1 | //===- ConstantRange.cpp - ConstantRange implementation -------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Represent a range of possible values that may occur when the program is run |
10 | // for an integral value. This keeps track of a lower and upper bound for the |
11 | // constant, which MAY wrap around the end of the numeric range. To do this, it |
12 | // keeps track of a [lower, upper) bound, which specifies an interval just like |
13 | // STL iterators. When used with boolean values, the following are important |
14 | // ranges (other integral ranges use min/max values for special range values): |
15 | // |
16 | // [F, F) = {} = Empty set |
17 | // [T, F) = {T} |
18 | // [F, T) = {F} |
19 | // [T, T) = {F, T} = Full set |
20 | // |
21 | //===----------------------------------------------------------------------===// |
22 | |
23 | #include "llvm/ADT/APInt.h" |
24 | #include "llvm/Config/llvm-config.h" |
25 | #include "llvm/IR/ConstantRange.h" |
26 | #include "llvm/IR/Constants.h" |
27 | #include "llvm/IR/InstrTypes.h" |
28 | #include "llvm/IR/Instruction.h" |
29 | #include "llvm/IR/Intrinsics.h" |
30 | #include "llvm/IR/Metadata.h" |
31 | #include "llvm/IR/Operator.h" |
32 | #include "llvm/Support/Compiler.h" |
33 | #include "llvm/Support/Debug.h" |
34 | #include "llvm/Support/ErrorHandling.h" |
35 | #include "llvm/Support/KnownBits.h" |
36 | #include "llvm/Support/raw_ostream.h" |
37 | #include <algorithm> |
38 | #include <cassert> |
39 | #include <cstdint> |
40 | #include <optional> |
41 | |
42 | using namespace llvm; |
43 | |
44 | ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) |
45 | : Lower(Full ? APInt::getMaxValue(numBits: BitWidth) : APInt::getMinValue(numBits: BitWidth)), |
46 | Upper(Lower) {} |
47 | |
48 | ConstantRange::ConstantRange(APInt V) |
49 | : Lower(std::move(V)), Upper(Lower + 1) {} |
50 | |
51 | ConstantRange::ConstantRange(APInt L, APInt U) |
52 | : Lower(std::move(L)), Upper(std::move(U)) { |
53 | assert(Lower.getBitWidth() == Upper.getBitWidth() && |
54 | "ConstantRange with unequal bit widths" ); |
55 | assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) && |
56 | "Lower == Upper, but they aren't min or max value!" ); |
57 | } |
58 | |
59 | ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known, |
60 | bool IsSigned) { |
61 | if (Known.hasConflict()) |
62 | return getEmpty(BitWidth: Known.getBitWidth()); |
63 | if (Known.isUnknown()) |
64 | return getFull(BitWidth: Known.getBitWidth()); |
65 | |
66 | // For unsigned ranges, or signed ranges with known sign bit, create a simple |
67 | // range between the smallest and largest possible value. |
68 | if (!IsSigned || Known.isNegative() || Known.isNonNegative()) |
69 | return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1); |
70 | |
71 | // If we don't know the sign bit, pick the lower bound as a negative number |
72 | // and the upper bound as a non-negative one. |
73 | APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue(); |
74 | Lower.setSignBit(); |
75 | Upper.clearSignBit(); |
76 | return ConstantRange(Lower, Upper + 1); |
77 | } |
78 | |
79 | KnownBits ConstantRange::toKnownBits() const { |
80 | // TODO: We could return conflicting known bits here, but consumers are |
81 | // likely not prepared for that. |
82 | if (isEmptySet()) |
83 | return KnownBits(getBitWidth()); |
84 | |
85 | // We can only retain the top bits that are the same between min and max. |
86 | APInt Min = getUnsignedMin(); |
87 | APInt Max = getUnsignedMax(); |
88 | KnownBits Known = KnownBits::makeConstant(C: Min); |
89 | if (std::optional<unsigned> DifferentBit = |
90 | APIntOps::GetMostSignificantDifferentBit(A: Min, B: Max)) { |
91 | Known.Zero.clearLowBits(loBits: *DifferentBit + 1); |
92 | Known.One.clearLowBits(loBits: *DifferentBit + 1); |
93 | } |
94 | return Known; |
95 | } |
96 | |
97 | ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred, |
98 | const ConstantRange &CR) { |
99 | if (CR.isEmptySet()) |
100 | return CR; |
101 | |
102 | uint32_t W = CR.getBitWidth(); |
103 | switch (Pred) { |
104 | default: |
105 | llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()" ); |
106 | case CmpInst::ICMP_EQ: |
107 | return CR; |
108 | case CmpInst::ICMP_NE: |
109 | if (CR.isSingleElement()) |
110 | return ConstantRange(CR.getUpper(), CR.getLower()); |
111 | return getFull(BitWidth: W); |
112 | case CmpInst::ICMP_ULT: { |
113 | APInt UMax(CR.getUnsignedMax()); |
114 | if (UMax.isMinValue()) |
115 | return getEmpty(BitWidth: W); |
116 | return ConstantRange(APInt::getMinValue(numBits: W), std::move(UMax)); |
117 | } |
118 | case CmpInst::ICMP_SLT: { |
119 | APInt SMax(CR.getSignedMax()); |
120 | if (SMax.isMinSignedValue()) |
121 | return getEmpty(BitWidth: W); |
122 | return ConstantRange(APInt::getSignedMinValue(numBits: W), std::move(SMax)); |
123 | } |
124 | case CmpInst::ICMP_ULE: |
125 | return getNonEmpty(Lower: APInt::getMinValue(numBits: W), Upper: CR.getUnsignedMax() + 1); |
126 | case CmpInst::ICMP_SLE: |
127 | return getNonEmpty(Lower: APInt::getSignedMinValue(numBits: W), Upper: CR.getSignedMax() + 1); |
128 | case CmpInst::ICMP_UGT: { |
129 | APInt UMin(CR.getUnsignedMin()); |
130 | if (UMin.isMaxValue()) |
131 | return getEmpty(BitWidth: W); |
132 | return ConstantRange(std::move(UMin) + 1, APInt::getZero(numBits: W)); |
133 | } |
134 | case CmpInst::ICMP_SGT: { |
135 | APInt SMin(CR.getSignedMin()); |
136 | if (SMin.isMaxSignedValue()) |
137 | return getEmpty(BitWidth: W); |
138 | return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(numBits: W)); |
139 | } |
140 | case CmpInst::ICMP_UGE: |
141 | return getNonEmpty(Lower: CR.getUnsignedMin(), Upper: APInt::getZero(numBits: W)); |
142 | case CmpInst::ICMP_SGE: |
143 | return getNonEmpty(Lower: CR.getSignedMin(), Upper: APInt::getSignedMinValue(numBits: W)); |
144 | } |
145 | } |
146 | |
147 | ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred, |
148 | const ConstantRange &CR) { |
149 | // Follows from De-Morgan's laws: |
150 | // |
151 | // ~(~A union ~B) == A intersect B. |
152 | // |
153 | return makeAllowedICmpRegion(Pred: CmpInst::getInversePredicate(pred: Pred), CR) |
154 | .inverse(); |
155 | } |
156 | |
157 | ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred, |
158 | const APInt &C) { |
159 | // Computes the exact range that is equal to both the constant ranges returned |
160 | // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true |
161 | // when RHS is a singleton such as an APInt and so the assert is valid. |
162 | // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion |
163 | // returns [0,4) but makeSatisfyICmpRegion returns [0,2). |
164 | // |
165 | assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C)); |
166 | return makeAllowedICmpRegion(Pred, CR: C); |
167 | } |
168 | |
169 | bool ConstantRange::areInsensitiveToSignednessOfICmpPredicate( |
170 | const ConstantRange &CR1, const ConstantRange &CR2) { |
171 | if (CR1.isEmptySet() || CR2.isEmptySet()) |
172 | return true; |
173 | |
174 | return (CR1.isAllNonNegative() && CR2.isAllNonNegative()) || |
175 | (CR1.isAllNegative() && CR2.isAllNegative()); |
176 | } |
177 | |
178 | bool ConstantRange::areInsensitiveToSignednessOfInvertedICmpPredicate( |
179 | const ConstantRange &CR1, const ConstantRange &CR2) { |
180 | if (CR1.isEmptySet() || CR2.isEmptySet()) |
181 | return true; |
182 | |
183 | return (CR1.isAllNonNegative() && CR2.isAllNegative()) || |
184 | (CR1.isAllNegative() && CR2.isAllNonNegative()); |
185 | } |
186 | |
187 | CmpInst::Predicate ConstantRange::getEquivalentPredWithFlippedSignedness( |
188 | CmpInst::Predicate Pred, const ConstantRange &CR1, |
189 | const ConstantRange &CR2) { |
190 | assert(CmpInst::isIntPredicate(Pred) && CmpInst::isRelational(Pred) && |
191 | "Only for relational integer predicates!" ); |
192 | |
193 | CmpInst::Predicate FlippedSignednessPred = |
194 | CmpInst::getFlippedSignednessPredicate(pred: Pred); |
195 | |
196 | if (areInsensitiveToSignednessOfICmpPredicate(CR1, CR2)) |
197 | return FlippedSignednessPred; |
198 | |
199 | if (areInsensitiveToSignednessOfInvertedICmpPredicate(CR1, CR2)) |
200 | return CmpInst::getInversePredicate(pred: FlippedSignednessPred); |
201 | |
202 | return CmpInst::Predicate::BAD_ICMP_PREDICATE; |
203 | } |
204 | |
205 | void ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred, |
206 | APInt &RHS, APInt &Offset) const { |
207 | Offset = APInt(getBitWidth(), 0); |
208 | if (isFullSet() || isEmptySet()) { |
209 | Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; |
210 | RHS = APInt(getBitWidth(), 0); |
211 | } else if (auto *OnlyElt = getSingleElement()) { |
212 | Pred = CmpInst::ICMP_EQ; |
213 | RHS = *OnlyElt; |
214 | } else if (auto *OnlyMissingElt = getSingleMissingElement()) { |
215 | Pred = CmpInst::ICMP_NE; |
216 | RHS = *OnlyMissingElt; |
217 | } else if (getLower().isMinSignedValue() || getLower().isMinValue()) { |
218 | Pred = |
219 | getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; |
220 | RHS = getUpper(); |
221 | } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) { |
222 | Pred = |
223 | getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE; |
224 | RHS = getLower(); |
225 | } else { |
226 | Pred = CmpInst::ICMP_ULT; |
227 | RHS = getUpper() - getLower(); |
228 | Offset = -getLower(); |
229 | } |
230 | |
231 | assert(ConstantRange::makeExactICmpRegion(Pred, RHS) == add(Offset) && |
232 | "Bad result!" ); |
233 | } |
234 | |
235 | bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred, |
236 | APInt &RHS) const { |
237 | APInt Offset; |
238 | getEquivalentICmp(Pred, RHS, Offset); |
239 | return Offset.isZero(); |
240 | } |
241 | |
242 | bool ConstantRange::icmp(CmpInst::Predicate Pred, |
243 | const ConstantRange &Other) const { |
244 | if (isEmptySet() || Other.isEmptySet()) |
245 | return true; |
246 | |
247 | switch (Pred) { |
248 | case CmpInst::ICMP_EQ: |
249 | if (const APInt *L = getSingleElement()) |
250 | if (const APInt *R = Other.getSingleElement()) |
251 | return *L == *R; |
252 | return false; |
253 | case CmpInst::ICMP_NE: |
254 | return inverse().contains(CR: Other); |
255 | case CmpInst::ICMP_ULT: |
256 | return getUnsignedMax().ult(RHS: Other.getUnsignedMin()); |
257 | case CmpInst::ICMP_ULE: |
258 | return getUnsignedMax().ule(RHS: Other.getUnsignedMin()); |
259 | case CmpInst::ICMP_UGT: |
260 | return getUnsignedMin().ugt(RHS: Other.getUnsignedMax()); |
261 | case CmpInst::ICMP_UGE: |
262 | return getUnsignedMin().uge(RHS: Other.getUnsignedMax()); |
263 | case CmpInst::ICMP_SLT: |
264 | return getSignedMax().slt(RHS: Other.getSignedMin()); |
265 | case CmpInst::ICMP_SLE: |
266 | return getSignedMax().sle(RHS: Other.getSignedMin()); |
267 | case CmpInst::ICMP_SGT: |
