1 | //===-LTO.cpp - LLVM Link Time Optimizer ----------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements functions and classes used to support LTO. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/LTO/LTO.h" |
14 | #include "llvm/ADT/ScopeExit.h" |
15 | #include "llvm/ADT/SmallSet.h" |
16 | #include "llvm/ADT/Statistic.h" |
17 | #include "llvm/ADT/StringExtras.h" |
18 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
19 | #include "llvm/Analysis/StackSafetyAnalysis.h" |
20 | #include "llvm/Analysis/TargetLibraryInfo.h" |
21 | #include "llvm/Analysis/TargetTransformInfo.h" |
22 | #include "llvm/Bitcode/BitcodeReader.h" |
23 | #include "llvm/Bitcode/BitcodeWriter.h" |
24 | #include "llvm/CodeGen/Analysis.h" |
25 | #include "llvm/Config/llvm-config.h" |
26 | #include "llvm/IR/AutoUpgrade.h" |
27 | #include "llvm/IR/DiagnosticPrinter.h" |
28 | #include "llvm/IR/Intrinsics.h" |
29 | #include "llvm/IR/LLVMRemarkStreamer.h" |
30 | #include "llvm/IR/LegacyPassManager.h" |
31 | #include "llvm/IR/Mangler.h" |
32 | #include "llvm/IR/Metadata.h" |
33 | #include "llvm/IR/RuntimeLibcalls.h" |
34 | #include "llvm/LTO/LTOBackend.h" |
35 | #include "llvm/LTO/SummaryBasedOptimizations.h" |
36 | #include "llvm/Linker/IRMover.h" |
37 | #include "llvm/MC/TargetRegistry.h" |
38 | #include "llvm/Object/IRObjectFile.h" |
39 | #include "llvm/Support/CommandLine.h" |
40 | #include "llvm/Support/Error.h" |
41 | #include "llvm/Support/FileSystem.h" |
42 | #include "llvm/Support/ManagedStatic.h" |
43 | #include "llvm/Support/MemoryBuffer.h" |
44 | #include "llvm/Support/Path.h" |
45 | #include "llvm/Support/SHA1.h" |
46 | #include "llvm/Support/SourceMgr.h" |
47 | #include "llvm/Support/ThreadPool.h" |
48 | #include "llvm/Support/Threading.h" |
49 | #include "llvm/Support/TimeProfiler.h" |
50 | #include "llvm/Support/ToolOutputFile.h" |
51 | #include "llvm/Support/VCSRevision.h" |
52 | #include "llvm/Support/raw_ostream.h" |
53 | #include "llvm/Target/TargetOptions.h" |
54 | #include "llvm/Transforms/IPO.h" |
55 | #include "llvm/Transforms/IPO/MemProfContextDisambiguation.h" |
56 | #include "llvm/Transforms/IPO/WholeProgramDevirt.h" |
57 | #include "llvm/Transforms/Utils/FunctionImportUtils.h" |
58 | #include "llvm/Transforms/Utils/SplitModule.h" |
59 | |
60 | #include <optional> |
61 | #include <set> |
62 | |
63 | using namespace llvm; |
64 | using namespace lto; |
65 | using namespace object; |
66 | |
67 | #define DEBUG_TYPE "lto" |
68 | |
69 | extern cl::opt<bool> UseNewDbgInfoFormat; |
70 | |
71 | static cl::opt<bool> |
72 | DumpThinCGSCCs("dump-thin-cg-sccs" , cl::init(Val: false), cl::Hidden, |
73 | cl::desc("Dump the SCCs in the ThinLTO index's callgraph" )); |
74 | |
75 | namespace llvm { |
76 | /// Enable global value internalization in LTO. |
77 | cl::opt<bool> EnableLTOInternalization( |
78 | "enable-lto-internalization" , cl::init(Val: true), cl::Hidden, |
79 | cl::desc("Enable global value internalization in LTO" )); |
80 | |
81 | /// Indicate we are linking with an allocator that supports hot/cold operator |
82 | /// new interfaces. |
83 | extern cl::opt<bool> SupportsHotColdNew; |
84 | |
85 | /// Enable MemProf context disambiguation for thin link. |
86 | extern cl::opt<bool> EnableMemProfContextDisambiguation; |
87 | } // namespace llvm |
88 | |
89 | // Computes a unique hash for the Module considering the current list of |
90 | // export/import and other global analysis results. |
91 | // The hash is produced in \p Key. |
92 | void llvm::computeLTOCacheKey( |
93 | SmallString<40> &Key, const Config &Conf, const ModuleSummaryIndex &Index, |
94 | StringRef ModuleID, const FunctionImporter::ImportMapTy &ImportList, |
95 | const FunctionImporter::ExportSetTy &ExportList, |
96 | const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, |
97 | const GVSummaryMapTy &DefinedGlobals, |
98 | const std::set<GlobalValue::GUID> &CfiFunctionDefs, |
99 | const std::set<GlobalValue::GUID> &CfiFunctionDecls) { |
100 | // Compute the unique hash for this entry. |
101 | // This is based on the current compiler version, the module itself, the |
102 | // export list, the hash for every single module in the import list, the |
103 | // list of ResolvedODR for the module, and the list of preserved symbols. |
104 | SHA1 Hasher; |
105 | |
106 | // Start with the compiler revision |
107 | Hasher.update(LLVM_VERSION_STRING); |
108 | #ifdef LLVM_REVISION |
109 | Hasher.update(LLVM_REVISION); |
110 | #endif |
111 | |
112 | // Include the parts of the LTO configuration that affect code generation. |
113 | auto AddString = [&](StringRef Str) { |
114 | Hasher.update(Str); |
115 | Hasher.update(Data: ArrayRef<uint8_t>{0}); |
116 | }; |
117 | auto AddUnsigned = [&](unsigned I) { |
118 | uint8_t Data[4]; |
119 | support::endian::write32le(P: Data, V: I); |
120 | Hasher.update(Data); |
121 | }; |
122 | auto AddUint64 = [&](uint64_t I) { |
123 | uint8_t Data[8]; |
124 | support::endian::write64le(P: Data, V: I); |
125 | Hasher.update(Data); |
126 | }; |
127 | auto AddUint8 = [&](const uint8_t I) { |
128 | Hasher.update(Data: ArrayRef<uint8_t>((const uint8_t *)&I, 1)); |
129 | }; |
130 | AddString(Conf.CPU); |
131 | // FIXME: Hash more of Options. For now all clients initialize Options from |
132 | // command-line flags (which is unsupported in production), but may set |
133 | // X86RelaxRelocations. The clang driver can also pass FunctionSections, |
134 | // DataSections and DebuggerTuning via command line flags. |
135 | AddUnsigned(Conf.Options.MCOptions.X86RelaxRelocations); |
136 | AddUnsigned(Conf.Options.FunctionSections); |
137 | AddUnsigned(Conf.Options.DataSections); |
138 | AddUnsigned((unsigned)Conf.Options.DebuggerTuning); |
139 | for (auto &A : Conf.MAttrs) |
140 | AddString(A); |
141 | if (Conf.RelocModel) |
142 | AddUnsigned(*Conf.RelocModel); |
143 | else |
144 | AddUnsigned(-1); |
145 | if (Conf.CodeModel) |
146 | AddUnsigned(*Conf.CodeModel); |
147 | else |
148 | AddUnsigned(-1); |
149 | for (const auto &S : Conf.MllvmArgs) |
150 | AddString(S); |
151 | AddUnsigned(static_cast<int>(Conf.CGOptLevel)); |
152 | AddUnsigned(static_cast<int>(Conf.CGFileType)); |
153 | AddUnsigned(Conf.OptLevel); |
154 | AddUnsigned(Conf.Freestanding); |
155 | AddString(Conf.OptPipeline); |
156 | AddString(Conf.AAPipeline); |
157 | AddString(Conf.OverrideTriple); |
158 | AddString(Conf.DefaultTriple); |
159 | AddString(Conf.DwoDir); |
160 | |
161 | // Include the hash for the current module |
162 | auto ModHash = Index.getModuleHash(ModPath: ModuleID); |
163 | Hasher.update(Data: ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); |
164 | |
165 | // TODO: `ExportList` is determined by `ImportList`. Since `ImportList` is |
166 | // used to compute cache key, we could omit hashing `ExportList` here. |
167 | std::vector<uint64_t> ExportsGUID; |
168 | ExportsGUID.reserve(n: ExportList.size()); |
169 | for (const auto &VI : ExportList) |
170 | ExportsGUID.push_back(x: VI.getGUID()); |
171 | |
172 | // Sort the export list elements GUIDs. |
173 | llvm::sort(C&: ExportsGUID); |
174 | for (auto GUID : ExportsGUID) |
175 | Hasher.update(Data: ArrayRef<uint8_t>((uint8_t *)&GUID, sizeof(GUID))); |
176 | |
177 | // Include the hash for every module we import functions from. The set of |
178 | // imported symbols for each module may affect code generation and is |
179 | // sensitive to link order, so include that as well. |
180 | using ImportMapIteratorTy = FunctionImporter::ImportMapTy::const_iterator; |
181 | struct ImportModule { |
182 | ImportMapIteratorTy ModIt; |
183 | const ModuleSummaryIndex::ModuleInfo *ModInfo; |
184 | |
185 | StringRef getIdentifier() const { return ModIt->getFirst(); } |
186 | const FunctionImporter::FunctionsToImportTy &getFunctions() const { |
187 | return ModIt->second; |
188 | } |
189 | |
190 | const ModuleHash &getHash() const { return ModInfo->second; } |
191 | }; |
192 | |
193 | std::vector<ImportModule> ImportModulesVector; |
194 | ImportModulesVector.reserve(n: ImportList.size()); |
195 | |
196 | for (ImportMapIteratorTy It = ImportList.begin(); It != ImportList.end(); |
197 | ++It) { |
198 | ImportModulesVector.push_back(x: {.ModIt: It, .ModInfo: Index.getModule(ModPath: It->getFirst())}); |
199 | } |
200 | // Order using module hash, to be both independent of module name and |
201 | // module order. |
202 | llvm::sort(C&: ImportModulesVector, |
203 | Comp: [](const ImportModule &Lhs, const ImportModule &Rhs) -> bool { |
204 | return Lhs.getHash() < Rhs.getHash(); |
205 | }); |
206 | std::vector<std::pair<uint64_t, uint8_t>> ImportedGUIDs; |
207 | for (const ImportModule &Entry : ImportModulesVector) { |
208 | auto ModHash = Entry.getHash(); |
209 | Hasher.update(Data: ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash))); |
210 | |
211 | AddUint64(Entry.getFunctions().size()); |
212 | |
213 | ImportedGUIDs.clear(); |
214 | for (auto &[Fn, ImportType] : Entry.getFunctions()) |
215 | ImportedGUIDs.push_back(x: std::make_pair(x: Fn, y: ImportType)); |
216 | llvm::sort(C&: ImportedGUIDs); |
217 | for (auto &[GUID, Type] : ImportedGUIDs) { |
218 | AddUint64(GUID); |
219 | AddUint8(Type); |
220 | } |
221 | } |
222 | |
223 | // Include the hash for the resolved ODR. |
224 | for (auto &Entry : ResolvedODR) { |
225 | Hasher.update(Data: ArrayRef<uint8_t>((const uint8_t *)&Entry.first, |
226 | sizeof(GlobalValue::GUID))); |
227 | Hasher.update(Data: ArrayRef<uint8_t>((const uint8_t *)&Entry.second, |
228 | sizeof(GlobalValue::LinkageTypes))); |
229 | } |
230 | |
231 | // Members of CfiFunctionDefs and CfiFunctionDecls that are referenced or |
232 | // defined in this module. |
233 | std::set<GlobalValue::GUID> UsedCfiDefs; |
234 | std::set<GlobalValue::GUID> UsedCfiDecls; |
235 | |
236 | // Typeids used in this module. |
237 | std::set<GlobalValue::GUID> UsedTypeIds; |
238 | |
239 | auto AddUsedCfiGlobal = [&](GlobalValue::GUID ValueGUID) { |
240 | if (CfiFunctionDefs.count(x: ValueGUID)) |
241 | UsedCfiDefs.insert(x: ValueGUID); |
242 | if (CfiFunctionDecls.count(x: ValueGUID)) |
243 | UsedCfiDecls.insert(x: ValueGUID); |
244 | }; |
245 | |
246 | auto AddUsedThings = [&](GlobalValueSummary *GS) { |
247 | if (!GS) return; |
248 | AddUnsigned(GS->getVisibility()); |
249 | AddUnsigned(GS->isLive()); |
250 | AddUnsigned(GS->canAutoHide()); |
251 | for (const ValueInfo &VI : GS->refs()) { |
252 | AddUnsigned(VI.isDSOLocal(WithDSOLocalPropagation: Index.withDSOLocalPropagation())); |
253 | AddUsedCfiGlobal(VI.getGUID()); |
254 | } |
255 | if (auto *GVS = dyn_cast<GlobalVarSummary>(Val: GS)) { |
256 | AddUnsigned(GVS->maybeReadOnly()); |
257 | AddUnsigned(GVS->maybeWriteOnly()); |
258 | } |
259 | if (auto *FS = dyn_cast<FunctionSummary>(Val: GS)) { |
260 | for (auto &TT : FS->type_tests()) |
261 | UsedTypeIds.insert(x: TT); |
262 | for (auto &TT : FS->type_test_assume_vcalls()) |
263 | UsedTypeIds.insert(x: TT.GUID); |
264 | for (auto &TT : FS->type_checked_load_vcalls()) |
265 | UsedTypeIds.insert(x: TT.GUID); |
