1 | //===-- IRMutator.cpp -----------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "llvm/FuzzMutate/IRMutator.h" |
10 | #include "llvm/ADT/STLExtras.h" |
11 | #include "llvm/ADT/SmallSet.h" |
12 | #include "llvm/Analysis/TargetLibraryInfo.h" |
13 | #include "llvm/Bitcode/BitcodeReader.h" |
14 | #include "llvm/Bitcode/BitcodeWriter.h" |
15 | #include "llvm/FuzzMutate/Operations.h" |
16 | #include "llvm/FuzzMutate/Random.h" |
17 | #include "llvm/FuzzMutate/RandomIRBuilder.h" |
18 | #include "llvm/IR/BasicBlock.h" |
19 | #include "llvm/IR/FMF.h" |
20 | #include "llvm/IR/Function.h" |
21 | #include "llvm/IR/InstIterator.h" |
22 | #include "llvm/IR/Instructions.h" |
23 | #include "llvm/IR/Module.h" |
24 | #include "llvm/IR/Operator.h" |
25 | #include "llvm/IR/PassInstrumentation.h" |
26 | #include "llvm/IR/Verifier.h" |
27 | #include "llvm/Support/MemoryBuffer.h" |
28 | #include "llvm/Support/SourceMgr.h" |
29 | #include "llvm/Transforms/Scalar/DCE.h" |
30 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
31 | #include <map> |
32 | #include <optional> |
33 | |
34 | using namespace llvm; |
35 | |
36 | void IRMutationStrategy::mutate(Module &M, RandomIRBuilder &IB) { |
37 | auto RS = makeSampler<Function *>(RandGen&: IB.Rand); |
38 | for (Function &F : M) |
39 | if (!F.isDeclaration()) |
40 | RS.sample(Item: &F, /*Weight=*/1); |
41 | |
42 | while (RS.totalWeight() < IB.MinFunctionNum) { |
43 | Function *F = IB.createFunctionDefinition(M); |
44 | RS.sample(Item: F, /*Weight=*/1); |
45 | } |
46 | mutate(F&: *RS.getSelection(), IB); |
47 | } |
48 | |
49 | void IRMutationStrategy::mutate(Function &F, RandomIRBuilder &IB) { |
50 | auto Range = make_filter_range(Range: make_pointer_range(Range&: F), |
51 | Pred: [](BasicBlock *BB) { return !BB->isEHPad(); }); |
52 | |
53 | mutate(BB&: *makeSampler(RandGen&: IB.Rand, Items&: Range).getSelection(), IB); |
54 | } |
55 | |
56 | void IRMutationStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) { |
57 | mutate(I&: *makeSampler(RandGen&: IB.Rand, Items: make_pointer_range(Range&: BB)).getSelection(), IB); |
58 | } |
59 | |
60 | size_t llvm::IRMutator::getModuleSize(const Module &M) { |
61 | return M.getInstructionCount() + M.size() + M.global_size() + M.alias_size(); |
62 | } |
63 | |
64 | void IRMutator::mutateModule(Module &M, int Seed, size_t MaxSize) { |
65 | std::vector<Type *> Types; |
66 | for (const auto &Getter : AllowedTypes) |
67 | Types.push_back(x: Getter(M.getContext())); |
68 | RandomIRBuilder IB(Seed, Types); |
69 | |
70 | size_t CurSize = IRMutator::getModuleSize(M); |
71 | auto RS = makeSampler<IRMutationStrategy *>(RandGen&: IB.Rand); |
72 | for (const auto &Strategy : Strategies) |
73 | RS.sample(Item: Strategy.get(), |
74 | Weight: Strategy->getWeight(CurrentSize: CurSize, MaxSize, CurrentWeight: RS.totalWeight())); |
75 | if (RS.totalWeight() == 0) |
76 | return; |
77 | auto Strategy = RS.getSelection(); |
78 | |
79 | Strategy->mutate(M, IB); |
80 | } |
81 | |
82 | static void eliminateDeadCode(Function &F) { |
83 | FunctionPassManager FPM; |
84 | FPM.addPass(Pass: DCEPass()); |
85 | FunctionAnalysisManager FAM; |
86 | FAM.registerPass(PassBuilder: [&] { return TargetLibraryAnalysis(); }); |
87 | FAM.registerPass(PassBuilder: [&] { return PassInstrumentationAnalysis(); }); |
88 | FPM.run(IR&: F, AM&: FAM); |
89 | } |
90 | |
91 | void InjectorIRStrategy::mutate(Function &F, RandomIRBuilder &IB) { |
92 | IRMutationStrategy::mutate(F, IB); |
93 | eliminateDeadCode(F); |
94 | } |
95 | |
96 | std::vector<fuzzerop::OpDescriptor> InjectorIRStrategy::getDefaultOps() { |
97 | std::vector<fuzzerop::OpDescriptor> Ops; |
98 | describeFuzzerIntOps(Ops); |
