1//===- DebugInfoMetadata.cpp - Implement debug info metadata --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the debug info Metadata classes.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/IR/DebugInfoMetadata.h"
14#include "LLVMContextImpl.h"
15#include "MetadataImpl.h"
16#include "llvm/ADT/SmallPtrSet.h"
17#include "llvm/ADT/StringSwitch.h"
18#include "llvm/BinaryFormat/Dwarf.h"
19#include "llvm/IR/DebugProgramInstruction.h"
20#include "llvm/IR/Function.h"
21#include "llvm/IR/IntrinsicInst.h"
22#include "llvm/IR/Type.h"
23#include "llvm/IR/Value.h"
24
25#include <numeric>
26#include <optional>
27
28using namespace llvm;
29
30namespace llvm {
31// Use FS-AFDO discriminator.
32cl::opt<bool> EnableFSDiscriminator(
33 "enable-fs-discriminator", cl::Hidden,
34 cl::desc("Enable adding flow sensitive discriminators"));
35} // namespace llvm
36
37uint32_t DIType::getAlignInBits() const {
38 return (getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ? 0 : SubclassData32);
39}
40
41const DIExpression::FragmentInfo DebugVariable::DefaultFragment = {
42 std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::min()};
43
44DebugVariable::DebugVariable(const DbgVariableIntrinsic *DII)
45 : Variable(DII->getVariable()),
46 Fragment(DII->getExpression()->getFragmentInfo()),
47 InlinedAt(DII->getDebugLoc().getInlinedAt()) {}
48
49DebugVariable::DebugVariable(const DbgVariableRecord *DVR)
50 : Variable(DVR->getVariable()),
51 Fragment(DVR->getExpression()->getFragmentInfo()),
52 InlinedAt(DVR->getDebugLoc().getInlinedAt()) {}
53
54DebugVariableAggregate::DebugVariableAggregate(const DbgVariableIntrinsic *DVI)
55 : DebugVariable(DVI->getVariable(), std::nullopt,
56 DVI->getDebugLoc()->getInlinedAt()) {}
57
58DILocation::DILocation(LLVMContext &C, StorageType Storage, unsigned Line,
59 unsigned Column, ArrayRef<Metadata *> MDs,
60 bool ImplicitCode)
61 : MDNode(C, DILocationKind, Storage, MDs) {
62 assert((MDs.size() == 1 || MDs.size() == 2) &&
63 "Expected a scope and optional inlined-at");
64
65 // Set line and column.
66 assert(Column < (1u << 16) && "Expected 16-bit column");
67
68 SubclassData32 = Line;
69 SubclassData16 = Column;
70
71 setImplicitCode(ImplicitCode);
72}
73
74static void adjustColumn(unsigned &Column) {
75 // Set to unknown on overflow. We only have 16 bits to play with here.
76 if (Column >= (1u << 16))
77 Column = 0;
78}
79
80DILocation *DILocation::getImpl(LLVMContext &Context, unsigned Line,
81 unsigned Column, Metadata *Scope,
82 Metadata *InlinedAt, bool ImplicitCode,
83 StorageType Storage, bool ShouldCreate) {
84 // Fixup column.
85 adjustColumn(Column);
86
87 if (Storage == Uniqued) {
88 if (auto *N = getUniqued(Store&: Context.pImpl->DILocations,
89 Key: DILocationInfo::KeyTy(Line, Column, Scope,
90 InlinedAt, ImplicitCode)))
91 return N;
92 if (!ShouldCreate)
93 return nullptr;
94 } else {
95 assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
96 }
97
98 SmallVector<Metadata *, 2> Ops;
99 Ops.push_back(Elt: Scope);
100 if (InlinedAt)
101 Ops.push_back(Elt: InlinedAt);
102 return storeImpl(N: new (Ops.size(), Storage) DILocation(
103 Context, Storage, Line, Column, Ops, ImplicitCode),
104 Storage, Store&: Context.pImpl->DILocations);
105}
106
107DILocation *DILocation::getMergedLocations(ArrayRef<DILocation *> Locs) {
108 if (Locs.empty())
109 return nullptr;
110 if (Locs.size() == 1)
111 return Locs[0];
112 auto *Merged = Locs[0];
113 for (DILocation *L : llvm::drop_begin(RangeOrContainer&: Locs)) {
114 Merged = getMergedLocation(LocA: Merged, LocB: L);
115 if (Merged == nullptr)
116 break;
117 }
118 return Merged;
119}
120
121DILocation *DILocation::getMergedLocation(DILocation *LocA, DILocation *LocB) {
122 if (!LocA || !LocB)
123 return nullptr;
124
125 if (LocA == LocB)
126 return LocA;
127
128 LLVMContext &C = LocA->getContext();
129
130 using LocVec = SmallVector<const DILocation *>;
131 LocVec ALocs;
132 LocVec BLocs;
133 SmallDenseMap<std::pair<const DISubprogram *, const DILocation *>, unsigned,
134 4>
135 ALookup;
136
137 // Walk through LocA and its inlined-at locations, populate them in ALocs and
138 // save the index for the subprogram and inlined-at pair, which we use to find
139 // a matching starting location in LocB's chain.
140 for (auto [L, I] = std::make_pair(x&: LocA, y: 0U); L; L = L->getInlinedAt(), I++) {
141 ALocs.push_back(Elt: L);
142 auto Res = ALookup.try_emplace(
143 Key: {L->getScope()->getSubprogram(), L->getInlinedAt()}, Args&: I);
144 assert(Res.second && "Multiple <SP, InlinedAt> pairs in a location chain?");
145 (void)Res;
146 }
147
148 LocVec::reverse_iterator ARIt = ALocs.rend();
149 LocVec::reverse_iterator BRIt = BLocs.rend();
150
151 // Populate BLocs and look for a matching starting location, the first
152 // location with the same subprogram and inlined-at location as in LocA's
153 // chain. Since the two locations have the same inlined-at location we do
154 // not need to look at those parts of the chains.
155 for (auto [L, I] = std::make_pair(x&: LocB, y: 0U); L; L = L->getInlinedAt(), I++) {
156 BLocs.push_back(Elt: L);
157
158 if (ARIt != ALocs.rend())
159 // We have already found a matching starting location.
160 continue;
161
162 auto IT = ALookup.find(Val: {L->getScope()->getSubprogram(), L->getInlinedAt()});
163 if (IT == ALookup.end())
164 continue;
165
166 // The + 1 is to account for the &*rev_it = &(it - 1) relationship.
167 ARIt = LocVec::reverse_iterator(ALocs.begin() + IT->second + 1);
168 BRIt = LocVec::reverse_iterator(BLocs.begin() + I + 1);
169
170 // If we have found a matching starting location we do not need to add more
171 // locations to BLocs, since we will only look at location pairs preceding
172 // the matching starting location, and adding more elements to BLocs could
173 // invalidate the iterator that we initialized here.
174 break;
175 }
176
177 // Merge the two locations if possible, using the supplied
178 // inlined-at location for the created location.
179 auto MergeLocPair = [&C](const DILocation *L1, const DILocation *L2,
180 DILocation *InlinedAt) -> DILocation * {
181 if (L1 == L2)
182 return DILocation::get(Context&: C, Line: L1->getLine(), Column: L1->getColumn(), Scope: L1->getScope(),
183 InlinedAt);
184
185 // If the locations originate from different subprograms we can't produce
186 // a common location.
187 if (L1->getScope()->getSubprogram() != L2->getScope()->getSubprogram())
188 return nullptr;
189
190 // Return the nearest common scope inside a subprogram.
191 auto GetNearestCommonScope = [](DIScope *S1, DIScope *S2) -> DIScope * {
192 SmallPtrSet<DIScope *, 8> Scopes;
193 for (; S1; S1 = S1->getScope()) {
194 Scopes.insert(Ptr: S1);
195 if (isa<DISubprogram>(Val: S1))
196 break;
197 }
198
199 for (; S2; S2 = S2->getScope()) {
200 if (Scopes.count(Ptr: S2))
201 return S2;
202 if (isa<DISubprogram>(Val: S2))
203 break;
204 }
205
206 return nullptr;
207 };
208
209 auto Scope = GetNearestCommonScope(L1->getScope(), L2->getScope());
210 assert(Scope && "No common scope in the same subprogram?");
211
212 bool SameLine = L1->getLine() == L2->getLine();
213 bool SameCol = L1->getColumn() == L2->getColumn();
214 unsigned Line = SameLine ? L1->getLine() : 0;
215 unsigned Col = SameLine && SameCol ? L1->getColumn() : 0;
216
217 return DILocation::get(Context&: C, Line, Column: Col, Scope, InlinedAt);
218 };
219
220 DILocation *Result = ARIt != ALocs.rend() ? (*ARIt)->getInlinedAt() : nullptr;
221
222 // If we have found a common starting location, walk up the inlined-at chains
223 // and try to produce common locations.
224 for (; ARIt != ALocs.rend() && BRIt != BLocs.rend(); ++ARIt, ++BRIt) {
225 DILocation *Tmp = MergeLocPair(*ARIt, *BRIt, Result);
226
227 if (!Tmp)
228 // We have walked up to a point in the chains where the two locations
229 // are irreconsilable. At this point Result contains the nearest common
230 // location in the inlined-at chains of LocA and LocB, so we break here.
231 break;
232
233 Result = Tmp;
234 }
235
236 if (Result)
237 return Result;
238
239 // We ended up with LocA and LocB as irreconsilable locations. Produce a
240 // location at 0:0 with one of the locations' scope. The function has
241 // historically picked A's scope, and a nullptr inlined-at location, so that
242 // behavior is mimicked here but I am not sure if this is always the correct
243 // way to handle this.
244 return DILocation::get(Context&: C, Line: 0, Column: 0, Scope: LocA->getScope(), InlinedAt: nullptr);
245}
246
247std::optional<unsigned>
248DILocation::encodeDiscriminator(unsigned BD, unsigned DF, unsigned CI) {
249 std::array<unsigned, 3> Components = {BD, DF, CI};
250 uint64_t RemainingWork = 0U;
251 // We use RemainingWork to figure out if we have no remaining components to
252 // encode. For example: if BD != 0 but DF == 0 && CI == 0, we don't need to
253 // encode anything for the latter 2.
254 // Since any of the input components is at most 32 bits, their sum will be
255 // less than 34 bits, and thus RemainingWork won't overflow.
256 RemainingWork =
257 std::accumulate(first: Components.begin(), last: Components.end(), init: RemainingWork);
258
259 int I = 0;
260 unsigned Ret = 0;
261 unsigned NextBitInsertionIndex = 0;
262 while (RemainingWork > 0) {
263 unsigned C = Components[I++];
264 RemainingWork -= C;
265 unsigned EC = encodeComponent(C);
266 Ret |= (EC << NextBitInsertionIndex);
267 NextBitInsertionIndex += encodingBits(C);
268 }
269
270 // Encoding may be unsuccessful because of overflow. We determine success by
271 // checking equivalence of components before & after encoding. Alternatively,
272 // we could determine Success during encoding, but the current alternative is
273 // simpler.
274 unsigned TBD, TDF, TCI = 0;
275 decodeDiscriminator(D: Ret, BD&: TBD, DF&: TDF, CI&: TCI);
276 if (TBD == BD && TDF == DF && TCI == CI)
277 return Ret;
278 return std::nullopt;
279}
280
281void DILocation::decodeDiscriminator(unsigned D, unsigned &BD, unsigned &DF,
282 unsigned &CI) {
283 BD = getUnsignedFromPrefixEncoding(U: D);
284 DF = getUnsignedFromPrefixEncoding(U: getNextComponentInDiscriminator(D));
285 CI = getUnsignedFromPrefixEncoding(
286 U: getNextComponentInDiscriminator(D: getNextComponentInDiscriminator(D)));
287}
288dwarf::Tag DINode::getTag() const { return (dwarf::Tag)SubclassData16; }
289
290DINode::DIFlags DINode::getFlag(StringRef Flag) {
291 return StringSwitch<DIFlags>(Flag)
292#define HANDLE_DI_FLAG(ID, NAME) .Case("DIFlag" #NAME, Flag##NAME)
293#include "llvm/IR/DebugInfoFlags.def"
294 .Default(Value: DINode::FlagZero);
295}
296
297StringRef DINode::getFlagString(DIFlags Flag) {
298 switch (Flag) {
299#define HANDLE_DI_FLAG(ID, NAME) \
300 case Flag##NAME: \
301 return "DIFlag" #NAME;
302#include "llvm/IR/DebugInfoFlags.def"
303 }
304 return "";
305}
306
307DINode::DIFlags DINode::splitFlags(DIFlags Flags,
308 SmallVectorImpl<DIFlags> &SplitFlags) {
309 // Flags that are packed together need to be specially handled, so
310 // that, for example, we emit "DIFlagPublic" and not
311 // "DIFlagPrivate | DIFlagProtected".