266 | for (auto &TT : FS->type_test_assume_const_vcalls()) |
267 | UsedTypeIds.insert(x: TT.VFunc.GUID); |
268 | for (auto &TT : FS->type_checked_load_const_vcalls()) |
269 | UsedTypeIds.insert(x: TT.VFunc.GUID); |
270 | for (auto &ET : FS->calls()) { |
271 | AddUnsigned(ET.first.isDSOLocal(WithDSOLocalPropagation: Index.withDSOLocalPropagation())); |
272 | AddUsedCfiGlobal(ET.first.getGUID()); |
273 | } |
274 | } |
275 | }; |
276 | |
277 | // Include the hash for the linkage type to reflect internalization and weak |
278 | // resolution, and collect any used type identifier resolutions. |
279 | for (auto &GS : DefinedGlobals) { |
280 | GlobalValue::LinkageTypes Linkage = GS.second->linkage(); |
281 | Hasher.update( |
282 | Data: ArrayRef<uint8_t>((const uint8_t *)&Linkage, sizeof(Linkage))); |
283 | AddUsedCfiGlobal(GS.first); |
284 | AddUsedThings(GS.second); |
285 | } |
286 | |
287 | // Imported functions may introduce new uses of type identifier resolutions, |
288 | // so we need to collect their used resolutions as well. |
289 | for (const ImportModule &ImpM : ImportModulesVector) |
290 | for (auto &[GUID, UnusedImportType] : ImpM.getFunctions()) { |
291 | GlobalValueSummary *S = |
292 | Index.findSummaryInModule(ValueGUID: GUID, ModuleId: ImpM.getIdentifier()); |
293 | AddUsedThings(S); |
294 | // If this is an alias, we also care about any types/etc. that the aliasee |
295 | // may reference. |
296 | if (auto *AS = dyn_cast_or_null<AliasSummary>(Val: S)) |
297 | AddUsedThings(AS->getBaseObject()); |
298 | } |
299 | |
300 | auto AddTypeIdSummary = [&](StringRef TId, const TypeIdSummary &S) { |
301 | AddString(TId); |
302 | |
303 | AddUnsigned(S.TTRes.TheKind); |
304 | AddUnsigned(S.TTRes.SizeM1BitWidth); |
305 | |
306 | AddUint64(S.TTRes.AlignLog2); |
307 | AddUint64(S.TTRes.SizeM1); |
308 | AddUint64(S.TTRes.BitMask); |
309 | AddUint64(S.TTRes.InlineBits); |
310 | |
311 | AddUint64(S.WPDRes.size()); |
312 | for (auto &WPD : S.WPDRes) { |
313 | AddUnsigned(WPD.first); |
314 | AddUnsigned(WPD.second.TheKind); |
315 | AddString(WPD.second.SingleImplName); |
316 | |
317 | AddUint64(WPD.second.ResByArg.size()); |
318 | for (auto &ByArg : WPD.second.ResByArg) { |
319 | AddUint64(ByArg.first.size()); |
320 | for (uint64_t Arg : ByArg.first) |
321 | AddUint64(Arg); |
322 | AddUnsigned(ByArg.second.TheKind); |
323 | AddUint64(ByArg.second.Info); |
324 | AddUnsigned(ByArg.second.Byte); |
325 | AddUnsigned(ByArg.second.Bit); |
326 | } |
327 | } |
328 | }; |
329 | |
330 | // Include the hash for all type identifiers used by this module. |
331 | for (GlobalValue::GUID TId : UsedTypeIds) { |
332 | auto TidIter = Index.typeIds().equal_range(x: TId); |
333 | for (auto It = TidIter.first; It != TidIter.second; ++It) |
334 | AddTypeIdSummary(It->second.first, It->second.second); |
335 | } |
336 | |
337 | AddUnsigned(UsedCfiDefs.size()); |
338 | for (auto &V : UsedCfiDefs) |
339 | AddUint64(V); |
340 | |
341 | AddUnsigned(UsedCfiDecls.size()); |
342 | for (auto &V : UsedCfiDecls) |
343 | AddUint64(V); |
344 | |
345 | if (!Conf.SampleProfile.empty()) { |
346 | auto FileOrErr = MemoryBuffer::getFile(Filename: Conf.SampleProfile); |
347 | if (FileOrErr) { |
348 | Hasher.update(Str: FileOrErr.get()->getBuffer()); |
349 | |
350 | if (!Conf.ProfileRemapping.empty()) { |
351 | FileOrErr = MemoryBuffer::getFile(Filename: Conf.ProfileRemapping); |
352 | if (FileOrErr) |
353 | Hasher.update(Str: FileOrErr.get()->getBuffer()); |
354 | } |
355 | } |
356 | } |
357 | |
358 | Key = toHex(Input: Hasher.result()); |
359 | } |
360 | |
361 | static void thinLTOResolvePrevailingGUID( |
362 | const Config &C, ValueInfo VI, |
363 | DenseSet<GlobalValueSummary *> &GlobalInvolvedWithAlias, |
364 | function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> |
365 | isPrevailing, |
366 | function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> |
367 | recordNewLinkage, |
368 | const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { |
369 | GlobalValue::VisibilityTypes Visibility = |
370 | C.VisibilityScheme == Config::ELF ? VI.getELFVisibility() |
371 | : GlobalValue::DefaultVisibility; |
372 | for (auto &S : VI.getSummaryList()) { |
373 | GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); |
374 | // Ignore local and appending linkage values since the linker |
375 | // doesn't resolve them. |
376 | if (GlobalValue::isLocalLinkage(Linkage: OriginalLinkage) || |
377 | GlobalValue::isAppendingLinkage(Linkage: S->linkage())) |
378 | continue; |
379 | // We need to emit only one of these. The prevailing module will keep it, |
380 | // but turned into a weak, while the others will drop it when possible. |
381 | // This is both a compile-time optimization and a correctness |
382 | // transformation. This is necessary for correctness when we have exported |
383 | // a reference - we need to convert the linkonce to weak to |
384 | // ensure a copy is kept to satisfy the exported reference. |
385 | // FIXME: We may want to split the compile time and correctness |
386 | // aspects into separate routines. |
387 | if (isPrevailing(VI.getGUID(), S.get())) { |
388 | if (GlobalValue::isLinkOnceLinkage(Linkage: OriginalLinkage)) { |
389 | S->setLinkage(GlobalValue::getWeakLinkage( |
390 | ODR: GlobalValue::isLinkOnceODRLinkage(Linkage: OriginalLinkage))); |
391 | // The kept copy is eligible for auto-hiding (hidden visibility) if all |
392 | // copies were (i.e. they were all linkonce_odr global unnamed addr). |
393 | // If any copy is not (e.g. it was originally weak_odr), then the symbol |
394 | // must remain externally available (e.g. a weak_odr from an explicitly |
395 | // instantiated template). Additionally, if it is in the |
396 | // GUIDPreservedSymbols set, that means that it is visibile outside |
397 | // the summary (e.g. in a native object or a bitcode file without |
398 | // summary), and in that case we cannot hide it as it isn't possible to |
399 | // check all copies. |
400 | S->setCanAutoHide(VI.canAutoHide() && |
401 | !GUIDPreservedSymbols.count(V: VI.getGUID())); |
402 | } |
403 | if (C.VisibilityScheme == Config::FromPrevailing) |
404 | Visibility = S->getVisibility(); |
405 | } |
406 | // Alias and aliasee can't be turned into available_externally. |
407 | else if (!isa<AliasSummary>(Val: S.get()) && |
408 | !GlobalInvolvedWithAlias.count(V: S.get())) |
409 | S->setLinkage(GlobalValue::AvailableExternallyLinkage); |
410 | |
411 | // For ELF, set visibility to the computed visibility from summaries. We |
412 | // don't track visibility from declarations so this may be more relaxed than |
413 | // the most constraining one. |
414 | if (C.VisibilityScheme == Config::ELF) |
415 | S->setVisibility(Visibility); |
416 | |
417 | if (S->linkage() != OriginalLinkage) |
418 | recordNewLinkage(S->modulePath(), VI.getGUID(), S->linkage()); |
419 | } |
420 | |
421 | if (C.VisibilityScheme == Config::FromPrevailing) { |
422 | for (auto &S : VI.getSummaryList()) { |
423 | GlobalValue::LinkageTypes OriginalLinkage = S->linkage(); |
424 | if (GlobalValue::isLocalLinkage(Linkage: OriginalLinkage) || |
425 | GlobalValue::isAppendingLinkage(Linkage: S->linkage())) |
426 | continue; |
427 | S->setVisibility(Visibility); |
428 | } |
429 | } |
430 | } |
431 | |
432 | /// Resolve linkage for prevailing symbols in the \p Index. |
433 | // |
434 | // We'd like to drop these functions if they are no longer referenced in the |
435 | // current module. However there is a chance that another module is still |
436 | // referencing them because of the import. We make sure we always emit at least |
437 | // one copy. |
438 | void llvm::thinLTOResolvePrevailingInIndex( |
439 | const Config &C, ModuleSummaryIndex &Index, |
440 | function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> |
441 | isPrevailing, |
442 | function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)> |
443 | recordNewLinkage, |
444 | const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { |
445 | // We won't optimize the globals that are referenced by an alias for now |
446 | // Ideally we should turn the alias into a global and duplicate the definition |
447 | // when needed. |
448 | DenseSet<GlobalValueSummary *> GlobalInvolvedWithAlias; |
449 | for (auto &I : Index) |
450 | for (auto &S : I.second.SummaryList) |
451 | if (auto AS = dyn_cast<AliasSummary>(Val: S.get())) |
452 | GlobalInvolvedWithAlias.insert(V: &AS->getAliasee()); |
453 | |
454 | for (auto &I : Index) |
455 | thinLTOResolvePrevailingGUID(C, VI: Index.getValueInfo(R: I), |
456 | GlobalInvolvedWithAlias, isPrevailing, |
457 | recordNewLinkage, GUIDPreservedSymbols); |
458 | } |
459 | |
460 | static void thinLTOInternalizeAndPromoteGUID( |
461 | ValueInfo VI, function_ref<bool(StringRef, ValueInfo)> isExported, |
462 | function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> |
463 | isPrevailing) { |
464 | auto ExternallyVisibleCopies = |
465 | llvm::count_if(Range: VI.getSummaryList(), |
466 | P: [](const std::unique_ptr<GlobalValueSummary> &Summary) { |
467 | return !GlobalValue::isLocalLinkage(Linkage: Summary->linkage()); |
468 | }); |
469 | |
470 | for (auto &S : VI.getSummaryList()) { |
471 | // First see if we need to promote an internal value because it is not |
472 | // exported. |
473 | if (isExported(S->modulePath(), VI)) { |
474 | if (GlobalValue::isLocalLinkage(Linkage: S->linkage())) |
475 | S->setLinkage(GlobalValue::ExternalLinkage); |
476 | continue; |
477 | } |
478 | |
479 | // Otherwise, see if we can internalize. |
480 | if (!EnableLTOInternalization) |
481 | continue; |
482 | |
483 | // Non-exported values with external linkage can be internalized. |
484 | if (GlobalValue::isExternalLinkage(Linkage: S->linkage())) { |
485 | S->setLinkage(GlobalValue::InternalLinkage); |
486 | continue; |
487 | } |
488 | |
489 | // Non-exported function and variable definitions with a weak-for-linker |
490 | // linkage can be internalized in certain cases. The minimum legality |
491 | // requirements would be that they are not address taken to ensure that we |
492 | // don't break pointer equality checks, and that variables are either read- |
493 | // or write-only. For functions, this is the case if either all copies are |
494 | // [local_]unnamed_addr, or we can propagate reference edge attributes |
495 | // (which is how this is guaranteed for variables, when analyzing whether |
496 | // they are read or write-only). |
497 | // |
498 | // However, we only get to this code for weak-for-linkage values in one of |
499 | // two cases: |
500 | // 1) The prevailing copy is not in IR (it is in native code). |
501 | // 2) The prevailing copy in IR is not exported from its module. |
502 | // Additionally, at least for the new LTO API, case 2 will only happen if |
503 | // there is exactly one definition of the value (i.e. in exactly one |
504 | // module), as duplicate defs are result in the value being marked exported. |
505 | // Likely, users of the legacy LTO API are similar, however, currently there |
