1//===- InstrProf.cpp - Instrumented profiling format support --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains support for clang's instrumentation based PGO and
10// coverage.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/ProfileData/InstrProf.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/Config/config.h"
20#include "llvm/IR/Constant.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/Function.h"
23#include "llvm/IR/GlobalValue.h"
24#include "llvm/IR/GlobalVariable.h"
25#include "llvm/IR/Instruction.h"
26#include "llvm/IR/LLVMContext.h"
27#include "llvm/IR/MDBuilder.h"
28#include "llvm/IR/Metadata.h"
29#include "llvm/IR/Module.h"
30#include "llvm/IR/Type.h"
31#include "llvm/ProfileData/InstrProfReader.h"
32#include "llvm/Support/Casting.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Compiler.h"
35#include "llvm/Support/Compression.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/Endian.h"
38#include "llvm/Support/Error.h"
39#include "llvm/Support/ErrorHandling.h"
40#include "llvm/Support/LEB128.h"
41#include "llvm/Support/MathExtras.h"
42#include "llvm/Support/Path.h"
43#include "llvm/Support/SwapByteOrder.h"
44#include "llvm/Support/VirtualFileSystem.h"
45#include "llvm/TargetParser/Triple.h"
46#include <algorithm>
47#include <cassert>
48#include <cstddef>
49#include <cstdint>
50#include <cstring>
51#include <memory>
52#include <string>
53#include <system_error>
54#include <type_traits>
55#include <utility>
56#include <vector>
57
58using namespace llvm;
59
60#define DEBUG_TYPE "instrprof"
61
62static cl::opt<bool> StaticFuncFullModulePrefix(
63 "static-func-full-module-prefix", cl::init(Val: true), cl::Hidden,
64 cl::desc("Use full module build paths in the profile counter names for "
65 "static functions."));
66
67// This option is tailored to users that have different top-level directory in
68// profile-gen and profile-use compilation. Users need to specific the number
69// of levels to strip. A value larger than the number of directories in the
70// source file will strip all the directory names and only leave the basename.
71//
72// Note current ThinLTO module importing for the indirect-calls assumes
73// the source directory name not being stripped. A non-zero option value here
74// can potentially prevent some inter-module indirect-call-promotions.
75static cl::opt<unsigned> StaticFuncStripDirNamePrefix(
76 "static-func-strip-dirname-prefix", cl::init(Val: 0), cl::Hidden,
77 cl::desc("Strip specified level of directory name from source path in "
78 "the profile counter name for static functions."));
79
80static std::string getInstrProfErrString(instrprof_error Err,
81 const std::string &ErrMsg = "") {
82 std::string Msg;
83 raw_string_ostream OS(Msg);
84
85 switch (Err) {
86 case instrprof_error::success:
87 OS << "success";
88 break;
89 case instrprof_error::eof:
90 OS << "end of File";
91 break;
92 case instrprof_error::unrecognized_format:
93 OS << "unrecognized instrumentation profile encoding format";
94 break;
95 case instrprof_error::bad_magic:
96 OS << "invalid instrumentation profile data (bad magic)";
97 break;
98 case instrprof_error::bad_header:
99 OS << "invalid instrumentation profile data (file header is corrupt)";
100 break;
101 case instrprof_error::unsupported_version:
102 OS << "unsupported instrumentation profile format version";
103 break;
104 case instrprof_error::unsupported_hash_type:
105 OS << "unsupported instrumentation profile hash type";
106 break;
107 case instrprof_error::too_large:
108 OS << "too much profile data";
109 break;
110 case instrprof_error::truncated:
111 OS << "truncated profile data";
112 break;
113 case instrprof_error::malformed:
114 OS << "malformed instrumentation profile data";
115 break;
116 case instrprof_error::missing_correlation_info:
117 OS << "debug info/binary for correlation is required";
118 break;
119 case instrprof_error::unexpected_correlation_info:
120 OS << "debug info/binary for correlation is not necessary";
121 break;
122 case instrprof_error::unable_to_correlate_profile:
123 OS << "unable to correlate profile";
124 break;
125 case instrprof_error::invalid_prof:
126 OS << "invalid profile created. Please file a bug "
127 "at: " BUG_REPORT_URL
128 " and include the profraw files that caused this error.";
129 break;
130 case instrprof_error::unknown_function:
131 OS << "no profile data available for function";
132 break;
133 case instrprof_error::hash_mismatch:
134 OS << "function control flow change detected (hash mismatch)";
135 break;
136 case instrprof_error::count_mismatch:
137 OS << "function basic block count change detected (counter mismatch)";
138 break;
139 case instrprof_error::bitmap_mismatch:
140 OS << "function bitmap size change detected (bitmap size mismatch)";
141 break;
142 case instrprof_error::counter_overflow:
143 OS << "counter overflow";
144 break;
145 case instrprof_error::value_site_count_mismatch:
146 OS << "function value site count change detected (counter mismatch)";
147 break;
148 case instrprof_error::compress_failed:
149 OS << "failed to compress data (zlib)";
150 break;
151 case instrprof_error::uncompress_failed:
152 OS << "failed to uncompress data (zlib)";
153 break;
154 case instrprof_error::empty_raw_profile:
155 OS << "empty raw profile file";
156 break;
157 case instrprof_error::zlib_unavailable:
158 OS << "profile uses zlib compression but the profile reader was built "
159 "without zlib support";
160 break;
161 case instrprof_error::raw_profile_version_mismatch:
162 OS << "raw profile version mismatch";
163 break;
164 case instrprof_error::counter_value_too_large:
165 OS << "excessively large counter value suggests corrupted profile data";
166 break;
167 }
168
169 // If optional error message is not empty, append it to the message.
170 if (!ErrMsg.empty())
171 OS << ": " << ErrMsg;
172
173 return OS.str();
174}
175
176namespace {
177
178// FIXME: This class is only here to support the transition to llvm::Error. It
179// will be removed once this transition is complete. Clients should prefer to
180// deal with the Error value directly, rather than converting to error_code.
181class InstrProfErrorCategoryType : public std::error_category {
182 const char *name() const noexcept override { return "llvm.instrprof"; }
183
184 std::string message(int IE) const override {
185 return getInstrProfErrString(Err: static_cast<instrprof_error>(IE));
186 }
187};
188
189} // end anonymous namespace
190
191const std::error_category &llvm::instrprof_category() {
192 static InstrProfErrorCategoryType ErrorCategory;
193 return ErrorCategory;
194}
195
196namespace {
197
198const char *InstrProfSectNameCommon[] = {
199#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
200 SectNameCommon,
201#include "llvm/ProfileData/InstrProfData.inc"
202};
203
204const char *InstrProfSectNameCoff[] = {
205#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
206 SectNameCoff,
207#include "llvm/ProfileData/InstrProfData.inc"
208};
209
210const char *InstrProfSectNamePrefix[] = {
211#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
212 Prefix,
213#include "llvm/ProfileData/InstrProfData.inc"
214};
215
216} // namespace
217
218namespace llvm {
219
220cl::opt<bool> DoInstrProfNameCompression(
221 "enable-name-compression",
222 cl::desc("Enable name/filename string compression"), cl::init(Val: true));
223
224cl::opt<bool> EnableVTableValueProfiling(
225 "enable-vtable-value-profiling", cl::init(Val: false),
226 cl::desc("If true, the virtual table address will be instrumented to know "
227 "the types of a C++ pointer. The information is used in indirect "
228 "call promotion to do selective vtable-based comparison."));
229
230cl::opt<bool> EnableVTableProfileUse(
231 "enable-vtable-profile-use", cl::init(Val: false),
232 cl::desc("If ThinLTO and WPD is enabled and this option is true, vtable "
233 "profiles will be used by ICP pass for more efficient indirect "
234 "call sequence. If false, type profiles won't be used."));
235
236std::string getInstrProfSectionName(InstrProfSectKind IPSK,
237 Triple::ObjectFormatType OF,
238 bool AddSegmentInfo) {
239 std::string SectName;
240
241 if (OF == Triple::MachO && AddSegmentInfo)
242 SectName = InstrProfSectNamePrefix[IPSK];
243
244 if (OF == Triple::COFF)
245 SectName += InstrProfSectNameCoff[IPSK];
246 else
247 SectName += InstrProfSectNameCommon[IPSK];
248
249 if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo)
250 SectName += ",regular,live_support";
251
252 return SectName;
253}
254
255std::string InstrProfError::message() const {
256 return getInstrProfErrString(Err, ErrMsg: Msg);
257}
258
259char InstrProfError::ID = 0;
260
261std::string getPGOFuncName(StringRef Name, GlobalValue::LinkageTypes Linkage,
262 StringRef FileName,
263 uint64_t Version LLVM_ATTRIBUTE_UNUSED) {
264 // Value names may be prefixed with a binary '1' to indicate
265 // that the backend should not modify the symbols due to any platform
266 // naming convention. Do not include that '1' in the PGO profile name.