312 if (DIFlags A = Flags & FlagAccessibility) {
313 if (A == FlagPrivate)
314 SplitFlags.push_back(Elt: FlagPrivate);
315 else if (A == FlagProtected)
316 SplitFlags.push_back(Elt: FlagProtected);
317 else
318 SplitFlags.push_back(Elt: FlagPublic);
319 Flags &= ~A;
320 }
321 if (DIFlags R = Flags & FlagPtrToMemberRep) {
322 if (R == FlagSingleInheritance)
323 SplitFlags.push_back(Elt: FlagSingleInheritance);
324 else if (R == FlagMultipleInheritance)
325 SplitFlags.push_back(Elt: FlagMultipleInheritance);
326 else
327 SplitFlags.push_back(Elt: FlagVirtualInheritance);
328 Flags &= ~R;
329 }
330 if ((Flags & FlagIndirectVirtualBase) == FlagIndirectVirtualBase) {
331 Flags &= ~FlagIndirectVirtualBase;
332 SplitFlags.push_back(Elt: FlagIndirectVirtualBase);
333 }
334
335#define HANDLE_DI_FLAG(ID, NAME) \
336 if (DIFlags Bit = Flags & Flag##NAME) { \
337 SplitFlags.push_back(Bit); \
338 Flags &= ~Bit; \
339 }
340#include "llvm/IR/DebugInfoFlags.def"
341 return Flags;
342}
343
344DIScope *DIScope::getScope() const {
345 if (auto *T = dyn_cast<DIType>(Val: this))
346 return T->getScope();
347
348 if (auto *SP = dyn_cast<DISubprogram>(Val: this))
349 return SP->getScope();
350
351 if (auto *LB = dyn_cast<DILexicalBlockBase>(Val: this))
352 return LB->getScope();
353
354 if (auto *NS = dyn_cast<DINamespace>(Val: this))
355 return NS->getScope();
356
357 if (auto *CB = dyn_cast<DICommonBlock>(Val: this))
358 return CB->getScope();
359
360 if (auto *M = dyn_cast<DIModule>(Val: this))
361 return M->getScope();
362
363 assert((isa<DIFile>(this) || isa<DICompileUnit>(this)) &&
364 "Unhandled type of scope.");
365 return nullptr;
366}
367
368StringRef DIScope::getName() const {
369 if (auto *T = dyn_cast<DIType>(Val: this))
370 return T->getName();
371 if (auto *SP = dyn_cast<DISubprogram>(Val: this))
372 return SP->getName();
373 if (auto *NS = dyn_cast<DINamespace>(Val: this))
374 return NS->getName();
375 if (auto *CB = dyn_cast<DICommonBlock>(Val: this))
376 return CB->getName();
377 if (auto *M = dyn_cast<DIModule>(Val: this))
378 return M->getName();
379 assert((isa<DILexicalBlockBase>(this) || isa<DIFile>(this) ||
380 isa<DICompileUnit>(this)) &&
381 "Unhandled type of scope.");
382 return "";
383}
384
385#ifndef NDEBUG
386static bool isCanonical(const MDString *S) {
387 return !S || !S->getString().empty();
388}
389#endif
390
391dwarf::Tag GenericDINode::getTag() const { return (dwarf::Tag)SubclassData16; }
392GenericDINode *GenericDINode::getImpl(LLVMContext &Context, unsigned Tag,
393 MDString *Header,
394 ArrayRef<Metadata *> DwarfOps,
395 StorageType Storage, bool ShouldCreate) {
396 unsigned Hash = 0;
397 if (Storage == Uniqued) {
398 GenericDINodeInfo::KeyTy Key(Tag, Header, DwarfOps);
399 if (auto *N = getUniqued(Store&: Context.pImpl->GenericDINodes, Key))
400 return N;
401 if (!ShouldCreate)
402 return nullptr;
403 Hash = Key.getHash();
404 } else {
405 assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
406 }
407
408 // Use a nullptr for empty headers.
409 assert(isCanonical(Header) && "Expected canonical MDString");
410 Metadata *PreOps[] = {Header};
411 return storeImpl(N: new (DwarfOps.size() + 1, Storage) GenericDINode(
412 Context, Storage, Hash, Tag, PreOps, DwarfOps),
413 Storage, Store&: Context.pImpl->GenericDINodes);
414}
415
416void GenericDINode::recalculateHash() {
417 setHash(GenericDINodeInfo::KeyTy::calculateHash(N: this));
418}
419
420#define UNWRAP_ARGS_IMPL(...) __VA_ARGS__
421#define UNWRAP_ARGS(ARGS) UNWRAP_ARGS_IMPL ARGS
422#define DEFINE_GETIMPL_LOOKUP(CLASS, ARGS) \
423 do { \
424 if (Storage == Uniqued) { \
425 if (auto *N = getUniqued(Context.pImpl->CLASS##s, \
426 CLASS##Info::KeyTy(UNWRAP_ARGS(ARGS)))) \
427 return N; \
428 if (!ShouldCreate) \
429 return nullptr; \
430 } else { \
431 assert(ShouldCreate && \
432 "Expected non-uniqued nodes to always be created"); \
433 } \
434 } while (false)
435#define DEFINE_GETIMPL_STORE(CLASS, ARGS, OPS) \
436 return storeImpl(new (std::size(OPS), Storage) \
437 CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \
438 Storage, Context.pImpl->CLASS##s)
439#define DEFINE_GETIMPL_STORE_NO_OPS(CLASS, ARGS) \
440 return storeImpl(new (0u, Storage) \
441 CLASS(Context, Storage, UNWRAP_ARGS(ARGS)), \
442 Storage, Context.pImpl->CLASS##s)
443#define DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(CLASS, OPS) \
444 return storeImpl(new (std::size(OPS), Storage) CLASS(Context, Storage, OPS), \
445 Storage, Context.pImpl->CLASS##s)
446#define DEFINE_GETIMPL_STORE_N(CLASS, ARGS, OPS, NUM_OPS) \
447 return storeImpl(new (NUM_OPS, Storage) \
448 CLASS(Context, Storage, UNWRAP_ARGS(ARGS), OPS), \
449 Storage, Context.pImpl->CLASS##s)
450
451DISubrange::DISubrange(LLVMContext &C, StorageType Storage,
452 ArrayRef<Metadata *> Ops)
453 : DINode(C, DISubrangeKind, Storage, dwarf::DW_TAG_subrange_type, Ops) {}
454DISubrange *DISubrange::getImpl(LLVMContext &Context, int64_t Count, int64_t Lo,
455 StorageType Storage, bool ShouldCreate) {
456 auto *CountNode = ConstantAsMetadata::get(
457 C: ConstantInt::getSigned(Ty: Type::getInt64Ty(C&: Context), V: Count));
458 auto *LB = ConstantAsMetadata::get(
459 C: ConstantInt::getSigned(Ty: Type::getInt64Ty(C&: Context), V: Lo));
460 return getImpl(Context, CountNode, LowerBound: LB, UpperBound: nullptr, Stride: nullptr, Storage,
461 ShouldCreate);
462}
463
464DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
465 int64_t Lo, StorageType Storage,
466 bool ShouldCreate) {
467 auto *LB = ConstantAsMetadata::get(
468 C: ConstantInt::getSigned(Ty: Type::getInt64Ty(C&: Context), V: Lo));
469 return getImpl(Context, CountNode, LowerBound: LB, UpperBound: nullptr, Stride: nullptr, Storage,
470 ShouldCreate);
471}
472
473DISubrange *DISubrange::getImpl(LLVMContext &Context, Metadata *CountNode,
474 Metadata *LB, Metadata *UB, Metadata *Stride,
475 StorageType Storage, bool ShouldCreate) {
476 DEFINE_GETIMPL_LOOKUP(DISubrange, (CountNode, LB, UB, Stride));
477 Metadata *Ops[] = {CountNode, LB, UB, Stride};
478 DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DISubrange, Ops);
479}
480
481DISubrange::BoundType DISubrange::getCount() const {
482 Metadata *CB = getRawCountNode();
483 if (!CB)
484 return BoundType();
485
486 assert((isa<ConstantAsMetadata>(CB) || isa<DIVariable>(CB) ||
487 isa<DIExpression>(CB)) &&
488 "Count must be signed constant or DIVariable or DIExpression");
489
490 if (auto *MD = dyn_cast<ConstantAsMetadata>(Val: CB))
491 return BoundType(cast<ConstantInt>(Val: MD->getValue()));
492
493 if (auto *MD = dyn_cast<DIVariable>(Val: CB))
494 return BoundType(MD);
495
496 if (auto *MD = dyn_cast<DIExpression>(Val: CB))
497 return BoundType(MD);
498
499 return BoundType();
500}
501
502DISubrange::BoundType DISubrange::getLowerBound() const {
503 Metadata *LB = getRawLowerBound();
504 if (!LB)
505 return BoundType();
506
507 assert((isa<ConstantAsMetadata>(LB) || isa<DIVariable>(LB) ||
508 isa<DIExpression>(LB)) &&
509 "LowerBound must be signed constant or DIVariable or DIExpression");
510
511 if (auto *MD = dyn_cast<ConstantAsMetadata>(Val: LB))
512 return BoundType(cast<ConstantInt>(Val: MD->getValue()));
513
514 if (auto *MD = dyn_cast<DIVariable>(Val: LB))
515 return BoundType(MD);
516
517 if (auto *MD = dyn_cast<DIExpression>(Val: LB))
518 return BoundType(MD);
519
520 return BoundType();
521}
522
523DISubrange::BoundType DISubrange::getUpperBound() const {
524 Metadata *UB = getRawUpperBound();
525 if (!UB)
526 return BoundType();
527
528 assert((isa<ConstantAsMetadata>(UB) || isa<DIVariable>(UB) ||
529 isa<DIExpression>(UB)) &&
530 "UpperBound must be signed constant or DIVariable or DIExpression");
531
532 if (auto *MD = dyn_cast<ConstantAsMetadata>(Val: UB))
533 return BoundType(cast<ConstantInt>(Val: MD->getValue()));
534
535 if (auto *MD = dyn_cast<DIVariable>(Val: UB))
536 return BoundType(MD);
537
538 if (auto *MD = dyn_cast<DIExpression>(Val: UB))
539 return BoundType(MD);
540
541 return BoundType();
542}
543
544DISubrange::BoundType DISubrange::getStride() const {
545 Metadata *ST = getRawStride();
546 if (!ST)
547 return BoundType();
548
549 assert((isa<ConstantAsMetadata>(ST) || isa<DIVariable>(ST) ||
550 isa<DIExpression>(ST)) &&
551 "Stride must be signed constant or DIVariable or DIExpression");
552
553 if (auto *MD = dyn_cast<ConstantAsMetadata>(Val: ST))
554 return BoundType(cast<ConstantInt>(Val: MD->getValue()));
555
556 if (auto *MD = dyn_cast<DIVariable>(Val: ST))
557 return BoundType(MD);
558
559 if (auto *MD = dyn_cast<DIExpression>(Val: ST))
560 return BoundType(MD);
561
562 return BoundType();
563}
564DIGenericSubrange::DIGenericSubrange(LLVMContext &C, StorageType Storage,
565 ArrayRef<Metadata *> Ops)
566 : DINode(C, DIGenericSubrangeKind, Storage, dwarf::DW_TAG_generic_subrange,
567 Ops) {}
568
569DIGenericSubrange *DIGenericSubrange::getImpl(LLVMContext &Context,
570 Metadata *CountNode, Metadata *LB,
571 Metadata *UB, Metadata *Stride,
572 StorageType Storage,
573 bool ShouldCreate) {
574 DEFINE_GETIMPL_LOOKUP(DIGenericSubrange, (CountNode, LB, UB, Stride));
575 Metadata *Ops[] = {CountNode, LB, UB, Stride};
576 DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGenericSubrange, Ops);
577}
578
579DIGenericSubrange::BoundType DIGenericSubrange::getCount() const {
580 Metadata *CB = getRawCountNode();
581 if (!CB)
582 return BoundType();
583
584 assert((isa<DIVariable>(CB) || isa<DIExpression>(CB)) &&
585 "Count must be signed constant or DIVariable or DIExpression");
586
587 if (auto *MD = dyn_cast<DIVariable>(Val: CB))
588 return BoundType(MD);
589
590 if (auto *MD = dyn_cast<DIExpression>(Val: CB))
591 return BoundType(MD);
592
593 return BoundType();
594}
595
596DIGenericSubrange::BoundType DIGenericSubrange::getLowerBound() const {
597 Metadata *LB = getRawLowerBound();
598 if (!LB)
599 return BoundType();
600
601 assert((isa<DIVariable>(LB) || isa<DIExpression>(LB)) &&
602 "LowerBound must be signed constant or DIVariable or DIExpression");
603
604 if (auto *MD = dyn_cast<DIVariable>(Val: LB))
605 return BoundType(MD);
606
607 if (auto *MD = dyn_cast<DIExpression>(Val: LB))
608 return BoundType(MD);
609
610 return BoundType();
611}
612
613DIGenericSubrange::BoundType DIGenericSubrange::getUpperBound() const {
614 Metadata *UB = getRawUpperBound();
615 if (!UB)
616 return BoundType();
617
618 assert((isa<DIVariable>(UB) || isa<DIExpression>(UB)) &&
619 "UpperBound must be signed constant or DIVariable or DIExpression");
620
621 if (auto *MD = dyn_cast<DIVariable>(Val: UB))
622 return BoundType(MD);
623
624 if (auto *MD = dyn_cast<DIExpression>(Val: UB))
625 return BoundType(MD);
626
627 return BoundType();
628}
629
630DIGenericSubrange::BoundType DIGenericSubrange::getStride() const {
631 Metadata *ST = getRawStride();
632 if (!ST)
633 return BoundType();
634
635 assert((isa<DIVariable>(ST) || isa<DIExpression>(ST)) &&
636 "Stride must be signed constant or DIVariable or DIExpression");
637
638 if (auto *MD = dyn_cast<DIVariable>(Val: ST))
639 return BoundType(MD);
640
641 if (auto *MD = dyn_cast<DIExpression>(Val: ST))
642 return BoundType(MD);
643
644 return BoundType();
645}
646
647DIEnumerator::DIEnumerator(LLVMContext &C, StorageType Storage,
648 const APInt &Value, bool IsUnsigned,
649 ArrayRef<Metadata *> Ops)
650 : DINode(C, DIEnumeratorKind, Storage, dwarf::DW_TAG_enumerator, Ops),
651 Value(Value) {
652 SubclassData32 = IsUnsigned;
653}