99 | describeFuzzerFloatOps(Ops); |
100 | describeFuzzerControlFlowOps(Ops); |
101 | describeFuzzerPointerOps(Ops); |
102 | describeFuzzerAggregateOps(Ops); |
103 | describeFuzzerVectorOps(Ops); |
104 | return Ops; |
105 | } |
106 | |
107 | std::optional<fuzzerop::OpDescriptor> |
108 | InjectorIRStrategy::chooseOperation(Value *Src, RandomIRBuilder &IB) { |
109 | auto OpMatchesPred = [&Src](fuzzerop::OpDescriptor &Op) { |
110 | return Op.SourcePreds[0].matches(Cur: {}, New: Src); |
111 | }; |
112 | auto RS = makeSampler(RandGen&: IB.Rand, Items: make_filter_range(Range&: Operations, Pred: OpMatchesPred)); |
113 | if (RS.isEmpty()) |
114 | return std::nullopt; |
115 | return *RS; |
116 | } |
117 | |
118 | static inline iterator_range<BasicBlock::iterator> |
119 | getInsertionRange(BasicBlock &BB) { |
120 | auto End = BB.getTerminatingMustTailCall() ? std::prev(x: BB.end()) : BB.end(); |
121 | return make_range(x: BB.getFirstInsertionPt(), y: End); |
122 | } |
123 | |
124 | void InjectorIRStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) { |
125 | SmallVector<Instruction *, 32> Insts; |
126 | for (Instruction &I : getInsertionRange(BB)) |
127 | Insts.push_back(Elt: &I); |
128 | if (Insts.size() < 1) |
129 | return; |
130 | |
131 | // Choose an insertion point for our new instruction. |
132 | size_t IP = uniform<size_t>(Gen&: IB.Rand, Min: 0, Max: Insts.size() - 1); |
133 | |
134 | auto InstsBefore = ArrayRef(Insts).slice(N: 0, M: IP); |
135 | auto InstsAfter = ArrayRef(Insts).slice(N: IP); |
136 | |
137 | // Choose a source, which will be used to constrain the operation selection. |
138 | SmallVector<Value *, 2> Srcs; |
139 | Srcs.push_back(Elt: IB.findOrCreateSource(BB, Insts: InstsBefore)); |
140 | |
141 | // Choose an operation that's constrained to be valid for the type of the |
142 | // source, collect any other sources it needs, and then build it. |
143 | auto OpDesc = chooseOperation(Src: Srcs[0], IB); |
144 | // Bail if no operation was found |
145 | if (!OpDesc) |
146 | return; |
147 | |
148 | for (const auto &Pred : ArrayRef(OpDesc->SourcePreds).slice(N: 1)) |
149 | Srcs.push_back(Elt: IB.findOrCreateSource(BB, Insts: InstsBefore, Srcs, Pred)); |
150 | |
151 | if (Value *Op = OpDesc->BuilderFunc(Srcs, Insts[IP])) { |
152 | // Find a sink and wire up the results of the operation. |
153 | IB.connectToSink(BB, Insts: InstsAfter, V: Op); |
154 | } |
155 | } |
156 | |
157 | uint64_t InstDeleterIRStrategy::getWeight(size_t CurrentSize, size_t MaxSize, |
158 | uint64_t CurrentWeight) { |
159 | // If we have less than 200 bytes, panic and try to always delete. |
160 | if (CurrentSize > MaxSize - 200) |
161 | return CurrentWeight ? CurrentWeight * 100 : 1; |
162 | // Draw a line starting from when we only have 1k left and increasing linearly |
163 | // to double the current weight. |
164 | int64_t Line = (-2 * static_cast<int64_t>(CurrentWeight)) * |
165 | (static_cast<int64_t>(MaxSize) - |
166 | static_cast<int64_t>(CurrentSize) - 1000) / |
167 | 1000; |
168 | // Clamp negative weights to zero. |
169 | if (Line < 0) |
170 | return 0; |
171 | return Line; |
172 | } |
173 | |
174 | void InstDeleterIRStrategy::mutate(Function &F, RandomIRBuilder &IB) { |
175 | auto RS = makeSampler<Instruction *>(RandGen&: IB.Rand); |
176 | for (Instruction &Inst : instructions(F)) { |
177 | // TODO: We can't handle these instructions. |
178 | if (Inst.isTerminator() || Inst.isEHPad() || Inst.isSwiftError() || |
179 | isa<PHINode>(Val: Inst)) |
180 | continue; |
181 | |
182 | RS.sample(Item: &Inst, /*Weight=*/1); |
183 | } |
184 | if (RS.isEmpty()) |
185 | return; |
186 | |
187 | // Delete the instruction. |