268 | return getSignedMin().sgt(RHS: Other.getSignedMax()); |
269 | case CmpInst::ICMP_SGE: |
270 | return getSignedMin().sge(RHS: Other.getSignedMax()); |
271 | default: |
272 | llvm_unreachable("Invalid ICmp predicate" ); |
273 | } |
274 | } |
275 | |
276 | /// Exact mul nuw region for single element RHS. |
277 | static ConstantRange makeExactMulNUWRegion(const APInt &V) { |
278 | unsigned BitWidth = V.getBitWidth(); |
279 | if (V == 0) |
280 | return ConstantRange::getFull(BitWidth: V.getBitWidth()); |
281 | |
282 | return ConstantRange::getNonEmpty( |
283 | Lower: APIntOps::RoundingUDiv(A: APInt::getMinValue(numBits: BitWidth), B: V, |
284 | RM: APInt::Rounding::UP), |
285 | Upper: APIntOps::RoundingUDiv(A: APInt::getMaxValue(numBits: BitWidth), B: V, |
286 | RM: APInt::Rounding::DOWN) + 1); |
287 | } |
288 | |
289 | /// Exact mul nsw region for single element RHS. |
290 | static ConstantRange makeExactMulNSWRegion(const APInt &V) { |
291 | // Handle 0 and -1 separately to avoid division by zero or overflow. |
292 | unsigned BitWidth = V.getBitWidth(); |
293 | if (V == 0) |
294 | return ConstantRange::getFull(BitWidth); |
295 | |
296 | APInt MinValue = APInt::getSignedMinValue(numBits: BitWidth); |
297 | APInt MaxValue = APInt::getSignedMaxValue(numBits: BitWidth); |
298 | // e.g. Returning [-127, 127], represented as [-127, -128). |
299 | if (V.isAllOnes()) |
300 | return ConstantRange(-MaxValue, MinValue); |
301 | |
302 | APInt Lower, Upper; |
303 | if (V.isNegative()) { |
304 | Lower = APIntOps::RoundingSDiv(A: MaxValue, B: V, RM: APInt::Rounding::UP); |
305 | Upper = APIntOps::RoundingSDiv(A: MinValue, B: V, RM: APInt::Rounding::DOWN); |
306 | } else { |
307 | Lower = APIntOps::RoundingSDiv(A: MinValue, B: V, RM: APInt::Rounding::UP); |
308 | Upper = APIntOps::RoundingSDiv(A: MaxValue, B: V, RM: APInt::Rounding::DOWN); |
309 | } |
310 | return ConstantRange::getNonEmpty(Lower, Upper: Upper + 1); |
311 | } |
312 | |
313 | ConstantRange |
314 | ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, |
315 | const ConstantRange &Other, |
316 | unsigned NoWrapKind) { |
317 | using OBO = OverflowingBinaryOperator; |
318 | |
319 | assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!" ); |
320 | |
321 | assert((NoWrapKind == OBO::NoSignedWrap || |
322 | NoWrapKind == OBO::NoUnsignedWrap) && |
323 | "NoWrapKind invalid!" ); |
324 | |
325 | bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap; |
326 | unsigned BitWidth = Other.getBitWidth(); |
327 | |
328 | switch (BinOp) { |
329 | default: |
330 | llvm_unreachable("Unsupported binary op" ); |
331 | |
332 | case Instruction::Add: { |
333 | if (Unsigned) |
334 | return getNonEmpty(Lower: APInt::getZero(numBits: BitWidth), Upper: -Other.getUnsignedMax()); |
335 | |
336 | APInt SignedMinVal = APInt::getSignedMinValue(numBits: BitWidth); |
337 | APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax(); |
338 | return getNonEmpty( |
339 | Lower: SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal, |
340 | Upper: SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal); |
341 | } |
342 | |
343 | case Instruction::Sub: { |
344 | if (Unsigned) |
345 | return getNonEmpty(Lower: Other.getUnsignedMax(), Upper: APInt::getMinValue(numBits: BitWidth)); |
346 | |
347 | APInt SignedMinVal = APInt::getSignedMinValue(numBits: BitWidth); |
348 | APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax(); |
349 | return getNonEmpty( |
350 | Lower: SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal, |
351 | Upper: SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal); |
352 | } |
353 | |
354 | case Instruction::Mul: |
355 | if (Unsigned) |
356 | return makeExactMulNUWRegion(V: Other.getUnsignedMax()); |
357 | |
358 | // Avoid one makeExactMulNSWRegion() call for the common case of constants. |
359 | if (const APInt *C = Other.getSingleElement()) |
360 | return makeExactMulNSWRegion(V: *C); |
361 | |
362 | return makeExactMulNSWRegion(V: Other.getSignedMin()) |
363 | .intersectWith(CR: makeExactMulNSWRegion(V: Other.getSignedMax())); |
364 | |
365 | case Instruction::Shl: { |
366 | // For given range of shift amounts, if we ignore all illegal shift amounts |
367 | // (that always produce poison), what shift amount range is left? |
368 | ConstantRange ShAmt = Other.intersectWith( |
369 | CR: ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1))); |
370 | if (ShAmt.isEmptySet()) { |
371 | // If the entire range of shift amounts is already poison-producing, |
372 | // then we can freely add more poison-producing flags ontop of that. |
373 | return getFull(BitWidth); |
374 | } |
375 | // There are some legal shift amounts, we can compute conservatively-correct |
376 | // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax |
377 | // to be at most bitwidth-1, which results in most conservative range. |
378 | APInt ShAmtUMax = ShAmt.getUnsignedMax(); |
379 | if (Unsigned) |
380 | return getNonEmpty(Lower: APInt::getZero(numBits: BitWidth), |
381 | Upper: APInt::getMaxValue(numBits: BitWidth).lshr(ShiftAmt: ShAmtUMax) + 1); |
382 | return getNonEmpty(Lower: APInt::getSignedMinValue(numBits: BitWidth).ashr(ShiftAmt: ShAmtUMax), |
383 | Upper: APInt::getSignedMaxValue(numBits: BitWidth).ashr(ShiftAmt: ShAmtUMax) + 1); |
384 | } |
385 | } |
386 | } |
387 | |
388 | ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp, |
389 | const APInt &Other, |
390 | unsigned NoWrapKind) { |
391 | // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as |
392 | // "for all" and "for any" coincide in this case. |
393 | return makeGuaranteedNoWrapRegion(BinOp, Other: ConstantRange(Other), NoWrapKind); |
394 | } |
395 | |
396 | ConstantRange ConstantRange::makeMaskNotEqualRange(const APInt &Mask, |
397 | const APInt &C) { |
398 | unsigned BitWidth = Mask.getBitWidth(); |
399 | |
400 | if ((Mask & C) != C) |
401 | return getFull(BitWidth); |
402 | |
403 | if (Mask.isZero()) |
404 | return getEmpty(BitWidth); |
405 | |
406 | // If (Val & Mask) != C, constrained to the non-equality being |
407 | // satisfiable, then the value must be larger than the lowest set bit of |
408 | // Mask, offset by constant C. |
409 | return ConstantRange::getNonEmpty( |
410 | Lower: APInt::getOneBitSet(numBits: BitWidth, BitNo: Mask.countr_zero()) + C, Upper: C); |
411 | } |
412 | |
413 | bool ConstantRange::isFullSet() const { |
414 | return Lower == Upper && Lower.isMaxValue(); |
415 | } |
416 | |
417 | bool ConstantRange::isEmptySet() const { |
418 | return Lower == Upper && Lower.isMinValue(); |
419 | } |
420 | |
421 | bool ConstantRange::isWrappedSet() const { |
422 | return Lower.ugt(RHS: Upper) && !Upper.isZero(); |
423 | } |
424 | |
425 | bool ConstantRange::isUpperWrapped() const { |
426 | return Lower.ugt(RHS: Upper); |
427 | } |
428 | |
429 | bool ConstantRange::isSignWrappedSet() const { |
430 | return Lower.sgt(RHS: Upper) && !Upper.isMinSignedValue(); |
431 | } |
432 | |
433 | bool ConstantRange::isUpperSignWrapped() const { |
434 | return Lower.sgt(RHS: Upper); |
435 | } |
436 | |
437 | bool |
438 | ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const { |
439 | assert(getBitWidth() == Other.getBitWidth()); |
440 | if (isFullSet()) |
441 | return false; |
442 | if (Other.isFullSet()) |
443 | return true; |
444 | return (Upper - Lower).ult(RHS: Other.Upper - Other.Lower); |
445 | } |
446 | |
447 | bool |
448 | ConstantRange::isSizeLargerThan(uint64_t MaxSize) const { |
449 | // If this a full set, we need special handling to avoid needing an extra bit |
450 | // to represent the size. |
451 | if (isFullSet()) |
452 | return MaxSize == 0 || APInt::getMaxValue(numBits: getBitWidth()).ugt(RHS: MaxSize - 1); |
453 | |
454 | return (Upper - Lower).ugt(RHS: MaxSize); |
455 | } |
456 | |
457 | bool ConstantRange::isAllNegative() const { |
458 | // Empty set is all negative, full set is not. |
459 | if (isEmptySet()) |
460 | return true; |
461 | if (isFullSet()) |
462 | return false; |
463 | |
464 | return !isUpperSignWrapped() && !Upper.isStrictlyPositive(); |
465 | } |
466 | |
467 | bool ConstantRange::isAllNonNegative() const { |
468 | // Empty and full set are automatically treated correctly. |
469 | return !isSignWrappedSet() && Lower.isNonNegative(); |
470 | } |
471 | |
472 | bool ConstantRange::isAllPositive() const { |
473 | // Empty set is all positive, full set is not. |
474 | if (isEmptySet()) |
475 | return true; |
476 | if (isFullSet()) |
477 | return false; |
478 | |
479 | return !isSignWrappedSet() && Lower.isStrictlyPositive(); |
480 | } |
481 | |
482 | APInt ConstantRange::getUnsignedMax() const { |
483 | if (isFullSet() || isUpperWrapped()) |
484 | return APInt::getMaxValue(numBits: getBitWidth()); |
485 | return getUpper() - 1; |
486 | } |
487 | |
488 | APInt ConstantRange::getUnsignedMin() const { |
489 | if (isFullSet() || isWrappedSet()) |
490 | return APInt::getMinValue(numBits: getBitWidth()); |
491 | return getLower(); |
492 | } |
493 | |
494 | APInt ConstantRange::getSignedMax() const { |
495 | if (isFullSet() || isUpperSignWrapped()) |
496 | return APInt::getSignedMaxValue(numBits: getBitWidth()); |
497 | return getUpper() - 1; |
498 | } |
499 | |
500 | APInt ConstantRange::getSignedMin() const { |
501 | if (isFullSet() || isSignWrappedSet()) |
502 | return APInt::getSignedMinValue(numBits: getBitWidth()); |
503 | return getLower(); |
504 | } |
505 | |
506 | bool ConstantRange::contains(const APInt &V) const { |
507 | if (Lower == Upper) |
508 | return isFullSet(); |
509 | |
510 | if (!isUpperWrapped()) |
511 | return Lower.ule(RHS: V) && V.ult(RHS: Upper); |
512 | return Lower.ule(RHS: V) || V.ult(RHS: Upper); |
513 | } |
514 | |
515 | bool ConstantRange::contains(const ConstantRange &Other) const { |
516 | if (isFullSet() || Other.isEmptySet()) return true; |
517 | if (isEmptySet() || Other.isFullSet()) return false; |
518 | |
519 | if (!isUpperWrapped()) { |
520 | if (Other.isUpperWrapped()) |
521 | return false; |
522 | |
523 | return Lower.ule(RHS: Other.getLower()) && Other.getUpper().ule(RHS: Upper); |
524 | } |
525 | |
526 | if (!Other.isUpperWrapped()) |
527 | return Other.getUpper().ule(RHS: Upper) || |
528 | Lower.ule(RHS: Other.getLower()); |
529 | |
530 | return Other.getUpper().ule(RHS: Upper) && Lower.ule(RHS: Other.getLower()); |
531 | } |
532 | |
533 | unsigned ConstantRange::getActiveBits() const { |
534 | if (isEmptySet()) |
535 | return 0; |
536 | |
537 | return getUnsignedMax().getActiveBits(); |
538 | } |
539 | |
540 | unsigned ConstantRange::getMinSignedBits() const { |
541 | if (isEmptySet()) |
542 | return 0; |
543 | |
544 | return std::max(a: getSignedMin().getSignificantBits(), |
545 | b: getSignedMax().getSignificantBits()); |
546 | } |
547 | |
548 | ConstantRange ConstantRange::subtract(const APInt &Val) const { |