654DIEnumerator *DIEnumerator::getImpl(LLVMContext &Context, const APInt &Value,
655 bool IsUnsigned, MDString *Name,
656 StorageType Storage, bool ShouldCreate) {
657 assert(isCanonical(Name) && "Expected canonical MDString");
658 DEFINE_GETIMPL_LOOKUP(DIEnumerator, (Value, IsUnsigned, Name));
659 Metadata *Ops[] = {Name};
660 DEFINE_GETIMPL_STORE(DIEnumerator, (Value, IsUnsigned), Ops);
661}
662
663DIBasicType *DIBasicType::getImpl(LLVMContext &Context, unsigned Tag,
664 MDString *Name, uint64_t SizeInBits,
665 uint32_t AlignInBits, unsigned Encoding,
666 DIFlags Flags, StorageType Storage,
667 bool ShouldCreate) {
668 assert(isCanonical(Name) && "Expected canonical MDString");
669 DEFINE_GETIMPL_LOOKUP(DIBasicType,
670 (Tag, Name, SizeInBits, AlignInBits, Encoding, Flags));
671 Metadata *Ops[] = {nullptr, nullptr, Name};
672 DEFINE_GETIMPL_STORE(DIBasicType,
673 (Tag, SizeInBits, AlignInBits, Encoding, Flags), Ops);
674}
675
676std::optional<DIBasicType::Signedness> DIBasicType::getSignedness() const {
677 switch (getEncoding()) {
678 case dwarf::DW_ATE_signed:
679 case dwarf::DW_ATE_signed_char:
680 return Signedness::Signed;
681 case dwarf::DW_ATE_unsigned:
682 case dwarf::DW_ATE_unsigned_char:
683 return Signedness::Unsigned;
684 default:
685 return std::nullopt;
686 }
687}
688
689DIStringType *DIStringType::getImpl(LLVMContext &Context, unsigned Tag,
690 MDString *Name, Metadata *StringLength,
691 Metadata *StringLengthExp,
692 Metadata *StringLocationExp,
693 uint64_t SizeInBits, uint32_t AlignInBits,
694 unsigned Encoding, StorageType Storage,
695 bool ShouldCreate) {
696 assert(isCanonical(Name) && "Expected canonical MDString");
697 DEFINE_GETIMPL_LOOKUP(DIStringType,
698 (Tag, Name, StringLength, StringLengthExp,
699 StringLocationExp, SizeInBits, AlignInBits, Encoding));
700 Metadata *Ops[] = {nullptr, nullptr, Name,
701 StringLength, StringLengthExp, StringLocationExp};
702 DEFINE_GETIMPL_STORE(DIStringType, (Tag, SizeInBits, AlignInBits, Encoding),
703 Ops);
704}
705DIType *DIDerivedType::getClassType() const {
706 assert(getTag() == dwarf::DW_TAG_ptr_to_member_type);
707 return cast_or_null<DIType>(Val: getExtraData());
708}
709uint32_t DIDerivedType::getVBPtrOffset() const {
710 assert(getTag() == dwarf::DW_TAG_inheritance);
711 if (auto *CM = cast_or_null<ConstantAsMetadata>(Val: getExtraData()))
712 if (auto *CI = dyn_cast_or_null<ConstantInt>(Val: CM->getValue()))
713 return static_cast<uint32_t>(CI->getZExtValue());
714 return 0;
715}
716Constant *DIDerivedType::getStorageOffsetInBits() const {
717 assert(getTag() == dwarf::DW_TAG_member && isBitField());
718 if (auto *C = cast_or_null<ConstantAsMetadata>(Val: getExtraData()))
719 return C->getValue();
720 return nullptr;
721}
722
723Constant *DIDerivedType::getConstant() const {
724 assert((getTag() == dwarf::DW_TAG_member ||
725 getTag() == dwarf::DW_TAG_variable) &&
726 isStaticMember());
727 if (auto *C = cast_or_null<ConstantAsMetadata>(Val: getExtraData()))
728 return C->getValue();
729 return nullptr;
730}
731Constant *DIDerivedType::getDiscriminantValue() const {
732 assert(getTag() == dwarf::DW_TAG_member && !isStaticMember());
733 if (auto *C = cast_or_null<ConstantAsMetadata>(Val: getExtraData()))
734 return C->getValue();
735 return nullptr;
736}
737
738DIDerivedType *DIDerivedType::getImpl(
739 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
740 unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
741 uint32_t AlignInBits, uint64_t OffsetInBits,
742 std::optional<unsigned> DWARFAddressSpace,
743 std::optional<PtrAuthData> PtrAuthData, DIFlags Flags, Metadata *ExtraData,
744 Metadata *Annotations, StorageType Storage, bool ShouldCreate) {
745 assert(isCanonical(Name) && "Expected canonical MDString");
746 DEFINE_GETIMPL_LOOKUP(DIDerivedType,
747 (Tag, Name, File, Line, Scope, BaseType, SizeInBits,
748 AlignInBits, OffsetInBits, DWARFAddressSpace,
749 PtrAuthData, Flags, ExtraData, Annotations));
750 Metadata *Ops[] = {File, Scope, Name, BaseType, ExtraData, Annotations};
751 DEFINE_GETIMPL_STORE(DIDerivedType,
752 (Tag, Line, SizeInBits, AlignInBits, OffsetInBits,
753 DWARFAddressSpace, PtrAuthData, Flags),
754 Ops);
755}
756
757std::optional<DIDerivedType::PtrAuthData>
758DIDerivedType::getPtrAuthData() const {
759 return getTag() == dwarf::DW_TAG_LLVM_ptrauth_type
760 ? std::optional<PtrAuthData>(PtrAuthData(SubclassData32))
761 : std::nullopt;
762}
763
764DICompositeType *DICompositeType::getImpl(
765 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *File,
766 unsigned Line, Metadata *Scope, Metadata *BaseType, uint64_t SizeInBits,
767 uint32_t AlignInBits, uint64_t OffsetInBits, DIFlags Flags,
768 Metadata *Elements, unsigned RuntimeLang, Metadata *VTableHolder,
769 Metadata *TemplateParams, MDString *Identifier, Metadata *Discriminator,
770 Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
771 Metadata *Rank, Metadata *Annotations, StorageType Storage,
772 bool ShouldCreate) {
773 assert(isCanonical(Name) && "Expected canonical MDString");
774
775 // Keep this in sync with buildODRType.
776 DEFINE_GETIMPL_LOOKUP(DICompositeType,
777 (Tag, Name, File, Line, Scope, BaseType, SizeInBits,
778 AlignInBits, OffsetInBits, Flags, Elements,
779 RuntimeLang, VTableHolder, TemplateParams, Identifier,
780 Discriminator, DataLocation, Associated, Allocated,
781 Rank, Annotations));
782 Metadata *Ops[] = {File, Scope, Name, BaseType,
783 Elements, VTableHolder, TemplateParams, Identifier,
784 Discriminator, DataLocation, Associated, Allocated,
785 Rank, Annotations};
786 DEFINE_GETIMPL_STORE(
787 DICompositeType,
788 (Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits, Flags),
789 Ops);
790}
791
792DICompositeType *DICompositeType::buildODRType(
793 LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
794 Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
795 uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits,
796 DIFlags Flags, Metadata *Elements, unsigned RuntimeLang,
797 Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator,
798 Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
799 Metadata *Rank, Metadata *Annotations) {
800 assert(!Identifier.getString().empty() && "Expected valid identifier");
801 if (!Context.isODRUniquingDebugTypes())
802 return nullptr;
803 auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
804 if (!CT)
805 return CT = DICompositeType::getDistinct(
806 Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
807 AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
808 VTableHolder, TemplateParams, Identifier: &Identifier, Discriminator,
809 DataLocation, Associated, Allocated, Rank, Annotations);
810
811 if (CT->getTag() != Tag)
812 return nullptr;
813
814 // Only mutate CT if it's a forward declaration and the new operands aren't.
815 assert(CT->getRawIdentifier() == &Identifier && "Wrong ODR identifier?");
816 if (!CT->isForwardDecl() || (Flags & DINode::FlagFwdDecl))
817 return CT;
818
819 // Mutate CT in place. Keep this in sync with getImpl.
820 CT->mutate(Tag, Line, RuntimeLang, SizeInBits, AlignInBits, OffsetInBits,
821 Flags);
822 Metadata *Ops[] = {File, Scope, Name, BaseType,
823 Elements, VTableHolder, TemplateParams, &Identifier,
824 Discriminator, DataLocation, Associated, Allocated,
825 Rank, Annotations};
826 assert((std::end(Ops) - std::begin(Ops)) == (int)CT->getNumOperands() &&
827 "Mismatched number of operands");
828 for (unsigned I = 0, E = CT->getNumOperands(); I != E; ++I)
829 if (Ops[I] != CT->getOperand(I))
830 CT->setOperand(I, New: Ops[I]);
831 return CT;
832}
833
834DICompositeType *DICompositeType::getODRType(
835 LLVMContext &Context, MDString &Identifier, unsigned Tag, MDString *Name,
836 Metadata *File, unsigned Line, Metadata *Scope, Metadata *BaseType,
837 uint64_t SizeInBits, uint32_t AlignInBits, uint64_t OffsetInBits,
838 DIFlags Flags, Metadata *Elements, unsigned RuntimeLang,
839 Metadata *VTableHolder, Metadata *TemplateParams, Metadata *Discriminator,
840 Metadata *DataLocation, Metadata *Associated, Metadata *Allocated,
841 Metadata *Rank, Metadata *Annotations) {
842 assert(!Identifier.getString().empty() && "Expected valid identifier");
843 if (!Context.isODRUniquingDebugTypes())
844 return nullptr;
845 auto *&CT = (*Context.pImpl->DITypeMap)[&Identifier];
846 if (!CT) {
847 CT = DICompositeType::getDistinct(
848 Context, Tag, Name, File, Line, Scope, BaseType, SizeInBits,
849 AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, VTableHolder,
850 TemplateParams, Identifier: &Identifier, Discriminator, DataLocation, Associated,
851 Allocated, Rank, Annotations);
852 } else {
853 if (CT->getTag() != Tag)
854 return nullptr;
855 }
856 return CT;
857}
858
859DICompositeType *DICompositeType::getODRTypeIfExists(LLVMContext &Context,
860 MDString &Identifier) {
861 assert(!Identifier.getString().empty() && "Expected valid identifier");
862 if (!Context.isODRUniquingDebugTypes())
863 return nullptr;
864 return Context.pImpl->DITypeMap->lookup(Val: &Identifier);
865}
866DISubroutineType::DISubroutineType(LLVMContext &C, StorageType Storage,
867 DIFlags Flags, uint8_t CC,
868 ArrayRef<Metadata *> Ops)
869 : DIType(C, DISubroutineTypeKind, Storage, dwarf::DW_TAG_subroutine_type, 0,
870 0, 0, 0, Flags, Ops),
871 CC(CC) {}
872
873DISubroutineType *DISubroutineType::getImpl(LLVMContext &Context, DIFlags Flags,
874 uint8_t CC, Metadata *TypeArray,
875 StorageType Storage,
876 bool ShouldCreate) {
877 DEFINE_GETIMPL_LOOKUP(DISubroutineType, (Flags, CC, TypeArray));
878 Metadata *Ops[] = {nullptr, nullptr, nullptr, TypeArray};
879 DEFINE_GETIMPL_STORE(DISubroutineType, (Flags, CC), Ops);
880}
881
882DIFile::DIFile(LLVMContext &C, StorageType Storage,
883 std::optional<ChecksumInfo<MDString *>> CS, MDString *Src,
884 ArrayRef<Metadata *> Ops)
885 : DIScope(C, DIFileKind, Storage, dwarf::DW_TAG_file_type, Ops),
886 Checksum(CS), Source(Src) {}
887
888// FIXME: Implement this string-enum correspondence with a .def file and macros,
889// so that the association is explicit rather than implied.
890static const char *ChecksumKindName[DIFile::CSK_Last] = {
891 "CSK_MD5",
892 "CSK_SHA1",
893 "CSK_SHA256",
894};
895
896StringRef DIFile::getChecksumKindAsString(ChecksumKind CSKind) {
897 assert(CSKind <= DIFile::CSK_Last && "Invalid checksum kind");
898 // The first space was originally the CSK_None variant, which is now
899 // obsolete, but the space is still reserved in ChecksumKind, so we account
900 // for it here.
901 return ChecksumKindName[CSKind - 1];
902}
903
904std::optional<DIFile::ChecksumKind>
905DIFile::getChecksumKind(StringRef CSKindStr) {
906 return StringSwitch<std::optional<DIFile::ChecksumKind>>(CSKindStr)
907 .Case(S: "CSK_MD5", Value: DIFile::CSK_MD5)
908 .Case(S: "CSK_SHA1", Value: DIFile::CSK_SHA1)
909 .Case(S: "CSK_SHA256", Value: DIFile::CSK_SHA256)
910 .Default(Value: std::nullopt);
911}
912
913DIFile *DIFile::getImpl(LLVMContext &Context, MDString *Filename,
914 MDString *Directory,
915 std::optional<DIFile::ChecksumInfo<MDString *>> CS,
916 MDString *Source, StorageType Storage,
917 bool ShouldCreate) {
918 assert(isCanonical(Filename) && "Expected canonical MDString");
919 assert(isCanonical(Directory) && "Expected canonical MDString");
920 assert((!CS || isCanonical(CS->Value)) && "Expected canonical MDString");
921 // We do *NOT* expect Source to be a canonical MDString because nullptr
922 // means none, so we need something to represent the empty file.