506 | // are llvm-lto based tests of the legacy LTO API that do not mark |
507 | // duplicate linkonce_odr copies as exported via the tool, so we need |
508 | // to handle that case below by checking the number of copies. |
509 | // |
510 | // Generally, we only want to internalize a weak-for-linker value in case |
511 | // 2, because in case 1 we cannot see how the value is used to know if it |
512 | // is read or write-only. We also don't want to bloat the binary with |
513 | // multiple internalized copies of non-prevailing linkonce/weak functions. |
514 | // Note if we don't internalize, we will convert non-prevailing copies to |
515 | // available_externally anyway, so that we drop them after inlining. The |
516 | // only reason to internalize such a function is if we indeed have a single |
517 | // copy, because internalizing it won't increase binary size, and enables |
518 | // use of inliner heuristics that are more aggressive in the face of a |
519 | // single call to a static (local). For variables, internalizing a read or |
520 | // write only variable can enable more aggressive optimization. However, we |
521 | // already perform this elsewhere in the ThinLTO backend handling for |
522 | // read or write-only variables (processGlobalForThinLTO). |
523 | // |
524 | // Therefore, only internalize linkonce/weak if there is a single copy, that |
525 | // is prevailing in this IR module. We can do so aggressively, without |
526 | // requiring the address to be insignificant, or that a variable be read or |
527 | // write-only. |
528 | if (!GlobalValue::isWeakForLinker(Linkage: S->linkage()) || |
529 | GlobalValue::isExternalWeakLinkage(Linkage: S->linkage())) |
530 | continue; |
531 | |
532 | if (isPrevailing(VI.getGUID(), S.get()) && ExternallyVisibleCopies == 1) |
533 | S->setLinkage(GlobalValue::InternalLinkage); |
534 | } |
535 | } |
536 | |
537 | // Update the linkages in the given \p Index to mark exported values |
538 | // as external and non-exported values as internal. |
539 | void llvm::thinLTOInternalizeAndPromoteInIndex( |
540 | ModuleSummaryIndex &Index, |
541 | function_ref<bool(StringRef, ValueInfo)> isExported, |
542 | function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)> |
543 | isPrevailing) { |
544 | for (auto &I : Index) |
545 | thinLTOInternalizeAndPromoteGUID(VI: Index.getValueInfo(R: I), isExported, |
546 | isPrevailing); |
547 | } |
548 | |
549 | // Requires a destructor for std::vector<InputModule>. |
550 | InputFile::~InputFile() = default; |
551 | |
552 | Expected<std::unique_ptr<InputFile>> InputFile::create(MemoryBufferRef Object) { |
553 | std::unique_ptr<InputFile> File(new InputFile); |
554 | |
555 | Expected<IRSymtabFile> FOrErr = readIRSymtab(MBRef: Object); |
556 | if (!FOrErr) |
557 | return FOrErr.takeError(); |
558 | |
559 | File->TargetTriple = FOrErr->TheReader.getTargetTriple(); |
560 | File->SourceFileName = FOrErr->TheReader.getSourceFileName(); |
561 | File->COFFLinkerOpts = FOrErr->TheReader.getCOFFLinkerOpts(); |
562 | File->DependentLibraries = FOrErr->TheReader.getDependentLibraries(); |
563 | File->ComdatTable = FOrErr->TheReader.getComdatTable(); |
564 | |
565 | for (unsigned I = 0; I != FOrErr->Mods.size(); ++I) { |
566 | size_t Begin = File->Symbols.size(); |
567 | for (const irsymtab::Reader::SymbolRef &Sym : |
568 | FOrErr->TheReader.module_symbols(I)) |
569 | // Skip symbols that are irrelevant to LTO. Note that this condition needs |
570 | // to match the one in Skip() in LTO::addRegularLTO(). |
571 | if (Sym.isGlobal() && !Sym.isFormatSpecific()) |
572 | File->Symbols.push_back(x: Sym); |
573 | File->ModuleSymIndices.push_back(x: {Begin, File->Symbols.size()}); |
574 | } |
575 | |
576 | File->Mods = FOrErr->Mods; |
577 | File->Strtab = std::move(FOrErr->Strtab); |
578 | return std::move(File); |
579 | } |
580 | |
581 | StringRef InputFile::getName() const { |
582 | return Mods[0].getModuleIdentifier(); |
583 | } |
584 | |
585 | BitcodeModule &InputFile::getSingleBitcodeModule() { |
586 | assert(Mods.size() == 1 && "Expect only one bitcode module" ); |
587 | return Mods[0]; |
588 | } |
589 | |
590 | LTO::RegularLTOState::RegularLTOState(unsigned ParallelCodeGenParallelismLevel, |
591 | const Config &Conf) |
592 | : ParallelCodeGenParallelismLevel(ParallelCodeGenParallelismLevel), |
593 | Ctx(Conf), CombinedModule(std::make_unique<Module>(args: "ld-temp.o" , args&: Ctx)), |
594 | Mover(std::make_unique<IRMover>(args&: *CombinedModule)) { |
595 | CombinedModule->IsNewDbgInfoFormat = UseNewDbgInfoFormat; |
596 | } |
597 | |
598 | LTO::ThinLTOState::ThinLTOState(ThinBackend Backend) |
599 | : Backend(Backend), CombinedIndex(/*HaveGVs*/ false) { |
600 | if (!Backend) |
601 | this->Backend = |
602 | createInProcessThinBackend(Parallelism: llvm::heavyweight_hardware_concurrency()); |
603 | } |
604 | |
605 | LTO::LTO(Config Conf, ThinBackend Backend, |
606 | unsigned ParallelCodeGenParallelismLevel, LTOKind LTOMode) |
607 | : Conf(std::move(Conf)), |
608 | RegularLTO(ParallelCodeGenParallelismLevel, this->Conf), |
609 | ThinLTO(std::move(Backend)), |
610 | GlobalResolutions(std::make_optional<StringMap<GlobalResolution>>()), |
611 | LTOMode(LTOMode) {} |
612 | |
613 | // Requires a destructor for MapVector<BitcodeModule>. |
614 | LTO::~LTO() = default; |
615 | |
616 | // Add the symbols in the given module to the GlobalResolutions map, and resolve |
617 | // their partitions. |
618 | void LTO::addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms, |
619 | ArrayRef<SymbolResolution> Res, |
620 | unsigned Partition, bool InSummary) { |
621 | auto *ResI = Res.begin(); |
622 | auto *ResE = Res.end(); |
623 | (void)ResE; |
624 | const Triple TT(RegularLTO.CombinedModule->getTargetTriple()); |
625 | for (const InputFile::Symbol &Sym : Syms) { |
626 | assert(ResI != ResE); |
627 | SymbolResolution Res = *ResI++; |
628 | |
629 | auto &GlobalRes = (*GlobalResolutions)[Sym.getName()]; |
630 | GlobalRes.UnnamedAddr &= Sym.isUnnamedAddr(); |
631 | if (Res.Prevailing) { |
632 | assert(!GlobalRes.Prevailing && |
633 | "Multiple prevailing defs are not allowed" ); |
634 | GlobalRes.Prevailing = true; |
635 | GlobalRes.IRName = std::string(Sym.getIRName()); |
636 | } else if (!GlobalRes.Prevailing && GlobalRes.IRName.empty()) { |
637 | // Sometimes it can be two copies of symbol in a module and prevailing |
638 | // symbol can have no IR name. That might happen if symbol is defined in |
639 | // module level inline asm block. In case we have multiple modules with |
640 | // the same symbol we want to use IR name of the prevailing symbol. |
641 | // Otherwise, if we haven't seen a prevailing symbol, set the name so that |
642 | // we can later use it to check if there is any prevailing copy in IR. |
643 | GlobalRes.IRName = std::string(Sym.getIRName()); |
644 | } |
645 | |
646 | // In rare occasion, the symbol used to initialize GlobalRes has a different |
647 | // IRName from the inspected Symbol. This can happen on macOS + iOS, when a |
648 | // symbol is referenced through its mangled name, say @"\01_symbol" while |
649 | // the IRName is @symbol (the prefix underscore comes from MachO mangling). |
650 | // In that case, we have the same actual Symbol that can get two different |
651 | // GUID, leading to some invalid internalization. Workaround this by marking |
652 | // the GlobalRes external. |
653 | |
654 | // FIXME: instead of this check, it would be desirable to compute GUIDs |
655 | // based on mangled name, but this requires an access to the Target Triple |
656 | // and would be relatively invasive on the codebase. |
657 | if (GlobalRes.IRName != Sym.getIRName()) { |
658 | GlobalRes.Partition = GlobalResolution::External; |
659 | GlobalRes.VisibleOutsideSummary = true; |
660 | } |
661 | |
662 | // Set the partition to external if we know it is re-defined by the linker |
663 | // with -defsym or -wrap options, used elsewhere, e.g. it is visible to a |
664 | // regular object, is referenced from llvm.compiler.used/llvm.used, or was |
665 | // already recorded as being referenced from a different partition. |
666 | if (Res.LinkerRedefined || Res.VisibleToRegularObj || Sym.isUsed() || |
667 | (GlobalRes.Partition != GlobalResolution::Unknown && |
668 | GlobalRes.Partition != Partition)) { |
669 | GlobalRes.Partition = GlobalResolution::External; |
670 | } else |
671 | // First recorded reference, save the current partition. |
672 | GlobalRes.Partition = Partition; |
673 | |
674 | // Flag as visible outside of summary if visible from a regular object or |
675 | // from a module that does not have a summary. |
676 | GlobalRes.VisibleOutsideSummary |= |
677 | (Res.VisibleToRegularObj || Sym.isUsed() || !InSummary); |
678 | |
679 | GlobalRes.ExportDynamic |= Res.ExportDynamic; |
680 | } |
681 | } |
682 | |
683 | static void writeToResolutionFile(raw_ostream &OS, InputFile *Input, |
684 | ArrayRef<SymbolResolution> Res) { |
685 | StringRef Path = Input->getName(); |
686 | OS << Path << '\n'; |
687 | auto ResI = Res.begin(); |
688 | for (const InputFile::Symbol &Sym : Input->symbols()) { |
689 | assert(ResI != Res.end()); |
690 | SymbolResolution Res = *ResI++; |
691 | |
692 | OS << "-r=" << Path << ',' << Sym.getName() << ','; |
693 | if (Res.Prevailing) |
694 | OS << 'p'; |
695 | if (Res.FinalDefinitionInLinkageUnit) |
696 | OS << 'l'; |
697 | if (Res.VisibleToRegularObj) |
698 | OS << 'x'; |
699 | if (Res.LinkerRedefined) |
700 | OS << 'r'; |
701 | OS << '\n'; |
702 | } |
703 | OS.flush(); |
704 | assert(ResI == Res.end()); |
705 | } |
706 | |
707 | Error LTO::add(std::unique_ptr<InputFile> Input, |
708 | ArrayRef<SymbolResolution> Res) { |
709 | assert(!CalledGetMaxTasks); |
710 | |
711 | if (Conf.ResolutionFile) |
712 | writeToResolutionFile(OS&: *Conf.ResolutionFile, Input: Input.get(), Res); |
713 | |
714 | if (RegularLTO.CombinedModule->getTargetTriple().empty()) { |
715 | RegularLTO.CombinedModule->setTargetTriple(Input->getTargetTriple()); |
716 | if (Triple(Input->getTargetTriple()).isOSBinFormatELF()) |
717 | Conf.VisibilityScheme = Config::ELF; |
718 | } |
719 | |
720 | const SymbolResolution *ResI = Res.begin(); |
721 | for (unsigned I = 0; I != Input->Mods.size(); ++I) |
722 | if (Error Err = addModule(Input&: *Input, ModI: I, ResI, ResE: Res.end())) |
723 | return Err; |
724 | |
725 | assert(ResI == Res.end()); |
726 | return Error::success(); |
727 | } |
728 | |
729 | Error LTO::addModule(InputFile &Input, unsigned ModI, |
730 | const SymbolResolution *&ResI, |
731 | const SymbolResolution *ResE) { |
732 | Expected<BitcodeLTOInfo> LTOInfo = Input.Mods[ModI].getLTOInfo(); |
733 | if (!LTOInfo) |
734 | return LTOInfo.takeError(); |
735 | |
736 | if (EnableSplitLTOUnit) { |
737 | // If only some modules were split, flag this in the index so that |
738 | // we can skip or error on optimizations that need consistently split |
739 | // modules (whole program devirt and lower type tests). |
740 | if (*EnableSplitLTOUnit != LTOInfo->EnableSplitLTOUnit) |