549 | assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width" ); |
550 | // If the set is empty or full, don't modify the endpoints. |
551 | if (Lower == Upper) |
552 | return *this; |
553 | return ConstantRange(Lower - Val, Upper - Val); |
554 | } |
555 | |
556 | ConstantRange ConstantRange::difference(const ConstantRange &CR) const { |
557 | return intersectWith(CR: CR.inverse()); |
558 | } |
559 | |
560 | static ConstantRange getPreferredRange( |
561 | const ConstantRange &CR1, const ConstantRange &CR2, |
562 | ConstantRange::PreferredRangeType Type) { |
563 | if (Type == ConstantRange::Unsigned) { |
564 | if (!CR1.isWrappedSet() && CR2.isWrappedSet()) |
565 | return CR1; |
566 | if (CR1.isWrappedSet() && !CR2.isWrappedSet()) |
567 | return CR2; |
568 | } else if (Type == ConstantRange::Signed) { |
569 | if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet()) |
570 | return CR1; |
571 | if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet()) |
572 | return CR2; |
573 | } |
574 | |
575 | if (CR1.isSizeStrictlySmallerThan(Other: CR2)) |
576 | return CR1; |
577 | return CR2; |
578 | } |
579 | |
580 | ConstantRange ConstantRange::intersectWith(const ConstantRange &CR, |
581 | PreferredRangeType Type) const { |
582 | assert(getBitWidth() == CR.getBitWidth() && |
583 | "ConstantRange types don't agree!" ); |
584 | |
585 | // Handle common cases. |
586 | if ( isEmptySet() || CR.isFullSet()) return *this; |
587 | if (CR.isEmptySet() || isFullSet()) return CR; |
588 | |
589 | if (!isUpperWrapped() && CR.isUpperWrapped()) |
590 | return CR.intersectWith(CR: *this, Type); |
591 | |
592 | if (!isUpperWrapped() && !CR.isUpperWrapped()) { |
593 | if (Lower.ult(RHS: CR.Lower)) { |
594 | // L---U : this |
595 | // L---U : CR |
596 | if (Upper.ule(RHS: CR.Lower)) |
597 | return getEmpty(); |
598 | |
599 | // L---U : this |
600 | // L---U : CR |
601 | if (Upper.ult(RHS: CR.Upper)) |
602 | return ConstantRange(CR.Lower, Upper); |
603 | |
604 | // L-------U : this |
605 | // L---U : CR |
606 | return CR; |
607 | } |
608 | // L---U : this |
609 | // L-------U : CR |
610 | if (Upper.ult(RHS: CR.Upper)) |
611 | return *this; |
612 | |
613 | // L-----U : this |
614 | // L-----U : CR |
615 | if (Lower.ult(RHS: CR.Upper)) |
616 | return ConstantRange(Lower, CR.Upper); |
617 | |
618 | // L---U : this |
619 | // L---U : CR |
620 | return getEmpty(); |
621 | } |
622 | |
623 | if (isUpperWrapped() && !CR.isUpperWrapped()) { |
624 | if (CR.Lower.ult(RHS: Upper)) { |
625 | // ------U L--- : this |
626 | // L--U : CR |
627 | if (CR.Upper.ult(RHS: Upper)) |
628 | return CR; |
629 | |
630 | // ------U L--- : this |
631 | // L------U : CR |
632 | if (CR.Upper.ule(RHS: Lower)) |
633 | return ConstantRange(CR.Lower, Upper); |
634 | |
635 | // ------U L--- : this |
636 | // L----------U : CR |
637 | return getPreferredRange(CR1: *this, CR2: CR, Type); |
638 | } |
639 | if (CR.Lower.ult(RHS: Lower)) { |
640 | // --U L---- : this |
641 | // L--U : CR |
642 | if (CR.Upper.ule(RHS: Lower)) |
643 | return getEmpty(); |
644 | |
645 | // --U L---- : this |
646 | // L------U : CR |
647 | return ConstantRange(Lower, CR.Upper); |
648 | } |
649 | |
650 | // --U L------ : this |
651 | // L--U : CR |
652 | return CR; |
653 | } |
654 | |
655 | if (CR.Upper.ult(RHS: Upper)) { |
656 | // ------U L-- : this |
657 | // --U L------ : CR |
658 | if (CR.Lower.ult(RHS: Upper)) |
659 | return getPreferredRange(CR1: *this, CR2: CR, Type); |
660 | |
661 | // ----U L-- : this |
662 | // --U L---- : CR |
663 | if (CR.Lower.ult(RHS: Lower)) |
664 | return ConstantRange(Lower, CR.Upper); |
665 | |
666 | // ----U L---- : this |
667 | // --U L-- : CR |
668 | return CR; |
669 | } |
670 | if (CR.Upper.ule(RHS: Lower)) { |
671 | // --U L-- : this |
672 | // ----U L---- : CR |
673 | if (CR.Lower.ult(RHS: Lower)) |
674 | return *this; |
675 | |
676 | // --U L---- : this |
677 | // ----U L-- : CR |
678 | return ConstantRange(CR.Lower, Upper); |
679 | } |
680 | |
681 | // --U L------ : this |
682 | // ------U L-- : CR |
683 | return getPreferredRange(CR1: *this, CR2: CR, Type); |
684 | } |
685 | |
686 | ConstantRange ConstantRange::unionWith(const ConstantRange &CR, |
687 | PreferredRangeType Type) const { |
688 | assert(getBitWidth() == CR.getBitWidth() && |
689 | "ConstantRange types don't agree!" ); |
690 | |
691 | if ( isFullSet() || CR.isEmptySet()) return *this; |
692 | if (CR.isFullSet() || isEmptySet()) return CR; |
693 | |
694 | if (!isUpperWrapped() && CR.isUpperWrapped()) |
695 | return CR.unionWith(CR: *this, Type); |
696 | |
697 | if (!isUpperWrapped() && !CR.isUpperWrapped()) { |
698 | // L---U and L---U : this |
699 | // L---U L---U : CR |
700 | // result in one of |
701 | // L---------U |
702 | // -----U L----- |
703 | if (CR.Upper.ult(RHS: Lower) || Upper.ult(RHS: CR.Lower)) |
704 | return getPreferredRange( |
705 | CR1: ConstantRange(Lower, CR.Upper), CR2: ConstantRange(CR.Lower, Upper), Type); |
706 | |
707 | APInt L = CR.Lower.ult(RHS: Lower) ? CR.Lower : Lower; |
708 | APInt U = (CR.Upper - 1).ugt(RHS: Upper - 1) ? CR.Upper : Upper; |
709 | |
710 | if (L.isZero() && U.isZero()) |
711 | return getFull(); |
712 | |
713 | return ConstantRange(std::move(L), std::move(U)); |
714 | } |
715 | |
716 | if (!CR.isUpperWrapped()) { |
717 | // ------U L----- and ------U L----- : this |
718 | // L--U L--U : CR |
719 | if (CR.Upper.ule(RHS: Upper) || CR.Lower.uge(RHS: Lower)) |
720 | return *this; |
721 | |
722 | // ------U L----- : this |
723 | // L---------U : CR |
724 | if (CR.Lower.ule(RHS: Upper) && Lower.ule(RHS: CR.Upper)) |
725 | return getFull(); |
726 | |
727 | // ----U L---- : this |
728 | // L---U : CR |
729 | // results in one of |
730 | // ----------U L---- |
731 | // ----U L---------- |
732 | if (Upper.ult(RHS: CR.Lower) && CR.Upper.ult(RHS: Lower)) |
733 | return getPreferredRange( |
734 | CR1: ConstantRange(Lower, CR.Upper), CR2: ConstantRange(CR.Lower, Upper), Type); |
735 | |
736 | // ----U L----- : this |
737 | // L----U : CR |
738 | if (Upper.ult(RHS: CR.Lower) && Lower.ule(RHS: CR.Upper)) |
739 | return ConstantRange(CR.Lower, Upper); |
740 | |
741 | // ------U L---- : this |
742 | // L-----U : CR |
743 | assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) && |
744 | "ConstantRange::unionWith missed a case with one range wrapped" ); |
745 | return ConstantRange(Lower, CR.Upper); |
746 | } |
747 | |
748 | // ------U L---- and ------U L---- : this |
749 | // -U L----------- and ------------U L : CR |
750 | if (CR.Lower.ule(RHS: Upper) || Lower.ule(RHS: CR.Upper)) |
751 | return getFull(); |
752 | |
753 | APInt L = CR.Lower.ult(RHS: Lower) ? CR.Lower : Lower; |
754 | APInt U = CR.Upper.ugt(RHS: Upper) ? CR.Upper : Upper; |
755 | |
756 | return ConstantRange(std::move(L), std::move(U)); |
757 | } |
758 | |
759 | std::optional<ConstantRange> |
760 | ConstantRange::exactIntersectWith(const ConstantRange &CR) const { |
761 | // TODO: This can be implemented more efficiently. |
762 | ConstantRange Result = intersectWith(CR); |
763 | if (Result == inverse().unionWith(CR: CR.inverse()).inverse()) |
764 | return Result; |
765 | return std::nullopt; |
766 | } |
767 | |
768 | std::optional<ConstantRange> |
769 | ConstantRange::exactUnionWith(const ConstantRange &CR) const { |
770 | // TODO: This can be implemented more efficiently. |
771 | ConstantRange Result = unionWith(CR); |
772 | if (Result == inverse().intersectWith(CR: CR.inverse()).inverse()) |
773 | return Result; |
774 | return std::nullopt; |
775 | } |
776 | |
777 | ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp, |
778 | uint32_t ResultBitWidth) const { |
779 | switch (CastOp) { |
780 | default: |
781 | llvm_unreachable("unsupported cast type" ); |
782 | case Instruction::Trunc: |
783 | return truncate(BitWidth: ResultBitWidth); |
784 | case Instruction::SExt: |
785 | return signExtend(BitWidth: ResultBitWidth); |
786 | case Instruction::ZExt: |
787 | return zeroExtend(BitWidth: ResultBitWidth); |
788 | case Instruction::BitCast: |
789 | return *this; |
790 | case Instruction::FPToUI: |
791 | case Instruction::FPToSI: |
792 | if (getBitWidth() == ResultBitWidth) |
793 | return *this; |
794 | else |
795 | return getFull(BitWidth: ResultBitWidth); |
796 | case Instruction::UIToFP: { |
797 | // TODO: use input range if available |
798 | auto BW = getBitWidth(); |
799 | APInt Min = APInt::getMinValue(numBits: BW); |
800 | APInt Max = APInt::getMaxValue(numBits: BW); |
801 | if (ResultBitWidth > BW) { |
802 | Min = Min.zext(width: ResultBitWidth); |
803 | Max = Max.zext(width: ResultBitWidth); |
804 | } |
805 | return getNonEmpty(Lower: std::move(Min), Upper: std::move(Max) + 1); |
806 | } |
807 | case Instruction::SIToFP: { |
808 | // TODO: use input range if available |
809 | auto BW = getBitWidth(); |
810 | APInt SMin = APInt::getSignedMinValue(numBits: BW); |
811 | APInt SMax = APInt::getSignedMaxValue(numBits: BW); |
812 | if (ResultBitWidth > BW) { |
813 | SMin = SMin.sext(width: ResultBitWidth); |
814 | SMax = SMax.sext(width: ResultBitWidth); |
815 | } |
816 | return getNonEmpty(Lower: std::move(SMin), Upper: std::move(SMax) + 1); |
817 | } |
818 | case Instruction::FPTrunc: |
819 | case Instruction::FPExt: |
820 | case Instruction::IntToPtr: |
821 | case Instruction::PtrToInt: |
822 | case Instruction::AddrSpaceCast: |
823 | // Conservatively return getFull set. |
824 | return getFull(BitWidth: ResultBitWidth); |
825 | }; |
826 | } |
827 | |
828 | ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const { |
829 | if (isEmptySet()) return getEmpty(BitWidth: DstTySize); |
830 | |
831 | unsigned SrcTySize = getBitWidth(); |
832 | assert(SrcTySize < DstTySize && "Not a value extension" ); |
833 | if (isFullSet() || isUpperWrapped()) { |
834 | // Change into [0, 1 << src bit width) |
835 | APInt LowerExt(DstTySize, 0); |
836 | if (!Upper) // special case: [X, 0) -- not really wrapping around |
837 | LowerExt = Lower.zext(width: DstTySize); |
838 | return ConstantRange(std::move(LowerExt), |
839 | APInt::getOneBitSet(numBits: DstTySize, BitNo: SrcTySize)); |
840 | } |
841 | |
842 | return ConstantRange(Lower.zext(width: DstTySize), Upper.zext(width: DstTySize)); |
843 | } |
844 | |
845 | ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const { |
846 | if (isEmptySet()) return getEmpty(BitWidth: DstTySize); |
847 | |
848 | unsigned SrcTySize = getBitWidth(); |
849 | assert(SrcTySize < DstTySize && "Not a value extension" ); |
850 | |
851 | // special case: [X, INT_MIN) -- not really wrapping around |
852 | if (Upper.isMinSignedValue()) |
853 | return ConstantRange(Lower.sext(width: DstTySize), Upper.zext(width: DstTySize)); |
854 | |
855 | if (isFullSet() || isSignWrappedSet()) { |
