1 | //===- CoverageMapping.cpp - Code coverage mapping support ----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file contains support for clang's and llvm's instrumentation based |
10 | // code coverage. |
11 | // |
12 | //===----------------------------------------------------------------------===// |
13 | |
14 | #include "llvm/ProfileData/Coverage/CoverageMapping.h" |
15 | #include "llvm/ADT/ArrayRef.h" |
16 | #include "llvm/ADT/DenseMap.h" |
17 | #include "llvm/ADT/STLExtras.h" |
18 | #include "llvm/ADT/SmallBitVector.h" |
19 | #include "llvm/ADT/SmallVector.h" |
20 | #include "llvm/ADT/StringExtras.h" |
21 | #include "llvm/ADT/StringRef.h" |
22 | #include "llvm/Object/BuildID.h" |
23 | #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" |
24 | #include "llvm/ProfileData/InstrProfReader.h" |
25 | #include "llvm/Support/Debug.h" |
26 | #include "llvm/Support/Errc.h" |
27 | #include "llvm/Support/Error.h" |
28 | #include "llvm/Support/ErrorHandling.h" |
29 | #include "llvm/Support/MemoryBuffer.h" |
30 | #include "llvm/Support/VirtualFileSystem.h" |
31 | #include "llvm/Support/raw_ostream.h" |
32 | #include <algorithm> |
33 | #include <cassert> |
34 | #include <cmath> |
35 | #include <cstdint> |
36 | #include <iterator> |
37 | #include <map> |
38 | #include <memory> |
39 | #include <optional> |
40 | #include <stack> |
41 | #include <string> |
42 | #include <system_error> |
43 | #include <utility> |
44 | #include <vector> |
45 | |
46 | using namespace llvm; |
47 | using namespace coverage; |
48 | |
49 | #define DEBUG_TYPE "coverage-mapping" |
50 | |
51 | Counter CounterExpressionBuilder::get(const CounterExpression &E) { |
52 | auto It = ExpressionIndices.find(Val: E); |
53 | if (It != ExpressionIndices.end()) |
54 | return Counter::getExpression(ExpressionId: It->second); |
55 | unsigned I = Expressions.size(); |
56 | Expressions.push_back(x: E); |
57 | ExpressionIndices[E] = I; |
58 | return Counter::getExpression(ExpressionId: I); |
59 | } |
60 | |
61 | void CounterExpressionBuilder::(Counter C, int Factor, |
62 | SmallVectorImpl<Term> &Terms) { |
63 | switch (C.getKind()) { |
64 | case Counter::Zero: |
65 | break; |
66 | case Counter::CounterValueReference: |
67 | Terms.emplace_back(Args: C.getCounterID(), Args&: Factor); |
68 | break; |
69 | case Counter::Expression: |
70 | const auto &E = Expressions[C.getExpressionID()]; |
71 | extractTerms(C: E.LHS, Factor, Terms); |
72 | extractTerms( |
73 | C: E.RHS, Factor: E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); |
74 | break; |
75 | } |
76 | } |
77 | |
78 | Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { |
79 | // Gather constant terms. |
80 | SmallVector<Term, 32> Terms; |
81 | extractTerms(C: ExpressionTree, Factor: +1, Terms); |
82 | |
83 | // If there are no terms, this is just a zero. The algorithm below assumes at |
84 | // least one term. |
85 | if (Terms.size() == 0) |
86 | return Counter::getZero(); |
87 | |
88 | // Group the terms by counter ID. |
89 | llvm::sort(C&: Terms, Comp: [](const Term &LHS, const Term &RHS) { |
90 | return LHS.CounterID < RHS.CounterID; |
91 | }); |
92 | |
93 | // Combine terms by counter ID to eliminate counters that sum to zero. |
94 | auto Prev = Terms.begin(); |
95 | for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { |
96 | if (I->CounterID == Prev->CounterID) { |
97 | Prev->Factor += I->Factor; |
98 | continue; |
99 | } |
100 | ++Prev; |
101 | *Prev = *I; |
102 | } |
103 | Terms.erase(CS: ++Prev, CE: Terms.end()); |
104 | |
105 | Counter C; |
106 | // Create additions. We do this before subtractions to avoid constructs like |
107 | // ((0 - X) + Y), as opposed to (Y - X). |
108 | for (auto T : Terms) { |
109 | if (T.Factor <= 0) |
110 | continue; |
111 | for (int I = 0; I < T.Factor; ++I) |
112 | if (C.isZero()) |
113 | C = Counter::getCounter(CounterId: T.CounterID); |
114 | else |
115 | C = get(E: CounterExpression(CounterExpression::Add, C, |
116 | Counter::getCounter(CounterId: T.CounterID))); |
117 | } |
118 | |
119 | // Create subtractions. |
120 | for (auto T : Terms) { |
121 | if (T.Factor >= 0) |
122 | continue; |
123 | for (int I = 0; I < -T.Factor; ++I) |
124 | C = get(E: CounterExpression(CounterExpression::Subtract, C, |
125 | Counter::getCounter(CounterId: T.CounterID))); |
126 | } |
127 | return C; |
128 | } |
129 | |
130 | Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) { |
131 | auto Cnt = get(E: CounterExpression(CounterExpression::Add, LHS, RHS)); |
132 | return Simplify ? simplify(ExpressionTree: Cnt) : Cnt; |
133 | } |
134 | |
135 | Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS, |
136 | bool Simplify) { |
137 | auto Cnt = get(E: CounterExpression(CounterExpression::Subtract, LHS, RHS)); |
138 | return Simplify ? simplify(ExpressionTree: Cnt) : Cnt; |
139 | } |
140 | |
141 | void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { |
142 | switch (C.getKind()) { |
143 | case Counter::Zero: |
144 | OS << '0'; |
145 | return; |
146 | case Counter::CounterValueReference: |
147 | OS << '#' << C.getCounterID(); |
148 | break; |
149 | case Counter::Expression: { |
150 | if (C.getExpressionID() >= Expressions.size()) |
151 | return; |
152 | const auto &E = Expressions[C.getExpressionID()]; |
153 | OS << '('; |
154 | dump(C: E.LHS, OS); |
155 | OS << (E.Kind == CounterExpression::Subtract ? " - " : " + " ); |
156 | dump(C: E.RHS, OS); |
157 | OS << ')'; |
158 | break; |
159 | } |
160 | } |
161 | if (CounterValues.empty()) |
162 | return; |
163 | Expected<int64_t> Value = evaluate(C); |
164 | if (auto E = Value.takeError()) { |
165 | consumeError(Err: std::move(E)); |
166 | return; |
167 | } |
168 | OS << '[' << *Value << ']'; |
169 | } |
170 | |
171 | Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const { |
172 | struct StackElem { |
173 | Counter ICounter; |
174 | int64_t LHS = 0; |
175 | enum { |
176 | KNeverVisited = 0, |
177 | KVisitedOnce = 1, |
178 | KVisitedTwice = 2, |
179 | } VisitCount = KNeverVisited; |
180 | }; |
181 | |
182 | std::stack<StackElem> CounterStack; |
183 | CounterStack.push(x: {.ICounter: C}); |
184 | |
185 | int64_t LastPoppedValue; |
186 | |
187 | while (!CounterStack.empty()) { |
188 | StackElem &Current = CounterStack.top(); |
189 | |
190 | switch (Current.ICounter.getKind()) { |
191 | case Counter::Zero: |
192 | LastPoppedValue = 0; |
193 | CounterStack.pop(); |
194 | break; |
195 | case Counter::CounterValueReference: |
196 | if (Current.ICounter.getCounterID() >= CounterValues.size()) |
197 | return errorCodeToError(EC: errc::argument_out_of_domain); |
198 | LastPoppedValue = CounterValues[Current.ICounter.getCounterID()]; |
199 | CounterStack.pop(); |
200 | break; |
201 | case Counter::Expression: { |
202 | if (Current.ICounter.getExpressionID() >= Expressions.size()) |
203 | return errorCodeToError(EC: errc::argument_out_of_domain); |
204 | const auto &E = Expressions[Current.ICounter.getExpressionID()]; |
205 | if (Current.VisitCount == StackElem::KNeverVisited) { |
206 | CounterStack.push(x: StackElem{.ICounter: E.LHS}); |
207 | Current.VisitCount = StackElem::KVisitedOnce; |
208 | } else if (Current.VisitCount == StackElem::KVisitedOnce) { |
209 | Current.LHS = LastPoppedValue; |
210 | CounterStack.push(x: StackElem{.ICounter: E.RHS}); |
211 | Current.VisitCount = StackElem::KVisitedTwice; |
212 | } else { |
213 | int64_t LHS = Current.LHS; |
214 | int64_t RHS = LastPoppedValue; |
215 | LastPoppedValue = |
216 | E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS; |
217 | CounterStack.pop(); |
218 | } |
219 | break; |
220 | } |
221 | } |
222 | } |
223 | |
224 | return LastPoppedValue; |
225 | } |
226 | |
227 | mcdc::TVIdxBuilder::TVIdxBuilder(const SmallVectorImpl<ConditionIDs> &NextIDs, |
228 | int Offset) |
229 | : Indices(NextIDs.size()) { |
230 | // Construct Nodes and set up each InCount |
231 | auto N = NextIDs.size(); |
232 | SmallVector<MCDCNode> Nodes(N); |
233 | for (unsigned ID = 0; ID < N; ++ID) { |
234 | for (unsigned C = 0; C < 2; ++C) { |
235 | #ifndef NDEBUG |
236 | Indices[ID][C] = INT_MIN; |
237 | #endif |
238 | auto NextID = NextIDs[ID][C]; |
239 | Nodes[ID].NextIDs[C] = NextID; |
240 | if (NextID >= 0) |
241 | ++Nodes[NextID].InCount; |
242 | } |
243 | } |
244 | |
245 | // Sort key ordered by <-Width, Ord> |
246 | SmallVector<std::tuple<int, /// -Width |
247 | unsigned, /// Ord |
248 | int, /// ID |
249 | unsigned /// Cond (0 or 1) |
250 | >> |