188 | mutate(Inst&: *RS.getSelection(), IB); |
189 | // Clean up any dead code that's left over after removing the instruction. |
190 | eliminateDeadCode(F); |
191 | } |
192 | |
193 | void InstDeleterIRStrategy::mutate(Instruction &Inst, RandomIRBuilder &IB) { |
194 | assert(!Inst.isTerminator() && "Deleting terminators invalidates CFG" ); |
195 | |
196 | if (Inst.getType()->isVoidTy()) { |
197 | // Instructions with void type (ie, store) have no uses to worry about. Just |
198 | // erase it and move on. |
199 | Inst.eraseFromParent(); |
200 | return; |
201 | } |
202 | |
203 | // Otherwise we need to find some other value with the right type to keep the |
204 | // users happy. |
205 | auto Pred = fuzzerop::onlyType(Only: Inst.getType()); |
206 | auto RS = makeSampler<Value *>(RandGen&: IB.Rand); |
207 | SmallVector<Instruction *, 32> InstsBefore; |
208 | BasicBlock *BB = Inst.getParent(); |
209 | for (auto I = BB->getFirstInsertionPt(), E = Inst.getIterator(); I != E; |
210 | ++I) { |
211 | if (Pred.matches(Cur: {}, New: &*I)) |
212 | RS.sample(Item: &*I, /*Weight=*/1); |
213 | InstsBefore.push_back(Elt: &*I); |
214 | } |
215 | if (!RS) |
216 | RS.sample(Item: IB.newSource(BB&: *BB, Insts: InstsBefore, Srcs: {}, Pred), /*Weight=*/1); |
217 | |
218 | Inst.replaceAllUsesWith(V: RS.getSelection()); |
219 | Inst.eraseFromParent(); |
220 | } |
221 | |
222 | void InstModificationIRStrategy::mutate(Instruction &Inst, |
223 | RandomIRBuilder &IB) { |
224 | SmallVector<std::function<void()>, 8> Modifications; |
225 | CmpInst *CI = nullptr; |
226 | GetElementPtrInst *GEP = nullptr; |
227 | switch (Inst.getOpcode()) { |
228 | default: |
229 | break; |
230 | // Add nsw, nuw flag |
231 | case Instruction::Add: |
232 | case Instruction::Mul: |
233 | case Instruction::Sub: |
234 | case Instruction::Shl: |
235 | Modifications.push_back( |
236 | Elt: [&Inst]() { Inst.setHasNoSignedWrap(!Inst.hasNoSignedWrap()); }); |
237 | Modifications.push_back( |
238 | Elt: [&Inst]() { Inst.setHasNoUnsignedWrap(!Inst.hasNoUnsignedWrap()); }); |
239 | break; |
240 | case Instruction::ICmp: |
241 | CI = cast<ICmpInst>(Val: &Inst); |
242 | for (unsigned p = CmpInst::FIRST_ICMP_PREDICATE; |
243 | p <= CmpInst::LAST_ICMP_PREDICATE; p++) { |
244 | Modifications.push_back( |
245 | Elt: [CI, p]() { CI->setPredicate(static_cast<CmpInst::Predicate>(p)); }); |
246 | } |
247 | break; |
248 | // Add inbound flag. |
249 | case Instruction::GetElementPtr: |
250 | GEP = cast<GetElementPtrInst>(Val: &Inst); |
251 | Modifications.push_back( |
252 | Elt: [GEP]() { GEP->setIsInBounds(!GEP->isInBounds()); }); |
253 | break; |
254 | // Add exact flag. |
255 | case Instruction::UDiv: |
256 | case Instruction::SDiv: |
257 | case Instruction::LShr: |
258 | case Instruction::AShr: |
259 | Modifications.push_back(Elt: [&Inst] { Inst.setIsExact(!Inst.isExact()); }); |
260 | break; |
261 | |
262 | case Instruction::FCmp: |
263 | CI = cast<FCmpInst>(Val: &Inst); |
264 | for (unsigned p = CmpInst::FIRST_FCMP_PREDICATE; |
265 | p <= CmpInst::LAST_FCMP_PREDICATE; p++) { |
266 | Modifications.push_back( |
267 | Elt: [CI, p]() { CI->setPredicate(static_cast<CmpInst::Predicate>(p)); }); |
268 | } |
269 | break; |
270 | } |
271 | |
272 | // Add fast math flag if possible. |
273 | if (isa<FPMathOperator>(Val: &Inst)) { |
274 | // Try setting everything unless they are already on. |
275 | Modifications.push_back( |
276 | Elt: [&Inst] { Inst.setFast(!Inst.getFastMathFlags().all()); }); |
277 | // Try unsetting everything unless they are already off. |
278 | Modifications.push_back( |
279 | Elt: [&Inst] { Inst.setFast(!Inst.getFastMathFlags().none()); }); |