923 DEFINE_GETIMPL_LOOKUP(DIFile, (Filename, Directory, CS, Source));
924 Metadata *Ops[] = {Filename, Directory, CS ? CS->Value : nullptr, Source};
925 DEFINE_GETIMPL_STORE(DIFile, (CS, Source), Ops);
926}
927DICompileUnit::DICompileUnit(LLVMContext &C, StorageType Storage,
928 unsigned SourceLanguage, bool IsOptimized,
929 unsigned RuntimeVersion, unsigned EmissionKind,
930 uint64_t DWOId, bool SplitDebugInlining,
931 bool DebugInfoForProfiling, unsigned NameTableKind,
932 bool RangesBaseAddress, ArrayRef<Metadata *> Ops)
933 : DIScope(C, DICompileUnitKind, Storage, dwarf::DW_TAG_compile_unit, Ops),
934 SourceLanguage(SourceLanguage), RuntimeVersion(RuntimeVersion),
935 DWOId(DWOId), EmissionKind(EmissionKind), NameTableKind(NameTableKind),
936 IsOptimized(IsOptimized), SplitDebugInlining(SplitDebugInlining),
937 DebugInfoForProfiling(DebugInfoForProfiling),
938 RangesBaseAddress(RangesBaseAddress) {
939 assert(Storage != Uniqued);
940}
941
942DICompileUnit *DICompileUnit::getImpl(
943 LLVMContext &Context, unsigned SourceLanguage, Metadata *File,
944 MDString *Producer, bool IsOptimized, MDString *Flags,
945 unsigned RuntimeVersion, MDString *SplitDebugFilename,
946 unsigned EmissionKind, Metadata *EnumTypes, Metadata *RetainedTypes,
947 Metadata *GlobalVariables, Metadata *ImportedEntities, Metadata *Macros,
948 uint64_t DWOId, bool SplitDebugInlining, bool DebugInfoForProfiling,
949 unsigned NameTableKind, bool RangesBaseAddress, MDString *SysRoot,
950 MDString *SDK, StorageType Storage, bool ShouldCreate) {
951 assert(Storage != Uniqued && "Cannot unique DICompileUnit");
952 assert(isCanonical(Producer) && "Expected canonical MDString");
953 assert(isCanonical(Flags) && "Expected canonical MDString");
954 assert(isCanonical(SplitDebugFilename) && "Expected canonical MDString");
955
956 Metadata *Ops[] = {File,
957 Producer,
958 Flags,
959 SplitDebugFilename,
960 EnumTypes,
961 RetainedTypes,
962 GlobalVariables,
963 ImportedEntities,
964 Macros,
965 SysRoot,
966 SDK};
967 return storeImpl(N: new (std::size(Ops), Storage) DICompileUnit(
968 Context, Storage, SourceLanguage, IsOptimized,
969 RuntimeVersion, EmissionKind, DWOId, SplitDebugInlining,
970 DebugInfoForProfiling, NameTableKind, RangesBaseAddress,
971 Ops),
972 Storage);
973}
974
975std::optional<DICompileUnit::DebugEmissionKind>
976DICompileUnit::getEmissionKind(StringRef Str) {
977 return StringSwitch<std::optional<DebugEmissionKind>>(Str)
978 .Case(S: "NoDebug", Value: NoDebug)
979 .Case(S: "FullDebug", Value: FullDebug)
980 .Case(S: "LineTablesOnly", Value: LineTablesOnly)
981 .Case(S: "DebugDirectivesOnly", Value: DebugDirectivesOnly)
982 .Default(Value: std::nullopt);
983}
984
985std::optional<DICompileUnit::DebugNameTableKind>
986DICompileUnit::getNameTableKind(StringRef Str) {
987 return StringSwitch<std::optional<DebugNameTableKind>>(Str)
988 .Case(S: "Default", Value: DebugNameTableKind::Default)
989 .Case(S: "GNU", Value: DebugNameTableKind::GNU)
990 .Case(S: "Apple", Value: DebugNameTableKind::Apple)
991 .Case(S: "None", Value: DebugNameTableKind::None)
992 .Default(Value: std::nullopt);
993}
994
995const char *DICompileUnit::emissionKindString(DebugEmissionKind EK) {
996 switch (EK) {
997 case NoDebug:
998 return "NoDebug";
999 case FullDebug:
1000 return "FullDebug";
1001 case LineTablesOnly:
1002 return "LineTablesOnly";
1003 case DebugDirectivesOnly:
1004 return "DebugDirectivesOnly";
1005 }
1006 return nullptr;
1007}
1008
1009const char *DICompileUnit::nameTableKindString(DebugNameTableKind NTK) {
1010 switch (NTK) {
1011 case DebugNameTableKind::Default:
1012 return nullptr;
1013 case DebugNameTableKind::GNU:
1014 return "GNU";
1015 case DebugNameTableKind::Apple:
1016 return "Apple";
1017 case DebugNameTableKind::None:
1018 return "None";
1019 }
1020 return nullptr;
1021}
1022DISubprogram::DISubprogram(LLVMContext &C, StorageType Storage, unsigned Line,
1023 unsigned ScopeLine, unsigned VirtualIndex,
1024 int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags,
1025 ArrayRef<Metadata *> Ops)
1026 : DILocalScope(C, DISubprogramKind, Storage, dwarf::DW_TAG_subprogram, Ops),
1027 Line(Line), ScopeLine(ScopeLine), VirtualIndex(VirtualIndex),
1028 ThisAdjustment(ThisAdjustment), Flags(Flags), SPFlags(SPFlags) {
1029 static_assert(dwarf::DW_VIRTUALITY_max < 4, "Virtuality out of range");
1030}
1031DISubprogram::DISPFlags
1032DISubprogram::toSPFlags(bool IsLocalToUnit, bool IsDefinition, bool IsOptimized,
1033 unsigned Virtuality, bool IsMainSubprogram) {
1034 // We're assuming virtuality is the low-order field.
1035 static_assert(int(SPFlagVirtual) == int(dwarf::DW_VIRTUALITY_virtual) &&
1036 int(SPFlagPureVirtual) ==
1037 int(dwarf::DW_VIRTUALITY_pure_virtual),
1038 "Virtuality constant mismatch");
1039 return static_cast<DISPFlags>(
1040 (Virtuality & SPFlagVirtuality) |
1041 (IsLocalToUnit ? SPFlagLocalToUnit : SPFlagZero) |
1042 (IsDefinition ? SPFlagDefinition : SPFlagZero) |
1043 (IsOptimized ? SPFlagOptimized : SPFlagZero) |
1044 (IsMainSubprogram ? SPFlagMainSubprogram : SPFlagZero));
1045}
1046
1047DISubprogram *DILocalScope::getSubprogram() const {
1048 if (auto *Block = dyn_cast<DILexicalBlockBase>(Val: this))
1049 return Block->getScope()->getSubprogram();
1050 return const_cast<DISubprogram *>(cast<DISubprogram>(Val: this));
1051}
1052
1053DILocalScope *DILocalScope::getNonLexicalBlockFileScope() const {
1054 if (auto *File = dyn_cast<DILexicalBlockFile>(Val: this))
1055 return File->getScope()->getNonLexicalBlockFileScope();
1056 return const_cast<DILocalScope *>(this);
1057}
1058
1059DILocalScope *DILocalScope::cloneScopeForSubprogram(
1060 DILocalScope &RootScope, DISubprogram &NewSP, LLVMContext &Ctx,
1061 DenseMap<const MDNode *, MDNode *> &Cache) {
1062 SmallVector<DIScope *> ScopeChain;
1063 DIScope *CachedResult = nullptr;
1064
1065 for (DIScope *Scope = &RootScope; !isa<DISubprogram>(Val: Scope);
1066 Scope = Scope->getScope()) {
1067 if (auto It = Cache.find(Val: Scope); It != Cache.end()) {
1068 CachedResult = cast<DIScope>(Val: It->second);
1069 break;
1070 }
1071 ScopeChain.push_back(Elt: Scope);
1072 }
1073
1074 // Recreate the scope chain, bottom-up, starting at the new subprogram (or a
1075 // cached result).
1076 DIScope *UpdatedScope = CachedResult ? CachedResult : &NewSP;
1077 for (DIScope *ScopeToUpdate : reverse(C&: ScopeChain)) {
1078 TempMDNode ClonedScope = ScopeToUpdate->clone();
1079 cast<DILexicalBlockBase>(Val&: *ClonedScope).replaceScope(Scope: UpdatedScope);
1080 UpdatedScope =
1081 cast<DIScope>(Val: MDNode::replaceWithUniqued(N: std::move(ClonedScope)));
1082 Cache[ScopeToUpdate] = UpdatedScope;
1083 }
1084
1085 return cast<DILocalScope>(Val: UpdatedScope);
1086}
1087
1088DISubprogram::DISPFlags DISubprogram::getFlag(StringRef Flag) {
1089 return StringSwitch<DISPFlags>(Flag)
1090#define HANDLE_DISP_FLAG(ID, NAME) .Case("DISPFlag" #NAME, SPFlag##NAME)
1091#include "llvm/IR/DebugInfoFlags.def"
1092 .Default(Value: SPFlagZero);
1093}
1094
1095StringRef DISubprogram::getFlagString(DISPFlags Flag) {
1096 switch (Flag) {
1097 // Appease a warning.
1098 case SPFlagVirtuality:
1099 return "";
1100#define HANDLE_DISP_FLAG(ID, NAME) \
1101 case SPFlag##NAME: \
1102 return "DISPFlag" #NAME;
1103#include "llvm/IR/DebugInfoFlags.def"
1104 }
1105 return "";
1106}
1107
1108DISubprogram::DISPFlags
1109DISubprogram::splitFlags(DISPFlags Flags,
1110 SmallVectorImpl<DISPFlags> &SplitFlags) {
1111 // Multi-bit fields can require special handling. In our case, however, the
1112 // only multi-bit field is virtuality, and all its values happen to be
1113 // single-bit values, so the right behavior just falls out.
1114#define HANDLE_DISP_FLAG(ID, NAME) \
1115 if (DISPFlags Bit = Flags & SPFlag##NAME) { \
1116 SplitFlags.push_back(Bit); \
1117 Flags &= ~Bit; \
1118 }
1119#include "llvm/IR/DebugInfoFlags.def"
1120 return Flags;
1121}
1122
1123DISubprogram *DISubprogram::getImpl(
1124 LLVMContext &Context, Metadata *Scope, MDString *Name,
1125 MDString *LinkageName, Metadata *File, unsigned Line, Metadata *Type,
1126 unsigned ScopeLine, Metadata *ContainingType, unsigned VirtualIndex,
1127 int ThisAdjustment, DIFlags Flags, DISPFlags SPFlags, Metadata *Unit,
1128 Metadata *TemplateParams, Metadata *Declaration, Metadata *RetainedNodes,
1129 Metadata *ThrownTypes, Metadata *Annotations, MDString *TargetFuncName,
1130 StorageType Storage, bool ShouldCreate) {
1131 assert(isCanonical(Name) && "Expected canonical MDString");
1132 assert(isCanonical(LinkageName) && "Expected canonical MDString");
1133 assert(isCanonical(TargetFuncName) && "Expected canonical MDString");
1134 DEFINE_GETIMPL_LOOKUP(DISubprogram,
1135 (Scope, Name, LinkageName, File, Line, Type, ScopeLine,
1136 ContainingType, VirtualIndex, ThisAdjustment, Flags,
1137 SPFlags, Unit, TemplateParams, Declaration,
1138 RetainedNodes, ThrownTypes, Annotations,
1139 TargetFuncName));
1140 SmallVector<Metadata *, 13> Ops = {
1141 File, Scope, Name, LinkageName,
1142 Type, Unit, Declaration, RetainedNodes,
1143 ContainingType, TemplateParams, ThrownTypes, Annotations,
1144 TargetFuncName};
1145 if (!TargetFuncName) {
1146 Ops.pop_back();
1147 if (!Annotations) {
1148 Ops.pop_back();
1149 if (!ThrownTypes) {
1150 Ops.pop_back();
1151 if (!TemplateParams) {
1152 Ops.pop_back();
1153 if (!ContainingType)
1154 Ops.pop_back();
1155 }
1156 }
1157 }
1158 }
1159 DEFINE_GETIMPL_STORE_N(
1160 DISubprogram,
1161 (Line, ScopeLine, VirtualIndex, ThisAdjustment, Flags, SPFlags), Ops,
1162 Ops.size());
1163}
1164
1165bool DISubprogram::describes(const Function *F) const {
1166 assert(F && "Invalid function");
1167 return F->getSubprogram() == this;
1168}
1169DILexicalBlockBase::DILexicalBlockBase(LLVMContext &C, unsigned ID,
1170 StorageType Storage,
1171 ArrayRef<Metadata *> Ops)
1172 : DILocalScope(C, ID, Storage, dwarf::DW_TAG_lexical_block, Ops) {}
1173
1174DILexicalBlock *DILexicalBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1175 Metadata *File, unsigned Line,
1176 unsigned Column, StorageType Storage,
1177 bool ShouldCreate) {
1178 // Fixup column.
1179 adjustColumn(Column);
1180
1181 assert(Scope && "Expected scope");
1182 DEFINE_GETIMPL_LOOKUP(DILexicalBlock, (Scope, File, Line, Column));
1183 Metadata *Ops[] = {File, Scope};
1184 DEFINE_GETIMPL_STORE(DILexicalBlock, (Line, Column), Ops);
1185}
1186
1187DILexicalBlockFile *DILexicalBlockFile::getImpl(LLVMContext &Context,
1188 Metadata *Scope, Metadata *File,
1189 unsigned Discriminator,
1190 StorageType Storage,
1191 bool ShouldCreate) {
1192 assert(Scope && "Expected scope");
1193 DEFINE_GETIMPL_LOOKUP(DILexicalBlockFile, (Scope, File, Discriminator));
1194 Metadata *Ops[] = {File, Scope};
1195 DEFINE_GETIMPL_STORE(DILexicalBlockFile, (Discriminator), Ops);
1196}
1197
1198DINamespace::DINamespace(LLVMContext &Context, StorageType Storage,
1199 bool ExportSymbols, ArrayRef<Metadata *> Ops)
1200 : DIScope(Context, DINamespaceKind, Storage, dwarf::DW_TAG_namespace, Ops) {
1201 SubclassData1 = ExportSymbols;
1202}
1203DINamespace *DINamespace::getImpl(LLVMContext &Context, Metadata *Scope,
1204 MDString *Name, bool ExportSymbols,
1205 StorageType Storage, bool ShouldCreate) {
1206 assert(isCanonical(Name) && "Expected canonical MDString");
1207 DEFINE_GETIMPL_LOOKUP(DINamespace, (Scope, Name, ExportSymbols));
1208 // The nullptr is for DIScope's File operand. This should be refactored.