251 | Decisions; |
252 | |
253 | // Traverse Nodes to assign Idx |
254 | SmallVector<int> Q; |
255 | assert(Nodes[0].InCount == 0); |
256 | Nodes[0].Width = 1; |
257 | Q.push_back(Elt: 0); |
258 | |
259 | unsigned Ord = 0; |
260 | while (!Q.empty()) { |
261 | auto IID = Q.begin(); |
262 | int ID = *IID; |
263 | Q.erase(CI: IID); |
264 | auto &Node = Nodes[ID]; |
265 | assert(Node.Width > 0); |
266 | |
267 | for (unsigned I = 0; I < 2; ++I) { |
268 | auto NextID = Node.NextIDs[I]; |
269 | assert(NextID != 0 && "NextID should not point to the top" ); |
270 | if (NextID < 0) { |
271 | // Decision |
272 | Decisions.emplace_back(Args: -Node.Width, Args: Ord++, Args&: ID, Args&: I); |
273 | assert(Ord == Decisions.size()); |
274 | continue; |
275 | } |
276 | |
277 | // Inter Node |
278 | auto &NextNode = Nodes[NextID]; |
279 | assert(NextNode.InCount > 0); |
280 | |
281 | // Assign Idx |
282 | assert(Indices[ID][I] == INT_MIN); |
283 | Indices[ID][I] = NextNode.Width; |
284 | auto NextWidth = int64_t(NextNode.Width) + Node.Width; |
285 | if (NextWidth > HardMaxTVs) { |
286 | NumTestVectors = HardMaxTVs; // Overflow |
287 | return; |
288 | } |
289 | NextNode.Width = NextWidth; |
290 | |
291 | // Ready if all incomings are processed. |
292 | // Or NextNode.Width hasn't been confirmed yet. |
293 | if (--NextNode.InCount == 0) |
294 | Q.push_back(Elt: NextID); |
295 | } |
296 | } |
297 | |
298 | llvm::sort(C&: Decisions); |
299 | |
300 | // Assign TestVector Indices in Decision Nodes |
301 | int64_t CurIdx = 0; |
302 | for (auto [NegWidth, Ord, ID, C] : Decisions) { |
303 | int Width = -NegWidth; |
304 | assert(Nodes[ID].Width == Width); |
305 | assert(Nodes[ID].NextIDs[C] < 0); |
306 | assert(Indices[ID][C] == INT_MIN); |
307 | Indices[ID][C] = Offset + CurIdx; |
308 | CurIdx += Width; |
309 | if (CurIdx > HardMaxTVs) { |
310 | NumTestVectors = HardMaxTVs; // Overflow |
311 | return; |
312 | } |
313 | } |
314 | |
315 | assert(CurIdx < HardMaxTVs); |
316 | NumTestVectors = CurIdx; |
317 | |
318 | #ifndef NDEBUG |
319 | for (const auto &Idxs : Indices) |
320 | for (auto Idx : Idxs) |
321 | assert(Idx != INT_MIN); |
322 | SavedNodes = std::move(Nodes); |
323 | #endif |
324 | } |
325 | |
326 | namespace { |
327 | |
328 | /// Construct this->NextIDs with Branches for TVIdxBuilder to use it |
329 | /// before MCDCRecordProcessor(). |
330 | class NextIDsBuilder { |
331 | protected: |
332 | SmallVector<mcdc::ConditionIDs> NextIDs; |
333 | |
334 | public: |
335 | NextIDsBuilder(const ArrayRef<const CounterMappingRegion *> Branches) |
336 | : NextIDs(Branches.size()) { |
337 | #ifndef NDEBUG |
338 | DenseSet<mcdc::ConditionID> SeenIDs; |
339 | #endif |
340 | for (const auto *Branch : Branches) { |
341 | const auto &BranchParams = Branch->getBranchParams(); |
342 | assert(SeenIDs.insert(BranchParams.ID).second && "Duplicate CondID" ); |
343 | NextIDs[BranchParams.ID] = BranchParams.Conds; |
344 | } |
345 | assert(SeenIDs.size() == Branches.size()); |
346 | } |
347 | }; |
348 | |
349 | class MCDCRecordProcessor : NextIDsBuilder, mcdc::TVIdxBuilder { |
350 | /// A bitmap representing the executed test vectors for a boolean expression. |
351 | /// Each index of the bitmap corresponds to a possible test vector. An index |
352 | /// with a bit value of '1' indicates that the corresponding Test Vector |
353 | /// identified by that index was executed. |
354 | const BitVector &Bitmap; |
355 | |
356 | /// Decision Region to which the ExecutedTestVectorBitmap applies. |
357 | const CounterMappingRegion &Region; |
358 | const mcdc::DecisionParameters &DecisionParams; |
359 | |
360 | /// Array of branch regions corresponding each conditions in the boolean |
361 | /// expression. |
362 | ArrayRef<const CounterMappingRegion *> Branches; |
363 | |
364 | /// Total number of conditions in the boolean expression. |
365 | unsigned NumConditions; |
366 | |
367 | /// Vector used to track whether a condition is constant folded. |
368 | MCDCRecord::BoolVector Folded; |
369 | |
370 | /// Mapping of calculated MC/DC Independence Pairs for each condition. |
371 | MCDCRecord::TVPairMap IndependencePairs; |
372 | |
373 | /// Storage for ExecVectors |
374 | /// ExecVectors is the alias of its 0th element. |
375 | std::array<MCDCRecord::TestVectors, 2> ExecVectorsByCond; |
376 | |
377 | /// Actual executed Test Vectors for the boolean expression, based on |
378 | /// ExecutedTestVectorBitmap. |
379 | MCDCRecord::TestVectors &ExecVectors; |
380 | |
381 | /// Number of False items in ExecVectors |
382 | unsigned NumExecVectorsF; |
383 | |
384 | #ifndef NDEBUG |
385 | DenseSet<unsigned> TVIdxs; |
386 | #endif |
387 | |
388 | bool IsVersion11; |
389 | |
390 | public: |
391 | MCDCRecordProcessor(const BitVector &Bitmap, |
392 | const CounterMappingRegion &Region, |
393 | ArrayRef<const CounterMappingRegion *> Branches, |
394 | bool IsVersion11) |
395 | : NextIDsBuilder(Branches), TVIdxBuilder(this->NextIDs), Bitmap(Bitmap), |
396 | Region(Region), DecisionParams(Region.getDecisionParams()), |
397 | Branches(Branches), NumConditions(DecisionParams.NumConditions), |
398 | Folded(NumConditions, false), IndependencePairs(NumConditions), |
399 | ExecVectors(ExecVectorsByCond[false]), IsVersion11(IsVersion11) {} |
400 | |
401 | private: |
402 | // Walk the binary decision diagram and try assigning both false and true to |
403 | // each node. When a terminal node (ID == 0) is reached, fill in the value in |
404 | // the truth table. |
405 | void buildTestVector(MCDCRecord::TestVector &TV, mcdc::ConditionID ID, |
406 | int TVIdx) { |
407 | for (auto MCDCCond : {MCDCRecord::MCDC_False, MCDCRecord::MCDC_True}) { |
408 | static_assert(MCDCRecord::MCDC_False == 0); |
409 | static_assert(MCDCRecord::MCDC_True == 1); |
410 | TV.set(I: ID, Val: MCDCCond); |
411 | auto NextID = NextIDs[ID][MCDCCond]; |
412 | auto NextTVIdx = TVIdx + Indices[ID][MCDCCond]; |
413 | assert(NextID == SavedNodes[ID].NextIDs[MCDCCond]); |
414 | if (NextID >= 0) { |
415 | buildTestVector(TV, ID: NextID, TVIdx: NextTVIdx); |
416 | continue; |
417 | } |
418 | |
419 | assert(TVIdx < SavedNodes[ID].Width); |
420 | assert(TVIdxs.insert(NextTVIdx).second && "Duplicate TVIdx" ); |
421 | |
422 | if (!Bitmap[IsVersion11 |
423 | ? DecisionParams.BitmapIdx * CHAR_BIT + TV.getIndex() |
424 | : DecisionParams.BitmapIdx - NumTestVectors + NextTVIdx]) |
425 | continue; |
426 | |
427 | // Copy the completed test vector to the vector of testvectors. |
428 | // The final value (T,F) is equal to the last non-dontcare state on the |
429 | // path (in a short-circuiting system). |
430 | ExecVectorsByCond[MCDCCond].push_back(Elt: {TV, MCDCCond}); |
431 | } |
432 | |
433 | // Reset back to DontCare. |
434 | TV.set(I: ID, Val: MCDCRecord::MCDC_DontCare); |
435 | } |
436 | |
437 | /// Walk the bits in the bitmap. A bit set to '1' indicates that the test |
438 | /// vector at the corresponding index was executed during a test run. |
439 | void findExecutedTestVectors() { |
440 | // Walk the binary decision diagram to enumerate all possible test vectors. |
441 | // We start at the root node (ID == 0) with all values being DontCare. |
442 | // `TVIdx` starts with 0 and is in the traversal. |
443 | // `Index` encodes the bitmask of true values and is initially 0. |
444 | MCDCRecord::TestVector TV(NumConditions); |
445 | buildTestVector(TV, ID: 0, TVIdx: 0); |
446 | assert(TVIdxs.size() == unsigned(NumTestVectors) && |
447 | "TVIdxs wasn't fulfilled" ); |
448 | |
449 | // Fill ExecVectors order by False items and True items. |
450 | // ExecVectors is the alias of ExecVectorsByCond[false], so |
451 | // Append ExecVectorsByCond[true] on it. |
452 | NumExecVectorsF = ExecVectors.size(); |
453 | auto &ExecVectorsT = ExecVectorsByCond[true]; |
454 | ExecVectors.append(in_start: std::make_move_iterator(i: ExecVectorsT.begin()), |
455 | in_end: std::make_move_iterator(i: ExecVectorsT.end())); |
456 | } |
457 | |
458 | // Find an independence pair for each condition: |
459 | // - The condition is true in one test and false in the other. |
460 | // - The decision outcome is true one test and false in the other. |
461 | // - All other conditions' values must be equal or marked as "don't care". |
462 | void findIndependencePairs() { |
463 | unsigned NumTVs = ExecVectors.size(); |
464 | for (unsigned I = NumExecVectorsF; I < NumTVs; ++I) { |
465 | const auto &[A, ACond] = ExecVectors[I]; |
