1//===- Type.cpp - Implement the Type class --------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Type class for the IR library.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/IR/Type.h"
14#include "LLVMContextImpl.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/SmallString.h"
17#include "llvm/ADT/StringMap.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/IR/Constant.h"
20#include "llvm/IR/Constants.h"
21#include "llvm/IR/DerivedTypes.h"
22#include "llvm/IR/LLVMContext.h"
23#include "llvm/IR/Value.h"
24#include "llvm/Support/Casting.h"
25#include "llvm/Support/TypeSize.h"
26#include "llvm/Support/raw_ostream.h"
27#include <cassert>
28#include <utility>
29
30using namespace llvm;
31
32//===----------------------------------------------------------------------===//
33// Type Class Implementation
34//===----------------------------------------------------------------------===//
35
36Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
37 switch (IDNumber) {
38 case VoidTyID : return getVoidTy(C);
39 case HalfTyID : return getHalfTy(C);
40 case BFloatTyID : return getBFloatTy(C);
41 case FloatTyID : return getFloatTy(C);
42 case DoubleTyID : return getDoubleTy(C);
43 case X86_FP80TyID : return getX86_FP80Ty(C);
44 case FP128TyID : return getFP128Ty(C);
45 case PPC_FP128TyID : return getPPC_FP128Ty(C);
46 case LabelTyID : return getLabelTy(C);
47 case MetadataTyID : return getMetadataTy(C);
48 case X86_MMXTyID : return getX86_MMXTy(C);
49 case X86_AMXTyID : return getX86_AMXTy(C);
50 case TokenTyID : return getTokenTy(C);
51 default:
52 return nullptr;
53 }
54}
55
56bool Type::isIntegerTy(unsigned Bitwidth) const {
57 return isIntegerTy() && cast<IntegerType>(Val: this)->getBitWidth() == Bitwidth;
58}
59
60bool Type::isScalableTy() const {
61 if (const auto *ATy = dyn_cast<ArrayType>(Val: this))
62 return ATy->getElementType()->isScalableTy();
63 if (const auto *STy = dyn_cast<StructType>(Val: this)) {
64 SmallPtrSet<Type *, 4> Visited;
65 return STy->containsScalableVectorType(Visited: &Visited);
66 }
67 return getTypeID() == ScalableVectorTyID || isScalableTargetExtTy();
68}
69
70const fltSemantics &Type::getFltSemantics() const {
71 switch (getTypeID()) {
72 case HalfTyID: return APFloat::IEEEhalf();
73 case BFloatTyID: return APFloat::BFloat();
74 case FloatTyID: return APFloat::IEEEsingle();
75 case DoubleTyID: return APFloat::IEEEdouble();
76 case X86_FP80TyID: return APFloat::x87DoubleExtended();
77 case FP128TyID: return APFloat::IEEEquad();
78 case PPC_FP128TyID: return APFloat::PPCDoubleDouble();
79 default: llvm_unreachable("Invalid floating type");
80 }
81}
82
83bool Type::isIEEE() const {
84 return APFloat::getZero(Sem: getFltSemantics()).isIEEE();
85}
86
87bool Type::isScalableTargetExtTy() const {
88 if (auto *TT = dyn_cast<TargetExtType>(Val: this))
89 return isa<ScalableVectorType>(Val: TT->getLayoutType());
90 return false;
91}
92
93Type *Type::getFloatingPointTy(LLVMContext &C, const fltSemantics &S) {
94 Type *Ty;
95 if (&S == &APFloat::IEEEhalf())
96 Ty = Type::getHalfTy(C);
97 else if (&S == &APFloat::BFloat())
98 Ty = Type::getBFloatTy(C);
99 else if (&S == &APFloat::IEEEsingle())
100 Ty = Type::getFloatTy(C);
101 else if (&S == &APFloat::IEEEdouble())
102 Ty = Type::getDoubleTy(C);
103 else if (&S == &APFloat::x87DoubleExtended())
104 Ty = Type::getX86_FP80Ty(C);
105 else if (&S == &APFloat::IEEEquad())
106 Ty = Type::getFP128Ty(C);
107 else {
108 assert(&S == &APFloat::PPCDoubleDouble() && "Unknown FP format");
109 Ty = Type::getPPC_FP128Ty(C);
110 }
111 return Ty;
112}
113
114bool Type::canLosslesslyBitCastTo(Type *Ty) const {
115 // Identity cast means no change so return true
116 if (this == Ty)
117 return true;
118
119 // They are not convertible unless they are at least first class types
120 if (!this->isFirstClassType() || !Ty->isFirstClassType())
121 return false;
122
123 // Vector -> Vector conversions are always lossless if the two vector types
124 // have the same size, otherwise not.