1209 Metadata *Ops[] = {nullptr, Scope, Name};
1210 DEFINE_GETIMPL_STORE(DINamespace, (ExportSymbols), Ops);
1211}
1212
1213DICommonBlock::DICommonBlock(LLVMContext &Context, StorageType Storage,
1214 unsigned LineNo, ArrayRef<Metadata *> Ops)
1215 : DIScope(Context, DICommonBlockKind, Storage, dwarf::DW_TAG_common_block,
1216 Ops) {
1217 SubclassData32 = LineNo;
1218}
1219DICommonBlock *DICommonBlock::getImpl(LLVMContext &Context, Metadata *Scope,
1220 Metadata *Decl, MDString *Name,
1221 Metadata *File, unsigned LineNo,
1222 StorageType Storage, bool ShouldCreate) {
1223 assert(isCanonical(Name) && "Expected canonical MDString");
1224 DEFINE_GETIMPL_LOOKUP(DICommonBlock, (Scope, Decl, Name, File, LineNo));
1225 // The nullptr is for DIScope's File operand. This should be refactored.
1226 Metadata *Ops[] = {Scope, Decl, Name, File};
1227 DEFINE_GETIMPL_STORE(DICommonBlock, (LineNo), Ops);
1228}
1229
1230DIModule::DIModule(LLVMContext &Context, StorageType Storage, unsigned LineNo,
1231 bool IsDecl, ArrayRef<Metadata *> Ops)
1232 : DIScope(Context, DIModuleKind, Storage, dwarf::DW_TAG_module, Ops) {
1233 SubclassData1 = IsDecl;
1234 SubclassData32 = LineNo;
1235}
1236DIModule *DIModule::getImpl(LLVMContext &Context, Metadata *File,
1237 Metadata *Scope, MDString *Name,
1238 MDString *ConfigurationMacros,
1239 MDString *IncludePath, MDString *APINotesFile,
1240 unsigned LineNo, bool IsDecl, StorageType Storage,
1241 bool ShouldCreate) {
1242 assert(isCanonical(Name) && "Expected canonical MDString");
1243 DEFINE_GETIMPL_LOOKUP(DIModule, (File, Scope, Name, ConfigurationMacros,
1244 IncludePath, APINotesFile, LineNo, IsDecl));
1245 Metadata *Ops[] = {File, Scope, Name, ConfigurationMacros,
1246 IncludePath, APINotesFile};
1247 DEFINE_GETIMPL_STORE(DIModule, (LineNo, IsDecl), Ops);
1248}
1249DITemplateTypeParameter::DITemplateTypeParameter(LLVMContext &Context,
1250 StorageType Storage,
1251 bool IsDefault,
1252 ArrayRef<Metadata *> Ops)
1253 : DITemplateParameter(Context, DITemplateTypeParameterKind, Storage,
1254 dwarf::DW_TAG_template_type_parameter, IsDefault,
1255 Ops) {}
1256
1257DITemplateTypeParameter *
1258DITemplateTypeParameter::getImpl(LLVMContext &Context, MDString *Name,
1259 Metadata *Type, bool isDefault,
1260 StorageType Storage, bool ShouldCreate) {
1261 assert(isCanonical(Name) && "Expected canonical MDString");
1262 DEFINE_GETIMPL_LOOKUP(DITemplateTypeParameter, (Name, Type, isDefault));
1263 Metadata *Ops[] = {Name, Type};
1264 DEFINE_GETIMPL_STORE(DITemplateTypeParameter, (isDefault), Ops);
1265}
1266
1267DITemplateValueParameter *DITemplateValueParameter::getImpl(
1268 LLVMContext &Context, unsigned Tag, MDString *Name, Metadata *Type,
1269 bool isDefault, Metadata *Value, StorageType Storage, bool ShouldCreate) {
1270 assert(isCanonical(Name) && "Expected canonical MDString");
1271 DEFINE_GETIMPL_LOOKUP(DITemplateValueParameter,
1272 (Tag, Name, Type, isDefault, Value));
1273 Metadata *Ops[] = {Name, Type, Value};
1274 DEFINE_GETIMPL_STORE(DITemplateValueParameter, (Tag, isDefault), Ops);
1275}
1276
1277DIGlobalVariable *
1278DIGlobalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1279 MDString *LinkageName, Metadata *File, unsigned Line,
1280 Metadata *Type, bool IsLocalToUnit, bool IsDefinition,
1281 Metadata *StaticDataMemberDeclaration,
1282 Metadata *TemplateParams, uint32_t AlignInBits,
1283 Metadata *Annotations, StorageType Storage,
1284 bool ShouldCreate) {
1285 assert(isCanonical(Name) && "Expected canonical MDString");
1286 assert(isCanonical(LinkageName) && "Expected canonical MDString");
1287 DEFINE_GETIMPL_LOOKUP(
1288 DIGlobalVariable,
1289 (Scope, Name, LinkageName, File, Line, Type, IsLocalToUnit, IsDefinition,
1290 StaticDataMemberDeclaration, TemplateParams, AlignInBits, Annotations));
1291 Metadata *Ops[] = {Scope,
1292 Name,
1293 File,
1294 Type,
1295 Name,
1296 LinkageName,
1297 StaticDataMemberDeclaration,
1298 TemplateParams,
1299 Annotations};
1300 DEFINE_GETIMPL_STORE(DIGlobalVariable,
1301 (Line, IsLocalToUnit, IsDefinition, AlignInBits), Ops);
1302}
1303
1304DILocalVariable *
1305DILocalVariable::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1306 Metadata *File, unsigned Line, Metadata *Type,
1307 unsigned Arg, DIFlags Flags, uint32_t AlignInBits,
1308 Metadata *Annotations, StorageType Storage,
1309 bool ShouldCreate) {
1310 // 64K ought to be enough for any frontend.
1311 assert(Arg <= UINT16_MAX && "Expected argument number to fit in 16-bits");
1312
1313 assert(Scope && "Expected scope");
1314 assert(isCanonical(Name) && "Expected canonical MDString");
1315 DEFINE_GETIMPL_LOOKUP(DILocalVariable, (Scope, Name, File, Line, Type, Arg,
1316 Flags, AlignInBits, Annotations));
1317 Metadata *Ops[] = {Scope, Name, File, Type, Annotations};
1318 DEFINE_GETIMPL_STORE(DILocalVariable, (Line, Arg, Flags, AlignInBits), Ops);
1319}
1320
1321DIVariable::DIVariable(LLVMContext &C, unsigned ID, StorageType Storage,
1322 signed Line, ArrayRef<Metadata *> Ops,
1323 uint32_t AlignInBits)
1324 : DINode(C, ID, Storage, dwarf::DW_TAG_variable, Ops), Line(Line) {
1325 SubclassData32 = AlignInBits;
1326}
1327std::optional<uint64_t> DIVariable::getSizeInBits() const {
1328 // This is used by the Verifier so be mindful of broken types.
1329 const Metadata *RawType = getRawType();
1330 while (RawType) {
1331 // Try to get the size directly.
1332 if (auto *T = dyn_cast<DIType>(Val: RawType))
1333 if (uint64_t Size = T->getSizeInBits())
1334 return Size;
1335
1336 if (auto *DT = dyn_cast<DIDerivedType>(Val: RawType)) {
1337 // Look at the base type.
1338 RawType = DT->getRawBaseType();
1339 continue;
1340 }
1341
1342 // Missing type or size.
1343 break;
1344 }
1345
1346 // Fail gracefully.
1347 return std::nullopt;
1348}
1349
1350DILabel::DILabel(LLVMContext &C, StorageType Storage, unsigned Line,
1351 ArrayRef<Metadata *> Ops)
1352 : DINode(C, DILabelKind, Storage, dwarf::DW_TAG_label, Ops) {
1353 SubclassData32 = Line;
1354}
1355DILabel *DILabel::getImpl(LLVMContext &Context, Metadata *Scope, MDString *Name,
1356 Metadata *File, unsigned Line, StorageType Storage,
1357 bool ShouldCreate) {
1358 assert(Scope && "Expected scope");
1359 assert(isCanonical(Name) && "Expected canonical MDString");
1360 DEFINE_GETIMPL_LOOKUP(DILabel, (Scope, Name, File, Line));
1361 Metadata *Ops[] = {Scope, Name, File};
1362 DEFINE_GETIMPL_STORE(DILabel, (Line), Ops);
1363}
1364
1365DIExpression *DIExpression::getImpl(LLVMContext &Context,
1366 ArrayRef<uint64_t> Elements,
1367 StorageType Storage, bool ShouldCreate) {
1368 DEFINE_GETIMPL_LOOKUP(DIExpression, (Elements));
1369 DEFINE_GETIMPL_STORE_NO_OPS(DIExpression, (Elements));
1370}
1371bool DIExpression::isEntryValue() const {
1372 if (auto singleLocElts = getSingleLocationExpressionElements()) {
1373 return singleLocElts->size() > 0 &&
1374 (*singleLocElts)[0] == dwarf::DW_OP_LLVM_entry_value;
1375 }
1376 return false;
1377}
1378bool DIExpression::startsWithDeref() const {
1379 if (auto singleLocElts = getSingleLocationExpressionElements())
1380 return singleLocElts->size() > 0 &&
1381 (*singleLocElts)[0] == dwarf::DW_OP_deref;
1382 return false;
1383}
1384bool DIExpression::isDeref() const {
1385 if (auto singleLocElts = getSingleLocationExpressionElements())
1386 return singleLocElts->size() == 1 &&
1387 (*singleLocElts)[0] == dwarf::DW_OP_deref;
1388 return false;
1389}
1390
1391DIAssignID *DIAssignID::getImpl(LLVMContext &Context, StorageType Storage,
1392 bool ShouldCreate) {
1393 // Uniqued DIAssignID are not supported as the instance address *is* the ID.
1394 assert(Storage != StorageType::Uniqued && "uniqued DIAssignID unsupported");
1395 return storeImpl(N: new (0u, Storage) DIAssignID(Context, Storage), Storage);
1396}
1397
1398unsigned DIExpression::ExprOperand::getSize() const {
1399 uint64_t Op = getOp();
1400
1401 if (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31)
1402 return 2;
1403
1404 switch (Op) {
1405 case dwarf::DW_OP_LLVM_convert:
1406 case dwarf::DW_OP_LLVM_fragment:
1407 case dwarf::DW_OP_LLVM_extract_bits_sext:
1408 case dwarf::DW_OP_LLVM_extract_bits_zext:
1409 case dwarf::DW_OP_bregx:
1410 return 3;
1411 case dwarf::DW_OP_constu:
1412 case dwarf::DW_OP_consts:
1413 case dwarf::DW_OP_deref_size:
1414 case dwarf::DW_OP_plus_uconst:
1415 case dwarf::DW_OP_LLVM_tag_offset:
1416 case dwarf::DW_OP_LLVM_entry_value:
1417 case dwarf::DW_OP_LLVM_arg:
1418 case dwarf::DW_OP_regx:
1419 return 2;
1420 default:
1421 return 1;
1422 }
1423}
1424
1425bool DIExpression::isValid() const {
1426 for (auto I = expr_op_begin(), E = expr_op_end(); I != E; ++I) {
1427 // Check that there's space for the operand.
1428 if (I->get() + I->getSize() > E->get())
1429 return false;
1430
1431 uint64_t Op = I->getOp();
1432 if ((Op >= dwarf::DW_OP_reg0 && Op <= dwarf::DW_OP_reg31) ||
1433 (Op >= dwarf::DW_OP_breg0 && Op <= dwarf::DW_OP_breg31))
1434 return true;
1435
1436 // Check that the operand is valid.
1437 switch (Op) {
1438 default:
1439 return false;
1440 case dwarf::DW_OP_LLVM_fragment:
1441 // A fragment operator must appear at the end.
1442 return I->get() + I->getSize() == E->get();
1443 case dwarf::DW_OP_stack_value: {
1444 // Must be the last one or followed by a DW_OP_LLVM_fragment.
1445 if (I->get() + I->getSize() == E->get())
1446 break;
1447 auto J = I;
1448 if ((++J)->getOp() != dwarf::DW_OP_LLVM_fragment)
1449 return false;
1450 break;
1451 }
1452 case dwarf::DW_OP_swap: {
1453 // Must be more than one implicit element on the stack.
1454
1455 // FIXME: A better way to implement this would be to add a local variable
1456 // that keeps track of the stack depth and introduce something like a
1457 // DW_LLVM_OP_implicit_location as a placeholder for the location this
1458 // DIExpression is attached to, or else pass the number of implicit stack
1459 // elements into isValid.
1460 if (getNumElements() == 1)
1461 return false;
1462 break;
1463 }
1464 case dwarf::DW_OP_LLVM_entry_value: {
1465 // An entry value operator must appear at the beginning or immediately
1466 // following `DW_OP_LLVM_arg 0`, and the number of operations it cover can
1467 // currently only be 1, because we support only entry values of a simple
1468 // register location. One reason for this is that we currently can't
1469 // calculate the size of the resulting DWARF block for other expressions.