466 | assert(ACond == MCDCRecord::MCDC_True); |
467 | for (unsigned J = 0; J < NumExecVectorsF; ++J) { |
468 | const auto &[B, BCond] = ExecVectors[J]; |
469 | assert(BCond == MCDCRecord::MCDC_False); |
470 | // If the two vectors differ in exactly one condition, ignoring DontCare |
471 | // conditions, we have found an independence pair. |
472 | auto AB = A.getDifferences(B); |
473 | if (AB.count() == 1) |
474 | IndependencePairs.insert( |
475 | KV: {AB.find_first(), std::make_pair(x: J + 1, y: I + 1)}); |
476 | } |
477 | } |
478 | } |
479 | |
480 | public: |
481 | /// Process the MC/DC Record in order to produce a result for a boolean |
482 | /// expression. This process includes tracking the conditions that comprise |
483 | /// the decision region, calculating the list of all possible test vectors, |
484 | /// marking the executed test vectors, and then finding an Independence Pair |
485 | /// out of the executed test vectors for each condition in the boolean |
486 | /// expression. A condition is tracked to ensure that its ID can be mapped to |
487 | /// its ordinal position in the boolean expression. The condition's source |
488 | /// location is also tracked, as well as whether it is constant folded (in |
489 | /// which case it is excuded from the metric). |
490 | MCDCRecord processMCDCRecord() { |
491 | unsigned I = 0; |
492 | MCDCRecord::CondIDMap PosToID; |
493 | MCDCRecord::LineColPairMap CondLoc; |
494 | |
495 | // Walk the Record's BranchRegions (representing Conditions) in order to: |
496 | // - Hash the condition based on its corresponding ID. This will be used to |
497 | // calculate the test vectors. |
498 | // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its |
499 | // actual ID. This will be used to visualize the conditions in the |
500 | // correct order. |
501 | // - Keep track of the condition source location. This will be used to |
502 | // visualize where the condition is. |
503 | // - Record whether the condition is constant folded so that we exclude it |
504 | // from being measured. |
505 | for (const auto *B : Branches) { |
506 | const auto &BranchParams = B->getBranchParams(); |
507 | PosToID[I] = BranchParams.ID; |
508 | CondLoc[I] = B->startLoc(); |
509 | Folded[I++] = (B->Count.isZero() && B->FalseCount.isZero()); |
510 | } |
511 | |
512 | // Using Profile Bitmap from runtime, mark the executed test vectors. |
513 | findExecutedTestVectors(); |
514 | |
515 | // Compare executed test vectors against each other to find an independence |
516 | // pairs for each condition. This processing takes the most time. |
517 | findIndependencePairs(); |
518 | |
519 | // Record Test vectors, executed vectors, and independence pairs. |
520 | return MCDCRecord(Region, std::move(ExecVectors), |
521 | std::move(IndependencePairs), std::move(Folded), |
522 | std::move(PosToID), std::move(CondLoc)); |
523 | } |
524 | }; |
525 | |
526 | } // namespace |
527 | |
528 | Expected<MCDCRecord> CounterMappingContext::evaluateMCDCRegion( |
529 | const CounterMappingRegion &Region, |
530 | ArrayRef<const CounterMappingRegion *> Branches, bool IsVersion11) { |
531 | |
532 | MCDCRecordProcessor MCDCProcessor(Bitmap, Region, Branches, IsVersion11); |
533 | return MCDCProcessor.processMCDCRecord(); |
534 | } |
535 | |
536 | unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { |
537 | struct StackElem { |
538 | Counter ICounter; |
539 | int64_t LHS = 0; |
540 | enum { |
541 | KNeverVisited = 0, |
542 | KVisitedOnce = 1, |
543 | KVisitedTwice = 2, |
544 | } VisitCount = KNeverVisited; |
545 | }; |
546 | |
547 | std::stack<StackElem> CounterStack; |
548 | CounterStack.push(x: {.ICounter: C}); |
549 | |
550 | int64_t LastPoppedValue; |
551 | |
552 | while (!CounterStack.empty()) { |
553 | StackElem &Current = CounterStack.top(); |
554 | |
555 | switch (Current.ICounter.getKind()) { |
556 | case Counter::Zero: |
557 | LastPoppedValue = 0; |
558 | CounterStack.pop(); |
559 | break; |
560 | case Counter::CounterValueReference: |
561 | LastPoppedValue = Current.ICounter.getCounterID(); |
562 | CounterStack.pop(); |
563 | break; |
564 | case Counter::Expression: { |
565 | if (Current.ICounter.getExpressionID() >= Expressions.size()) { |
566 | LastPoppedValue = 0; |
567 | CounterStack.pop(); |
568 | } else { |
569 | const auto &E = Expressions[Current.ICounter.getExpressionID()]; |
570 | if (Current.VisitCount == StackElem::KNeverVisited) { |
571 | CounterStack.push(x: StackElem{.ICounter: E.LHS}); |
572 | Current.VisitCount = StackElem::KVisitedOnce; |
573 | } else if (Current.VisitCount == StackElem::KVisitedOnce) { |
574 | Current.LHS = LastPoppedValue; |
575 | CounterStack.push(x: StackElem{.ICounter: E.RHS}); |
576 | Current.VisitCount = StackElem::KVisitedTwice; |
577 | } else { |
578 | int64_t LHS = Current.LHS; |
579 | int64_t RHS = LastPoppedValue; |
580 | LastPoppedValue = std::max(a: LHS, b: RHS); |
581 | CounterStack.pop(); |
582 | } |
583 | } |
584 | break; |
585 | } |
586 | } |
587 | } |
588 | |
589 | return LastPoppedValue; |
590 | } |
591 | |
592 | void FunctionRecordIterator::skipOtherFiles() { |
593 | while (Current != Records.end() && !Filename.empty() && |
594 | Filename != Current->Filenames[0]) |
595 | ++Current; |
596 | if (Current == Records.end()) |
597 | *this = FunctionRecordIterator(); |
598 | } |
599 | |
600 | ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename( |
601 | StringRef Filename) const { |
602 | size_t FilenameHash = hash_value(S: Filename); |
603 | auto RecordIt = FilenameHash2RecordIndices.find(Val: FilenameHash); |
604 | if (RecordIt == FilenameHash2RecordIndices.end()) |
605 | return {}; |
606 | return RecordIt->second; |
607 | } |
608 | |
609 | static unsigned getMaxCounterID(const CounterMappingContext &Ctx, |
610 | const CoverageMappingRecord &Record) { |
611 | unsigned MaxCounterID = 0; |
612 | for (const auto &Region : Record.MappingRegions) { |
613 | MaxCounterID = std::max(a: MaxCounterID, b: Ctx.getMaxCounterID(C: Region.Count)); |
614 | } |
615 | return MaxCounterID; |
616 | } |
617 | |
618 | /// Returns the bit count |
619 | static unsigned getMaxBitmapSize(const CoverageMappingRecord &Record, |
620 | bool IsVersion11) { |
621 | unsigned MaxBitmapIdx = 0; |
622 | unsigned NumConditions = 0; |
623 | // Scan max(BitmapIdx). |
624 | // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid |
625 | // and `MaxBitmapIdx is `unsigned`. `BitmapIdx` is unique in the record. |
626 | for (const auto &Region : reverse(C: Record.MappingRegions)) { |
627 | if (Region.Kind != CounterMappingRegion::MCDCDecisionRegion) |
628 | continue; |
629 | const auto &DecisionParams = Region.getDecisionParams(); |
630 | if (MaxBitmapIdx <= DecisionParams.BitmapIdx) { |
631 | MaxBitmapIdx = DecisionParams.BitmapIdx; |
632 | NumConditions = DecisionParams.NumConditions; |
633 | } |
634 | } |
635 | |
636 | if (IsVersion11) |
637 | MaxBitmapIdx = MaxBitmapIdx * CHAR_BIT + |
638 | llvm::alignTo(Value: uint64_t(1) << NumConditions, CHAR_BIT); |
639 | |
640 | return MaxBitmapIdx; |
641 | } |
642 | |
643 | namespace { |
644 | |
645 | /// Collect Decisions, Branchs, and Expansions and associate them. |
646 | class MCDCDecisionRecorder { |
647 | private: |
648 | /// This holds the DecisionRegion and MCDCBranches under it. |
649 | /// Also traverses Expansion(s). |
650 | /// The Decision has the number of MCDCBranches and will complete |
651 | /// when it is filled with unique ConditionID of MCDCBranches. |
652 | struct DecisionRecord { |
653 | const CounterMappingRegion *DecisionRegion; |
654 | |
655 | /// They are reflected from DecisionRegion for convenience. |
656 | mcdc::DecisionParameters DecisionParams; |
657 | LineColPair DecisionStartLoc; |
658 | LineColPair DecisionEndLoc; |
659 | |
660 | /// This is passed to `MCDCRecordProcessor`, so this should be compatible |
661 | /// to`ArrayRef<const CounterMappingRegion *>`. |
662 | SmallVector<const CounterMappingRegion *> MCDCBranches; |
663 | |
664 | /// IDs that are stored in MCDCBranches |
665 | /// Complete when all IDs (1 to NumConditions) are met. |
666 | DenseSet<mcdc::ConditionID> ConditionIDs; |
667 | |
668 | /// Set of IDs of Expansion(s) that are relevant to DecisionRegion |
669 | /// and its children (via expansions). |
670 | /// FileID pointed by ExpandedFileID is dedicated to the expansion, so |
671 | /// the location in the expansion doesn't matter. |
672 | DenseSet<unsigned> ExpandedFileIDs; |