125 if (isa<VectorType>(Val: this) && isa<VectorType>(Val: Ty))
126 return getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits();
127
128 // 64-bit fixed width vector types can be losslessly converted to x86mmx.
129 if (((isa<FixedVectorType>(Val: this)) && Ty->isX86_MMXTy()) &&
130 getPrimitiveSizeInBits().getFixedValue() == 64)
131 return true;
132 if ((isX86_MMXTy() && isa<FixedVectorType>(Val: Ty)) &&
133 Ty->getPrimitiveSizeInBits().getFixedValue() == 64)
134 return true;
135
136 // 8192-bit fixed width vector types can be losslessly converted to x86amx.
137 if (((isa<FixedVectorType>(Val: this)) && Ty->isX86_AMXTy()) &&
138 getPrimitiveSizeInBits().getFixedValue() == 8192)
139 return true;
140 if ((isX86_AMXTy() && isa<FixedVectorType>(Val: Ty)) &&
141 Ty->getPrimitiveSizeInBits().getFixedValue() == 8192)
142 return true;
143
144 // Conservatively assume we can't losslessly convert between pointers with
145 // different address spaces.
146 return false;
147}
148
149bool Type::isEmptyTy() const {
150 if (auto *ATy = dyn_cast<ArrayType>(Val: this)) {
151 unsigned NumElements = ATy->getNumElements();
152 return NumElements == 0 || ATy->getElementType()->isEmptyTy();
153 }
154
155 if (auto *STy = dyn_cast<StructType>(Val: this)) {
156 unsigned NumElements = STy->getNumElements();
157 for (unsigned i = 0; i < NumElements; ++i)
158 if (!STy->getElementType(N: i)->isEmptyTy())
159 return false;
160 return true;
161 }
162
163 return false;
164}
165
166TypeSize Type::getPrimitiveSizeInBits() const {
167 switch (getTypeID()) {
168 case Type::HalfTyID:
169 return TypeSize::getFixed(ExactSize: 16);
170 case Type::BFloatTyID:
171 return TypeSize::getFixed(ExactSize: 16);
172 case Type::FloatTyID:
173 return TypeSize::getFixed(ExactSize: 32);
174 case Type::DoubleTyID:
175 return TypeSize::getFixed(ExactSize: 64);
176 case Type::X86_FP80TyID:
177 return TypeSize::getFixed(ExactSize: 80);
178 case Type::FP128TyID:
179 return TypeSize::getFixed(ExactSize: 128);
180 case Type::PPC_FP128TyID:
181 return TypeSize::getFixed(ExactSize: 128);
182 case Type::X86_MMXTyID:
183 return TypeSize::getFixed(ExactSize: 64);
184 case Type::X86_AMXTyID:
185 return TypeSize::getFixed(ExactSize: 8192);
186 case Type::IntegerTyID:
187 return TypeSize::getFixed(ExactSize: cast<IntegerType>(Val: this)->getBitWidth());
188 case Type::FixedVectorTyID:
189 case Type::ScalableVectorTyID: {
190 const VectorType *VTy = cast<VectorType>(Val: this);
191 ElementCount EC = VTy->getElementCount();
192 TypeSize ETS = VTy->getElementType()->getPrimitiveSizeInBits();
193 assert(!ETS.isScalable() && "Vector type should have fixed-width elements");
194 return {ETS.getFixedValue() * EC.getKnownMinValue(), EC.isScalable()};
195 }
196 default:
197 return TypeSize::getFixed(ExactSize: 0);
198 }
199}
200
201unsigned Type::getScalarSizeInBits() const {
202 // It is safe to assume that the scalar types have a fixed size.