741 | ThinLTO.CombinedIndex.setPartiallySplitLTOUnits(); |
742 | } else |
743 | EnableSplitLTOUnit = LTOInfo->EnableSplitLTOUnit; |
744 | |
745 | BitcodeModule BM = Input.Mods[ModI]; |
746 | |
747 | if ((LTOMode == LTOK_UnifiedRegular || LTOMode == LTOK_UnifiedThin) && |
748 | !LTOInfo->UnifiedLTO) |
749 | return make_error<StringError>( |
750 | Args: "unified LTO compilation must use " |
751 | "compatible bitcode modules (use -funified-lto)" , |
752 | Args: inconvertibleErrorCode()); |
753 | |
754 | if (LTOInfo->UnifiedLTO && LTOMode == LTOK_Default) |
755 | LTOMode = LTOK_UnifiedThin; |
756 | |
757 | bool IsThinLTO = LTOInfo->IsThinLTO && (LTOMode != LTOK_UnifiedRegular); |
758 | |
759 | auto ModSyms = Input.module_symbols(I: ModI); |
760 | addModuleToGlobalRes(Syms: ModSyms, Res: {ResI, ResE}, |
761 | Partition: IsThinLTO ? ThinLTO.ModuleMap.size() + 1 : 0, |
762 | InSummary: LTOInfo->HasSummary); |
763 | |
764 | if (IsThinLTO) |
765 | return addThinLTO(BM, Syms: ModSyms, ResI, ResE); |
766 | |
767 | RegularLTO.EmptyCombinedModule = false; |
768 | Expected<RegularLTOState::AddedModule> ModOrErr = |
769 | addRegularLTO(BM, Syms: ModSyms, ResI, ResE); |
770 | if (!ModOrErr) |
771 | return ModOrErr.takeError(); |
772 | |
773 | if (!LTOInfo->HasSummary) |
774 | return linkRegularLTO(Mod: std::move(*ModOrErr), /*LivenessFromIndex=*/false); |
775 | |
776 | // Regular LTO module summaries are added to a dummy module that represents |
777 | // the combined regular LTO module. |
778 | if (Error Err = BM.readSummary(CombinedIndex&: ThinLTO.CombinedIndex, ModulePath: "" )) |
779 | return Err; |
780 | RegularLTO.ModsWithSummaries.push_back(x: std::move(*ModOrErr)); |
781 | return Error::success(); |
782 | } |
783 | |
784 | // Checks whether the given global value is in a non-prevailing comdat |
785 | // (comdat containing values the linker indicated were not prevailing, |
786 | // which we then dropped to available_externally), and if so, removes |
787 | // it from the comdat. This is called for all global values to ensure the |
788 | // comdat is empty rather than leaving an incomplete comdat. It is needed for |
789 | // regular LTO modules, in case we are in a mixed-LTO mode (both regular |
790 | // and thin LTO modules) compilation. Since the regular LTO module will be |
791 | // linked first in the final native link, we want to make sure the linker |
792 | // doesn't select any of these incomplete comdats that would be left |
793 | // in the regular LTO module without this cleanup. |
794 | static void |
795 | handleNonPrevailingComdat(GlobalValue &GV, |
796 | std::set<const Comdat *> &NonPrevailingComdats) { |
797 | Comdat *C = GV.getComdat(); |
798 | if (!C) |
799 | return; |
800 | |
801 | if (!NonPrevailingComdats.count(x: C)) |
802 | return; |
803 | |
804 | // Additionally need to drop all global values from the comdat to |
805 | // available_externally, to satisfy the COMDAT requirement that all members |
806 | // are discarded as a unit. The non-local linkage global values avoid |
807 | // duplicate definition linker errors. |
808 | GV.setLinkage(GlobalValue::AvailableExternallyLinkage); |
809 | |
810 | if (auto GO = dyn_cast<GlobalObject>(Val: &GV)) |
811 | GO->setComdat(nullptr); |
812 | } |
813 | |
814 | // Add a regular LTO object to the link. |
815 | // The resulting module needs to be linked into the combined LTO module with |
816 | // linkRegularLTO. |
817 | Expected<LTO::RegularLTOState::AddedModule> |
818 | LTO::addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, |
819 | const SymbolResolution *&ResI, |
820 | const SymbolResolution *ResE) { |
821 | RegularLTOState::AddedModule Mod; |
822 | Expected<std::unique_ptr<Module>> MOrErr = |
823 | BM.getLazyModule(Context&: RegularLTO.Ctx, /*ShouldLazyLoadMetadata*/ true, |
824 | /*IsImporting*/ false); |
825 | if (!MOrErr) |
826 | return MOrErr.takeError(); |
827 | Module &M = **MOrErr; |
828 | Mod.M = std::move(*MOrErr); |
829 | |
830 | if (Error Err = M.materializeMetadata()) |
831 | return std::move(Err); |
832 | |
833 | // If cfi.functions is present and we are in regular LTO mode, LowerTypeTests |
834 | // will rename local functions in the merged module as "<function name>.1". |
835 | // This causes linking errors, since other parts of the module expect the |
836 | // original function name. |
837 | if (LTOMode == LTOK_UnifiedRegular) |
838 | if (NamedMDNode *CfiFunctionsMD = M.getNamedMetadata(Name: "cfi.functions" )) |
839 | M.eraseNamedMetadata(NMD: CfiFunctionsMD); |
840 | |
841 | UpgradeDebugInfo(M); |
842 | |
843 | ModuleSymbolTable SymTab; |
844 | SymTab.addModule(M: &M); |
845 | |
846 | for (GlobalVariable &GV : M.globals()) |
847 | if (GV.hasAppendingLinkage()) |
848 | Mod.Keep.push_back(x: &GV); |
849 | |
850 | DenseSet<GlobalObject *> AliasedGlobals; |
851 | for (auto &GA : M.aliases()) |
852 | if (GlobalObject *GO = GA.getAliaseeObject()) |
853 | AliasedGlobals.insert(V: GO); |
854 | |
855 | // In this function we need IR GlobalValues matching the symbols in Syms |
856 | // (which is not backed by a module), so we need to enumerate them in the same |
857 | // order. The symbol enumeration order of a ModuleSymbolTable intentionally |
858 | // matches the order of an irsymtab, but when we read the irsymtab in |
859 | // InputFile::create we omit some symbols that are irrelevant to LTO. The |
860 | // Skip() function skips the same symbols from the module as InputFile does |
861 | // from the symbol table. |
862 | auto MsymI = SymTab.symbols().begin(), MsymE = SymTab.symbols().end(); |
863 | auto Skip = [&]() { |
864 | while (MsymI != MsymE) { |
865 | auto Flags = SymTab.getSymbolFlags(S: *MsymI); |
866 | if ((Flags & object::BasicSymbolRef::SF_Global) && |
867 | !(Flags & object::BasicSymbolRef::SF_FormatSpecific)) |
868 | return; |
869 | ++MsymI; |
870 | } |
871 | }; |
872 | Skip(); |
873 | |
874 | std::set<const Comdat *> NonPrevailingComdats; |
875 | SmallSet<StringRef, 2> NonPrevailingAsmSymbols; |
876 | for (const InputFile::Symbol &Sym : Syms) { |
877 | assert(ResI != ResE); |
878 | SymbolResolution Res = *ResI++; |
879 | |
880 | assert(MsymI != MsymE); |
881 | ModuleSymbolTable::Symbol Msym = *MsymI++; |
882 | Skip(); |
883 | |
884 | if (GlobalValue *GV = dyn_cast_if_present<GlobalValue *>(Val&: Msym)) { |
885 | if (Res.Prevailing) { |
886 | if (Sym.isUndefined()) |
887 | continue; |
888 | Mod.Keep.push_back(x: GV); |
889 | // For symbols re-defined with linker -wrap and -defsym options, |
890 | // set the linkage to weak to inhibit IPO. The linkage will be |
891 | // restored by the linker. |
892 | if (Res.LinkerRedefined) |
893 | GV->setLinkage(GlobalValue::WeakAnyLinkage); |
894 | |
895 | GlobalValue::LinkageTypes OriginalLinkage = GV->getLinkage(); |
896 | if (GlobalValue::isLinkOnceLinkage(Linkage: OriginalLinkage)) |
897 | GV->setLinkage(GlobalValue::getWeakLinkage( |
898 | ODR: GlobalValue::isLinkOnceODRLinkage(Linkage: OriginalLinkage))); |
899 | } else if (isa<GlobalObject>(Val: GV) && |
900 | (GV->hasLinkOnceODRLinkage() || GV->hasWeakODRLinkage() || |
901 | GV->hasAvailableExternallyLinkage()) && |
902 | !AliasedGlobals.count(V: cast<GlobalObject>(Val: GV))) { |
903 | // Any of the above three types of linkage indicates that the |
904 | // chosen prevailing symbol will have the same semantics as this copy of |
905 | // the symbol, so we may be able to link it with available_externally |
906 | // linkage. We will decide later whether to do that when we link this |
907 | // module (in linkRegularLTO), based on whether it is undefined. |
908 | Mod.Keep.push_back(x: GV); |
909 | GV->setLinkage(GlobalValue::AvailableExternallyLinkage); |
910 | if (GV->hasComdat()) |
911 | NonPrevailingComdats.insert(x: GV->getComdat()); |
912 | cast<GlobalObject>(Val: GV)->setComdat(nullptr); |
913 | } |
914 | |
915 | // Set the 'local' flag based on the linker resolution for this symbol. |
916 | if (Res.FinalDefinitionInLinkageUnit) { |
917 | GV->setDSOLocal(true); |
918 | if (GV->hasDLLImportStorageClass()) |
919 | GV->setDLLStorageClass(GlobalValue::DLLStorageClassTypes:: |
920 | DefaultStorageClass); |
921 | } |
922 | } else if (auto *AS = |
923 | dyn_cast_if_present<ModuleSymbolTable::AsmSymbol *>(Val&: Msym)) { |
924 | // Collect non-prevailing symbols. |
925 | if (!Res.Prevailing) |
926 | NonPrevailingAsmSymbols.insert(V: AS->first); |
927 | } else { |
928 | llvm_unreachable("unknown symbol type" ); |
929 | } |
930 | |
931 | // Common resolution: collect the maximum size/alignment over all commons. |
932 | // We also record if we see an instance of a common as prevailing, so that |
933 | // if none is prevailing we can ignore it later. |
934 | if (Sym.isCommon()) { |
935 | // FIXME: We should figure out what to do about commons defined by asm. |
936 | // For now they aren't reported correctly by ModuleSymbolTable. |
937 | auto &CommonRes = RegularLTO.Commons[std::string(Sym.getIRName())]; |
938 | CommonRes.Size = std::max(a: CommonRes.Size, b: Sym.getCommonSize()); |
939 | if (uint32_t SymAlignValue = Sym.getCommonAlignment()) { |
940 | CommonRes.Alignment = |
941 | std::max(a: Align(SymAlignValue), b: CommonRes.Alignment); |
942 | } |
943 | CommonRes.Prevailing |= Res.Prevailing; |
944 | } |
945 | } |
946 | |
947 | if (!M.getComdatSymbolTable().empty()) |
948 | for (GlobalValue &GV : M.global_values()) |
949 | handleNonPrevailingComdat(GV, NonPrevailingComdats); |
950 | |
951 | // Prepend ".lto_discard <sym>, <sym>*" directive to each module inline asm |
952 | // block. |
953 | if (!M.getModuleInlineAsm().empty()) { |
954 | std::string NewIA = ".lto_discard" ; |
955 | if (!NonPrevailingAsmSymbols.empty()) { |
956 | // Don't dicard a symbol if there is a live .symver for it. |
957 | ModuleSymbolTable::CollectAsmSymvers( |
958 | M, AsmSymver: [&](StringRef Name, StringRef Alias) { |
959 | if (!NonPrevailingAsmSymbols.count(V: Alias)) |
960 | NonPrevailingAsmSymbols.erase(V: Name); |
961 | }); |
962 | NewIA += " " + llvm::join(R&: NonPrevailingAsmSymbols, Separator: ", " ); |
963 | } |
964 | NewIA += "\n" ; |
965 | M.setModuleInlineAsm(NewIA + M.getModuleInlineAsm()); |
966 | } |
967 | |
968 | assert(MsymI == MsymE); |
969 | return std::move(Mod); |
970 | } |
971 | |
972 | Error LTO::linkRegularLTO(RegularLTOState::AddedModule Mod, |
973 | bool LivenessFromIndex) { |
974 | std::vector<GlobalValue *> Keep; |
975 | for (GlobalValue *GV : Mod.Keep) { |
976 | if (LivenessFromIndex && !ThinLTO.CombinedIndex.isGUIDLive(GUID: GV->getGUID())) { |
977 | if (Function *F = dyn_cast<Function>(Val: GV)) { |
978 | if (DiagnosticOutputFile) { |
979 | if (Error Err = F->materialize()) |
980 | return Err; |
981 | OptimizationRemarkEmitter ORE(F, nullptr); |
982 | ORE.emit(OptDiag&: OptimizationRemark(DEBUG_TYPE, "deadfunction" , F) |
983 | << ore::NV("Function" , F) |
984 | << " not added to the combined module " ); |
985 | } |
986 | } |
987 | continue; |
988 | } |
989 | |
990 | if (!GV->hasAvailableExternallyLinkage()) { |