673 | |
674 | DecisionRecord(const CounterMappingRegion &Decision) |
675 | : DecisionRegion(&Decision), |
676 | DecisionParams(Decision.getDecisionParams()), |
677 | DecisionStartLoc(Decision.startLoc()), |
678 | DecisionEndLoc(Decision.endLoc()) { |
679 | assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion); |
680 | } |
681 | |
682 | /// Determine whether DecisionRecord dominates `R`. |
683 | bool dominates(const CounterMappingRegion &R) const { |
684 | // Determine whether `R` is included in `DecisionRegion`. |
685 | if (R.FileID == DecisionRegion->FileID && |
686 | R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc) |
687 | return true; |
688 | |
689 | // Determine whether `R` is pointed by any of Expansions. |
690 | return ExpandedFileIDs.contains(V: R.FileID); |
691 | } |
692 | |
693 | enum Result { |
694 | NotProcessed = 0, /// Irrelevant to this Decision |
695 | Processed, /// Added to this Decision |
696 | Completed, /// Added and filled this Decision |
697 | }; |
698 | |
699 | /// Add Branch into the Decision |
700 | /// \param Branch expects MCDCBranchRegion |
701 | /// \returns NotProcessed/Processed/Completed |
702 | Result addBranch(const CounterMappingRegion &Branch) { |
703 | assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion); |
704 | |
705 | auto ConditionID = Branch.getBranchParams().ID; |
706 | |
707 | if (ConditionIDs.contains(V: ConditionID) || |
708 | ConditionID >= DecisionParams.NumConditions) |
709 | return NotProcessed; |
710 | |
711 | if (!this->dominates(R: Branch)) |
712 | return NotProcessed; |
713 | |
714 | assert(MCDCBranches.size() < DecisionParams.NumConditions); |
715 | |
716 | // Put `ID=0` in front of `MCDCBranches` for convenience |
717 | // even if `MCDCBranches` is not topological. |
718 | if (ConditionID == 0) |
719 | MCDCBranches.insert(I: MCDCBranches.begin(), Elt: &Branch); |
720 | else |
721 | MCDCBranches.push_back(Elt: &Branch); |
722 | |
723 | // Mark `ID` as `assigned`. |
724 | ConditionIDs.insert(V: ConditionID); |
725 | |
726 | // `Completed` when `MCDCBranches` is full |
727 | return (MCDCBranches.size() == DecisionParams.NumConditions ? Completed |
728 | : Processed); |
729 | } |
730 | |
731 | /// Record Expansion if it is relevant to this Decision. |
732 | /// Each `Expansion` may nest. |
733 | /// \returns true if recorded. |
734 | bool recordExpansion(const CounterMappingRegion &Expansion) { |
735 | if (!this->dominates(R: Expansion)) |
736 | return false; |
737 | |
738 | ExpandedFileIDs.insert(V: Expansion.ExpandedFileID); |
739 | return true; |
740 | } |
741 | }; |
742 | |
743 | private: |
744 | /// Decisions in progress |
745 | /// DecisionRecord is added for each MCDCDecisionRegion. |
746 | /// DecisionRecord is removed when Decision is completed. |
747 | SmallVector<DecisionRecord> Decisions; |
748 | |
749 | public: |
750 | ~MCDCDecisionRecorder() { |
751 | assert(Decisions.empty() && "All Decisions have not been resolved" ); |
752 | } |
753 | |
754 | /// Register Region and start recording. |
755 | void registerDecision(const CounterMappingRegion &Decision) { |
756 | Decisions.emplace_back(Args: Decision); |
757 | } |
758 | |
759 | void recordExpansion(const CounterMappingRegion &Expansion) { |
760 | any_of(Range&: Decisions, P: [&Expansion](auto &Decision) { |
761 | return Decision.recordExpansion(Expansion); |
762 | }); |
763 | } |
764 | |
765 | using DecisionAndBranches = |
766 | std::pair<const CounterMappingRegion *, /// Decision |
767 | SmallVector<const CounterMappingRegion *> /// Branches |
768 | >; |
769 | |
770 | /// Add MCDCBranchRegion to DecisionRecord. |
771 | /// \param Branch to be processed |
772 | /// \returns DecisionsAndBranches if DecisionRecord completed. |
773 | /// Or returns nullopt. |
774 | std::optional<DecisionAndBranches> |
775 | processBranch(const CounterMappingRegion &Branch) { |
776 | // Seek each Decision and apply Region to it. |
777 | for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end(); |
778 | DecisionIter != DecisionEnd; ++DecisionIter) |
779 | switch (DecisionIter->addBranch(Branch)) { |
780 | case DecisionRecord::NotProcessed: |
781 | continue; |
782 | case DecisionRecord::Processed: |
783 | return std::nullopt; |
784 | case DecisionRecord::Completed: |
785 | DecisionAndBranches Result = |
786 | std::make_pair(x&: DecisionIter->DecisionRegion, |
787 | y: std::move(DecisionIter->MCDCBranches)); |
788 | Decisions.erase(CI: DecisionIter); // No longer used. |
789 | return Result; |
790 | } |
791 | |
792 | llvm_unreachable("Branch not found in Decisions" ); |
793 | } |
794 | }; |
795 | |
796 | } // namespace |
797 | |
798 | Error CoverageMapping::loadFunctionRecord( |
799 | const CoverageMappingRecord &Record, |
800 | IndexedInstrProfReader &ProfileReader) { |
801 | StringRef OrigFuncName = Record.FunctionName; |
802 | if (OrigFuncName.empty()) |
803 | return make_error<CoverageMapError>(Args: coveragemap_error::malformed, |
804 | Args: "record function name is empty" ); |
805 | |
806 | if (Record.Filenames.empty()) |
807 | OrigFuncName = getFuncNameWithoutPrefix(PGOFuncName: OrigFuncName); |
808 | else |
809 | OrigFuncName = getFuncNameWithoutPrefix(PGOFuncName: OrigFuncName, FileName: Record.Filenames[0]); |
810 | |
811 | CounterMappingContext Ctx(Record.Expressions); |
812 | |
813 | std::vector<uint64_t> Counts; |
814 | if (Error E = ProfileReader.getFunctionCounts(FuncName: Record.FunctionName, |
815 | FuncHash: Record.FunctionHash, Counts)) { |
816 | instrprof_error IPE = std::get<0>(in: InstrProfError::take(E: std::move(E))); |
817 | if (IPE == instrprof_error::hash_mismatch) { |
818 | FuncHashMismatches.emplace_back(args: std::string(Record.FunctionName), |
819 | args: Record.FunctionHash); |
820 | return Error::success(); |
821 | } |
822 | if (IPE != instrprof_error::unknown_function) |
823 | return make_error<InstrProfError>(Args&: IPE); |
824 | Counts.assign(n: getMaxCounterID(Ctx, Record) + 1, val: 0); |
825 | } |
826 | Ctx.setCounts(Counts); |
827 | |
828 | bool IsVersion11 = |
829 | ProfileReader.getVersion() < IndexedInstrProf::ProfVersion::Version12; |
830 | |
831 | BitVector Bitmap; |
832 | if (Error E = ProfileReader.getFunctionBitmap(FuncName: Record.FunctionName, |
833 | FuncHash: Record.FunctionHash, Bitmap)) { |
834 | instrprof_error IPE = std::get<0>(in: InstrProfError::take(E: std::move(E))); |
835 | if (IPE == instrprof_error::hash_mismatch) { |
836 | FuncHashMismatches.emplace_back(args: std::string(Record.FunctionName), |
837 | args: Record.FunctionHash); |
838 | return Error::success(); |
839 | } |
840 | if (IPE != instrprof_error::unknown_function) |
841 | return make_error<InstrProfError>(Args&: IPE); |
842 | Bitmap = BitVector(getMaxBitmapSize(Record, IsVersion11)); |
843 | } |
844 | Ctx.setBitmap(std::move(Bitmap)); |
845 | |
846 | assert(!Record.MappingRegions.empty() && "Function has no regions" ); |
847 | |
848 | // This coverage record is a zero region for a function that's unused in |
849 | // some TU, but used in a different TU. Ignore it. The coverage maps from the |
850 | // the other TU will either be loaded (providing full region counts) or they |
851 | // won't (in which case we don't unintuitively report functions as uncovered |
852 | // when they have non-zero counts in the profile). |
853 | if (Record.MappingRegions.size() == 1 && |
854 | Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) |
855 | return Error::success(); |
856 | |
857 | MCDCDecisionRecorder MCDCDecisions; |
858 | FunctionRecord Function(OrigFuncName, Record.Filenames); |
859 | for (const auto &Region : Record.MappingRegions) { |
860 | // MCDCDecisionRegion should be handled first since it overlaps with |
861 | // others inside. |
862 | if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) { |
863 | MCDCDecisions.registerDecision(Decision: Region); |
864 | continue; |
865 | } |
866 | Expected<int64_t> ExecutionCount = Ctx.evaluate(C: Region.Count); |
867 | if (auto E = ExecutionCount.takeError()) { |
868 | consumeError(Err: std::move(E)); |
869 | return Error::success(); |
870 | } |
871 | Expected<int64_t> AltExecutionCount = Ctx.evaluate(C: Region.FalseCount); |
872 | if (auto E = AltExecutionCount.takeError()) { |
873 | consumeError(Err: std::move(E)); |
874 | return Error::success(); |
875 | } |
876 | Function.pushRegion(Region, Count: *ExecutionCount, FalseCount: *AltExecutionCount, |