203 return getScalarType()->getPrimitiveSizeInBits().getFixedValue();
204}
205
206int Type::getFPMantissaWidth() const {
207 if (auto *VTy = dyn_cast<VectorType>(Val: this))
208 return VTy->getElementType()->getFPMantissaWidth();
209 assert(isFloatingPointTy() && "Not a floating point type!");
210 if (getTypeID() == HalfTyID) return 11;
211 if (getTypeID() == BFloatTyID) return 8;
212 if (getTypeID() == FloatTyID) return 24;
213 if (getTypeID() == DoubleTyID) return 53;
214 if (getTypeID() == X86_FP80TyID) return 64;
215 if (getTypeID() == FP128TyID) return 113;
216 assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
217 return -1;
218}
219
220bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
221 if (auto *ATy = dyn_cast<ArrayType>(Val: this))
222 return ATy->getElementType()->isSized(Visited);
223
224 if (auto *VTy = dyn_cast<VectorType>(Val: this))
225 return VTy->getElementType()->isSized(Visited);
226
227 if (auto *TTy = dyn_cast<TargetExtType>(Val: this))
228 return TTy->getLayoutType()->isSized(Visited);
229
230 return cast<StructType>(Val: this)->isSized(Visited);
231}
232
233//===----------------------------------------------------------------------===//
234// Primitive 'Type' data
235//===----------------------------------------------------------------------===//
236
237Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
238Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
239Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
240Type *Type::getBFloatTy(LLVMContext &C) { return &C.pImpl->BFloatTy; }
241Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
242Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
243Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
244Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; }
245Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
246Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
247Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
248Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
249Type *Type::getX86_AMXTy(LLVMContext &C) { return &C.pImpl->X86_AMXTy; }
250
251IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
252IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
253IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
254IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
255IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
256IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; }
257
258IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
259 return IntegerType::get(C, NumBits: N);
260}
261
262Type *Type::getWasm_ExternrefTy(LLVMContext &C) {
263 // opaque pointer in addrspace(10)
264 static PointerType *Ty = PointerType::get(C, AddressSpace: 10);
265 return Ty;
266}
267
268Type *Type::getWasm_FuncrefTy(LLVMContext &C) {
269 // opaque pointer in addrspace(20)
270 static PointerType *Ty = PointerType::get(C, AddressSpace: 20);
271 return Ty;
272}
273
274//===----------------------------------------------------------------------===//
275// IntegerType Implementation
276//===----------------------------------------------------------------------===//
277
278IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
279 assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
280 assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
281
282 // Check for the built-in integer types
283 switch (NumBits) {
284 case 1: return cast<IntegerType>(Val: Type::getInt1Ty(C));
285 case 8: return cast<IntegerType>(Val: Type::getInt8Ty(C));
286 case 16: return cast<IntegerType>(Val: Type::getInt16Ty(C));
287 case 32: return cast<IntegerType>(Val: Type::getInt32Ty(C));
288 case 64: return cast<IntegerType>(Val: Type::getInt64Ty(C));
289 case 128: return cast<IntegerType>(Val: Type::getInt128Ty(C));
290 default:
291 break;
292 }
293
294 IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
295
296 if (!Entry)
297 Entry = new (C.pImpl->Alloc) IntegerType(C, NumBits);
298
299 return Entry;
300}
301
302APInt IntegerType::getMask() const { return APInt::getAllOnes(numBits: getBitWidth()); }
303
304//===----------------------------------------------------------------------===//
305// FunctionType Implementation
306//===----------------------------------------------------------------------===//
307
308FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
309 bool IsVarArgs)
310 : Type(Result->getContext(), FunctionTyID) {
311 Type **SubTys = reinterpret_cast<Type**>(this+1);
312 assert(isValidReturnType(Result) && "invalid return type for function");
313 setSubclassData(IsVarArgs);
314
315 SubTys[0] = Result;
316
317 for (unsigned i = 0, e = Params.size(); i != e; ++i) {
318 assert(isValidArgumentType(Params[i]) &&
319 "Not a valid type for function argument!");
320 SubTys[i+1] = Params[i];
321 }
322
323 ContainedTys = SubTys;
324 NumContainedTys = Params.size() + 1; // + 1 for result type
325}
326
327// This is the factory function for the FunctionType class.
