1 | //===--- OptimizedStructLayout.cpp - Optimal data layout algorithm ----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the performOptimizedStructLayout interface. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/Support/OptimizedStructLayout.h" |
14 | #include <optional> |
15 | |
16 | using namespace llvm; |
17 | |
18 | using Field = OptimizedStructLayoutField; |
19 | |
20 | #ifndef NDEBUG |
21 | static void checkValidLayout(ArrayRef<Field> Fields, uint64_t Size, |
22 | Align MaxAlign) { |
23 | uint64_t LastEnd = 0; |
24 | Align ComputedMaxAlign; |
25 | for (auto &Field : Fields) { |
26 | assert(Field.hasFixedOffset() && |
27 | "didn't assign a fixed offset to field" ); |
28 | assert(isAligned(Field.Alignment, Field.Offset) && |
29 | "didn't assign a correctly-aligned offset to field" ); |
30 | assert(Field.Offset >= LastEnd && |
31 | "didn't assign offsets in ascending order" ); |
32 | LastEnd = Field.getEndOffset(); |
33 | assert(Field.Alignment <= MaxAlign && |
34 | "didn't compute MaxAlign correctly" ); |
35 | ComputedMaxAlign = std::max(Field.Alignment, MaxAlign); |
36 | } |
37 | assert(LastEnd == Size && "didn't compute LastEnd correctly" ); |
38 | assert(ComputedMaxAlign == MaxAlign && "didn't compute MaxAlign correctly" ); |
39 | } |
40 | #endif |
41 | |
42 | std::pair<uint64_t, Align> |
43 | llvm::performOptimizedStructLayout(MutableArrayRef<Field> Fields) { |
44 | #ifndef NDEBUG |
45 | // Do some simple precondition checks. |
46 | { |
47 | bool InFixedPrefix = true; |
48 | size_t LastEnd = 0; |
49 | for (auto &Field : Fields) { |
50 | assert(Field.Size > 0 && "field of zero size" ); |
51 | if (Field.hasFixedOffset()) { |
52 | assert(InFixedPrefix && |
53 | "fixed-offset fields are not a strict prefix of array" ); |
54 | assert(LastEnd <= Field.Offset && |
55 | "fixed-offset fields overlap or are not in order" ); |
56 | LastEnd = Field.getEndOffset(); |
57 | assert(LastEnd > Field.Offset && |
58 | "overflow in fixed-offset end offset" ); |
59 | } else { |
60 | InFixedPrefix = false; |
61 | } |
62 | } |
63 | } |
64 | #endif |
65 | |
66 | // Do an initial pass over the fields. |
67 | Align MaxAlign; |
68 | |
69 | // Find the first flexible-offset field, tracking MaxAlign. |
70 | auto FirstFlexible = Fields.begin(), E = Fields.end(); |
71 | while (FirstFlexible != E && FirstFlexible->hasFixedOffset()) { |
72 | MaxAlign = std::max(a: MaxAlign, b: FirstFlexible->Alignment); |
73 | ++FirstFlexible; |
74 | } |
75 | |
76 | // If there are no flexible fields, we're done. |
77 | if (FirstFlexible == E) { |
78 | uint64_t Size = 0; |
79 | if (!Fields.empty()) |
80 | Size = Fields.back().getEndOffset(); |
81 | |
82 | #ifndef NDEBUG |
83 | checkValidLayout(Fields, Size, MaxAlign); |
84 | #endif |
85 | return std::make_pair(x&: Size, y&: MaxAlign); |
86 | } |
87 | |
88 | // Walk over the flexible-offset fields, tracking MaxAlign and |
89 | // assigning them a unique number in order of their appearance. |
90 | // We'll use this unique number in the comparison below so that |
91 | // we can use array_pod_sort, which isn't stable. We won't use it |
92 | // past that point. |
93 | { |
94 | uintptr_t UniqueNumber = 0; |
95 | for (auto I = FirstFlexible; I != E; ++I) { |
96 | I->Scratch = reinterpret_cast<void*>(UniqueNumber++); |
97 | MaxAlign = std::max(a: MaxAlign, b: I->Alignment); |
98 | } |
99 | } |
100 | |
101 | // Sort the flexible elements in order of decreasing alignment, |
102 | // then decreasing size, and then the original order as recorded |
103 | // in Scratch. The decreasing-size aspect of this is only really |
104 | // important if we get into the gap-filling stage below, but it |
105 | // doesn't hurt here. |
106 | array_pod_sort(Start: FirstFlexible, End: E, |
107 | Compare: [](const Field *lhs, const Field *rhs) -> int { |