877 | HasSingleByteCoverage: ProfileReader.hasSingleByteCoverage()); |
878 | |
879 | // Record ExpansionRegion. |
880 | if (Region.Kind == CounterMappingRegion::ExpansionRegion) { |
881 | MCDCDecisions.recordExpansion(Expansion: Region); |
882 | continue; |
883 | } |
884 | |
885 | // Do nothing unless MCDCBranchRegion. |
886 | if (Region.Kind != CounterMappingRegion::MCDCBranchRegion) |
887 | continue; |
888 | |
889 | auto Result = MCDCDecisions.processBranch(Branch: Region); |
890 | if (!Result) // Any Decision doesn't complete. |
891 | continue; |
892 | |
893 | auto MCDCDecision = Result->first; |
894 | auto &MCDCBranches = Result->second; |
895 | |
896 | // Since the bitmap identifies the executed test vectors for an MC/DC |
897 | // DecisionRegion, all of the information is now available to process. |
898 | // This is where the bulk of the MC/DC progressing takes place. |
899 | Expected<MCDCRecord> Record = |
900 | Ctx.evaluateMCDCRegion(Region: *MCDCDecision, Branches: MCDCBranches, IsVersion11); |
901 | if (auto E = Record.takeError()) { |
902 | consumeError(Err: std::move(E)); |
903 | return Error::success(); |
904 | } |
905 | |
906 | // Save the MC/DC Record so that it can be visualized later. |
907 | Function.pushMCDCRecord(Record: std::move(*Record)); |
908 | } |
909 | |
910 | // Don't create records for (filenames, function) pairs we've already seen. |
911 | auto FilenamesHash = hash_combine_range(first: Record.Filenames.begin(), |
912 | last: Record.Filenames.end()); |
913 | if (!RecordProvenance[FilenamesHash].insert(V: hash_value(S: OrigFuncName)).second) |
914 | return Error::success(); |
915 | |
916 | Functions.push_back(x: std::move(Function)); |
917 | |
918 | // Performance optimization: keep track of the indices of the function records |
919 | // which correspond to each filename. This can be used to substantially speed |
920 | // up queries for coverage info in a file. |
921 | unsigned RecordIndex = Functions.size() - 1; |
922 | for (StringRef Filename : Record.Filenames) { |
923 | auto &RecordIndices = FilenameHash2RecordIndices[hash_value(S: Filename)]; |
924 | // Note that there may be duplicates in the filename set for a function |
925 | // record, because of e.g. macro expansions in the function in which both |
926 | // the macro and the function are defined in the same file. |
927 | if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) |
928 | RecordIndices.push_back(Elt: RecordIndex); |
929 | } |
930 | |
931 | return Error::success(); |
932 | } |
933 | |
934 | // This function is for memory optimization by shortening the lifetimes |
935 | // of CoverageMappingReader instances. |
936 | Error CoverageMapping::loadFromReaders( |
937 | ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, |
938 | IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) { |
939 | for (const auto &CoverageReader : CoverageReaders) { |
940 | for (auto RecordOrErr : *CoverageReader) { |
941 | if (Error E = RecordOrErr.takeError()) |
942 | return E; |
943 | const auto &Record = *RecordOrErr; |
944 | if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) |
945 | return E; |
946 | } |
947 | } |
948 | return Error::success(); |
949 | } |
950 | |
951 | Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( |
952 | ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders, |
953 | IndexedInstrProfReader &ProfileReader) { |
954 | auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); |
955 | if (Error E = loadFromReaders(CoverageReaders, ProfileReader, Coverage&: *Coverage)) |
956 | return std::move(E); |
957 | return std::move(Coverage); |
958 | } |
959 | |
960 | // If E is a no_data_found error, returns success. Otherwise returns E. |
961 | static Error handleMaybeNoDataFoundError(Error E) { |
962 | return handleErrors( |
963 | E: std::move(E), Hs: [](const CoverageMapError &CME) { |
964 | if (CME.get() == coveragemap_error::no_data_found) |
965 | return static_cast<Error>(Error::success()); |
966 | return make_error<CoverageMapError>(Args: CME.get(), Args: CME.getMessage()); |
967 | }); |
968 | } |
969 | |
970 | Error CoverageMapping::loadFromFile( |
971 | StringRef Filename, StringRef Arch, StringRef CompilationDir, |
972 | IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage, |
973 | bool &DataFound, SmallVectorImpl<object::BuildID> *FoundBinaryIDs) { |
974 | auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( |
975 | Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false); |
976 | if (std::error_code EC = CovMappingBufOrErr.getError()) |
977 | return createFileError(F: Filename, E: errorCodeToError(EC)); |
978 | MemoryBufferRef CovMappingBufRef = |
979 | CovMappingBufOrErr.get()->getMemBufferRef(); |
980 | SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers; |
981 | |
982 | SmallVector<object::BuildIDRef> BinaryIDs; |
983 | auto CoverageReadersOrErr = BinaryCoverageReader::create( |
984 | ObjectBuffer: CovMappingBufRef, Arch, ObjectFileBuffers&: Buffers, CompilationDir, |
985 | BinaryIDs: FoundBinaryIDs ? &BinaryIDs : nullptr); |
986 | if (Error E = CoverageReadersOrErr.takeError()) { |
987 | E = handleMaybeNoDataFoundError(E: std::move(E)); |
988 | if (E) |
989 | return createFileError(F: Filename, E: std::move(E)); |
990 | return E; |
991 | } |
992 | |
993 | SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers; |
994 | for (auto &Reader : CoverageReadersOrErr.get()) |
995 | Readers.push_back(Elt: std::move(Reader)); |
996 | if (FoundBinaryIDs && !Readers.empty()) { |
997 | llvm::append_range(C&: *FoundBinaryIDs, |
998 | R: llvm::map_range(C&: BinaryIDs, F: [](object::BuildIDRef BID) { |
999 | return object::BuildID(BID); |
1000 | })); |
1001 | } |
1002 | DataFound |= !Readers.empty(); |
1003 | if (Error E = loadFromReaders(CoverageReaders: Readers, ProfileReader, Coverage)) |
1004 | return createFileError(F: Filename, E: std::move(E)); |
1005 | return Error::success(); |
1006 | } |
1007 | |
1008 | Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load( |
1009 | ArrayRef<StringRef> ObjectFilenames, StringRef ProfileFilename, |
1010 | vfs::FileSystem &FS, ArrayRef<StringRef> Arches, StringRef CompilationDir, |
1011 | const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) { |
1012 | auto ProfileReaderOrErr = IndexedInstrProfReader::create(Path: ProfileFilename, FS); |
1013 | if (Error E = ProfileReaderOrErr.takeError()) |
1014 | return createFileError(F: ProfileFilename, E: std::move(E)); |
1015 | auto ProfileReader = std::move(ProfileReaderOrErr.get()); |
1016 | auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping()); |
1017 | bool DataFound = false; |
1018 | |
1019 | auto GetArch = [&](size_t Idx) { |
1020 | if (Arches.empty()) |
1021 | return StringRef(); |
1022 | if (Arches.size() == 1) |
1023 | return Arches.front(); |
1024 | return Arches[Idx]; |
1025 | }; |
1026 | |
1027 | SmallVector<object::BuildID> FoundBinaryIDs; |
1028 | for (const auto &File : llvm::enumerate(First&: ObjectFilenames)) { |
1029 | if (Error E = |
1030 | loadFromFile(Filename: File.value(), Arch: GetArch(File.index()), CompilationDir, |
1031 | ProfileReader&: *ProfileReader, Coverage&: *Coverage, DataFound, FoundBinaryIDs: &FoundBinaryIDs)) |
1032 | return std::move(E); |
1033 | } |
1034 | |
1035 | if (BIDFetcher) { |
1036 | std::vector<object::BuildID> ProfileBinaryIDs; |
1037 | if (Error E = ProfileReader->readBinaryIds(BinaryIds&: ProfileBinaryIDs)) |
1038 | return createFileError(F: ProfileFilename, E: std::move(E)); |
1039 | |
1040 | SmallVector<object::BuildIDRef> BinaryIDsToFetch; |
1041 | if (!ProfileBinaryIDs.empty()) { |
1042 | const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) { |
1043 | return std::lexicographical_compare(A.begin(), A.end(), B.begin(), |
1044 | B.end()); |
1045 | }; |
1046 | llvm::sort(C&: FoundBinaryIDs, Comp: Compare); |
1047 | std::set_difference( |
1048 | first1: ProfileBinaryIDs.begin(), last1: ProfileBinaryIDs.end(), |
1049 | first2: FoundBinaryIDs.begin(), last2: FoundBinaryIDs.end(), |
1050 | result: std::inserter(x&: BinaryIDsToFetch, i: BinaryIDsToFetch.end()), comp: Compare); |
1051 | } |
1052 | |
1053 | for (object::BuildIDRef BinaryID : BinaryIDsToFetch) { |
1054 | std::optional<std::string> PathOpt = BIDFetcher->fetch(BuildID: BinaryID); |
1055 | if (PathOpt) { |
1056 | std::string Path = std::move(*PathOpt); |
1057 | StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef(); |