991 | Keep.push_back(x: GV); |
992 | continue; |
993 | } |
994 | |
995 | // Only link available_externally definitions if we don't already have a |
996 | // definition. |
997 | GlobalValue *CombinedGV = |
998 | RegularLTO.CombinedModule->getNamedValue(Name: GV->getName()); |
999 | if (CombinedGV && !CombinedGV->isDeclaration()) |
1000 | continue; |
1001 | |
1002 | Keep.push_back(x: GV); |
1003 | } |
1004 | |
1005 | return RegularLTO.Mover->move(Src: std::move(Mod.M), ValuesToLink: Keep, AddLazyFor: nullptr, |
1006 | /* IsPerformingImport */ false); |
1007 | } |
1008 | |
1009 | // Add a ThinLTO module to the link. |
1010 | Error LTO::addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms, |
1011 | const SymbolResolution *&ResI, |
1012 | const SymbolResolution *ResE) { |
1013 | const SymbolResolution *ResITmp = ResI; |
1014 | for (const InputFile::Symbol &Sym : Syms) { |
1015 | assert(ResITmp != ResE); |
1016 | SymbolResolution Res = *ResITmp++; |
1017 | |
1018 | if (!Sym.getIRName().empty()) { |
1019 | auto GUID = GlobalValue::getGUID(GlobalName: GlobalValue::getGlobalIdentifier( |
1020 | Name: Sym.getIRName(), Linkage: GlobalValue::ExternalLinkage, FileName: "" )); |
1021 | if (Res.Prevailing) |
1022 | ThinLTO.PrevailingModuleForGUID[GUID] = BM.getModuleIdentifier(); |
1023 | } |
1024 | } |
1025 | |
1026 | if (Error Err = |
1027 | BM.readSummary(CombinedIndex&: ThinLTO.CombinedIndex, ModulePath: BM.getModuleIdentifier(), |
1028 | IsPrevailing: [&](GlobalValue::GUID GUID) { |
1029 | return ThinLTO.PrevailingModuleForGUID[GUID] == |
1030 | BM.getModuleIdentifier(); |
1031 | })) |
1032 | return Err; |
1033 | LLVM_DEBUG(dbgs() << "Module " << BM.getModuleIdentifier() << "\n" ); |
1034 | |
1035 | for (const InputFile::Symbol &Sym : Syms) { |
1036 | assert(ResI != ResE); |
1037 | SymbolResolution Res = *ResI++; |
1038 | |
1039 | if (!Sym.getIRName().empty()) { |
1040 | auto GUID = GlobalValue::getGUID(GlobalName: GlobalValue::getGlobalIdentifier( |
1041 | Name: Sym.getIRName(), Linkage: GlobalValue::ExternalLinkage, FileName: "" )); |
1042 | if (Res.Prevailing) { |
1043 | assert(ThinLTO.PrevailingModuleForGUID[GUID] == |
1044 | BM.getModuleIdentifier()); |
1045 | |
1046 | // For linker redefined symbols (via --wrap or --defsym) we want to |
1047 | // switch the linkage to `weak` to prevent IPOs from happening. |
1048 | // Find the summary in the module for this very GV and record the new |
1049 | // linkage so that we can switch it when we import the GV. |
1050 | if (Res.LinkerRedefined) |
1051 | if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( |
1052 | ValueGUID: GUID, ModuleId: BM.getModuleIdentifier())) |
1053 | S->setLinkage(GlobalValue::WeakAnyLinkage); |
1054 | } |
1055 | |
1056 | // If the linker resolved the symbol to a local definition then mark it |
1057 | // as local in the summary for the module we are adding. |
1058 | if (Res.FinalDefinitionInLinkageUnit) { |
1059 | if (auto S = ThinLTO.CombinedIndex.findSummaryInModule( |
1060 | ValueGUID: GUID, ModuleId: BM.getModuleIdentifier())) { |
1061 | S->setDSOLocal(true); |
1062 | } |
1063 | } |
1064 | } |
1065 | } |
1066 | |
1067 | if (!ThinLTO.ModuleMap.insert(KV: {BM.getModuleIdentifier(), BM}).second) |
1068 | return make_error<StringError>( |
1069 | Args: "Expected at most one ThinLTO module per bitcode file" , |
1070 | Args: inconvertibleErrorCode()); |
1071 | |
1072 | if (!Conf.ThinLTOModulesToCompile.empty()) { |
1073 | if (!ThinLTO.ModulesToCompile) |
1074 | ThinLTO.ModulesToCompile = ModuleMapType(); |
1075 | // This is a fuzzy name matching where only modules with name containing the |
1076 | // specified switch values are going to be compiled. |
1077 | for (const std::string &Name : Conf.ThinLTOModulesToCompile) { |
1078 | if (BM.getModuleIdentifier().contains(Other: Name)) { |
1079 | ThinLTO.ModulesToCompile->insert(KV: {BM.getModuleIdentifier(), BM}); |
1080 | llvm::errs() << "[ThinLTO] Selecting " << BM.getModuleIdentifier() |
1081 | << " to compile\n" ; |
1082 | } |
1083 | } |
1084 | } |
1085 | |
1086 | return Error::success(); |
1087 | } |
1088 | |
1089 | unsigned LTO::getMaxTasks() const { |
1090 | CalledGetMaxTasks = true; |
1091 | auto ModuleCount = ThinLTO.ModulesToCompile ? ThinLTO.ModulesToCompile->size() |
1092 | : ThinLTO.ModuleMap.size(); |
1093 | return RegularLTO.ParallelCodeGenParallelismLevel + ModuleCount; |
1094 | } |
1095 | |
1096 | // If only some of the modules were split, we cannot correctly handle |
1097 | // code that contains type tests or type checked loads. |
1098 | Error LTO::checkPartiallySplit() { |
1099 | if (!ThinLTO.CombinedIndex.partiallySplitLTOUnits()) |
1100 | return Error::success(); |
1101 | |
1102 | Function *TypeTestFunc = RegularLTO.CombinedModule->getFunction( |
1103 | Name: Intrinsic::getName(id: Intrinsic::type_test)); |
1104 | Function *TypeCheckedLoadFunc = RegularLTO.CombinedModule->getFunction( |
1105 | Name: Intrinsic::getName(id: Intrinsic::type_checked_load)); |
1106 | Function *TypeCheckedLoadRelativeFunc = |
1107 | RegularLTO.CombinedModule->getFunction( |
1108 | Name: Intrinsic::getName(id: Intrinsic::type_checked_load_relative)); |
1109 | |
1110 | // First check if there are type tests / type checked loads in the |
1111 | // merged regular LTO module IR. |
1112 | if ((TypeTestFunc && !TypeTestFunc->use_empty()) || |
1113 | (TypeCheckedLoadFunc && !TypeCheckedLoadFunc->use_empty()) || |
1114 | (TypeCheckedLoadRelativeFunc && |
1115 | !TypeCheckedLoadRelativeFunc->use_empty())) |
1116 | return make_error<StringError>( |
1117 | Args: "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)" , |
1118 | Args: inconvertibleErrorCode()); |
1119 | |
1120 | // Otherwise check if there are any recorded in the combined summary from the |
1121 | // ThinLTO modules. |
1122 | for (auto &P : ThinLTO.CombinedIndex) { |
1123 | for (auto &S : P.second.SummaryList) { |
1124 | auto *FS = dyn_cast<FunctionSummary>(Val: S.get()); |
1125 | if (!FS) |
1126 | continue; |
1127 | if (!FS->type_test_assume_vcalls().empty() || |
1128 | !FS->type_checked_load_vcalls().empty() || |
1129 | !FS->type_test_assume_const_vcalls().empty() || |
1130 | !FS->type_checked_load_const_vcalls().empty() || |
1131 | !FS->type_tests().empty()) |
1132 | return make_error<StringError>( |
1133 | Args: "inconsistent LTO Unit splitting (recompile with -fsplit-lto-unit)" , |
1134 | Args: inconvertibleErrorCode()); |
1135 | } |
1136 | } |
1137 | return Error::success(); |
1138 | } |
1139 | |
1140 | Error LTO::run(AddStreamFn AddStream, FileCache Cache) { |
1141 | // Compute "dead" symbols, we don't want to import/export these! |
1142 | DenseSet<GlobalValue::GUID> GUIDPreservedSymbols; |
1143 | DenseMap<GlobalValue::GUID, PrevailingType> GUIDPrevailingResolutions; |
1144 | for (auto &Res : *GlobalResolutions) { |
1145 | // Normally resolution have IR name of symbol. We can do nothing here |
1146 | // otherwise. See comments in GlobalResolution struct for more details. |
1147 | if (Res.second.IRName.empty()) |
1148 | continue; |
1149 | |
1150 | GlobalValue::GUID GUID = GlobalValue::getGUID( |
1151 | GlobalName: GlobalValue::dropLLVMManglingEscape(Name: Res.second.IRName)); |
1152 | |
1153 | if (Res.second.VisibleOutsideSummary && Res.second.Prevailing) |
1154 | GUIDPreservedSymbols.insert(V: GUID); |
1155 | |
1156 | if (Res.second.ExportDynamic) |
1157 | DynamicExportSymbols.insert(V: GUID); |
1158 | |
1159 | GUIDPrevailingResolutions[GUID] = |
1160 | Res.second.Prevailing ? PrevailingType::Yes : PrevailingType::No; |
1161 | } |
1162 | |
1163 | auto isPrevailing = [&](GlobalValue::GUID G) { |
1164 | auto It = GUIDPrevailingResolutions.find(Val: G); |
1165 | if (It == GUIDPrevailingResolutions.end()) |
1166 | return PrevailingType::Unknown; |
1167 | return It->second; |
1168 | }; |
1169 | computeDeadSymbolsWithConstProp(Index&: ThinLTO.CombinedIndex, GUIDPreservedSymbols, |
1170 | isPrevailing, ImportEnabled: Conf.OptLevel > 0); |
1171 | |
1172 | // Setup output file to emit statistics. |
1173 | auto StatsFileOrErr = setupStatsFile(Conf.StatsFile); |
1174 | if (!StatsFileOrErr) |
1175 | return StatsFileOrErr.takeError(); |
1176 | std::unique_ptr<ToolOutputFile> StatsFile = std::move(StatsFileOrErr.get()); |
1177 | |
1178 | // TODO: Ideally this would be controlled automatically by detecting that we |
1179 | // are linking with an allocator that supports these interfaces, rather than |
1180 | // an internal option (which would still be needed for tests, however). For |
1181 | // example, if the library exported a symbol like __malloc_hot_cold the linker |
1182 | // could recognize that and set a flag in the lto::Config. |
1183 | if (SupportsHotColdNew) |
1184 | ThinLTO.CombinedIndex.setWithSupportsHotColdNew(); |
1185 | |
1186 | Error Result = runRegularLTO(AddStream); |
1187 | if (!Result) |
1188 | // This will reset the GlobalResolutions optional once done with it to |
1189 | // reduce peak memory before importing. |
1190 | Result = runThinLTO(AddStream, Cache, GUIDPreservedSymbols); |
1191 | |
1192 | if (StatsFile) |
1193 | PrintStatisticsJSON(OS&: StatsFile->os()); |
1194 | |
1195 | return Result; |
1196 | } |
1197 | |
1198 | void lto::updateMemProfAttributes(Module &Mod, |
1199 | const ModuleSummaryIndex &Index) { |
1200 | if (Index.withSupportsHotColdNew()) |
1201 | return; |
1202 | |
1203 | // The profile matcher applies hotness attributes directly for allocations, |
1204 | // and those will cause us to generate calls to the hot/cold interfaces |
1205 | // unconditionally. If supports-hot-cold-new was not enabled in the LTO |
1206 | // link then assume we don't want these calls (e.g. not linking with |
1207 | // the appropriate library, or otherwise trying to disable this behavior). |
1208 | for (auto &F : Mod) { |
1209 | for (auto &BB : F) { |
1210 | for (auto &I : BB) { |
1211 | auto *CI = dyn_cast<CallBase>(Val: &I); |
1212 | if (!CI) |
1213 | continue; |
1214 | if (CI->hasFnAttr(Kind: "memprof" )) |
1215 | CI->removeFnAttr(Kind: "memprof" ); |
1216 | // Strip off all memprof metadata as it is no longer needed. |
1217 | // Importantly, this avoids the addition of new memprof attributes |
1218 | // after inlining propagation. |
1219 | // TODO: If we support additional types of MemProf metadata beyond hot |
1220 | // and cold, we will need to update the metadata based on the allocator |
1221 | // APIs supported instead of completely stripping all. |
1222 | CI->setMetadata(KindID: LLVMContext::MD_memprof, Node: nullptr); |
1223 | CI->setMetadata(KindID: LLVMContext::MD_callsite, Node: nullptr); |
1224 | } |
1225 | } |
1226 | } |
1227 | } |
1228 | |
1229 | Error LTO::runRegularLTO(AddStreamFn AddStream) { |
1230 | // Setup optimization remarks. |
1231 | auto DiagFileOrErr = lto::setupLLVMOptimizationRemarks( |
1232 | Context&: RegularLTO.CombinedModule->getContext(), RemarksFilename: Conf.RemarksFilename, |
1233 | RemarksPasses: Conf.RemarksPasses, RemarksFormat: Conf.RemarksFormat, RemarksWithHotness: Conf.RemarksWithHotness, |