328FunctionType *FunctionType::get(Type *ReturnType,
329 ArrayRef<Type*> Params, bool isVarArg) {
330 LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
331 const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
332 FunctionType *FT;
333 // Since we only want to allocate a fresh function type in case none is found
334 // and we don't want to perform two lookups (one for checking if existent and
335 // one for inserting the newly allocated one), here we instead lookup based on
336 // Key and update the reference to the function type in-place to a newly
337 // allocated one if not found.
338 auto Insertion = pImpl->FunctionTypes.insert_as(V: nullptr, LookupKey: Key);
339 if (Insertion.second) {
340 // The function type was not found. Allocate one and update FunctionTypes
341 // in-place.
342 FT = (FunctionType *)pImpl->Alloc.Allocate(
343 Size: sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1),
344 Alignment: alignof(FunctionType));
345 new (FT) FunctionType(ReturnType, Params, isVarArg);
346 *Insertion.first = FT;
347 } else {
348 // The function type was found. Just return it.
349 FT = *Insertion.first;
350 }
351 return FT;
352}
353
354FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
355 return get(ReturnType: Result, Params: std::nullopt, isVarArg);
356}
357
358bool FunctionType::isValidReturnType(Type *RetTy) {
359 return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
360 !RetTy->isMetadataTy();
361}
362
363bool FunctionType::isValidArgumentType(Type *ArgTy) {
364 return ArgTy->isFirstClassType();
365}
366
367//===----------------------------------------------------------------------===//
368// StructType Implementation
369//===----------------------------------------------------------------------===//
370
371// Primitive Constructors.
372
373StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
374 bool isPacked) {
375 LLVMContextImpl *pImpl = Context.pImpl;
376 const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
377
378 StructType *ST;
379 // Since we only want to allocate a fresh struct type in case none is found
380 // and we don't want to perform two lookups (one for checking if existent and
381 // one for inserting the newly allocated one), here we instead lookup based on
382 // Key and update the reference to the struct type in-place to a newly
383 // allocated one if not found.
384 auto Insertion = pImpl->AnonStructTypes.insert_as(V: nullptr, LookupKey: Key);
385 if (Insertion.second) {
386 // The struct type was not found. Allocate one and update AnonStructTypes
387 // in-place.
388 ST = new (Context.pImpl->Alloc) StructType(Context);
389 ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
390 ST->setBody(Elements: ETypes, isPacked);
391 *Insertion.first = ST;
392 } else {
393 // The struct type was found. Just return it.
394 ST = *Insertion.first;
395 }
396
397 return ST;
398}
399
400bool StructType::containsScalableVectorType(
401 SmallPtrSetImpl<Type *> *Visited) const {
402 if ((getSubclassData() & SCDB_ContainsScalableVector) != 0)
403 return true;
404
405 if ((getSubclassData() & SCDB_NotContainsScalableVector) != 0)
406 return false;
407
408 if (Visited && !Visited->insert(Ptr: const_cast<StructType *>(this)).second)
409 return false;
410
411 for (Type *Ty : elements()) {
412 if (isa<ScalableVectorType>(Val: Ty)) {
413 const_cast<StructType *>(this)->setSubclassData(
414 getSubclassData() | SCDB_ContainsScalableVector);
415 return true;
416 }
417 if (auto *STy = dyn_cast<StructType>(Val: Ty)) {
418 if (STy->containsScalableVectorType(Visited)) {
419 const_cast<StructType *>(this)->setSubclassData(
420 getSubclassData() | SCDB_ContainsScalableVector);
421 return true;
422 }
423 }
424 }
425
426 // For structures that are opaque, return false but do not set the
427 // SCDB_NotContainsScalableVector flag since it may gain scalable vector type
428 // when it becomes non-opaque.