267 if (Name[0] == '\1')
268 Name = Name.substr(Start: 1);
269
270 std::string NewName = std::string(Name);
271 if (llvm::GlobalValue::isLocalLinkage(Linkage)) {
272 // For local symbols, prepend the main file name to distinguish them.
273 // Do not include the full path in the file name since there's no guarantee
274 // that it will stay the same, e.g., if the files are checked out from
275 // version control in different locations.
276 if (FileName.empty())
277 NewName = NewName.insert(pos: 0, s: "<unknown>:");
278 else
279 NewName = NewName.insert(pos1: 0, str: FileName.str() + ":");
280 }
281 return NewName;
282}
283
284// Strip NumPrefix level of directory name from PathNameStr. If the number of
285// directory separators is less than NumPrefix, strip all the directories and
286// leave base file name only.
287static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) {
288 uint32_t Count = NumPrefix;
289 uint32_t Pos = 0, LastPos = 0;
290 for (const auto &CI : PathNameStr) {
291 ++Pos;
292 if (llvm::sys::path::is_separator(value: CI)) {
293 LastPos = Pos;
294 --Count;
295 }
296 if (Count == 0)
297 break;
298 }
299 return PathNameStr.substr(Start: LastPos);
300}
301
302static StringRef getStrippedSourceFileName(const GlobalObject &GO) {
303 StringRef FileName(GO.getParent()->getSourceFileName());
304 uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1;
305 if (StripLevel < StaticFuncStripDirNamePrefix)
306 StripLevel = StaticFuncStripDirNamePrefix;
307 if (StripLevel)
308 FileName = stripDirPrefix(PathNameStr: FileName, NumPrefix: StripLevel);
309 return FileName;
310}
311
312// The PGO name has the format [<filepath>;]<mangled-name> where <filepath>; is
313// provided if linkage is local and is used to discriminate possibly identical
314// mangled names. ";" is used because it is unlikely to be found in either
315// <filepath> or <mangled-name>.
316//
317// Older compilers used getPGOFuncName() which has the format
318// [<filepath>:]<mangled-name>. This caused trouble for Objective-C functions
319// which commonly have :'s in their names. We still need to compute this name to
320// lookup functions from profiles built by older compilers.
321static std::string
322getIRPGONameForGlobalObject(const GlobalObject &GO,
323 GlobalValue::LinkageTypes Linkage,
324 StringRef FileName) {
325 return GlobalValue::getGlobalIdentifier(Name: GO.getName(), Linkage, FileName);
326}
327
328static std::optional<std::string> lookupPGONameFromMetadata(MDNode *MD) {
329 if (MD != nullptr) {
330 StringRef S = cast<MDString>(Val: MD->getOperand(I: 0))->getString();
331 return S.str();
332 }
333 return {};
334}
335
336// Returns the PGO object name. This function has some special handling
337// when called in LTO optimization. The following only applies when calling in
338// LTO passes (when \c InLTO is true): LTO's internalization privatizes many
339// global linkage symbols. This happens after value profile annotation, but
340// those internal linkage functions should not have a source prefix.
341// Additionally, for ThinLTO mode, exported internal functions are promoted
342// and renamed. We need to ensure that the original internal PGO name is
343// used when computing the GUID that is compared against the profiled GUIDs.
344// To differentiate compiler generated internal symbols from original ones,
345// PGOFuncName meta data are created and attached to the original internal
346// symbols in the value profile annotation step
347// (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta
348// data, its original linkage must be non-internal.
349static std::string getIRPGOObjectName(const GlobalObject &GO, bool InLTO,
350 MDNode *PGONameMetadata) {
351 if (!InLTO) {
352 auto FileName = getStrippedSourceFileName(GO);
353 return getIRPGONameForGlobalObject(GO, Linkage: GO.getLinkage(), FileName);
354 }
355
356 // In LTO mode (when InLTO is true), first check if there is a meta data.
357 if (auto IRPGOFuncName = lookupPGONameFromMetadata(MD: PGONameMetadata))
358 return *IRPGOFuncName;
359
360 // If there is no meta data, the function must be a global before the value
361 // profile annotation pass. Its current linkage may be internal if it is
362 // internalized in LTO mode.
363 return getIRPGONameForGlobalObject(GO, Linkage: GlobalValue::ExternalLinkage, FileName: "");
364}
365
366// Returns the IRPGO function name and does special handling when called
367// in LTO optimization. See the comments of `getIRPGOObjectName` for details.
368std::string getIRPGOFuncName(const Function &F, bool InLTO) {
369 return getIRPGOObjectName(GO: F, InLTO, PGONameMetadata: getPGOFuncNameMetadata(F));
370}
371
372// Please use getIRPGOFuncName for LLVM IR instrumentation. This function is
373// for front-end (Clang, etc) instrumentation.
374// The implementation is kept for profile matching from older profiles.
375// This is similar to `getIRPGOFuncName` except that this function calls
376// 'getPGOFuncName' to get a name and `getIRPGOFuncName` calls
377// 'getIRPGONameForGlobalObject'. See the difference between two callees in the
378// comments of `getIRPGONameForGlobalObject`.
379std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) {
380 if (!InLTO) {
381 auto FileName = getStrippedSourceFileName(GO: F);
382 return getPGOFuncName(Name: F.getName(), Linkage: F.getLinkage(), FileName, Version);
383 }
384
385 // In LTO mode (when InLTO is true), first check if there is a meta data.
386 if (auto PGOFuncName = lookupPGONameFromMetadata(MD: getPGOFuncNameMetadata(F)))
387 return *PGOFuncName;
388
389 // If there is no meta data, the function must be a global before the value
390 // profile annotation pass. Its current linkage may be internal if it is
391 // internalized in LTO mode.
392 return getPGOFuncName(Name: F.getName(), Linkage: GlobalValue::ExternalLinkage, FileName: "");
393}
394
395std::string getPGOName(const GlobalVariable &V, bool InLTO) {
396 // PGONameMetadata should be set by compiler at profile use time
397 // and read by symtab creation to look up symbols corresponding to
398 // a MD5 hash.
399 return getIRPGOObjectName(GO: V, InLTO, PGONameMetadata: V.getMetadata(Kind: getPGONameMetadataName()));
400}
401
402// See getIRPGOObjectName() for a discription of the format.
403std::pair<StringRef, StringRef> getParsedIRPGOName(StringRef IRPGOName) {
404 auto [FileName, MangledName] = IRPGOName.split(Separator: GlobalIdentifierDelimiter);
405 if (MangledName.empty())
406 return std::make_pair(x: StringRef(), y&: IRPGOName);
407 return std::make_pair(x&: FileName, y&: MangledName);
408}
409
410StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) {
411 if (FileName.empty())
412 return PGOFuncName;
413 // Drop the file name including ':' or ';'. See getIRPGONameForGlobalObject as
414 // well.
415 if (PGOFuncName.starts_with(Prefix: FileName))
416 PGOFuncName = PGOFuncName.drop_front(N: FileName.size() + 1);
417 return PGOFuncName;
418}
419
420// \p FuncName is the string used as profile lookup key for the function. A
421// symbol is created to hold the name. Return the legalized symbol name.
422std::string getPGOFuncNameVarName(StringRef FuncName,
423 GlobalValue::LinkageTypes Linkage) {
424 std::string VarName = std::string(getInstrProfNameVarPrefix());
425 VarName += FuncName;
426
427 if (!GlobalValue::isLocalLinkage(Linkage))
428 return VarName;
429
430 // Now fix up illegal chars in local VarName that may upset the assembler.
431 const char InvalidChars[] = "-:;<>/\"'";
432 size_t FoundPos = VarName.find_first_of(s: InvalidChars);
433 while (FoundPos != std::string::npos) {
434 VarName[FoundPos] = '_';
435 FoundPos = VarName.find_first_of(s: InvalidChars, pos: FoundPos + 1);
436 }
437 return VarName;
438}
439
440GlobalVariable *createPGOFuncNameVar(Module &M,
441 GlobalValue::LinkageTypes Linkage,
442 StringRef PGOFuncName) {
443 // We generally want to match the function's linkage, but available_externally
444 // and extern_weak both have the wrong semantics, and anything that doesn't
445 // need to link across compilation units doesn't need to be visible at all.
446 if (Linkage == GlobalValue::ExternalWeakLinkage)
447 Linkage = GlobalValue::LinkOnceAnyLinkage;
448 else if (Linkage == GlobalValue::AvailableExternallyLinkage)
449 Linkage = GlobalValue::LinkOnceODRLinkage;
450 else if (Linkage == GlobalValue::InternalLinkage ||
451 Linkage == GlobalValue::ExternalLinkage)
452 Linkage = GlobalValue::PrivateLinkage;
453
454 auto *Value =
455 ConstantDataArray::getString(Context&: M.getContext(), Initializer: PGOFuncName, AddNull: false);
456 auto *FuncNameVar =
457 new GlobalVariable(M, Value->getType(), true, Linkage, Value,
458 getPGOFuncNameVarName(FuncName: PGOFuncName, Linkage));
459
460 // Hide the symbol so that we correctly get a copy for each executable.