1234 | RemarksHotnessThreshold: Conf.RemarksHotnessThreshold); |
1235 | LLVM_DEBUG(dbgs() << "Running regular LTO\n" ); |
1236 | if (!DiagFileOrErr) |
1237 | return DiagFileOrErr.takeError(); |
1238 | DiagnosticOutputFile = std::move(*DiagFileOrErr); |
1239 | |
1240 | // Finalize linking of regular LTO modules containing summaries now that |
1241 | // we have computed liveness information. |
1242 | for (auto &M : RegularLTO.ModsWithSummaries) |
1243 | if (Error Err = linkRegularLTO(Mod: std::move(M), |
1244 | /*LivenessFromIndex=*/true)) |
1245 | return Err; |
1246 | |
1247 | // Ensure we don't have inconsistently split LTO units with type tests. |
1248 | // FIXME: this checks both LTO and ThinLTO. It happens to work as we take |
1249 | // this path both cases but eventually this should be split into two and |
1250 | // do the ThinLTO checks in `runThinLTO`. |
1251 | if (Error Err = checkPartiallySplit()) |
1252 | return Err; |
1253 | |
1254 | // Make sure commons have the right size/alignment: we kept the largest from |
1255 | // all the prevailing when adding the inputs, and we apply it here. |
1256 | const DataLayout &DL = RegularLTO.CombinedModule->getDataLayout(); |
1257 | for (auto &I : RegularLTO.Commons) { |
1258 | if (!I.second.Prevailing) |
1259 | // Don't do anything if no instance of this common was prevailing. |
1260 | continue; |
1261 | GlobalVariable *OldGV = RegularLTO.CombinedModule->getNamedGlobal(Name: I.first); |
1262 | if (OldGV && DL.getTypeAllocSize(Ty: OldGV->getValueType()) == I.second.Size) { |
1263 | // Don't create a new global if the type is already correct, just make |
1264 | // sure the alignment is correct. |
1265 | OldGV->setAlignment(I.second.Alignment); |
1266 | continue; |
1267 | } |
1268 | ArrayType *Ty = |
1269 | ArrayType::get(ElementType: Type::getInt8Ty(C&: RegularLTO.Ctx), NumElements: I.second.Size); |
1270 | auto *GV = new GlobalVariable(*RegularLTO.CombinedModule, Ty, false, |
1271 | GlobalValue::CommonLinkage, |
1272 | ConstantAggregateZero::get(Ty), "" ); |
1273 | GV->setAlignment(I.second.Alignment); |
1274 | if (OldGV) { |
1275 | OldGV->replaceAllUsesWith(V: GV); |
1276 | GV->takeName(V: OldGV); |
1277 | OldGV->eraseFromParent(); |
1278 | } else { |
1279 | GV->setName(I.first); |
1280 | } |
1281 | } |
1282 | |
1283 | updateMemProfAttributes(Mod&: *RegularLTO.CombinedModule, Index: ThinLTO.CombinedIndex); |
1284 | |
1285 | bool WholeProgramVisibilityEnabledInLTO = |
1286 | Conf.HasWholeProgramVisibility && |
1287 | // If validation is enabled, upgrade visibility only when all vtables |
1288 | // have typeinfos. |
1289 | (!Conf.ValidateAllVtablesHaveTypeInfos || Conf.AllVtablesHaveTypeInfos); |
1290 | |
1291 | // This returns true when the name is local or not defined. Locals are |
1292 | // expected to be handled separately. |
1293 | auto IsVisibleToRegularObj = [&](StringRef name) { |
1294 | auto It = GlobalResolutions->find(Key: name); |
1295 | return (It == GlobalResolutions->end() || It->second.VisibleOutsideSummary); |
1296 | }; |
1297 | |
1298 | // If allowed, upgrade public vcall visibility metadata to linkage unit |
1299 | // visibility before whole program devirtualization in the optimizer. |
1300 | updateVCallVisibilityInModule( |
1301 | M&: *RegularLTO.CombinedModule, WholeProgramVisibilityEnabledInLTO, |
1302 | DynamicExportSymbols, ValidateAllVtablesHaveTypeInfos: Conf.ValidateAllVtablesHaveTypeInfos, |
1303 | IsVisibleToRegularObj); |
1304 | updatePublicTypeTestCalls(M&: *RegularLTO.CombinedModule, |
1305 | WholeProgramVisibilityEnabledInLTO); |
1306 | |
1307 | if (Conf.PreOptModuleHook && |
1308 | !Conf.PreOptModuleHook(0, *RegularLTO.CombinedModule)) |
1309 | return finalizeOptimizationRemarks(DiagOutputFile: std::move(DiagnosticOutputFile)); |
1310 | |
1311 | if (!Conf.CodeGenOnly) { |
1312 | for (const auto &R : *GlobalResolutions) { |
1313 | GlobalValue *GV = |
1314 | RegularLTO.CombinedModule->getNamedValue(Name: R.second.IRName); |
1315 | if (!R.second.isPrevailingIRSymbol()) |
1316 | continue; |
1317 | if (R.second.Partition != 0 && |
1318 | R.second.Partition != GlobalResolution::External) |
1319 | continue; |
1320 | |
1321 | // Ignore symbols defined in other partitions. |
1322 | // Also skip declarations, which are not allowed to have internal linkage. |
1323 | if (!GV || GV->hasLocalLinkage() || GV->isDeclaration()) |
1324 | continue; |
1325 | |
1326 | // Symbols that are marked DLLImport or DLLExport should not be |
1327 | // internalized, as they are either externally visible or referencing |
1328 | // external symbols. Symbols that have AvailableExternally or Appending |
1329 | // linkage might be used by future passes and should be kept as is. |
1330 | // These linkages are seen in Unified regular LTO, because the process |
1331 | // of creating split LTO units introduces symbols with that linkage into |
1332 | // one of the created modules. Normally, only the ThinLTO backend would |
1333 | // compile this module, but Unified Regular LTO processes both |
1334 | // modules created by the splitting process as regular LTO modules. |
1335 | if ((LTOMode == LTOKind::LTOK_UnifiedRegular) && |
1336 | ((GV->getDLLStorageClass() != GlobalValue::DefaultStorageClass) || |
1337 | GV->hasAvailableExternallyLinkage() || GV->hasAppendingLinkage())) |
1338 | continue; |
1339 | |
1340 | GV->setUnnamedAddr(R.second.UnnamedAddr ? GlobalValue::UnnamedAddr::Global |
1341 | : GlobalValue::UnnamedAddr::None); |
1342 | if (EnableLTOInternalization && R.second.Partition == 0) |
1343 | GV->setLinkage(GlobalValue::InternalLinkage); |
1344 | } |
1345 | |
1346 | if (Conf.PostInternalizeModuleHook && |
1347 | !Conf.PostInternalizeModuleHook(0, *RegularLTO.CombinedModule)) |
1348 | return finalizeOptimizationRemarks(DiagOutputFile: std::move(DiagnosticOutputFile)); |
1349 | } |
1350 | |
1351 | if (!RegularLTO.EmptyCombinedModule || Conf.AlwaysEmitRegularLTOObj) { |
1352 | if (Error Err = |
1353 | backend(C: Conf, AddStream, ParallelCodeGenParallelismLevel: RegularLTO.ParallelCodeGenParallelismLevel, |
1354 | M&: *RegularLTO.CombinedModule, CombinedIndex&: ThinLTO.CombinedIndex)) |
1355 | return Err; |
1356 | } |
1357 | |
1358 | return finalizeOptimizationRemarks(DiagOutputFile: std::move(DiagnosticOutputFile)); |
1359 | } |
1360 | |
1361 | SmallVector<const char *> LTO::getRuntimeLibcallSymbols(const Triple &TT) { |
1362 | RTLIB::RuntimeLibcallsInfo Libcalls(TT); |
1363 | SmallVector<const char *> LibcallSymbols; |
1364 | copy_if(Range: Libcalls.getLibcallNames(), Out: std::back_inserter(x&: LibcallSymbols), |
1365 | P: [](const char *Name) { return Name; }); |
1366 | return LibcallSymbols; |
1367 | } |
1368 | |
1369 | /// This class defines the interface to the ThinLTO backend. |
1370 | class lto::ThinBackendProc { |
1371 | protected: |
1372 | const Config &Conf; |
1373 | ModuleSummaryIndex &CombinedIndex; |
1374 | const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries; |
1375 | lto::IndexWriteCallback OnWrite; |
1376 | bool ShouldEmitImportsFiles; |
1377 | |
1378 | public: |
1379 | ThinBackendProc( |
1380 | const Config &Conf, ModuleSummaryIndex &CombinedIndex, |
1381 | const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, |
1382 | lto::IndexWriteCallback OnWrite, bool ShouldEmitImportsFiles) |
1383 | : Conf(Conf), CombinedIndex(CombinedIndex), |
1384 | ModuleToDefinedGVSummaries(ModuleToDefinedGVSummaries), |
1385 | OnWrite(OnWrite), ShouldEmitImportsFiles(ShouldEmitImportsFiles) {} |
1386 | |
1387 | virtual ~ThinBackendProc() = default; |
1388 | virtual Error start( |
1389 | unsigned Task, BitcodeModule BM, |
1390 | const FunctionImporter::ImportMapTy &ImportList, |
1391 | const FunctionImporter::ExportSetTy &ExportList, |
1392 | const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, |
1393 | MapVector<StringRef, BitcodeModule> &ModuleMap) = 0; |
1394 | virtual Error wait() = 0; |
1395 | virtual unsigned getThreadCount() = 0; |
1396 | |
1397 | // Write sharded indices and (optionally) imports to disk |
1398 | Error emitFiles(const FunctionImporter::ImportMapTy &ImportList, |
1399 | llvm::StringRef ModulePath, |
1400 | const std::string &NewModulePath) { |
1401 | std::map<std::string, GVSummaryMapTy> ModuleToSummariesForIndex; |
1402 | GVSummaryPtrSet DeclarationSummaries; |
1403 | |
1404 | std::error_code EC; |
1405 | gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries, |
1406 | ImportList, ModuleToSummariesForIndex, |
1407 | DecSummaries&: DeclarationSummaries); |
1408 | |
1409 | raw_fd_ostream OS(NewModulePath + ".thinlto.bc" , EC, |
1410 | sys::fs::OpenFlags::OF_None); |
1411 | if (EC) |
1412 | return errorCodeToError(EC); |
1413 | |
1414 | writeIndexToFile(Index: CombinedIndex, Out&: OS, ModuleToSummariesForIndex: &ModuleToSummariesForIndex, |
1415 | DecSummaries: &DeclarationSummaries); |
1416 | |
1417 | if (ShouldEmitImportsFiles) { |
1418 | EC = EmitImportsFiles(ModulePath, OutputFilename: NewModulePath + ".imports" , |
1419 | ModuleToSummariesForIndex); |
1420 | if (EC) |
1421 | return errorCodeToError(EC); |
1422 | } |
1423 | return Error::success(); |
1424 | } |
1425 | }; |
1426 | |
1427 | namespace { |
1428 | class InProcessThinBackend : public ThinBackendProc { |
1429 | DefaultThreadPool BackendThreadPool; |
1430 | AddStreamFn AddStream; |
1431 | FileCache Cache; |
1432 | std::set<GlobalValue::GUID> CfiFunctionDefs; |
1433 | std::set<GlobalValue::GUID> CfiFunctionDecls; |
1434 | |
1435 | std::optional<Error> Err; |
1436 | std::mutex ErrMu; |
1437 | |
1438 | bool ShouldEmitIndexFiles; |
1439 | |
1440 | public: |
1441 | InProcessThinBackend( |
1442 | const Config &Conf, ModuleSummaryIndex &CombinedIndex, |
1443 | ThreadPoolStrategy ThinLTOParallelism, |
1444 | const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, |
1445 | AddStreamFn AddStream, FileCache Cache, lto::IndexWriteCallback OnWrite, |
1446 | bool ShouldEmitIndexFiles, bool ShouldEmitImportsFiles) |
1447 | : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries, |
1448 | OnWrite, ShouldEmitImportsFiles), |
1449 | BackendThreadPool(ThinLTOParallelism), AddStream(std::move(AddStream)), |
1450 | Cache(std::move(Cache)), ShouldEmitIndexFiles(ShouldEmitIndexFiles) { |
1451 | for (auto &Name : CombinedIndex.cfiFunctionDefs()) |
1452 | CfiFunctionDefs.insert( |
1453 | x: GlobalValue::getGUID(GlobalName: GlobalValue::dropLLVMManglingEscape(Name))); |
1454 | for (auto &Name : CombinedIndex.cfiFunctionDecls()) |
1455 | CfiFunctionDecls.insert( |
1456 | x: GlobalValue::getGUID(GlobalName: GlobalValue::dropLLVMManglingEscape(Name))); |
1457 | } |
1458 | |
1459 | Error runThinLTOBackendThread( |
1460 | AddStreamFn AddStream, FileCache Cache, unsigned Task, BitcodeModule BM, |
1461 | ModuleSummaryIndex &CombinedIndex, |
1462 | const FunctionImporter::ImportMapTy &ImportList, |
1463 | const FunctionImporter::ExportSetTy &ExportList, |
1464 | const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, |
1465 | const GVSummaryMapTy &DefinedGlobals, |