856 | return ConstantRange(APInt::getHighBitsSet(numBits: DstTySize,hiBitsSet: DstTySize-SrcTySize+1), |
857 | APInt::getLowBitsSet(numBits: DstTySize, loBitsSet: SrcTySize-1) + 1); |
858 | } |
859 | |
860 | return ConstantRange(Lower.sext(width: DstTySize), Upper.sext(width: DstTySize)); |
861 | } |
862 | |
863 | ConstantRange ConstantRange::truncate(uint32_t DstTySize) const { |
864 | assert(getBitWidth() > DstTySize && "Not a value truncation" ); |
865 | if (isEmptySet()) |
866 | return getEmpty(BitWidth: DstTySize); |
867 | if (isFullSet()) |
868 | return getFull(BitWidth: DstTySize); |
869 | |
870 | APInt LowerDiv(Lower), UpperDiv(Upper); |
871 | ConstantRange Union(DstTySize, /*isFullSet=*/false); |
872 | |
873 | // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue] |
874 | // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and |
875 | // then we do the union with [MaxValue, Upper) |
876 | if (isUpperWrapped()) { |
877 | // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole |
878 | // truncated range. |
879 | if (Upper.getActiveBits() > DstTySize || Upper.countr_one() == DstTySize) |
880 | return getFull(BitWidth: DstTySize); |
881 | |
882 | Union = ConstantRange(APInt::getMaxValue(numBits: DstTySize),Upper.trunc(width: DstTySize)); |
883 | UpperDiv.setAllBits(); |
884 | |
885 | // Union covers the MaxValue case, so return if the remaining range is just |
886 | // MaxValue(DstTy). |
887 | if (LowerDiv == UpperDiv) |
888 | return Union; |
889 | } |
890 | |
891 | // Chop off the most significant bits that are past the destination bitwidth. |
892 | if (LowerDiv.getActiveBits() > DstTySize) { |
893 | // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv. |
894 | APInt Adjust = LowerDiv & APInt::getBitsSetFrom(numBits: getBitWidth(), loBit: DstTySize); |
895 | LowerDiv -= Adjust; |
896 | UpperDiv -= Adjust; |
897 | } |
898 | |
899 | unsigned UpperDivWidth = UpperDiv.getActiveBits(); |
900 | if (UpperDivWidth <= DstTySize) |
901 | return ConstantRange(LowerDiv.trunc(width: DstTySize), |
902 | UpperDiv.trunc(width: DstTySize)).unionWith(CR: Union); |
903 | |
904 | // The truncated value wraps around. Check if we can do better than fullset. |
905 | if (UpperDivWidth == DstTySize + 1) { |
906 | // Clear the MSB so that UpperDiv wraps around. |
907 | UpperDiv.clearBit(BitPosition: DstTySize); |
908 | if (UpperDiv.ult(RHS: LowerDiv)) |
909 | return ConstantRange(LowerDiv.trunc(width: DstTySize), |
910 | UpperDiv.trunc(width: DstTySize)).unionWith(CR: Union); |
911 | } |
912 | |
913 | return getFull(BitWidth: DstTySize); |
914 | } |
915 | |
916 | ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const { |
917 | unsigned SrcTySize = getBitWidth(); |
918 | if (SrcTySize > DstTySize) |
919 | return truncate(DstTySize); |
920 | if (SrcTySize < DstTySize) |
921 | return zeroExtend(DstTySize); |
922 | return *this; |
923 | } |
924 | |
925 | ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const { |
926 | unsigned SrcTySize = getBitWidth(); |
927 | if (SrcTySize > DstTySize) |
928 | return truncate(DstTySize); |
929 | if (SrcTySize < DstTySize) |
930 | return signExtend(DstTySize); |
931 | return *this; |
932 | } |
933 | |
934 | ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp, |
935 | const ConstantRange &Other) const { |
936 | assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!" ); |
937 | |
938 | switch (BinOp) { |
939 | case Instruction::Add: |
940 | return add(Other); |
941 | case Instruction::Sub: |
942 | return sub(Other); |
943 | case Instruction::Mul: |
944 | return multiply(Other); |
945 | case Instruction::UDiv: |
946 | return udiv(Other); |
947 | case Instruction::SDiv: |
948 | return sdiv(Other); |
949 | case Instruction::URem: |
950 | return urem(Other); |
951 | case Instruction::SRem: |
952 | return srem(Other); |
953 | case Instruction::Shl: |
954 | return shl(Other); |
955 | case Instruction::LShr: |
956 | return lshr(Other); |
957 | case Instruction::AShr: |
958 | return ashr(Other); |
959 | case Instruction::And: |
960 | return binaryAnd(Other); |
961 | case Instruction::Or: |
962 | return binaryOr(Other); |
963 | case Instruction::Xor: |
964 | return binaryXor(Other); |
965 | // Note: floating point operations applied to abstract ranges are just |
966 | // ideal integer operations with a lossy representation |
967 | case Instruction::FAdd: |
968 | return add(Other); |
969 | case Instruction::FSub: |
970 | return sub(Other); |
971 | case Instruction::FMul: |
972 | return multiply(Other); |
973 | default: |
974 | // Conservatively return getFull set. |
975 | return getFull(); |
976 | } |
977 | } |
978 | |
979 | ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp, |
980 | const ConstantRange &Other, |
981 | unsigned NoWrapKind) const { |
982 | assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!" ); |
983 | |
984 | switch (BinOp) { |
985 | case Instruction::Add: |
986 | return addWithNoWrap(Other, NoWrapKind); |
987 | case Instruction::Sub: |
988 | return subWithNoWrap(Other, NoWrapKind); |
989 | case Instruction::Mul: |
990 | return multiplyWithNoWrap(Other, NoWrapKind); |
991 | default: |
992 | // Don't know about this Overflowing Binary Operation. |
993 | // Conservatively fallback to plain binop handling. |
994 | return binaryOp(BinOp, Other); |
995 | } |
996 | } |
997 | |
998 | bool ConstantRange::isIntrinsicSupported(Intrinsic::ID IntrinsicID) { |
999 | switch (IntrinsicID) { |
1000 | case Intrinsic::uadd_sat: |
1001 | case Intrinsic::usub_sat: |
1002 | case Intrinsic::sadd_sat: |
1003 | case Intrinsic::ssub_sat: |
1004 | case Intrinsic::umin: |
1005 | case Intrinsic::umax: |
1006 | case Intrinsic::smin: |
1007 | case Intrinsic::smax: |
1008 | case Intrinsic::abs: |
1009 | case Intrinsic::ctlz: |
1010 | case Intrinsic::cttz: |
1011 | case Intrinsic::ctpop: |
1012 | return true; |
1013 | default: |
1014 | return false; |
1015 | } |
1016 | } |
1017 | |
1018 | ConstantRange ConstantRange::intrinsic(Intrinsic::ID IntrinsicID, |
1019 | ArrayRef<ConstantRange> Ops) { |
1020 | switch (IntrinsicID) { |
1021 | case Intrinsic::uadd_sat: |
1022 | return Ops[0].uadd_sat(Other: Ops[1]); |
1023 | case Intrinsic::usub_sat: |
1024 | return Ops[0].usub_sat(Other: Ops[1]); |
1025 | case Intrinsic::sadd_sat: |
1026 | return Ops[0].sadd_sat(Other: Ops[1]); |
1027 | case Intrinsic::ssub_sat: |
1028 | return Ops[0].ssub_sat(Other: Ops[1]); |
1029 | case Intrinsic::umin: |
1030 | return Ops[0].umin(Other: Ops[1]); |
1031 | case Intrinsic::umax: |
1032 | return Ops[0].umax(Other: Ops[1]); |
1033 | case Intrinsic::smin: |
1034 | return Ops[0].smin(Other: Ops[1]); |
1035 | case Intrinsic::smax: |
1036 | return Ops[0].smax(Other: Ops[1]); |
1037 | case Intrinsic::abs: { |
1038 | const APInt *IntMinIsPoison = Ops[1].getSingleElement(); |
1039 | assert(IntMinIsPoison && "Must be known (immarg)" ); |
1040 | assert(IntMinIsPoison->getBitWidth() == 1 && "Must be boolean" ); |
1041 | return Ops[0].abs(IntMinIsPoison: IntMinIsPoison->getBoolValue()); |
1042 | } |
1043 | case Intrinsic::ctlz: { |
1044 | const APInt *ZeroIsPoison = Ops[1].getSingleElement(); |
1045 | assert(ZeroIsPoison && "Must be known (immarg)" ); |
1046 | assert(ZeroIsPoison->getBitWidth() == 1 && "Must be boolean" ); |
1047 | return Ops[0].ctlz(ZeroIsPoison: ZeroIsPoison->getBoolValue()); |
1048 | } |
1049 | case Intrinsic::cttz: { |
1050 | const APInt *ZeroIsPoison = Ops[1].getSingleElement(); |
1051 | assert(ZeroIsPoison && "Must be known (immarg)" ); |
1052 | assert(ZeroIsPoison->getBitWidth() == 1 && "Must be boolean" ); |
1053 | return Ops[0].cttz(ZeroIsPoison: ZeroIsPoison->getBoolValue()); |
1054 | } |
1055 | case Intrinsic::ctpop: |
1056 | return Ops[0].ctpop(); |
1057 | default: |
1058 | assert(!isIntrinsicSupported(IntrinsicID) && "Shouldn't be supported" ); |
1059 | llvm_unreachable("Unsupported intrinsic" ); |
1060 | } |
1061 | } |
1062 | |
1063 | ConstantRange |
1064 | ConstantRange::add(const ConstantRange &Other) const { |
1065 | if (isEmptySet() || Other.isEmptySet()) |
1066 | return getEmpty(); |
1067 | if (isFullSet() || Other.isFullSet()) |
1068 | return getFull(); |
1069 | |
1070 | APInt NewLower = getLower() + Other.getLower(); |
1071 | APInt NewUpper = getUpper() + Other.getUpper() - 1; |
1072 | if (NewLower == NewUpper) |
1073 | return getFull(); |
1074 | |
1075 | ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); |
1076 | if (X.isSizeStrictlySmallerThan(Other: *this) || |
1077 | X.isSizeStrictlySmallerThan(Other)) |
1078 | // We've wrapped, therefore, full set. |
1079 | return getFull(); |
1080 | return X; |
1081 | } |
1082 | |
1083 | ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other, |
1084 | unsigned NoWrapKind, |
1085 | PreferredRangeType RangeType) const { |
1086 | // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow). |
1087 | // (X is from this, and Y is from Other) |
1088 | if (isEmptySet() || Other.isEmptySet()) |
1089 | return getEmpty(); |
1090 | if (isFullSet() && Other.isFullSet()) |
1091 | return getFull(); |
1092 | |
1093 | using OBO = OverflowingBinaryOperator; |
1094 | ConstantRange Result = add(Other); |
1095 | |
1096 | // If an overflow happens for every value pair in these two constant ranges, |
1097 | // we must return Empty set. In this case, we get that for free, because we |
1098 | // get lucky that intersection of add() with uadd_sat()/sadd_sat() results |
1099 | // in an empty set. |
1100 | |
1101 | if (NoWrapKind & OBO::NoSignedWrap) |
1102 | Result = Result.intersectWith(CR: sadd_sat(Other), Type: RangeType); |
1103 | |
1104 | if (NoWrapKind & OBO::NoUnsignedWrap) |
1105 | Result = Result.intersectWith(CR: uadd_sat(Other), Type: RangeType); |
1106 | |
1107 | return Result; |
1108 | } |
1109 | |
1110 | ConstantRange |
1111 | ConstantRange::sub(const ConstantRange &Other) const { |
1112 | if (isEmptySet() || Other.isEmptySet()) |
1113 | return getEmpty(); |
1114 | if (isFullSet() || Other.isFullSet()) |
1115 | return getFull(); |
1116 | |
1117 | APInt NewLower = getLower() - Other.getUpper() + 1; |
1118 | APInt NewUpper = getUpper() - Other.getLower(); |
1119 | if (NewLower == NewUpper) |
1120 | return getFull(); |
1121 | |
1122 | ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); |
1123 | if (X.isSizeStrictlySmallerThan(Other: *this) || |
1124 | X.isSizeStrictlySmallerThan(Other)) |
1125 | // We've wrapped, therefore, full set. |
1126 | return getFull(); |
1127 | return X; |
1128 | } |
1129 | |
1130 | ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other, |
1131 | unsigned NoWrapKind, |
1132 | PreferredRangeType RangeType) const { |
1133 | // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow). |
1134 | // (X is from this, and Y is from Other) |
1135 | if (isEmptySet() || Other.isEmptySet()) |
1136 | return getEmpty(); |
