1 | /*===-- blake3.c - BLAKE3 C Implementation ------------------------*- C -*-===*\ |
2 | |* *| |
3 | |* Released into the public domain with CC0 1.0 *| |
4 | |* See 'llvm/lib/Support/BLAKE3/LICENSE' for info. *| |
5 | |* SPDX-License-Identifier: CC0-1.0 *| |
6 | |* *| |
7 | \*===----------------------------------------------------------------------===*/ |
8 | |
9 | #include <assert.h> |
10 | #include <stdbool.h> |
11 | #include <string.h> |
12 | |
13 | #include "blake3_impl.h" |
14 | |
15 | const char *llvm_blake3_version(void) { return BLAKE3_VERSION_STRING; } |
16 | |
17 | INLINE void chunk_state_init(blake3_chunk_state *self, const uint32_t key[8], |
18 | uint8_t flags) { |
19 | memcpy(dest: self->cv, src: key, BLAKE3_KEY_LEN); |
20 | self->chunk_counter = 0; |
21 | memset(s: self->buf, c: 0, BLAKE3_BLOCK_LEN); |
22 | self->buf_len = 0; |
23 | self->blocks_compressed = 0; |
24 | self->flags = flags; |
25 | } |
26 | |
27 | INLINE void chunk_state_reset(blake3_chunk_state *self, const uint32_t key[8], |
28 | uint64_t chunk_counter) { |
29 | memcpy(dest: self->cv, src: key, BLAKE3_KEY_LEN); |
30 | self->chunk_counter = chunk_counter; |
31 | self->blocks_compressed = 0; |
32 | memset(s: self->buf, c: 0, BLAKE3_BLOCK_LEN); |
33 | self->buf_len = 0; |
34 | } |
35 | |
36 | INLINE size_t chunk_state_len(const blake3_chunk_state *self) { |
37 | return (BLAKE3_BLOCK_LEN * (size_t)self->blocks_compressed) + |
38 | ((size_t)self->buf_len); |
39 | } |
40 | |
41 | INLINE size_t chunk_state_fill_buf(blake3_chunk_state *self, |
42 | const uint8_t *input, size_t input_len) { |
43 | size_t take = BLAKE3_BLOCK_LEN - ((size_t)self->buf_len); |
44 | if (take > input_len) { |
45 | take = input_len; |
46 | } |
47 | uint8_t *dest = self->buf + ((size_t)self->buf_len); |
48 | memcpy(dest: dest, src: input, n: take); |
49 | self->buf_len += (uint8_t)take; |
50 | return take; |
51 | } |
52 | |
53 | INLINE uint8_t chunk_state_maybe_start_flag(const blake3_chunk_state *self) { |
54 | if (self->blocks_compressed == 0) { |
55 | return CHUNK_START; |
56 | } else { |
57 | return 0; |
58 | } |
59 | } |
60 | |
61 | typedef struct { |
62 | uint32_t input_cv[8]; |
63 | uint64_t counter; |
64 | uint8_t block[BLAKE3_BLOCK_LEN]; |
65 | uint8_t block_len; |
66 | uint8_t flags; |
67 | } output_t; |
68 | |
69 | INLINE output_t make_output(const uint32_t input_cv[8], |
70 | const uint8_t block[BLAKE3_BLOCK_LEN], |
71 | uint8_t block_len, uint64_t counter, |
72 | uint8_t flags) { |
73 | output_t ret; |
74 | memcpy(dest: ret.input_cv, src: input_cv, n: 32); |
75 | memcpy(dest: ret.block, src: block, BLAKE3_BLOCK_LEN); |
76 | ret.block_len = block_len; |
77 | ret.counter = counter; |
78 | ret.flags = flags; |
79 | return ret; |
80 | } |
81 | |
82 | // Chaining values within a given chunk (specifically the compress_in_place |
83 | // interface) are represented as words. This avoids unnecessary bytes<->words |
84 | // conversion overhead in the portable implementation. However, the hash_many |
85 | // interface handles both user input and parent node blocks, so it accepts |
86 | // bytes. For that reason, chaining values in the CV stack are represented as |
87 | // bytes. |
88 | INLINE void output_chaining_value(const output_t *self, uint8_t cv[32]) { |
89 | uint32_t cv_words[8]; |
90 | memcpy(dest: cv_words, src: self->input_cv, n: 32); |
91 | blake3_compress_in_place(cv: cv_words, block: self->block, block_len: self->block_len, |
92 | counter: self->counter, flags: self->flags); |
93 | store_cv_words(bytes_out: cv, cv_words); |
94 | } |
95 | |
96 | INLINE void output_root_bytes(const output_t *self, uint64_t seek, uint8_t *out, |
97 | size_t out_len) { |
98 | uint64_t output_block_counter = seek / 64; |
99 | size_t offset_within_block = seek % 64; |
100 | uint8_t wide_buf[64]; |
101 | while (out_len > 0) { |
102 | blake3_compress_xof(cv: self->input_cv, block: self->block, block_len: self->block_len, |
