1 | #include "blake3_impl.h" |
2 | |
3 | #if BLAKE3_USE_NEON |
4 | |
5 | #include <arm_neon.h> |
6 | |
7 | #ifdef __ARM_BIG_ENDIAN |
8 | #error "This implementation only supports little-endian ARM." |
9 | // It might be that all we need for big-endian support here is to get the loads |
10 | // and stores right, but step zero would be finding a way to test it in CI. |
11 | #endif |
12 | |
13 | INLINE uint32x4_t loadu_128(const uint8_t src[16]) { |
14 | // vld1q_u32 has alignment requirements. Don't use it. |
15 | uint32x4_t x; |
16 | memcpy(&x, src, 16); |
17 | return x; |
18 | } |
19 | |
20 | INLINE void storeu_128(uint32x4_t src, uint8_t dest[16]) { |
21 | // vst1q_u32 has alignment requirements. Don't use it. |
22 | memcpy(dest, &src, 16); |
23 | } |
24 | |
25 | INLINE uint32x4_t add_128(uint32x4_t a, uint32x4_t b) { |
26 | return vaddq_u32(a, b); |
27 | } |
28 | |
29 | INLINE uint32x4_t xor_128(uint32x4_t a, uint32x4_t b) { |
30 | return veorq_u32(a, b); |
31 | } |
32 | |
33 | INLINE uint32x4_t set1_128(uint32_t x) { return vld1q_dup_u32(&x); } |
34 | |
35 | INLINE uint32x4_t set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) { |
36 | uint32_t array[4] = {a, b, c, d}; |
37 | return vld1q_u32(array); |
38 | } |
39 | |
40 | INLINE uint32x4_t rot16_128(uint32x4_t x) { |
41 | return vorrq_u32(vshrq_n_u32(x, 16), vshlq_n_u32(x, 32 - 16)); |
42 | } |
43 | |
44 | INLINE uint32x4_t rot12_128(uint32x4_t x) { |
45 | return vorrq_u32(vshrq_n_u32(x, 12), vshlq_n_u32(x, 32 - 12)); |
46 | } |
47 | |
48 | INLINE uint32x4_t rot8_128(uint32x4_t x) { |
49 | return vorrq_u32(vshrq_n_u32(x, 8), vshlq_n_u32(x, 32 - 8)); |
50 | } |
51 | |
52 | INLINE uint32x4_t rot7_128(uint32x4_t x) { |
53 | return vorrq_u32(vshrq_n_u32(x, 7), vshlq_n_u32(x, 32 - 7)); |
54 | } |
55 | |
56 | // TODO: compress_neon |
57 | |
58 | // TODO: hash2_neon |
59 | |
60 | /* |
61 | * ---------------------------------------------------------------------------- |
62 | * hash4_neon |
63 | * ---------------------------------------------------------------------------- |
64 | */ |
65 | |
66 | INLINE void round_fn4(uint32x4_t v[16], uint32x4_t m[16], size_t r) { |
67 | v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][0]]); |
68 | v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][2]]); |
69 | v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][4]]); |
70 | v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][6]]); |
71 | v[0] = add_128(v[0], v[4]); |
72 | v[1] = add_128(v[1], v[5]); |
73 | v[2] = add_128(v[2], v[6]); |
74 | v[3] = add_128(v[3], v[7]); |
75 | v[12] = xor_128(v[12], v[0]); |
76 | v[13] = xor_128(v[13], v[1]); |
77 | v[14] = xor_128(v[14], v[2]); |
78 | v[15] = xor_128(v[15], v[3]); |
79 | v[12] = rot16_128(v[12]); |
80 | v[13] = rot16_128(v[13]); |
81 | v[14] = rot16_128(v[14]); |
82 | v[15] = rot16_128(v[15]); |
83 | v[8] = add_128(v[8], v[12]); |
84 | v[9] = add_128(v[9], v[13]); |