1137 | if (isFullSet() && Other.isFullSet()) |
1138 | return getFull(); |
1139 | |
1140 | using OBO = OverflowingBinaryOperator; |
1141 | ConstantRange Result = sub(Other); |
1142 | |
1143 | // If an overflow happens for every value pair in these two constant ranges, |
1144 | // we must return Empty set. In signed case, we get that for free, because we |
1145 | // get lucky that intersection of sub() with ssub_sat() results in an |
1146 | // empty set. But for unsigned we must perform the overflow check manually. |
1147 | |
1148 | if (NoWrapKind & OBO::NoSignedWrap) |
1149 | Result = Result.intersectWith(CR: ssub_sat(Other), Type: RangeType); |
1150 | |
1151 | if (NoWrapKind & OBO::NoUnsignedWrap) { |
1152 | if (getUnsignedMax().ult(RHS: Other.getUnsignedMin())) |
1153 | return getEmpty(); // Always overflows. |
1154 | Result = Result.intersectWith(CR: usub_sat(Other), Type: RangeType); |
1155 | } |
1156 | |
1157 | return Result; |
1158 | } |
1159 | |
1160 | ConstantRange |
1161 | ConstantRange::multiply(const ConstantRange &Other) const { |
1162 | // TODO: If either operand is a single element and the multiply is known to |
1163 | // be non-wrapping, round the result min and max value to the appropriate |
1164 | // multiple of that element. If wrapping is possible, at least adjust the |
1165 | // range according to the greatest power-of-two factor of the single element. |
1166 | |
1167 | if (isEmptySet() || Other.isEmptySet()) |
1168 | return getEmpty(); |
1169 | |
1170 | if (const APInt *C = getSingleElement()) { |
1171 | if (C->isOne()) |
1172 | return Other; |
1173 | if (C->isAllOnes()) |
1174 | return ConstantRange(APInt::getZero(numBits: getBitWidth())).sub(Other); |
1175 | } |
1176 | |
1177 | if (const APInt *C = Other.getSingleElement()) { |
1178 | if (C->isOne()) |
1179 | return *this; |
1180 | if (C->isAllOnes()) |
1181 | return ConstantRange(APInt::getZero(numBits: getBitWidth())).sub(Other: *this); |
1182 | } |
1183 | |
1184 | // Multiplication is signedness-independent. However different ranges can be |
1185 | // obtained depending on how the input ranges are treated. These different |
1186 | // ranges are all conservatively correct, but one might be better than the |
1187 | // other. We calculate two ranges; one treating the inputs as unsigned |
1188 | // and the other signed, then return the smallest of these ranges. |
1189 | |
1190 | // Unsigned range first. |
1191 | APInt this_min = getUnsignedMin().zext(width: getBitWidth() * 2); |
1192 | APInt this_max = getUnsignedMax().zext(width: getBitWidth() * 2); |
1193 | APInt Other_min = Other.getUnsignedMin().zext(width: getBitWidth() * 2); |
1194 | APInt Other_max = Other.getUnsignedMax().zext(width: getBitWidth() * 2); |
1195 | |
1196 | ConstantRange Result_zext = ConstantRange(this_min * Other_min, |
1197 | this_max * Other_max + 1); |
1198 | ConstantRange UR = Result_zext.truncate(DstTySize: getBitWidth()); |
1199 | |
1200 | // If the unsigned range doesn't wrap, and isn't negative then it's a range |
1201 | // from one positive number to another which is as good as we can generate. |
1202 | // In this case, skip the extra work of generating signed ranges which aren't |
1203 | // going to be better than this range. |
1204 | if (!UR.isUpperWrapped() && |
1205 | (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue())) |
1206 | return UR; |
1207 | |
1208 | // Now the signed range. Because we could be dealing with negative numbers |
1209 | // here, the lower bound is the smallest of the cartesian product of the |
1210 | // lower and upper ranges; for example: |
1211 | // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. |
1212 | // Similarly for the upper bound, swapping min for max. |
1213 | |
1214 | this_min = getSignedMin().sext(width: getBitWidth() * 2); |
1215 | this_max = getSignedMax().sext(width: getBitWidth() * 2); |
1216 | Other_min = Other.getSignedMin().sext(width: getBitWidth() * 2); |
1217 | Other_max = Other.getSignedMax().sext(width: getBitWidth() * 2); |
1218 | |
1219 | auto L = {this_min * Other_min, this_min * Other_max, |
1220 | this_max * Other_min, this_max * Other_max}; |
1221 | auto Compare = [](const APInt &A, const APInt &B) { return A.slt(RHS: B); }; |
1222 | ConstantRange Result_sext(std::min(l: L, comp: Compare), std::max(l: L, comp: Compare) + 1); |
1223 | ConstantRange SR = Result_sext.truncate(DstTySize: getBitWidth()); |
1224 | |
1225 | return UR.isSizeStrictlySmallerThan(Other: SR) ? UR : SR; |
1226 | } |
1227 | |
1228 | ConstantRange |
1229 | ConstantRange::multiplyWithNoWrap(const ConstantRange &Other, |
1230 | unsigned NoWrapKind, |
1231 | PreferredRangeType RangeType) const { |
1232 | if (isEmptySet() || Other.isEmptySet()) |
1233 | return getEmpty(); |
1234 | if (isFullSet() && Other.isFullSet()) |
1235 | return getFull(); |
1236 | |
1237 | ConstantRange Result = multiply(Other); |
1238 | |
1239 | if (NoWrapKind & OverflowingBinaryOperator::NoSignedWrap) |
1240 | Result = Result.intersectWith(CR: smul_sat(Other), Type: RangeType); |
1241 | |
1242 | if (NoWrapKind & OverflowingBinaryOperator::NoUnsignedWrap) |
1243 | Result = Result.intersectWith(CR: umul_sat(Other), Type: RangeType); |
1244 | |
1245 | return Result; |
1246 | } |
1247 | |
1248 | ConstantRange ConstantRange::smul_fast(const ConstantRange &Other) const { |
1249 | if (isEmptySet() || Other.isEmptySet()) |
1250 | return getEmpty(); |
1251 | |
1252 | APInt Min = getSignedMin(); |
1253 | APInt Max = getSignedMax(); |
1254 | APInt OtherMin = Other.getSignedMin(); |
1255 | APInt OtherMax = Other.getSignedMax(); |
1256 | |
1257 | bool O1, O2, O3, O4; |
1258 | auto Muls = {Min.smul_ov(RHS: OtherMin, Overflow&: O1), Min.smul_ov(RHS: OtherMax, Overflow&: O2), |
1259 | Max.smul_ov(RHS: OtherMin, Overflow&: O3), Max.smul_ov(RHS: OtherMax, Overflow&: O4)}; |
1260 | if (O1 || O2 || O3 || O4) |
1261 | return getFull(); |
1262 | |
1263 | auto Compare = [](const APInt &A, const APInt &B) { return A.slt(RHS: B); }; |
1264 | return getNonEmpty(Lower: std::min(l: Muls, comp: Compare), Upper: std::max(l: Muls, comp: Compare) + 1); |
1265 | } |
1266 | |
1267 | ConstantRange |
1268 | ConstantRange::smax(const ConstantRange &Other) const { |
1269 | // X smax Y is: range(smax(X_smin, Y_smin), |
1270 | // smax(X_smax, Y_smax)) |
1271 | if (isEmptySet() || Other.isEmptySet()) |
1272 | return getEmpty(); |
1273 | APInt NewL = APIntOps::smax(A: getSignedMin(), B: Other.getSignedMin()); |
1274 | APInt NewU = APIntOps::smax(A: getSignedMax(), B: Other.getSignedMax()) + 1; |
1275 | ConstantRange Res = getNonEmpty(Lower: std::move(NewL), Upper: std::move(NewU)); |
1276 | if (isSignWrappedSet() || Other.isSignWrappedSet()) |
1277 | return Res.intersectWith(CR: unionWith(CR: Other, Type: Signed), Type: Signed); |
1278 | return Res; |
1279 | } |
1280 | |
1281 | ConstantRange |
1282 | ConstantRange::umax(const ConstantRange &Other) const { |
1283 | // X umax Y is: range(umax(X_umin, Y_umin), |
1284 | // umax(X_umax, Y_umax)) |
1285 | if (isEmptySet() || Other.isEmptySet()) |
1286 | return getEmpty(); |
1287 | APInt NewL = APIntOps::umax(A: getUnsignedMin(), B: Other.getUnsignedMin()); |
1288 | APInt NewU = APIntOps::umax(A: getUnsignedMax(), B: Other.getUnsignedMax()) + 1; |
1289 | ConstantRange Res = getNonEmpty(Lower: std::move(NewL), Upper: std::move(NewU)); |
1290 | if (isWrappedSet() || Other.isWrappedSet()) |
1291 | return Res.intersectWith(CR: unionWith(CR: Other, Type: Unsigned), Type: Unsigned); |
1292 | return Res; |
1293 | } |
1294 | |
1295 | ConstantRange |
1296 | ConstantRange::smin(const ConstantRange &Other) const { |
1297 | // X smin Y is: range(smin(X_smin, Y_smin), |
1298 | // smin(X_smax, Y_smax)) |
1299 | if (isEmptySet() || Other.isEmptySet()) |
1300 | return getEmpty(); |
1301 | APInt NewL = APIntOps::smin(A: getSignedMin(), B: Other.getSignedMin()); |
1302 | APInt NewU = APIntOps::smin(A: getSignedMax(), B: Other.getSignedMax()) + 1; |
1303 | ConstantRange Res = getNonEmpty(Lower: std::move(NewL), Upper: std::move(NewU)); |
1304 | if (isSignWrappedSet() || Other.isSignWrappedSet()) |
1305 | return Res.intersectWith(CR: unionWith(CR: Other, Type: Signed), Type: Signed); |
1306 | return Res; |
1307 | } |
1308 | |
1309 | ConstantRange |
1310 | ConstantRange::umin(const ConstantRange &Other) const { |
1311 | // X umin Y is: range(umin(X_umin, Y_umin), |
1312 | // umin(X_umax, Y_umax)) |
1313 | if (isEmptySet() || Other.isEmptySet()) |
1314 | return getEmpty(); |
1315 | APInt NewL = APIntOps::umin(A: getUnsignedMin(), B: Other.getUnsignedMin()); |
1316 | APInt NewU = APIntOps::umin(A: getUnsignedMax(), B: Other.getUnsignedMax()) + 1; |
1317 | ConstantRange Res = getNonEmpty(Lower: std::move(NewL), Upper: std::move(NewU)); |
1318 | if (isWrappedSet() || Other.isWrappedSet()) |
1319 | return Res.intersectWith(CR: unionWith(CR: Other, Type: Unsigned), Type: Unsigned); |
1320 | return Res; |
1321 | } |
1322 | |
1323 | ConstantRange |
1324 | ConstantRange::udiv(const ConstantRange &RHS) const { |
1325 | if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero()) |
1326 | return getEmpty(); |
1327 | |
1328 | APInt Lower = getUnsignedMin().udiv(RHS: RHS.getUnsignedMax()); |
1329 | |
1330 | APInt RHS_umin = RHS.getUnsignedMin(); |
1331 | if (RHS_umin.isZero()) { |
1332 | // We want the lowest value in RHS excluding zero. Usually that would be 1 |
1333 | // except for a range in the form of [X, 1) in which case it would be X. |
1334 | if (RHS.getUpper() == 1) |
1335 | RHS_umin = RHS.getLower(); |
1336 | else |
1337 | RHS_umin = 1; |
1338 | } |
1339 | |
1340 | APInt Upper = getUnsignedMax().udiv(RHS: RHS_umin) + 1; |
1341 | return getNonEmpty(Lower: std::move(Lower), Upper: std::move(Upper)); |
1342 | } |
1343 | |
1344 | ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const { |
1345 | // We split up the LHS and RHS into positive and negative components |
1346 | // and then also compute the positive and negative components of the result |
1347 | // separately by combining division results with the appropriate signs. |
1348 | APInt Zero = APInt::getZero(numBits: getBitWidth()); |
1349 | APInt SignedMin = APInt::getSignedMinValue(numBits: getBitWidth()); |
1350 | // There are no positive 1-bit values. The 1 would get interpreted as -1. |
1351 | ConstantRange PosFilter = |
1352 | getBitWidth() == 1 ? getEmpty() |
1353 | : ConstantRange(APInt(getBitWidth(), 1), SignedMin); |
1354 | ConstantRange NegFilter(SignedMin, Zero); |
1355 | ConstantRange PosL = intersectWith(CR: PosFilter); |
1356 | ConstantRange NegL = intersectWith(CR: NegFilter); |
1357 | ConstantRange PosR = RHS.intersectWith(CR: PosFilter); |
1358 | ConstantRange NegR = RHS.intersectWith(CR: NegFilter); |
1359 | |
1360 | ConstantRange PosRes = getEmpty(); |