461 if (!GlobalValue::isLocalLinkage(Linkage: FuncNameVar->getLinkage()))
462 FuncNameVar->setVisibility(GlobalValue::HiddenVisibility);
463
464 return FuncNameVar;
465}
466
467GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) {
468 return createPGOFuncNameVar(M&: *F.getParent(), Linkage: F.getLinkage(), PGOFuncName);
469}
470
471Error InstrProfSymtab::create(Module &M, bool InLTO) {
472 for (Function &F : M) {
473 // Function may not have a name: like using asm("") to overwrite the name.
474 // Ignore in this case.
475 if (!F.hasName())
476 continue;
477 if (Error E = addFuncWithName(F, PGOFuncName: getIRPGOFuncName(F, InLTO)))
478 return E;
479 // Also use getPGOFuncName() so that we can find records from older profiles
480 if (Error E = addFuncWithName(F, PGOFuncName: getPGOFuncName(F, InLTO)))
481 return E;
482 }
483
484 SmallVector<MDNode *, 2> Types;
485 for (GlobalVariable &G : M.globals()) {
486 if (!G.hasName() || !G.hasMetadata(KindID: LLVMContext::MD_type))
487 continue;
488 if (Error E = addVTableWithName(V&: G, PGOVTableName: getPGOName(V: G, InLTO)))
489 return E;
490 }
491
492 Sorted = false;
493 finalizeSymtab();
494 return Error::success();
495}
496
497Error InstrProfSymtab::addVTableWithName(GlobalVariable &VTable,
498 StringRef VTablePGOName) {
499 auto NameToGUIDMap = [&](StringRef Name) -> Error {
500 if (Error E = addSymbolName(SymbolName: Name))
501 return E;
502
503 bool Inserted = true;
504 std::tie(args: std::ignore, args&: Inserted) =
505 MD5VTableMap.try_emplace(Key: GlobalValue::getGUID(GlobalName: Name), Args: &VTable);
506 if (!Inserted)
507 LLVM_DEBUG(dbgs() << "GUID conflict within one module");
508 return Error::success();
509 };
510 if (Error E = NameToGUIDMap(VTablePGOName))
511 return E;
512
513 StringRef CanonicalName = getCanonicalName(PGOName: VTablePGOName);
514 if (CanonicalName != VTablePGOName)
515 return NameToGUIDMap(CanonicalName);
516
517 return Error::success();
518}
519
520/// \c NameStrings is a string composed of one of more possibly encoded
521/// sub-strings. The substrings are separated by 0 or more zero bytes. This
522/// method decodes the string and calls `NameCallback` for each substring.
523static Error
524readAndDecodeStrings(StringRef NameStrings,
525 std::function<Error(StringRef)> NameCallback) {
526 const uint8_t *P = NameStrings.bytes_begin();
527 const uint8_t *EndP = NameStrings.bytes_end();
528 while (P < EndP) {
529 uint32_t N;
530 uint64_t UncompressedSize = decodeULEB128(p: P, n: &N);
531 P += N;
532 uint64_t CompressedSize = decodeULEB128(p: P, n: &N);
533 P += N;
534 const bool IsCompressed = (CompressedSize != 0);
535 SmallVector<uint8_t, 128> UncompressedNameStrings;
536 StringRef NameStrings;
537 if (IsCompressed) {
538 if (!llvm::compression::zlib::isAvailable())
539 return make_error<InstrProfError>(Args: instrprof_error::zlib_unavailable);
540
541 if (Error E = compression::zlib::decompress(Input: ArrayRef(P, CompressedSize),
542 Output&: UncompressedNameStrings,
543 UncompressedSize)) {
544 consumeError(Err: std::move(E));
545 return make_error<InstrProfError>(Args: instrprof_error::uncompress_failed);
546 }
547 P += CompressedSize;
548 NameStrings = toStringRef(Input: UncompressedNameStrings);
549 } else {
550 NameStrings =
551 StringRef(reinterpret_cast<const char *>(P), UncompressedSize);
552 P += UncompressedSize;
553 }
554 // Now parse the name strings.
555 SmallVector<StringRef, 0> Names;
556 NameStrings.split(A&: Names, Separator: getInstrProfNameSeparator());
557 for (StringRef &Name : Names)
558 if (Error E = NameCallback(Name))
559 return E;
560
561 while (P < EndP && *P == 0)
562 P++;
563 }
564 return Error::success();
565}
566
567Error InstrProfSymtab::create(StringRef NameStrings) {
568 return readAndDecodeStrings(
569 NameStrings,
570 NameCallback: std::bind(f: &InstrProfSymtab::addFuncName, args: this, args: std::placeholders::_1));
571}
572
573Error InstrProfSymtab::create(StringRef FuncNameStrings,
574 StringRef VTableNameStrings) {
575 if (Error E = readAndDecodeStrings(NameStrings: FuncNameStrings,
576 NameCallback: std::bind(f: &InstrProfSymtab::addFuncName,
577 args: this, args: std::placeholders::_1)))
578 return E;
579
580 return readAndDecodeStrings(
581 NameStrings: VTableNameStrings,
582 NameCallback: std::bind(f: &InstrProfSymtab::addVTableName, args: this, args: std::placeholders::_1));
583}
584
585Error InstrProfSymtab::initVTableNamesFromCompressedStrings(
586 StringRef CompressedVTableStrings) {
587 return readAndDecodeStrings(
588 NameStrings: CompressedVTableStrings,
589 NameCallback: std::bind(f: &InstrProfSymtab::addVTableName, args: this, args: std::placeholders::_1));
590}
591
592StringRef InstrProfSymtab::getCanonicalName(StringRef PGOName) {
593 // In ThinLTO, local function may have been promoted to global and have
594 // suffix ".llvm." added to the function name. We need to add the
595 // stripped function name to the symbol table so that we can find a match
596 // from profile.
597 //
598 // ".__uniq." suffix is used to differentiate internal linkage functions in
599 // different modules and should be kept. This is the only suffix with the
600 // pattern ".xxx" which is kept before matching, other suffixes similar as
601 // ".llvm." will be stripped.
602 const std::string UniqSuffix = ".__uniq.";
603 size_t Pos = PGOName.find(Str: UniqSuffix);
604 if (Pos != StringRef::npos)
605 Pos += UniqSuffix.length();
606 else
607 Pos = 0;
608
609 // Search '.' after ".__uniq." if ".__uniq." exists, otherwise search '.' from
610 // the beginning.
611 Pos = PGOName.find(C: '.', From: Pos);
612 if (Pos != StringRef::npos && Pos != 0)
613 return PGOName.substr(Start: 0, N: Pos);
614
615 return PGOName;
616}
617
618Error InstrProfSymtab::addFuncWithName(Function &F, StringRef PGOFuncName) {
619 auto NameToGUIDMap = [&](StringRef Name) -> Error {
620 if (Error E = addFuncName(FuncName: Name))
621 return E;
622 MD5FuncMap.emplace_back(args: Function::getGUID(GlobalName: Name), args: &F);
623 return Error::success();
624 };
625 if (Error E = NameToGUIDMap(PGOFuncName))
626 return E;
627
628 StringRef CanonicalFuncName = getCanonicalName(PGOName: PGOFuncName);
629 if (CanonicalFuncName != PGOFuncName)
630 return NameToGUIDMap(CanonicalFuncName);
631
632 return Error::success();
633}
634
635uint64_t InstrProfSymtab::getVTableHashFromAddress(uint64_t Address) {
636 // Given a runtime address, look up the hash value in the interval map, and
637 // fallback to value 0 if a hash value is not found.
638 return VTableAddrMap.lookup(x: Address, NotFound: 0);
639}
640
641uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) {
642 finalizeSymtab();
643 auto It = partition_point(Range&: AddrToMD5Map, P: [=](std::pair<uint64_t, uint64_t> A) {
644 return A.first < Address;
645 });
646 // Raw function pointer collected by value profiler may be from
647 // external functions that are not instrumented. They won't have
648 // mapping data to be used by the deserializer. Force the value to
649 // be 0 in this case.