85 | v[10] = add_128(v[10], v[14]); |
86 | v[11] = add_128(v[11], v[15]); |
87 | v[4] = xor_128(v[4], v[8]); |
88 | v[5] = xor_128(v[5], v[9]); |
89 | v[6] = xor_128(v[6], v[10]); |
90 | v[7] = xor_128(v[7], v[11]); |
91 | v[4] = rot12_128(v[4]); |
92 | v[5] = rot12_128(v[5]); |
93 | v[6] = rot12_128(v[6]); |
94 | v[7] = rot12_128(v[7]); |
95 | v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][1]]); |
96 | v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][3]]); |
97 | v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][5]]); |
98 | v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][7]]); |
99 | v[0] = add_128(v[0], v[4]); |
100 | v[1] = add_128(v[1], v[5]); |
101 | v[2] = add_128(v[2], v[6]); |
102 | v[3] = add_128(v[3], v[7]); |
103 | v[12] = xor_128(v[12], v[0]); |
104 | v[13] = xor_128(v[13], v[1]); |
105 | v[14] = xor_128(v[14], v[2]); |
106 | v[15] = xor_128(v[15], v[3]); |
107 | v[12] = rot8_128(v[12]); |
108 | v[13] = rot8_128(v[13]); |
109 | v[14] = rot8_128(v[14]); |
110 | v[15] = rot8_128(v[15]); |
111 | v[8] = add_128(v[8], v[12]); |
112 | v[9] = add_128(v[9], v[13]); |
113 | v[10] = add_128(v[10], v[14]); |
114 | v[11] = add_128(v[11], v[15]); |
115 | v[4] = xor_128(v[4], v[8]); |
116 | v[5] = xor_128(v[5], v[9]); |
117 | v[6] = xor_128(v[6], v[10]); |
118 | v[7] = xor_128(v[7], v[11]); |
119 | v[4] = rot7_128(v[4]); |
120 | v[5] = rot7_128(v[5]); |
121 | v[6] = rot7_128(v[6]); |
122 | v[7] = rot7_128(v[7]); |
123 | |
124 | v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][8]]); |
125 | v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][10]]); |
126 | v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][12]]); |
127 | v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][14]]); |
128 | v[0] = add_128(v[0], v[5]); |
129 | v[1] = add_128(v[1], v[6]); |
130 | v[2] = add_128(v[2], v[7]); |
131 | v[3] = add_128(v[3], v[4]); |
132 | v[15] = xor_128(v[15], v[0]); |
133 | v[12] = xor_128(v[12], v[1]); |
134 | v[13] = xor_128(v[13], v[2]); |
135 | v[14] = xor_128(v[14], v[3]); |
136 | v[15] = rot16_128(v[15]); |
137 | v[12] = rot16_128(v[12]); |
138 | v[13] = rot16_128(v[13]); |
139 | v[14] = rot16_128(v[14]); |
140 | v[10] = add_128(v[10], v[15]); |
141 | v[11] = add_128(v[11], v[12]); |
142 | v[8] = add_128(v[8], v[13]); |
143 | v[9] = add_128(v[9], v[14]); |
144 | v[5] = xor_128(v[5], v[10]); |
145 | v[6] = xor_128(v[6], v[11]); |
146 | v[7] = xor_128(v[7], v[8]); |
147 | v[4] = xor_128(v[4], v[9]); |
148 | v[5] = rot12_128(v[5]); |
149 | v[6] = rot12_128(v[6]); |
150 | v[7] = rot12_128(v[7]); |
151 | v[4] = rot12_128(v[4]); |
152 | v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][9]]); |
153 | v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][11]]); |
154 | v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][13]]); |
155 | v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][15]]); |