1058 | if (Error E = loadFromFile(Filename: Path, Arch, CompilationDir, ProfileReader&: *ProfileReader, |
1059 | Coverage&: *Coverage, DataFound)) |
1060 | return std::move(E); |
1061 | } else if (CheckBinaryIDs) { |
1062 | return createFileError( |
1063 | F: ProfileFilename, |
1064 | E: createStringError(EC: errc::no_such_file_or_directory, |
1065 | S: "Missing binary ID: " + |
1066 | llvm::toHex(Input: BinaryID, /*LowerCase=*/true))); |
1067 | } |
1068 | } |
1069 | } |
1070 | |
1071 | if (!DataFound) |
1072 | return createFileError( |
1073 | F: join(Begin: ObjectFilenames.begin(), End: ObjectFilenames.end(), Separator: ", " ), |
1074 | E: make_error<CoverageMapError>(Args: coveragemap_error::no_data_found)); |
1075 | return std::move(Coverage); |
1076 | } |
1077 | |
1078 | namespace { |
1079 | |
1080 | /// Distributes functions into instantiation sets. |
1081 | /// |
1082 | /// An instantiation set is a collection of functions that have the same source |
1083 | /// code, ie, template functions specializations. |
1084 | class FunctionInstantiationSetCollector { |
1085 | using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>; |
1086 | MapT InstantiatedFunctions; |
1087 | |
1088 | public: |
1089 | void insert(const FunctionRecord &Function, unsigned FileID) { |
1090 | auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); |
1091 | while (I != E && I->FileID != FileID) |
1092 | ++I; |
1093 | assert(I != E && "function does not cover the given file" ); |
1094 | auto &Functions = InstantiatedFunctions[I->startLoc()]; |
1095 | Functions.push_back(x: &Function); |
1096 | } |
1097 | |
1098 | MapT::iterator begin() { return InstantiatedFunctions.begin(); } |
1099 | MapT::iterator end() { return InstantiatedFunctions.end(); } |
1100 | }; |
1101 | |
1102 | class SegmentBuilder { |
1103 | std::vector<CoverageSegment> &Segments; |
1104 | SmallVector<const CountedRegion *, 8> ActiveRegions; |
1105 | |
1106 | SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {} |
1107 | |
1108 | /// Emit a segment with the count from \p Region starting at \p StartLoc. |
1109 | // |
1110 | /// \p IsRegionEntry: The segment is at the start of a new non-gap region. |
1111 | /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. |
1112 | void startSegment(const CountedRegion &Region, LineColPair StartLoc, |
1113 | bool IsRegionEntry, bool EmitSkippedRegion = false) { |
1114 | bool HasCount = !EmitSkippedRegion && |
1115 | (Region.Kind != CounterMappingRegion::SkippedRegion); |
1116 | |
1117 | // If the new segment wouldn't affect coverage rendering, skip it. |
1118 | if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { |
1119 | const auto &Last = Segments.back(); |
1120 | if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && |
1121 | !Last.IsRegionEntry) |
1122 | return; |
1123 | } |
1124 | |
1125 | if (HasCount) |
1126 | Segments.emplace_back(args&: StartLoc.first, args&: StartLoc.second, |
1127 | args: Region.ExecutionCount, args&: IsRegionEntry, |
1128 | args: Region.Kind == CounterMappingRegion::GapRegion); |
1129 | else |
1130 | Segments.emplace_back(args&: StartLoc.first, args&: StartLoc.second, args&: IsRegionEntry); |
1131 | |
1132 | LLVM_DEBUG({ |
1133 | const auto &Last = Segments.back(); |
1134 | dbgs() << "Segment at " << Last.Line << ":" << Last.Col |
1135 | << " (count = " << Last.Count << ")" |
1136 | << (Last.IsRegionEntry ? ", RegionEntry" : "" ) |
1137 | << (!Last.HasCount ? ", Skipped" : "" ) |
1138 | << (Last.IsGapRegion ? ", Gap" : "" ) << "\n" ; |
1139 | }); |
1140 | } |
1141 | |
1142 | /// Emit segments for active regions which end before \p Loc. |
1143 | /// |
1144 | /// \p Loc: The start location of the next region. If std::nullopt, all active |
1145 | /// regions are completed. |
1146 | /// \p FirstCompletedRegion: Index of the first completed region. |
1147 | void completeRegionsUntil(std::optional<LineColPair> Loc, |
1148 | unsigned FirstCompletedRegion) { |
1149 | // Sort the completed regions by end location. This makes it simple to |
1150 | // emit closing segments in sorted order. |
1151 | auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; |
1152 | std::stable_sort(first: CompletedRegionsIt, last: ActiveRegions.end(), |
1153 | comp: [](const CountedRegion *L, const CountedRegion *R) { |
1154 | return L->endLoc() < R->endLoc(); |
1155 | }); |
1156 | |
1157 | // Emit segments for all completed regions. |
1158 | for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; |
1159 | ++I) { |
1160 | const auto *CompletedRegion = ActiveRegions[I]; |
1161 | assert((!Loc || CompletedRegion->endLoc() <= *Loc) && |
1162 | "Completed region ends after start of new region" ); |
1163 | |
1164 | const auto *PrevCompletedRegion = ActiveRegions[I - 1]; |
1165 | auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); |
1166 | |
1167 | // Don't emit any more segments if they start where the new region begins. |
1168 | if (Loc && CompletedSegmentLoc == *Loc) |
1169 | break; |
1170 | |
1171 | // Don't emit a segment if the next completed region ends at the same |
1172 | // location as this one. |
1173 | if (CompletedSegmentLoc == CompletedRegion->endLoc()) |
1174 | continue; |
1175 | |
1176 | // Use the count from the last completed region which ends at this loc. |
1177 | for (unsigned J = I + 1; J < E; ++J) |
1178 | if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) |
1179 | CompletedRegion = ActiveRegions[J]; |
1180 | |
1181 | startSegment(Region: *CompletedRegion, StartLoc: CompletedSegmentLoc, IsRegionEntry: false); |
1182 | } |
1183 | |
1184 | auto Last = ActiveRegions.back(); |
1185 | if (FirstCompletedRegion && Last->endLoc() != *Loc) { |
1186 | // If there's a gap after the end of the last completed region and the |
1187 | // start of the new region, use the last active region to fill the gap. |
1188 | startSegment(Region: *ActiveRegions[FirstCompletedRegion - 1], StartLoc: Last->endLoc(), |
1189 | IsRegionEntry: false); |
1190 | } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { |
1191 | // Emit a skipped segment if there are no more active regions. This |
1192 | // ensures that gaps between functions are marked correctly. |
1193 | startSegment(Region: *Last, StartLoc: Last->endLoc(), IsRegionEntry: false, EmitSkippedRegion: true); |
1194 | } |
1195 | |
1196 | // Pop the completed regions. |
1197 | ActiveRegions.erase(CS: CompletedRegionsIt, CE: ActiveRegions.end()); |
1198 | } |
1199 | |
1200 | void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) { |
1201 | for (const auto &CR : enumerate(First&: Regions)) { |
1202 | auto CurStartLoc = CR.value().startLoc(); |
1203 | |
1204 | // Active regions which end before the current region need to be popped. |
1205 | auto CompletedRegions = |
1206 | std::stable_partition(first: ActiveRegions.begin(), last: ActiveRegions.end(), |
1207 | pred: [&](const CountedRegion *Region) { |
1208 | return !(Region->endLoc() <= CurStartLoc); |
1209 | }); |
1210 | if (CompletedRegions != ActiveRegions.end()) { |
1211 | unsigned FirstCompletedRegion = |
1212 | std::distance(first: ActiveRegions.begin(), last: CompletedRegions); |
1213 | completeRegionsUntil(Loc: CurStartLoc, FirstCompletedRegion); |
1214 | } |
1215 | |
1216 | bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; |
1217 | |
1218 | // Try to emit a segment for the current region. |
1219 | if (CurStartLoc == CR.value().endLoc()) { |
1220 | // Avoid making zero-length regions active. If it's the last region, |
1221 | // emit a skipped segment. Otherwise use its predecessor's count. |
1222 | const bool Skipped = |
1223 | (CR.index() + 1) == Regions.size() || |
1224 | CR.value().Kind == CounterMappingRegion::SkippedRegion; |
1225 | startSegment(Region: ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), |
1226 | StartLoc: CurStartLoc, IsRegionEntry: !GapRegion, EmitSkippedRegion: Skipped); |
1227 | // If it is skipped segment, create a segment with last pushed |
1228 | // regions's count at CurStartLoc. |
1229 | if (Skipped && !ActiveRegions.empty()) |
1230 | startSegment(Region: *ActiveRegions.back(), StartLoc: CurStartLoc, IsRegionEntry: false); |
1231 | continue; |
1232 | } |
1233 | if (CR.index() + 1 == Regions.size() || |
1234 | CurStartLoc != Regions[CR.index() + 1].startLoc()) { |
1235 | // Emit a segment if the next region doesn't start at the same location |
1236 | // as this one. |
1237 | startSegment(Region: CR.value(), StartLoc: CurStartLoc, IsRegionEntry: !GapRegion); |
1238 | } |