650 if (It != AddrToMD5Map.end() && It->first == Address)
651 return (uint64_t)It->second;
652 return 0;
653}
654
655void InstrProfSymtab::dumpNames(raw_ostream &OS) const {
656 SmallVector<StringRef, 0> Sorted(NameTab.keys());
657 llvm::sort(C&: Sorted);
658 for (StringRef S : Sorted)
659 OS << S << '\n';
660}
661
662Error collectGlobalObjectNameStrings(ArrayRef<std::string> NameStrs,
663 bool DoCompression, std::string &Result) {
664 assert(!NameStrs.empty() && "No name data to emit");
665
666 uint8_t Header[20], *P = Header;
667 std::string UncompressedNameStrings =
668 join(Begin: NameStrs.begin(), End: NameStrs.end(), Separator: getInstrProfNameSeparator());
669
670 assert(StringRef(UncompressedNameStrings)
671 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) &&
672 "PGO name is invalid (contains separator token)");
673
674 unsigned EncLen = encodeULEB128(Value: UncompressedNameStrings.length(), p: P);
675 P += EncLen;
676
677 auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) {
678 EncLen = encodeULEB128(Value: CompressedLen, p: P);
679 P += EncLen;
680 char *HeaderStr = reinterpret_cast<char *>(&Header[0]);
681 unsigned HeaderLen = P - &Header[0];
682 Result.append(s: HeaderStr, n: HeaderLen);
683 Result += InputStr;
684 return Error::success();
685 };
686
687 if (!DoCompression) {
688 return WriteStringToResult(0, UncompressedNameStrings);
689 }
690
691 SmallVector<uint8_t, 128> CompressedNameStrings;
692 compression::zlib::compress(Input: arrayRefFromStringRef(Input: UncompressedNameStrings),
693 CompressedBuffer&: CompressedNameStrings,
694 Level: compression::zlib::BestSizeCompression);
695
696 return WriteStringToResult(CompressedNameStrings.size(),
697 toStringRef(Input: CompressedNameStrings));
698}
699
700StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) {
701 auto *Arr = cast<ConstantDataArray>(Val: NameVar->getInitializer());
702 StringRef NameStr =
703 Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
704 return NameStr;
705}
706
707Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars,
708 std::string &Result, bool DoCompression) {
709 std::vector<std::string> NameStrs;
710 for (auto *NameVar : NameVars) {
711 NameStrs.push_back(x: std::string(getPGOFuncNameVarInitializer(NameVar)));
712 }
713 return collectGlobalObjectNameStrings(
714 NameStrs, DoCompression: compression::zlib::isAvailable() && DoCompression, Result);
715}
716
717Error collectVTableStrings(ArrayRef<GlobalVariable *> VTables,
718 std::string &Result, bool DoCompression) {
719 std::vector<std::string> VTableNameStrs;
720 for (auto *VTable : VTables)
721 VTableNameStrs.push_back(x: getPGOName(V: *VTable));
722 return collectGlobalObjectNameStrings(
723 NameStrs: VTableNameStrs, DoCompression: compression::zlib::isAvailable() && DoCompression,
724 Result);
725}
726
727void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const {
728 uint64_t FuncSum = 0;
729 Sum.NumEntries += Counts.size();
730 for (uint64_t Count : Counts)
731 FuncSum += Count;
732 Sum.CountSum += FuncSum;
733
734 for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) {
735 uint64_t KindSum = 0;
736 uint32_t NumValueSites = getNumValueSites(ValueKind: VK);
737 for (size_t I = 0; I < NumValueSites; ++I) {
738 for (const auto &V : getValueArrayForSite(ValueKind: VK, Site: I))
739 KindSum += V.Count;
740 }
741 Sum.ValueCounts[VK] += KindSum;
742 }
743}
744
745void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input,
746 uint32_t ValueKind,
747 OverlapStats &Overlap,
748 OverlapStats &FuncLevelOverlap) {
749 this->sortByTargetValues();
750 Input.sortByTargetValues();
751 double Score = 0.0f, FuncLevelScore = 0.0f;
752 auto I = ValueData.begin();
753 auto IE = ValueData.end();
754 auto J = Input.ValueData.begin();
755 auto JE = Input.ValueData.end();
756 while (I != IE && J != JE) {
757 if (I->Value == J->Value) {
758 Score += OverlapStats::score(Val1: I->Count, Val2: J->Count,
759 Sum1: Overlap.Base.ValueCounts[ValueKind],
760 Sum2: Overlap.Test.ValueCounts[ValueKind]);
761 FuncLevelScore += OverlapStats::score(
762 Val1: I->Count, Val2: J->Count, Sum1: FuncLevelOverlap.Base.ValueCounts[ValueKind],
763 Sum2: FuncLevelOverlap.Test.ValueCounts[ValueKind]);
764 ++I;
765 } else if (I->Value < J->Value) {
766 ++I;
767 continue;
768 }
769 ++J;
770 }
771 Overlap.Overlap.ValueCounts[ValueKind] += Score;
772 FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore;
773}
774
775// Return false on mismatch.
776void InstrProfRecord::overlapValueProfData(uint32_t ValueKind,
777 InstrProfRecord &Other,
778 OverlapStats &Overlap,
779 OverlapStats &FuncLevelOverlap) {
780 uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
781 assert(ThisNumValueSites == Other.getNumValueSites(ValueKind));
782 if (!ThisNumValueSites)
783 return;
784
785 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
786 getOrCreateValueSitesForKind(ValueKind);
787 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
788 Other.getValueSitesForKind(ValueKind);
789 for (uint32_t I = 0; I < ThisNumValueSites; I++)
790 ThisSiteRecords[I].overlap(Input&: OtherSiteRecords[I], ValueKind, Overlap,
791 FuncLevelOverlap);
792}
793
794void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap,
795 OverlapStats &FuncLevelOverlap,
796 uint64_t ValueCutoff) {
797 // FuncLevel CountSum for other should already computed and nonzero.
798 assert(FuncLevelOverlap.Test.CountSum >= 1.0f);
799 accumulateCounts(Sum&: FuncLevelOverlap.Base);
800 bool Mismatch = (Counts.size() != Other.Counts.size());
801
802 // Check if the value profiles mismatch.
803 if (!Mismatch) {
804 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
805 uint32_t ThisNumValueSites = getNumValueSites(ValueKind: Kind);
806 uint32_t OtherNumValueSites = Other.getNumValueSites(ValueKind: Kind);
807 if (ThisNumValueSites != OtherNumValueSites) {
808 Mismatch = true;
809 break;
810 }
811 }
812 }
813 if (Mismatch) {
814 Overlap.addOneMismatch(MismatchFunc: FuncLevelOverlap.Test);
815 return;
816 }
817
818 // Compute overlap for value counts.
819 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
820 overlapValueProfData(ValueKind: Kind, Other, Overlap, FuncLevelOverlap);
821
822 double Score = 0.0;
823 uint64_t MaxCount = 0;
824 // Compute overlap for edge counts.
825 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
826 Score += OverlapStats::score(Val1: Counts[I], Val2: Other.Counts[I],
827 Sum1: Overlap.Base.CountSum, Sum2: Overlap.Test.CountSum);
828 MaxCount = std::max(a: Other.Counts[I], b: MaxCount);
829 }
830 Overlap.Overlap.CountSum += Score;
831 Overlap.Overlap.NumEntries += 1;
832
833 if (MaxCount >= ValueCutoff) {
834 double FuncScore = 0.0;
835 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I)
836 FuncScore += OverlapStats::score(Val1: Counts[I], Val2: Other.Counts[I],
837 Sum1: FuncLevelOverlap.Base.CountSum,
838 Sum2: FuncLevelOverlap.Test.CountSum);
839 FuncLevelOverlap.Overlap.CountSum = FuncScore;
840 FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size();
841 FuncLevelOverlap.Valid = true;
842 }
843}
844
845void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input,
846 uint64_t Weight,
847 function_ref<void(instrprof_error)> Warn) {
848 this->sortByTargetValues();
849 Input.sortByTargetValues();
850 auto I = ValueData.begin();
851 auto IE = ValueData.end();
852 std::vector<InstrProfValueData> Merged;
853 Merged.reserve(n: std::max(a: ValueData.size(), b: Input.ValueData.size()));
854 for (const InstrProfValueData &J : Input.ValueData) {
855 while (I != IE && I->Value < J.Value) {
856 Merged.push_back(x: *I);
857 ++I;
858 }
859 if (I != IE && I->Value == J.Value) {
860 bool Overflowed;
861 I->Count = SaturatingMultiplyAdd(X: J.Count, Y: Weight, A: I->Count, ResultOverflowed: &Overflowed);
862 if (Overflowed)
863 Warn(instrprof_error::counter_overflow);
864 Merged.push_back(x: *I);
865 ++I;
866 continue;
867 }
868 Merged.push_back(x: J);
869 }
870 Merged.insert(position: Merged.end(), first: I, last: IE);
871 ValueData = std::move(Merged);
872}
873
874void InstrProfValueSiteRecord::scale(uint64_t N, uint64_t D,
875 function_ref<void(instrprof_error)> Warn) {
876 for (InstrProfValueData &I : ValueData) {
877 bool Overflowed;
878 I.Count = SaturatingMultiply(X: I.Count, Y: N, ResultOverflowed: &Overflowed) / D;
879 if (Overflowed)
880 Warn(instrprof_error::counter_overflow);
881 }
882}
883
884// Merge Value Profile data from Src record to this record for ValueKind.