429 if (!isOpaque())
430 const_cast<StructType *>(this)->setSubclassData(
431 getSubclassData() | SCDB_NotContainsScalableVector);
432 return false;
433}
434
435bool StructType::containsHomogeneousScalableVectorTypes() const {
436 Type *FirstTy = getNumElements() > 0 ? elements()[0] : nullptr;
437 if (!FirstTy || !isa<ScalableVectorType>(Val: FirstTy))
438 return false;
439 for (Type *Ty : elements())
440 if (Ty != FirstTy)
441 return false;
442 return true;
443}
444
445void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
446 assert(isOpaque() && "Struct body already set!");
447
448 setSubclassData(getSubclassData() | SCDB_HasBody);
449 if (isPacked)
450 setSubclassData(getSubclassData() | SCDB_Packed);
451
452 NumContainedTys = Elements.size();
453
454 if (Elements.empty()) {
455 ContainedTys = nullptr;
456 return;
457 }
458
459 ContainedTys = Elements.copy(A&: getContext().pImpl->Alloc).data();
460}
461
462void StructType::setName(StringRef Name) {
463 if (Name == getName()) return;
464
465 StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
466
467 using EntryTy = StringMap<StructType *>::MapEntryTy;
468
469 // If this struct already had a name, remove its symbol table entry. Don't
470 // delete the data yet because it may be part of the new name.
471 if (SymbolTableEntry)
472 SymbolTable.remove(KeyValue: (EntryTy *)SymbolTableEntry);
473
474 // If this is just removing the name, we're done.
475 if (Name.empty()) {
476 if (SymbolTableEntry) {
477 // Delete the old string data.
478 ((EntryTy *)SymbolTableEntry)->Destroy(allocator&: SymbolTable.getAllocator());
479 SymbolTableEntry = nullptr;
480 }
481 return;
482 }
483
484 // Look up the entry for the name.
485 auto IterBool =
486 getContext().pImpl->NamedStructTypes.insert(KV: std::make_pair(x&: Name, y: this));
487
488 // While we have a name collision, try a random rename.
489 if (!IterBool.second) {
490 SmallString<64> TempStr(Name);
491 TempStr.push_back(Elt: '.');
492 raw_svector_ostream TmpStream(TempStr);
493 unsigned NameSize = Name.size();
494
495 do {
496 TempStr.resize(N: NameSize + 1);
497 TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
498
499 IterBool = getContext().pImpl->NamedStructTypes.insert(
500 KV: std::make_pair(x: TmpStream.str(), y: this));
501 } while (!IterBool.second);
502 }
503
504 // Delete the old string data.
505 if (SymbolTableEntry)
506 ((EntryTy *)SymbolTableEntry)->Destroy(allocator&: SymbolTable.getAllocator());
507 SymbolTableEntry = &*IterBool.first;
508}
509
510//===----------------------------------------------------------------------===//
511// StructType Helper functions.
512
513StructType *StructType::create(LLVMContext &Context, StringRef Name) {
514 StructType *ST = new (Context.pImpl->Alloc) StructType(Context);
515 if (!Name.empty())
516 ST->setName(Name);
517 return ST;
518}
519
520StructType *StructType::get(LLVMContext &Context, bool isPacked) {
521 return get(Context, ETypes: std::nullopt, isPacked);
522}
523
524StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
525 StringRef Name, bool isPacked) {
526 StructType *ST = create(Context, Name);
527 ST->setBody(Elements, isPacked);
528 return ST;
529}
530
531StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
532 return create(Context, Elements, Name: StringRef());
533}
534
535StructType *StructType::create(LLVMContext &Context) {
536 return create(Context, Name: StringRef());
537}
538
539StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
540 bool isPacked) {
541 assert(!Elements.empty() &&
542 "This method may not be invoked with an empty list");
543 return create(Context&: Elements[0]->getContext(), Elements, Name, isPacked);
544}
545
546StructType *StructType::create(ArrayRef<Type*> Elements) {
547 assert(!Elements.empty() &&
548 "This method may not be invoked with an empty list");
549 return create(Context&: Elements[0]->getContext(), Elements, Name: StringRef());
550}
551
552bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const {
553 if ((getSubclassData() & SCDB_IsSized) != 0)
554 return true;
555 if (isOpaque())
556 return false;
557
558 if (Visited && !Visited->insert(Ptr: const_cast<StructType*>(this)).second)
559 return false;
560
561 // Okay, our struct is sized if all of the elements are, but if one of the
562 // elements is opaque, the struct isn't sized *yet*, but may become sized in
563 // the future, so just bail out without caching.