1239 | |
1240 | // This region is active (i.e not completed). |
1241 | ActiveRegions.push_back(Elt: &CR.value()); |
1242 | } |
1243 | |
1244 | // Complete any remaining active regions. |
1245 | if (!ActiveRegions.empty()) |
1246 | completeRegionsUntil(Loc: std::nullopt, FirstCompletedRegion: 0); |
1247 | } |
1248 | |
1249 | /// Sort a nested sequence of regions from a single file. |
1250 | static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) { |
1251 | llvm::sort(C&: Regions, Comp: [](const CountedRegion &LHS, const CountedRegion &RHS) { |
1252 | if (LHS.startLoc() != RHS.startLoc()) |
1253 | return LHS.startLoc() < RHS.startLoc(); |
1254 | if (LHS.endLoc() != RHS.endLoc()) |
1255 | // When LHS completely contains RHS, we sort LHS first. |
1256 | return RHS.endLoc() < LHS.endLoc(); |
1257 | // If LHS and RHS cover the same area, we need to sort them according |
1258 | // to their kinds so that the most suitable region will become "active" |
1259 | // in combineRegions(). Because we accumulate counter values only from |
1260 | // regions of the same kind as the first region of the area, prefer |
1261 | // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. |
1262 | static_assert(CounterMappingRegion::CodeRegion < |
1263 | CounterMappingRegion::ExpansionRegion && |
1264 | CounterMappingRegion::ExpansionRegion < |
1265 | CounterMappingRegion::SkippedRegion, |
1266 | "Unexpected order of region kind values" ); |
1267 | return LHS.Kind < RHS.Kind; |
1268 | }); |
1269 | } |
1270 | |
1271 | /// Combine counts of regions which cover the same area. |
1272 | static ArrayRef<CountedRegion> |
1273 | combineRegions(MutableArrayRef<CountedRegion> Regions) { |
1274 | if (Regions.empty()) |
1275 | return Regions; |
1276 | auto Active = Regions.begin(); |
1277 | auto End = Regions.end(); |
1278 | for (auto I = Regions.begin() + 1; I != End; ++I) { |
1279 | if (Active->startLoc() != I->startLoc() || |
1280 | Active->endLoc() != I->endLoc()) { |
1281 | // Shift to the next region. |
1282 | ++Active; |
1283 | if (Active != I) |
1284 | *Active = *I; |
1285 | continue; |
1286 | } |
1287 | // Merge duplicate region. |
1288 | // If CodeRegions and ExpansionRegions cover the same area, it's probably |
1289 | // a macro which is fully expanded to another macro. In that case, we need |
1290 | // to accumulate counts only from CodeRegions, or else the area will be |
1291 | // counted twice. |
1292 | // On the other hand, a macro may have a nested macro in its body. If the |
1293 | // outer macro is used several times, the ExpansionRegion for the nested |
1294 | // macro will also be added several times. These ExpansionRegions cover |
1295 | // the same source locations and have to be combined to reach the correct |
1296 | // value for that area. |
1297 | // We add counts of the regions of the same kind as the active region |
1298 | // to handle the both situations. |
1299 | if (I->Kind == Active->Kind) { |
1300 | assert(I->HasSingleByteCoverage == Active->HasSingleByteCoverage && |
1301 | "Regions are generated in different coverage modes" ); |
1302 | if (I->HasSingleByteCoverage) |
1303 | Active->ExecutionCount = Active->ExecutionCount || I->ExecutionCount; |
1304 | else |
1305 | Active->ExecutionCount += I->ExecutionCount; |
1306 | } |
1307 | } |
1308 | return Regions.drop_back(N: std::distance(first: ++Active, last: End)); |
1309 | } |
1310 | |
1311 | public: |
1312 | /// Build a sorted list of CoverageSegments from a list of Regions. |
1313 | static std::vector<CoverageSegment> |
1314 | buildSegments(MutableArrayRef<CountedRegion> Regions) { |
1315 | std::vector<CoverageSegment> Segments; |
1316 | SegmentBuilder Builder(Segments); |
1317 | |
1318 | sortNestedRegions(Regions); |
1319 | ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions); |
1320 | |
1321 | LLVM_DEBUG({ |
1322 | dbgs() << "Combined regions:\n" ; |
1323 | for (const auto &CR : CombinedRegions) |
1324 | dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " |
1325 | << CR.LineEnd << ":" << CR.ColumnEnd |
1326 | << " (count=" << CR.ExecutionCount << ")\n" ; |
1327 | }); |
1328 | |
1329 | Builder.buildSegmentsImpl(Regions: CombinedRegions); |
1330 | |
1331 | #ifndef NDEBUG |
1332 | for (unsigned I = 1, E = Segments.size(); I < E; ++I) { |
1333 | const auto &L = Segments[I - 1]; |
1334 | const auto &R = Segments[I]; |
1335 | if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { |
1336 | if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) |
1337 | continue; |
1338 | LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col |
1339 | << " followed by " << R.Line << ":" << R.Col << "\n" ); |
1340 | assert(false && "Coverage segments not unique or sorted" ); |
1341 | } |
1342 | } |
1343 | #endif |
1344 | |
1345 | return Segments; |
1346 | } |
1347 | }; |
1348 | |
1349 | } // end anonymous namespace |
1350 | |
1351 | std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const { |
1352 | std::vector<StringRef> Filenames; |
1353 | for (const auto &Function : getCoveredFunctions()) |
1354 | llvm::append_range(C&: Filenames, R: Function.Filenames); |
1355 | llvm::sort(C&: Filenames); |
1356 | auto Last = llvm::unique(R&: Filenames); |
1357 | Filenames.erase(first: Last, last: Filenames.end()); |
1358 | return Filenames; |
1359 | } |
1360 | |
1361 | static SmallBitVector gatherFileIDs(StringRef SourceFile, |
1362 | const FunctionRecord &Function) { |
1363 | SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); |
1364 | for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) |
1365 | if (SourceFile == Function.Filenames[I]) |
1366 | FilenameEquivalence[I] = true; |
1367 | return FilenameEquivalence; |
1368 | } |
1369 | |
1370 | /// Return the ID of the file where the definition of the function is located. |
1371 | static std::optional<unsigned> |
1372 | findMainViewFileID(const FunctionRecord &Function) { |
1373 | SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); |
1374 | for (const auto &CR : Function.CountedRegions) |
1375 | if (CR.Kind == CounterMappingRegion::ExpansionRegion) |
1376 | IsNotExpandedFile[CR.ExpandedFileID] = false; |
1377 | int I = IsNotExpandedFile.find_first(); |
1378 | if (I == -1) |
1379 | return std::nullopt; |
1380 | return I; |
1381 | } |
1382 | |
1383 | /// Check if SourceFile is the file that contains the definition of |
1384 | /// the Function. Return the ID of the file in that case or std::nullopt |
1385 | /// otherwise. |
1386 | static std::optional<unsigned> |
1387 | findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { |
1388 | std::optional<unsigned> I = findMainViewFileID(Function); |
1389 | if (I && SourceFile == Function.Filenames[*I]) |
1390 | return I; |
1391 | return std::nullopt; |
1392 | } |
1393 | |
1394 | static bool isExpansion(const CountedRegion &R, unsigned FileID) { |
1395 | return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; |
1396 | } |
1397 | |
1398 | CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { |
1399 | CoverageData FileCoverage(Filename); |
1400 | std::vector<CountedRegion> Regions; |
1401 | |
1402 | // Look up the function records in the given file. Due to hash collisions on |
1403 | // the filename, we may get back some records that are not in the file. |
1404 | ArrayRef<unsigned> RecordIndices = |
1405 | getImpreciseRecordIndicesForFilename(Filename); |
1406 | for (unsigned RecordIndex : RecordIndices) { |
1407 | const FunctionRecord &Function = Functions[RecordIndex]; |
1408 | auto MainFileID = findMainViewFileID(SourceFile: Filename, Function); |
1409 | auto FileIDs = gatherFileIDs(SourceFile: Filename, Function); |
1410 | for (const auto &CR : Function.CountedRegions) |
1411 | if (FileIDs.test(Idx: CR.FileID)) { |
1412 | Regions.push_back(x: CR); |
1413 | if (MainFileID && isExpansion(R: CR, FileID: *MainFileID)) |
1414 | FileCoverage.Expansions.emplace_back(args: CR, args: Function); |
1415 | } |
1416 | // Capture branch regions specific to the function (excluding expansions). |
1417 | for (const auto &CR : Function.CountedBranchRegions) |
1418 | if (FileIDs.test(Idx: CR.FileID) && (CR.FileID == CR.ExpandedFileID)) |
1419 | FileCoverage.BranchRegions.push_back(x: CR); |
1420 | // Capture MCDC records specific to the function. |
1421 | for (const auto &MR : Function.MCDCRecords) |
1422 | if (FileIDs.test(Idx: MR.getDecisionRegion().FileID)) |
1423 | FileCoverage.MCDCRecords.push_back(x: MR); |
1424 | } |
1425 | |