885// Scale merged value counts by \p Weight.
886void InstrProfRecord::mergeValueProfData(
887 uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight,
888 function_ref<void(instrprof_error)> Warn) {
889 uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
890 uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind);
891 if (ThisNumValueSites != OtherNumValueSites) {
892 Warn(instrprof_error::value_site_count_mismatch);
893 return;
894 }
895 if (!ThisNumValueSites)
896 return;
897 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
898 getOrCreateValueSitesForKind(ValueKind);
899 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
900 Src.getValueSitesForKind(ValueKind);
901 for (uint32_t I = 0; I < ThisNumValueSites; I++)
902 ThisSiteRecords[I].merge(Input&: OtherSiteRecords[I], Weight, Warn);
903}
904
905void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight,
906 function_ref<void(instrprof_error)> Warn) {
907 // If the number of counters doesn't match we either have bad data
908 // or a hash collision.
909 if (Counts.size() != Other.Counts.size()) {
910 Warn(instrprof_error::count_mismatch);
911 return;
912 }
913
914 // Special handling of the first count as the PseudoCount.
915 CountPseudoKind OtherKind = Other.getCountPseudoKind();
916 CountPseudoKind ThisKind = getCountPseudoKind();
917 if (OtherKind != NotPseudo || ThisKind != NotPseudo) {
918 // We don't allow the merge of a profile with pseudo counts and
919 // a normal profile (i.e. without pesudo counts).
920 // Profile supplimenation should be done after the profile merge.
921 if (OtherKind == NotPseudo || ThisKind == NotPseudo) {
922 Warn(instrprof_error::count_mismatch);
923 return;
924 }
925 if (OtherKind == PseudoHot || ThisKind == PseudoHot)
926 setPseudoCount(PseudoHot);
927 else
928 setPseudoCount(PseudoWarm);
929 return;
930 }
931
932 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
933 bool Overflowed;
934 uint64_t Value =
935 SaturatingMultiplyAdd(X: Other.Counts[I], Y: Weight, A: Counts[I], ResultOverflowed: &Overflowed);
936 if (Value > getInstrMaxCountValue()) {
937 Value = getInstrMaxCountValue();
938 Overflowed = true;
939 }
940 Counts[I] = Value;
941 if (Overflowed)
942 Warn(instrprof_error::counter_overflow);
943 }
944
945 // If the number of bitmap bytes doesn't match we either have bad data
946 // or a hash collision.
947 if (BitmapBytes.size() != Other.BitmapBytes.size()) {
948 Warn(instrprof_error::bitmap_mismatch);
949 return;
950 }
951
952 // Bitmap bytes are merged by simply ORing them together.
953 for (size_t I = 0, E = Other.BitmapBytes.size(); I < E; ++I) {
954 BitmapBytes[I] = Other.BitmapBytes[I] | BitmapBytes[I];
955 }
956
957 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
958 mergeValueProfData(ValueKind: Kind, Src&: Other, Weight, Warn);
959}
960
961void InstrProfRecord::scaleValueProfData(
962 uint32_t ValueKind, uint64_t N, uint64_t D,
963 function_ref<void(instrprof_error)> Warn) {
964 for (auto &R : getValueSitesForKind(ValueKind))
965 R.scale(N, D, Warn);
966}
967
968void InstrProfRecord::scale(uint64_t N, uint64_t D,
969 function_ref<void(instrprof_error)> Warn) {
970 assert(D != 0 && "D cannot be 0");
971 for (auto &Count : this->Counts) {
972 bool Overflowed;
973 Count = SaturatingMultiply(X: Count, Y: N, ResultOverflowed: &Overflowed) / D;
974 if (Count > getInstrMaxCountValue()) {
975 Count = getInstrMaxCountValue();
976 Overflowed = true;
977 }
978 if (Overflowed)
979 Warn(instrprof_error::counter_overflow);
980 }
981 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
982 scaleValueProfData(ValueKind: Kind, N, D, Warn);
983}
984
985// Map indirect call target name hash to name string.
986uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind,
987 InstrProfSymtab *SymTab) {
988 if (!SymTab)
989 return Value;
990
991 if (ValueKind == IPVK_IndirectCallTarget)
992 return SymTab->getFunctionHashFromAddress(Address: Value);
993
994 if (ValueKind == IPVK_VTableTarget)
995 return SymTab->getVTableHashFromAddress(Address: Value);
996
997 return Value;
998}
999
1000void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site,
1001 ArrayRef<InstrProfValueData> VData,
1002 InstrProfSymtab *ValueMap) {
1003 // Remap values.
1004 std::vector<InstrProfValueData> RemappedVD;
1005 RemappedVD.reserve(n: VData.size());
1006 for (const auto &V : VData) {
1007 uint64_t NewValue = remapValue(Value: V.Value, ValueKind, SymTab: ValueMap);
1008 RemappedVD.push_back(x: {.Value: NewValue, .Count: V.Count});
1009 }
1010
1011 std::vector<InstrProfValueSiteRecord> &ValueSites =
1012 getOrCreateValueSitesForKind(ValueKind);
1013 assert(ValueSites.size() == Site);
1014
1015 // Add a new value site with remapped value profiling data.
1016 ValueSites.emplace_back(args: std::move(RemappedVD));
1017}
1018
1019void TemporalProfTraceTy::createBPFunctionNodes(
1020 ArrayRef<TemporalProfTraceTy> Traces, std::vector<BPFunctionNode> &Nodes,
1021 bool RemoveOutlierUNs) {
1022 using IDT = BPFunctionNode::IDT;
1023 using UtilityNodeT = BPFunctionNode::UtilityNodeT;
1024 UtilityNodeT MaxUN = 0;
1025 DenseMap<IDT, size_t> IdToFirstTimestamp;
1026 DenseMap<IDT, UtilityNodeT> IdToFirstUN;
1027 DenseMap<IDT, SmallVector<UtilityNodeT>> IdToUNs;
1028 // TODO: We need to use the Trace.Weight field to give more weight to more
1029 // important utilities
1030 for (auto &Trace : Traces) {
1031 size_t CutoffTimestamp = 1;
1032 for (size_t Timestamp = 0; Timestamp < Trace.FunctionNameRefs.size();
1033 Timestamp++) {
1034 IDT Id = Trace.FunctionNameRefs[Timestamp];
1035 auto [It, WasInserted] = IdToFirstTimestamp.try_emplace(Key: Id, Args&: Timestamp);
1036 if (!WasInserted)
1037 It->getSecond() = std::min<size_t>(a: It->getSecond(), b: Timestamp);
1038 if (Timestamp >= CutoffTimestamp) {
1039 ++MaxUN;
1040 CutoffTimestamp = 2 * Timestamp;
1041 }
1042 IdToFirstUN.try_emplace(Key: Id, Args&: MaxUN);
1043 }
1044 for (auto &[Id, FirstUN] : IdToFirstUN)
1045 for (auto UN = FirstUN; UN <= MaxUN; ++UN)
1046 IdToUNs[Id].push_back(Elt: UN);
1047 ++MaxUN;
1048 IdToFirstUN.clear();
1049 }
1050
1051 if (RemoveOutlierUNs) {
1052 DenseMap<UtilityNodeT, unsigned> UNFrequency;
1053 for (auto &[Id, UNs] : IdToUNs)
1054 for (auto &UN : UNs)
1055 ++UNFrequency[UN];
1056 // Filter out utility nodes that are too infrequent or too prevalent to make
1057 // BalancedPartitioning more effective.
1058 for (auto &[Id, UNs] : IdToUNs)
1059 llvm::erase_if(C&: UNs, P: [&](auto &UN) {
1060 return UNFrequency[UN] <= 1 || 2 * UNFrequency[UN] > IdToUNs.size();
1061 });
1062 }
1063
1064 for (auto &[Id, UNs] : IdToUNs)
1065 Nodes.emplace_back(args&: Id, args&: UNs);
1066
1067 // Since BalancedPartitioning is sensitive to the initial order, we explicitly
1068 // order nodes by their earliest timestamp.
1069 llvm::sort(C&: Nodes, Comp: [&](auto &L, auto &R) {
1070 return std::make_pair(IdToFirstTimestamp[L.Id], L.Id) <
1071 std::make_pair(IdToFirstTimestamp[R.Id], R.Id);
1072 });
1073}
1074
1075#define INSTR_PROF_COMMON_API_IMPL
1076#include "llvm/ProfileData/InstrProfData.inc"
1077
1078/*!
1079 * ValueProfRecordClosure Interface implementation for InstrProfRecord
1080 * class. These C wrappers are used as adaptors so that C++ code can be
1081 * invoked as callbacks.