156 | v[0] = add_128(v[0], v[5]); |
157 | v[1] = add_128(v[1], v[6]); |
158 | v[2] = add_128(v[2], v[7]); |
159 | v[3] = add_128(v[3], v[4]); |
160 | v[15] = xor_128(v[15], v[0]); |
161 | v[12] = xor_128(v[12], v[1]); |
162 | v[13] = xor_128(v[13], v[2]); |
163 | v[14] = xor_128(v[14], v[3]); |
164 | v[15] = rot8_128(v[15]); |
165 | v[12] = rot8_128(v[12]); |
166 | v[13] = rot8_128(v[13]); |
167 | v[14] = rot8_128(v[14]); |
168 | v[10] = add_128(v[10], v[15]); |
169 | v[11] = add_128(v[11], v[12]); |
170 | v[8] = add_128(v[8], v[13]); |
171 | v[9] = add_128(v[9], v[14]); |
172 | v[5] = xor_128(v[5], v[10]); |
173 | v[6] = xor_128(v[6], v[11]); |
174 | v[7] = xor_128(v[7], v[8]); |
175 | v[4] = xor_128(v[4], v[9]); |
176 | v[5] = rot7_128(v[5]); |
177 | v[6] = rot7_128(v[6]); |
178 | v[7] = rot7_128(v[7]); |
179 | v[4] = rot7_128(v[4]); |
180 | } |
181 | |
182 | INLINE void transpose_vecs_128(uint32x4_t vecs[4]) { |
183 | // Individually transpose the four 2x2 sub-matrices in each corner. |
184 | uint32x4x2_t rows01 = vtrnq_u32(vecs[0], vecs[1]); |
185 | uint32x4x2_t rows23 = vtrnq_u32(vecs[2], vecs[3]); |
186 | |
187 | // Swap the top-right and bottom-left 2x2s (which just got transposed). |
188 | vecs[0] = |
189 | vcombine_u32(vget_low_u32(rows01.val[0]), vget_low_u32(rows23.val[0])); |
190 | vecs[1] = |
191 | vcombine_u32(vget_low_u32(rows01.val[1]), vget_low_u32(rows23.val[1])); |
192 | vecs[2] = |
193 | vcombine_u32(vget_high_u32(rows01.val[0]), vget_high_u32(rows23.val[0])); |
194 | vecs[3] = |
195 | vcombine_u32(vget_high_u32(rows01.val[1]), vget_high_u32(rows23.val[1])); |
196 | } |
197 | |
198 | INLINE void transpose_msg_vecs4(const uint8_t *const *inputs, |
199 | size_t block_offset, uint32x4_t out[16]) { |
200 | out[0] = loadu_128(&inputs[0][block_offset + 0 * sizeof(uint32x4_t)]); |
201 | out[1] = loadu_128(&inputs[1][block_offset + 0 * sizeof(uint32x4_t)]); |
202 | out[2] = loadu_128(&inputs[2][block_offset + 0 * sizeof(uint32x4_t)]); |
203 | out[3] = loadu_128(&inputs[3][block_offset + 0 * sizeof(uint32x4_t)]); |
204 | out[4] = loadu_128(&inputs[0][block_offset + 1 * sizeof(uint32x4_t)]); |
205 | out[5] = loadu_128(&inputs[1][block_offset + 1 * sizeof(uint32x4_t)]); |
206 | out[6] = loadu_128(&inputs[2][block_offset + 1 * sizeof(uint32x4_t)]); |
207 | out[7] = loadu_128(&inputs[3][block_offset + 1 * sizeof(uint32x4_t)]); |
208 | out[8] = loadu_128(&inputs[0][block_offset + 2 * sizeof(uint32x4_t)]); |
209 | out[9] = loadu_128(&inputs[1][block_offset + 2 * sizeof(uint32x4_t)]); |
210 | out[10] = loadu_128(&inputs[2][block_offset + 2 * sizeof(uint32x4_t)]); |
211 | out[11] = loadu_128(&inputs[3][block_offset + 2 * sizeof(uint32x4_t)]); |
212 | out[12] = loadu_128(&inputs[0][block_offset + 3 * sizeof(uint32x4_t)]); |
213 | out[13] = loadu_128(&inputs[1][block_offset + 3 * sizeof(uint32x4_t)]); |
214 | out[14] = loadu_128(&inputs[2][block_offset + 3 * sizeof(uint32x4_t)]); |