103 | counter: output_block_counter, flags: self->flags | ROOT, out: wide_buf); |
104 | size_t available_bytes = 64 - offset_within_block; |
105 | size_t memcpy_len; |
106 | if (out_len > available_bytes) { |
107 | memcpy_len = available_bytes; |
108 | } else { |
109 | memcpy_len = out_len; |
110 | } |
111 | memcpy(dest: out, src: wide_buf + offset_within_block, n: memcpy_len); |
112 | out += memcpy_len; |
113 | out_len -= memcpy_len; |
114 | output_block_counter += 1; |
115 | offset_within_block = 0; |
116 | } |
117 | } |
118 | |
119 | INLINE void chunk_state_update(blake3_chunk_state *self, const uint8_t *input, |
120 | size_t input_len) { |
121 | if (self->buf_len > 0) { |
122 | size_t take = chunk_state_fill_buf(self, input, input_len); |
123 | input += take; |
124 | input_len -= take; |
125 | if (input_len > 0) { |
126 | blake3_compress_in_place( |
127 | cv: self->cv, block: self->buf, BLAKE3_BLOCK_LEN, counter: self->chunk_counter, |
128 | flags: self->flags | chunk_state_maybe_start_flag(self)); |
129 | self->blocks_compressed += 1; |
130 | self->buf_len = 0; |
131 | memset(s: self->buf, c: 0, BLAKE3_BLOCK_LEN); |
132 | } |
133 | } |
134 | |
135 | while (input_len > BLAKE3_BLOCK_LEN) { |
136 | blake3_compress_in_place(cv: self->cv, block: input, BLAKE3_BLOCK_LEN, |
137 | counter: self->chunk_counter, |
138 | flags: self->flags | chunk_state_maybe_start_flag(self)); |
139 | self->blocks_compressed += 1; |
140 | input += BLAKE3_BLOCK_LEN; |
141 | input_len -= BLAKE3_BLOCK_LEN; |
142 | } |
143 | |
144 | chunk_state_fill_buf(self, input, input_len); |
145 | } |
146 | |
147 | INLINE output_t chunk_state_output(const blake3_chunk_state *self) { |
148 | uint8_t block_flags = |
149 | self->flags | chunk_state_maybe_start_flag(self) | CHUNK_END; |
150 | return make_output(input_cv: self->cv, block: self->buf, block_len: self->buf_len, counter: self->chunk_counter, |
151 | flags: block_flags); |
152 | } |
153 | |
154 | INLINE output_t parent_output(const uint8_t block[BLAKE3_BLOCK_LEN], |
155 | const uint32_t key[8], uint8_t flags) { |
156 | return make_output(input_cv: key, block, BLAKE3_BLOCK_LEN, counter: 0, flags: flags | PARENT); |
157 | } |
158 | |
159 | // Given some input larger than one chunk, return the number of bytes that |
160 | // should go in the left subtree. This is the largest power-of-2 number of |
161 | // chunks that leaves at least 1 byte for the right subtree. |
162 | INLINE size_t left_len(size_t content_len) { |
163 | // Subtract 1 to reserve at least one byte for the right side. content_len |
164 | // should always be greater than BLAKE3_CHUNK_LEN. |
165 | size_t full_chunks = (content_len - 1) / BLAKE3_CHUNK_LEN; |
166 | return round_down_to_power_of_2(x: full_chunks) * BLAKE3_CHUNK_LEN; |
167 | } |
168 | |
169 | // Use SIMD parallelism to hash up to MAX_SIMD_DEGREE chunks at the same time |
170 | // on a single thread. Write out the chunk chaining values and return the |
171 | // number of chunks hashed. These chunks are never the root and never empty; |
172 | // those cases use a different codepath. |
173 | INLINE size_t compress_chunks_parallel(const uint8_t *input, size_t input_len, |
174 | const uint32_t key[8], |
175 | uint64_t chunk_counter, uint8_t flags, |
176 | uint8_t *out) { |
177 | #if defined(BLAKE3_TESTING) |
178 | assert(0 < input_len); |
179 | assert(input_len <= MAX_SIMD_DEGREE * BLAKE3_CHUNK_LEN); |
180 | #endif |
181 | |
182 | const uint8_t *chunks_array[MAX_SIMD_DEGREE]; |
183 | size_t input_position = 0; |
184 | size_t chunks_array_len = 0; |
185 | while (input_len - input_position >= BLAKE3_CHUNK_LEN) { |
186 | chunks_array[chunks_array_len] = &input[input_position]; |
187 | input_position += BLAKE3_CHUNK_LEN; |
188 | chunks_array_len += 1; |
189 | } |
190 | |
191 | blake3_hash_many(inputs: chunks_array, num_inputs: chunks_array_len, |
192 | BLAKE3_CHUNK_LEN / BLAKE3_BLOCK_LEN, key, counter: chunk_counter, |