1470 auto FirstOp = expr_op_begin();
1471 if (FirstOp->getOp() == dwarf::DW_OP_LLVM_arg && FirstOp->getArg(I: 0) == 0)
1472 ++FirstOp;
1473 return I->get() == FirstOp->get() && I->getArg(I: 0) == 1;
1474 }
1475 case dwarf::DW_OP_LLVM_implicit_pointer:
1476 case dwarf::DW_OP_LLVM_convert:
1477 case dwarf::DW_OP_LLVM_arg:
1478 case dwarf::DW_OP_LLVM_tag_offset:
1479 case dwarf::DW_OP_LLVM_extract_bits_sext:
1480 case dwarf::DW_OP_LLVM_extract_bits_zext:
1481 case dwarf::DW_OP_constu:
1482 case dwarf::DW_OP_plus_uconst:
1483 case dwarf::DW_OP_plus:
1484 case dwarf::DW_OP_minus:
1485 case dwarf::DW_OP_mul:
1486 case dwarf::DW_OP_div:
1487 case dwarf::DW_OP_mod:
1488 case dwarf::DW_OP_or:
1489 case dwarf::DW_OP_and:
1490 case dwarf::DW_OP_xor:
1491 case dwarf::DW_OP_shl:
1492 case dwarf::DW_OP_shr:
1493 case dwarf::DW_OP_shra:
1494 case dwarf::DW_OP_deref:
1495 case dwarf::DW_OP_deref_size:
1496 case dwarf::DW_OP_xderef:
1497 case dwarf::DW_OP_lit0:
1498 case dwarf::DW_OP_not:
1499 case dwarf::DW_OP_dup:
1500 case dwarf::DW_OP_regx:
1501 case dwarf::DW_OP_bregx:
1502 case dwarf::DW_OP_push_object_address:
1503 case dwarf::DW_OP_over:
1504 case dwarf::DW_OP_consts:
1505 case dwarf::DW_OP_eq:
1506 case dwarf::DW_OP_ne:
1507 case dwarf::DW_OP_gt:
1508 case dwarf::DW_OP_ge:
1509 case dwarf::DW_OP_lt:
1510 case dwarf::DW_OP_le:
1511 break;
1512 }
1513 }
1514 return true;
1515}
1516
1517bool DIExpression::isImplicit() const {
1518 if (!isValid())
1519 return false;
1520
1521 if (getNumElements() == 0)
1522 return false;
1523
1524 for (const auto &It : expr_ops()) {
1525 switch (It.getOp()) {
1526 default:
1527 break;
1528 case dwarf::DW_OP_stack_value:
1529 return true;
1530 }
1531 }
1532
1533 return false;
1534}
1535
1536bool DIExpression::isComplex() const {
1537 if (!isValid())
1538 return false;
1539
1540 if (getNumElements() == 0)
1541 return false;
1542
1543 // If there are any elements other than fragment or tag_offset, then some
1544 // kind of complex computation occurs.
1545 for (const auto &It : expr_ops()) {
1546 switch (It.getOp()) {
1547 case dwarf::DW_OP_LLVM_tag_offset:
1548 case dwarf::DW_OP_LLVM_fragment:
1549 case dwarf::DW_OP_LLVM_arg:
1550 continue;
1551 default:
1552 return true;
1553 }
1554 }
1555
1556 return false;
1557}
1558
1559bool DIExpression::isSingleLocationExpression() const {
1560 if (!isValid())
1561 return false;
1562
1563 if (getNumElements() == 0)
1564 return true;
1565
1566 auto ExprOpBegin = expr_ops().begin();
1567 auto ExprOpEnd = expr_ops().end();
1568 if (ExprOpBegin->getOp() == dwarf::DW_OP_LLVM_arg) {
1569 if (ExprOpBegin->getArg(I: 0) != 0)
1570 return false;
1571 ++ExprOpBegin;
1572 }
1573
1574 return !std::any_of(first: ExprOpBegin, last: ExprOpEnd, pred: [](auto Op) {
1575 return Op.getOp() == dwarf::DW_OP_LLVM_arg;
1576 });
1577}
1578
1579std::optional<ArrayRef<uint64_t>>
1580DIExpression::getSingleLocationExpressionElements() const {
1581 // Check for `isValid` covered by `isSingleLocationExpression`.
1582 if (!isSingleLocationExpression())
1583 return std::nullopt;
1584
1585 // An empty expression is already non-variadic.
1586 if (!getNumElements())
1587 return ArrayRef<uint64_t>();
1588
1589 // If Expr does not have a leading DW_OP_LLVM_arg then we don't need to do
1590 // anything.
1591 if (getElements()[0] == dwarf::DW_OP_LLVM_arg)
1592 return getElements().drop_front(N: 2);
1593 return getElements();
1594}
1595
1596const DIExpression *
1597DIExpression::convertToUndefExpression(const DIExpression *Expr) {
1598 SmallVector<uint64_t, 3> UndefOps;
1599 if (auto FragmentInfo = Expr->getFragmentInfo()) {
1600 UndefOps.append(IL: {dwarf::DW_OP_LLVM_fragment, FragmentInfo->OffsetInBits,
1601 FragmentInfo->SizeInBits});
1602 }
1603 return DIExpression::get(Context&: Expr->getContext(), Elements: UndefOps);
1604}
1605
1606const DIExpression *
1607DIExpression::convertToVariadicExpression(const DIExpression *Expr) {
1608 if (any_of(Range: Expr->expr_ops(), P: [](auto ExprOp) {
1609 return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1610 }))
1611 return Expr;
1612 SmallVector<uint64_t> NewOps;
1613 NewOps.reserve(N: Expr->getNumElements() + 2);
1614 NewOps.append(IL: {dwarf::DW_OP_LLVM_arg, 0});
1615 NewOps.append(in_start: Expr->elements_begin(), in_end: Expr->elements_end());
1616 return DIExpression::get(Context&: Expr->getContext(), Elements: NewOps);
1617}
1618
1619std::optional<const DIExpression *>
1620DIExpression::convertToNonVariadicExpression(const DIExpression *Expr) {
1621 if (!Expr)
1622 return std::nullopt;
1623
1624 if (auto Elts = Expr->getSingleLocationExpressionElements())
1625 return DIExpression::get(Context&: Expr->getContext(), Elements: *Elts);
1626
1627 return std::nullopt;
1628}
1629
1630void DIExpression::canonicalizeExpressionOps(SmallVectorImpl<uint64_t> &Ops,
1631 const DIExpression *Expr,
1632 bool IsIndirect) {
1633 // If Expr is not already variadic, insert the implied `DW_OP_LLVM_arg 0`
1634 // to the existing expression ops.
1635 if (none_of(Range: Expr->expr_ops(), P: [](auto ExprOp) {
1636 return ExprOp.getOp() == dwarf::DW_OP_LLVM_arg;
1637 }))
1638 Ops.append(IL: {dwarf::DW_OP_LLVM_arg, 0});
1639 // If Expr is not indirect, we only need to insert the expression elements and
1640 // we're done.
1641 if (!IsIndirect) {
1642 Ops.append(in_start: Expr->elements_begin(), in_end: Expr->elements_end());
1643 return;
1644 }
1645 // If Expr is indirect, insert the implied DW_OP_deref at the end of the
1646 // expression but before DW_OP_{stack_value, LLVM_fragment} if they are
1647 // present.
1648 for (auto Op : Expr->expr_ops()) {
1649 if (Op.getOp() == dwarf::DW_OP_stack_value ||
1650 Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1651 Ops.push_back(Elt: dwarf::DW_OP_deref);
1652 IsIndirect = false;
1653 }
1654 Op.appendToVector(V&: Ops);
1655 }
1656 if (IsIndirect)
1657 Ops.push_back(Elt: dwarf::DW_OP_deref);
1658}
1659
1660bool DIExpression::isEqualExpression(const DIExpression *FirstExpr,
1661 bool FirstIndirect,
1662 const DIExpression *SecondExpr,
1663 bool SecondIndirect) {
1664 SmallVector<uint64_t> FirstOps;
1665 DIExpression::canonicalizeExpressionOps(Ops&: FirstOps, Expr: FirstExpr, IsIndirect: FirstIndirect);
1666 SmallVector<uint64_t> SecondOps;
1667 DIExpression::canonicalizeExpressionOps(Ops&: SecondOps, Expr: SecondExpr,
1668 IsIndirect: SecondIndirect);
1669 return FirstOps == SecondOps;
1670}
1671
1672std::optional<DIExpression::FragmentInfo>
1673DIExpression::getFragmentInfo(expr_op_iterator Start, expr_op_iterator End) {
1674 for (auto I = Start; I != End; ++I)
1675 if (I->getOp() == dwarf::DW_OP_LLVM_fragment) {
1676 DIExpression::FragmentInfo Info = {I->getArg(I: 1), I->getArg(I: 0)};
1677 return Info;
1678 }
1679 return std::nullopt;
1680}
1681
1682std::optional<uint64_t> DIExpression::getActiveBits(DIVariable *Var) {
1683 std::optional<uint64_t> InitialActiveBits = Var->getSizeInBits();
1684 std::optional<uint64_t> ActiveBits = InitialActiveBits;
1685 for (auto Op : expr_ops()) {
1686 switch (Op.getOp()) {
1687 default:
1688 // We assume the worst case for anything we don't currently handle and
1689 // revert to the initial active bits.
1690 ActiveBits = InitialActiveBits;
1691 break;
1692 case dwarf::DW_OP_LLVM_extract_bits_zext:
1693 case dwarf::DW_OP_LLVM_extract_bits_sext: {
1694 // We can't handle an extract whose sign doesn't match that of the
1695 // variable.
1696 std::optional<DIBasicType::Signedness> VarSign = Var->getSignedness();
1697 bool VarSigned = (VarSign == DIBasicType::Signedness::Signed);
1698 bool OpSigned = (Op.getOp() == dwarf::DW_OP_LLVM_extract_bits_sext);
1699 if (!VarSign || VarSigned != OpSigned) {
1700 ActiveBits = InitialActiveBits;
1701 break;
1702 }
1703 [[fallthrough]];
1704 }
1705 case dwarf::DW_OP_LLVM_fragment:
1706 // Extract or fragment narrows the active bits
1707 if (ActiveBits)
1708 ActiveBits = std::min(a: *ActiveBits, b: Op.getArg(I: 1));
1709 else
1710 ActiveBits = Op.getArg(I: 1);
1711 break;
1712 }
1713 }
1714 return ActiveBits;
1715}
1716
1717void DIExpression::appendOffset(SmallVectorImpl<uint64_t> &Ops,
1718 int64_t Offset) {
1719 if (Offset > 0) {
1720 Ops.push_back(Elt: dwarf::DW_OP_plus_uconst);
1721 Ops.push_back(Elt: Offset);
1722 } else if (Offset < 0) {
1723 Ops.push_back(Elt: dwarf::DW_OP_constu);
1724 // Avoid UB when encountering LLONG_MIN, because in 2's complement
1725 // abs(LLONG_MIN) is LLONG_MAX+1.
1726 uint64_t AbsMinusOne = -(Offset+1);
1727 Ops.push_back(Elt: AbsMinusOne + 1);
1728 Ops.push_back(Elt: dwarf::DW_OP_minus);
1729 }
1730}
1731
1732bool DIExpression::extractIfOffset(int64_t &Offset) const {
1733 auto SingleLocEltsOpt = getSingleLocationExpressionElements();
1734 if (!SingleLocEltsOpt)
1735 return false;
1736 auto SingleLocElts = *SingleLocEltsOpt;
1737
1738 if (SingleLocElts.size() == 0) {
1739 Offset = 0;
1740 return true;
1741 }
1742
1743 if (SingleLocElts.size() == 2 &&
1744 SingleLocElts[0] == dwarf::DW_OP_plus_uconst) {
1745 Offset = SingleLocElts[1];
1746 return true;
1747 }
1748
1749 if (SingleLocElts.size() == 3 && SingleLocElts[0] == dwarf::DW_OP_constu) {
1750 if (SingleLocElts[2] == dwarf::DW_OP_plus) {
1751 Offset = SingleLocElts[1];
1752 return true;
1753 }
1754 if (SingleLocElts[2] == dwarf::DW_OP_minus) {
1755 Offset = -SingleLocElts[1];
1756 return true;
1757 }
1758 }
1759
1760 return false;
1761}
1762
1763bool DIExpression::extractLeadingOffset(
1764 int64_t &OffsetInBytes, SmallVectorImpl<uint64_t> &RemainingOps) const {
1765 OffsetInBytes = 0;
1766 RemainingOps.clear();
1767
1768 auto SingleLocEltsOpt = getSingleLocationExpressionElements();
1769 if (!SingleLocEltsOpt)
1770 return false;
1771
1772 auto ExprOpEnd = expr_op_iterator(SingleLocEltsOpt->end());
1773 auto ExprOpIt = expr_op_iterator(SingleLocEltsOpt->begin());
1774 while (ExprOpIt != ExprOpEnd) {
1775 uint64_t Op = ExprOpIt->getOp();
1776 if (Op == dwarf::DW_OP_deref || Op == dwarf::DW_OP_deref_size ||
1777 Op == dwarf::DW_OP_deref_type || Op == dwarf::DW_OP_LLVM_fragment ||
1778 Op == dwarf::DW_OP_LLVM_extract_bits_zext ||
1779 Op == dwarf::DW_OP_LLVM_extract_bits_sext) {
1780 break;
1781 } else if (Op == dwarf::DW_OP_plus_uconst) {
1782 OffsetInBytes += ExprOpIt->getArg(I: 0);
1783 } else if (Op == dwarf::DW_OP_constu) {
1784 uint64_t Value = ExprOpIt->getArg(I: 0);
1785 ++ExprOpIt;
1786 if (ExprOpIt->getOp() == dwarf::DW_OP_plus)
1787 OffsetInBytes += Value;
1788 else if (ExprOpIt->getOp() == dwarf::DW_OP_minus)
1789 OffsetInBytes -= Value;
1790 else
1791 return false;
1792 } else {
1793 // Not a const plus/minus operation or deref.
1794 return false;
1795 }
1796 ++ExprOpIt;
1797 }
1798 RemainingOps.append(in_start: ExprOpIt.getBase(), in_end: ExprOpEnd.getBase());
1799 return true;
1800}
1801
1802bool DIExpression::hasAllLocationOps(unsigned N) const {
1803 SmallDenseSet<uint64_t, 4> SeenOps;
1804 for (auto ExprOp : expr_ops())
1805 if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
1806 SeenOps.insert(V: ExprOp.getArg(I: 0));
1807 for (uint64_t Idx = 0; Idx < N; ++Idx)
1808 if (!SeenOps.contains(V: Idx))
1809 return false;
1810 return true;
1811}
1812
1813const DIExpression *DIExpression::extractAddressClass(const DIExpression *Expr,
1814 unsigned &AddrClass) {
1815 // FIXME: This seems fragile. Nothing that verifies that these elements
1816 // actually map to ops and not operands.