1361 | if (!PosL.isEmptySet() && !PosR.isEmptySet()) |
1362 | // pos / pos = pos. |
1363 | PosRes = ConstantRange(PosL.Lower.sdiv(RHS: PosR.Upper - 1), |
1364 | (PosL.Upper - 1).sdiv(RHS: PosR.Lower) + 1); |
1365 | |
1366 | if (!NegL.isEmptySet() && !NegR.isEmptySet()) { |
1367 | // neg / neg = pos. |
1368 | // |
1369 | // We need to deal with one tricky case here: SignedMin / -1 is UB on the |
1370 | // IR level, so we'll want to exclude this case when calculating bounds. |
1371 | // (For APInts the operation is well-defined and yields SignedMin.) We |
1372 | // handle this by dropping either SignedMin from the LHS or -1 from the RHS. |
1373 | APInt Lo = (NegL.Upper - 1).sdiv(RHS: NegR.Lower); |
1374 | if (NegL.Lower.isMinSignedValue() && NegR.Upper.isZero()) { |
1375 | // Remove -1 from the LHS. Skip if it's the only element, as this would |
1376 | // leave us with an empty set. |
1377 | if (!NegR.Lower.isAllOnes()) { |
1378 | APInt AdjNegRUpper; |
1379 | if (RHS.Lower.isAllOnes()) |
1380 | // Negative part of [-1, X] without -1 is [SignedMin, X]. |
1381 | AdjNegRUpper = RHS.Upper; |
1382 | else |
1383 | // [X, -1] without -1 is [X, -2]. |
1384 | AdjNegRUpper = NegR.Upper - 1; |
1385 | |
1386 | PosRes = PosRes.unionWith( |
1387 | CR: ConstantRange(Lo, NegL.Lower.sdiv(RHS: AdjNegRUpper - 1) + 1)); |
1388 | } |
1389 | |
1390 | // Remove SignedMin from the RHS. Skip if it's the only element, as this |
1391 | // would leave us with an empty set. |
1392 | if (NegL.Upper != SignedMin + 1) { |
1393 | APInt AdjNegLLower; |
1394 | if (Upper == SignedMin + 1) |
1395 | // Negative part of [X, SignedMin] without SignedMin is [X, -1]. |
1396 | AdjNegLLower = Lower; |
1397 | else |
1398 | // [SignedMin, X] without SignedMin is [SignedMin + 1, X]. |
1399 | AdjNegLLower = NegL.Lower + 1; |
1400 | |
1401 | PosRes = PosRes.unionWith( |
1402 | CR: ConstantRange(std::move(Lo), |
1403 | AdjNegLLower.sdiv(RHS: NegR.Upper - 1) + 1)); |
1404 | } |
1405 | } else { |
1406 | PosRes = PosRes.unionWith( |
1407 | CR: ConstantRange(std::move(Lo), NegL.Lower.sdiv(RHS: NegR.Upper - 1) + 1)); |
1408 | } |
1409 | } |
1410 | |
1411 | ConstantRange NegRes = getEmpty(); |
1412 | if (!PosL.isEmptySet() && !NegR.isEmptySet()) |
1413 | // pos / neg = neg. |
1414 | NegRes = ConstantRange((PosL.Upper - 1).sdiv(RHS: NegR.Upper - 1), |
1415 | PosL.Lower.sdiv(RHS: NegR.Lower) + 1); |
1416 | |
1417 | if (!NegL.isEmptySet() && !PosR.isEmptySet()) |
1418 | // neg / pos = neg. |
1419 | NegRes = NegRes.unionWith( |
1420 | CR: ConstantRange(NegL.Lower.sdiv(RHS: PosR.Lower), |
1421 | (NegL.Upper - 1).sdiv(RHS: PosR.Upper - 1) + 1)); |
1422 | |
1423 | // Prefer a non-wrapping signed range here. |
1424 | ConstantRange Res = NegRes.unionWith(CR: PosRes, Type: PreferredRangeType::Signed); |
1425 | |
1426 | // Preserve the zero that we dropped when splitting the LHS by sign. |
1427 | if (contains(V: Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet())) |
1428 | Res = Res.unionWith(CR: ConstantRange(Zero)); |
1429 | return Res; |
1430 | } |
1431 | |
1432 | ConstantRange ConstantRange::urem(const ConstantRange &RHS) const { |
1433 | if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero()) |
1434 | return getEmpty(); |
1435 | |
1436 | if (const APInt *RHSInt = RHS.getSingleElement()) { |
1437 | // UREM by null is UB. |
1438 | if (RHSInt->isZero()) |
1439 | return getEmpty(); |
1440 | // Use APInt's implementation of UREM for single element ranges. |
1441 | if (const APInt *LHSInt = getSingleElement()) |
1442 | return {LHSInt->urem(RHS: *RHSInt)}; |
1443 | } |
1444 | |
1445 | // L % R for L < R is L. |
1446 | if (getUnsignedMax().ult(RHS: RHS.getUnsignedMin())) |
1447 | return *this; |
1448 | |
1449 | // L % R is <= L and < R. |
1450 | APInt Upper = APIntOps::umin(A: getUnsignedMax(), B: RHS.getUnsignedMax() - 1) + 1; |
1451 | return getNonEmpty(Lower: APInt::getZero(numBits: getBitWidth()), Upper: std::move(Upper)); |
1452 | } |
1453 | |
1454 | ConstantRange ConstantRange::srem(const ConstantRange &RHS) const { |
1455 | if (isEmptySet() || RHS.isEmptySet()) |
1456 | return getEmpty(); |
1457 | |
1458 | if (const APInt *RHSInt = RHS.getSingleElement()) { |
1459 | // SREM by null is UB. |
1460 | if (RHSInt->isZero()) |
1461 | return getEmpty(); |
1462 | // Use APInt's implementation of SREM for single element ranges. |
1463 | if (const APInt *LHSInt = getSingleElement()) |
1464 | return {LHSInt->srem(RHS: *RHSInt)}; |
1465 | } |
1466 | |
1467 | ConstantRange AbsRHS = RHS.abs(); |
1468 | APInt MinAbsRHS = AbsRHS.getUnsignedMin(); |
1469 | APInt MaxAbsRHS = AbsRHS.getUnsignedMax(); |
1470 | |
1471 | // Modulus by zero is UB. |
1472 | if (MaxAbsRHS.isZero()) |
1473 | return getEmpty(); |
1474 | |
1475 | if (MinAbsRHS.isZero()) |
1476 | ++MinAbsRHS; |
1477 | |
1478 | APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax(); |
1479 | |
1480 | if (MinLHS.isNonNegative()) { |
1481 | // L % R for L < R is L. |
1482 | if (MaxLHS.ult(RHS: MinAbsRHS)) |
1483 | return *this; |
1484 | |
1485 | // L % R is <= L and < R. |
1486 | APInt Upper = APIntOps::umin(A: MaxLHS, B: MaxAbsRHS - 1) + 1; |
1487 | return ConstantRange(APInt::getZero(numBits: getBitWidth()), std::move(Upper)); |
1488 | } |
1489 | |
1490 | // Same basic logic as above, but the result is negative. |
1491 | if (MaxLHS.isNegative()) { |
1492 | if (MinLHS.ugt(RHS: -MinAbsRHS)) |
1493 | return *this; |
1494 | |
1495 | APInt Lower = APIntOps::umax(A: MinLHS, B: -MaxAbsRHS + 1); |
1496 | return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1)); |
1497 | } |
1498 | |
1499 | // LHS range crosses zero. |
1500 | APInt Lower = APIntOps::umax(A: MinLHS, B: -MaxAbsRHS + 1); |
1501 | APInt Upper = APIntOps::umin(A: MaxLHS, B: MaxAbsRHS - 1) + 1; |
1502 | return ConstantRange(std::move(Lower), std::move(Upper)); |
1503 | } |
1504 | |
1505 | ConstantRange ConstantRange::binaryNot() const { |
1506 | return ConstantRange(APInt::getAllOnes(numBits: getBitWidth())).sub(Other: *this); |
1507 | } |
1508 | |
1509 | ConstantRange ConstantRange::binaryAnd(const ConstantRange &Other) const { |
1510 | if (isEmptySet() || Other.isEmptySet()) |
1511 | return getEmpty(); |
1512 | |
1513 | ConstantRange KnownBitsRange = |
1514 | fromKnownBits(Known: toKnownBits() & Other.toKnownBits(), IsSigned: false); |
1515 | ConstantRange UMinUMaxRange = |
1516 | getNonEmpty(Lower: APInt::getZero(numBits: getBitWidth()), |
1517 | Upper: APIntOps::umin(A: Other.getUnsignedMax(), B: getUnsignedMax()) + 1); |
1518 | return KnownBitsRange.intersectWith(CR: UMinUMaxRange); |
1519 | } |
1520 | |
1521 | ConstantRange ConstantRange::binaryOr(const ConstantRange &Other) const { |
1522 | if (isEmptySet() || Other.isEmptySet()) |
1523 | return getEmpty(); |
1524 | |
1525 | ConstantRange KnownBitsRange = |
1526 | fromKnownBits(Known: toKnownBits() | Other.toKnownBits(), IsSigned: false); |
1527 | // Upper wrapped range. |
1528 | ConstantRange UMaxUMinRange = |
1529 | getNonEmpty(Lower: APIntOps::umax(A: getUnsignedMin(), B: Other.getUnsignedMin()), |
1530 | Upper: APInt::getZero(numBits: getBitWidth())); |
1531 | return KnownBitsRange.intersectWith(CR: UMaxUMinRange); |
1532 | } |
1533 | |
1534 | ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const { |
1535 | if (isEmptySet() || Other.isEmptySet()) |
1536 | return getEmpty(); |
1537 | |
1538 | // Use APInt's implementation of XOR for single element ranges. |
1539 | if (isSingleElement() && Other.isSingleElement()) |
1540 | return {*getSingleElement() ^ *Other.getSingleElement()}; |
1541 | |
1542 | // Special-case binary complement, since we can give a precise answer. |
1543 | if (Other.isSingleElement() && Other.getSingleElement()->isAllOnes()) |
1544 | return binaryNot(); |
1545 | if (isSingleElement() && getSingleElement()->isAllOnes()) |
1546 | return Other.binaryNot(); |
1547 | |
1548 | KnownBits LHSKnown = toKnownBits(); |
1549 | KnownBits RHSKnown = Other.toKnownBits(); |
1550 | KnownBits Known = LHSKnown ^ RHSKnown; |
1551 | ConstantRange CR = fromKnownBits(Known, /*IsSigned*/ false); |
1552 | // Typically the following code doesn't improve the result if BW = 1. |
1553 | if (getBitWidth() == 1) |
1554 | return CR; |
1555 | |
1556 | // If LHS is known to be the subset of RHS, treat LHS ^ RHS as RHS -nuw/nsw |
1557 | // LHS. If RHS is known to be the subset of LHS, treat LHS ^ RHS as LHS |
1558 | // -nuw/nsw RHS. |
1559 | if ((~LHSKnown.Zero).isSubsetOf(RHS: RHSKnown.One)) |
1560 | CR = CR.intersectWith(CR: Other.sub(Other: *this), Type: PreferredRangeType::Unsigned); |
1561 | else if ((~RHSKnown.Zero).isSubsetOf(RHS: LHSKnown.One)) |
1562 | CR = CR.intersectWith(CR: this->sub(Other), Type: PreferredRangeType::Unsigned); |
1563 | return CR; |
1564 | } |
1565 | |
1566 | ConstantRange |
1567 | ConstantRange::shl(const ConstantRange &Other) const { |
1568 | if (isEmptySet() || Other.isEmptySet()) |
1569 | return getEmpty(); |
1570 | |
1571 | APInt Min = getUnsignedMin(); |
1572 | APInt Max = getUnsignedMax(); |
1573 | if (const APInt *RHS = Other.getSingleElement()) { |
1574 | unsigned BW = getBitWidth(); |
1575 | if (RHS->uge(RHS: BW)) |
1576 | return getEmpty(); |
1577 | |
1578 | unsigned EqualLeadingBits = (Min ^ Max).countl_zero(); |
1579 | if (RHS->ule(RHS: EqualLeadingBits)) |
1580 | return getNonEmpty(Lower: Min << *RHS, Upper: (Max << *RHS) + 1); |
1581 | |
1582 | return getNonEmpty(Lower: APInt::getZero(numBits: BW), |
1583 | Upper: APInt::getBitsSetFrom(numBits: BW, loBit: RHS->getZExtValue()) + 1); |
1584 | } |
1585 | |
1586 | APInt OtherMax = Other.getUnsignedMax(); |
1587 | if (isAllNegative() && OtherMax.ule(RHS: Min.countl_one())) { |
1588 | // For negative numbers, if the shift does not overflow in a signed sense, |
1589 | // a larger shift will make the number smaller. |
1590 | Max <<= Other.getUnsignedMin(); |
1591 | Min <<= OtherMax; |
1592 | return ConstantRange::getNonEmpty(Lower: std::move(Min), Upper: std::move(Max) + 1); |
1593 | } |
1594 | |
1595 | // There's overflow! |
1596 | if (OtherMax.ugt(RHS: Max.countl_zero())) |
1597 | return getFull(); |
1598 | |
1599 | // FIXME: implement the other tricky cases |
1600 | |
1601 | Min <<= Other.getUnsignedMin(); |
1602 | Max <<= OtherMax; |
1603 | |
1604 | return ConstantRange::getNonEmpty(Lower: std::move(Min), Upper: std::move(Max) + 1); |
1605 | } |
1606 | |
1607 | ConstantRange |
1608 | ConstantRange::lshr(const ConstantRange &Other) const { |
1609 | if (isEmptySet() || Other.isEmptySet()) |
1610 | return getEmpty(); |
1611 | |
1612 | APInt max = getUnsignedMax().lshr(ShiftAmt: Other.getUnsignedMin()) + 1; |
1613 | APInt min = getUnsignedMin().lshr(ShiftAmt: Other.getUnsignedMax()); |
1614 | return getNonEmpty(Lower: std::move(min), Upper: std::move(max)); |
1615 | } |
1616 | |