193 | true, flags, flags_start: CHUNK_START, flags_end: CHUNK_END, out); |
194 | |
195 | // Hash the remaining partial chunk, if there is one. Note that the empty |
196 | // chunk (meaning the empty message) is a different codepath. |
197 | if (input_len > input_position) { |
198 | uint64_t counter = chunk_counter + (uint64_t)chunks_array_len; |
199 | blake3_chunk_state chunk_state; |
200 | chunk_state_init(self: &chunk_state, key, flags); |
201 | chunk_state.chunk_counter = counter; |
202 | chunk_state_update(self: &chunk_state, input: &input[input_position], |
203 | input_len: input_len - input_position); |
204 | output_t output = chunk_state_output(self: &chunk_state); |
205 | output_chaining_value(self: &output, cv: &out[chunks_array_len * BLAKE3_OUT_LEN]); |
206 | return chunks_array_len + 1; |
207 | } else { |
208 | return chunks_array_len; |
209 | } |
210 | } |
211 | |
212 | // Use SIMD parallelism to hash up to MAX_SIMD_DEGREE parents at the same time |
213 | // on a single thread. Write out the parent chaining values and return the |
214 | // number of parents hashed. (If there's an odd input chaining value left over, |
215 | // return it as an additional output.) These parents are never the root and |
216 | // never empty; those cases use a different codepath. |
217 | INLINE size_t compress_parents_parallel(const uint8_t *child_chaining_values, |
218 | size_t num_chaining_values, |
219 | const uint32_t key[8], uint8_t flags, |
220 | uint8_t *out) { |
221 | #if defined(BLAKE3_TESTING) |
222 | assert(2 <= num_chaining_values); |
223 | assert(num_chaining_values <= 2 * MAX_SIMD_DEGREE_OR_2); |
224 | #endif |
225 | |
226 | const uint8_t *parents_array[MAX_SIMD_DEGREE_OR_2]; |
227 | size_t parents_array_len = 0; |
228 | while (num_chaining_values - (2 * parents_array_len) >= 2) { |
229 | parents_array[parents_array_len] = |
230 | &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN]; |
231 | parents_array_len += 1; |
232 | } |
233 | |
234 | blake3_hash_many(inputs: parents_array, num_inputs: parents_array_len, blocks: 1, key, |
235 | counter: 0, // Parents always use counter 0. |
236 | false, flags: flags | PARENT, |
237 | flags_start: 0, // Parents have no start flags. |
238 | flags_end: 0, // Parents have no end flags. |
239 | out); |
240 | |
241 | // If there's an odd child left over, it becomes an output. |
242 | if (num_chaining_values > 2 * parents_array_len) { |
243 | memcpy(dest: &out[parents_array_len * BLAKE3_OUT_LEN], |
244 | src: &child_chaining_values[2 * parents_array_len * BLAKE3_OUT_LEN], |
245 | BLAKE3_OUT_LEN); |
246 | return parents_array_len + 1; |
247 | } else { |
248 | return parents_array_len; |
249 | } |
250 | } |
251 | |
252 | // The wide helper function returns (writes out) an array of chaining values |
253 | // and returns the length of that array. The number of chaining values returned |
254 | // is the dyanmically detected SIMD degree, at most MAX_SIMD_DEGREE. Or fewer, |
255 | // if the input is shorter than that many chunks. The reason for maintaining a |
256 | // wide array of chaining values going back up the tree, is to allow the |
257 | // implementation to hash as many parents in parallel as possible. |
258 | // |
259 | // As a special case when the SIMD degree is 1, this function will still return |
260 | // at least 2 outputs. This guarantees that this function doesn't perform the |
261 | // root compression. (If it did, it would use the wrong flags, and also we |
262 | // wouldn't be able to implement exendable ouput.) Note that this function is |
263 | // not used when the whole input is only 1 chunk long; that's a different |
264 | // codepath. |
265 | // |
266 | // Why not just have the caller split the input on the first update(), instead |
267 | // of implementing this special rule? Because we don't want to limit SIMD or |
268 | // multi-threading parallelism for that update(). |
269 | static size_t blake3_compress_subtree_wide(const uint8_t *input, |