1466 | MapVector<StringRef, BitcodeModule> &ModuleMap) { |
1467 | auto RunThinBackend = [&](AddStreamFn AddStream) { |
1468 | LTOLLVMContext BackendContext(Conf); |
1469 | Expected<std::unique_ptr<Module>> MOrErr = BM.parseModule(Context&: BackendContext); |
1470 | if (!MOrErr) |
1471 | return MOrErr.takeError(); |
1472 | |
1473 | return thinBackend(C: Conf, Task, AddStream, M&: **MOrErr, CombinedIndex, |
1474 | ImportList, DefinedGlobals, ModuleMap: &ModuleMap); |
1475 | }; |
1476 | |
1477 | auto ModuleID = BM.getModuleIdentifier(); |
1478 | |
1479 | if (ShouldEmitIndexFiles) { |
1480 | if (auto E = emitFiles(ImportList, ModulePath: ModuleID, NewModulePath: ModuleID.str())) |
1481 | return E; |
1482 | } |
1483 | |
1484 | if (!Cache || !CombinedIndex.modulePaths().count(Key: ModuleID) || |
1485 | all_of(Range: CombinedIndex.getModuleHash(ModPath: ModuleID), |
1486 | P: [](uint32_t V) { return V == 0; })) |
1487 | // Cache disabled or no entry for this module in the combined index or |
1488 | // no module hash. |
1489 | return RunThinBackend(AddStream); |
1490 | |
1491 | SmallString<40> Key; |
1492 | // The module may be cached, this helps handling it. |
1493 | computeLTOCacheKey(Key, Conf, Index: CombinedIndex, ModuleID, ImportList, |
1494 | ExportList, ResolvedODR, DefinedGlobals, CfiFunctionDefs, |
1495 | CfiFunctionDecls); |
1496 | Expected<AddStreamFn> CacheAddStreamOrErr = Cache(Task, Key, ModuleID); |
1497 | if (Error Err = CacheAddStreamOrErr.takeError()) |
1498 | return Err; |
1499 | AddStreamFn &CacheAddStream = *CacheAddStreamOrErr; |
1500 | if (CacheAddStream) |
1501 | return RunThinBackend(CacheAddStream); |
1502 | |
1503 | return Error::success(); |
1504 | } |
1505 | |
1506 | Error start( |
1507 | unsigned Task, BitcodeModule BM, |
1508 | const FunctionImporter::ImportMapTy &ImportList, |
1509 | const FunctionImporter::ExportSetTy &ExportList, |
1510 | const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, |
1511 | MapVector<StringRef, BitcodeModule> &ModuleMap) override { |
1512 | StringRef ModulePath = BM.getModuleIdentifier(); |
1513 | assert(ModuleToDefinedGVSummaries.count(ModulePath)); |
1514 | const GVSummaryMapTy &DefinedGlobals = |
1515 | ModuleToDefinedGVSummaries.find(Val: ModulePath)->second; |
1516 | BackendThreadPool.async( |
1517 | F: [=](BitcodeModule BM, ModuleSummaryIndex &CombinedIndex, |
1518 | const FunctionImporter::ImportMapTy &ImportList, |
1519 | const FunctionImporter::ExportSetTy &ExportList, |
1520 | const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> |
1521 | &ResolvedODR, |
1522 | const GVSummaryMapTy &DefinedGlobals, |
1523 | MapVector<StringRef, BitcodeModule> &ModuleMap) { |
1524 | if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) |
1525 | timeTraceProfilerInitialize(TimeTraceGranularity: Conf.TimeTraceGranularity, |
1526 | ProcName: "thin backend" ); |
1527 | Error E = runThinLTOBackendThread( |
1528 | AddStream, Cache, Task, BM, CombinedIndex, ImportList, ExportList, |
1529 | ResolvedODR, DefinedGlobals, ModuleMap); |
1530 | if (E) { |
1531 | std::unique_lock<std::mutex> L(ErrMu); |
1532 | if (Err) |
1533 | Err = joinErrors(E1: std::move(*Err), E2: std::move(E)); |
1534 | else |
1535 | Err = std::move(E); |
1536 | } |
1537 | if (LLVM_ENABLE_THREADS && Conf.TimeTraceEnabled) |
1538 | timeTraceProfilerFinishThread(); |
1539 | }, |
1540 | ArgList&: BM, ArgList: std::ref(t&: CombinedIndex), ArgList: std::ref(t: ImportList), ArgList: std::ref(t: ExportList), |
1541 | ArgList: std::ref(t: ResolvedODR), ArgList: std::ref(t: DefinedGlobals), ArgList: std::ref(t&: ModuleMap)); |
1542 | |
1543 | if (OnWrite) |
1544 | OnWrite(std::string(ModulePath)); |
1545 | return Error::success(); |
1546 | } |
1547 | |
1548 | Error wait() override { |
1549 | BackendThreadPool.wait(); |
1550 | if (Err) |
1551 | return std::move(*Err); |
1552 | else |
1553 | return Error::success(); |
1554 | } |
1555 | |
1556 | unsigned getThreadCount() override { |
1557 | return BackendThreadPool.getMaxConcurrency(); |
1558 | } |
1559 | }; |
1560 | } // end anonymous namespace |
1561 | |
1562 | ThinBackend lto::createInProcessThinBackend(ThreadPoolStrategy Parallelism, |
1563 | lto::IndexWriteCallback OnWrite, |
1564 | bool ShouldEmitIndexFiles, |
1565 | bool ShouldEmitImportsFiles) { |
1566 | return |
1567 | [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, |
1568 | const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, |
1569 | AddStreamFn AddStream, FileCache Cache) { |
1570 | return std::make_unique<InProcessThinBackend>( |
1571 | args: Conf, args&: CombinedIndex, args: Parallelism, args: ModuleToDefinedGVSummaries, |
1572 | args&: AddStream, args&: Cache, args: OnWrite, args: ShouldEmitIndexFiles, |
1573 | args: ShouldEmitImportsFiles); |
1574 | }; |
1575 | } |
1576 | |
1577 | StringLiteral lto::getThinLTODefaultCPU(const Triple &TheTriple) { |
1578 | if (!TheTriple.isOSDarwin()) |
1579 | return "" ; |
1580 | if (TheTriple.getArch() == Triple::x86_64) |
1581 | return "core2" ; |
1582 | if (TheTriple.getArch() == Triple::x86) |
1583 | return "yonah" ; |
1584 | if (TheTriple.isArm64e()) |
1585 | return "apple-a12" ; |
1586 | if (TheTriple.getArch() == Triple::aarch64 || |
1587 | TheTriple.getArch() == Triple::aarch64_32) |
1588 | return "cyclone" ; |
1589 | return "" ; |
1590 | } |
1591 | |
1592 | // Given the original \p Path to an output file, replace any path |
1593 | // prefix matching \p OldPrefix with \p NewPrefix. Also, create the |
1594 | // resulting directory if it does not yet exist. |
1595 | std::string lto::getThinLTOOutputFile(StringRef Path, StringRef OldPrefix, |
1596 | StringRef NewPrefix) { |
1597 | if (OldPrefix.empty() && NewPrefix.empty()) |
1598 | return std::string(Path); |
1599 | SmallString<128> NewPath(Path); |
1600 | llvm::sys::path::replace_path_prefix(Path&: NewPath, OldPrefix, NewPrefix); |
1601 | StringRef ParentPath = llvm::sys::path::parent_path(path: NewPath.str()); |
1602 | if (!ParentPath.empty()) { |
1603 | // Make sure the new directory exists, creating it if necessary. |
1604 | if (std::error_code EC = llvm::sys::fs::create_directories(path: ParentPath)) |
1605 | llvm::errs() << "warning: could not create directory '" << ParentPath |
1606 | << "': " << EC.message() << '\n'; |
1607 | } |
1608 | return std::string(NewPath); |
1609 | } |
1610 | |
1611 | namespace { |
1612 | class WriteIndexesThinBackend : public ThinBackendProc { |
1613 | std::string OldPrefix, NewPrefix, NativeObjectPrefix; |
1614 | raw_fd_ostream *LinkedObjectsFile; |
1615 | |
1616 | public: |
1617 | WriteIndexesThinBackend( |
1618 | const Config &Conf, ModuleSummaryIndex &CombinedIndex, |
1619 | const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, |
1620 | std::string OldPrefix, std::string NewPrefix, |
1621 | std::string NativeObjectPrefix, bool ShouldEmitImportsFiles, |
1622 | raw_fd_ostream *LinkedObjectsFile, lto::IndexWriteCallback OnWrite) |
1623 | : ThinBackendProc(Conf, CombinedIndex, ModuleToDefinedGVSummaries, |
1624 | OnWrite, ShouldEmitImportsFiles), |
1625 | OldPrefix(OldPrefix), NewPrefix(NewPrefix), |
1626 | NativeObjectPrefix(NativeObjectPrefix), |
1627 | LinkedObjectsFile(LinkedObjectsFile) {} |
1628 | |
1629 | Error start( |
1630 | unsigned Task, BitcodeModule BM, |
1631 | const FunctionImporter::ImportMapTy &ImportList, |
1632 | const FunctionImporter::ExportSetTy &ExportList, |
1633 | const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR, |
1634 | MapVector<StringRef, BitcodeModule> &ModuleMap) override { |
1635 | StringRef ModulePath = BM.getModuleIdentifier(); |
1636 | std::string NewModulePath = |
1637 | getThinLTOOutputFile(Path: ModulePath, OldPrefix, NewPrefix); |
1638 | |
1639 | if (LinkedObjectsFile) { |
1640 | std::string ObjectPrefix = |
1641 | NativeObjectPrefix.empty() ? NewPrefix : NativeObjectPrefix; |
1642 | std::string LinkedObjectsFilePath = |
1643 | getThinLTOOutputFile(Path: ModulePath, OldPrefix, NewPrefix: ObjectPrefix); |
1644 | *LinkedObjectsFile << LinkedObjectsFilePath << '\n'; |
1645 | } |
1646 | |
1647 | if (auto E = emitFiles(ImportList, ModulePath, NewModulePath)) |
1648 | return E; |
1649 | |
1650 | if (OnWrite) |
1651 | OnWrite(std::string(ModulePath)); |
1652 | return Error::success(); |
1653 | } |
1654 | |
1655 | Error wait() override { return Error::success(); } |
1656 | |
1657 | // WriteIndexesThinBackend should always return 1 to prevent module |
1658 | // re-ordering and avoid non-determinism in the final link. |
1659 | unsigned getThreadCount() override { return 1; } |
1660 | }; |
1661 | } // end anonymous namespace |
1662 | |
1663 | ThinBackend lto::createWriteIndexesThinBackend( |
1664 | std::string OldPrefix, std::string NewPrefix, |
1665 | std::string NativeObjectPrefix, bool ShouldEmitImportsFiles, |
1666 | raw_fd_ostream *LinkedObjectsFile, IndexWriteCallback OnWrite) { |
1667 | return |
1668 | [=](const Config &Conf, ModuleSummaryIndex &CombinedIndex, |
1669 | const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries, |
1670 | AddStreamFn AddStream, FileCache Cache) { |
1671 | return std::make_unique<WriteIndexesThinBackend>( |
1672 | args: Conf, args&: CombinedIndex, args: ModuleToDefinedGVSummaries, args: OldPrefix, |
1673 | args: NewPrefix, args: NativeObjectPrefix, args: ShouldEmitImportsFiles, |
1674 | args: LinkedObjectsFile, args: OnWrite); |
1675 | }; |
1676 | } |
1677 | |
1678 | Error LTO::runThinLTO(AddStreamFn AddStream, FileCache Cache, |
1679 | const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) { |
1680 | LLVM_DEBUG(dbgs() << "Running ThinLTO\n" ); |
1681 | ThinLTO.CombinedIndex.releaseTemporaryMemory(); |
1682 | timeTraceProfilerBegin(Name: "ThinLink" , Detail: StringRef("" )); |
1683 | auto TimeTraceScopeExit = llvm::make_scope_exit(F: []() { |
1684 | if (llvm::timeTraceProfilerEnabled()) |
1685 | llvm::timeTraceProfilerEnd(); |
1686 | }); |
1687 | if (ThinLTO.ModuleMap.empty()) |
1688 | return Error::success(); |
1689 | |
1690 | if (ThinLTO.ModulesToCompile && ThinLTO.ModulesToCompile->empty()) { |
1691 | llvm::errs() << "warning: [ThinLTO] No module compiled\n" ; |
1692 | return Error::success(); |
1693 | } |
1694 | |
1695 | if (Conf.CombinedIndexHook && |
1696 | !Conf.CombinedIndexHook(ThinLTO.CombinedIndex, GUIDPreservedSymbols)) |
1697 | return Error::success(); |
1698 | |
1699 | // Collect for each module the list of function it defines (GUID -> |
1700 | // Summary). |
1701 | DenseMap<StringRef, GVSummaryMapTy> ModuleToDefinedGVSummaries( |
1702 | ThinLTO.ModuleMap.size()); |
1703 | ThinLTO.CombinedIndex.collectDefinedGVSummariesPerModule( |
1704 | ModuleToDefinedGVSummaries); |
1705 | // Create entries for any modules that didn't have any GV summaries |
1706 | // (either they didn't have any GVs to start with, or we suppressed |
1707 | // generation of the summaries because they e.g. had inline assembly |
1708 | // uses that couldn't be promoted/renamed on export). This is so |
1709 | // InProcessThinBackend::start can still launch a backend thread, which |
