.notifyObjectLoaded(RTDyld&: *this, Obj); |
1370 | return LoadedObjInfo; |
1371 | } |
1372 | |
1373 | void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const { |
1374 | if (!Dyld) |
1375 | return nullptr; |
1376 | return Dyld->getSymbolLocalAddress(Name); |
1377 | } |
1378 | |
1379 | unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const { |
1380 | assert(Dyld && "No RuntimeDyld instance attached" ); |
1381 | return Dyld->getSymbolSectionID(Name); |
1382 | } |
1383 | |
1384 | JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const { |
1385 | if (!Dyld) |
1386 | return nullptr; |
1387 | return Dyld->getSymbol(Name); |
1388 | } |
1389 | |
1390 | std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const { |
1391 | if (!Dyld) |
1392 | return std::map<StringRef, JITEvaluatedSymbol>(); |
1393 | return Dyld->getSymbolTable(); |
1394 | } |
1395 | |
1396 | void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); } |
1397 | |
1398 | void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) { |
1399 | Dyld->reassignSectionAddress(SectionID, Addr); |
1400 | } |
1401 | |
1402 | void RuntimeDyld::mapSectionAddress(const void *LocalAddress, |
1403 | uint64_t TargetAddress) { |
1404 | Dyld->mapSectionAddress(LocalAddress, TargetAddress); |
1405 | } |
1406 | |
1407 | bool RuntimeDyld::hasError() { return Dyld->hasError(); } |
1408 | |
1409 | StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); } |
1410 | |
1411 | void RuntimeDyld::finalizeWithMemoryManagerLocking() { |
1412 | bool MemoryFinalizationLocked = MemMgr.FinalizationLocked; |
1413 | MemMgr.FinalizationLocked = true; |
1414 | resolveRelocations(); |
1415 | registerEHFrames(); |
1416 | if (!MemoryFinalizationLocked) { |
1417 | MemMgr.finalizeMemory(); |
1418 | MemMgr.FinalizationLocked = false; |
1419 | } |
1420 | } |
1421 | |
1422 | StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const { |
1423 | assert(Dyld && "No Dyld instance attached" ); |
1424 | return Dyld->getSectionContent(SectionID); |
1425 | } |
1426 | |
1427 | uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const { |
1428 | assert(Dyld && "No Dyld instance attached" ); |
1429 | return Dyld->getSectionLoadAddress(SectionID); |
1430 | } |
1431 | |
1432 | void RuntimeDyld::registerEHFrames() { |
1433 | if (Dyld) |
1434 | Dyld->registerEHFrames(); |
1435 | } |
1436 | |
1437 | void RuntimeDyld::deregisterEHFrames() { |
1438 | if (Dyld) |
1439 | Dyld->deregisterEHFrames(); |
1440 | } |
1441 | // FIXME: Kill this with fire once we have a new JIT linker: this is only here |
1442 | // so that we can re-use RuntimeDyld's implementation without twisting the |
1443 | // interface any further for ORC's purposes. |
1444 | void jitLinkForORC( |
1445 | object::OwningBinary<object::ObjectFile> O, |
1446 | RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver, |
1447 | bool ProcessAllSections, |
1448 | unique_function<Error(const object::ObjectFile &Obj, |
1449 | RuntimeDyld::LoadedObjectInfo &LoadedObj, |
1450 | std::map<StringRef, JITEvaluatedSymbol>)> |
1451 | OnLoaded, |
1452 | unique_function<void(object::OwningBinary<object::ObjectFile>, |
1453 | std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)> |
1454 | OnEmitted) { |
1455 | |
1456 | RuntimeDyld RTDyld(MemMgr, Resolver); |
1457 | RTDyld.setProcessAllSections(ProcessAllSections); |
1458 | |
1459 | auto Info = RTDyld.loadObject(Obj: *O.getBinary()); |
1460 | |
1461 | if (RTDyld.hasError()) { |
1462 | OnEmitted(std::move(O), std::move(Info), |
1463 | make_error<StringError>(Args: RTDyld.getErrorString(), |
1464 | Args: inconvertibleErrorCode())); |
1465 | return; |
1466 | } |
1467 | |
1468 | if (auto Err = OnLoaded(*O.getBinary(), *Info, RTDyld.getSymbolTable())) { |
1469 | OnEmitted(std::move(O), std::move(Info), std::move(Err)); |
1470 | return; |
1471 | } |
1472 | |
1473 | RuntimeDyldImpl::finalizeAsync(This: std::move(RTDyld.Dyld), OnEmitted: std::move(OnEmitted), |
1474 | O: std::move(O), Info: std::move(Info)); |
1475 | } |
1476 | |
1477 | } // end namespace llvm |
1478 | |