280 | // Individual setting by flipping the bit |
281 | Modifications.push_back( |
282 | Elt: [&Inst] { Inst.setHasAllowReassoc(!Inst.hasAllowReassoc()); }); |
283 | Modifications.push_back(Elt: [&Inst] { Inst.setHasNoNaNs(!Inst.hasNoNaNs()); }); |
284 | Modifications.push_back(Elt: [&Inst] { Inst.setHasNoInfs(!Inst.hasNoInfs()); }); |
285 | Modifications.push_back( |
286 | Elt: [&Inst] { Inst.setHasNoSignedZeros(!Inst.hasNoSignedZeros()); }); |
287 | Modifications.push_back( |
288 | Elt: [&Inst] { Inst.setHasAllowReciprocal(!Inst.hasAllowReciprocal()); }); |
289 | Modifications.push_back( |
290 | Elt: [&Inst] { Inst.setHasAllowContract(!Inst.hasAllowContract()); }); |
291 | Modifications.push_back( |
292 | Elt: [&Inst] { Inst.setHasApproxFunc(!Inst.hasApproxFunc()); }); |
293 | } |
294 | |
295 | // Randomly switch operands of instructions |
296 | std::pair<int, int> NoneItem({-1, -1}), ShuffleItems(NoneItem); |
297 | switch (Inst.getOpcode()) { |
298 | case Instruction::SDiv: |
299 | case Instruction::UDiv: |
300 | case Instruction::SRem: |
301 | case Instruction::URem: |
302 | case Instruction::FDiv: |
303 | case Instruction::FRem: { |
304 | // Verify that the after shuffle the second operand is not |
305 | // constant 0. |
306 | Value *Operand = Inst.getOperand(i: 0); |
307 | if (Constant *C = dyn_cast<Constant>(Val: Operand)) { |
308 | if (!C->isZeroValue()) { |
309 | ShuffleItems = {0, 1}; |
310 | } |
311 | } |
312 | break; |
313 | } |
314 | case Instruction::Select: |
315 | ShuffleItems = {1, 2}; |
316 | break; |
317 | case Instruction::Add: |
318 | case Instruction::Sub: |
319 | case Instruction::Mul: |
320 | case Instruction::Shl: |
321 | case Instruction::LShr: |
322 | case Instruction::AShr: |
323 | case Instruction::And: |
324 | case Instruction::Or: |
325 | case Instruction::Xor: |
326 | case Instruction::FAdd: |
327 | case Instruction::FSub: |
328 | case Instruction::FMul: |
329 | case Instruction::ICmp: |
330 | case Instruction::FCmp: |
331 | case Instruction::ShuffleVector: |
332 | ShuffleItems = {0, 1}; |
333 | break; |
334 | } |
335 | if (ShuffleItems != NoneItem) { |
336 | Modifications.push_back(Elt: [&Inst, &ShuffleItems]() { |
337 | Value *Op0 = Inst.getOperand(i: ShuffleItems.first); |
338 | Inst.setOperand(i: ShuffleItems.first, Val: Inst.getOperand(i: ShuffleItems.second)); |
339 | Inst.setOperand(i: ShuffleItems.second, Val: Op0); |
340 | }); |
341 | } |
342 | |
343 | auto RS = makeSampler(RandGen&: IB.Rand, Items&: Modifications); |
344 | if (RS) |
345 | RS.getSelection()(); |
346 | } |
347 | |
348 | /// Return a case value that is not already taken to make sure we don't have two |
349 | /// cases with same value. |
350 | static uint64_t getUniqueCaseValue(SmallSet<uint64_t, 4> &CasesTaken, |
351 | uint64_t MaxValue, RandomIRBuilder &IB) { |
352 | uint64_t tmp; |
353 | do { |
354 | tmp = uniform<uint64_t>(Gen&: IB.Rand, Min: 0, Max: MaxValue); |
355 | } while (CasesTaken.count(V: tmp) != 0); |
356 | CasesTaken.insert(V: tmp); |
357 | return tmp; |
358 | } |
359 | |
360 | void InsertFunctionStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) { |
361 | Module *M = BB.getParent()->getParent(); |
362 | // If nullptr is selected, we will create a new function declaration. |
363 | SmallVector<Function *, 32> Functions({nullptr}); |
364 | for (Function &F : M->functions()) { |
365 | Functions.push_back(Elt: &F); |
366 | } |
367 | |
368 | auto RS = makeSampler(RandGen&: IB.Rand, Items&: Functions); |
369 | Function *F = RS.getSelection(); |
370 | // Some functions accept metadata type or token type as arguments. |
371 | // We don't call those functions for now. |