108 | // Decreasing alignment. |
109 | if (lhs->Alignment != rhs->Alignment) |
110 | return (lhs->Alignment < rhs->Alignment ? 1 : -1); |
111 | |
112 | // Decreasing size. |
113 | if (lhs->Size != rhs->Size) |
114 | return (lhs->Size < rhs->Size ? 1 : -1); |
115 | |
116 | // Original order. |
117 | auto lhsNumber = reinterpret_cast<uintptr_t>(lhs->Scratch); |
118 | auto rhsNumber = reinterpret_cast<uintptr_t>(rhs->Scratch); |
119 | if (lhsNumber != rhsNumber) |
120 | return (lhsNumber < rhsNumber ? -1 : 1); |
121 | |
122 | return 0; |
123 | }); |
124 | |
125 | // Do a quick check for whether that sort alone has given us a perfect |
126 | // layout with no interior padding. This is very common: if the |
127 | // fixed-layout fields have no interior padding, and they end at a |
128 | // sufficiently-aligned offset for all the flexible-layout fields, |
129 | // and the flexible-layout fields all have sizes that are multiples |
130 | // of their alignment, then this will reliably trigger. |
131 | { |
132 | bool HasPadding = false; |
133 | uint64_t LastEnd = 0; |
134 | |
135 | // Walk the fixed-offset fields. |
136 | for (auto I = Fields.begin(); I != FirstFlexible; ++I) { |
137 | assert(I->hasFixedOffset()); |
138 | if (LastEnd != I->Offset) { |
139 | HasPadding = true; |
140 | break; |
141 | } |
142 | LastEnd = I->getEndOffset(); |
143 | } |
144 | |
145 | // Walk the flexible-offset fields, optimistically assigning fixed |
146 | // offsets. Note that we maintain a strict division between the |
147 | // fixed-offset and flexible-offset fields, so if we end up |
148 | // discovering padding later in this loop, we can just abandon this |
149 | // work and we'll ignore the offsets we already assigned. |
150 | if (!HasPadding) { |
151 | for (auto I = FirstFlexible; I != E; ++I) { |
152 | auto Offset = alignTo(Size: LastEnd, A: I->Alignment); |
153 | if (LastEnd != Offset) { |
154 | HasPadding = true; |
155 | break; |
156 | } |
157 | I->Offset = Offset; |
158 | LastEnd = I->getEndOffset(); |
159 | } |
160 | } |
161 | |
162 | // If we already have a perfect layout, we're done. |
163 | if (!HasPadding) { |
164 | #ifndef NDEBUG |
165 | checkValidLayout(Fields, LastEnd, MaxAlign); |
166 | #endif |
167 | return std::make_pair(x&: LastEnd, y&: MaxAlign); |
168 | } |
169 | } |
170 | |
171 | // The algorithm sketch at this point is as follows. |
172 | // |
173 | // Consider the padding gaps between fixed-offset fields in ascending |
174 | // order. Let LastEnd be the offset of the first byte following the |
175 | // field before the gap, or 0 if the gap is at the beginning of the |
176 | // structure. Find the "best" flexible-offset field according to the |
177 | // criteria below. If no such field exists, proceed to the next gap. |
178 | // Otherwise, add the field at the first properly-aligned offset for |
179 | // that field that is >= LastEnd, then update LastEnd and repeat in |
180 | // order to fill any remaining gap following that field. |
181 | // |
182 | // Next, let LastEnd to be the offset of the first byte following the |
183 | // last fixed-offset field, or 0 if there are no fixed-offset fields. |
184 | // While there are flexible-offset fields remaining, find the "best" |
185 | // flexible-offset field according to the criteria below, add it at |
186 | // the first properly-aligned offset for that field that is >= LastEnd, |
187 | // and update LastEnd to the first byte following the field. |
188 | // |
189 | // The "best" field is chosen by the following criteria, considered |
190 | // strictly in order: |
191 | // |
192 | // - When filling a gap betweeen fields, the field must fit. |
193 | // - A field is preferred if it requires less padding following LastEnd. |
194 | // - A field is preferred if it is more aligned. |
195 | // - A field is preferred if it is larger. |