1710 | // is passed the map of summaries for the module, without any special |
1711 | // handling for this case. |
1712 | for (auto &Mod : ThinLTO.ModuleMap) |
1713 | if (!ModuleToDefinedGVSummaries.count(Val: Mod.first)) |
1714 | ModuleToDefinedGVSummaries.try_emplace(Key: Mod.first); |
1715 | |
1716 | // Synthesize entry counts for functions in the CombinedIndex. |
1717 | computeSyntheticCounts(Index&: ThinLTO.CombinedIndex); |
1718 | |
1719 | DenseMap<StringRef, FunctionImporter::ImportMapTy> ImportLists( |
1720 | ThinLTO.ModuleMap.size()); |
1721 | DenseMap<StringRef, FunctionImporter::ExportSetTy> ExportLists( |
1722 | ThinLTO.ModuleMap.size()); |
1723 | StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR; |
1724 | |
1725 | if (DumpThinCGSCCs) |
1726 | ThinLTO.CombinedIndex.dumpSCCs(OS&: outs()); |
1727 | |
1728 | std::set<GlobalValue::GUID> ExportedGUIDs; |
1729 | |
1730 | bool WholeProgramVisibilityEnabledInLTO = |
1731 | Conf.HasWholeProgramVisibility && |
1732 | // If validation is enabled, upgrade visibility only when all vtables |
1733 | // have typeinfos. |
1734 | (!Conf.ValidateAllVtablesHaveTypeInfos || Conf.AllVtablesHaveTypeInfos); |
1735 | if (hasWholeProgramVisibility(WholeProgramVisibilityEnabledInLTO)) |
1736 | ThinLTO.CombinedIndex.setWithWholeProgramVisibility(); |
1737 | |
1738 | // If we're validating, get the vtable symbols that should not be |
1739 | // upgraded because they correspond to typeIDs outside of index-based |
1740 | // WPD info. |
1741 | DenseSet<GlobalValue::GUID> VisibleToRegularObjSymbols; |
1742 | if (WholeProgramVisibilityEnabledInLTO && |
1743 | Conf.ValidateAllVtablesHaveTypeInfos) { |
1744 | // This returns true when the name is local or not defined. Locals are |
1745 | // expected to be handled separately. |
1746 | auto IsVisibleToRegularObj = [&](StringRef name) { |
1747 | auto It = GlobalResolutions->find(Key: name); |
1748 | return (It == GlobalResolutions->end() || |
1749 | It->second.VisibleOutsideSummary); |
1750 | }; |
1751 | |
1752 | getVisibleToRegularObjVtableGUIDs(Index&: ThinLTO.CombinedIndex, |
1753 | VisibleToRegularObjSymbols, |
1754 | IsVisibleToRegularObj); |
1755 | } |
1756 | |
1757 | // If allowed, upgrade public vcall visibility to linkage unit visibility in |
1758 | // the summaries before whole program devirtualization below. |
1759 | updateVCallVisibilityInIndex( |
1760 | Index&: ThinLTO.CombinedIndex, WholeProgramVisibilityEnabledInLTO, |
1761 | DynamicExportSymbols, VisibleToRegularObjSymbols); |
1762 | |
1763 | // Perform index-based WPD. This will return immediately if there are |
1764 | // no index entries in the typeIdMetadata map (e.g. if we are instead |
1765 | // performing IR-based WPD in hybrid regular/thin LTO mode). |
1766 | std::map<ValueInfo, std::vector<VTableSlotSummary>> LocalWPDTargetsMap; |
1767 | runWholeProgramDevirtOnIndex(Summary&: ThinLTO.CombinedIndex, ExportedGUIDs, |
1768 | LocalWPDTargetsMap); |
1769 | |
1770 | auto isPrevailing = [&](GlobalValue::GUID GUID, const GlobalValueSummary *S) { |
1771 | return ThinLTO.PrevailingModuleForGUID[GUID] == S->modulePath(); |
1772 | }; |
1773 | if (EnableMemProfContextDisambiguation) { |
1774 | MemProfContextDisambiguation ContextDisambiguation; |
1775 | ContextDisambiguation.run(Index&: ThinLTO.CombinedIndex, isPrevailing); |
1776 | } |
1777 | |
1778 | // Figure out which symbols need to be internalized. This also needs to happen |
1779 | // at -O0 because summary-based DCE is implemented using internalization, and |
1780 | // we must apply DCE consistently with the full LTO module in order to avoid |
1781 | // undefined references during the final link. |
1782 | for (auto &Res : *GlobalResolutions) { |
1783 | // If the symbol does not have external references or it is not prevailing, |
1784 | // then not need to mark it as exported from a ThinLTO partition. |
1785 | if (Res.second.Partition != GlobalResolution::External || |
1786 | !Res.second.isPrevailingIRSymbol()) |
1787 | continue; |
1788 | auto GUID = GlobalValue::getGUID( |
1789 | GlobalName: GlobalValue::dropLLVMManglingEscape(Name: Res.second.IRName)); |
1790 | // Mark exported unless index-based analysis determined it to be dead. |
1791 | if (ThinLTO.CombinedIndex.isGUIDLive(GUID)) |
1792 | ExportedGUIDs.insert(x: GUID); |
1793 | } |
1794 | |
1795 | // Reset the GlobalResolutions to deallocate the associated memory, as there |
1796 | // are no further accesses. We specifically want to do this before computing |
1797 | // cross module importing, which adds to peak memory via the computed import |
1798 | // and export lists. |
1799 | GlobalResolutions.reset(); |
1800 | |
1801 | if (Conf.OptLevel > 0) |
1802 | ComputeCrossModuleImport(Index: ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, |
1803 | isPrevailing, ImportLists, ExportLists); |
1804 | |
1805 | // Any functions referenced by the jump table in the regular LTO object must |
1806 | // be exported. |
1807 | for (auto &Def : ThinLTO.CombinedIndex.cfiFunctionDefs()) |
1808 | ExportedGUIDs.insert( |
1809 | x: GlobalValue::getGUID(GlobalName: GlobalValue::dropLLVMManglingEscape(Name: Def))); |
1810 | for (auto &Decl : ThinLTO.CombinedIndex.cfiFunctionDecls()) |
1811 | ExportedGUIDs.insert( |
1812 | x: GlobalValue::getGUID(GlobalName: GlobalValue::dropLLVMManglingEscape(Name: Decl))); |
1813 | |
1814 | auto isExported = [&](StringRef ModuleIdentifier, ValueInfo VI) { |
1815 | const auto &ExportList = ExportLists.find(Val: ModuleIdentifier); |
1816 | return (ExportList != ExportLists.end() && ExportList->second.count(V: VI)) || |
1817 | ExportedGUIDs.count(x: VI.getGUID()); |
1818 | }; |
1819 | |
1820 | // Update local devirtualized targets that were exported by cross-module |
1821 | // importing or by other devirtualizations marked in the ExportedGUIDs set. |
1822 | updateIndexWPDForExports(Summary&: ThinLTO.CombinedIndex, isExported, |
1823 | LocalWPDTargetsMap); |
1824 | |
1825 | thinLTOInternalizeAndPromoteInIndex(Index&: ThinLTO.CombinedIndex, isExported, |
1826 | isPrevailing); |
1827 | |
1828 | auto recordNewLinkage = [&](StringRef ModuleIdentifier, |
1829 | GlobalValue::GUID GUID, |
1830 | GlobalValue::LinkageTypes NewLinkage) { |
1831 | ResolvedODR[ModuleIdentifier][GUID] = NewLinkage; |
1832 | }; |
1833 | thinLTOResolvePrevailingInIndex(C: Conf, Index&: ThinLTO.CombinedIndex, isPrevailing, |
1834 | recordNewLinkage, GUIDPreservedSymbols); |
1835 | |
1836 | thinLTOPropagateFunctionAttrs(Index&: ThinLTO.CombinedIndex, isPrevailing); |
1837 | |
1838 | generateParamAccessSummary(Index&: ThinLTO.CombinedIndex); |
1839 | |
1840 | if (llvm::timeTraceProfilerEnabled()) |
1841 | llvm::timeTraceProfilerEnd(); |
1842 | |
1843 | TimeTraceScopeExit.release(); |
1844 | |
1845 | std::unique_ptr<ThinBackendProc> BackendProc = |
1846 | ThinLTO.Backend(Conf, ThinLTO.CombinedIndex, ModuleToDefinedGVSummaries, |
1847 | AddStream, Cache); |
1848 | |
1849 | auto &ModuleMap = |
1850 | ThinLTO.ModulesToCompile ? *ThinLTO.ModulesToCompile : ThinLTO.ModuleMap; |
1851 | |
1852 | auto ProcessOneModule = [&](int I) -> Error { |
1853 | auto &Mod = *(ModuleMap.begin() + I); |
1854 | // Tasks 0 through ParallelCodeGenParallelismLevel-1 are reserved for |
1855 | // combined module and parallel code generation partitions. |
1856 | return BackendProc->start(Task: RegularLTO.ParallelCodeGenParallelismLevel + I, |
1857 | BM: Mod.second, ImportList: ImportLists[Mod.first], |
1858 | ExportList: ExportLists[Mod.first], ResolvedODR: ResolvedODR[Mod.first], |
1859 | ModuleMap&: ThinLTO.ModuleMap); |
1860 | }; |
1861 | |
1862 | if (BackendProc->getThreadCount() == 1) { |
1863 | // Process the modules in the order they were provided on the command-line. |
1864 | // It is important for this codepath to be used for WriteIndexesThinBackend, |
1865 | // to ensure the emitted LinkedObjectsFile lists ThinLTO objects in the same |
1866 | // order as the inputs, which otherwise would affect the final link order. |
1867 | for (int I = 0, E = ModuleMap.size(); I != E; ++I) |
1868 | if (Error E = ProcessOneModule(I)) |
1869 | return E; |
1870 | } else { |
1871 | // When executing in parallel, process largest bitsize modules first to |
1872 | // improve parallelism, and avoid starving the thread pool near the end. |
1873 | // This saves about 15 sec on a 36-core machine while link `clang.exe` (out |
1874 | // of 100 sec). |
1875 | std::vector<BitcodeModule *> ModulesVec; |
1876 | ModulesVec.reserve(n: ModuleMap.size()); |
1877 | for (auto &Mod : ModuleMap) |
1878 | ModulesVec.push_back(x: &Mod.second); |
1879 | for (int I : generateModulesOrdering(R: ModulesVec)) |
1880 | if (Error E = ProcessOneModule(I)) |
1881 | return E; |
1882 | } |
1883 | return BackendProc->wait(); |
1884 | } |
1885 | |
1886 | Expected<std::unique_ptr<ToolOutputFile>> lto::( |
1887 | LLVMContext &Context, StringRef , StringRef , |
1888 | StringRef , bool , |
1889 | std::optional<uint64_t> , int Count) { |
1890 | std::string Filename = std::string(RemarksFilename); |
1891 | // For ThinLTO, file.opt.<format> becomes |
1892 | // file.opt.<format>.thin.<num>.<format>. |
1893 | if (!Filename.empty() && Count != -1) |
1894 | Filename = |
1895 | (Twine(Filename) + ".thin." + llvm::utostr(X: Count) + "." + RemarksFormat) |
1896 | .str(); |
1897 | |
1898 | auto ResultOrErr = llvm::setupLLVMOptimizationRemarks( |
1899 | Context, RemarksFilename: Filename, RemarksPasses, RemarksFormat, RemarksWithHotness, |
1900 | RemarksHotnessThreshold); |
1901 | if (Error E = ResultOrErr.takeError()) |
1902 | return std::move(E); |
1903 | |
1904 | if (*ResultOrErr) |
1905 | (*ResultOrErr)->keep(); |
1906 | |
1907 | return ResultOrErr; |
1908 | } |
1909 | |
1910 | Expected<std::unique_ptr<ToolOutputFile>> |
1911 | lto::setupStatsFile(StringRef StatsFilename) { |
1912 | // Setup output file to emit statistics. |
1913 | if (StatsFilename.empty()) |
1914 | return nullptr; |
1915 | |
1916 | llvm::EnableStatistics(DoPrintOnExit: false); |
1917 | std::error_code EC; |
1918 | auto StatsFile = |
1919 | std::make_unique<ToolOutputFile>(args&: StatsFilename, args&: EC, args: sys::fs::OF_None); |
1920 | if (EC) |
1921 | return errorCodeToError(EC); |
1922 | |
1923 | StatsFile->keep(); |
1924 | return std::move(StatsFile); |
1925 | } |
1926 | |
1927 | // Compute the ordering we will process the inputs: the rough heuristic here |
1928 | // is to sort them per size so that the largest module get schedule as soon as |
1929 | // possible. This is purely a compile-time optimization. |
1930 | std::vector<int> lto::generateModulesOrdering(ArrayRef<BitcodeModule *> R) { |
1931 | auto Seq = llvm::seq<int>(Begin: 0, End: R.size()); |
1932 | std::vector<int> ModulesOrdering(Seq.begin(), Seq.end()); |
1933 | llvm::sort(C&: ModulesOrdering, Comp: [&](int LeftIndex, int RightIndex) { |
1934 | auto LSize = R[LeftIndex]->getBuffer().size(); |
1935 | auto RSize = R[RightIndex]->getBuffer().size(); |
1936 | return LSize > RSize; |
1937 | }); |
1938 | return ModulesOrdering; |
1939 | } |
1940 | |