372 | // For example, `@llvm.dbg.declare(metadata, metadata, metadata)` |
373 | // https://llvm.org/docs/SourceLevelDebugging.html#llvm-dbg-declare |
374 | auto IsUnsupportedTy = [](Type *T) { |
375 | return T->isMetadataTy() || T->isTokenTy(); |
376 | }; |
377 | if (!F || IsUnsupportedTy(F->getReturnType()) || |
378 | any_of(Range: F->getFunctionType()->params(), P: IsUnsupportedTy)) { |
379 | F = IB.createFunctionDeclaration(M&: *M); |
380 | } |
381 | |
382 | FunctionType *FTy = F->getFunctionType(); |
383 | SmallVector<fuzzerop::SourcePred, 2> SourcePreds; |
384 | if (!F->arg_empty()) { |
385 | for (Type *ArgTy : FTy->params()) { |
386 | SourcePreds.push_back(Elt: fuzzerop::onlyType(Only: ArgTy)); |
387 | } |
388 | } |
389 | bool isRetVoid = (F->getReturnType() == Type::getVoidTy(C&: M->getContext())); |
390 | auto BuilderFunc = [FTy, F, isRetVoid](ArrayRef<Value *> Srcs, |
391 | Instruction *Inst) { |
392 | StringRef Name = isRetVoid ? nullptr : "C" ; |
393 | CallInst *Call = CallInst::Create(Ty: FTy, Func: F, Args: Srcs, NameStr: Name, InsertBefore: Inst); |
394 | // Don't return this call inst if it return void as it can't be sinked. |
395 | return isRetVoid ? nullptr : Call; |
396 | }; |
397 | |
398 | SmallVector<Instruction *, 32> Insts; |
399 | for (Instruction &I : getInsertionRange(BB)) |
400 | Insts.push_back(Elt: &I); |
401 | if (Insts.size() < 1) |
402 | return; |
403 | |
404 | // Choose an insertion point for our new call instruction. |
405 | uint64_t IP = uniform<uint64_t>(Gen&: IB.Rand, Min: 0, Max: Insts.size() - 1); |
406 | |
407 | auto InstsBefore = ArrayRef(Insts).slice(N: 0, M: IP); |
408 | auto InstsAfter = ArrayRef(Insts).slice(N: IP); |
409 | |
410 | // Choose a source, which will be used to constrain the operation selection. |
411 | SmallVector<Value *, 2> Srcs; |
412 | |
413 | for (const auto &Pred : ArrayRef(SourcePreds)) { |
414 | Srcs.push_back(Elt: IB.findOrCreateSource(BB, Insts: InstsBefore, Srcs, Pred)); |
415 | } |
416 | |
417 | if (Value *Op = BuilderFunc(Srcs, Insts[IP])) { |
418 | // Find a sink and wire up the results of the operation. |
419 | IB.connectToSink(BB, Insts: InstsAfter, V: Op); |
420 | } |
421 | } |
422 | |
423 | void InsertCFGStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) { |
424 | SmallVector<Instruction *, 32> Insts; |
425 | for (Instruction &I : getInsertionRange(BB)) |
426 | Insts.push_back(Elt: &I); |
427 | if (Insts.size() < 1) |
428 | return; |
429 | |
430 | // Choose a point where we split the block. |
431 | uint64_t IP = uniform<uint64_t>(Gen&: IB.Rand, Min: 0, Max: Insts.size() - 1); |
432 | auto InstsBeforeSplit = ArrayRef(Insts).slice(N: 0, M: IP); |
433 | |
434 | // `Sink` inherits Blocks' terminator, `Source` will have a BranchInst |
435 | // directly jumps to `Sink`. Here, we have to create a new terminator for |
436 | // `Source`. |
437 | BasicBlock *Block = Insts[IP]->getParent(); |
438 | BasicBlock *Source = Block; |
439 | BasicBlock *Sink = Block->splitBasicBlock(I: Insts[IP], BBName: "BB" ); |
440 | |
441 | Function *F = BB.getParent(); |
442 | LLVMContext &C = F->getParent()->getContext(); |
443 | // A coin decides if it is branch or switch |
444 | if (uniform<uint64_t>(Gen&: IB.Rand, Min: 0, Max: 1)) { |
445 | // Branch |
446 | BasicBlock *IfTrue = BasicBlock::Create(Context&: C, Name: "T" , Parent: F); |
447 | BasicBlock *IfFalse = BasicBlock::Create(Context&: C, Name: "F" , Parent: F); |
448 | Value *Cond = |
449 | IB.findOrCreateSource(BB&: *Source, Insts: InstsBeforeSplit, Srcs: {}, |
450 | Pred: fuzzerop::onlyType(Only: Type::getInt1Ty(C)), allowConstant: false); |
451 | BranchInst *Branch = BranchInst::Create(IfTrue, IfFalse, Cond); |