1082 */
1083uint32_t getNumValueKindsInstrProf(const void *Record) {
1084 return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds();
1085}
1086
1087uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) {
1088 return reinterpret_cast<const InstrProfRecord *>(Record)
1089 ->getNumValueSites(ValueKind: VKind);
1090}
1091
1092uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) {
1093 return reinterpret_cast<const InstrProfRecord *>(Record)
1094 ->getNumValueData(ValueKind: VKind);
1095}
1096
1097uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK,
1098 uint32_t S) {
1099 const auto *IPR = reinterpret_cast<const InstrProfRecord *>(R);
1100 return IPR->getValueArrayForSite(ValueKind: VK, Site: S).size();
1101}
1102
1103void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst,
1104 uint32_t K, uint32_t S) {
1105 const auto *IPR = reinterpret_cast<const InstrProfRecord *>(R);
1106 llvm::copy(Range: IPR->getValueArrayForSite(ValueKind: K, Site: S), Out: Dst);
1107}
1108
1109ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) {
1110 ValueProfData *VD =
1111 (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData());
1112 memset(s: VD, c: 0, n: TotalSizeInBytes);
1113 return VD;
1114}
1115
1116static ValueProfRecordClosure InstrProfRecordClosure = {
1117 .Record: nullptr,
1118 .GetNumValueKinds: getNumValueKindsInstrProf,
1119 .GetNumValueSites: getNumValueSitesInstrProf,
1120 .GetNumValueData: getNumValueDataInstrProf,
1121 .GetNumValueDataForSite: getNumValueDataForSiteInstrProf,
1122 .RemapValueData: nullptr,
1123 .GetValueForSite: getValueForSiteInstrProf,
1124 .AllocValueProfData: allocValueProfDataInstrProf};
1125
1126// Wrapper implementation using the closure mechanism.
1127uint32_t ValueProfData::getSize(const InstrProfRecord &Record) {
1128 auto Closure = InstrProfRecordClosure;
1129 Closure.Record = &Record;
1130 return getValueProfDataSize(Closure: &Closure);
1131}
1132
1133// Wrapper implementation using the closure mechanism.
1134std::unique_ptr<ValueProfData>
1135ValueProfData::serializeFrom(const InstrProfRecord &Record) {
1136 InstrProfRecordClosure.Record = &Record;
1137
1138 std::unique_ptr<ValueProfData> VPD(
1139 serializeValueProfDataFrom(Closure: &InstrProfRecordClosure, DstData: nullptr));
1140 return VPD;
1141}
1142
1143void ValueProfRecord::deserializeTo(InstrProfRecord &Record,
1144 InstrProfSymtab *SymTab) {
1145 Record.reserveSites(ValueKind: Kind, NumValueSites);
1146
1147 InstrProfValueData *ValueData = getValueProfRecordValueData(This: this);
1148 for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) {
1149 uint8_t ValueDataCount = this->SiteCountArray[VSite];
1150 ArrayRef<InstrProfValueData> VDs(ValueData, ValueDataCount);
1151 Record.addValueData(ValueKind: Kind, Site: VSite, VData: VDs, ValueMap: SymTab);
1152 ValueData += ValueDataCount;
1153 }
1154}
1155
1156// For writing/serializing, Old is the host endianness, and New is
1157// byte order intended on disk. For Reading/deserialization, Old
1158// is the on-disk source endianness, and New is the host endianness.
1159void ValueProfRecord::swapBytes(llvm::endianness Old, llvm::endianness New) {
1160 using namespace support;
1161
1162 if (Old == New)
1163 return;
1164
1165 if (llvm::endianness::native != Old) {
1166 sys::swapByteOrder<uint32_t>(Value&: NumValueSites);
1167 sys::swapByteOrder<uint32_t>(Value&: Kind);
1168 }
1169 uint32_t ND = getValueProfRecordNumValueData(This: this);
1170 InstrProfValueData *VD = getValueProfRecordValueData(This: this);
1171
1172 // No need to swap byte array: SiteCountArrray.
1173 for (uint32_t I = 0; I < ND; I++) {
1174 sys::swapByteOrder<uint64_t>(Value&: VD[I].Value);
1175 sys::swapByteOrder<uint64_t>(Value&: VD[I].Count);
1176 }
1177 if (llvm::endianness::native == Old) {
1178 sys::swapByteOrder<uint32_t>(Value&: NumValueSites);
1179 sys::swapByteOrder<uint32_t>(Value&: Kind);
1180 }
1181}
1182
1183void ValueProfData::deserializeTo(InstrProfRecord &Record,
1184 InstrProfSymtab *SymTab) {
1185 if (NumValueKinds == 0)
1186 return;
1187
1188 ValueProfRecord *VR = getFirstValueProfRecord(This: this);
1189 for (uint32_t K = 0; K < NumValueKinds; K++) {
1190 VR->deserializeTo(Record, SymTab);
1191 VR = getValueProfRecordNext(This: VR);
1192 }
1193}
1194
1195static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) {
1196 return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize))
1197 ValueProfData());
1198}
1199
1200Error ValueProfData::checkIntegrity() {
1201 if (NumValueKinds > IPVK_Last + 1)
1202 return make_error<InstrProfError>(
1203 Args: instrprof_error::malformed, Args: "number of value profile kinds is invalid");
1204 // Total size needs to be multiple of quadword size.
1205 if (TotalSize % sizeof(uint64_t))
1206 return make_error<InstrProfError>(
1207 Args: instrprof_error::malformed, Args: "total size is not multiples of quardword");
1208
1209 ValueProfRecord *VR = getFirstValueProfRecord(This: this);
1210 for (uint32_t K = 0; K < this->NumValueKinds; K++) {
1211 if (VR->Kind > IPVK_Last)
1212 return make_error<InstrProfError>(Args: instrprof_error::malformed,
1213 Args: "value kind is invalid");
1214 VR = getValueProfRecordNext(This: VR);
1215 if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize)
1216 return make_error<InstrProfError>(
1217 Args: instrprof_error::malformed,
1218 Args: "value profile address is greater than total size");
1219 }
1220 return Error::success();
1221}
1222
1223Expected<std::unique_ptr<ValueProfData>>
1224ValueProfData::getValueProfData(const unsigned char *D,
1225 const unsigned char *const BufferEnd,
1226 llvm::endianness Endianness) {
1227 using namespace support;
1228
1229 if (D + sizeof(ValueProfData) > BufferEnd)
1230 return make_error<InstrProfError>(Args: instrprof_error::truncated);
1231
1232 const unsigned char *Header = D;
1233 uint32_t TotalSize = endian::readNext<uint32_t>(memory&: Header, endian: Endianness);
1234
1235 if (D + TotalSize > BufferEnd)
1236 return make_error<InstrProfError>(Args: instrprof_error::too_large);
1237
1238 std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize);
1239 memcpy(dest: VPD.get(), src: D, n: TotalSize);
1240 // Byte swap.