1617 | ConstantRange |
1618 | ConstantRange::ashr(const ConstantRange &Other) const { |
1619 | if (isEmptySet() || Other.isEmptySet()) |
1620 | return getEmpty(); |
1621 | |
1622 | // May straddle zero, so handle both positive and negative cases. |
1623 | // 'PosMax' is the upper bound of the result of the ashr |
1624 | // operation, when Upper of the LHS of ashr is a non-negative. |
1625 | // number. Since ashr of a non-negative number will result in a |
1626 | // smaller number, the Upper value of LHS is shifted right with |
1627 | // the minimum value of 'Other' instead of the maximum value. |
1628 | APInt PosMax = getSignedMax().ashr(ShiftAmt: Other.getUnsignedMin()) + 1; |
1629 | |
1630 | // 'PosMin' is the lower bound of the result of the ashr |
1631 | // operation, when Lower of the LHS is a non-negative number. |
1632 | // Since ashr of a non-negative number will result in a smaller |
1633 | // number, the Lower value of LHS is shifted right with the |
1634 | // maximum value of 'Other'. |
1635 | APInt PosMin = getSignedMin().ashr(ShiftAmt: Other.getUnsignedMax()); |
1636 | |
1637 | // 'NegMax' is the upper bound of the result of the ashr |
1638 | // operation, when Upper of the LHS of ashr is a negative number. |
1639 | // Since 'ashr' of a negative number will result in a bigger |
1640 | // number, the Upper value of LHS is shifted right with the |
1641 | // maximum value of 'Other'. |
1642 | APInt NegMax = getSignedMax().ashr(ShiftAmt: Other.getUnsignedMax()) + 1; |
1643 | |
1644 | // 'NegMin' is the lower bound of the result of the ashr |
1645 | // operation, when Lower of the LHS of ashr is a negative number. |
1646 | // Since 'ashr' of a negative number will result in a bigger |
1647 | // number, the Lower value of LHS is shifted right with the |
1648 | // minimum value of 'Other'. |
1649 | APInt NegMin = getSignedMin().ashr(ShiftAmt: Other.getUnsignedMin()); |
1650 | |
1651 | APInt max, min; |
1652 | if (getSignedMin().isNonNegative()) { |
1653 | // Upper and Lower of LHS are non-negative. |
1654 | min = PosMin; |
1655 | max = PosMax; |
1656 | } else if (getSignedMax().isNegative()) { |
1657 | // Upper and Lower of LHS are negative. |
1658 | min = NegMin; |
1659 | max = NegMax; |
1660 | } else { |
1661 | // Upper is non-negative and Lower is negative. |
1662 | min = NegMin; |
1663 | max = PosMax; |
1664 | } |
1665 | return getNonEmpty(Lower: std::move(min), Upper: std::move(max)); |
1666 | } |
1667 | |
1668 | ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const { |
1669 | if (isEmptySet() || Other.isEmptySet()) |
1670 | return getEmpty(); |
1671 | |
1672 | APInt NewL = getUnsignedMin().uadd_sat(RHS: Other.getUnsignedMin()); |
1673 | APInt NewU = getUnsignedMax().uadd_sat(RHS: Other.getUnsignedMax()) + 1; |
1674 | return getNonEmpty(Lower: std::move(NewL), Upper: std::move(NewU)); |
1675 | } |
1676 | |
1677 | ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const { |
1678 | if (isEmptySet() || Other.isEmptySet()) |
1679 | return getEmpty(); |
1680 | |
1681 | APInt NewL = getSignedMin().sadd_sat(RHS: Other.getSignedMin()); |
1682 | APInt NewU = getSignedMax().sadd_sat(RHS: Other.getSignedMax()) + 1; |
1683 | return getNonEmpty(Lower: std::move(NewL), Upper: std::move(NewU)); |
1684 | } |
1685 | |
1686 | ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const { |
1687 | if (isEmptySet() || Other.isEmptySet()) |
1688 | return getEmpty(); |
1689 | |
1690 | APInt NewL = getUnsignedMin().usub_sat(RHS: Other.getUnsignedMax()); |
1691 | APInt NewU = getUnsignedMax().usub_sat(RHS: Other.getUnsignedMin()) + 1; |
1692 | return getNonEmpty(Lower: std::move(NewL), Upper: std::move(NewU)); |
1693 | } |
1694 | |
1695 | ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const { |
1696 | if (isEmptySet() || Other.isEmptySet()) |
1697 | return getEmpty(); |
1698 | |
1699 | APInt NewL = getSignedMin().ssub_sat(RHS: Other.getSignedMax()); |
1700 | APInt NewU = getSignedMax().ssub_sat(RHS: Other.getSignedMin()) + 1; |
1701 | return getNonEmpty(Lower: std::move(NewL), Upper: std::move(NewU)); |
1702 | } |
1703 | |
1704 | ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const { |
1705 | if (isEmptySet() || Other.isEmptySet()) |
1706 | return getEmpty(); |
1707 | |
1708 | APInt NewL = getUnsignedMin().umul_sat(RHS: Other.getUnsignedMin()); |
1709 | APInt NewU = getUnsignedMax().umul_sat(RHS: Other.getUnsignedMax()) + 1; |
1710 | return getNonEmpty(Lower: std::move(NewL), Upper: std::move(NewU)); |
1711 | } |
1712 | |
1713 | ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const { |
1714 | if (isEmptySet() || Other.isEmptySet()) |
1715 | return getEmpty(); |
1716 | |
1717 | // Because we could be dealing with negative numbers here, the lower bound is |
1718 | // the smallest of the cartesian product of the lower and upper ranges; |
1719 | // for example: |
1720 | // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. |
1721 | // Similarly for the upper bound, swapping min for max. |
1722 | |
1723 | APInt Min = getSignedMin(); |
1724 | APInt Max = getSignedMax(); |
1725 | APInt OtherMin = Other.getSignedMin(); |
1726 | APInt OtherMax = Other.getSignedMax(); |
1727 | |
1728 | auto L = {Min.smul_sat(RHS: OtherMin), Min.smul_sat(RHS: OtherMax), |
1729 | Max.smul_sat(RHS: OtherMin), Max.smul_sat(RHS: OtherMax)}; |
1730 | auto Compare = [](const APInt &A, const APInt &B) { return A.slt(RHS: B); }; |
1731 | return getNonEmpty(Lower: std::min(l: L, comp: Compare), Upper: std::max(l: L, comp: Compare) + 1); |
1732 | } |
1733 | |
1734 | ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const { |
1735 | if (isEmptySet() || Other.isEmptySet()) |
1736 | return getEmpty(); |
1737 | |
1738 | APInt NewL = getUnsignedMin().ushl_sat(RHS: Other.getUnsignedMin()); |
1739 | APInt NewU = getUnsignedMax().ushl_sat(RHS: Other.getUnsignedMax()) + 1; |
1740 | return getNonEmpty(Lower: std::move(NewL), Upper: std::move(NewU)); |
1741 | } |
1742 | |
1743 | ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const { |
1744 | if (isEmptySet() || Other.isEmptySet()) |
1745 | return getEmpty(); |
1746 | |
1747 | APInt Min = getSignedMin(), Max = getSignedMax(); |
1748 | APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax(); |
1749 | APInt NewL = Min.sshl_sat(RHS: Min.isNonNegative() ? ShAmtMin : ShAmtMax); |
1750 | APInt NewU = Max.sshl_sat(RHS: Max.isNegative() ? ShAmtMin : ShAmtMax) + 1; |
1751 | return getNonEmpty(Lower: std::move(NewL), Upper: std::move(NewU)); |
1752 | } |
1753 | |
1754 | ConstantRange ConstantRange::inverse() const { |
1755 | if (isFullSet()) |
1756 | return getEmpty(); |
1757 | if (isEmptySet()) |
1758 | return getFull(); |
1759 | return ConstantRange(Upper, Lower); |
1760 | } |
1761 | |
1762 | ConstantRange ConstantRange::abs(bool IntMinIsPoison) const { |
1763 | if (isEmptySet()) |
1764 | return getEmpty(); |
1765 | |
1766 | if (isSignWrappedSet()) { |
1767 | APInt Lo; |
1768 | // Check whether the range crosses zero. |
1769 | if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive()) |
1770 | Lo = APInt::getZero(numBits: getBitWidth()); |
1771 | else |
1772 | Lo = APIntOps::umin(A: Lower, B: -Upper + 1); |
1773 | |
1774 | // If SignedMin is not poison, then it is included in the result range. |
1775 | if (IntMinIsPoison) |
1776 | return ConstantRange(Lo, APInt::getSignedMinValue(numBits: getBitWidth())); |
1777 | else |
1778 | return ConstantRange(Lo, APInt::getSignedMinValue(numBits: getBitWidth()) + 1); |
1779 | } |
1780 | |
1781 | APInt SMin = getSignedMin(), SMax = getSignedMax(); |
1782 | |
1783 | // Skip SignedMin if it is poison. |
1784 | if (IntMinIsPoison && SMin.isMinSignedValue()) { |
1785 | // The range may become empty if it *only* contains SignedMin. |
1786 | if (SMax.isMinSignedValue()) |
1787 | return getEmpty(); |
1788 | ++SMin; |
1789 | } |
1790 | |
1791 | // All non-negative. |
1792 | if (SMin.isNonNegative()) |
1793 | return ConstantRange(SMin, SMax + 1); |
1794 | |
1795 | // All negative. |
1796 | if (SMax.isNegative()) |
1797 | return ConstantRange(-SMax, -SMin + 1); |
1798 | |
1799 | // Range crosses zero. |
1800 | return ConstantRange::getNonEmpty(Lower: APInt::getZero(numBits: getBitWidth()), |
1801 | Upper: APIntOps::umax(A: -SMin, B: SMax) + 1); |
1802 | } |
1803 | |
1804 | ConstantRange ConstantRange::ctlz(bool ZeroIsPoison) const { |
1805 | if (isEmptySet()) |
1806 | return getEmpty(); |
1807 | |
1808 | APInt Zero = APInt::getZero(numBits: getBitWidth()); |
1809 | if (ZeroIsPoison && contains(V: Zero)) { |
1810 | // ZeroIsPoison is set, and zero is contained. We discern three cases, in |
1811 | // which a zero can appear: |
1812 | // 1) Lower is zero, handling cases of kind [0, 1), [0, 2), etc. |
1813 | // 2) Upper is zero, wrapped set, handling cases of kind [3, 0], etc. |
1814 | // 3) Zero contained in a wrapped set, e.g., [3, 2), [3, 1), etc. |
1815 | |
1816 | if (getLower().isZero()) { |
1817 | if ((getUpper() - 1).isZero()) { |
1818 | // We have in input interval of kind [0, 1). In this case we cannot |
1819 | // really help but return empty-set. |
1820 | return getEmpty(); |
1821 | } |
1822 | |
1823 | // Compute the resulting range by excluding zero from Lower. |
1824 | return ConstantRange( |
1825 | APInt(getBitWidth(), (getUpper() - 1).countl_zero()), |
1826 | APInt(getBitWidth(), (getLower() + 1).countl_zero() + 1)); |
1827 | } else if ((getUpper() - 1).isZero()) { |
1828 | // Compute the resulting range by excluding zero from Upper. |
1829 | return ConstantRange(Zero, |
1830 | APInt(getBitWidth(), getLower().countl_zero() + 1)); |
1831 | } else { |
1832 | return ConstantRange(Zero, APInt(getBitWidth(), getBitWidth())); |
1833 | } |
1834 | } |
1835 | |
1836 | // Zero is either safe or not in the range. The output range is composed by |
1837 | // the result of countLeadingZero of the two extremes. |
1838 | return getNonEmpty(Lower: APInt(getBitWidth(), getUnsignedMax().countl_zero()), |
1839 | Upper: APInt(getBitWidth(), getUnsignedMin().countl_zero() + 1)); |
1840 | } |
1841 | |
1842 | static ConstantRange getUnsignedCountTrailingZerosRange(const APInt &Lower, |
1843 | const APInt &Upper) { |
1844 | assert(!ConstantRange(Lower, Upper).isWrappedSet() && |
1845 | "Unexpected wrapped set." ); |
1846 | assert(Lower != Upper && "Unexpected empty set." ); |
1847 | unsigned BitWidth = Lower.getBitWidth(); |
1848 | if (Lower + 1 == Upper) |
1849 | return ConstantRange(APInt(BitWidth, Lower.countr_zero())); |
1850 | if (Lower.isZero()) |
1851 | return ConstantRange(APInt::getZero(numBits: BitWidth), |
1852 | APInt(BitWidth, BitWidth + 1)); |
1853 | |
1854 | // Calculate longest common prefix. |
1855 | unsigned LCPLength = (Lower ^ (Upper - 1)).countl_zero(); |
1856 | // If Lower is {LCP, 000...}, the maximum is Lower.countr_zero(). |