196 | // - A field is preferred if it appeared earlier in the initial order. |
197 | // |
198 | // Minimizing leading padding is a greedy attempt to avoid padding |
199 | // entirely. Preferring more-aligned fields is an attempt to eliminate |
200 | // stricter constraints earlier, with the idea that weaker alignment |
201 | // constraints may be resolvable with less padding elsewhere. These |
202 | // These two rules are sufficient to ensure that we get the optimal |
203 | // layout in the "C-style" case. Preferring larger fields tends to take |
204 | // better advantage of large gaps and may be more likely to have a size |
205 | // that's a multiple of a useful alignment. Preferring the initial |
206 | // order may help somewhat with locality but is mostly just a way of |
207 | // ensuring deterministic output. |
208 | // |
209 | // Note that this algorithm does not guarantee a minimal layout. Picking |
210 | // a larger object greedily may leave a gap that cannot be filled as |
211 | // efficiently. Unfortunately, solving this perfectly is an NP-complete |
212 | // problem (by reduction from bin-packing: let B_i be the bin sizes and |
213 | // O_j be the object sizes; add fixed-offset fields such that the gaps |
214 | // between them have size B_i, and add flexible-offset fields with |
215 | // alignment 1 and size O_j; if the layout size is equal to the end of |
216 | // the last fixed-layout field, the objects fit in the bins; note that |
217 | // this doesn't even require the complexity of alignment). |
218 | |
219 | // The implementation below is essentially just an optimized version of |
220 | // scanning the list of remaining fields looking for the best, which |
221 | // would be O(n^2). In the worst case, it doesn't improve on that. |
222 | // However, in practice it'll just scan the array of alignment bins |
223 | // and consider the first few elements from one or two bins. The |
224 | // number of bins is bounded by a small constant: alignments are powers |
225 | // of two that are vanishingly unlikely to be over 64 and fairly unlikely |
226 | // to be over 8. And multiple elements only need to be considered when |
227 | // filling a gap between fixed-offset fields, which doesn't happen very |
228 | // often. We could use a data structure within bins that optimizes for |
229 | // finding the best-sized match, but it would require allocating memory |
230 | // and copying data, so it's unlikely to be worthwhile. |
231 | |
232 | |
233 | // Start by organizing the flexible-offset fields into bins according to |
234 | // their alignment. We expect a small enough number of bins that we |
235 | // don't care about the asymptotic costs of walking this. |
236 | struct AlignmentQueue { |
237 | /// The minimum size of anything currently in this queue. |
238 | uint64_t MinSize; |
239 | |
240 | /// The head of the queue. A singly-linked list. The order here should |
241 | /// be consistent with the earlier sort, i.e. the elements should be |
242 | /// monotonically descending in size and otherwise in the original order. |
243 | /// |
244 | /// We remove the queue from the array as soon as this is empty. |
245 | OptimizedStructLayoutField *Head; |
246 | |
247 | /// The alignment requirement of the queue. |
248 | Align Alignment; |
249 | |
250 | static Field *getNext(Field *Cur) { |
251 | return static_cast<Field *>(Cur->Scratch); |
252 | } |
253 | }; |
254 | SmallVector<AlignmentQueue, 8> FlexibleFieldsByAlignment; |
255 | for (auto I = FirstFlexible; I != E; ) { |
256 | auto Head = I; |
257 | auto Alignment = I->Alignment; |
258 | |
259 | uint64_t MinSize = I->Size; |
260 | auto LastInQueue = I; |
261 | for (++I; I != E && I->Alignment == Alignment; ++I) { |
262 | LastInQueue->Scratch = I; |
263 | LastInQueue = I; |