1426 | LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n" ); |
1427 | FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); |
1428 | |
1429 | return FileCoverage; |
1430 | } |
1431 | |
1432 | std::vector<InstantiationGroup> |
1433 | CoverageMapping::getInstantiationGroups(StringRef Filename) const { |
1434 | FunctionInstantiationSetCollector InstantiationSetCollector; |
1435 | // Look up the function records in the given file. Due to hash collisions on |
1436 | // the filename, we may get back some records that are not in the file. |
1437 | ArrayRef<unsigned> RecordIndices = |
1438 | getImpreciseRecordIndicesForFilename(Filename); |
1439 | for (unsigned RecordIndex : RecordIndices) { |
1440 | const FunctionRecord &Function = Functions[RecordIndex]; |
1441 | auto MainFileID = findMainViewFileID(SourceFile: Filename, Function); |
1442 | if (!MainFileID) |
1443 | continue; |
1444 | InstantiationSetCollector.insert(Function, FileID: *MainFileID); |
1445 | } |
1446 | |
1447 | std::vector<InstantiationGroup> Result; |
1448 | for (auto &InstantiationSet : InstantiationSetCollector) { |
1449 | InstantiationGroup IG{InstantiationSet.first.first, |
1450 | InstantiationSet.first.second, |
1451 | std::move(InstantiationSet.second)}; |
1452 | Result.emplace_back(args: std::move(IG)); |
1453 | } |
1454 | return Result; |
1455 | } |
1456 | |
1457 | CoverageData |
1458 | CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { |
1459 | auto MainFileID = findMainViewFileID(Function); |
1460 | if (!MainFileID) |
1461 | return CoverageData(); |
1462 | |
1463 | CoverageData FunctionCoverage(Function.Filenames[*MainFileID]); |
1464 | std::vector<CountedRegion> Regions; |
1465 | for (const auto &CR : Function.CountedRegions) |
1466 | if (CR.FileID == *MainFileID) { |
1467 | Regions.push_back(x: CR); |
1468 | if (isExpansion(R: CR, FileID: *MainFileID)) |
1469 | FunctionCoverage.Expansions.emplace_back(args: CR, args: Function); |
1470 | } |
1471 | // Capture branch regions specific to the function (excluding expansions). |
1472 | for (const auto &CR : Function.CountedBranchRegions) |
1473 | if (CR.FileID == *MainFileID) |
1474 | FunctionCoverage.BranchRegions.push_back(x: CR); |
1475 | |
1476 | // Capture MCDC records specific to the function. |
1477 | for (const auto &MR : Function.MCDCRecords) |
1478 | if (MR.getDecisionRegion().FileID == *MainFileID) |
1479 | FunctionCoverage.MCDCRecords.push_back(x: MR); |
1480 | |
1481 | LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name |
1482 | << "\n" ); |
1483 | FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); |
1484 | |
1485 | return FunctionCoverage; |
1486 | } |
1487 | |
1488 | CoverageData CoverageMapping::getCoverageForExpansion( |
1489 | const ExpansionRecord &Expansion) const { |
1490 | CoverageData ExpansionCoverage( |
1491 | Expansion.Function.Filenames[Expansion.FileID]); |
1492 | std::vector<CountedRegion> Regions; |
1493 | for (const auto &CR : Expansion.Function.CountedRegions) |
1494 | if (CR.FileID == Expansion.FileID) { |
1495 | Regions.push_back(x: CR); |
1496 | if (isExpansion(R: CR, FileID: Expansion.FileID)) |
1497 | ExpansionCoverage.Expansions.emplace_back(args: CR, args: Expansion.Function); |
1498 | } |
1499 | for (const auto &CR : Expansion.Function.CountedBranchRegions) |
1500 | // Capture branch regions that only pertain to the corresponding expansion. |
1501 | if (CR.FileID == Expansion.FileID) |
1502 | ExpansionCoverage.BranchRegions.push_back(x: CR); |
1503 | |
1504 | LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " |
1505 | << Expansion.FileID << "\n" ); |
1506 | ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); |
1507 | |
1508 | return ExpansionCoverage; |
1509 | } |
1510 | |
1511 | LineCoverageStats::LineCoverageStats( |
1512 | ArrayRef<const CoverageSegment *> LineSegments, |
1513 | const CoverageSegment *WrappedSegment, unsigned Line) |
1514 | : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), |
1515 | LineSegments(LineSegments), WrappedSegment(WrappedSegment) { |
1516 | // Find the minimum number of regions which start in this line. |
1517 | unsigned MinRegionCount = 0; |
1518 | auto isStartOfRegion = [](const CoverageSegment *S) { |
1519 | return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; |
1520 | }; |
1521 | for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) |
1522 | if (isStartOfRegion(LineSegments[I])) |
1523 | ++MinRegionCount; |
1524 | |
1525 | bool StartOfSkippedRegion = !LineSegments.empty() && |
1526 | !LineSegments.front()->HasCount && |
1527 | LineSegments.front()->IsRegionEntry; |
1528 | |
1529 | HasMultipleRegions = MinRegionCount > 1; |
1530 | Mapped = |
1531 | !StartOfSkippedRegion && |
1532 | ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); |
1533 | |
1534 | // if there is any starting segment at this line with a counter, it must be |
1535 | // mapped |
1536 | Mapped |= std::any_of( |
1537 | first: LineSegments.begin(), last: LineSegments.end(), |
1538 | pred: [](const auto *Seq) { return Seq->IsRegionEntry && Seq->HasCount; }); |
1539 | |
1540 | if (!Mapped) { |
1541 | return; |
1542 | } |
1543 | |
1544 | // Pick the max count from the non-gap, region entry segments and the |
1545 | // wrapped count. |
1546 | if (WrappedSegment) |
1547 | ExecutionCount = WrappedSegment->Count; |
1548 | if (!MinRegionCount) |
1549 | return; |
1550 | for (const auto *LS : LineSegments) |
1551 | if (isStartOfRegion(LS)) |
1552 | ExecutionCount = std::max(a: ExecutionCount, b: LS->Count); |
1553 | } |
1554 | |
1555 | LineCoverageIterator &LineCoverageIterator::operator++() { |
1556 | if (Next == CD.end()) { |
1557 | Stats = LineCoverageStats(); |
1558 | Ended = true; |
1559 | return *this; |
1560 | } |
1561 | if (Segments.size()) |
1562 | WrappedSegment = Segments.back(); |
1563 | Segments.clear(); |
1564 | while (Next != CD.end() && Next->Line == Line) |
1565 | Segments.push_back(Elt: &*Next++); |
1566 | Stats = LineCoverageStats(Segments, WrappedSegment, Line); |
1567 | ++Line; |
1568 | return *this; |
1569 | } |
1570 | |
1571 | static std::string getCoverageMapErrString(coveragemap_error Err, |
1572 | const std::string &ErrMsg = "" ) { |
1573 | std::string Msg; |
1574 | raw_string_ostream OS(Msg); |
1575 | |
1576 | switch (Err) { |
1577 | case coveragemap_error::success: |
1578 | OS << "success" ; |
1579 | break; |
1580 | case coveragemap_error::eof: |
1581 | OS << "end of File" ; |
1582 | break; |
1583 | case coveragemap_error::no_data_found: |
1584 | OS << "no coverage data found" ; |
1585 | break; |
1586 | case coveragemap_error::unsupported_version: |
1587 | OS << "unsupported coverage format version" ; |
1588 | break; |
1589 | case coveragemap_error::truncated: |
1590 | OS << "truncated coverage data" ; |
1591 | break; |
1592 | case coveragemap_error::malformed: |
1593 | OS << "malformed coverage data" ; |
1594 | break; |
1595 | case coveragemap_error::decompression_failed: |
1596 | OS << "failed to decompress coverage data (zlib)" ; |
1597 | break; |
1598 | case coveragemap_error::invalid_or_missing_arch_specifier: |
1599 | OS << "`-arch` specifier is invalid or missing for universal binary" ; |
1600 | break; |
1601 | } |
1602 | |
1603 | // If optional error message is not empty, append it to the message. |
1604 | if (!ErrMsg.empty()) |
1605 | OS << ": " << ErrMsg; |
1606 | |
1607 | return Msg; |
1608 | } |
1609 | |
1610 | namespace { |
1611 | |
1612 | // FIXME: This class is only here to support the transition to llvm::Error. It |
1613 | // will be removed once this transition is complete. Clients should prefer to |
1614 | // deal with the Error value directly, rather than converting to error_code. |
1615 | class CoverageMappingErrorCategoryType : public std::error_category { |
1616 | const char *name() const noexcept override { return "llvm.coveragemap" ; } |
1617 | std::string message(int IE) const override { |
1618 | return getCoverageMapErrString(Err: static_cast<coveragemap_error>(IE)); |
1619 | } |
1620 | }; |
1621 | |
1622 | } // end anonymous namespace |
1623 | |
1624 | std::string CoverageMapError::message() const { |
1625 | return getCoverageMapErrString(Err, ErrMsg: Msg); |
1626 | } |
1627 | |
1628 | const std::error_category &llvm::coverage::coveragemap_category() { |
1629 | static CoverageMappingErrorCategoryType ErrorCategory; |
1630 | return ErrorCategory; |
1631 | } |
1632 | |
1633 | char CoverageMapError::ID = 0; |
1634 | |