270 | size_t input_len, |
271 | const uint32_t key[8], |
272 | uint64_t chunk_counter, |
273 | uint8_t flags, uint8_t *out) { |
274 | // Note that the single chunk case does *not* bump the SIMD degree up to 2 |
275 | // when it is 1. If this implementation adds multi-threading in the future, |
276 | // this gives us the option of multi-threading even the 2-chunk case, which |
277 | // can help performance on smaller platforms. |
278 | if (input_len <= blake3_simd_degree() * BLAKE3_CHUNK_LEN) { |
279 | return compress_chunks_parallel(input, input_len, key, chunk_counter, flags, |
280 | out); |
281 | } |
282 | |
283 | // With more than simd_degree chunks, we need to recurse. Start by dividing |
284 | // the input into left and right subtrees. (Note that this is only optimal |
285 | // as long as the SIMD degree is a power of 2. If we ever get a SIMD degree |
286 | // of 3 or something, we'll need a more complicated strategy.) |
287 | size_t left_input_len = left_len(content_len: input_len); |
288 | size_t right_input_len = input_len - left_input_len; |
289 | const uint8_t *right_input = &input[left_input_len]; |
290 | uint64_t right_chunk_counter = |
291 | chunk_counter + (uint64_t)(left_input_len / BLAKE3_CHUNK_LEN); |
292 | |
293 | // Make space for the child outputs. Here we use MAX_SIMD_DEGREE_OR_2 to |
294 | // account for the special case of returning 2 outputs when the SIMD degree |
295 | // is 1. |
296 | uint8_t cv_array[2 * MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN]; |
297 | size_t degree = blake3_simd_degree(); |
298 | if (left_input_len > BLAKE3_CHUNK_LEN && degree == 1) { |
299 | // The special case: We always use a degree of at least two, to make |
300 | // sure there are two outputs. Except, as noted above, at the chunk |
301 | // level, where we allow degree=1. (Note that the 1-chunk-input case is |
302 | // a different codepath.) |
303 | degree = 2; |
304 | } |
305 | uint8_t *right_cvs = &cv_array[degree * BLAKE3_OUT_LEN]; |
306 | |
307 | // Recurse! If this implementation adds multi-threading support in the |
308 | // future, this is where it will go. |
309 | size_t left_n = blake3_compress_subtree_wide(input, input_len: left_input_len, key, |
310 | chunk_counter, flags, out: cv_array); |
311 | size_t right_n = blake3_compress_subtree_wide( |
312 | input: right_input, input_len: right_input_len, key, chunk_counter: right_chunk_counter, flags, out: right_cvs); |
313 | |
314 | // The special case again. If simd_degree=1, then we'll have left_n=1 and |
315 | // right_n=1. Rather than compressing them into a single output, return |
316 | // them directly, to make sure we always have at least two outputs. |
317 | if (left_n == 1) { |
318 | memcpy(dest: out, src: cv_array, n: 2 * BLAKE3_OUT_LEN); |
319 | return 2; |
320 | } |
321 | |
322 | // Otherwise, do one layer of parent node compression. |
323 | size_t num_chaining_values = left_n + right_n; |
324 | return compress_parents_parallel(child_chaining_values: cv_array, num_chaining_values, key, flags, |
325 | out); |
326 | } |
327 | |
328 | // Hash a subtree with compress_subtree_wide(), and then condense the resulting |
329 | // list of chaining values down to a single parent node. Don't compress that |
330 | // last parent node, however. Instead, return its message bytes (the |
331 | // concatenated chaining values of its children). This is necessary when the |
332 | // first call to update() supplies a complete subtree, because the topmost |
333 | // parent node of that subtree could end up being the root. It's also necessary |
334 | // for extended output in the general case. |
335 | // |
336 | // As with compress_subtree_wide(), this function is not used on inputs of 1 |
337 | // chunk or less. That's a different codepath. |
338 | INLINE void compress_subtree_to_parent_node( |
339 | const uint8_t *input, size_t input_len, const uint32_t key[8], |