452 | // Remove the old terminator. |
453 | ReplaceInstWithInst(From: Source->getTerminator(), To: Branch); |
454 | // Connect these blocks to `Sink` |
455 | connectBlocksToSink(Blocks: {IfTrue, IfFalse}, Sink, IB); |
456 | } else { |
457 | // Switch |
458 | // Determine Integer type, it IS possible we use a boolean to switch. |
459 | auto RS = |
460 | makeSampler(RandGen&: IB.Rand, Items: make_filter_range(Range&: IB.KnownTypes, Pred: [](Type *Ty) { |
461 | return Ty->isIntegerTy(); |
462 | })); |
463 | assert(RS && "There is no integer type in all allowed types, is the " |
464 | "setting correct?" ); |
465 | Type *Ty = RS.getSelection(); |
466 | IntegerType *IntTy = cast<IntegerType>(Val: Ty); |
467 | |
468 | uint64_t BitSize = IntTy->getBitWidth(); |
469 | uint64_t MaxCaseVal = |
470 | (BitSize >= 64) ? (uint64_t)-1 : ((uint64_t)1 << BitSize) - 1; |
471 | // Create Switch inst in Block |
472 | Value *Cond = IB.findOrCreateSource(BB&: *Source, Insts: InstsBeforeSplit, Srcs: {}, |
473 | Pred: fuzzerop::onlyType(Only: IntTy), allowConstant: false); |
474 | BasicBlock *DefaultBlock = BasicBlock::Create(Context&: C, Name: "SW_D" , Parent: F); |
475 | uint64_t NumCases = uniform<uint64_t>(Gen&: IB.Rand, Min: 1, Max: MaxNumCases); |
476 | NumCases = (NumCases > MaxCaseVal) ? MaxCaseVal + 1 : NumCases; |
477 | SwitchInst *Switch = SwitchInst::Create(Value: Cond, Default: DefaultBlock, NumCases); |
478 | // Remove the old terminator. |
479 | ReplaceInstWithInst(From: Source->getTerminator(), To: Switch); |
480 | |
481 | // Create blocks, for each block assign a case value. |
482 | SmallVector<BasicBlock *, 4> Blocks({DefaultBlock}); |
483 | SmallSet<uint64_t, 4> CasesTaken; |
484 | for (uint64_t i = 0; i < NumCases; i++) { |
485 | uint64_t CaseVal = getUniqueCaseValue(CasesTaken, MaxValue: MaxCaseVal, IB); |
486 | BasicBlock *CaseBlock = BasicBlock::Create(Context&: C, Name: "SW_C" , Parent: F); |
487 | ConstantInt *OnValue = ConstantInt::get(Ty: IntTy, V: CaseVal); |
488 | Switch->addCase(OnVal: OnValue, Dest: CaseBlock); |
489 | Blocks.push_back(Elt: CaseBlock); |
490 | } |
491 | |
492 | // Connect these blocks to `Sink` |
493 | connectBlocksToSink(Blocks, Sink, IB); |
494 | } |
495 | } |
496 | |
497 | /// The caller has to guarantee that these blocks are "empty", i.e. it doesn't |
498 | /// even have terminator. |
499 | void InsertCFGStrategy::connectBlocksToSink(ArrayRef<BasicBlock *> Blocks, |
500 | BasicBlock *Sink, |
501 | RandomIRBuilder &IB) { |
502 | uint64_t DirectSinkIdx = uniform<uint64_t>(Gen&: IB.Rand, Min: 0, Max: Blocks.size() - 1); |
503 | for (uint64_t i = 0; i < Blocks.size(); i++) { |
504 | // We have at least one block that directly goes to sink. |
505 | CFGToSink ToSink = (i == DirectSinkIdx) |
506 | ? CFGToSink::DirectSink |
507 | : static_cast<CFGToSink>(uniform<uint64_t>( |
508 | Gen&: IB.Rand, Min: 0, Max: CFGToSink::EndOfCFGToLink - 1)); |
509 | BasicBlock *BB = Blocks[i]; |
510 | Function *F = BB->getParent(); |
511 | LLVMContext &C = F->getParent()->getContext(); |
512 | switch (ToSink) { |
513 | case CFGToSink::Return: { |
514 | Type *RetTy = F->getReturnType(); |
515 | Value *RetValue = nullptr; |
516 | if (!RetTy->isVoidTy()) |
517 | RetValue = |
518 | IB.findOrCreateSource(BB&: *BB, Insts: {}, Srcs: {}, Pred: fuzzerop::onlyType(Only: RetTy)); |
519 | ReturnInst::Create(C, retVal: RetValue, InsertBefore: BB); |
520 | break; |
521 | } |
522 | case CFGToSink::DirectSink: { |
523 | BranchInst::Create(IfTrue: Sink, InsertBefore: BB); |
524 | break; |
525 | } |
526 | case CFGToSink::SinkOrSelfLoop: { |
527 | SmallVector<BasicBlock *, 2> Branches({Sink, BB}); |