1817 auto SingleLocEltsOpt = Expr->getSingleLocationExpressionElements();
1818 if (!SingleLocEltsOpt)
1819 return nullptr;
1820 auto SingleLocElts = *SingleLocEltsOpt;
1821
1822 const unsigned PatternSize = 4;
1823 if (SingleLocElts.size() >= PatternSize &&
1824 SingleLocElts[PatternSize - 4] == dwarf::DW_OP_constu &&
1825 SingleLocElts[PatternSize - 2] == dwarf::DW_OP_swap &&
1826 SingleLocElts[PatternSize - 1] == dwarf::DW_OP_xderef) {
1827 AddrClass = SingleLocElts[PatternSize - 3];
1828
1829 if (SingleLocElts.size() == PatternSize)
1830 return nullptr;
1831 return DIExpression::get(
1832 Context&: Expr->getContext(),
1833 Elements: ArrayRef(&*SingleLocElts.begin(), SingleLocElts.size() - PatternSize));
1834 }
1835 return Expr;
1836}
1837
1838DIExpression *DIExpression::prepend(const DIExpression *Expr, uint8_t Flags,
1839 int64_t Offset) {
1840 SmallVector<uint64_t, 8> Ops;
1841 if (Flags & DIExpression::DerefBefore)
1842 Ops.push_back(Elt: dwarf::DW_OP_deref);
1843
1844 appendOffset(Ops, Offset);
1845 if (Flags & DIExpression::DerefAfter)
1846 Ops.push_back(Elt: dwarf::DW_OP_deref);
1847
1848 bool StackValue = Flags & DIExpression::StackValue;
1849 bool EntryValue = Flags & DIExpression::EntryValue;
1850
1851 return prependOpcodes(Expr, Ops, StackValue, EntryValue);
1852}
1853
1854DIExpression *DIExpression::appendOpsToArg(const DIExpression *Expr,
1855 ArrayRef<uint64_t> Ops,
1856 unsigned ArgNo, bool StackValue) {
1857 assert(Expr && "Can't add ops to this expression");
1858
1859 // Handle non-variadic intrinsics by prepending the opcodes.
1860 if (!any_of(Range: Expr->expr_ops(),
1861 P: [](auto Op) { return Op.getOp() == dwarf::DW_OP_LLVM_arg; })) {
1862 assert(ArgNo == 0 &&
1863 "Location Index must be 0 for a non-variadic expression.");
1864 SmallVector<uint64_t, 8> NewOps(Ops.begin(), Ops.end());
1865 return DIExpression::prependOpcodes(Expr, Ops&: NewOps, StackValue);
1866 }
1867
1868 SmallVector<uint64_t, 8> NewOps;
1869 for (auto Op : Expr->expr_ops()) {
1870 // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
1871 if (StackValue) {
1872 if (Op.getOp() == dwarf::DW_OP_stack_value)
1873 StackValue = false;
1874 else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1875 NewOps.push_back(Elt: dwarf::DW_OP_stack_value);
1876 StackValue = false;
1877 }
1878 }
1879 Op.appendToVector(V&: NewOps);
1880 if (Op.getOp() == dwarf::DW_OP_LLVM_arg && Op.getArg(I: 0) == ArgNo)
1881 NewOps.insert(I: NewOps.end(), From: Ops.begin(), To: Ops.end());
1882 }
1883 if (StackValue)
1884 NewOps.push_back(Elt: dwarf::DW_OP_stack_value);
1885
1886 return DIExpression::get(Context&: Expr->getContext(), Elements: NewOps);
1887}
1888
1889DIExpression *DIExpression::replaceArg(const DIExpression *Expr,
1890 uint64_t OldArg, uint64_t NewArg) {
1891 assert(Expr && "Can't replace args in this expression");
1892
1893 SmallVector<uint64_t, 8> NewOps;
1894
1895 for (auto Op : Expr->expr_ops()) {
1896 if (Op.getOp() != dwarf::DW_OP_LLVM_arg || Op.getArg(I: 0) < OldArg) {
1897 Op.appendToVector(V&: NewOps);
1898 continue;
1899 }
1900 NewOps.push_back(Elt: dwarf::DW_OP_LLVM_arg);
1901 uint64_t Arg = Op.getArg(I: 0) == OldArg ? NewArg : Op.getArg(I: 0);
1902 // OldArg has been deleted from the Op list, so decrement all indices
1903 // greater than it.
1904 if (Arg > OldArg)
1905 --Arg;
1906 NewOps.push_back(Elt: Arg);
1907 }
1908 return DIExpression::get(Context&: Expr->getContext(), Elements: NewOps);
1909}
1910
1911DIExpression *DIExpression::prependOpcodes(const DIExpression *Expr,
1912 SmallVectorImpl<uint64_t> &Ops,
1913 bool StackValue, bool EntryValue) {
1914 assert(Expr && "Can't prepend ops to this expression");
1915
1916 if (EntryValue) {
1917 Ops.push_back(Elt: dwarf::DW_OP_LLVM_entry_value);
1918 // Use a block size of 1 for the target register operand. The
1919 // DWARF backend currently cannot emit entry values with a block
1920 // size > 1.
1921 Ops.push_back(Elt: 1);
1922 }
1923
1924 // If there are no ops to prepend, do not even add the DW_OP_stack_value.
1925 if (Ops.empty())
1926 StackValue = false;
1927 for (auto Op : Expr->expr_ops()) {
1928 // A DW_OP_stack_value comes at the end, but before a DW_OP_LLVM_fragment.
1929 if (StackValue) {
1930 if (Op.getOp() == dwarf::DW_OP_stack_value)
1931 StackValue = false;
1932 else if (Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1933 Ops.push_back(Elt: dwarf::DW_OP_stack_value);
1934 StackValue = false;
1935 }
1936 }
1937 Op.appendToVector(V&: Ops);
1938 }
1939 if (StackValue)
1940 Ops.push_back(Elt: dwarf::DW_OP_stack_value);
1941 return DIExpression::get(Context&: Expr->getContext(), Elements: Ops);
1942}
1943
1944DIExpression *DIExpression::append(const DIExpression *Expr,
1945 ArrayRef<uint64_t> Ops) {
1946 assert(Expr && !Ops.empty() && "Can't append ops to this expression");
1947
1948 // Copy Expr's current op list.
1949 SmallVector<uint64_t, 16> NewOps;
1950 for (auto Op : Expr->expr_ops()) {
1951 // Append new opcodes before DW_OP_{stack_value, LLVM_fragment}.
1952 if (Op.getOp() == dwarf::DW_OP_stack_value ||
1953 Op.getOp() == dwarf::DW_OP_LLVM_fragment) {
1954 NewOps.append(in_start: Ops.begin(), in_end: Ops.end());
1955
1956 // Ensure that the new opcodes are only appended once.
1957 Ops = std::nullopt;
1958 }
1959 Op.appendToVector(V&: NewOps);
1960 }
1961 NewOps.append(in_start: Ops.begin(), in_end: Ops.end());
1962 auto *result =
1963 DIExpression::get(Context&: Expr->getContext(), Elements: NewOps)->foldConstantMath();
1964 assert(result->isValid() && "concatenated expression is not valid");
1965 return result;
1966}
1967
1968DIExpression *DIExpression::appendToStack(const DIExpression *Expr,
1969 ArrayRef<uint64_t> Ops) {
1970 assert(Expr && !Ops.empty() && "Can't append ops to this expression");
1971 assert(std::none_of(expr_op_iterator(Ops.begin()),
1972 expr_op_iterator(Ops.end()),
1973 [](auto Op) {
1974 return Op.getOp() == dwarf::DW_OP_stack_value ||
1975 Op.getOp() == dwarf::DW_OP_LLVM_fragment;
1976 }) &&
1977 "Can't append this op");
1978
1979 // Append a DW_OP_deref after Expr's current op list if it's non-empty and
1980 // has no DW_OP_stack_value.
1981 //
1982 // Match .* DW_OP_stack_value (DW_OP_LLVM_fragment A B)?.
1983 std::optional<FragmentInfo> FI = Expr->getFragmentInfo();
1984 unsigned DropUntilStackValue = FI ? 3 : 0;
1985 ArrayRef<uint64_t> ExprOpsBeforeFragment =
1986 Expr->getElements().drop_back(N: DropUntilStackValue);
1987 bool NeedsDeref = (Expr->getNumElements() > DropUntilStackValue) &&
1988 (ExprOpsBeforeFragment.back() != dwarf::DW_OP_stack_value);
1989 bool NeedsStackValue = NeedsDeref || ExprOpsBeforeFragment.empty();
1990
1991 // Append a DW_OP_deref after Expr's current op list if needed, then append
1992 // the new ops, and finally ensure that a single DW_OP_stack_value is present.
1993 SmallVector<uint64_t, 16> NewOps;
1994 if (NeedsDeref)
1995 NewOps.push_back(Elt: dwarf::DW_OP_deref);
1996 NewOps.append(in_start: Ops.begin(), in_end: Ops.end());
1997 if (NeedsStackValue)
1998 NewOps.push_back(Elt: dwarf::DW_OP_stack_value);
1999 return DIExpression::append(Expr, Ops: NewOps);
2000}
2001
2002std::optional<DIExpression *> DIExpression::createFragmentExpression(
2003 const DIExpression *Expr, unsigned OffsetInBits, unsigned SizeInBits) {
2004 SmallVector<uint64_t, 8> Ops;
2005 // Track whether it's safe to split the value at the top of the DWARF stack,
2006 // assuming that it'll be used as an implicit location value.
2007 bool CanSplitValue = true;
2008 // Track whether we need to add a fragment expression to the end of Expr.
2009 bool EmitFragment = true;
2010 // Copy over the expression, but leave off any trailing DW_OP_LLVM_fragment.
2011 if (Expr) {
2012 for (auto Op : Expr->expr_ops()) {
2013 switch (Op.getOp()) {
2014 default:
2015 break;
2016 case dwarf::DW_OP_shr:
2017 case dwarf::DW_OP_shra:
2018 case dwarf::DW_OP_shl:
2019 case dwarf::DW_OP_plus:
2020 case dwarf::DW_OP_plus_uconst:
2021 case dwarf::DW_OP_minus:
2022 // We can't safely split arithmetic or shift operations into multiple
2023 // fragments because we can't express carry-over between fragments.
2024 //
2025 // FIXME: We *could* preserve the lowest fragment of a constant offset
2026 // operation if the offset fits into SizeInBits.
2027 CanSplitValue = false;
2028 break;
2029 case dwarf::DW_OP_deref:
2030 case dwarf::DW_OP_deref_size:
2031 case dwarf::DW_OP_deref_type:
2032 case dwarf::DW_OP_xderef:
2033 case dwarf::DW_OP_xderef_size:
2034 case dwarf::DW_OP_xderef_type:
2035 // Preceeding arithmetic operations have been applied to compute an
2036 // address. It's okay to split the value loaded from that address.
2037 CanSplitValue = true;
2038 break;
2039 case dwarf::DW_OP_stack_value:
2040 // Bail if this expression computes a value that cannot be split.
2041 if (!CanSplitValue)
2042 return std::nullopt;
2043 break;
2044 case dwarf::DW_OP_LLVM_fragment: {
2045 // If we've decided we don't need a fragment then give up if we see that
2046 // there's already a fragment expression.
2047 // FIXME: We could probably do better here
2048 if (!EmitFragment)
2049 return std::nullopt;
2050 // Make the new offset point into the existing fragment.
2051 uint64_t FragmentOffsetInBits = Op.getArg(I: 0);
2052 uint64_t FragmentSizeInBits = Op.getArg(I: 1);
2053 (void)FragmentSizeInBits;
2054 assert((OffsetInBits + SizeInBits <= FragmentSizeInBits) &&
2055 "new fragment outside of original fragment");
2056 OffsetInBits += FragmentOffsetInBits;
2057 continue;
2058 }
2059 case dwarf::DW_OP_LLVM_extract_bits_zext:
2060 case dwarf::DW_OP_LLVM_extract_bits_sext: {
2061 // If we're extracting bits from inside of the fragment that we're
2062 // creating then we don't have a fragment after all, and just need to
2063 // adjust the offset that we're extracting from.
2064 uint64_t ExtractOffsetInBits = Op.getArg(I: 0);
2065 uint64_t ExtractSizeInBits = Op.getArg(I: 1);
2066 if (ExtractOffsetInBits >= OffsetInBits &&
2067 ExtractOffsetInBits + ExtractSizeInBits <=
2068 OffsetInBits + SizeInBits) {
2069 Ops.push_back(Elt: Op.getOp());
2070 Ops.push_back(Elt: ExtractOffsetInBits - OffsetInBits);
2071 Ops.push_back(Elt: ExtractSizeInBits);
2072 EmitFragment = false;
2073 continue;
2074 }
2075 // If the extracted bits aren't fully contained within the fragment then
2076 // give up.
2077 // FIXME: We could probably do better here
2078 return std::nullopt;
2079 }
2080 }
2081 Op.appendToVector(V&: Ops);
2082 }
2083 }
2084 assert((!Expr->isImplicit() || CanSplitValue) && "Expr can't be split");
2085 assert(Expr && "Unknown DIExpression");
2086 if (EmitFragment) {
2087 Ops.push_back(Elt: dwarf::DW_OP_LLVM_fragment);
2088 Ops.push_back(Elt: OffsetInBits);
2089 Ops.push_back(Elt: SizeInBits);
2090 }
2091 return DIExpression::get(Context&: Expr->getContext(), Elements: Ops);
2092}
2093
2094/// See declaration for more info.