564 // The ONLY special case inside a struct that is considered sized is when the
565 // elements are homogeneous of a scalable vector type.
566 if (containsHomogeneousScalableVectorTypes()) {
567 const_cast<StructType *>(this)->setSubclassData(getSubclassData() |
568 SCDB_IsSized);
569 return true;
570 }
571 for (Type *Ty : elements()) {
572 // If the struct contains a scalable vector type, don't consider it sized.
573 // This prevents it from being used in loads/stores/allocas/GEPs. The ONLY
574 // special case right now is a structure of homogenous scalable vector
575 // types and is handled by the if-statement before this for-loop.
576 if (Ty->isScalableTy())
577 return false;
578 if (!Ty->isSized(Visited))
579 return false;
580 }
581
582 // Here we cheat a bit and cast away const-ness. The goal is to memoize when
583 // we find a sized type, as types can only move from opaque to sized, not the
584 // other way.
585 const_cast<StructType*>(this)->setSubclassData(
586 getSubclassData() | SCDB_IsSized);
587 return true;
588}
589
590StringRef StructType::getName() const {
591 assert(!isLiteral() && "Literal structs never have names");
592 if (!SymbolTableEntry) return StringRef();
593
594 return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
595}
596
597bool StructType::isValidElementType(Type *ElemTy) {
598 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
599 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
600 !ElemTy->isTokenTy();
601}
602
603bool StructType::isLayoutIdentical(StructType *Other) const {
604 if (this == Other) return true;
605
606 if (isPacked() != Other->isPacked())
607 return false;
608
609 return elements() == Other->elements();
610}
611
612Type *StructType::getTypeAtIndex(const Value *V) const {
613 unsigned Idx = (unsigned)cast<Constant>(Val: V)->getUniqueInteger().getZExtValue();
614 assert(indexValid(Idx) && "Invalid structure index!");
615 return getElementType(N: Idx);
616}
617
618bool StructType::indexValid(const Value *V) const {
619 // Structure indexes require (vectors of) 32-bit integer constants. In the
620 // vector case all of the indices must be equal.
621 if (!V->getType()->isIntOrIntVectorTy(BitWidth: 32))
622 return false;
623 if (isa<ScalableVectorType>(Val: V->getType()))
624 return false;
625 const Constant *C = dyn_cast<Constant>(Val: V);
626 if (C && V->getType()->isVectorTy())
627 C = C->getSplatValue();
628 const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(Val: C);
629 return CU && CU->getZExtValue() < getNumElements();
630}
631
632StructType *StructType::getTypeByName(LLVMContext &C, StringRef Name) {
633 return C.pImpl->NamedStructTypes.lookup(Key: Name);
634}
635
636//===----------------------------------------------------------------------===//
637// ArrayType Implementation
638//===----------------------------------------------------------------------===//
639
640ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
641 : Type(ElType->getContext(), ArrayTyID), ContainedType(ElType),
642 NumElements(NumEl) {
643 ContainedTys = &ContainedType;
644 NumContainedTys = 1;
645}
646
647ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
648 assert(isValidElementType(ElementType) && "Invalid type for array element!");
649
650 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
651 ArrayType *&Entry =
652 pImpl->ArrayTypes[std::make_pair(x&: ElementType, y&: NumElements)];
653
654 if (!Entry)
655 Entry = new (pImpl->Alloc) ArrayType(ElementType, NumElements);
656 return Entry;
657}
658
659bool ArrayType::isValidElementType(Type *ElemTy) {
660 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
661 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
662 !ElemTy->isTokenTy() && !ElemTy->isX86_AMXTy();
663}
664
665//===----------------------------------------------------------------------===//
666// VectorType Implementation
667//===----------------------------------------------------------------------===//
668
669VectorType::VectorType(Type *ElType, unsigned EQ, Type::TypeID TID)
670 : Type(ElType->getContext(), TID), ContainedType(ElType),
671 ElementQuantity(EQ) {
672 ContainedTys = &ContainedType;
673 NumContainedTys = 1;
674}
675
676VectorType *VectorType::get(Type *ElementType, ElementCount EC) {
677 if (EC.isScalable())