340 | uint64_t chunk_counter, uint8_t flags, uint8_t out[2 * BLAKE3_OUT_LEN]) { |
341 | #if defined(BLAKE3_TESTING) |
342 | assert(input_len > BLAKE3_CHUNK_LEN); |
343 | #endif |
344 | |
345 | uint8_t cv_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN]; |
346 | size_t num_cvs = blake3_compress_subtree_wide(input, input_len, key, |
347 | chunk_counter, flags, out: cv_array); |
348 | assert(num_cvs <= MAX_SIMD_DEGREE_OR_2); |
349 | |
350 | // If MAX_SIMD_DEGREE is greater than 2 and there's enough input, |
351 | // compress_subtree_wide() returns more than 2 chaining values. Condense |
352 | // them into 2 by forming parent nodes repeatedly. |
353 | uint8_t out_array[MAX_SIMD_DEGREE_OR_2 * BLAKE3_OUT_LEN / 2]; |
354 | // The second half of this loop condition is always true, and we just |
355 | // asserted it above. But GCC can't tell that it's always true, and if NDEBUG |
356 | // is set on platforms where MAX_SIMD_DEGREE_OR_2 == 2, GCC emits spurious |
357 | // warnings here. GCC 8.5 is particularly sensitive, so if you're changing |
358 | // this code, test it against that version. |
359 | while (num_cvs > 2 && num_cvs <= MAX_SIMD_DEGREE_OR_2) { |
360 | num_cvs = |
361 | compress_parents_parallel(child_chaining_values: cv_array, num_chaining_values: num_cvs, key, flags, out: out_array); |
362 | memcpy(dest: cv_array, src: out_array, n: num_cvs * BLAKE3_OUT_LEN); |
363 | } |
364 | memcpy(dest: out, src: cv_array, n: 2 * BLAKE3_OUT_LEN); |
365 | } |
366 | |
367 | INLINE void hasher_init_base(blake3_hasher *self, const uint32_t key[8], |
368 | uint8_t flags) { |
369 | memcpy(dest: self->key, src: key, BLAKE3_KEY_LEN); |
370 | chunk_state_init(self: &self->chunk, key, flags); |
371 | self->cv_stack_len = 0; |
372 | } |
373 | |
374 | void llvm_blake3_hasher_init(blake3_hasher *self) { hasher_init_base(self, key: IV, flags: 0); } |
375 | |
376 | void llvm_blake3_hasher_init_keyed(blake3_hasher *self, |
377 | const uint8_t key[BLAKE3_KEY_LEN]) { |
378 | uint32_t key_words[8]; |
379 | load_key_words(key, key_words); |
380 | hasher_init_base(self, key: key_words, flags: KEYED_HASH); |
381 | } |
382 | |
383 | void llvm_blake3_hasher_init_derive_key_raw(blake3_hasher *self, const void *context, |
384 | size_t context_len) { |
385 | blake3_hasher context_hasher; |
386 | hasher_init_base(self: &context_hasher, key: IV, flags: DERIVE_KEY_CONTEXT); |
387 | llvm_blake3_hasher_update(self: &context_hasher, input: context, input_len: context_len); |
388 | uint8_t context_key[BLAKE3_KEY_LEN]; |
389 | llvm_blake3_hasher_finalize(self: &context_hasher, out: context_key, BLAKE3_KEY_LEN); |
390 | uint32_t context_key_words[8]; |
391 | load_key_words(key: context_key, key_words: context_key_words); |
392 | hasher_init_base(self, key: context_key_words, flags: DERIVE_KEY_MATERIAL); |
393 | } |
394 | |
395 | void llvm_blake3_hasher_init_derive_key(blake3_hasher *self, const char *context) { |
396 | llvm_blake3_hasher_init_derive_key_raw(self, context, context_len: strlen(s: context)); |
397 | } |
398 | |
399 | // As described in hasher_push_cv() below, we do "lazy merging", delaying |
400 | // merges until right before the next CV is about to be added. This is |
401 | // different from the reference implementation. Another difference is that we |
402 | // aren't always merging 1 chunk at a time. Instead, each CV might represent |
403 | // any power-of-two number of chunks, as long as the smaller-above-larger stack |
404 | // order is maintained. Instead of the "count the trailing 0-bits" algorithm |
405 | // described in the spec, we use a "count the total number of 1-bits" variant |
406 | // that doesn't require us to retain the subtree size of the CV on top of the |
407 | // stack. The principle is the same: each CV that should remain in the stack is |
408 | // represented by a 1-bit in the total number of chunks (or bytes) so far. |
409 | INLINE void hasher_merge_cv_stack(blake3_hasher *self, uint64_t total_len) { |