528 | // A coin decides which block is true branch. |
529 | uint64_t coin = uniform<uint64_t>(Gen&: IB.Rand, Min: 0, Max: 1); |
530 | Value *Cond = IB.findOrCreateSource( |
531 | BB&: *BB, Insts: {}, Srcs: {}, Pred: fuzzerop::onlyType(Only: Type::getInt1Ty(C)), allowConstant: false); |
532 | BranchInst::Create(IfTrue: Branches[coin], IfFalse: Branches[1 - coin], Cond, InsertBefore: BB); |
533 | break; |
534 | } |
535 | case CFGToSink::EndOfCFGToLink: |
536 | llvm_unreachable("EndOfCFGToLink executed, something's wrong." ); |
537 | } |
538 | } |
539 | } |
540 | |
541 | void InsertPHIStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) { |
542 | // Can't insert PHI node to entry node. |
543 | if (&BB == &BB.getParent()->getEntryBlock()) |
544 | return; |
545 | Type *Ty = IB.randomType(); |
546 | PHINode *PHI = PHINode::Create(Ty, NumReservedValues: llvm::pred_size(BB: &BB), NameStr: "" , InsertBefore: &BB.front()); |
547 | |
548 | // Use a map to make sure the same incoming basic block has the same value. |
549 | DenseMap<BasicBlock *, Value *> IncomingValues; |
550 | for (BasicBlock *Pred : predecessors(BB: &BB)) { |
551 | Value *Src = IncomingValues[Pred]; |
552 | // If `Pred` is not in the map yet, we'll get a nullptr. |
553 | if (!Src) { |
554 | SmallVector<Instruction *, 32> Insts; |
555 | for (auto I = Pred->begin(); I != Pred->end(); ++I) |
556 | Insts.push_back(Elt: &*I); |
557 | // There is no need to inform IB what previously used values are if we are |
558 | // using `onlyType` |
559 | Src = IB.findOrCreateSource(BB&: *Pred, Insts, Srcs: {}, Pred: fuzzerop::onlyType(Only: Ty)); |
560 | IncomingValues[Pred] = Src; |
561 | } |
562 | PHI->addIncoming(V: Src, BB: Pred); |
563 | } |
564 | SmallVector<Instruction *, 32> InstsAfter; |
565 | for (Instruction &I : getInsertionRange(BB)) |
566 | InstsAfter.push_back(Elt: &I); |
567 | IB.connectToSink(BB, Insts: InstsAfter, V: PHI); |
568 | } |
569 | |
570 | void SinkInstructionStrategy::mutate(Function &F, RandomIRBuilder &IB) { |
571 | for (BasicBlock &BB : F) { |
572 | this->mutate(BB, IB); |
573 | } |
574 | } |
575 | void SinkInstructionStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) { |
576 | SmallVector<Instruction *, 32> Insts; |
577 | for (Instruction &I : getInsertionRange(BB)) |
578 | Insts.push_back(Elt: &I); |
579 | if (Insts.size() < 1) |
580 | return; |
581 | // Choose an Instruction to mutate. |
582 | uint64_t Idx = uniform<uint64_t>(Gen&: IB.Rand, Min: 0, Max: Insts.size() - 1); |
583 | Instruction *Inst = Insts[Idx]; |
584 | // `Idx + 1` so we don't sink to ourselves. |
585 | auto InstsAfter = ArrayRef(Insts).slice(N: Idx + 1); |
586 | Type *Ty = Inst->getType(); |
587 | // Don't sink terminators, void function calls, token, etc. |
588 | if (!Ty->isVoidTy() && !Ty->isTokenTy()) |
589 | // Find a new sink and wire up the results of the operation. |
590 | IB.connectToSink(BB, Insts: InstsAfter, V: Inst); |
591 | } |
592 | |
593 | void ShuffleBlockStrategy::mutate(BasicBlock &BB, RandomIRBuilder &IB) { |
594 | // A deterministic alternative to SmallPtrSet with the same lookup |
595 | // performance. |
596 | std::map<size_t, Instruction *> AliveInsts; |
597 | std::map<Instruction *, size_t> AliveInstsLookup; |
598 | size_t InsertIdx = 0; |
599 | for (auto &I : make_early_inc_range(Range: make_range( |
600 | x: BB.getFirstInsertionPt(), y: BB.getTerminator()->getIterator()))) { |
601 | // First gather all instructions that can be shuffled. Don't take |
602 | // terminator. |
603 | AliveInsts.insert(x: {InsertIdx, &I}); |
604 | AliveInstsLookup.insert(x: {&I, InsertIdx++}); |
605 | // Then remove these instructions from the block |