1857 | // Otherwise, the maximum is BitWidth - LCPLength - 1 ({LCP, 100...}). |
1858 | return ConstantRange( |
1859 | APInt::getZero(numBits: BitWidth), |
1860 | APInt(BitWidth, |
1861 | std::max(a: BitWidth - LCPLength - 1, b: Lower.countr_zero()) + 1)); |
1862 | } |
1863 | |
1864 | ConstantRange ConstantRange::cttz(bool ZeroIsPoison) const { |
1865 | if (isEmptySet()) |
1866 | return getEmpty(); |
1867 | |
1868 | unsigned BitWidth = getBitWidth(); |
1869 | APInt Zero = APInt::getZero(numBits: BitWidth); |
1870 | if (ZeroIsPoison && contains(V: Zero)) { |
1871 | // ZeroIsPoison is set, and zero is contained. We discern three cases, in |
1872 | // which a zero can appear: |
1873 | // 1) Lower is zero, handling cases of kind [0, 1), [0, 2), etc. |
1874 | // 2) Upper is zero, wrapped set, handling cases of kind [3, 0], etc. |
1875 | // 3) Zero contained in a wrapped set, e.g., [3, 2), [3, 1), etc. |
1876 | |
1877 | if (Lower.isZero()) { |
1878 | if (Upper == 1) { |
1879 | // We have in input interval of kind [0, 1). In this case we cannot |
1880 | // really help but return empty-set. |
1881 | return getEmpty(); |
1882 | } |
1883 | |
1884 | // Compute the resulting range by excluding zero from Lower. |
1885 | return getUnsignedCountTrailingZerosRange(Lower: APInt(BitWidth, 1), Upper); |
1886 | } else if (Upper == 1) { |
1887 | // Compute the resulting range by excluding zero from Upper. |
1888 | return getUnsignedCountTrailingZerosRange(Lower, Upper: Zero); |
1889 | } else { |
1890 | ConstantRange CR1 = getUnsignedCountTrailingZerosRange(Lower, Upper: Zero); |
1891 | ConstantRange CR2 = |
1892 | getUnsignedCountTrailingZerosRange(Lower: APInt(BitWidth, 1), Upper); |
1893 | return CR1.unionWith(CR: CR2); |
1894 | } |
1895 | } |
1896 | |
1897 | if (isFullSet()) |
1898 | return getNonEmpty(Lower: Zero, Upper: APInt(BitWidth, BitWidth + 1)); |
1899 | if (!isWrappedSet()) |
1900 | return getUnsignedCountTrailingZerosRange(Lower, Upper); |
1901 | // The range is wrapped. We decompose it into two ranges, [0, Upper) and |
1902 | // [Lower, 0). |
1903 | // Handle [Lower, 0) |
1904 | ConstantRange CR1 = getUnsignedCountTrailingZerosRange(Lower, Upper: Zero); |
1905 | // Handle [0, Upper) |
1906 | ConstantRange CR2 = getUnsignedCountTrailingZerosRange(Lower: Zero, Upper); |
1907 | return CR1.unionWith(CR: CR2); |
1908 | } |
1909 | |
1910 | static ConstantRange getUnsignedPopCountRange(const APInt &Lower, |
1911 | const APInt &Upper) { |
1912 | assert(!ConstantRange(Lower, Upper).isWrappedSet() && |
1913 | "Unexpected wrapped set." ); |
1914 | assert(Lower != Upper && "Unexpected empty set." ); |
1915 | unsigned BitWidth = Lower.getBitWidth(); |
1916 | if (Lower + 1 == Upper) |
1917 | return ConstantRange(APInt(BitWidth, Lower.popcount())); |
1918 | |
1919 | APInt Max = Upper - 1; |
1920 | // Calculate longest common prefix. |
1921 | unsigned LCPLength = (Lower ^ Max).countl_zero(); |
1922 | unsigned LCPPopCount = Lower.getHiBits(numBits: LCPLength).popcount(); |
1923 | // If Lower is {LCP, 000...}, the minimum is the popcount of LCP. |
1924 | // Otherwise, the minimum is the popcount of LCP + 1. |
1925 | unsigned MinBits = |
1926 | LCPPopCount + (Lower.countr_zero() < BitWidth - LCPLength ? 1 : 0); |
1927 | // If Max is {LCP, 111...}, the maximum is the popcount of LCP + (BitWidth - |
1928 | // length of LCP). |
1929 | // Otherwise, the minimum is the popcount of LCP + (BitWidth - |
1930 | // length of LCP - 1). |
1931 | unsigned MaxBits = LCPPopCount + (BitWidth - LCPLength) - |
1932 | (Max.countr_one() < BitWidth - LCPLength ? 1 : 0); |
1933 | return ConstantRange(APInt(BitWidth, MinBits), APInt(BitWidth, MaxBits + 1)); |
1934 | } |
1935 | |
1936 | ConstantRange ConstantRange::ctpop() const { |
1937 | if (isEmptySet()) |
1938 | return getEmpty(); |
1939 | |
1940 | unsigned BitWidth = getBitWidth(); |
1941 | APInt Zero = APInt::getZero(numBits: BitWidth); |
1942 | if (isFullSet()) |
1943 | return getNonEmpty(Lower: Zero, Upper: APInt(BitWidth, BitWidth + 1)); |
1944 | if (!isWrappedSet()) |
1945 | return getUnsignedPopCountRange(Lower, Upper); |
1946 | // The range is wrapped. We decompose it into two ranges, [0, Upper) and |
1947 | // [Lower, 0). |
1948 | // Handle [Lower, 0) == [Lower, Max] |
1949 | ConstantRange CR1 = ConstantRange(APInt(BitWidth, Lower.countl_one()), |
1950 | APInt(BitWidth, BitWidth + 1)); |
1951 | // Handle [0, Upper) |
1952 | ConstantRange CR2 = getUnsignedPopCountRange(Lower: Zero, Upper); |
1953 | return CR1.unionWith(CR: CR2); |
1954 | } |
1955 | |
1956 | ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow( |
1957 | const ConstantRange &Other) const { |
1958 | if (isEmptySet() || Other.isEmptySet()) |
1959 | return OverflowResult::MayOverflow; |
1960 | |
1961 | APInt Min = getUnsignedMin(), Max = getUnsignedMax(); |
1962 | APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); |
1963 | |
1964 | // a u+ b overflows high iff a u> ~b. |
1965 | if (Min.ugt(RHS: ~OtherMin)) |
1966 | return OverflowResult::AlwaysOverflowsHigh; |
1967 | if (Max.ugt(RHS: ~OtherMax)) |
1968 | return OverflowResult::MayOverflow; |
1969 | return OverflowResult::NeverOverflows; |
1970 | } |
1971 | |
1972 | ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow( |
1973 | const ConstantRange &Other) const { |
1974 | if (isEmptySet() || Other.isEmptySet()) |
1975 | return OverflowResult::MayOverflow; |
1976 | |
1977 | APInt Min = getSignedMin(), Max = getSignedMax(); |
1978 | APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax(); |
1979 | |
1980 | APInt SignedMin = APInt::getSignedMinValue(numBits: getBitWidth()); |
1981 | APInt SignedMax = APInt::getSignedMaxValue(numBits: getBitWidth()); |
1982 | |
1983 | // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b. |
1984 | // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b. |
1985 | if (Min.isNonNegative() && OtherMin.isNonNegative() && |
1986 | Min.sgt(RHS: SignedMax - OtherMin)) |
1987 | return OverflowResult::AlwaysOverflowsHigh; |
1988 | if (Max.isNegative() && OtherMax.isNegative() && |
1989 | Max.slt(RHS: SignedMin - OtherMax)) |
1990 | return OverflowResult::AlwaysOverflowsLow; |
1991 | |
1992 | if (Max.isNonNegative() && OtherMax.isNonNegative() && |
1993 | Max.sgt(RHS: SignedMax - OtherMax)) |
1994 | return OverflowResult::MayOverflow; |
1995 | if (Min.isNegative() && OtherMin.isNegative() && |
1996 | Min.slt(RHS: SignedMin - OtherMin)) |
1997 | return OverflowResult::MayOverflow; |
1998 | |
1999 | return OverflowResult::NeverOverflows; |
2000 | } |
2001 | |
2002 | ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow( |
2003 | const ConstantRange &Other) const { |
2004 | if (isEmptySet() || Other.isEmptySet()) |
2005 | return OverflowResult::MayOverflow; |
2006 | |
2007 | APInt Min = getUnsignedMin(), Max = getUnsignedMax(); |
2008 | APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); |
2009 | |
2010 | // a u- b overflows low iff a u< b. |
2011 | if (Max.ult(RHS: OtherMin)) |
2012 | return OverflowResult::AlwaysOverflowsLow; |
2013 | if (Min.ult(RHS: OtherMax)) |
2014 | return OverflowResult::MayOverflow; |
2015 | return OverflowResult::NeverOverflows; |
2016 | } |
2017 | |
2018 | ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow( |
2019 | const ConstantRange &Other) const { |
2020 | if (isEmptySet() || Other.isEmptySet()) |
2021 | return OverflowResult::MayOverflow; |
2022 | |
2023 | APInt Min = getSignedMin(), Max = getSignedMax(); |
2024 | APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax(); |
2025 | |
2026 | APInt SignedMin = APInt::getSignedMinValue(numBits: getBitWidth()); |
2027 | APInt SignedMax = APInt::getSignedMaxValue(numBits: getBitWidth()); |
2028 | |
2029 | // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b. |
2030 | // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b. |
2031 | if (Min.isNonNegative() && OtherMax.isNegative() && |
2032 | Min.sgt(RHS: SignedMax + OtherMax)) |
2033 | return OverflowResult::AlwaysOverflowsHigh; |
2034 | if (Max.isNegative() && OtherMin.isNonNegative() && |
2035 | Max.slt(RHS: SignedMin + OtherMin)) |
2036 | return OverflowResult::AlwaysOverflowsLow; |
2037 | |
2038 | if (Max.isNonNegative() && OtherMin.isNegative() && |
2039 | Max.sgt(RHS: SignedMax + OtherMin)) |
2040 | return OverflowResult::MayOverflow; |
2041 | if (Min.isNegative() && OtherMax.isNonNegative() && |
2042 | Min.slt(RHS: SignedMin + OtherMax)) |
2043 | return OverflowResult::MayOverflow; |
2044 | |
2045 | return OverflowResult::NeverOverflows; |
2046 | } |
2047 | |
2048 | ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow( |
2049 | const ConstantRange &Other) const { |
2050 | if (isEmptySet() || Other.isEmptySet()) |
2051 | return OverflowResult::MayOverflow; |
2052 | |
2053 | APInt Min = getUnsignedMin(), Max = getUnsignedMax(); |
2054 | APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); |
2055 | bool Overflow; |
2056 | |
2057 | (void) Min.umul_ov(RHS: OtherMin, Overflow); |
2058 | if (Overflow) |
2059 | return OverflowResult::AlwaysOverflowsHigh; |
2060 | |
2061 | (void) Max.umul_ov(RHS: OtherMax, Overflow); |
2062 | if (Overflow) |
2063 | return OverflowResult::MayOverflow; |
2064 | |
2065 | return OverflowResult::NeverOverflows; |
2066 | } |
2067 | |
2068 | void ConstantRange::print(raw_ostream &OS) const { |
2069 | if (isFullSet()) |
2070 | OS << "full-set" ; |
2071 | else if (isEmptySet()) |
2072 | OS << "empty-set" ; |
2073 | else |
2074 | OS << "[" << Lower << "," << Upper << ")" ; |
2075 | } |
2076 | |
2077 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
2078 | LLVM_DUMP_METHOD void ConstantRange::dump() const { |
2079 | print(dbgs()); |
2080 | } |
2081 | #endif |
2082 | |
2083 | ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) { |
2084 | const unsigned NumRanges = Ranges.getNumOperands() / 2; |
2085 | assert(NumRanges >= 1 && "Must have at least one range!" ); |
2086 | assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs" ); |
2087 | |
2088 | auto *FirstLow = mdconst::extract<ConstantInt>(MD: Ranges.getOperand(I: 0)); |
2089 | auto *FirstHigh = mdconst::extract<ConstantInt>(MD: Ranges.getOperand(I: 1)); |
2090 | |
2091 | ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); |
2092 | |
2093 | for (unsigned i = 1; i < NumRanges; ++i) { |
2094 | auto *Low = mdconst::extract<ConstantInt>(MD: Ranges.getOperand(I: 2 * i + 0)); |
2095 | auto *High = mdconst::extract<ConstantInt>(MD: Ranges.getOperand(I: 2 * i + 1)); |
2096 | |
2097 | // Note: unionWith will potentially create a range that contains values not |
2098 | // contained in any of the original N ranges. |
2099 | CR = CR.unionWith(CR: ConstantRange(Low->getValue(), High->getValue())); |
2100 | } |
2101 | |
2102 | return CR; |
2103 | } |
2104 | |