1241 VPD->swapBytesToHost(Endianness);
1242
1243 Error E = VPD->checkIntegrity();
1244 if (E)
1245 return std::move(E);
1246
1247 return std::move(VPD);
1248}
1249
1250void ValueProfData::swapBytesToHost(llvm::endianness Endianness) {
1251 using namespace support;
1252
1253 if (Endianness == llvm::endianness::native)
1254 return;
1255
1256 sys::swapByteOrder<uint32_t>(Value&: TotalSize);
1257 sys::swapByteOrder<uint32_t>(Value&: NumValueKinds);
1258
1259 ValueProfRecord *VR = getFirstValueProfRecord(This: this);
1260 for (uint32_t K = 0; K < NumValueKinds; K++) {
1261 VR->swapBytes(Old: Endianness, New: llvm::endianness::native);
1262 VR = getValueProfRecordNext(This: VR);
1263 }
1264}
1265
1266void ValueProfData::swapBytesFromHost(llvm::endianness Endianness) {
1267 using namespace support;
1268
1269 if (Endianness == llvm::endianness::native)
1270 return;
1271
1272 ValueProfRecord *VR = getFirstValueProfRecord(This: this);
1273 for (uint32_t K = 0; K < NumValueKinds; K++) {
1274 ValueProfRecord *NVR = getValueProfRecordNext(This: VR);
1275 VR->swapBytes(Old: llvm::endianness::native, New: Endianness);
1276 VR = NVR;
1277 }
1278 sys::swapByteOrder<uint32_t>(Value&: TotalSize);
1279 sys::swapByteOrder<uint32_t>(Value&: NumValueKinds);
1280}
1281
1282void annotateValueSite(Module &M, Instruction &Inst,
1283 const InstrProfRecord &InstrProfR,
1284 InstrProfValueKind ValueKind, uint32_t SiteIdx,
1285 uint32_t MaxMDCount) {
1286 auto VDs = InstrProfR.getValueArrayForSite(ValueKind, Site: SiteIdx);
1287 if (VDs.empty())
1288 return;
1289 uint64_t Sum = 0;
1290 for (const InstrProfValueData &V : VDs)
1291 Sum = SaturatingAdd(X: Sum, Y: V.Count);
1292 annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount);
1293}
1294
1295void annotateValueSite(Module &M, Instruction &Inst,
1296 ArrayRef<InstrProfValueData> VDs,
1297 uint64_t Sum, InstrProfValueKind ValueKind,
1298 uint32_t MaxMDCount) {
1299 if (VDs.empty())
1300 return;
1301 LLVMContext &Ctx = M.getContext();
1302 MDBuilder MDHelper(Ctx);
1303 SmallVector<Metadata *, 3> Vals;
1304 // Tag
1305 Vals.push_back(Elt: MDHelper.createString(Str: "VP"));
1306 // Value Kind
1307 Vals.push_back(Elt: MDHelper.createConstant(
1308 C: ConstantInt::get(Ty: Type::getInt32Ty(C&: Ctx), V: ValueKind)));
1309 // Total Count
1310 Vals.push_back(
1311 Elt: MDHelper.createConstant(C: ConstantInt::get(Ty: Type::getInt64Ty(C&: Ctx), V: Sum)));
1312
1313 // Value Profile Data
1314 uint32_t MDCount = MaxMDCount;
1315 for (const auto &VD : VDs) {
1316 Vals.push_back(Elt: MDHelper.createConstant(
1317 C: ConstantInt::get(Ty: Type::getInt64Ty(C&: Ctx), V: VD.Value)));
1318 Vals.push_back(Elt: MDHelper.createConstant(
1319 C: ConstantInt::get(Ty: Type::getInt64Ty(C&: Ctx), V: VD.Count)));
1320 if (--MDCount == 0)
1321 break;
1322 }
1323 Inst.setMetadata(KindID: LLVMContext::MD_prof, Node: MDNode::get(Context&: Ctx, MDs: Vals));
1324}
1325
1326MDNode *mayHaveValueProfileOfKind(const Instruction &Inst,
1327 InstrProfValueKind ValueKind) {
1328 MDNode *MD = Inst.getMetadata(KindID: LLVMContext::MD_prof);
1329 if (!MD)
1330 return nullptr;
1331
1332 if (MD->getNumOperands() < 5)
1333 return nullptr;
1334
1335 MDString *Tag = cast<MDString>(Val: MD->getOperand(I: 0));
1336 if (!Tag || Tag->getString() != "VP")
1337 return nullptr;
1338
1339 // Now check kind:
1340 ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD: MD->getOperand(I: 1));
1341 if (!KindInt)
1342 return nullptr;
1343 if (KindInt->getZExtValue() != ValueKind)
1344 return nullptr;
1345
1346 return MD;
1347}
1348
1349SmallVector<InstrProfValueData, 4>
1350getValueProfDataFromInst(const Instruction &Inst, InstrProfValueKind ValueKind,
1351 uint32_t MaxNumValueData, uint64_t &TotalC,
1352 bool GetNoICPValue) {
1353 // Four inline elements seem to work well in practice. With MaxNumValueData,
1354 // this array won't grow very big anyway.
1355 SmallVector<InstrProfValueData, 4> ValueData;
1356 MDNode *MD = mayHaveValueProfileOfKind(Inst, ValueKind);
1357 if (!MD)
1358 return ValueData;
1359 const unsigned NOps = MD->getNumOperands();
1360 // Get total count
1361 ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD: MD->getOperand(I: 2));
1362 if (!TotalCInt)
1363 return ValueData;
1364 TotalC = TotalCInt->getZExtValue();
1365
1366 ValueData.reserve(N: (NOps - 3) / 2);
1367 for (unsigned I = 3; I < NOps; I += 2) {
1368 if (ValueData.size() >= MaxNumValueData)
1369 break;
1370 ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD: MD->getOperand(I));
1371 ConstantInt *Count =
1372 mdconst::dyn_extract<ConstantInt>(MD: MD->getOperand(I: I + 1));
1373 if (!Value || !Count) {
1374 ValueData.clear();
1375 return ValueData;
1376 }
1377 uint64_t CntValue = Count->getZExtValue();
1378 if (!GetNoICPValue && (CntValue == NOMORE_ICP_MAGICNUM))
1379 continue;
1380 InstrProfValueData V;
1381 V.Value = Value->getZExtValue();
1382 V.Count = CntValue;
1383 ValueData.push_back(Elt: V);
1384 }
1385 return ValueData;
1386}
1387
1388MDNode *getPGOFuncNameMetadata(const Function &F) {
1389 return F.getMetadata(Kind: getPGOFuncNameMetadataName());
1390}
1391
1392static void createPGONameMetadata(GlobalObject &GO, StringRef MetadataName,
1393 StringRef PGOName) {
1394 // Only for internal linkage functions or global variables. The name is not
1395 // the same as PGO name for these global objects.
1396 if (GO.getName() == PGOName)
1397 return;
1398
1399 // Don't create duplicated metadata.
1400 if (GO.getMetadata(Kind: MetadataName))
1401 return;
1402
1403 LLVMContext &C = GO.getContext();
1404 MDNode *N = MDNode::get(Context&: C, MDs: MDString::get(Context&: C, Str: PGOName));
1405 GO.setMetadata(Kind: MetadataName, Node: N);
1406}
1407
1408void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) {
1409 return createPGONameMetadata(GO&: F, MetadataName: getPGOFuncNameMetadataName(), PGOName: PGOFuncName);
1410}
1411
1412void createPGONameMetadata(GlobalObject &GO, StringRef PGOName) {
1413 return createPGONameMetadata(GO, MetadataName: getPGONameMetadataName(), PGOName);
1414}
1415
1416bool needsComdatForCounter(const GlobalObject &GO, const Module &M) {
1417 if (GO.hasComdat())
1418 return true;
1419
1420 if (!Triple(M.getTargetTriple()).supportsCOMDAT())
1421 return false;
1422
1423 // See createPGOFuncNameVar for more details. To avoid link errors, profile
1424 // counters for function with available_externally linkage needs to be changed
1425 // to linkonce linkage. On ELF based systems, this leads to weak symbols to be
1426 // created. Without using comdat, duplicate entries won't be removed by the
1427 // linker leading to increased data segement size and raw profile size. Even
1428 // worse, since the referenced counter from profile per-function data object
1429 // will be resolved to the common strong definition, the profile counts for
1430 // available_externally functions will end up being duplicated in raw profile
1431 // data. This can result in distorted profile as the counts of those dups
1432 // will be accumulated by the profile merger.
1433 GlobalValue::LinkageTypes Linkage = GO.getLinkage();
1434 if (Linkage != GlobalValue::ExternalWeakLinkage &&
1435 Linkage != GlobalValue::AvailableExternallyLinkage)
1436 return false;
1437
1438 return true;
1439}
1440
1441// Check if INSTR_PROF_RAW_VERSION_VAR is defined.
1442bool isIRPGOFlagSet(const Module *M) {
1443 const GlobalVariable *IRInstrVar =
1444 M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
1445 if (!IRInstrVar || IRInstrVar->hasLocalLinkage())
1446 return false;
1447
1448 // For CSPGO+LTO, this variable might be marked as non-prevailing and we only
1449 // have the decl.
1450 if (IRInstrVar->isDeclaration())
1451 return true;
1452
1453 // Check if the flag is set.
1454 if (!IRInstrVar->hasInitializer())
1455 return false;
1456
1457 auto *InitVal = dyn_cast_or_null<ConstantInt>(Val: IRInstrVar->getInitializer());
1458 if (!InitVal)
1459 return false;
1460 return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0;
1461}
1462
1463// Check if we can safely rename this Comdat function.
1464bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) {
1465 if (F.getName().empty())
1466 return false;
1467 if (!needsComdatForCounter(GO: F, M: *(F.getParent())))
1468 return false;
1469 // Unsafe to rename the address-taken function (which can be used in
1470 // function comparison).
1471 if (CheckAddressTaken && F.hasAddressTaken())
1472 return false;
1473 // Only safe to do if this function may be discarded if it is not used
1474 // in the compilation unit.
1475 if (!GlobalValue::isDiscardableIfUnused(Linkage: F.getLinkage()))
1476 return false;
1477
1478 // For AvailableExternallyLinkage functions.
1479 if (!F.hasComdat()) {
1480 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
1481 return true;
1482 }
1483 return true;
1484}
1485
1486// Create the variable for the profile file name.