410 | size_t post_merge_stack_len = (size_t)popcnt(x: total_len); |
411 | while (self->cv_stack_len > post_merge_stack_len) { |
412 | uint8_t *parent_node = |
413 | &self->cv_stack[(self->cv_stack_len - 2) * BLAKE3_OUT_LEN]; |
414 | output_t output = parent_output(block: parent_node, key: self->key, flags: self->chunk.flags); |
415 | output_chaining_value(self: &output, cv: parent_node); |
416 | self->cv_stack_len -= 1; |
417 | } |
418 | } |
419 | |
420 | // In reference_impl.rs, we merge the new CV with existing CVs from the stack |
421 | // before pushing it. We can do that because we know more input is coming, so |
422 | // we know none of the merges are root. |
423 | // |
424 | // This setting is different. We want to feed as much input as possible to |
425 | // compress_subtree_wide(), without setting aside anything for the chunk_state. |
426 | // If the user gives us 64 KiB, we want to parallelize over all 64 KiB at once |
427 | // as a single subtree, if at all possible. |
428 | // |
429 | // This leads to two problems: |
430 | // 1) This 64 KiB input might be the only call that ever gets made to update. |
431 | // In this case, the root node of the 64 KiB subtree would be the root node |
432 | // of the whole tree, and it would need to be ROOT finalized. We can't |
433 | // compress it until we know. |
434 | // 2) This 64 KiB input might complete a larger tree, whose root node is |
435 | // similarly going to be the the root of the whole tree. For example, maybe |
436 | // we have 196 KiB (that is, 128 + 64) hashed so far. We can't compress the |
437 | // node at the root of the 256 KiB subtree until we know how to finalize it. |
438 | // |
439 | // The second problem is solved with "lazy merging". That is, when we're about |
440 | // to add a CV to the stack, we don't merge it with anything first, as the |
441 | // reference impl does. Instead we do merges using the *previous* CV that was |
442 | // added, which is sitting on top of the stack, and we put the new CV |
443 | // (unmerged) on top of the stack afterwards. This guarantees that we never |
444 | // merge the root node until finalize(). |
445 | // |
446 | // Solving the first problem requires an additional tool, |
447 | // compress_subtree_to_parent_node(). That function always returns the top |
448 | // *two* chaining values of the subtree it's compressing. We then do lazy |
449 | // merging with each of them separately, so that the second CV will always |
450 | // remain unmerged. (That also helps us support extendable output when we're |
451 | // hashing an input all-at-once.) |
452 | INLINE void hasher_push_cv(blake3_hasher *self, uint8_t new_cv[BLAKE3_OUT_LEN], |
453 | uint64_t chunk_counter) { |
454 | hasher_merge_cv_stack(self, total_len: chunk_counter); |
455 | memcpy(dest: &self->cv_stack[self->cv_stack_len * BLAKE3_OUT_LEN], src: new_cv, |
456 | BLAKE3_OUT_LEN); |
457 | self->cv_stack_len += 1; |
458 | } |
459 | |
460 | void llvm_blake3_hasher_update(blake3_hasher *self, const void *input, |
461 | size_t input_len) { |
462 | // Explicitly checking for zero avoids causing UB by passing a null pointer |
463 | // to memcpy. This comes up in practice with things like: |
464 | // std::vector<uint8_t> v; |
465 | // blake3_hasher_update(&hasher, v.data(), v.size()); |
466 | if (input_len == 0) { |
467 | return; |
468 | } |
469 | |
470 | const uint8_t *input_bytes = (const uint8_t *)input; |
471 | |
472 | // If we have some partial chunk bytes in the internal chunk_state, we need |
473 | // to finish that chunk first. |
474 | if (chunk_state_len(self: &self->chunk) > 0) { |
475 | size_t take = BLAKE3_CHUNK_LEN - chunk_state_len(self: &self->chunk); |
476 | if (take > input_len) { |
477 | take = input_len; |
478 | } |
479 | chunk_state_update(self: &self->chunk, input: input_bytes, input_len: take); |
480 | input_bytes += take; |
481 | input_len -= take; |
482 | // If we've filled the current chunk and there's more coming, finalize this |