264 | MinSize = std::min(a: MinSize, b: I->Size); |
265 | } |
266 | LastInQueue->Scratch = nullptr; |
267 | |
268 | FlexibleFieldsByAlignment.push_back(Elt: {.MinSize: MinSize, .Head: Head, .Alignment: Alignment}); |
269 | } |
270 | |
271 | #ifndef NDEBUG |
272 | // Verify that we set the queues up correctly. |
273 | auto checkQueues = [&]{ |
274 | bool FirstQueue = true; |
275 | Align LastQueueAlignment; |
276 | for (auto &Queue : FlexibleFieldsByAlignment) { |
277 | assert((FirstQueue || Queue.Alignment < LastQueueAlignment) && |
278 | "bins not in order of descending alignment" ); |
279 | LastQueueAlignment = Queue.Alignment; |
280 | FirstQueue = false; |
281 | |
282 | assert(Queue.Head && "queue was empty" ); |
283 | uint64_t LastSize = ~(uint64_t)0; |
284 | for (auto I = Queue.Head; I; I = Queue.getNext(I)) { |
285 | assert(I->Alignment == Queue.Alignment && "bad field in queue" ); |
286 | assert(I->Size <= LastSize && "queue not in descending size order" ); |
287 | LastSize = I->Size; |
288 | } |
289 | } |
290 | }; |
291 | checkQueues(); |
292 | #endif |
293 | |
294 | /// Helper function to remove a field from a queue. |
295 | auto spliceFromQueue = [&](AlignmentQueue *Queue, Field *Last, Field *Cur) { |
296 | assert(Last ? Queue->getNext(Last) == Cur : Queue->Head == Cur); |
297 | |
298 | // If we're removing Cur from a non-initial position, splice it out |
299 | // of the linked list. |
300 | if (Last) { |
301 | Last->Scratch = Cur->Scratch; |
302 | |
303 | // If Cur was the last field in the list, we need to update MinSize. |
304 | // We can just use the last field's size because the list is in |
305 | // descending order of size. |
306 | if (!Cur->Scratch) |
307 | Queue->MinSize = Last->Size; |
308 | |
309 | // Otherwise, replace the head. |
310 | } else { |
311 | if (auto NewHead = Queue->getNext(Cur)) |
312 | Queue->Head = NewHead; |
313 | |
314 | // If we just emptied the queue, destroy its bin. |
315 | else |
316 | FlexibleFieldsByAlignment.erase(CI: Queue); |
317 | } |
318 | }; |
319 | |
320 | // Do layout into a local array. Doing this in-place on Fields is |
321 | // not really feasible. |
322 | SmallVector<Field, 16> Layout; |
323 | Layout.reserve(N: Fields.size()); |
324 | |
325 | // The offset that we're currently looking to insert at (or after). |
326 | uint64_t LastEnd = 0; |
327 | |
328 | // Helper function to splice Cur out of the given queue and add it |
329 | // to the layout at the given offset. |
330 | auto addToLayout = [&](AlignmentQueue *Queue, Field *Last, Field *Cur, |
331 | uint64_t Offset) -> bool { |
332 | assert(Offset == alignTo(LastEnd, Cur->Alignment)); |
333 | |
334 | // Splice out. This potentially invalidates Queue. |
335 | spliceFromQueue(Queue, Last, Cur); |
336 | |
337 | // Add Cur to the layout. |
338 | Layout.push_back(Elt: *Cur); |
339 | Layout.back().Offset = Offset; |
340 | LastEnd = Layout.back().getEndOffset(); |
341 | |
342 | // Always return true so that we can be tail-called. |
343 | return true; |
344 | }; |
345 | |
346 | // Helper function to try to find a field in the given queue that'll |
347 | // fit starting at StartOffset but before EndOffset (if present). |
348 | // Note that this never fails if EndOffset is not provided. |
349 | auto tryAddFillerFromQueue = [&](AlignmentQueue *Queue, uint64_t StartOffset, |
350 | std::optional<uint64_t> EndOffset) -> bool { |
351 | assert(Queue->Head); |
352 | assert(StartOffset == alignTo(LastEnd, Queue->Alignment)); |
353 | assert(!EndOffset || StartOffset < *EndOffset); |
354 | |
355 | // Figure out the maximum size that a field can be, and ignore this |
356 | // queue if there's nothing in it that small. |
357 | auto MaxViableSize = |
358 | (EndOffset ? *EndOffset - StartOffset : ~(uint64_t)0); |
359 | if (Queue->MinSize > MaxViableSize) |