678 return ScalableVectorType::get(ElementType, MinNumElts: EC.getKnownMinValue());
679 else
680 return FixedVectorType::get(ElementType, NumElts: EC.getKnownMinValue());
681}
682
683bool VectorType::isValidElementType(Type *ElemTy) {
684 return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
685 ElemTy->isPointerTy() || ElemTy->getTypeID() == TypedPointerTyID;
686}
687
688//===----------------------------------------------------------------------===//
689// FixedVectorType Implementation
690//===----------------------------------------------------------------------===//
691
692FixedVectorType *FixedVectorType::get(Type *ElementType, unsigned NumElts) {
693 assert(NumElts > 0 && "#Elements of a VectorType must be greater than 0");
694 assert(isValidElementType(ElementType) && "Element type of a VectorType must "
695 "be an integer, floating point, or "
696 "pointer type.");
697
698 auto EC = ElementCount::getFixed(MinVal: NumElts);
699
700 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
701 VectorType *&Entry = ElementType->getContext()
702 .pImpl->VectorTypes[std::make_pair(x&: ElementType, y&: EC)];
703
704 if (!Entry)
705 Entry = new (pImpl->Alloc) FixedVectorType(ElementType, NumElts);
706 return cast<FixedVectorType>(Val: Entry);
707}
708
709//===----------------------------------------------------------------------===//
710// ScalableVectorType Implementation
711//===----------------------------------------------------------------------===//
712
713ScalableVectorType *ScalableVectorType::get(Type *ElementType,
714 unsigned MinNumElts) {
715 assert(MinNumElts > 0 && "#Elements of a VectorType must be greater than 0");
716 assert(isValidElementType(ElementType) && "Element type of a VectorType must "
717 "be an integer, floating point, or "
718 "pointer type.");
719
720 auto EC = ElementCount::getScalable(MinVal: MinNumElts);
721
722 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
723 VectorType *&Entry = ElementType->getContext()
724 .pImpl->VectorTypes[std::make_pair(x&: ElementType, y&: EC)];
725
726 if (!Entry)
727 Entry = new (pImpl->Alloc) ScalableVectorType(ElementType, MinNumElts);
728 return cast<ScalableVectorType>(Val: Entry);
729}
730
731//===----------------------------------------------------------------------===//
732// PointerType Implementation
733//===----------------------------------------------------------------------===//
734
735PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
736 assert(EltTy && "Can't get a pointer to <null> type!");
737 assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
738
739 // Automatically convert typed pointers to opaque pointers.
740 return get(C&: EltTy->getContext(), AddressSpace);
741}
742
743PointerType *PointerType::get(LLVMContext &C, unsigned AddressSpace) {
744 LLVMContextImpl *CImpl = C.pImpl;
745
746 // Since AddressSpace #0 is the common case, we special case it.
747 PointerType *&Entry = AddressSpace == 0 ? CImpl->AS0PointerType
748 : CImpl->PointerTypes[AddressSpace];
749
750 if (!Entry)
751 Entry = new (CImpl->Alloc) PointerType(C, AddressSpace);
752 return Entry;
753}
754
755PointerType::PointerType(LLVMContext &C, unsigned AddrSpace)
756 : Type(C, PointerTyID) {
757 setSubclassData(AddrSpace);
758}
759
760PointerType *Type::getPointerTo(unsigned AddrSpace) const {
761 return PointerType::get(EltTy: const_cast<Type*>(this), AddressSpace: AddrSpace);
762}
763
764bool PointerType::isValidElementType(Type *ElemTy) {
765 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
766 !ElemTy->isMetadataTy() && !ElemTy->isTokenTy() &&
767 !ElemTy->isX86_AMXTy();
768}
769
770bool PointerType::isLoadableOrStorableType(Type *ElemTy) {
771 return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();
772}
773
774//===----------------------------------------------------------------------===//
775// TargetExtType Implementation
776//===----------------------------------------------------------------------===//
777
778TargetExtType::TargetExtType(LLVMContext &C, StringRef Name,
779 ArrayRef<Type *> Types, ArrayRef<unsigned> Ints)
780 : Type(C, TargetExtTyID), Name(C.pImpl->Saver.save(S: Name)) {
781 NumContainedTys = Types.size();
782
783 // Parameter storage immediately follows the class in allocation.