215 | out[15] = loadu_128(&inputs[3][block_offset + 3 * sizeof(uint32x4_t)]); |
216 | transpose_vecs_128(&out[0]); |
217 | transpose_vecs_128(&out[4]); |
218 | transpose_vecs_128(&out[8]); |
219 | transpose_vecs_128(&out[12]); |
220 | } |
221 | |
222 | INLINE void load_counters4(uint64_t counter, bool increment_counter, |
223 | uint32x4_t *out_low, uint32x4_t *out_high) { |
224 | uint64_t mask = (increment_counter ? ~0 : 0); |
225 | *out_low = set4( |
226 | counter_low(counter + (mask & 0)), counter_low(counter + (mask & 1)), |
227 | counter_low(counter + (mask & 2)), counter_low(counter + (mask & 3))); |
228 | *out_high = set4( |
229 | counter_high(counter + (mask & 0)), counter_high(counter + (mask & 1)), |
230 | counter_high(counter + (mask & 2)), counter_high(counter + (mask & 3))); |
231 | } |
232 | |
233 | static |
234 | void blake3_hash4_neon(const uint8_t *const *inputs, size_t blocks, |
235 | const uint32_t key[8], uint64_t counter, |
236 | bool increment_counter, uint8_t flags, |
237 | uint8_t flags_start, uint8_t flags_end, uint8_t *out) { |
238 | uint32x4_t h_vecs[8] = { |
239 | set1_128(key[0]), set1_128(key[1]), set1_128(key[2]), set1_128(key[3]), |
240 | set1_128(key[4]), set1_128(key[5]), set1_128(key[6]), set1_128(key[7]), |
241 | }; |
242 | uint32x4_t counter_low_vec, counter_high_vec; |
243 | load_counters4(counter, increment_counter, &counter_low_vec, |
244 | &counter_high_vec); |
245 | uint8_t block_flags = flags | flags_start; |
246 | |
247 | for (size_t block = 0; block < blocks; block++) { |
248 | if (block + 1 == blocks) { |
249 | block_flags |= flags_end; |
250 | } |
251 | uint32x4_t block_len_vec = set1_128(BLAKE3_BLOCK_LEN); |
252 | uint32x4_t block_flags_vec = set1_128(block_flags); |
253 | uint32x4_t msg_vecs[16]; |
254 | transpose_msg_vecs4(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs); |
255 | |
256 | uint32x4_t v[16] = { |
257 | h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], |
258 | h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], |
259 | set1_128(IV[0]), set1_128(IV[1]), set1_128(IV[2]), set1_128(IV[3]), |
260 | counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec, |
261 | }; |
262 | round_fn4(v, msg_vecs, 0); |
263 | round_fn4(v, msg_vecs, 1); |
264 | round_fn4(v, msg_vecs, 2); |
265 | round_fn4(v, msg_vecs, 3); |
266 | round_fn4(v, msg_vecs, 4); |
267 | round_fn4(v, msg_vecs, 5); |
268 | round_fn4(v, msg_vecs, 6); |
269 | h_vecs[0] = xor_128(v[0], v[8]); |
270 | h_vecs[1] = xor_128(v[1], v[9]); |
271 | h_vecs[2] = xor_128(v[2], v[10]); |
272 | h_vecs[3] = xor_128(v[3], v[11]); |
273 | h_vecs[4] = xor_128(v[4], v[12]); |
274 | h_vecs[5] = xor_128(v[5], v[13]); |
275 | h_vecs[6] = xor_128(v[6], v[14]); |
276 | h_vecs[7] = xor_128(v[7], v[15]); |
277 | |
278 | block_flags = flags; |
279 | } |
280 | |
281 | transpose_vecs_128(&h_vecs[0]); |
282 | transpose_vecs_128(&h_vecs[4]); |