360 | return false; |
361 | |
362 | // Find the matching field. Note that this should always find |
363 | // something because of the MinSize check above. |
364 | for (Field *Cur = Queue->Head, *Last = nullptr; true; |
365 | Last = Cur, Cur = Queue->getNext(Cur)) { |
366 | assert(Cur && "didn't find a match in queue despite its MinSize" ); |
367 | if (Cur->Size <= MaxViableSize) |
368 | return addToLayout(Queue, Last, Cur, StartOffset); |
369 | } |
370 | |
371 | llvm_unreachable("didn't find a match in queue despite its MinSize" ); |
372 | }; |
373 | |
374 | // Helper function to find the "best" flexible-offset field according |
375 | // to the criteria described above. |
376 | auto tryAddBestField = [&](std::optional<uint64_t> BeforeOffset) -> bool { |
377 | assert(!BeforeOffset || LastEnd < *BeforeOffset); |
378 | auto QueueB = FlexibleFieldsByAlignment.begin(); |
379 | auto QueueE = FlexibleFieldsByAlignment.end(); |
380 | |
381 | // Start by looking for the most-aligned queue that doesn't need any |
382 | // leading padding after LastEnd. |
383 | auto FirstQueueToSearch = QueueB; |
384 | for (; FirstQueueToSearch != QueueE; ++FirstQueueToSearch) { |
385 | if (isAligned(Lhs: FirstQueueToSearch->Alignment, SizeInBytes: LastEnd)) |
386 | break; |
387 | } |
388 | |
389 | uint64_t Offset = LastEnd; |
390 | while (true) { |
391 | // Invariant: all of the queues in [FirstQueueToSearch, QueueE) |
392 | // require the same initial padding offset. |
393 | |
394 | // Search those queues in descending order of alignment for a |
395 | // satisfactory field. |
396 | for (auto Queue = FirstQueueToSearch; Queue != QueueE; ++Queue) { |
397 | if (tryAddFillerFromQueue(Queue, Offset, BeforeOffset)) |
398 | return true; |
399 | } |
400 | |
401 | // Okay, we don't need to scan those again. |
402 | QueueE = FirstQueueToSearch; |
403 | |
404 | // If we started from the first queue, we're done. |
405 | if (FirstQueueToSearch == QueueB) |
406 | return false; |
407 | |
408 | // Otherwise, scan backwards to find the most-aligned queue that |
409 | // still has minimal leading padding after LastEnd. If that |
410 | // minimal padding is already at or past the end point, we're done. |
411 | --FirstQueueToSearch; |
412 | Offset = alignTo(Size: LastEnd, A: FirstQueueToSearch->Alignment); |
413 | if (BeforeOffset && Offset >= *BeforeOffset) |
414 | return false; |
415 | while (FirstQueueToSearch != QueueB && |
416 | Offset == alignTo(Size: LastEnd, A: FirstQueueToSearch[-1].Alignment)) |
417 | --FirstQueueToSearch; |
418 | } |
419 | }; |
420 | |
421 | // Phase 1: fill the gaps between fixed-offset fields with the best |
422 | // flexible-offset field that fits. |
423 | for (auto I = Fields.begin(); I != FirstFlexible; ++I) { |
424 | assert(LastEnd <= I->Offset); |
425 | while (LastEnd != I->Offset) { |
426 | if (!tryAddBestField(I->Offset)) |
427 | break; |
428 | } |
429 | Layout.push_back(Elt: *I); |
430 | LastEnd = I->getEndOffset(); |
431 | } |
432 | |
433 | #ifndef NDEBUG |
434 | checkQueues(); |
435 | #endif |
436 | |
437 | // Phase 2: repeatedly add the best flexible-offset field until |
438 | // they're all gone. |
439 | while (!FlexibleFieldsByAlignment.empty()) { |
440 | bool Success = tryAddBestField(std::nullopt); |
441 | assert(Success && "didn't find a field with no fixed limit?" ); |
442 | (void) Success; |
443 | } |
444 | |
445 | // Copy the layout back into place. |
446 | assert(Layout.size() == Fields.size()); |
447 | memcpy(dest: Fields.data(), src: Layout.data(), |
448 | n: Fields.size() * sizeof(OptimizedStructLayoutField)); |
449 | |
450 | #ifndef NDEBUG |
451 | // Make a final check that the layout is valid. |
452 | checkValidLayout(Fields, LastEnd, MaxAlign); |
453 | #endif |
454 | |
455 | return std::make_pair(x&: LastEnd, y&: MaxAlign); |
456 | } |
457 | |