606 | I.removeFromParent(); |
607 | } |
608 | |
609 | // Shuffle these instructions using topological sort. |
610 | // Returns false if all current instruction's dependencies in this block have |
611 | // been shuffled. If so, this instruction can be shuffled too. |
612 | auto hasAliveParent = [&AliveInsts, &AliveInstsLookup](size_t Index) { |
613 | for (Value *O : AliveInsts[Index]->operands()) { |
614 | Instruction *P = dyn_cast<Instruction>(Val: O); |
615 | if (P && AliveInstsLookup.count(x: P)) |
616 | return true; |
617 | } |
618 | return false; |
619 | }; |
620 | // Get all alive instructions that depend on the current instruction. |
621 | // Takes Instruction* instead of index because the instruction is already |
622 | // shuffled. |
623 | auto getAliveChildren = [&AliveInstsLookup](Instruction *I) { |
624 | SmallSetVector<size_t, 8> Children; |
625 | for (Value *U : I->users()) { |
626 | Instruction *P = dyn_cast<Instruction>(Val: U); |
627 | if (P && AliveInstsLookup.count(x: P)) |
628 | Children.insert(X: AliveInstsLookup[P]); |
629 | } |
630 | return Children; |
631 | }; |
632 | SmallSet<size_t, 8> RootIndices; |
633 | SmallVector<Instruction *, 8> Insts; |
634 | for (const auto &[Index, Inst] : AliveInsts) { |
635 | if (!hasAliveParent(Index)) |
636 | RootIndices.insert(V: Index); |
637 | } |
638 | // Topological sort by randomly selecting a node without a parent, or root. |
639 | while (!RootIndices.empty()) { |
640 | auto RS = makeSampler<size_t>(RandGen&: IB.Rand); |
641 | for (size_t RootIdx : RootIndices) |
642 | RS.sample(Item: RootIdx, Weight: 1); |
643 | size_t RootIdx = RS.getSelection(); |
644 | |
645 | RootIndices.erase(V: RootIdx); |
646 | Instruction *Root = AliveInsts[RootIdx]; |
647 | AliveInsts.erase(x: RootIdx); |
648 | AliveInstsLookup.erase(x: Root); |
649 | Insts.push_back(Elt: Root); |
650 | |
651 | for (size_t Child : getAliveChildren(Root)) { |
652 | if (!hasAliveParent(Child)) { |
653 | RootIndices.insert(V: Child); |
654 | } |
655 | } |
656 | } |
657 | |
658 | Instruction *Terminator = BB.getTerminator(); |
659 | // Then put instructions back. |
660 | for (Instruction *I : Insts) { |
661 | I->insertBefore(InsertPos: Terminator); |
662 | } |
663 | } |
664 | |
665 | std::unique_ptr<Module> llvm::parseModule(const uint8_t *Data, size_t Size, |
666 | LLVMContext &Context) { |
667 | |
668 | if (Size <= 1) |
669 | // We get bogus data given an empty corpus - just create a new module. |
670 | return std::make_unique<Module>(args: "M" , args&: Context); |
671 | |
672 | auto Buffer = MemoryBuffer::getMemBuffer( |
673 | InputData: StringRef(reinterpret_cast<const char *>(Data), Size), BufferName: "Fuzzer input" , |
674 | /*RequiresNullTerminator=*/false); |
675 | |
676 | SMDiagnostic Err; |
677 | auto M = parseBitcodeFile(Buffer: Buffer->getMemBufferRef(), Context); |
678 | if (Error E = M.takeError()) { |
679 | errs() << toString(E: std::move(E)) << "\n" ; |
680 | return nullptr; |
681 | } |
682 | return std::move(M.get()); |
683 | } |
684 | |
685 | size_t llvm::writeModule(const Module &M, uint8_t *Dest, size_t MaxSize) { |
686 | std::string Buf; |
687 | { |
688 | raw_string_ostream OS(Buf); |
689 | WriteBitcodeToFile(M, Out&: OS); |
690 | } |
691 | if (Buf.size() > MaxSize) |
692 | return 0; |
693 | memcpy(dest: Dest, src: Buf.data(), n: Buf.size()); |
694 | return Buf.size(); |
695 | } |
696 | |
697 | std::unique_ptr<Module> llvm::parseAndVerify(const uint8_t *Data, size_t Size, |
698 | LLVMContext &Context) { |
699 | auto M = parseModule(Data, Size, Context); |
700 | if (!M || verifyModule(M: *M, OS: &errs())) |
701 | return nullptr; |
702 | |
703 | return M; |
704 | } |
705 | |