483 | // chunk and proceed. In this case we know it's not the root. |
484 | if (input_len > 0) { |
485 | output_t output = chunk_state_output(self: &self->chunk); |
486 | uint8_t chunk_cv[32]; |
487 | output_chaining_value(self: &output, cv: chunk_cv); |
488 | hasher_push_cv(self, new_cv: chunk_cv, chunk_counter: self->chunk.chunk_counter); |
489 | chunk_state_reset(self: &self->chunk, key: self->key, chunk_counter: self->chunk.chunk_counter + 1); |
490 | } else { |
491 | return; |
492 | } |
493 | } |
494 | |
495 | // Now the chunk_state is clear, and we have more input. If there's more than |
496 | // a single chunk (so, definitely not the root chunk), hash the largest whole |
497 | // subtree we can, with the full benefits of SIMD (and maybe in the future, |
498 | // multi-threading) parallelism. Two restrictions: |
499 | // - The subtree has to be a power-of-2 number of chunks. Only subtrees along |
500 | // the right edge can be incomplete, and we don't know where the right edge |
501 | // is going to be until we get to finalize(). |
502 | // - The subtree must evenly divide the total number of chunks up until this |
503 | // point (if total is not 0). If the current incomplete subtree is only |
504 | // waiting for 1 more chunk, we can't hash a subtree of 4 chunks. We have |
505 | // to complete the current subtree first. |
506 | // Because we might need to break up the input to form powers of 2, or to |
507 | // evenly divide what we already have, this part runs in a loop. |
508 | while (input_len > BLAKE3_CHUNK_LEN) { |
509 | size_t subtree_len = round_down_to_power_of_2(x: input_len); |
510 | uint64_t count_so_far = self->chunk.chunk_counter * BLAKE3_CHUNK_LEN; |
511 | // Shrink the subtree_len until it evenly divides the count so far. We know |
512 | // that subtree_len itself is a power of 2, so we can use a bitmasking |
513 | // trick instead of an actual remainder operation. (Note that if the caller |
514 | // consistently passes power-of-2 inputs of the same size, as is hopefully |
515 | // typical, this loop condition will always fail, and subtree_len will |
516 | // always be the full length of the input.) |
517 | // |
518 | // An aside: We don't have to shrink subtree_len quite this much. For |
519 | // example, if count_so_far is 1, we could pass 2 chunks to |
520 | // compress_subtree_to_parent_node. Since we'll get 2 CVs back, we'll still |
521 | // get the right answer in the end, and we might get to use 2-way SIMD |
522 | // parallelism. The problem with this optimization, is that it gets us |
523 | // stuck always hashing 2 chunks. The total number of chunks will remain |
524 | // odd, and we'll never graduate to higher degrees of parallelism. See |
525 | // https://github.com/BLAKE3-team/BLAKE3/issues/69. |
526 | while ((((uint64_t)(subtree_len - 1)) & count_so_far) != 0) { |
527 | subtree_len /= 2; |
528 | } |
529 | // The shrunken subtree_len might now be 1 chunk long. If so, hash that one |
530 | // chunk by itself. Otherwise, compress the subtree into a pair of CVs. |
531 | uint64_t subtree_chunks = subtree_len / BLAKE3_CHUNK_LEN; |
532 | if (subtree_len <= BLAKE3_CHUNK_LEN) { |
533 | blake3_chunk_state chunk_state; |
534 | chunk_state_init(self: &chunk_state, key: self->key, flags: self->chunk.flags); |
535 | chunk_state.chunk_counter = self->chunk.chunk_counter; |
536 | chunk_state_update(self: &chunk_state, input: input_bytes, input_len: subtree_len); |
537 | output_t output = chunk_state_output(self: &chunk_state); |
538 | uint8_t cv[BLAKE3_OUT_LEN]; |
539 | output_chaining_value(self: &output, cv); |
540 | hasher_push_cv(self, new_cv: cv, chunk_counter: chunk_state.chunk_counter); |
541 | } else { |
542 | // This is the high-performance happy path, though getting here depends |
543 | // on the caller giving us a long enough input. |
544 | uint8_t cv_pair[2 * BLAKE3_OUT_LEN]; |