784 Type **Params = reinterpret_cast<Type **>(this + 1);
785 ContainedTys = Params;
786 for (Type *T : Types)
787 *Params++ = T;
788
789 setSubclassData(Ints.size());
790 unsigned *IntParamSpace = reinterpret_cast<unsigned *>(Params);
791 IntParams = IntParamSpace;
792 for (unsigned IntParam : Ints)
793 *IntParamSpace++ = IntParam;
794}
795
796TargetExtType *TargetExtType::get(LLVMContext &C, StringRef Name,
797 ArrayRef<Type *> Types,
798 ArrayRef<unsigned> Ints) {
799 const TargetExtTypeKeyInfo::KeyTy Key(Name, Types, Ints);
800 TargetExtType *TT;
801 // Since we only want to allocate a fresh target type in case none is found
802 // and we don't want to perform two lookups (one for checking if existent and
803 // one for inserting the newly allocated one), here we instead lookup based on
804 // Key and update the reference to the target type in-place to a newly
805 // allocated one if not found.
806 auto Insertion = C.pImpl->TargetExtTypes.insert_as(V: nullptr, LookupKey: Key);
807 if (Insertion.second) {
808 // The target type was not found. Allocate one and update TargetExtTypes
809 // in-place.
810 TT = (TargetExtType *)C.pImpl->Alloc.Allocate(
811 Size: sizeof(TargetExtType) + sizeof(Type *) * Types.size() +
812 sizeof(unsigned) * Ints.size(),
813 Alignment: alignof(TargetExtType));
814 new (TT) TargetExtType(C, Name, Types, Ints);
815 *Insertion.first = TT;
816 } else {
817 // The target type was found. Just return it.
818 TT = *Insertion.first;
819 }
820 return TT;
821}
822
823namespace {
824struct TargetTypeInfo {
825 Type *LayoutType;
826 uint64_t Properties;
827
828 template <typename... ArgTys>
829 TargetTypeInfo(Type *LayoutType, ArgTys... Properties)
830 : LayoutType(LayoutType), Properties((0 | ... | Properties)) {}
831};
832} // anonymous namespace
833
834static TargetTypeInfo getTargetTypeInfo(const TargetExtType *Ty) {
835 LLVMContext &C = Ty->getContext();
836 StringRef Name = Ty->getName();
837 if (Name == "spirv.Image")
838 return TargetTypeInfo(PointerType::get(C, AddressSpace: 0), TargetExtType::CanBeGlobal);
839 if (Name.starts_with(Prefix: "spirv."))
840 return TargetTypeInfo(PointerType::get(C, AddressSpace: 0), TargetExtType::HasZeroInit,
841 TargetExtType::CanBeGlobal);
842
843 // Opaque types in the AArch64 name space.
844 if (Name == "aarch64.svcount")
845 return TargetTypeInfo(ScalableVectorType::get(ElementType: Type::getInt1Ty(C), MinNumElts: 16),
846 TargetExtType::HasZeroInit);
847
848 return TargetTypeInfo(Type::getVoidTy(C));
849}
850
851Type *TargetExtType::getLayoutType() const {
852 return getTargetTypeInfo(Ty: this).LayoutType;
853}
854
855bool TargetExtType::hasProperty(Property Prop) const {
856 uint64_t Properties = getTargetTypeInfo(Ty: this).Properties;
857 return (Properties & Prop) == Prop;
858}
859