283 | // The first four vecs now contain the first half of each output, and the |
284 | // second four vecs contain the second half of each output. |
285 | storeu_128(h_vecs[0], &out[0 * sizeof(uint32x4_t)]); |
286 | storeu_128(h_vecs[4], &out[1 * sizeof(uint32x4_t)]); |
287 | storeu_128(h_vecs[1], &out[2 * sizeof(uint32x4_t)]); |
288 | storeu_128(h_vecs[5], &out[3 * sizeof(uint32x4_t)]); |
289 | storeu_128(h_vecs[2], &out[4 * sizeof(uint32x4_t)]); |
290 | storeu_128(h_vecs[6], &out[5 * sizeof(uint32x4_t)]); |
291 | storeu_128(h_vecs[3], &out[6 * sizeof(uint32x4_t)]); |
292 | storeu_128(h_vecs[7], &out[7 * sizeof(uint32x4_t)]); |
293 | } |
294 | |
295 | /* |
296 | * ---------------------------------------------------------------------------- |
297 | * hash_many_neon |
298 | * ---------------------------------------------------------------------------- |
299 | */ |
300 | |
301 | void blake3_compress_in_place_portable(uint32_t cv[8], |
302 | const uint8_t block[BLAKE3_BLOCK_LEN], |
303 | uint8_t block_len, uint64_t counter, |
304 | uint8_t flags); |
305 | |
306 | INLINE void hash_one_neon(const uint8_t *input, size_t blocks, |
307 | const uint32_t key[8], uint64_t counter, |
308 | uint8_t flags, uint8_t flags_start, uint8_t flags_end, |
309 | uint8_t out[BLAKE3_OUT_LEN]) { |
310 | uint32_t cv[8]; |
311 | memcpy(cv, key, BLAKE3_KEY_LEN); |
312 | uint8_t block_flags = flags | flags_start; |
313 | while (blocks > 0) { |
314 | if (blocks == 1) { |
315 | block_flags |= flags_end; |
316 | } |
317 | // TODO: Implement compress_neon. However note that according to |
318 | // https://github.com/BLAKE2/BLAKE2/commit/7965d3e6e1b4193438b8d3a656787587d2579227, |
319 | // compress_neon might not be any faster than compress_portable. |
320 | blake3_compress_in_place_portable(cv, input, BLAKE3_BLOCK_LEN, counter, |
321 | block_flags); |
322 | input = &input[BLAKE3_BLOCK_LEN]; |
323 | blocks -= 1; |
324 | block_flags = flags; |
325 | } |
326 | memcpy(out, cv, BLAKE3_OUT_LEN); |
327 | } |
328 | |
329 | void blake3_hash_many_neon(const uint8_t *const *inputs, size_t num_inputs, |
330 | size_t blocks, const uint32_t key[8], |
331 | uint64_t counter, bool increment_counter, |
332 | uint8_t flags, uint8_t flags_start, |
333 | uint8_t flags_end, uint8_t *out) { |
334 | while (num_inputs >= 4) { |
335 | blake3_hash4_neon(inputs, blocks, key, counter, increment_counter, flags, |
336 | flags_start, flags_end, out); |
337 | if (increment_counter) { |
338 | counter += 4; |
339 | } |
340 | inputs += 4; |
341 | num_inputs -= 4; |
342 | out = &out[4 * BLAKE3_OUT_LEN]; |
343 | } |
344 | while (num_inputs > 0) { |
345 | hash_one_neon(inputs[0], blocks, key, counter, flags, flags_start, |
346 | flags_end, out); |
347 | if (increment_counter) { |
348 | counter += 1; |
349 | } |
350 | inputs += 1; |
351 | num_inputs -= 1; |
352 | out = &out[BLAKE3_OUT_LEN]; |
353 | } |
354 | } |
355 | |
356 | #endif // BLAKE3_USE_NEON |
357 | |