2095bool DIExpression::calculateFragmentIntersect(
2096 const DataLayout &DL, const Value *SliceStart, uint64_t SliceOffsetInBits,
2097 uint64_t SliceSizeInBits, const Value *DbgPtr, int64_t DbgPtrOffsetInBits,
2098 int64_t DbgExtractOffsetInBits, DIExpression::FragmentInfo VarFrag,
2099 std::optional<DIExpression::FragmentInfo> &Result,
2100 int64_t &OffsetFromLocationInBits) {
2101
2102 if (VarFrag.SizeInBits == 0)
2103 return false; // Variable size is unknown.
2104
2105 // Difference between mem slice start and the dbg location start.
2106 // 0 4 8 12 16 ...
2107 // | |
2108 // dbg location start
2109 // |
2110 // mem slice start
2111 // Here MemStartRelToDbgStartInBits is 8. Note this can be negative.
2112 int64_t MemStartRelToDbgStartInBits;
2113 {
2114 auto MemOffsetFromDbgInBytes = SliceStart->getPointerOffsetFrom(Other: DbgPtr, DL);
2115 if (!MemOffsetFromDbgInBytes)
2116 return false; // Can't calculate difference in addresses.
2117 // Difference between the pointers.
2118 MemStartRelToDbgStartInBits = *MemOffsetFromDbgInBytes * 8;
2119 // Add the difference of the offsets.
2120 MemStartRelToDbgStartInBits +=
2121 SliceOffsetInBits - (DbgPtrOffsetInBits + DbgExtractOffsetInBits);
2122 }
2123
2124 // Out-param. Invert offset to get offset from debug location.
2125 OffsetFromLocationInBits = -MemStartRelToDbgStartInBits;
2126
2127 // Check if the variable fragment sits outside (before) this memory slice.
2128 int64_t MemEndRelToDbgStart = MemStartRelToDbgStartInBits + SliceSizeInBits;
2129 if (MemEndRelToDbgStart < 0) {
2130 Result = {0, 0}; // Out-param.
2131 return true;
2132 }
2133
2134 // Work towards creating SliceOfVariable which is the bits of the variable
2135 // that the memory region covers.
2136 // 0 4 8 12 16 ...
2137 // | |
2138 // dbg location start with VarFrag offset=32
2139 // |
2140 // mem slice start: SliceOfVariable offset=40
2141 int64_t MemStartRelToVarInBits =
2142 MemStartRelToDbgStartInBits + VarFrag.OffsetInBits;
2143 int64_t MemEndRelToVarInBits = MemStartRelToVarInBits + SliceSizeInBits;
2144 // If the memory region starts before the debug location the fragment
2145 // offset would be negative, which we can't encode. Limit those to 0. This
2146 // is fine because those bits necessarily don't overlap with the existing
2147 // variable fragment.
2148 int64_t MemFragStart = std::max<int64_t>(a: 0, b: MemStartRelToVarInBits);
2149 int64_t MemFragSize =
2150 std::max<int64_t>(a: 0, b: MemEndRelToVarInBits - MemFragStart);
2151 DIExpression::FragmentInfo SliceOfVariable(MemFragSize, MemFragStart);
2152
2153 // Intersect the memory region fragment with the variable location fragment.
2154 DIExpression::FragmentInfo TrimmedSliceOfVariable =
2155 DIExpression::FragmentInfo::intersect(A: SliceOfVariable, B: VarFrag);
2156 if (TrimmedSliceOfVariable == VarFrag)
2157 Result = std::nullopt; // Out-param.
2158 else
2159 Result = TrimmedSliceOfVariable; // Out-param.
2160 return true;
2161}
2162
2163std::pair<DIExpression *, const ConstantInt *>
2164DIExpression::constantFold(const ConstantInt *CI) {
2165 // Copy the APInt so we can modify it.
2166 APInt NewInt = CI->getValue();
2167 SmallVector<uint64_t, 8> Ops;
2168
2169 // Fold operators only at the beginning of the expression.
2170 bool First = true;
2171 bool Changed = false;
2172 for (auto Op : expr_ops()) {
2173 switch (Op.getOp()) {
2174 default:
2175 // We fold only the leading part of the expression; if we get to a part
2176 // that we're going to copy unchanged, and haven't done any folding,
2177 // then the entire expression is unchanged and we can return early.
2178 if (!Changed)
2179 return {this, CI};
2180 First = false;
2181 break;
2182 case dwarf::DW_OP_LLVM_convert:
2183 if (!First)
2184 break;
2185 Changed = true;
2186 if (Op.getArg(I: 1) == dwarf::DW_ATE_signed)
2187 NewInt = NewInt.sextOrTrunc(width: Op.getArg(I: 0));
2188 else {
2189 assert(Op.getArg(1) == dwarf::DW_ATE_unsigned && "Unexpected operand");
2190 NewInt = NewInt.zextOrTrunc(width: Op.getArg(I: 0));
2191 }
2192 continue;
2193 }
2194 Op.appendToVector(V&: Ops);
2195 }
2196 if (!Changed)
2197 return {this, CI};
2198 return {DIExpression::get(Context&: getContext(), Elements: Ops),
2199 ConstantInt::get(Context&: getContext(), V: NewInt)};
2200}
2201
2202uint64_t DIExpression::getNumLocationOperands() const {
2203 uint64_t Result = 0;
2204 for (auto ExprOp : expr_ops())
2205 if (ExprOp.getOp() == dwarf::DW_OP_LLVM_arg)
2206 Result = std::max(a: Result, b: ExprOp.getArg(I: 0) + 1);
2207 assert(hasAllLocationOps(Result) &&
2208 "Expression is missing one or more location operands.");
2209 return Result;
2210}
2211
2212std::optional<DIExpression::SignedOrUnsignedConstant>
2213DIExpression::isConstant() const {
2214
2215 // Recognize signed and unsigned constants.
2216 // An signed constants can be represented as DW_OP_consts C DW_OP_stack_value
2217 // (DW_OP_LLVM_fragment of Len).
2218 // An unsigned constant can be represented as
2219 // DW_OP_constu C DW_OP_stack_value (DW_OP_LLVM_fragment of Len).
2220
2221 if ((getNumElements() != 2 && getNumElements() != 3 &&
2222 getNumElements() != 6) ||
2223 (getElement(I: 0) != dwarf::DW_OP_consts &&
2224 getElement(I: 0) != dwarf::DW_OP_constu))
2225 return std::nullopt;
2226
2227 if (getNumElements() == 2 && getElement(I: 0) == dwarf::DW_OP_consts)
2228 return SignedOrUnsignedConstant::SignedConstant;
2229
2230 if ((getNumElements() == 3 && getElement(I: 2) != dwarf::DW_OP_stack_value) ||
2231 (getNumElements() == 6 && (getElement(I: 2) != dwarf::DW_OP_stack_value ||
2232 getElement(I: 3) != dwarf::DW_OP_LLVM_fragment)))
2233 return std::nullopt;
2234 return getElement(I: 0) == dwarf::DW_OP_constu
2235 ? SignedOrUnsignedConstant::UnsignedConstant
2236 : SignedOrUnsignedConstant::SignedConstant;
2237}
2238
2239DIExpression::ExtOps DIExpression::getExtOps(unsigned FromSize, unsigned ToSize,
2240 bool Signed) {
2241 dwarf::TypeKind TK = Signed ? dwarf::DW_ATE_signed : dwarf::DW_ATE_unsigned;
2242 DIExpression::ExtOps Ops{._M_elems: {dwarf::DW_OP_LLVM_convert, FromSize, TK,
2243 dwarf::DW_OP_LLVM_convert, ToSize, TK}};
2244 return Ops;
2245}
2246
2247DIExpression *DIExpression::appendExt(const DIExpression *Expr,
2248 unsigned FromSize, unsigned ToSize,
2249 bool Signed) {
2250 return appendToStack(Expr, Ops: getExtOps(FromSize, ToSize, Signed));
2251}
2252
2253DIGlobalVariableExpression *
2254DIGlobalVariableExpression::getImpl(LLVMContext &Context, Metadata *Variable,
2255 Metadata *Expression, StorageType Storage,
2256 bool ShouldCreate) {
2257 DEFINE_GETIMPL_LOOKUP(DIGlobalVariableExpression, (Variable, Expression));
2258 Metadata *Ops[] = {Variable, Expression};
2259 DEFINE_GETIMPL_STORE_NO_CONSTRUCTOR_ARGS(DIGlobalVariableExpression, Ops);
2260}
2261DIObjCProperty::DIObjCProperty(LLVMContext &C, StorageType Storage,
2262 unsigned Line, unsigned Attributes,
2263 ArrayRef<Metadata *> Ops)
2264 : DINode(C, DIObjCPropertyKind, Storage, dwarf::DW_TAG_APPLE_property, Ops),
2265 Line(Line), Attributes(Attributes) {}
2266
2267DIObjCProperty *DIObjCProperty::getImpl(
2268 LLVMContext &Context, MDString *Name, Metadata *File, unsigned Line,
2269 MDString *GetterName, MDString *SetterName, unsigned Attributes,
2270 Metadata *Type, StorageType Storage, bool ShouldCreate) {
2271 assert(isCanonical(Name) && "Expected canonical MDString");
2272 assert(isCanonical(GetterName) && "Expected canonical MDString");
2273 assert(isCanonical(SetterName) && "Expected canonical MDString");
2274 DEFINE_GETIMPL_LOOKUP(DIObjCProperty, (Name, File, Line, GetterName,
2275 SetterName, Attributes, Type));
2276 Metadata *Ops[] = {Name, File, GetterName, SetterName, Type};
2277 DEFINE_GETIMPL_STORE(DIObjCProperty, (Line, Attributes), Ops);
2278}
2279
2280DIImportedEntity *DIImportedEntity::getImpl(LLVMContext &Context, unsigned Tag,
2281 Metadata *Scope, Metadata *Entity,
2282 Metadata *File, unsigned Line,
2283 MDString *Name, Metadata *Elements,
2284 StorageType Storage,
2285 bool ShouldCreate) {
2286 assert(isCanonical(Name) && "Expected canonical MDString");
2287 DEFINE_GETIMPL_LOOKUP(DIImportedEntity,
2288 (Tag, Scope, Entity, File, Line, Name, Elements));
2289 Metadata *Ops[] = {Scope, Entity, Name, File, Elements};
2290 DEFINE_GETIMPL_STORE(DIImportedEntity, (Tag, Line), Ops);
2291}
2292
2293DIMacro *DIMacro::getImpl(LLVMContext &Context, unsigned MIType, unsigned Line,
2294 MDString *Name, MDString *Value, StorageType Storage,
2295 bool ShouldCreate) {
2296 assert(isCanonical(Name) && "Expected canonical MDString");
2297 DEFINE_GETIMPL_LOOKUP(DIMacro, (MIType, Line, Name, Value));
2298 Metadata *Ops[] = {Name, Value};
2299 DEFINE_GETIMPL_STORE(DIMacro, (MIType, Line), Ops);
2300}
2301
2302DIMacroFile *DIMacroFile::getImpl(LLVMContext &Context, unsigned MIType,
2303 unsigned Line, Metadata *File,
2304 Metadata *Elements, StorageType Storage,
2305 bool ShouldCreate) {
2306 DEFINE_GETIMPL_LOOKUP(DIMacroFile, (MIType, Line, File, Elements));
2307 Metadata *Ops[] = {File, Elements};
2308 DEFINE_GETIMPL_STORE(DIMacroFile, (MIType, Line), Ops);
2309}
2310
2311DIArgList *DIArgList::get(LLVMContext &Context,
2312 ArrayRef<ValueAsMetadata *> Args) {
2313 auto ExistingIt = Context.pImpl->DIArgLists.find_as(Val: DIArgListKeyInfo(Args));
2314 if (ExistingIt != Context.pImpl->DIArgLists.end())
2315 return *ExistingIt;
2316 DIArgList *NewArgList = new DIArgList(Context, Args);
2317 Context.pImpl->DIArgLists.insert(V: NewArgList);
2318 return NewArgList;
2319}
2320
2321void DIArgList::handleChangedOperand(void *Ref, Metadata *New) {
2322 ValueAsMetadata **OldVMPtr = static_cast<ValueAsMetadata **>(Ref);
2323 assert((!New || isa<ValueAsMetadata>(New)) &&
2324 "DIArgList must be passed a ValueAsMetadata");
2325 untrack();
2326 // We need to update the set storage once the Args are updated since they
2327 // form the key to the DIArgLists store.
2328 getContext().pImpl->DIArgLists.erase(V: this);
2329 ValueAsMetadata *NewVM = cast_or_null<ValueAsMetadata>(Val: New);
2330 for (ValueAsMetadata *&VM : Args) {
2331 if (&VM == OldVMPtr) {
2332 if (NewVM)
2333 VM = NewVM;
2334 else
2335 VM = ValueAsMetadata::get(V: PoisonValue::get(T: VM->getValue()->getType()));
2336 }
2337 }
2338 // We've changed the contents of this DIArgList, and the set storage may
2339 // already contain a DIArgList with our new set of args; if it does, then we
2340 // must RAUW this with the existing DIArgList, otherwise we simply insert this
2341 // back into the set storage.
2342 DIArgList *ExistingArgList = getUniqued(Store&: getContext().pImpl->DIArgLists, Key: this);
2343 if (ExistingArgList) {
2344 replaceAllUsesWith(MD: ExistingArgList);
2345 // Clear this here so we don't try to untrack in the destructor.
2346 Args.clear();
2347 delete this;
2348 return;
2349 }
2350 getContext().pImpl->DIArgLists.insert(V: this);
2351 track();
2352}
2353void DIArgList::track() {
2354 for (ValueAsMetadata *&VAM : Args)
2355 if (VAM)
2356 MetadataTracking::track(Ref: &VAM, MD&: *VAM, Owner&: *this);
2357}
2358void DIArgList::untrack() {
2359 for (ValueAsMetadata *&VAM : Args)
2360 if (VAM)
2361 MetadataTracking::untrack(Ref: &VAM, MD&: *VAM);
2362}
2363void DIArgList::dropAllReferences(bool Untrack) {
2364 if (Untrack)
2365 untrack();
2366 Args.clear();
2367 ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
2368}
2369