1487void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) {
1488 if (InstrProfileOutput.empty())
1489 return;
1490 Constant *ProfileNameConst =
1491 ConstantDataArray::getString(Context&: M.getContext(), Initializer: InstrProfileOutput, AddNull: true);
1492 GlobalVariable *ProfileNameVar = new GlobalVariable(
1493 M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage,
1494 ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR));
1495 ProfileNameVar->setVisibility(GlobalValue::HiddenVisibility);
1496 Triple TT(M.getTargetTriple());
1497 if (TT.supportsCOMDAT()) {
1498 ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
1499 ProfileNameVar->setComdat(M.getOrInsertComdat(
1500 Name: StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR))));
1501 }
1502}
1503
1504Error OverlapStats::accumulateCounts(const std::string &BaseFilename,
1505 const std::string &TestFilename,
1506 bool IsCS) {
1507 auto GetProfileSum = [IsCS](const std::string &Filename,
1508 CountSumOrPercent &Sum) -> Error {
1509 // This function is only used from llvm-profdata that doesn't use any kind
1510 // of VFS. Just create a default RealFileSystem to read profiles.
1511 auto FS = vfs::getRealFileSystem();
1512 auto ReaderOrErr = InstrProfReader::create(Path: Filename, FS&: *FS);
1513 if (Error E = ReaderOrErr.takeError()) {
1514 return E;
1515 }
1516 auto Reader = std::move(ReaderOrErr.get());
1517 Reader->accumulateCounts(Sum, IsCS);
1518 return Error::success();
1519 };
1520 auto Ret = GetProfileSum(BaseFilename, Base);
1521 if (Ret)
1522 return Ret;
1523 Ret = GetProfileSum(TestFilename, Test);
1524 if (Ret)
1525 return Ret;
1526 this->BaseFilename = &BaseFilename;
1527 this->TestFilename = &TestFilename;
1528 Valid = true;
1529 return Error::success();
1530}
1531
1532void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) {
1533 Mismatch.NumEntries += 1;
1534 Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum;
1535 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1536 if (Test.ValueCounts[I] >= 1.0f)
1537 Mismatch.ValueCounts[I] +=
1538 MismatchFunc.ValueCounts[I] / Test.ValueCounts[I];
1539 }
1540}
1541
1542void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) {
1543 Unique.NumEntries += 1;
1544 Unique.CountSum += UniqueFunc.CountSum / Test.CountSum;
1545 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1546 if (Test.ValueCounts[I] >= 1.0f)
1547 Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I];
1548 }
1549}
1550
1551void OverlapStats::dump(raw_fd_ostream &OS) const {
1552 if (!Valid)
1553 return;
1554
1555 const char *EntryName =
1556 (Level == ProgramLevel ? "functions" : "edge counters");
1557 if (Level == ProgramLevel) {
1558 OS << "Profile overlap infomation for base_profile: " << *BaseFilename
1559 << " and test_profile: " << *TestFilename << "\nProgram level:\n";
1560 } else {
1561 OS << "Function level:\n"
1562 << " Function: " << FuncName << " (Hash=" << FuncHash << ")\n";
1563 }
1564
1565 OS << " # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n";
1566 if (Mismatch.NumEntries)
1567 OS << " # of " << EntryName << " mismatch: " << Mismatch.NumEntries
1568 << "\n";
1569 if (Unique.NumEntries)
1570 OS << " # of " << EntryName
1571 << " only in test_profile: " << Unique.NumEntries << "\n";
1572
1573 OS << " Edge profile overlap: " << format(Fmt: "%.3f%%", Vals: Overlap.CountSum * 100)
1574 << "\n";
1575 if (Mismatch.NumEntries)
1576 OS << " Mismatched count percentage (Edge): "
1577 << format(Fmt: "%.3f%%", Vals: Mismatch.CountSum * 100) << "\n";
1578 if (Unique.NumEntries)
1579 OS << " Percentage of Edge profile only in test_profile: "
1580 << format(Fmt: "%.3f%%", Vals: Unique.CountSum * 100) << "\n";
1581 OS << " Edge profile base count sum: " << format(Fmt: "%.0f", Vals: Base.CountSum)
1582 << "\n"
1583 << " Edge profile test count sum: " << format(Fmt: "%.0f", Vals: Test.CountSum)
1584 << "\n";
1585
1586 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1587 if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f)
1588 continue;
1589 char ProfileKindName[20] = {0};
1590 switch (I) {
1591 case IPVK_IndirectCallTarget:
1592 strncpy(dest: ProfileKindName, src: "IndirectCall", n: 19);
1593 break;
1594 case IPVK_MemOPSize:
1595 strncpy(dest: ProfileKindName, src: "MemOP", n: 19);
1596 break;
1597 case IPVK_VTableTarget:
1598 strncpy(dest: ProfileKindName, src: "VTable", n: 19);
1599 break;
1600 default:
1601 snprintf(s: ProfileKindName, maxlen: 19, format: "VP[%d]", I);
1602 break;
1603 }
1604 OS << " " << ProfileKindName
1605 << " profile overlap: " << format(Fmt: "%.3f%%", Vals: Overlap.ValueCounts[I] * 100)
1606 << "\n";
1607 if (Mismatch.NumEntries)
1608 OS << " Mismatched count percentage (" << ProfileKindName
1609 << "): " << format(Fmt: "%.3f%%", Vals: Mismatch.ValueCounts[I] * 100) << "\n";
1610 if (Unique.NumEntries)
1611 OS << " Percentage of " << ProfileKindName
1612 << " profile only in test_profile: "
1613 << format(Fmt: "%.3f%%", Vals: Unique.ValueCounts[I] * 100) << "\n";
1614 OS << " " << ProfileKindName
1615 << " profile base count sum: " << format(Fmt: "%.0f", Vals: Base.ValueCounts[I])
1616 << "\n"
1617 << " " << ProfileKindName
1618 << " profile test count sum: " << format(Fmt: "%.0f", Vals: Test.ValueCounts[I])
1619 << "\n";
1620 }
1621}
1622
1623namespace IndexedInstrProf {
1624Expected<Header> Header::readFromBuffer(const unsigned char *Buffer) {
1625 using namespace support;
1626 static_assert(std::is_standard_layout_v<Header>,
1627 "Use standard layout for Header for simplicity");
1628 Header H;
1629
1630 H.Magic = endian::readNext<uint64_t, llvm::endianness::little>(memory&: Buffer);
1631 // Check the magic number.
1632 if (H.Magic != IndexedInstrProf::Magic)
1633 return make_error<InstrProfError>(Args: instrprof_error::bad_magic);
1634
1635 // Read the version.
1636 H.Version = endian::readNext<uint64_t, llvm::endianness::little>(memory&: Buffer);
1637 if (H.getIndexedProfileVersion() >
1638 IndexedInstrProf::ProfVersion::CurrentVersion)
1639 return make_error<InstrProfError>(Args: instrprof_error::unsupported_version);
1640
1641 static_assert(IndexedInstrProf::ProfVersion::CurrentVersion == Version12,
1642 "Please update the reader as needed when a new field is added "
1643 "or when indexed profile version gets bumped.");
1644
1645 Buffer += sizeof(uint64_t); // Skip Header.Unused field.
1646 H.HashType = endian::readNext<uint64_t, llvm::endianness::little>(memory&: Buffer);
1647 H.HashOffset = endian::readNext<uint64_t, llvm::endianness::little>(memory&: Buffer);
1648 if (H.getIndexedProfileVersion() >= 8)
1649 H.MemProfOffset =
1650 endian::readNext<uint64_t, llvm::endianness::little>(memory&: Buffer);
1651 if (H.getIndexedProfileVersion() >= 9)
1652 H.BinaryIdOffset =
1653 endian::readNext<uint64_t, llvm::endianness::little>(memory&: Buffer);
1654 // Version 11 is handled by this condition.
1655 if (H.getIndexedProfileVersion() >= 10)
1656 H.TemporalProfTracesOffset =
1657 endian::readNext<uint64_t, llvm::endianness::little>(memory&: Buffer);
1658 if (H.getIndexedProfileVersion() >= 12)
1659 H.VTableNamesOffset =
1660 endian::readNext<uint64_t, llvm::endianness::little>(memory&: Buffer);
1661 return H;
1662}
1663
1664uint64_t Header::getIndexedProfileVersion() const {
1665 return GET_VERSION(Version);
1666}
1667
1668size_t Header::size() const {
1669 switch (getIndexedProfileVersion()) {
1670 // To retain backward compatibility, new fields must be appended to the end
1671 // of the header, and byte offset of existing fields shouldn't change when
1672 // indexed profile version gets incremented.
1673 static_assert(
1674 IndexedInstrProf::ProfVersion::CurrentVersion == Version12,
1675 "Please update the size computation below if a new field has "
1676 "been added to the header; for a version bump without new "
1677 "fields, add a case statement to fall through to the latest version.");
1678 case 12ull:
1679 return 72;
1680 case 11ull:
1681 [[fallthrough]];
1682 case 10ull:
1683 return 64;
1684 case 9ull:
1685 return 56;
1686 case 8ull:
1687 return 48;
1688 default: // Version7 (when the backwards compatible header was introduced).
1689 return 40;
1690 }
1691}
1692
1693} // namespace IndexedInstrProf
1694
1695} // end namespace llvm
1696