545 | compress_subtree_to_parent_node(input: input_bytes, input_len: subtree_len, key: self->key, |
546 | chunk_counter: self->chunk.chunk_counter, |
547 | flags: self->chunk.flags, out: cv_pair); |
548 | hasher_push_cv(self, new_cv: cv_pair, chunk_counter: self->chunk.chunk_counter); |
549 | hasher_push_cv(self, new_cv: &cv_pair[BLAKE3_OUT_LEN], |
550 | chunk_counter: self->chunk.chunk_counter + (subtree_chunks / 2)); |
551 | } |
552 | self->chunk.chunk_counter += subtree_chunks; |
553 | input_bytes += subtree_len; |
554 | input_len -= subtree_len; |
555 | } |
556 | |
557 | // If there's any remaining input less than a full chunk, add it to the chunk |
558 | // state. In that case, also do a final merge loop to make sure the subtree |
559 | // stack doesn't contain any unmerged pairs. The remaining input means we |
560 | // know these merges are non-root. This merge loop isn't strictly necessary |
561 | // here, because hasher_push_chunk_cv already does its own merge loop, but it |
562 | // simplifies blake3_hasher_finalize below. |
563 | if (input_len > 0) { |
564 | chunk_state_update(self: &self->chunk, input: input_bytes, input_len); |
565 | hasher_merge_cv_stack(self, total_len: self->chunk.chunk_counter); |
566 | } |
567 | } |
568 | |
569 | void llvm_blake3_hasher_finalize(const blake3_hasher *self, uint8_t *out, |
570 | size_t out_len) { |
571 | llvm_blake3_hasher_finalize_seek(self, seek: 0, out, out_len); |
572 | #if LLVM_MEMORY_SANITIZER_BUILD |
573 | // Avoid false positives due to uninstrumented assembly code. |
574 | __msan_unpoison(out, out_len); |
575 | #endif |
576 | } |
577 | |
578 | void llvm_blake3_hasher_finalize_seek(const blake3_hasher *self, uint64_t seek, |
579 | uint8_t *out, size_t out_len) { |
580 | // Explicitly checking for zero avoids causing UB by passing a null pointer |
581 | // to memcpy. This comes up in practice with things like: |
582 | // std::vector<uint8_t> v; |
583 | // blake3_hasher_finalize(&hasher, v.data(), v.size()); |
584 | if (out_len == 0) { |
585 | return; |
586 | } |
587 | |
588 | // If the subtree stack is empty, then the current chunk is the root. |
589 | if (self->cv_stack_len == 0) { |
590 | output_t output = chunk_state_output(self: &self->chunk); |
591 | output_root_bytes(self: &output, seek, out, out_len); |
592 | return; |
593 | } |
594 | // If there are any bytes in the chunk state, finalize that chunk and do a |
595 | // roll-up merge between that chunk hash and every subtree in the stack. In |
596 | // this case, the extra merge loop at the end of blake3_hasher_update |
597 | // guarantees that none of the subtrees in the stack need to be merged with |
598 | // each other first. Otherwise, if there are no bytes in the chunk state, |
599 | // then the top of the stack is a chunk hash, and we start the merge from |
600 | // that. |
601 | output_t output; |
602 | size_t cvs_remaining; |
603 | if (chunk_state_len(self: &self->chunk) > 0) { |
604 | cvs_remaining = self->cv_stack_len; |
605 | output = chunk_state_output(self: &self->chunk); |
606 | } else { |
607 | // There are always at least 2 CVs in the stack in this case. |
608 | cvs_remaining = self->cv_stack_len - 2; |
609 | output = parent_output(block: &self->cv_stack[cvs_remaining * 32], key: self->key, |
610 | flags: self->chunk.flags); |
611 | } |
612 | while (cvs_remaining > 0) { |
613 | cvs_remaining -= 1; |
614 | uint8_t parent_block[BLAKE3_BLOCK_LEN]; |
615 | memcpy(dest: parent_block, src: &self->cv_stack[cvs_remaining * 32], n: 32); |
616 | output_chaining_value(self: &output, cv: &parent_block[32]); |
617 | output = parent_output(block: parent_block, key: self->key, flags: self->chunk.flags); |
618 | } |
619 | output_root_bytes(self: &output, seek, out, out_len); |
620 | } |
621 | |
622 | void llvm_blake3_hasher_reset(blake3_hasher *self) { |
623 | chunk_state_reset(self: &self->chunk, key: self->key, chunk_counter: 0); |
624 | self->cv_stack_len = 0; |
625 | } |
626 | |